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Abstract

Three Essays on Pricing and Risk Management in Electricity Markets

Serhiy Kotsan

A set of three papers forms this dissertation. In the first paper I analyze an electricity

market that does not clear. The system operator satisfies fixed demand at a fixed price,

and attempts to minimize “cost” as indicated by independent generators’ supply bids. No

equilibrium exists in this situation, and the operator lacks information sufficient to minimize

actual cost. As a remedy, we propose a simple efficient tax mechanism. With the tax,

Nash equilibrium bids still diverge from marginal cost but nonetheless provide sufficient

information to minimize actual cost, regardless of the tax rate or number of generators.

The second paper examines a price mechanism with one price assigned for each level of

bundled real and reactive power. Equilibrium allocation under this pricing approach raises

system efficiency via better allocation of the reactive power reserves, neglected in the

traditional pricing approach. Pricing reactive power should be considered in the bundle

with real power since its cost is highly dependent on real power output. The efficiency of

pricing approach is shown in the general case, and tested on the 30-bus IEEE network with

piecewise linear cost functions of the generators.

Finally the third paper addresses the problem of optimal investment in generation based on

mean-variance portfolio analysis. It is assumed the investor can freely create a portfolio of

shares in generation located on buses of the electrical network. Investors are risk averse, and

seek to minimize the variance of the weighted average Locational Marginal Price (LMP) in

their portfolio, and to maximize its expected value. I conduct simulations using a standard

IEEE 68-bus network that resembles the New York - New England system and calculate

LMPs in accordance with the PJM methodology for a fully optimal AC power flow solution.



Results indicate that the network topology is a crucial determinant of the investment decision

as line congestion makes it difficult to deliver power to certain nodes at system peak load.

Determining those nodes is an important task for an investor in generation as well as the

transmission system operator.
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Chapter 1

Introduction

The dissertation “Three Essays on Pricing and Risk Management in Electricity Markets” is

a set of three essays that apply economic theory to the power industry. The first chapter

provides a brief introduction to the study of electricity markets and attempts to place the

dissertation in the larger context of recent changes in the electricity market.

Chapter 2 examines strategic pricing games of generators in a stylized real-time electricity

market in which price and quantities are fixed. A simple tax on generation is proposed to

stabilize the market and create incentives compatible with economic efficiency.

Chapter 3 presents and simulates a locational marginal cost pricing (LMP) mechanism that

accounts for both real and reactive power. In contrast to the traditional LMP approach,

in which real and reactive power are priced on separate markets, the “bundled” approach

links the two markets to allow more efficient distribution of reactive power resources and an

autonomous competitive market mechanism for reactive power.

Chapter 4 applies a portfolio analysis approach to formulate optimal trading and generation

investment strategies for a power market that employs LMPs or other locational pricing
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mechanisms. Under certain conditions, suppliers can invest in new generation that reduces

the system’s total production costs yet an increase in the overall price level for electricity.

Chapter 5 presents a short summary of the paper contribution together with suggestions for

future research.

Chapter 1. Introduction

A little more than decade ago, electric power generation, transmission and distribution were

controlled by monopoly utility companies with specific service areas and customers. In

1992, Congress passed the Energy Policy Act, which defines a class of Exempt Wholesale

Generators that can compete with each other for customers, and granted the FERC the

right to order access to transmission lines. It opened up the possibility that tight regulation

of vertically integrated monopolies might be replaced with light regulation of specialized

firms and supervision of competitive markets (Wilson 2002). The potential benefits of

moving to competition in wholesale electricity generation markets appeared promising, as

markets can be expected to yield more efficient use of existing assets in the short run and,

more importantly, the development of more efficient and reliable technology in the future.

Unfortunately, this “restructuring” of the industry created some major problems, including:

- Exercise of market power via withholding production capacity;

- Lack of demand response to price change;

- Continuing regulation that sometimes ignores economics principles and creates political

compromises that are not economically sustainable.

The extremely high electricity prices in California in 2001, or in the New-York blackout in

2003 provide empirical evidence for those problems. The process of establishing wholesale

electricity markets is still evolving.
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In chapters two through four of my dissertation I examine three problems of electricity market

implementation and suggest policies to address them. The following pages summarize each

of these chapters in turn.

Chapter 2. Efficient Taxation in a Price and Quantity Constrained Electric

Power Market

In this chapter of the dissertation I consider a stylized electricity market where market price

and quantity are fixed. This situation may arise routinely in a market-based system during

periods of peak demand or other system stress and when regulatory constraints such as price

caps are in effect. The element of fixed price and quantity makes this paper different from

market power literature such as Borenstein (2000) and Willems (2002).

In this scenario, a cost-minimizing system operator must satisfy an exogenously determined

electricity load at a fixed price, knowing only the generators’ bids, rather than their costs.

The generators are assumed to know their own costs, each others’ bids, and the system

operator’s dispatch algorithm. As in the supply function equilibrium (SFE) literature, e.g.,

Green and Newbery (1992), generators bid strategically. That is, the profit maximizing

generators implement bidding strategies that cause their bids to depart from their true costs

in order to manipulate their market share. This exercise of market power raises both equity

and efficiency concerns.

I find that no Nash equilibrium exists for such a market, and that generators’ bids will diverge

widely from actual marginal costs, making it impossible for the system operator to minimize

cost. As a remedy I propose a simple tariff mechanism that changes generators’ incentives so

that they voluntarily make bids that provide the system operator with enough information

to determine the set of market shares that minimize the total cost of production. Although

the bids diverge from true marginal cost, the outcome is fully efficient for any number of
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generators greater than one. That is, by using the tax mechanism the system operator is

able to find the optimal dispatch, the same as it would if it knew each generator’s actual

marginal costs.

Chapter 3. Efficient pricing of a bundled product of both real and reactive power

This chapter extends the market mechanism for reactive power first laid out in “Market in

Real Electric Networks Require Reactive Prices” by William Hogan (1993). In my paper I

examine the benefits of pricing a bundle of real and reactive power and compared it with the

traditional Locational Marginal Price where only real power is priced (PJM 2005). Reactive

power can be produced by generators as a joint product together with real power, and is

used to control the voltage level and network congestion in an Alternating Current (AC)

system. Most economists modeling electrical networks (e.g., Hobbs 1996) neglect reactive

power completely, and employ a simpler DC approximation approach to simulating power

systems. Baldick and Kahn (1993) found reactive power is a cheap constraint that should

not be priced.

When reactive power is produced by fast responding equipment such as Synchronous

condensers it consumes approximately 3-5% of the real power costs (FERC 2005). Reactive

power does not travel over long distances at high line loadings due to significant losses on

the wires. Thus, reactive power usually must be procured from suppliers near where it is

needed. This factor narrows down procurement of the reactive power to the suppliers that

are geographically close. With no compensation mechanism generators have no incentives

to provide additional reactive power capability.

The mechanism in Chapter 3 provides two related prices for this bundle of real and reactive

power output. Bundled pricing encourages efficient production of reactive power from

4



existing infrastructure, taking into account the opportunity costs of competing uses of

resources. The efficiency of the pricing approach is shown in the general case and tested on a

30-bus IEEE network with piecewise linear cost functions of the generators. The simulated

optimal power flow solution under the bundled pricing approach is obtained and compared

with the results of traditional mechanism where only real power is priced. Findings showed

overall efficiency gain for the system. Generators located close to the load will benefit from

the bundled pricing at most. At the same time generators that “specialize” in the real power

might not be affected at all.

