
Graduate Theses, Dissertations, and Problem Reports

2001

Pattern recognition in software engineering trend adapting Pattern recognition in software engineering trend adapting

Dapeng Chen
West Virginia University

Follow this and additional works at: https://researchrepository.wvu.edu/etd

Recommended Citation Recommended Citation
Chen, Dapeng, "Pattern recognition in software engineering trend adapting" (2001). Graduate Theses,
Dissertations, and Problem Reports. 1246.
https://researchrepository.wvu.edu/etd/1246

This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research
Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is
permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license
in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses,
Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU.
For more information, please contact researchrepository@mail.wvu.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The Research Repository @ WVU (West Virginia University)

https://core.ac.uk/display/230484451?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F1246&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd/1246?utm_source=researchrepository.wvu.edu%2Fetd%2F1246&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu

Pattern Recognition in Software Engineering Trend
Adapting

Dapeng Chen

Thesis submitted to the
College of Engineering and Mineral Resources

at West Virginia University
in partial fulfillment of the requirements

for the degree of

Master of Science
in

Computer Science

Ali Mili , Ph.D., Chair
Hany Ammar, Ph.D.

Robert Cowan

Department of Computer Science & Electrical Engineering
2001

Keywords: Neural Networks, Pattern, Software Engineering

Trends
Copyright 2001 Dapeng Chen

ABSTRACT

Pattern Recognition in Software Engineering Trend Adapting

Dapeng Chen

Whether and when to adapt to certain software engineering trends are difficult questions
to be answered by many decision-makers. The main reasons are due to the fact that
evolution of software engineering trends itself is determined by various factors, many of
which come from the fields outside of the software technology, thus hard to predict. So it
is even harder to estimate the cost and benefit when adapting to certain trends. This paper
is intended to study ways to decrease the risk involved in such decision making
processes, by developing a pattern from past software engineering trends. While the
pattern cannot answer all the questions by itself, it can relief the decision makers in a
large extent by providing the most important information relevant to the software
engineering trends. The pattern recognition is achieved by using neural networks. Our
result seems to be very encouraging, which begins to prove that there does exist pattern
between the input data that we can observe and the output data that we need to know.
Although more trends need to be observed and analyzed before we can reach a more
concrete conclusion, it does show that neural network may be a valid approach in future
research.

Table of Contents

Chapter 1 Introduction to Software Engineering Technology Watch������Page 1

Chapter 2 Adapting to Software Engineering Trends�����������...Page 6

2.1 Goal of Research ������.���������������Page 6

 2.2 Analytical and Empirical Approach��������������Page 7

 2.3 A Comparison of Existing Models�..�������������Page 8

Chapter 3. An Empirical Model and Neural Network Approach�������.Page 12

 3.1 A Brief Introduction to Neural Networks �����������..Page 12

 3.2 Recurrent Neural Network Architecture������������.Page 18

Chapter 4. Data Collection����������������������Page 22

 4.1 Pattern Recognition and Data needed������������.�Page 22

 4.2 Data Format����������������������....Page 24

 4.3 Collection Procedure and Data Source������������ Page 30

Chapter 5 Analytical Result�������������������� �.Page 32

 5.1 Performance of Neural Network on Sample Data����.����.Page 32

 5.2 Preliminary Conclusions������������������.Page 36

Chapter 6 Summary������������������������..Page 39

Appendix����������������������������...Page 42

Bibliography���������������������������.Page 50

 1

Chapter 1 Introduction to Software Engineering Technology Watch

This paper is part of the research in the Software Engineering Technology Watch (Tech

Watch) project. To illustrate the problem that this paper is trying to solve, it is necessary

to review briefly the Tech Watch project.

The Tech Watch project is proposed to illusive the elusiveness of the software

engineering trends. By launching a watch initiative in Software Engineering, Tech Watch

raises a number of questions about the evolution of technology, and about the means that

people can deploy to understand the forces that drive this evolution1. This approach can

be characterized by the combination of the following two premises which will give

sufficient latitude to gain some insight into the problem and make some tentative inroads

towards addressing it.

• Structuring the Problem. To pursue tech watch, one realizes that there are

many questions that beg for answers. In most cases, all these questions are

interrelated. The first order of business, for this project, is thus defined as

building a questionnaire structure, which arrange all these questions in a way

that attempts to highlight their interrelations.

• Diversifying the Solution. The Tech Watch project distinguishes among three

research methods: analytical research, which attempts to understand the

phenomena that underlie observed behavior, and build models that capture

these phenomena; empirical research, which makes no attempt to understand

cause/effect relationships, but merely attempts to capture observed behaviors

 2

by empirical models; experimental research, which intervenes after analytical

or empirical research to validate the proposed models.

In order to fulfill the general goal of Tech Watch project, the questionnaire structure is

divided into four layers. At the topmost level of the hierarchy is the distinction between

four families of questions:

• How to watch software engineering trends? This question deals with what

indicators we need to monitor, where to find them, and how to interpret them.

• How to predict software engineering trends? This question deals with what

lifecycle we believe that software engineering trends follow, and what drives

the evolution of a trend from one phase to another along the lifecycle.

• How to adapt to software engineering trends? This question deals with how

does one define institutional strategy in such a way as to maximize benefit

from what is known about a trend and minimize risk from what is not known

about it.

• How to affect software engineering trends? This question tries to identify

where, in the cycle of a trend, is it possible to alter the course of the trend,

and eventually how, and by whom.

These four questions represent the four branches of the TECH WATCH research. The

general goals and the state of art of these branches are as follows.

1. Watching Software Engineering Trends.

 3

The General goal of watching trends is not offering any concrete answer about predicting

and adapting trends. Instead, the goal is to determine what information we must maintain

in order to gain a comprehensive view of the discipline and its evolution. The

information in question must be rich enough to support both discipline-wide assessment

and trend-specific analysis. The project not only concerned with what information to

collect, but also where to find it, how to derive it, and how to keep it up-to-date.

Specifically, questions to be addressed while we do the trend-watching include:

• What is the relevant information that must be collected/monitored?

• Where do we find this information, or where do we infer it from?

• How do we interpret this information?

• How often do we need to update this information?

A number of software engineering-specific, and technology-related indicators have been

identified and divided into the following categories: Classification Standings, Research

and Developments, Science and Technology Output, Human Resources, Cost and

Funding, Standards and Regulations and Best Practices.

2. Predicting Software Engineering Trends

Among all questions to be answered, how to predict software engineering trend is

probably the most important one. As long as the lifecycle is identified, we will be able to

answer questions such as: what factors determine the success (or failure) of a trend? How

early can such factors be assessed? Which success factors are controllable? What phases

in the lifecycle lend themselves to external interventions?

 4

While a definite lifecycle that software engineering trends follow has not been derived, a

generic evolutionary model which includes three cycles is proposed to capture these

trends. The model is shown in figure 1.

 Figure 1. Generic Evolutionary Cycle Model

As we can see from above, three cycles are recognized to define the lifecycle of software

engineering trends, which are Research, Technology Transfer and Market.

��Research Trends. Research trends are driven by general perceptions of the state of

the art and the state of the practice, by researcher perceptions of practitioner needs, by

national funding programs that rally around specific strategic goals, and by sheer

technical interest. For this trend, Tech Watch tries to identify research issues and non-

issues, as well as theoretical and practical research goals. It also proposes analytical vs.

empirical research methods, and formulates realistic expectations.

��Technology Trends. Technology trends are driven by the maturation of applicable

research ideas, and by the successful evolution of the idea to a useful, technologically

viable product. In order for a research idea to turn into a concrete product, three

conditions must be satisfied simultaneously: 1) the idea must be mature, 2) there must

Activities

Time

Research Trends

Technology Trends

Market Trends

 5

be an actual or potential market for the product. 3) There must be an economically

viable way to make this technology available on the market. As far as technology trends

are concerned, Tech Watch identifies the following sub goals: 1) Track promising

research ideas, measuring their maturity, market potential, and technological viability;

2) Identify technology bottlenecks; 3) Track current technological needs, and their

evolution as market shift. 4) Identify/track general trends in venture capital.

��Market Trends. Just as technological trends can influence research trends, market

trends can in turn influence technological trends in the following two ways: either by

providing new products, or by creating a new market. Thus, the goal of Tech Watch

research will be watching changes in both supply side and demand side.

3. Adapting to Software Engineering Trends

Adapting to software engineer trend is the natural extension of watching technology

trends and predicting technology trends. Actually to a large extent, it depends on the first

two steps to have a better understanding of the software engineering trends, although it

has its own research methods to asses adoption costs, adoption benefits and adoption

risks. How to make decision in adapting to software engineering trends is the focus of

this paper, and will be discussed in more details in a later chapter.

4. Affecting Software Engineering Trends

This aspect of the project is interested in analyzing to what extent it is possible to

affect/control technology trends. The following questions are discussed in this part:

��Is it possible to affect technology trends?