Proper price signals will encourage efficient and reliable investment in infrastructure needed

to produce reactive power and maintain the reliability of the transmission system.

Chapter 4. Mean-Variance Portfolio Analysis of the Locational Value of

Generation Assets

In this chapter I employ the mean-variance portfolio theory framework first developed by

Harry Markowitz (1962) to the problem of placement of future investment in generation. The

typical investor is assumed to be risk averse, and seeks a high expected locational marginal

price and with the least possible vairance or risk. That is, the investor’s problem is to plan

the location of future generators so as to maximize the expected LMP for the given level

of risk. In the electricity market literature, a similar methodology was applied by Denton

(2003) to estimate determine intermediate term market risk (from one month to a year).

To determine the optimal portfolio of investment on the grid, I perform simulations using

a standard 68-bus IEEE system that resembles the New York New-England power network,

and use PJM methodology (PJM 2005) to determine LMPs at each bus as the load increases.

This method allows me to determine the set of buses that provides the highest expected LMP

for given level of risk.
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On the other hand, a large scale generator added to a congested network will reduce

congestion and expected prices. Therefore, in the next stage I find an ex-ante optimal

portfolio by estimating the mean-variance frontier after an average generator was added to

the network. Interestingly, I found that adding a generator can shift the efficient frontier

either upward and downwards. A downward shift of the efficient frontier implies that by

adding a generation expected prices decrease through releasing network congestion. An

upward shift of the efficient frontier implies that production costs occur simultaneously with

increase in expected prices. In the paper I presented a simple example showing that it

is possible to happen when the marginal generators determining nodal prices are shifted

upwards.

When certain lines of the network are congested, generators can manipulate nodal prices.

This implies that both generation capacity and network topology play an important role in

determining optimal investment strategy. Although the existing locational price mechanism

may stimulate competition among generators on the spot market, it may also be misused by

investors with the purpose of raising electricity prices.

Chapter 5. Summary and Conclusion

The concluding chapter of the dissertation will summarize the major results of each chapter

and discuss importance of each finding together with policy implementations. Finally, future

research plans will be discussed given the contribution of this dissertation.
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Chapter 2

Efficient Taxes for Cost Revelation in

a Price and Quantity Constrained

Electric Power Market.

Abstract. We analyze an electricity market that does not clear. The system operator satisfies fixed

demand at a fixed price, and attempts to minimize “cost” as indicated by independent generators’

supply bids. No equilibrium exists in this situation, and the operator lacks information sufficient

to minimize actual cost. As a remedy, we propose a simple efficient tax mechanism. With the tax,

Nash equilibrium bids still diverge from marginal cost but nonetheless provide sufficient information

to minimize actual cost, regardless of the tax rate or number of generators.
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2.1 Introduction

Markets require flexible prices to clear efficiently. Most modern wholesale electricity markets

experience price rigidities such as price caps that bind principally in periods of peak demand

and, often, system stress. When prices are rigid, an exogenously determined, price-inelastic

load must be satisfied at a fixed price. This paper provides a stylized model of such a

system, in which both price and market load are exogenous. More generically, it addresses

the breakdown of a bidding system in which prices paid are not affected by bids, and proposes

a simple remedy for the breakdown. This breakdown may occur more often in coming years,

as transitional, hybrid regulated markets develop in a U.S. electricity industry traumatized

by the California market debacle of 2000.

Given a fixed price and required quantity, the system operator (SO) can not rely on market

forces to allocate production automatically among the generators available on the system.

Instead, the SO must decide administratively how much each generator should produce. In

a well designed system, the SO will do so in a manner that minimizes the cost of production.

In the traditional vertically integrated system, this task was fairly easy because the SO had

certain knowledge of the actual costs of all generators. Increasingly, however, the generation

resources of the system are owned by independent firms whose costs are indicated only

through voluntary, and strategically determined, bids. The SO needs a mechanism to identify

and dispatch the most efficient generation resources, especially at times of system stress,

when price signals are most likely be distorted by regulatory intervention.

A growing academic literature has developed recently concerning the design of electricity

markets (see e.g. Wilson (2002) and Stoft (2002) for surveys and outlines of the major issues).

Regulatory authorities have taken a keen practical interest in this problem as well (FERC

2002). There has been some research about the use of bids to improve the performance of



the system in the very short run (e.g. Cardell, 1997 who assumes that sellers bid their costs

truthfully), but most work has concentrated on day-ahead and real-time energy markets that

clear. In contrast, the present research focuses on cost-minimization in markets that do not

clear because of price rigidities and require the intervention of a system operator to stay in

balance.

We focus on the problem of determining the low-cost mix of suppliers’ output in the absence

of direct cost information. The only indication of the generator’s cost is its bid. In our

model, firms bid supply functions that are of the same functional form as the true cost

functions, which reflects the reality that production technologies are well-known, but other

cost factors such as fuel costs, may be proprietary. Generators choose the parameters of their

bid functions for strategic reasons, in light of their expectations as to the reactions of the SO

and competitors. Similarly, in the supply function equilibrium (SFE) literature, beginning

with Klemperer and Meyer (1989) and adapted to electricity markets by Green and Newbery

(1992) and more recently by Baldick and Hogan (2001, 2002), firms also bid supply functions

strategically. However, we employ a different payment mechanism, and our focus is different

from the papers in the SFE literature. We focus on information asymmetries between the

operator and the generators, and on demonstrating a mechanism that will reveal merit order

without market price adjustments. In our market, price is fixed externally, so participants

use bids only to obtain the desired market share.

This element of fixed price sets this paper apart from the electricity market power

literature, reviewed in Wolfram (1998), and later analysis of market power in the presence

of transmission constraints by, e.g., Joskow and Tirole (2000), Borenstein et al. (2000), and

Willems (2002). In our model, market power manifests itself, not in the manipulation of

price, but in the manipulation of cost “information” with the objective of obtaining optimal

market share. Taking transmission constraints into account is beyond the scope of this paper,
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as they complicate the analysis by adding another vector of costs for the SO to consider, but

do not change the essential findings of our analysis.

We find that no set of Nash equilibrium bids exist in our model, and that generators’ bids

diverge widely from actual marginal costs. As a remedy, we propose a simple tax mechanism

that induces bidding that provides sufficient information for will allow the SO to minimize

the total cost of production. Interestingly, these bids, though efficient, diverge from true

marginal cost.

Although for purposes of exposition we focus on a two-generator market with quadratic cost

functions, we show that our results hold for any number of generators, with weak restrictions

on the general convex cost functions.

We focus on the problem of overcapacity (i.e., the SO must choose among generators who

wish to produce more in aggregate than the load requires), but a symmetric result occurs if

insufficient voluntary generation is available at the fixed price.

The paper’s structure is as follows. In the next section we will introduce the market model,

including market participants and rules of the game. After that, we show that the generators’

bids will depart from true costs, and demonstrate the nonexistence of a Nash equilibrium

in the model without taxes. Next, we introduce the tax mechanism and show that it will

create a Nash equilibrium in the market, which we demonstrate to be efficient. Finally,

through simple examples and simulations we explore the properties of the mechanism and

demonstrate its performance for both linear and quadratic costs.
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2.2 The Model

Suppose there are n independent generators available in a real-time energy market. Assume

that they do not cooperate with each other when they make decisions. Consumers create

an exogenous load Q on the system, which must be satisfied in real time. Each generator is

paid a price, P , for its output, determined exogenously, perhaps by a price cap. This price

is not affected by either the bid or the quantity that the generator produces.

Although each generator takes market price and quantity as fixed, its bid determines the

quantity of energy that the System Operator (SO) allows it to produce. The SO seeks to

minimize the true cost of production. In pursuit of this goal, it may use an algorithm that

minimizes the total “bidded” cost of serving the load, treating the generators’ bids as though

they were the actual costs. The SO knows the market demand for energy, and the bids of

each generator, and it takes into account the rational response of generators to its dispatch

algorithm. We investigate the SO’s prospects for success in minimizing bidded costs.

For simplicity, assume there are only two generators, designated G1 and G2. The market

then looks as follows:

The System Operator collects bids (characterized by bid supply function vectors a1 and a2)

and uses them to assign production levels (x1 and x2) for each of the generators.

Generator’s problem.

Each generator wants to produce at the level xi that maximizes its profit, π(xi) =

Pxi − C(xi, αi), where C(·) is its cost function, and αi is its associated parameter vector.

Generators bid by submitting a bidded cost function Bi(xi, ai), which we assume differs from

C(·) only if ai 6= αi. Generators determine their bids strategically, so the bids may differ

11
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Figure 2.1: Power Market system.

from actual costs.

By manipulating its bid parameter vector ai the generator can influence the SO’s dispatch

decision. The purpose of the successful bid for a generator is to induce the SO to assign

it the level of production that maximizes its profit. For example, if cost functions take the

form

Ci(xi, αi) = αi1xi + αi2x
2
i .

then generator i will attempt to induce the SO to assign it to produce

x∗i =
P − αi1

2αi2

(2.1)
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The System Operator’s Problem.

The system operator (SO) monitors the load Q, and consults its dispatch function to

determine how much power will be supplied by each of the generators. We assume that

the System Operator is seeking to maximize social welfare. With quantity of output fixed

by inelastic demand, this is equivalent to minimizing the total cost of generation, subject to

the requirement to satisfy the load. First order conditions for this cost minimizing objective

function require marginal costs to be equal across all generators.

∂Ci(·)

∂xi
=

∂Cj(·)

∂xj
(2.2)

and
n
∑

i=1

xi = Q

Unfortunately, the SO does not have sufficient information to achieve (2.2). The problem

is that the SO has no direct information about marginal costs; marginal cost is proprietary

information for the generators, and the only information the generators provide the SO is

contained in their bids. The SO can follow any dispatch algorithm that it likes, but without

information about true marginal costs it will not be able to maximize social welfare. Instead,

it will be subject to manipulation by the generators’ strategic bidding.

2.3 Strategic Bidding and Market Instability

If all generators were to bid their true marginal cost parameters α, the SO would easily be

able to achieve the cost-minimizing allocation of output among the generators. However,

rather than reveal its true cost parameters, each generator will seek to bid strategically, and

13



their bids will generally not be compatible with system cost-minimization. In fact, without

modification the market will not achieve any stable equilibrium. To see this, substitute (2.1)

into (2.2), bearing in mind that both P and Q are fixed. It is clear that the generators will

not in aggregate voluntarily supply the correct amount of output (
n
∑

i=1

xn 6= Q) unless the

cost parameters happen to take extremely fortuitous values; i.e., unless

n
∑

i=1

(P − αi1)

2αi2

= Q

Thus, the desires of the generators will not be compatible with the most basic requirement

of the system to balance load and generation, and whenever the system is in balance at least

one generator will find it advantageous to change its bid, and hence its allocation xi.

It follows that it will not, in general, be in the interest of the generators to reveal their true

costs, since by doing so they will not induce the SO to maximize their profits. Suppose, for

example, that there are two generators, and the SO naively chooses to minimize the sum of

the bidded costs of the generators:

min
{x1...xn}

n
∑

i=1

Bi(xi, ai) (2.3)

s.t.
n
∑

j=1

xj = Q

In this case, the SO will assign generator G1 to produce

x̂1 =
(a21 − a11 + 2a22Q)

2(a12 + a22)
(2.4)

Knowing that this is the SO’s algorithm, G1 will substitute (2.4) into its own profit-

maximization condition (2.1), and will choose bid parameters ai such that

14



(P − αi1)

2αi2

=
(a21 − a11 + 2a22Q)

2(a12 + a22)
(2.5)

Note that G1 chooses two parameters (a11, a12), while the other terms in equation (2.5) are

fixed from G1’s point of view. Because (2.5) is a linear equation with two unknowns, there

exist an infinite number of ordered pairs (a11, a12) that solve it. Also, G1’s solution set

depends on G2’s bid a22, and vice versa. Thus, each will change its own bid when the other’s

bid changes, and any solution of (2.5) will be a profit-maximizing strategic response of G1

to G2’s bid. There will be no equilibrium unless both can simultaneously maximize profits;

i.e., unless

2
∑

i=1

(P − αi1)

2αi2

= Q (2.5a)

which will only be true for particular combinations of the fixed parameters Q, αi1, and αi2.

Hence, there is generally no Nash equilibrium for this market.

To get some intuition for the outcome, suppose that the price P exceeds marginal cost

(P > αi1 + 2αi2xi for xi ≤ Q), for both generators. In this case, each generator will seek

to increase its market share to unity, and in pursuit of this objective will reduce its bidded

cost of producing Q below its opponent’s bid, and consequently bids will decline without

bound. Conversely, if P is less than marginal cost for both generators, they will raise their

bids without bound. In either case, the SO will get no information about relative costs from

the generators’ bids, and will not be able to minimize the cost of serving load. There will be

no Nash Equilibrium in this market, and the dispatch rate of each generator will fluctuate

without regard to production cost. To remedy this situation, the SO will need to introduce

some additional incentive to induce bidders to provide better cost information.

15



2.4 Taxes

Without knowledge of actual costs, how can the SO minimize true system cost when

generators bid strategically? It turns out to be sufficient to introduce a tax rate t ∈ (0, 1]

on the difference between the bid and the market price. Note that if t = 1, the generators

are paid “as bid”. For generators bidding below the price P, this tariff can be thought of as

a tax on reported profits. It creates a penalty for strategic bidding, and hence a tradeoff.

On the one hand, by bidding low the generator can induce the SO to increase its production

share. On the other hand, a lower bid implies a higher tax payment.1

The Generator’s Problem

Suppose there are n generators andm parameters in each generator’s bid (and cost) functions.

If all generators pay the same fixed tariff rate t ∈ (0, 1], then t[Pxi(ai)−Bi(x(ai), ai)] is Gi’s

tax payment, and the net (after-tax) profit for generator Gi is

πi(ai) = Pxi(ai, a−i)− Ci(xi(ai, a−i))− t[Pxi(ai, a−i)−Bi(xi(ai, a−i), ai)]

where a−i is the (n − 1) × m matrix of other generators’ bid parameters. For notational

simplicity, in the following discussion we will suppress the a−i term, but each generator is

well aware that its own dispatch rate xi depends on the bids of the other generators a−i, as

well as its own bid vector ai.