 6

��Who can affect technology trends?

��How can technology trends be affected?

��At what phase of its evolutionary lifecycle can a technology trend be affected?

��How can we quantify impact?

Chapter 2 Adapting to Software Engineering Trends

2.1 Goal of Research

In chapter one, we discussed four broad classes of issues that will be addressed in the

software engineering technology watch project. Specifically, they are:

��How to Watch Trends?

��How to Predict Trends?

��How to React/Adapt to Trends?

��How to Affect/ Influence Trends?

While predicting a trend may be the critical part of the research, adapting to a trend is

most critical part in the whole project, since the final goal is not just knowing the trend,

but rather knowing what to do with it, and this is the goal of this research.

So, what exactly is the meaning of adapting to a trend? It is possible that this question has

many different interpretations, and here are some common ones that we are trying to

answer :

��A corporate manager hears about a particular trend (e.g. Linux) and wants to know

what to do about it: ignore it? Adapt the corporate products to support it? etc.

 7

��An Academic curriculum developer hears about a particular trend and wants to know

what to do about it: ignore it? Change class content to include it? Ensure students know

about upon graduation? Etc.

��A government acquisition manager hears about a particular trend and wants to know

what to do about it: ignore it? Encourage government contractor to adhere to it? etc.

To fix our ideas, in this paper, we will only consider the issue of adapting to a software-

engineering trend from a corporate perspective, but the conclusion can easily be spread

to any other perspective since they all share the same nature.

2.2 Analytical and Empirical Approach

Two approaches have been considered to this problem, which are analytical approach and

empirical approach. Analytical approach views the adoption decision as a return on

investment decision, and the adoption process as an investment. This approach is much

easier to understand than empirical approach, which I will discuss later, since it has a

resemblance to other current business decision-making process. From corporate

managers' point of view, although many factors need to be considered before any

adapting decision is made, such as the stake of certain trend for the organization and the

intrinsic technical merits, most important issues they need to consider are cost, benefit

and risk from adapting the trend. Usually a rational decision-maker will only adapt to the

trend if adapting benefit exceeds cost, and ignore it otherwise.

To compare the adapting cost and benefit, we need to quantify each cost and benefit

factors, which are organized and reported in structured table (see figure 2). This may be

the bottleneck of the analytical model, since there is a lot of relevant cost and benefit

 8

factors involved. For many of these factors, we have no other option but to consider

discrete rating scales. Since in most cases we can not just add them up to get the total cost

and total benefit, it is difficult to compare the cost and benefit. Thus, this approach limits

itself to the theoretical stage.

Another approach is the empirical approach. This approach makes no effort to analyze or

understand the precise economics of technology adoption, but attempts to derive

relationships between relevant parameters of the technology (i.e. input) and the relevant

parameters that help to make an adoption decision (i.e. output). To simulate this effect,

we use neural network technology, which will be discussed in more details in the next

chapter. Basically, we submit the historical data from past software engineering trends

into the neural network tool, and let the tool build a neural network to discover the

underlying relationship between the input data and output data. If this step is successfully

accomplished, later we can just put the observed data from current trend into the network,

and hope we can get the relevant outcome of an adoption decision.

2.3 A comparison of existing models.

Many Models have been done derived for this field. The main reason that the adapting

process attracts so much attention is, enterprises worldwide have to operate in an

environment of increasingly rapid change and increasingly strong competition. This is

leading to major and continuing restructuring as the enterprises that struggle to survive by

adapting to change. It is commonly agreed that "principled restructuring" or "adapting

decision" is based on defining the basic goals of the enterprise, identifying the processes

currently supporting those goals, reengineering the processes to serve the goals

 9

Figure 2. Adapting to Software Engineering Trends

Technical Bottlenecks

Technology
Compability

Research Progress

Application Restrction

............

Technical Factors

R&D Investment

Production Costs

Maintenance Costs

Existing Equipment
Depreciation

................

Financial Factors

Technical failure
possiblities

Threaten from
Newer Technology

Competitors ..

................

Risk Factors

Market resistance

Marketing Cost

...........

Marketing Factors

Cost Analysis

Easy to learn?

Easy to use?

More affordable?

More fault tolerance?

...............

Advantage vs.
existing Tech.

Research abilities

Product more fits
need?

...........

Advantage vs.
Competitors

Present value of
future profits

without adapting

Expected present
value of future

profits with
adapting

.................

Expected Profits

Will market share
increase after

adapting

..................

Expected Market share

Benefit Analysis

Cost-Benefit Analysis

 10

more effectively, and maintaining the quality of those processes by a program of

continuous process improvement.

In addition to neural network, expert system is another popular approach in existing

researches. There have been two major modeling methodologies developed in knowledge

engineering: the KADS methodology3 focusing on the derivation of the formal

representation; and Checkland's4 soft system methodology, which discusses basic

modeling techniques in software engineering. These two methodologies are described

briefly below.

The KADS methodology is the outcome of a number of ESPRIT project activities

centered at the University of Amsterdam but involving researchers and practitioners from

many institutions, countries and disciplines. KADS is intrinsically a modeling approach

with seven types of models distinguished: 1) organizational model, which provides an

analysis of the social-organizational environment in which the knowledge-based system

will have to function. 2) Application model, which defines what problem the system

should solve in the organization and what the function of the system will be in this

organization. 3) Task model, which specifies how the function of the system, as

specified in the application model, is achieved by defining tasks that the system will

perform. 4) Cooperation model, which contains a specification of the functionality of

those sub-tasks in the task model that require a cooperative effort between the agents to

whom the sub-tasks have been distributed. 5) Expertise model, which is a central activity

in the process of knowledge-based system construction. 6) Conceptual model, which

includes abstract descriptions of the objects and operations that a system should know

 11

about, formulated in such a way that they capture the intuitions that humans have of this

behavior. 7) Design model, which specified separate design decisions.

Checkland4 developed soft systems methodology in response to the failures of more

conventional approaches to tackle problems that are hard to define, known as `soft'

problems. Such `soft problems' are encountered frequently in organizations and cannot be

solved by the same techniques that are used to solve `hard' problems. Soft systems

methodology is a framework for system analysis that provides very powerful techniques

for the analysis of systems with human and social components, and has been widely

applied to difficult problem areas. There are seven stages of system analysis in soft

systems methodology. The initial stages are concerned with system analysis and the later

stages with system design.

The above two methodologies have been widely accepted and used in developing expert

systems5. However, similar to the neural network approach, an expert system also has its

own bottleneck, which is the knowledge acquisition and construction of expert systems.

Experience in knowledge acquisition in an industrial setting shows that "it involves the

gathering and management of large volumes of data from heterogeneous sources, and that

this data gathering and management needs to become integrated with normal work

processes if it is not to become such a burden as to undermine the knowledge acquisition

activity5". Furthermore, "the knowledge engineer's job is to act as a go-between to help

an expert build a system. Since the knowledge engineer has far less knowledge of the

domain than the expert, however, communication problems impede the process of

transferring expertise into a program. The vocabulary initially used by the expert to talk

about the domain with a novice is often inadequate for problem-solving; thus the

 12

knowledge engineer and the expert must work together to extend and refine it. One of the

most difficult aspects of the knowledge engineer's task is helping the expert to structure

the domain knowledge, to identify and formalize the domain concepts."6

Nevertheless, there is growing industrial interest in workflow and knowledge

management tools that support existing processes and, incidentally, provide much of the

data required for knowledge engineering.

Chapter 3. An Empirical Model and Neural Network Approach

3.1 A brief introduction to neural network

As we mentioned in Chapter two, the question we are trying to solve is to help company

managers to decide whether and when to adapt to a software-engineering trend. It is not

our goal to try to answer this question on behalf of managers. Instead, we are trying to

provide enough information for them, so that they can make the decision correctly. We

have chosen neural networks to help us accomplish this goal. So, why do we choose

neural networks and how do they work? Before we get into our model, it is necessary to

briefly introduce neural networks.

• What is Neural Network?

Unlike von Neumann machines, which are based on the processing/memory abstraction

of human information processing, neural networks are based on the parallel architecture

of animal brains. If we want to give a definition for neural network, or more precisely,

Artificial Neural Networks (ANN). We can say that, ANN is an information processing

paradigm that is inspired by the way biological systems, such as the brain, process

 13

information. The key element of this paradigm is the novel structure of the information

processing system. It is composed of a large number of highly interconnected processing

elements (neurons) working in unison to solve specific problems. ANNs, like people,

learn by example. An ANN is configured for a specific application, such as pattern

recognition or data classification, through a learning process. Learning in biological

systems involves adjustments to the synaptic connections that exist between the neurons.

This is true of ANNs as well.

• How are neural networks used?

Neural networks can be used in various ways. Typically, they are organized in layers.