Generator i will bid the m−vector ai that it thinks will maximize its own profit πi given the

anticipated dispatcher response and assuming other generators’ bids will remain constant.

1A similar situation applies if there is insufficient energy offered at the market price, except that in this
case the tax will manifest as an efficient subsidy.
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Thus, Generator i’s objective function is

max
ai

πi(xi(ai), ai) = Pxi(ai)− Ci(xi(ai), αi)− t[Pxi(ai)−Bi(xi(ai), ai)]

Profit maximization gives rise to m first order condition equations, which can be written in

vector notation as

∂πi(·)

∂ai
= P

∂xi(ai)

∂ai
−

∂Ci(·)

∂xi(ai)

∂xi(ai)

∂ai
− t

[

P
∂xi(ai)

∂ai
−

∂Bi(·)

∂xi(ai)

∂xi(ai)

∂ai
−
∂Bi(·)

∂ai

]

= 0

or

∂Ci(·)

∂xi(ai)

∂xi(ai)

∂ai
=

[

(1− t)P + t
∂Bi(·)

∂xi(ai)

]

∂xi(ai)

∂ai
+ t

∂Bi(·)

∂ai

The m−vector
∂xi(ai)

∂ai
is the generator’s anticipation of the reaction of the SO to a change in

its bid parameter vector ai. The generator will arrive at this vector through experience, or by

the SO providing a credible value, as further discussed below. As long as
∂xi(ai)

∂ai
has no zero

elements, we can define a vector

[

1/
∂xi(ai)

∂ai

]

whose elements consist of the multiplicative

inverses of the elements of
∂xi(ai)

∂ai
. Using this notation, the generator’s first-order profit-

maximization condition becomes

∂Ci(·)

∂xi(ai)
= (1− t)P + t

∂Bi(·)

∂xi(ai)
+

[

t
∂Bi(·)

∂ai

] [

1/
∂xi(ai)

∂ai

]

(2.6)

The generator can manipulate equation system (2.6) by manipulating the elements of ai.

(Note that there are m equations and m control parameters aji per generator). The left-
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hand side (marginal cost) and the first term on the right-hand side of (2.6) are constant

across the m equations, and also invariant to changes in ai. The second term on the right-

hand side (t times marginal bidded cost) is also constant across the m equations, although it

varies with ai. Therefore,
∂Bi(·)

∂ai

[

1/
∂xi(ai)

∂ai

]

is also constant across all equations when the

generator is profit-maximizing. Equation (2.6) may be rearranged to show that the difference

between the price P and generator i’s marginal cost is t times the difference between price

and marginal bidded cost, plus the third term on the right-hand side of (2.6).

The System Operator’s Problem.

As before, the System Operator seeks to maximize social welfare by minimizing the total cost

of generation, which requires marginal costs to be equal across all generators, as in equation

(2.2). Again, the SO has no direct information about marginal costs, but the tax creates

a link between bids and costs that allows the SO to infer marginal cost from bids, using

equation (2.6). Substituting (2.6) into (2.2), the SO’s optimal economic dispatch problem is

to solve

[(1− t)P + t
∂Bi(·)

∂xi
][
∂xi(ai)

∂ai
] + t

∂Bi(·)

∂ai
= [(1− t)P + t

∂Bj(·)

∂xj
][
∂xj(aj)

∂aj
] + t

∂Bj(·)

∂aj

for all generators i and j while satisfying load. Because (1− t)P is already a constant across

all generators and t is a common factor in the rest of equation, the optimal economic dispatch

solution does not depend on either P or t.

Thus, the SO must choose an n-vector x that solves the system of m(n− 1) + 1 equations

∂Bi(·)

∂xi
+ [

∂Bi(xi, ai)

∂ai
]{

1

∂xi/∂ai
} =

∂Bj(·)

∂xj
+ [

∂Bj(xj, aj)

∂aj
]{

1

∂xj/∂aj
} ∀ i, j
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subject to
n
∑

k=1

xk = Q (2.7)

in order to minimize the cost of serving the load.

Satisfying (2.7) will achieve cost minimization, however, only in Nash equilibrium. To see

this, note that each generator’s profit maximization condition (2.6) depends on the dispatch

allocation xi that it anticipated when it set its bid ai. If its actual allocation differs from

what it anticipated, then (2.6) will not be satisfied, and (2.2) will not be equivalent to (2.7).

Thus, by satisfying (2.7), the SO will simultaneously achieve both profit maximization (2.6)

for all generators and cost minimization (2.2) for the system only if each generator’s actual

allocation xi is the same as its anticipated allocation; i.e., only if the system is in Nash

equilibrium.

2.5 Reaching Cost Minimizing Equilibrium

To proceed, the SO first declares a tax rate t, price P , and load level Q. It collects bids

from the generators in the form of an m × n matrix of bid parameters a. Based on a, it

then announces a dispatch allocation n−vector, x, that satisfies condition (2.7), and adjusts

all generators’ outputs accordingly. Generators use equation (2.6) to reassess their bids in

light of the allocation, and then offer new bids if they believe they can increase their profits

by doing so. Equilibrium is reached when all generators are satisfied with their bids and

allocations.

A key unknown variable in the calculation of (2.6) and (2.7) is the SO’s bid response function

∂xi(ai)

∂ai
. Clearly, the SO must know what value the generator ascribes to

∂xi(ai)

∂ai
in order

to solve (2.7). One way that this might occur is for the SO to simply follow a rule, such
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as bidded cost minimization, whose implications the generator will learn through trial and

error. Another way is for the SO to simply announce a credible rule governing its bid response

function and thereby reduce uncertainty and speed up the equilibrating process.

There is one class of rules that is consistent with bidded cost minimization and especially

simplifies the process. Recall from (2.6) that profit maximization for generator i requires

that [
∂Bi(·)

∂aik
]{

1

∂xi(ai)/∂aik
} be equal across all of its parameters aik, k = 1, . . .m, meaning

that
∂Bi(·)

∂aik
and

1

∂xi(ai)/∂aik
will be in fixed proportion in equilibrium. To ensure the fixed

proportion, the SO can simply announce a rule that ties
1

∂xi(ai)/∂aik
directly to

∂Bi(·)

∂aik
.

For example, the rule

∂xi(ai)

∂aik
= −

(

∂Bi(xi, ai)

∂aik

)

(2.8)

sets the proportionality equal to -1. Other rules may be devised, but (2.8) has the advantage

of simplicity. It is also credible, both because an increase in bidded cost always causes the

dispatch allocation to fall, and because a change in the bid parameter has an effect on the

dispatch allocation that is proportional to its effect on bidded cost. Substituting (2.8) into

(2.7) implies that in equilibrium the SO will be able to minimize the cost of production by

simply minimizing bidded cost, i.e., by setting
∂Bi(·)

∂xi
=

∂Bj(·)

∂xj
for all generators i and j.

Adopting rule (2.8) and substituting it into (2.6) implies that each generator will choose a

parameter vector ai such that

∂Bi(xi, ai)

∂xi
= P + t−

1

t
[P −

∂Ci(xi, αi)

∂xi
] (2.9)

Note that (2.9) is a single equation with m control variables in the vector ai. In general,

there may be more than one parameter vector ai per generator that satisfies equation (2.9),
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but for linear and other well-behaved functions there will be at least one parameter vector

that satisfies it.

Referring to the previous example of two generators, substituting the quadratic cost and bid

functions into generator i’s profit-maximization condition (2.9) and solving for xi yields the

profit-maximizing level of output for generator i:

x∗i =
(1− t)P + tai1 − αi1 − t

2(αi2 − tai2)
(2.10)

Clearly, for any dispatch allocation xi and cost parameter vector (αi1, αi2) there will be a class

of bid parameter vectors (ai1, ai2) consistent with profit maximization. Using equation (2.7)

and rule (2.8), the SO will apply equation (2.4), as before, to determine optimal dispatch

for generator i:

x̂i =
aj1 − ai1 + 2aj2Q

2(ai2 + aj2)
(2.4’)

Setting x∗i = x̂i yields the function that generator i will employ in responding to generator

j’s bid:

(1− t)P + tai1 − αi1 − t

2(αi2 − tai2)
=

aj1 − ai1 + 2aj2Q

2(ai2 + aj2)
(2.11)

Given generator j’s bid of (aj1, aj2), generator i will pick a parameter vector (ai1, ai2) that

will satisfy (2.11). In Nash equilibrium, the allocation vector will be both profit-maximizing

for all generators and bidded-cost minimizing. Thus, for Nash equilibrium to exist there

must exist at least one set of bid parameters such that
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2
∑

i=1

(1− t)P + tai1 − αi1 − t

2(αi2 − tai2)
= Q (2.12)

Note that, in contrast to (2.5a), equation (2.12) depends on the bid parameters a, and

hence can be satisfied through adjustments of bids. Thus, any set of bid parameters a

that satisfies (2.11) for both i, and also satisfies (2.12), will constitute a Nash equilibrium.

All Nash equilibria will have the same allocation vector x, since only one allocation vector

is consistent with cost minimization. If the number of bid parameters, m, per generator

exceeds one then there will be well-defined, but infinite set of feasible values of a that will be

consistent with the cost-minimizing allocation vector x. The SO can restrict bids, perhaps

restricting bidding to one parameter only, in order to restrict the space of feasible Nash

equilibrium bids to a point. In the quadratic example above, if the SO forces ai1 = 0 then

the Nash Equilibrium value of ai2 becomes a complicated, but deterministic, function of

P,Q, t, aj2, and the cost parameters.

2.6 Examples of Cost functions for two generators

Linear Costs

A market with two generators with linear cost and bid functions provides a simple example

that illustrates the function of the efficient tax. Suppose that the cost and bid functions of

generator i (Gi) are, respectively, Ci = αixi and Bi = aixi.

For simplicity, assume that either of the generators could supply the entire market on its

own, and either would profit from doing so (i.e., P > αi). In this case, the SO’s task is

simply to use the bid parameters ai to determine which generator has the lower true cost
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parameter αi, and allocate all production to that generator. If there is no tariff, the profit

function of generator i is

πi = Pxi − αixi

and there will be no Nash equilibrium because each generator will attempt to underbid the

other, and the bids will decrease without bound.

If, on the other hand, the SO institutes a tariff rate t on the winner’s apparent profit, then

the winner’s actual profit will be

πi = Pxi − αixi − t(Pxi − aixi)

Suppose that α1 < α2, so that G1 is the efficient producer. In Nash equilibrium, each player

bids the parameter ai that maximizes its own profit, given the other generators’ actual

bids. If the price is fixed, then G1’s potential profit will always exceed G2’s potential profit,

because G1’s costs are lower. From the profit function, it is apparent that generator i obtains

positive economic profit if and only if

ai > (1/t)[αi − (1− t)P ].

Because α1 > α2, there will always exist bids that would yield a positive profit for G1,

but a negative or zero profit for G2. There can be no Nash equilibrium, therefore, where

the higher-cost generator G2 wins the bid. Instead, Nash equilibrium in this simple market

occurs where
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a2 = (1/t)[α2 − (1− t)P ]

and

a1 = (1/t)[α2 − (1− t)P ]− ε

where ε is the smallest increment allowed between bids. G1 is satisfied with this outcome

because it is allowed to produce the amount that maximizes its profit, and a higher bid

would lose to G2. G2 is also satisfied, because when it produces nothing it also has a zero

profit, whereas if it lowers its bid below G1’s bid it will produce at a loss.

Note that the market result is efficient, and therefore the SO is satisfied, regardless of the

level of t. In fact, changes in t will not even affect the tariff collected in the linear case.

Substituting the bid into the profit function (and neglecting ε), the tariff collected in this

simple case will be (P − α2)Q, regardless of the tariff rate t. Also, G1’s profit will be the

same as in a second-price or Vickrey auction: (α2−α1)Q. Changes in t will, however, affect

the NE levels of the bids. Bids will even become negative if tP < (P − α2), but the tariff

will create a lower limit to their decline.

Quadratic Costs

A somewhat more realistic but complicated case is that of two generators with quadratic

costs and bids

Ci(xi) = αix
2
i + βi i = 1, 2
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where αi is a marginal cost parameter and βi represents fixed costs.

Bi(xi) = aix
2
i + bi

If Generator 2 (G2) bids a2, Generator 1 (G1) will adjust its bid a1 to maximize its own

profit.

a1 = argmax[π1(a1, a2)] (2.13a)

Similarly, G2 will adjust its own bid a2, so as to maximize its own net profit conditional on

G1’s bid of a1 and the SO’s assigned production level x2(a1, a2). Thus,

a2 = argmax[π2(a1, a2)] (2.13b)

In Nash equilibrium, neither generator will be able to improve its profit by changing its bid.

If the SO minimizes bidded cost of generation, subject to the total energy constraint:

min
x

2
∑

i=1

aix
2
i + bi + λ(Q− x1 − x2)

then its dispatch function satisfies the first order conditions 2aixi − λ = 0.

The Nash Equilibrium (NE) for this market occurs where bids a1 and a2 solve the following

system of equations:
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

























P − 2α1x1(a1, a2)− t[P − 2a1x1(a1, a2)−
x2

1(a1, a2)

∂x1(a1, a2)/∂a1

] = 0

(2.14)

P − 2α2x2(a1, a2)− t[P − 2a2x2(a1, a2)−
x2

2(a1, a2)

∂x2(a1, a2)/∂a2

] = 0

where x1(·) and x2(·) are found endogenously by the SO as a solution to its dispatch

algorithm. We have solved the system in a simulated market and generated the response

functions (2.14) in a1, a2 space, shown in Figure 2.2.

If Generator 2 bids a2, G1’s response function a1 = R1(a2) yields the bid that would maximize

Generator 1’s net profit. Correspondingly, R2(a1) is the best response of the second generator

given the bid a1 of the first generator. The point of intersection represents the NE solution.
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Figure 2.2: Simulation Results: Nash Equilibrium and Transitional Dynamics.

Dynamic analysis shows that if cost functions are convex then the NE is stable; i.e., that

any movement away from NE will automatically create incentives that move the generators

back to NE. In Figure 2.2, the arrows show these dynamics.
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For example, if G1 sets a1 = 5, then G2 will respond by increasing a2 to approximately 6.5.