Layers can be made up of a number of interconnected "nodes" which contain an

"activation function". Patterns are presented to the network via the "input layer", which

communicates to one or more "hidden layers" where the actual processing is done via a

system of weighted "connections". The hidden layers then link to an "output layer"

where the answer is output.

Most Neural Networks contain some forms of "learning rules" which modify the weights

of the connections according to the input patterns that it is presented with. There are

many different kinds of learning rules used by neural networks, for example, the delta

rule is often used.

Since the nature of the error space can not be known a priori, neural network analysis

often requires a large number of individual runs to determine the best solution. Most

learning rules have built-in mathematical terms to assist in this process which control the

"speed" and the "momentum" of the learning. The speed of learning is actually the rate

of convergence between the current solution and the global minimum. Momentum helps

 14

the network to overcome obstacles (local minima) in the error surface and settle down at

or near the global minimum.

Once a neural network is "trained" to a satisfactory level it may be used as an analytical

tool on other data. To do this, the user no longer specifies any training runs and instead

allows the network to work in forward propagation mode only. New inputs are presented

to the input pattern where they filter into and are processed by the middle layers as

though training were taking place, however, at this point the output is retained and no

backpropagation occurs. The output of a forward propagation run is the predicted model

for the data which can then be used for further analysis and interpretation.

Here we just use a simple layered feed-forward neural network (see figure 3) to illustrate

this procedure.

 Figure 3. A typical neural network

As we can see from figure 3, a layered feed-forward neural network has layers, or

subgroups of processing elements. A layer of processing elements makes independent

 Output

 Input

 15

computations on data that it receives and passes the results to another layer. The next

layer may in turn make its independent computations and pass on the results to yet

another layer. Finally, a subgroup of one or more processing elements determines the

output from the network.

Each processing element makes its computation based upon a weighted sum of its input.

The first layer is the input layer and the last is the output layer. The layers that are placed

between the first and the last layers are the hidden layers. In figure 3, only one hidden

layer is shown, but sometimes, the number of hidden layer can be more than one.

The processing elements are seen as units that are similar to the neurons in a human

brain, and hence, they are referred to as artificial neurons. Or they are simply referred to

as neurons. Basically, the internal activation or raw output of a neuron in a neural

network is a weighted sum of its inputs, but a threshold function is sometimes used to

qualify the output of a neuron in the output layer. Synapses between neurons are referred

to as connections, which are represented by edges of a directed graph in which the nodes

are the neurons.

To construct a neural network, there are three aspects that we need to think about:

1) Structure. Structure here refers to the architecture and topology of the neural

network. This relates to how many layers the network should contain, and what their

functions are, such as input, output, or feature extraction. Structure also encompasses

how interconnections are made between neurons in the network and what their

functions are. This is probably the most important aspect of neural network, since it

usually decides the other two aspects.

 16

2) Encoding. Encoding is the method of changing weights. It refers to the paradigm

used for the determination of and changing of weights on the connections between

neurons. In the case of a multilayer feed-forward neural network, weights are initially

defined randomly. Subsequently, in the process of training, if backpropagation

algorithm is chosen, weights are updated starting from the output backwards. Once

the training is finished, encoding is also finished since weights do not change after

training is completed. However, in some other neural network, like the recurrent

neural network that we are going to use for our empirical approach, encoding may be

repeated again and again until a certain threshold is satisfied.

3) Recall. Recall is the method and capacity to retrieve information. It refers to getting

an expected output for a given input. If the same input as before is presented to the

network, the same corresponding output as before should result. The type of recall

can characterize the network as being autoassociative or heteroassociative as we will

mention in the next section.

• Why neural networks ?

The reason that we choose Neural Networks lies in their big advantages. Neural

networks, with their remarkable ability to derive meaning from complicated or imprecise

data, can be used to extract patterns and detect trends that are too complex to be noticed

by either human or other computer techniques. A trained neural network can be thought

of as an "expert" in the category of information it has been given to analyze. This expert

can then be used to provide projections given new situations of interest and answer

"what if" questions. Some other advantages include:

 17

��Adaptive Learning: An ability to learn how to do tasks based on the data given for

training or initial experience.

��Self-Organization: An ANN can create its own organization or representation of the

information it receives during learning time.

��Real Time Operation: ANN computations may be carried out in parallel, and special

hardware devices are being designed and manufactured which take advantage of this

capability.

��Fault Tolerance via Redundant Information Coding: Partial destruction of a network

leads to the corresponding degradation of performance. However, some network

capabilities may be retained even with major network damage.

Generally speaking, neural networks work best if the system used to model has high

tolerance to error. Or in these two conditions: First, the problems are complex, and

usually we can not devise a simple step-by-step algorithm or precise formula to generate

an answer. Second, the data provided to resolve the problems is equally complex and

may be noisy or incomplete.

In reality, Neural networks have been applied to a wide variety of areas. Most neural

network applications, however, have been concentrated in the area of pattern

recognition, where traditional algorithmic approaches have been ineffective. In this

approach, the patterns can be represented by binary digits in the discrete cases, or real

numbers representing analog signals in continuous case.

Pattern classification is a form establishing an autoassociation or heteroassociation. If we

input a corrupted or modified pattern A to the neural network, and receive the true

pattern A, this is termed autoassociation. In contrast, associating different patterns is

 18

building the type of association called heteroassociation. For example, we associate A

with B, give A, we can get B and vice versa.

In our research, we want to associate input data sets with output data sets.

Autoassociation, then, is useful in recognizing or retrieving patterns with possibly

incomplete information as input. What about heteroassociation? Ideally, we can store

the input data sets of current pattern and retrieve the output data sets, which can be used

by company managers to make decisions.

3.2 Recurrent Neural Network Architecture --- An empirical approach

Today the most popular neural network architecture is probably multilayer perceptron

(MLP) architecture. The applications of MLP architecture to many different application

areas have been very successful. It is nowadays commonly used as a mechanism for

learning the input-output mapping of an underlying system, from input-output data alone.

As long as the underlying input-output mapping is static, and the training data set is

sufficiently large and representative of normal operation of the system under study, it is

commonly believed that MLP is valid and simple to use.

MLP is a feed forward multilayered neural architecture, which is shown in figure 3. As

we mentioned before, it consists of an input layer, which is assumed to have linear

activation neuron characteristics; an output layer, and one or more hidden layers of

neurons, which are neither input nor output neurons. The hidden layer neurons are

assumed to be nonlinear. Common nonliearities include: sigmoid function, hyperbolic

tangent function, radial basis function. These nonlinearities can be very general,

satisfying some very general conditions. The main reason why MLP is popular is that it

 19

has been shown, under very general assumption on the nonlinear activation functions,

that this architecture is a universal approximator, for very general static nonlinear input

output maps, provided that a sufficient number of hidden layer neurons is being used.

MLP architecture could have been used in our research. However, MLP model is more

suitable for static models. In our case, the objects that we are studying are software-

engineering trends, which basically consist of time series data sets. For these time series

data, it is quite possible that the previous inputs and outputs may have influence on the

current outputs, thus it is more suitable to use a dynamic model to analyze these data.

Thus, recurrent neural networks (see figure 4), which takes into account any possible

temporal correlation of the data, seem to be our best choice.

 Figure 4. Architecture of Recurrent Neural Networks

We have chosen recurrent neural network as the structure. How about encoding then? In

other words, how the weights will be adjusted in the recurrent neural network? Since a

canonical form of the recurrent neural network can be derived easily based on the MLP,

let's see how MLP adjusts its weights first.

 Input

 Output

Recurrent Network

Threshold function

 20

In general, a MLP can be described by the following model:

 y= f(cTz + c0) (1)

 z =Fn(bx + b0) (2)

Where:

 z : n dimensional vector, denoting the outputs of the hidden layer neurons.

 y: scalar variable, denoting the output of the output neurons.

 x: m dimensional vector, denoting the inputs to the MLP.

 c0: denotes the threshold of the output neurons.

 b0: n dimensional vector, denotes the threshold of the hidden layer neurons.

 c: n dimensional vector, denoting the weights connecting the input layer to

hidden

 layer neurons.

 f(.):denotes the nonlinear activation (weighted sum of its inputs) of the neurons.

for example, f(a) = (1+ e-a)-1 is a common sigmoidal activation function.

Usually, the output is allowed to have a range -∞ <y(t) < ∞, hence, it is more reasonable

to modify (1) as follows:

 y(t) = cTz(t) + c0 (3)

i.e. the output neuron has a linear activation function.

 21

While there is only one general MLP architecture, there are a number of alternative

recurrent neural network architecture which have been proposed by various groups7.

However, based on the MLP model, we can derive a canonical form of the recurrent

neural network:

 y(t) = cTz(t) + c0 (4)

 z(t) = Fn(bv(t) + b0) (5)

where y(t) and v(t) are respectively the scalar output and m+d dimensional input vector to

the multilayer perceptron. z(t) denotes the concatenation of the outputs of the n hidden

layer neurons into one vector. b and c are respectively matrix and vector of appropriate

dimensions. b0 and c0 denote respectively the thresholds of the hidden layer neurons and

the output neuron. v(t) is a concatenation of the m input x(t) and the feedback signals

from a feedback signals from a feedback block of the following form:

 y(t-1)

 y(t-2)

 ζ(t) = �.

 y(t-d)

 x(t)

i.e., v(t) =

ζ(t)

 22

Chapter 4 Data Collection

4.1 Pattern Recognition and Data needed.

In general, there are two sets of data we need to recognize the pattern of software

engineering trend: input data and output data. Input data are referred to the data that can

be observed from historical or current software engineering trends, while output data is

the information that is crucial and helpful for decision makers to make decisions.

Considering the fact that the software engineering trends we are going to deal with are

always changing over time, we realize that the factors that are relevant to the trends vary

according to its life cycle. This means that both the input factors and the output factors

should also change for different phases. For example, in the research phase, when we try

to collect input data, we do not have to worry about the market factor. It is same for the

output data in this phase, since people are more interested in knowing technology

bottlenecks when they make adopting decision, rather than the future product's market

risk level, market factors should not be included either.

Then, how can we adjust the input and output data sets according to time? In chapter one,

I briefly discussed the generic evolutionary model, which includes three phases: research

phase, technology phase and market phase. This model is not only the basis of predicting

software engineering trends, but also used here as a direction for pattern recognition,

since these three phases basically illustrate the life cycle of the software engineering

trends. Based on this model, we can assume that the patterns to be recognized in each

phase may be different, and the input and output data sets for each phase should not be

 23

exactly the same. On the other hand, we also realize that the software engineering trends

are continuous. This means that there are no distinct gaps between each phase. And the

input data sets and output data sets are not totally different either.

To select the exact input and output data, first thing we need to consider is which factors

are most relevant to the software engineering trends themselves. These factors should

then be grouped into each phase according to the maturity of the major technology in the

software engineering trends. Here is the list of factors that we are most interested1.

• Research Phase.

- Intrinsic Technical Merit. Amount of Support (Government, Industry).

Amount of Acceptance/Interest (Academia, Research Labs, Standards

Bodies).

- Potential Applicability. Scope of Application. Cost of Application.

Criticality/Impact of Application.

- Potential Risks/Hurdles. Threats from Competing Solutions. Potential

bottlenecks.

• Technology Phase.

- Intrinsic Technical Merit. Amount of Support (Government, Industry).

Amount of Acceptance/Interest (Academia, Research Labs, Standards

Bodies).

- Potential Applicability. Scope of Application. Cost of Application.

Criticality/Impact of Application.

- Potential Risks/Hurdles. Threats from Competing Solutions. Potential

bottlenecks.

 24

- Market outlook. Actual Market, measured by some quantification of:

Innovators; Early adopters; Early majority. Potential Market. Untapped

market.

• Market Phase.

- Potential Applicability. Scope of Application. Cost of Application.

Criticality/Impact of Application.

- Potential Risks/Hurdles. Threats from Competing Solutions. Potential

bottlenecks.

- Market outlook. Actual Market measured by some quantification of:

Innovators; Early adopters; Early majority. Potential Market. Untapped

market.

Our challenge now is to quantify these factors in a meaningful way, so that we can use

them to build neuron network to serve our purpose. This will be discussed next.

4.2 Data format.

It seems a neural network is a relatively easy approach since most of the analytical job

can be done with neural network tools. Researchers using neural networks nowadays do

not even bother to write their own programs. However, this is not the case in many fields,

especially in the software engineering area. The potential serious problems often come

from the data collection. We know the neural network is typically proposed for domains

that contain large data sets. But many domains lack such large data sets, which is also

true in our research. Some of the data we mentioned before is either unavailable or

 25

incomplete. This lack of data is so acute that building a neural network could be a

mission impossible.

The solution to this data-lacking problem is to rely heavily on the true-false questions and

range parameters. As we can see from previous part of this paper, there are two kinds of

data we really want. One is the statistical data from the real world, such as adoption cost,

amount of support, etc. This kind of data is hard to collect due to the fact that the

financial information is often ranked as top secret in the private sectors. Even if

collecting these data is theoretically possible, the collection cost can be very high.

Thus, we try to use true and false questions to quantify them. To a large extent, this

method is applicable. For example, we assume ample and stable research funding will

have positive effects on the software engineering trends. We don't have to know the

exactly amount of funding, although that will be a perfect solution, we just need to know

the source of funding. If the funding comes from government, we assume it usually will

be stable and sufficient. So we just ask true-false question like " Is the research sponsor

affiliated to government? ". And later when we put data into the neural network tools, we

will use 1 for yes, and -1 for no.

The other kind of data is data that needs to be estimated, such as risk level, social

acceptance level of certain trends. To get this kind of data, we will ask questions and

limit the answer to a certain range, say 0-10. Thanks to the nature of neural network, we

don't have to answer the question very accurately. For questions that ask estimating level

or range, sometimes it is impossible to tell the difference between level 5 or level 6, but it

is quite possible that we can tell the difference between level 3 and level 7. This is

 26

usually good enough since we are dealing with a large set of data. The neural network is

good at recognizing patterns from noisy and incomplete data.

To be specific, we use the following list of questions to get input and output data:

��Input data:

��Research Phase

Intrinsic Technical Merit.

- Is the research sponsor affiliated to government?

- Do other researchers hold positive view about this research?

- What is the social awareness level of this new technology?

Potential Applicability

- Is this research widely applicable?

- Will the research sponsor share this new technology free (or at minimal cost)?

- Will this research contribute to the current trend greatly?

Potential risks/hurdles

- Is there any similar research as this one?

- What is the level of competition between researches?

- What is the level of potential bottleneck?

��Technology Phase

Intrinsic Technical Merit.

- Is the research sponsor affiliated to government?

- Do other researchers hold positive view about this research?

- What is the social awareness level of this new technology?

 27

Potential Applicability

- Is this research widely applicable?

- Will the research sponsor share this new technology free (or at minimal cost)?

- Will this research contribute to the current trend greatly?

Potential risks/hurdles

- Is there any similar research as this one?

- What is the level of competition between researches?

- What is the level of potential bottleneck?

Market Outlook

- Are the innovators of this technology eager to commercialize it?

- Are the early adopters of this technology well funded?

- Does early majority of this technology have enough influence to direct the

market?

- Is there a large (compared to current market size) potential market existing?

- Is there any untapped market?

��Market Phase

Potential Applicability

- Is this research widely applicable?

- Will the research sponsor share this new technology free (or at minimal cost)?

- Will this research contribute to the current trend greatly?

 28

Potential risks/hurdles

- Is there any similar research as this one?

- What is the level of competition between researches?

- What is the level of potential bottleneck?

Market Outlook

- Are the innovators of this technology eager to commercialize it?

- Are the early adopters of this technology well funded?

- Does early majority of this technology have enough influence to direct the

market?

- Is there a large (compared to current market size) potential market existing?

- Is there any untapped market?

��Output data:

��Research phase:

Time aspect:

- Expected period before the idea turning into product.

Applicability aspect:

- Expected influence level of this trend on current technologies.

- Level of support available.

Risk aspect:

- Expected risk level of research failure

- Expected level of remaining technical bottleneck.

- Estimated adoption cost level.

 29

��Technology Phase:

Time aspect:

- Expected period before the adapter can make profits, if adapting decision is

made.

Applicability aspect:

- Expected influence level of this trend on current technologies.

- Level of support available.

Risk aspect:

- Expected level of social resistance.

- Expected level of remaining technical bottleneck.

- Estimated adoption cost level.

Market aspect:

- Estimated (potential) market size.

- Estimated market share.

- Level of market loss if not involved.

- Estimated level of competition among early adopters.

��Market phase:

Time aspect:

- Expected life span of the trend. (How long will it last?)

Applicability aspect:

- Expected influence level of this trend on current technologies.

Market aspect:

 30

- Estimated (potential) market size.

- Estimated market share.

- Level of market loss if not involved.

- Estimated level of competition among early adopters.

Based on these questions, we collect time series data for the following 6 software

engineering trends: ADA (1979-2000), UNIX (1969-2000), JAVA(1991 � 2000),

CORBA (1992-2000), XML(1996-1998) and LINUX(1991-2000). The data can be found

in Appendix.

4.3 Collection Procedures and Data Source

To collect the above data, first we need to get familiar with the selected software

engineering trends. And then try to answer the questions with our knowledge. In most

cases, we can not answer all the questions using single source. We have to search as

much as possible, so that knowledge we have will be sufficient enough to answer the

questions without too much bias. If there is discrepancy about a certain question among

different resources, we will find the mainstream opinion and use that as the base to get

the necessary data. Some of the sources of information are listed below:

��Industry. Industry is often the sponsor and consumer of the software engineering

trends. Large industrial corporations can affect trends by funding research, adopting

early product and developing industry standard. Since it is the front end of the

technology transfer lifecycle, industry itself also pays a lot of attention to the

software engineering trends. Many companies have their own technology watch

agent. There are also companies that are dedicated to collecting and analyzing such

 31

information, such as IDC. Thus industry is in a good position to have a thorough

understanding of technology trends, which makes it a good starting point for us too.