Because of G2’s higher bid, the SO will assign G1 to produce more (and pay more tariff)

than G1 had hoped, which will induce G1 to raise a1 some more. This higher bid by G1 will

cause the SO to assign more output (and therefore a higher tariff payment) to G2 than it

had planned on, which will induce G2 to raise its bid, and so on.

This result is also efficient. To see the efficiency of the NE, substitute the SO’s bid

minimization condition in the profit function of both generators























P − 2α1x1(a1, a2)− t[P −
λ

2
] = 0

P − 2α2x2(a1, a2)− t[P −
λ

2
] = 0

x1 + x2 = Q

⇒











2α1x1(·) = 2α2x2(·)

x1 + x2 = Q
⇔











∂C1(x1)
∂x1

= ∂C2(x2)
∂x2

x1 + x2 = Q

NE thus results in efficient production levels for both generators

x1(Q, a
NE
1 , aNE

2 ) =
α2Q

α1 + α2

x2(Q, a
NE
1 , aNE

2 ) =
α1Q

α1 + α2

just as would have occurred if both generators had bid their true marginal costs.

2.7 Conclusions

Information flow in electricity markets is increasingly decentralized, yet the importance of

efficient operation is undiminished. A system operator may have to make an administrative

dispatch decision based on bids rather than costs, to serve an inelastic load at a price fixed by
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regulation or other constraints. We show that under these circumstances a stylized market

in which generators submit supply function bids will not provide sufficient information for

the system operator to minimize the cost of meeting load.

We propose a simple remedy in the form of a tax, which produces incentive-compatible

bids that allow the SO to minimize the cost of satisfying the load without needing to know

the true parameters of the generators’ cost functions. Despite its simplicity, the tax has

very strong short-run efficiency implications. It allows the operator to identify the least-

cost production mix, and thereby minimize the total cost of satisfying the load. Generators

obtain profit equal to the spread between price and the cost of most efficient losing bidder.

Because market output is fixed, efficiency does not require a large number of competitive

bidders; the equilibrium bids produce a fully efficient outcome even in a duopoly.

Our results are not relevant to well-behaved markets that reliably clear, but such well-

behaved electricity markets do not exist everywhere, in the United States today. Large

portions of the country are still under the sway of traditional utilities, and even those sections

of the country that have established functioning competitive markets hesitate to rely solely

upon them in the wake of the California debacle of 2000. Most new generation facilities are

independently owned, so information does not flow freely. This paper therefore addresses

issues that system designers, regulators, operators, and market participants will be grappling

with for the foreseeable future.

We have left open many interesting questions related to the long-term implications of the

tariff mechanism. Imposing an efficient tax has the side benefit of generating revenues,

which could be used to finance transmission system improvements, pay startup costs of

generators, or defray other costs of system managers, in much the way that system charges

and transmission tariffs do in current systems. The extraction of tax revenues will have

obvious implications for the profitability of the industry, and for the level of investment
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that it can attract. Price and quantity constraints typically occur at peak loads and times of

system stress, which are precisely the times that are crucial for collecting the revenues needed

to finance large-scale capital investment required to serve those peak loads efficiently. A tax

mechanism may be an effective tool for balancing efficiency and equity while maintaining

system stability when the system is constrained.
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Chapter 3

Efficient pricing of a bundled product

of both real and reactive power

Abstract. This paper examines a price mechanism with one price assigned for each level of bundled

real and reactive power. Equilibrium allocation under this pricing approach raises system efficiency

via better allocation of the reactive power reserves, neglected in the traditional pricing approach.

Pricing reactive power should be considered in the bundle with real power since its cost is highly

dependent on real power output. Equilibrium allocation of the bundled pricing was simulated on

a simple 3-bus system power auction and compared with free reactive power optimal power flow

solution. The efficiency of pricing approach is shown in the general case, and tested on the 30-bus

IEEE network with piecewise linear cost functions of the generators.
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3.1 Introduction

An efficient transmission network plays a crucial role in growing power markets around the world.

In the last five years generating capacity grew rapidly; however, transmission investment has

been declining for many years (US. Department of Energy 2003). Many countries have already

adopted competitive market programs where an Independent System Operator (ISO) or Regional

Transmission Organization (RTO) is responsible for scheduling and dispatching generators on

regional networks, implementing a market-based mechanism for allocating scarce transmission

capacity Joskow (2003).

In this paper we analyzed pricing mechanism where certain price is assigned for each level of real

and reactive power. With both goods priced market forces stimulate efficient production of real

and reactive power. Reactive power is an important component of generator’s output. Its efficient

procurement is important to control voltage stability and line congestion of the power network.

The direct current (DC) system model is a common approximation for estimating spot market

prices under a constrained network. The DC load model is insufficient since it ignores reactive

power effects on the production of real power, line congestion and voltage constraints. Therefore,

a full AC model is required to design price mechanism for the bundle of real and reactive power.

Hogan (1993) created a separate price mechanism for reactive power in order to stimulate its

production with a purpose of satisfying voltage constraints. Later, Kahn and Baldick (1994)

demonstrated that although Hogan’s pricing example for reactive power yielded a Pareto improving

(more efficient) dispatch, it was not a solution of the formal optimal power flow problem.

After 1994, the theoretical discussion of reactive power pricing shifted into the engineering

literature, where it focused on how marginal reactive power should be determined and priced. Hao

(1997, 2003) explored the technical and economic issues of determining reactive power structures,

and designed a practical solution for managing reactive power services. In his work he looked at

the cost-benefit analysis of the reactive power procurement, without considering market incentives.

Singh (1999) discussed auction design for ancillary services.



Much of the engineering research centers on the technical side of the load flow solution algorithm.

Weber (1998) modified standard optimal power flow (OPF) analysis to simulate real and reactive

power prices. Gil (2000) proposed a theoretical approach of marginal cost pricing for reactive

services. Alvarado (1996) suggested marginal cost pricing for dynamic reactive power. These

studies emphasize the important role of reactive power in the efficient production and distribution

of electricity. Unfortunately, they do not take into consideration market forces that would actually

motivate generators to produce reactive power.

They conclude first, that a DC approximation is not sufficient to mimic power flows in a congested

network; and second, that reactive power output itself is costly and creates network congestion.

What is missing in this debate is a discussion of pricing and bargaining strategy in reactive power

markets, similar to work done by economists (Berry and Hobbs 1999) on real power markets using

DC approximation.

This paper represents a first step in filling this gap. We present an alternative pricing mechanism

where two distinct prices are introduced but the prices of real and reactive power are merged in one

bid. While formulating their bids generators evaluate the overall profit they expect to obtain from

production. In addition, separating real and reactive power bids increases uncertainty and may

decrease market efficiency, since the optimal reactive power bid is extremely volatile, and depends

on real power output.

The next section presents a simple three bus network OPF solution is presented as a starting point.

It is shown that when reactive power costs are neglected, the OPF solution tends to allocate too

much of the reactive power requirement to generators located close to the load. Part 3 explains

how reactive power costs are related to the cost of real power, and demonstrates efficiency gain

when reactive power cost are taken into consideration. The following two parts introduce a bundled

locational marginal pricing method and the intuition behind it. Moreover, 30-bus IEEE network

model with piecewise linear costs of generators was used to demonstrate benefits of bundled pricing

approach.
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3.2 Power Network Model

In this section optimal power flow is analyzed for the increasing demand for the reactive power,

keeping demand for the real power constant. For each demand level, OPF that neglects cost of

reactive power is compared with the full OPF minimizing costs of both real and reactive power. A

small 3-bus triangular AC network example, in which there are two generators and a load connected

by transmission lines (see Figure 3.1) is analyzed. The load on bus 3 is satisfied by two generators,

so that total costs of production are minimized. With two generators involved it is easy to see

changes in the output due to the load change.

Numerical parameters of the transmission lines and generators are given in the Appendix A.

Loadflow in Figure 3.1 represent economic dispatch of the generators, neglecting reactive power

costs. That is, in order to satisfy the load (1500 MW; 300 MVAr1 in this example) in the cheapest

possible way, the first generator (G1) has to produce 847.1 MW of real and 8.1 MVAr of reactive

power, while the second generator (G2) has to produce the remaining 721.6 MW and 371.1 MVAr.

The solution was found by solving a formal non-linear cost minimization subject to transmission,

voltage and generation constraints (Appendix 3-A).

This cost minimizing approach is referred to as the Social Planner Solution or alternatively in the

power economics literature (e.g. Wilson, 2002) as a Regulated Market Equilibrium. No prices were

used to calculate the efficient allocation (Table 3.1).

A competitive market is another way to obtain the same efficient allocation by dispatching

generators via a price mechanism. Competition in the power market is organized in the form

of an auction, where cheaper generators presumably underbid more expensive generators. When

competition eliminates expensive (inefficient) producers, power is produced efficiently (i.e. at the

lowest possible cost). Hogan (1993) designed a nodal price mechanism allowing to reach efficiency

via market competition with respect to both real and reactive power. When reactive power can be

produced at no cost, nodal prices set equal to marginal cost in the competitive market will result

1megavolt ampere reactive, sometimes denoted as MVar

33



G1


G2


BUS 1
 BUS 3


BUS 2


1500
 MW

300
 MVAr


847.1
 MW

8.1
 MVAr


721.6
 MW

371.1
 MVAr


|
V
1
| = 1.05


|
V
2
| = 1.05


|
V
3
| = 0.984


310.74
 MW

-89.98
 MVR


514.35
 MW

  67.31
 MVR


536.37
 MW

  98.14
 MVR


306.15
 MW

 64.24
 MVR


1027.77
 MW

 306.94
 MVR


 985.65
 MW

 232.69
 MVR


Figure 3.1: Triangular Network OPF example

in an efficient allocation. Therefore, nodal prices allow a generator to outbid its competitors when

its “delivered-power” is cheaper. Locational marginal cost prices (LMPs) provide fair competition

among generators and ultimately yield efficient dispatch. Under this approach, reactive power is

supposed to be a free good when production is adjusted in such a way as to minimize real power

losses such that, voltage constraints and line congestion are not violated.

Table 3.1 compares two sets of OPF solutions for the same demand of electricity. In one case

reactive power costs are neglected, while in the other case OPF solution minimizes costs of both

real and reactive power. Lower part of the table shows differences in the production schedule of

each generator after efficient redispatch. For example, -1.52 means that generator 1 has to produce

1.52 MW more when reactive power costs are considered in minimization problem.

Production output differs a lot with increasing reactive power requirements. When demand for

reactive power jumps to 700 MVAr, the OPF solution yields $110 of savings due to more efficient

reactive power redispatch. A larger share of reactive power can be produced cheaper by generator

1, saving costs of the more expensive generator 2. Dollar savings are progressing quickly along with

reactive power requirements. With increasing marginal production costs each additional production
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Table 3.1: OPF distortions when costs of reactive power are neglected
Free Reactive Power Costly Reactive Power

Demand Generator 1 Generator 2 Generator 1 Generator 2
MW MVAr MW MVAr MW MVAr MW MVAr MW MVAr
1500 200 846.03 -18.48 720.38 290.87 847.55 69.69 719.59 206.65
1500 300 847.11 8.15 721.62 371.18 845.8 97.08 723.61 286.06
1500 500 850.33 62.77 725.1 536.11 851.72 330.78 727.63 287.4
1500 700 855.1 119.39 730.03 707.37 858.58 417.6 731.31 437.55

Change in output due to efficient pricing $ savings
1500 200 -1.52 -88.17 0.79 84.22 48.3
1500 300 1.31 -88.93 -1.99 85.12 59.4
1500 500 -1.39 -268.01 -2.53 248.71 87.5
1500 700 -3.48 -298.21 -1.28 269.82 110.1

unit yields noticable increase in savings, even though actual costs of reactive power are relatively

low.

3.3 Costs of Reactive Power

Unlike real power reactive power is usually cheap to produce within a certain range. There are

three major sources of reactive power production: capacitor banks, synchronous condensers, and

generators. This paper focuses on the reactive power share coming from moving machines such

as generators and synchronous condensers for which reactive power capacity is proportional to

active power output Hao (2003). That is, a certain amount of reactive power can be produced

by generators 2 at no cost; otherwise reactive power is produced by synchronous machine at the

expense of real power. Capacitor banks and other static machines are slow-respond reactive power

generators. In the scope of this paper only fast responding synchronous generators are considered.

Reactive power is usually generated close to the load, since it can not be transmitted efficiently

over a long distance Joskow (2003). The example in Figure 3.1 illustrates this point, as most of

the reactive power is produced by generator 2, which is located closer to the load.

2According to NERC (2004) Planning Standards guideline, reactive capabilities with 0.95 leading and 0.9
lagging power factors should be available at no cost
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A problem arises when a substantial amount of reactive power is assigned to a single generator.

Table 3.1 demonstrates OPF dispatch as reactive power demand increases. When load demands

1500 MW and 700 MVAr, the existing nodal pricing mechanism (as well as OPF) will require

the second generator to produce 730.03 MW and 707.37 MVAr. However, under the normal

requirements only about 240 MVAr can be produced at no cost
(

730√
7302+2402

≈ 0.95
)

. The

remaining share of the reactive power is going to be produced by a synchronous machine consuming

approximately 19 MW of real power Kirby (1997), because the cost of reactive power is not

accounted for by the LMP.

Many papers in the engineering literature, such as Gil (2000), Weber (1998), and Lamont (1998),

developed methodologies and solution simulation methods to account for the costs of reactive power.

For purposes of this paper, the MatPower OPF solver was used. Reactive power is considered to

be free within the normal reactive requirements set by NERC (0.95 leading and 0.9 lagging power

factor). Otherwise, a synchronous machine will consume real power equal to about 3 % of the

machines reactive-power rating. Mathematically, the cost of reactive power beyond normal rate

can be approximated as the extra cost of the real power, required to generate it.

Cost(P,Q) = Cost(P + 0.03(Q−Q0))

where

P − demand for real power;

Q − demand for the reactive power;

Q0 − reactive power produced by generator at no cost.