Thanks to the fast growing of the Internet, a lot of information from industry can be

found on the web. So it is relatively easy to search for data for modern trends,

usually within the past 10 years.

��Government. Like industry, government is also the major sponsor and consumer of

technology. Compared to industry, government is more likely to sponsor long-term

research. And we have noticed the fact that research funding that comes from

government tends to be more stable than other sources. Government funding

agencies, such as DARPA, NASA and NSF usually keep records of technology

information, and thus is another major data source for us, when this data is available

to public.

��Academia. Academia plays an important role in software engineering trends. It is

often the active participants of the technology innovation. Discussions from

academia also provide us a general outlook of the software engineering trend and

intensive knowledge of the technology.

��Panel Sessions. Panel sessions in major software engineering conferences have been

a favorite forum for discussion of research trends and technology trends in software

engineering. While this may be somewhat overlapping with previous sources, we

think proceedings from these conferences are usually more concentrated and focused

on advanced issues of software engineering trends. So we single it out as an

independent data source.

 32

��Journals and other Media. Although sometime not as convenient when they are not

available on the Internet, Journals and other media's role can not be replaced by

others. In many cases, Journals from outside technical and industrial areas may

reflect the social opinion about software engineering trends. And sometimes, they

can have effect on the software engineering trends too. Although this kind of effect

mostly restricted to the market side. Therefore, we do include them in our data

sources and hope to know the society opinion of software engineering trends and

how those trends affect the real world.

Chapter 5 Analytical Result

5.1 Performance of Neural Network on Sample Data

As we mentioned in chapter 4, for each different phase, we need to consider different

input and output. Thus, different patterns should be recognized for all three phases.

Based on the time series data that we collected from following five software engineering

trends: ADA, UNIX, JAVA, CORBA and XML (training data), we built three recurrent

neural networks. And then, we used the data that we collected from LINUX(testing

data) to test the performance of these three neural networks. The results are discussed

below.

��Performance of Neural Network for Research Trends

 33

MSE versus Epoch

0

0.05

0.1

0.15

0.2

0.25

1 100 199 298 397 496 595 694 793 892 991

Epoch

M
S

E

Training MSE

 Figure 5. MSE of Neural Network for Research Trends

Figure 5 shows the mean square error(MSE) for the neural network built based the

training data of research trends. As we can see from the figure, the MSE keeps decreasing

and approaching zero over the 1000 epochs. This tells us that the neural network is able

to recognize the pattern hiding in the data.

The testing result of research trends is as follows:

Performance

Expected
period

before the
idea turning
into product

Expected
influence

level of this
trend on
current

technologies

Level of
support
available

Expected
risk level of

research
failure

Expected
level of

remaining
technical

bottleneck

Estimated
adoption
cost level

MSE 0.742047128 4.298648819 6.970812067 5.833274986 8.521306207 2.681751058
NMSE 1.686470743 5.656116805 6.702703619 3.645796839 5.917573667 4.396313278
MAE 0.662092182 1.88954939 2.453564353 1.948390395 2.408939591 1.314169287
Min Abs Error 0.035133362 0.63788271 0.033361912 0.210062981 0.149491787 0.138772011
Max Abs
Error 1.562837005 3.118252933 4.146792829 4.806399822 5.453811646 2.524163246

r -0.099383777 0.955988283 -0.873796821 0.508944248 -0.825478041
-

0.487111775

 Table 1. Testing result of research trends.

 34

In the above table, MSE stands for the means square error, NMSE stands for the

normalized mean square error, MAE is the mean absolute error, Min abs Error is the

minimum absolute error, Max Abs Error is the maximum absolute error; r is linear

correlation coefficient.

Since r2 is the estimation of R2, which is the coefficient of determination, and always

used to determine the quality of certain variable fitting into the model. From table 1, we

can see that, although the overall performance of this model is not very satisfied, it does

have certain explanation power, especially for some variables, such as expected influence

level and level of support available. Also all the MAEs are less than 2.5, which means

when we use the model for prediction, the expected predication error is within a

reasonable range.

��Performance of Neural Network for Technology Trends

MSE versus Epoch

0

0.05

0.1

0.15

0.2

0.25

1 100 199 298 397 496 595 694 793 892 991

Epoch

M
S

E

Training MSE

 Figure 6. MSE of Neural Network for Technology Trends

 35

Figure 6 shows the MSE for the neural network build based on the training data of the

technology trends. As we can see from the figure, although the MSE curve is not very

smooth, it still keeps decreasing and approaching zero over the 1000 epochs, which is the

sign of the neural network being able to recognize the pattern hiding in the data.

The testing results of technology trends are as follows:

Performance

Expected period
before adapter

can make profits

Expected
influence level of

this trend on
current

technologies
level of support

available
Expected level of
social resisitance

MSE 1.398498282 3.401297362 6.291099643 4.376043047
NMSE 1.344709828 4.475391216 6.049134009 1.910935741
MAE 0.680004919 1.730153116 2.435174921 2.088503359
Min Abs Error 0.004837096 0.151595592 0.067912817 0.936580181
Max Abs Error 2.982817173 2.976890326 3.329780579 2.476973534
r 0.023434425 0.767658908 -0.839757089 -0.004602783

Performance

Expected level of
remaining
technical

bottleneck
Estimated

adoption cost level
Level of market

loss if not involved

Estimated level of
competition
among early

adopters
MSE 6.268497709 1.649868595 1.856820564 7.643253921
NMSE 4.353123344 2.704702658 1.03156698 1.06749358
MAE 2.077779627 1.111357245 1.148012475 2.650815924
Min Abs Error 0.387123108 0.158650398 0.026091576 1.089980602
Max Abs Error 4.796465635 1.655030251 2.099197388 3.831763744
r -0.69295523 0.652160029 0.431600086 0.762072358

 Table 2. Testing result of technology trends.

Again, the overall performance of this model on the testing data is not quite satisfied, but

it does have some explanation power on certain variables. And most of the MAEs of all

the variables are less than 2.5, which means when we use the model for prediction, the

expected predication error is within a reasonable range.

 36

��Performance of Neural Network for Market Trends

MSE versus Epoch

0

0.05

0.1

0.15

0.2

0.25

1 100 199 298 397 496 595 694 793 892 991

Epoch

M
S

E

Training MSE

 Figure 7. MSE of Neural Network for Market Trend

Figure 7 shows the MSE for the neural network built based on the training data of market

trends. As we can see from the figure, the MSE curve is very smooth in this model, it

keeps decreasing and approaching zero over the 1000 epochs, which is the sign of the

neural network being able to recognize the pattern hiding in the data.

The testing result of market trends is as follows:

Performance
Expected life span

of the trend

Expected
influence level of

this trend on
current

technologies
Level of market

loss if not involved

Estimated level of
competition
among early

adopters
MSE 27.70426046 5.778870372 0.687901049 7.913403223
NMSE #DIV/0! 7.603776722 0.38216725 1.10522393
MAE 4.811357212 2.096890087 0.436343896 2.311358534
Min Abs Error 1.135578156 0.300107002 0.042851925 0.028770566
Max Abs Error 6.771296501 2.190961838 0.911922932 4.22270298
r #DIV/0! 0.768014399 0.979392206 0.80973709

 Table3. Testing result of market trends.

 37

This time the overall performance of neural network on the testing data is quite satisfied.

But it seems to have no explanation power on expected life span of the trend, which is

indicated by the error signs. The reason may lie in the fact that we don�t have a relatively

precise way to estimate the life span for all the software-engineering trends that we

observed.

5.2 Preliminary Conclusions

The results shown in last section shows that our neural network approach does recognize

patterns from input and output data. To further prove this pattern does exist, we use the

data from Linux to compare the desired output, which we observed from the history, and

the estimated output, which we calculated based on the pattern we derived. And here are

the results.

 Expect
ed life
span of
the
trend

Expecte
d
influenc
e level
of this
trend on
current
technolo
gies

Level of
market
loss if
not
involved

Estimat
ed level
of
compet
ition
among
early
adopter
s

Expected
life span
of the
trend

Expecte
d
influenc
e level
of this
trend on
current
technolo
gies

Level
of
market
loss if
not
involve
d

Estimate
d level of
competiti
on
among
early
adopters

 Desired Desired Desired Desired Esti. Esti. Esti. Esti.
LINUX91 20 4 1 1 10 3 1 1
LINUX92 20 4 1 1 10 3 1 1
LINUX93 20 4 1 1 10 3 1 1
LINUX94 20 5 3 1 15 5 3 3
LINUX95 20 5 4 5 14 4 3 4
LINUX96 20 6 4 6 15 5 5 5
LINUX97 20 6 4 6 13 6 4 6
LINUX98 20 6 4 7 13 5 4 5
LINUX99 20 6 4 7 14 5 5 6
LINUX00 20 6 4 7 14 6 5 6

 Table4. Comparing result of Linux.

 38

As we can see, the performance of the Neural Network on sample data shows that it is an

acceptable approach to analyze the noise data generated from the software engineering

trends, and it can be used to predict the desired output within a reasonable range. Thus, if

we are to estimate certain information about software engineering trends given a set of

input data, such as Java, CORBA or Linux , we can just calculate the output data based

on the pattern we have derived (see Table 5) , and we are sure that it is much better than

randomized.

 Expected life
span of the
trend

Expected
influence
level of this
trend on
current
technologies

Level of
market loss if
not involved

Estimated
level of
competition
among early
adopters

Adoption
Decision

Java01 17 8 7 6 Yes?
CORBA01 13 4 4 3 No?
LINUX01 14 6 5 6 Yes?

 Table5. Estimated Results of Java, Corba and Linux.

Now the question is, how can these output data help the decision makers to make

adopting decision?

In chapter 4, we mentioned that the output data sets were chosen according to their

degree of relevance to the software engineering trends. We believe that these chosen

variables provide the most important information that decision-makers need to know

before they make decisions.

Generally speaking, all data can be divided into two categories. One is a positive factor,

this kind of data refers to variables that are helpful to reduce the adoption risk. Since

most output data are represented using category levels, the higher the level of positive

 39

factors, the less the adoption risk involved, thus it is more likely the decision makers

should adopt the trend. For example, in the output data set for research trend, support

level and influence level of software engineering trends are positive factors, since we

know the more support and influence the technology has, the less risk involved when we

decide to adopt to this decision.

The other category is a negative factor. In contrast to a positive factor, this kind of data

refers to variables that have negative relationship with adopting decisions, which means

they will increase the adoption risk. For negative data, the higher the level, the greater the

risk to adopt the trend. Examples of negative factor are level of research bottleneck and

social resistance.

When decision-makers make an adopting decision, they need to consider both the

positive side and negative side factors. While it is their responsibility to make the final

decision, it is our task to provide them criterion on how to balance these two sides. One

thing we did not mention in chapter 4 is that, when we collect the output data, we have

been using the level 5 as the break point for both positive and negative factors. That is, if

the level of certain variable is not good/bad enough to adopt/ignore trends, we use value

below 5 to represent the variable. On the contrary, any level value above 5 is significant

enough to influence the trends, while 5 stands for undetermined. Thus, for positive

factors, such as influence level of the technology, if the value is greater than 5, we will

think it is significant enough to suggest to the decision-maker to adopt the trend from that

variable's perspective. As to negative factors, such as expected risk level of research

failure, if the value is greater than 5, we will think that from the standpoint of that

variable, it is too risky to adapt to the certain trend. Overall, if the number of significant

 40

negative variables exceeds the number of positive variables, the possibility of adoption

failure will be greater than that of adoption success.

Chapter 6 Summary

In this paper, we discussed the adapting software engineering trend problem faced by

many decision makers, and its role in the whole project of software engineering

technology watch. We also introduced the neural network approach and the reason we

want to apply it in this field. In addition, most important, we have attempted to do two

things:

• Quantify the historical data of software engineering trends in terms of input

and output data. This establishes the basis of our neural network approach,

and makes the complex problem that we are trying to solve becomes more

understandable.

• Build a recurrent neural network based on the historical data we collected.

This approach tried to analyze the noise data and develop a pattern with the

help of a neural network.

The results of this paper are encouraging but I am not yet satisfied. It is encouraging in

the sense that the neural network we built, based on the historical data, is able to

recognize patterns from noise data, and for some variables that we observed, the

prediction outputs seem to be statistically significant. I am not satisfied because there are

also some other variables that are statistically insignificant. Also, we need more justified

ways to utilize the output data to help decision makers to make decisions.

 41

Overall, our conclusion is neural networks is an acceptable approach to analyze the noise

data generated from the software engineering trends and can be used to predict the

desired output within a reasonable range. We can use the pattern we derived to estimate

certain information needed to know before we make adapting decision, and we are sure

that is kind of information can be relied on.

In the future, more efforts should be put in the following aspects:

• Reexamine the input and output data. Some output data we listed in this paper

contains the information that decision makers need to know to make decisions.

However, it has been shown statistically insignificant and not fitting in the model,

which means either it can not be explained by the input data, or there is more

suitable way to represent it. Due to the time constraint, this job has not been

finished to my satisfaction.

• Collect more information about software engineering trends. In this paper, we

used the data we collected from six software engineer trends. Obviously, the more

data we have, the more robust will be our model.

• Consider other machine learning approachs. Neural networks are very powerful

tool to analyze noise and incomplete data. It could become more powerful if we

combined with other machine learning approaches like fuzzy logic on this issue.

 42

Appendix

Table 1 Input Data for Research Trends

 Is research
sponsor
affilated to
government?

Do other
researchers
hold positive
view?

What is social
awareness
level?

Is this
research
widely
applicable?

Is this new
technology
free?

Will this trend
contribute to
the current
trend?

Is there any
similar
research?

What is the
level of
competition
between
researches?

What is the
level of
potential
bottleneck?

Ada79 1 1 3 1 1 -1 1 8 4
Ada80-85 1 1 8 1 1 -1 1 7 4
Ada86-90 1 1 9 1 1 -1 -1 3 5
Ada91-95 1 -1 8 1 1 -1 1 8 5
Ada96-00 1 -1 6 1 1 -1 1 4 0
Unix 69 -1 -1 1 -1 1 -1 -1 0 7
Unix70-75 -1 1 8 1 1 -1 -1 2 5
Unix76-80 -1 1 9 1 1 -1 1 8 5
Unix81-85 -1 1 10 1 1 -1 1 9 6
Unix86-90 -1 1 10 1 1 -1 1 10 6
Unix91-95 -1 1 10 1 1 -1 1 10 3
Unix96-00 -1 1 10 1 1 -1 1 8 5
Java91 -1 1 0 -1 -1 -1 -1 0 0
Java92 -1 -1 0 -1 1 -1 -1 1 9
Java93 -1 -1 0 -1 1 -1 -1 1 8
Java94 -1 -1 0 1 1 -1 -1 1 8
Java95 -1 1 8 1 1 1 1 3 4
Java96 -1 1 9 1 1 1 1 4 3
Java97 -1 1 10 1 1 1 1 4 3
Java98 -1 1 10 1 1 1 1 4 3
Java99 -1 1 10 1 1 1 1 4 3
Java00 -1 1 10 1 1 1 1 4 3
CORBA92 -1 1 5 1 1 1 1 4 8
CORBA93 -1 1 4 1 1 1 1 4 7
CORBA94 -1 1 6 1 1 1 1 5 7
CORBA95 -1 1 6 1 1 1 1 6 7
CORBA96 -1 1 7 1 1 1 1 7 6
CORBA97 -1 1 8 1 1 1 1 8 4
CORBA98 -1 1 8 1 1 1 1 8 4

 43

CORBA99 -1 1 8 1 1 1 1 8 4
CORBA00 -1 1 8 1 1 1 1 8 4
XML96 -1 1 7 1 1 1 1 5 4
XML97 -1 1 8 1 1 1 1 4 3
XML98 -1 1 9 1 1 1 1 4 3
LINUX91 -1 -1 1 1 1 1 1 3 7
LINUX92 -1 -1 1 1 1 1 1 3 6
LINUX93 -1 -1 1 1 1 1 1 3 6
LINUX94 -1 1 5 1 1 1 1 6 6
LINUX95 -1 1 6 1 1 1 1 7 6
LINUX96 -1 1 7 1 1 1 1 7 4
LINUX97 -1 1 8 1 1 1 1 8 4
LINUX98 -1 1 9 1 1 1 1 8 4
LINUX99 -1 1 9 1 1 1 1 8 3
LINUX00 -1 1 9 1 1 1 1 8 3

Table 2 Input Data for Technology Trends

 Is
research
sponsor
affilated
to
governm
ent?

Do
other
resear
ch hold
positiv
e
view?

What is
social
awarene
ss level?

Is this
resear
ch
widely
applica
ble?

Is this
new
technolo
gy free?

Will this
trend
contribut
e to the
current
trend?

Is there
any
similar
research
?

What is
the level
of
competiti
on
between
research
es?

What is
the level
of
potential
bottlene
ck?

Are the
innovato
rs of this
technolo
gy eager
to
commer
cialize
it?

Are the
early
adopters
well
funded?

Does
early
majority
have
enough
fluence
to direct
the
market?

Is there
a large
potential
market
existing?

Is there
any
untappe
d
market?

Ada79 1 1 3 1 1 -1 1 8 4 -1 1 -1 -1 1
Ada80-85 1 1 8 1 1 -1 1 7 4 -1 1 -1 1 1
Ada86-90 1 1 9 1 1 -1 -1 3 5 1 1 -1 1 1
Ada91-95 1 -1 8 1 1 -1 1 8 5 1 1 -1 1 1
Ada96-00 1 -1 6 1 1 -1 1 4 0 1 1 -1 1 1
Unix 69 -1 -1 1 -1 1 -1 -1 0 7 -1 -1 1 1 1
Unix70-75 -1 1 8 1 1 -1 -1 2 5 -1 -1 1 1 1
Unix76-80 -1 1 9 1 1 -1 1 8 5 -1 -1 1 1 1
Unix81-85 -1 1 10 1 1 -1 1 9 6 -1 1 1 1 1
Unix86-90 -1 1 10 1 1 -1 1 10 6 1 1 1 1 1

 44

Unix91-96 -1 1 10 1 1 -1 1 10 3 1 1 1 1 1
Unix96-00 -1 1 10 1 1 -1 1 8 5 1 1 1 1 1
Java91 -1 1 0 -1 1 -1 -1 0 0 1 -1 -1 -1 -1
Java92 -1 -1 0 -1 1 -1 -1 1 9 1 -1 -1 -1 -1
Java93 -1 -1 0 -1 1 -1 -1 1 8 1 -1 -1 -1 -1
Java94 -1 -1 0 1 1 -1 -1 1 8 1 1 -1 1 1
Java95 -1 1 8 1 1 1 1 3 4 1 1 1 1 1
Java96 -1 1 9 1 1 1 1 4 3 1 1 1 1 1
Java97 -1 1 10 1 1 1 1 4 3 1 1 1 1 1
Java98 -1 1 10 1 1 1 1 4 3 1 1 1 1 1
Java99 -1 1 10 1 1 1 1 4 3 1 1 1 1 1
Java00 -1 1 10 1 1 1 1 4 3 1 1 1 1 1
CORBA92 -1 1 5 1 1 1 1 4 8 1 1 -1 1 1
CORBA93 -1 1 4 1 1 1 1 4 7 1 1 -1 1 1
CORBA94 -1 1 6 1 1 1 1 5 7 1 1 -1 1 1
CORBA95 -1 1 6 1 1 1 1 6 7 1 1 -1 1 1
CORBA96 -1 1 7 1 1 1 1 7 6 1 1 -1 1 1
CORBA97 -1 1 8 1 1 1 1 8 4 1 1 -1 1 1
CORBA98 -1 1 8 1 1 1 1 8 4 1 1 -1 1 1
CORBA99 -1 1 8 1 1 1 1 8 4 1 1 -1 1 1
CORBA00 -1 1 8 1 1 1 1 8 4 1 1 -1 1 1
XML96 -1 1 7 1 1 1 1 5 4 1 1 1 1 1
XML97 -1 1 8 1 1 1 1 4 3 1 1 1 1 1
XML98 -1 1 9 1 1 1 1 4 3 1 1 1 1 1
LINUX91 -1 -1 1 1 1 1 1 3 7 1 -1 -1 1 1
LINUX92 -1 -1 1 1 1 1 1 3 6 1 -1 -1 1 1
LINUX93 -1 -1 1 1 1 1 1 3 6 1 -1 -1 1 1
LINUX94 -1 1 5 1 1 1 1 6 6 1 1 -1 1 1
LINUX95 -1 1 6 1 1 1 1 7 6 1 1 -1 1 1
LINUX96 -1 1 7 1 1 1 1 7 4 1 1 -1 1 1
LINUX97 -1 1 8 1 1 1 1 8 4 1 1 -1 1 1
LINUX98 -1 1 9 1 1 1 1 8 4 1 1 -1 1 1
LINUX99 -1 1 9 1 1 1 1 8 3 1 1 -1 1 1
LINUX00 -1 1 9 1 1 1 1 8 3 1 1 -1 1 1

 45

Table 3 Input Data for Market Trends

 Is this
research
widely
applicabl
e?

Is this new
technology
free?

Will this
trend
contribute
to the
current
trend?

Is there
any similar
research?

What is the
level of
competition
between
researches
?

What is the
level of
potential
bottleneck?

Are the
innovators
of this
technology
eager to
commercial
ize it?

Are the
early
adopters
well
funded?

Does early
majority
have
enough
fluence to
direct the
market?

Is there a
large
potential
market
existing?

Is there
any
untapped
market?

Ada79 1 1 -1 1 8 4 -1 1 -1 -1 1
Ada80-85 1 1 -1 1 7 4 -1 1 -1 1 1
Ada86-90 1 1 -1 -1 3 5 1 1 -1 1 1
Ada91-95 1 1 -1 1 8 5 1 1 -1 1 1
Ada96-00 1 1 -1 1 4 0 1 1 -1 1 1
Unix 69 -1 1 -1 -1 0 7 -1 -1 1 1 1
Unix70-75 1 1 -1 -1 2 5 -1 -1 1 1 1
Unix76-80 1 1 -1 1 8 5 -1 -1 1 1 1
Unix81-85 1 1 -1 1 9 6 -1 1 1 1 1
Unix86-90 1 1 -1 1 10 6 1 1 1 1 1
Unix91-96 1 1 -1 1 10 3 1 1 1 1 1
Unix96-00 1 1 -1 1 8 5 1 1 1 1 1
Java91 -1 -1 -1 -1 0 0 1 -1 -1 -1 -1
Java92 -1 1 -1 -1 1 9 1 -1 -1 -1 -1
Java93 -1 1 -1 -1 1 8 1 -1 -1 -1 -1
Java94 1 1 -1 -1 1 8 1 1 -1 1 1
Java95 1 1 1 1 3 4 1 1 1 1 1
Java96 1 1 1 1 4 3 1 1 1 1 1
Java97 1 1 1 1 4 3 1 1 1 1 1
Java98 1 1 1 1 4 3 1 1 1 1 1
Java99 1 1 1 1 4 3 1 1 1 1 1
Java00 1 1 1 1 4 3 1 1 1 1 1
CORBA92 1 1 1 1 4 8 1 1 -1 1 1
CORBA93 1 1 1 1 4 7 1 1 -1 1 1
CORBA94 1 1 1 1 5 7 1 1 -1 1 1
CORBA95 1 1 1 1 6 7 1 1 -1 1 1
CORBA96 1 1 1 1 7 6 1 1 -1 1 1
CORBA97 1 1 1 1 8 4 1 1 -1 1 1
CORBA98 1 1 1 1 8 4 1 1 -1 1 1
CORBA99 1 1 1 1 8 4 1 1 -1 1 1

 46

CORBA00 1 1 1 1 8 4 1 1 -1 1 1
XML96 1 1 1 1 5 4 1 1 1 1 1
XML97 1 1 1 1 4 3 1 1 1 1 1
XML98 1 1 1 1 4 3 1 1 1 1 1
LINUX91 1 1 1 1 3 7 1 -1 -1 1 1
LINUX92 1 1 1 1 3 6 1 -1 -1 1 1
LINUX93 1 1 1 1 3 6 1 -1 -1 1 1
LINUX94 1 1 1 1 6 6 1 1 -1 1 1
LINUX95 1 1 1 1 7 6 1 1 -1 1 1
LINUX96 1 1 1 1 7 4 1 1 -1 1 1
LINUX97 1 1 1 1 8 4 1 1 -1 1 1
LINUX98 1 1 1 1 8 4 1 1 -1 1 1
LINUX99 1 1 1 1 8 3 1 1 -1 1 1
LINUX00 1 1 1 1 8 3 1 1 -1 1 1

 47

Table 4 Output Data for Research Trends

 Expected
period before
the idea
turning into
product

Expected
influence
level of this
trend on
current
technologies

Level of
support
available

Expected
risk level of
research
failure

Expected
level of
remaining
technical
bottleneck

Estimated
adoption
cost level

Ada79 2 5 8 5 6 8
Ada80-85 0 5 5 2 4 8
Ada86-90 0 4 4 1 5 7
Ada91-95 0 3 4 1 3 6
Ada96-00 0 2 2 1 0 6
Unix 69 1 3 1 6 7 4
Unix70-75 0 6 4 4 5 4
Unix76-80 0 7 5 1 5 3
Unix81-85 0 7 7 1 6 3
Unix86-90 0 8 7 1 6 3
Unix91-95 0 9 7 1 3 3
Unix96-00 0 9 8 1 5 3
Java91 4 0 2 9 9 4
Java92 3 0 2 8 9 4
Java93 2 0 3 8 8 4
Java94 1 0 3 4 6 5
Java95 0 8 6 1 5 5
Java96 0 8 8 1 5 6
Java97 0 9 8 1 4 6
Java98 0 8 8 1 4 5
Java99 0 9 8 1 4 4
Java00 0 9 8 1 4 4
CORBA92 2 5 4 8 6 7
CORBA93 1 5 3 8 7 6
CORBA94 1 4 5 7 6 7
CORBA95 1 4 5 6 4 6
CORBA96 0 3 3 4 5 6
CORBA97 0 4 2 2 4 6
CORBA98 0 4 3 2 4 6
CORBA99 0 4 3 2 4 6
CORBA00 0 4 3 2 5 6
XML96 3 7 3 4 4 4
XML97 2 6 2 5 3 3
XML98 1 7 2 5 2 3
LINUX91 4 4 5 6 7 6
LINUX92 3 4 5 4 8 5
LINUX93 2 4 4 4 7 4
LINUX94 1 5 4 3 5 4
LINUX95 0 5 6 3 4 5
LINUX96 0 6 6 2 5 5
LINUX97 0 6 7 2 5 6
LINUX98 0 6 7 2 5 6
LINUX99 0 6 8 2 5 6
LINUX00 0 6 8 2 5 6

 48

Table 5 Output Data for Technology Trends

 Expecte
d period
before
adapter
can
make
profits

Expected
influence
level of
this trend
on current
technolog
ies

level of
support
available

Expected
level of
social
resistanc
e

Expected
level of
remaining
technical
bottlenec
k

Estimated
adoption
cost level

Level of
market
loss if not
involved

Estimated
level of
competiti
on among
early
adopters

Ada79 2 5 8 9 6 8 1 2
Ada80-85 1 5 5 8 4 8 3 2
Ada86-90 1 4 4 5 5 7 3 2
Ada91-95 1 3 4 5 3 6 3 2
Ada96-00 1 2 2 4 0 6 3 2
Unix 69 5 3 1 9 7 4 1 1
Unix70-75 4 6 4 8 5 4 1 2
Unix76-80 2 7 5 4 5 3 3 4
Unix81-85 1 7 7 3 6 3 4 4
Unix86-90 1 8 7 2 6 3 4 4
Unix91-95 1 9 7 1 3 3 5 4
Unix96-00 1 9 8 1 5 3 5 4
Java91 5 0 2 9 9 4 1 1
Java92 4 0 2 9 9 4 1 1
Java93 3 0 3 9 8 4 1 1
Java94 2 0 3 8 6 5 1 1
Java95 1 8 6 4 5 5 5 4
Java96 1 8 8 3 5 6 7 5
Java97 1 9 8 1 4 6 7 6
Java98 1 8 8 1 4 5 8 6
Java99 1 9 8 1 4 4 8 6
Java00 1 9 8 1 4 4 8 6
CORBA92 4 5 4 9 6 7 1 1
CORBA93 3 5 3 9 7 6 1 2
CORBA94 2 4 5 7 6 7 1 2
CORBA95 1 4 5 6 4 6 2 2
CORBA96 1 3 3 5 5 6 3 3
CORBA97 1 4 2 5 4 6 4 3
CORBA98 1 4 3 5 4 6 4 3
CORBA99 1 4 3 5 4 6 4 3
CORBA00 1 4 3 5 5 6 4 3
XML96 3 7 3 5 4 4 4 5
XML97 2 6 2 3 3 3 5 5
XML98 1 7 2 1 2 3 7 5
LINUX91 4 4 5 7 7 6 1 1
LINUX92 3 4 5 6 8 5 1 1
LINUX93 2 4 4 6 7 4 1 1
LINUX94 1 5 4 4 5 4 3 1
LINUX95 1 5 6 3 4 5 4 5
LINUX96 1 6 6 3 5 5 4 6
LINUX97 1 6 7 3 5 6 4 6
LINUX98 1 6 7 3 5 6 4 7
LINUX99 1 6 8 3 5 6 4 7
LINUX00 1 6 8 3 5 6 4 7

 49

Table 6 Output Data for Market Trends

 Expected life
span of the
trend

Expected
influence
level of this
trend on
current
technologies

Estimated
market
size($M)

Estimated
market share
(%)

Level of
market loss if
not involved

Estimated
level of
competition
among early
adopters

Ada79 20 5 1 2
Ada80-85 20 5 3 2
Ada86-90 15 4 3 2
Ada91-95 10 3 3 2
Ada96-00 10 2 3 2
Unix 69 30 3 1 1
Unix70-75 30 6 1 2
Unix76-80 30 7 3 4
Unix81-85 30 7 4 4
Unix86-90 30 8 4 4
Unix91-95 25 9 5 4
Unix96-00 20 9 5 4
Java91 10 0 1 1
Java92 10 0 1 1
Java93 10 0 1 1
Java94 15 0 1 1
Java95 20 8 5 4
Java96 20 8 7 5
Java97 20 9 7 6
Java98 20 8 8 6
Java99 20 9 8 6
Java00 20 9 8 6
CORBA92 20 5 1 1
CORBA93 20 5 1 2
CORBA94 20 4 1 2
CORBA95 15 4 2 2
CORBA96 15 3 3 3
CORBA97 15 4 4 3
CORBA98 15 4 4 3
CORBA99 15 4 4 3
CORBA00 15 4 4 3
XML96 10 7 4 5
XML97 10 6 5 5
XML98 10 7 7 5
LINUX91 20 4 1 1
LINUX92 20 4 1 1
LINUX93 20 4 1 1
LINUX94 20 5 3 1
LINUX95 20 5 4 5
LINUX96 20 6 4 6
LINUX97 20 6 4 6
LINUX98 20 6 4 7
LINUX99 20 6 4 7
LINUX00 20 6 4 7

 50

Bibliography

1. Albertini, F., Sontag, E. �For neural networks, function determines form�. Neural

Networks. Vol 6, pp975 �900, 1993

2. Back, A.D., Tsoi, A.C. �FIR and IIR synapses, a new neural network architecture

for time series modeling�. Neural Computation. Vol 3, No.3 pp 375 � 385, 1991.

3. Bengio, Y. and Gingras, �Recurrent neural networks for missing or asynchronous

data�, in Advances in Neural Information Processing Systems. Vol 8., The MIT

Press, 1996.

4. Box, G.E.P., Jenkins, G. Time Series Analysis, Holden Day, 1967.

5. Elman, J. �Finding structure in time�, Cognitive Science. Vol. 14 pp 179 � 211,

1990.

6. Frasconi, P., Gori, M., Soda, G. �Local feedback multilayered networks�. Neural

Computation. Vol. 4, pp251 � 257, 1990.

7. Giles, Lee and Gori, Marco, �Adaptive Processing of Sequences and Data

Structures�, Springer, 1998

8. Haykin, S. �Neural Networks, A comprehensive foundation.� MacMillan College

Pub Co. 1994

9. Kailath, T. Linear Systems. Prentice Hall, Englewood Cliffs, N.J., 1980.

10. MacGregor, R.J. Neural Brain Modeling, Academic Press, Orlando, FL, 1987.

11. Mili, Ali and Cowan, R.D. �Software Engineering Technology Watch�, 2001

12. Narendar, K.P., Parthasarathy, K. �Identification and Control of Dynamic

Systems using Neural Networks.�. IEEE Trans Neural Networks, Vol 1. pp4-27,

1990

 51

13. Nerrand, O., Roussel-Ragot, P., Personnaz, L., Dreyfus, G., Marcos, S. �Neural

Networks and nonlinear adaptive filtering: Unifying concepts and new

algorithms�. Neural Computation. Vol5, pp165 � 197, 1993.

14. Norman Foo and Randy Goebel (Eds) , "Lecture Notes in Artificial Intelligence,

1114". Springer-Verlag Berlin Heidelberg, 1996

15. Pavlidis, T., Structural Pattern Recognition. Springer-Verlag, 1977.

16. Petra Perner and Maria Petrou (Eds), "Machine Learning and Data Mining in

Pattern Recognition", Springer-Verlag Berlin Heidelberg, 1999

17. Pineda, F.J. Generalization of back-propagation to recurrent neural networks.

IEEE Trans. on Neural Networks, special issue on recurrent networks.

18. Rao, Valluru and Rao, Hayagriva, �C++ Neural Network and Fuzzy Logic�, MIS

press, 1995

19. Schalhoff, R.J., Pattern Recognition: Statistical, Structural and Neural

Approaches. John Wiley & Sons, 1992.

20. Tsoi, A.D., Back, A.d. �Discrete time recurrent neural network architectures: a

unifying review�. Neurocomputing, Vol.15, pp183-224, 1997

21. Williams, R., Zipser, D. �A learning algorithm for continually running fully

recurrent neural networks�. Neural Computation. Vol. 1, pp270- 280, 1989.

	Pattern recognition in software engineering trend adapting
	Recommended Citation

	Microsoft Word - Thesis.doc.doc

	iii: iii