SO’s Objective Function

In the most general setup the SO is minimizing production cost of both real and reactive power by

solving constrained minimization problem:
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min
{P,Q}

n
∑

i=1

Ci(Pi, Qi(Pi))

s.t.
n
∑

i=1

Pi − P loss(P2, . . . Pn, Q2(P2), . . . Qn(Pn)) = PD

n
∑

i=1

Qi(Pi)−Qloss(P2, . . . Pn, Q2(P2), . . . Qn(Pn)) = QD

subject to voltage, transmission, capacity etc. constraints.

Solution of this problem requires marginal rate of substitution (=ratio of marginal costs between

real and reactive power) to be equal among the generators.

MRSi =
CiQi

Ci Pi

= MRSj =
Cj Qj

Cj Pj

∀ i 6= j

In a simpler setup reactive power costs are not considered. Reactive power is produced in order to

minimize costs of real power and satisfy voltage constraint. It reduces to:

min
{P}

n
∑

i=1

Ci(Pi)

s.t.
n
∑

i=1

Pi − P loss(P2, . . . Pn, Q2(P2), . . . Qn(Pn)) = PD

subject to voltage, transmission, capacity etc. constraints.

Solution of this problem requires equality of marginal costs among the generators.

C ′(Pi) = C ′(Pj) ∀ i 6= j

When costs of reactive power are taken into consideration, the OPF solution yields a more efficient

distribution of reactive output and hence a more efficient system. (Efficiency is discussed in the

section 3.4). Designing a self enforcing price mechanism would help to take into consideration costs

that generators have when they need to produce reactive power as well as to stimulate competition

and more efficient investment in reactive reserves. At present, no market is deployed for reactive

power, meaning that generators have no incentive to produce reactive power unless ordered to do

so by the system operator (SO).
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The opportunity cost of reactive power production by a given generator depends strongly on the

amount of real power. For example, cost function of a generator (Figure 3.1) implies that it

can produce 240 MVAr at virtually no cost when the generator is producing 730 MW of real

power, or it can be generated by the synchronous condenser that consumes 7.2 MW of real

power when the generator is idle. Since overall generation costs depend on the bundle of real

and reactive power, compensation mechanism that pays only for the real power output is clearly

insufficient. Graphically, the cost function can be presented as three dimensional surface, with cost

level characterized by two coordinates MW and MVAr (see Figure 3.2).
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Figure 3.2: Cost surface example for (a) free reactive power and (b) costly reactive power

When reactive power is free (Figure 3.2.(a)) the cost surface is flat. More realistically, reactive

procurement outside the range of 0.95 leading and 0.9 lagging power factors 3 should be produced

by the synchronous condenser at the expense of real power Figure 3.2 (b). The contour projection

shows reactive capability curves or isocost curves. They are flat in the regions where reactive power

is free.

It is assumed that cost of reactive power can be counted in the model as the costs of the additional

3power factor= MW
√

MW 2+MV Ar2
; leading implies MVAr > 0, lagging MVAr < 0.
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real power required to produce it. Therefore, the marginal cost of reactive power is determined as

the additional cost of producing an extra unit of reactive power, while real power output remains

unchanged.

Assume that power is sold in a reasonably competitive market such as PJM(2005). With many

generators on the power market and a system operator enforcing non-cooperative behavior of

the generators, competition among its market participants would assure that generators bid their

marginal costs. In case of competitive markets for joint goods production, the price for each good

is equal to its marginal cost. With joint production, the producer must consider both prices at the

same time. Mathematically, the marginal cost of reactive power is calculated as a the first partial

derivative of the cost function with respect to reactive power, holding real power output constant.

Hence, two prices form a bundle in the sense that both prices have to be cleared at the market

simultaneously. It is is important to assign distinct prices to the bundle of real and reactive, since

both goods are produced simultaneously and can not be stored separately. Marginal cost of reactive

power depends on the quantity of real power output. Therefore, the price of real and reactive power

will depend on the production bundle of both goods. In fact cost of real power does not depend on

the reactive power output, however reactive power cost is dependent on the real power output.

3.4 Microeconomic Foundations of the Bundled Pric-

ing

In order to understand the benefits of pricing reactive power it is important to compare it with

the traditional pricing mechanism. Figure 3.3 illustrates isocost curves of a generator i, which are

contour projections of the 3-dimensional cost surface of the Figure 3.2b. The flat part of the isocost

curve represents the region of costless reactive power. The two dotted lines from the origin mark

the border of that region for every possible isocost.

Let U be an indifference curve of the system operator, defined to be the isocost curve for the rest
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of the system to satisfy the load. Let C(P̄ , Q̄) be a total cost of the power that has to be produced

in order to satisfy load demand. Then,

C(P̄ , Q̄) = Ci(Pi, Qi) + C−i(P̄ , Q̄, Pi, Qi)

Total cost of power is a sum of costs that generator i incurs to produce a bundle (Pi, Qi) and cost

of of remaining power that has to be produced by generators other than i. Cost of remaining power

depends on the system demand (P̄ , Q̄) and contribution of the generator i.

SO’s utility U = C−i(P̄ , Q̄, Pi, Qi) represents overallminimized cost of the power produced by other

generators in the network, except generator i. Hence, it is an isocost curve that minimizes system

costs excluding the bundle Pi and Qi. Nevertheless, we will call it “utility” to avoid confusion with

isocost curve of generator i.

A hyperbolic shape implies that the SO prefers average production bundle of real and reactive

over extreme one (only real or only reactive power). Point A on the Figure 3.3 demonstrates a

tangency point between generator i isocost and utility level Ū . Graphically, one may see that point

A represents lowest possible costs for the generator i to achieve utility level U . Point A′ represents

another solution, were cost minimization of all the remaining system yields utility level U ′. A line

connecting tangency points is a contract curve. Assume that point A minimizes overall system

costs. Then, point A represents optimal production bundle of the real and reactive power that

minimizes cost of electricity in the network.

The slope of an isocost curve corresponds to the marginal rate of substitution between cost of

real and reactive power. The marginal rate of substitution is equal to the ratio of marginal costs

between reactive and real power and thus represent the price ratio between those two goods in a

competitive markets.

|MRSPQ| =
MCQ

MCP
=

Price of Q

Price of P

Hence, when both real and reactive power are sold at the price equal to marginal cost, a generator
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Figure 3.3: Economics of Competitive Prices for the Bundle of Real and Reactive Power

will produce an optimal bundle of real and reactive power (point A) that satisfies utility level of

the SO at the lowest possible cost.

Unfortunately, PJM and other ISO’s currently provide competitive market prices only for real

power. Reactive power is treated as a production constraint, determined without consideration of

cost. Its limits are considered to be feasible independently from real power output. New isocosts

are parallel horizontal lines constrained by limits of reactive power output (Qmin and Qmax). Both

types of isocosts are shown in the Figure 3.4.

At the same time generators located further away from the load might have no distortion at all.

Long-distance transmission of reactive power is expensive for the system, which makes SO’s utility

function U-shaped (see Figure 3.4). Then, tangency between generator’s isocost and SO’s utility

occurs at point A on the flat part of the generator’s isocost curve. Slope at A is equal to zero,

meaning that transmission of
MCQ

MCP
= 0 and therefore the efficient price ratio MVAr Price

MW Price is also

zero. Thus, reactive power should be produced within free range only when its price is equal to

zero. Because of this, pricing reactive power will have little affect on a generator located far away

from the load, but a strong effect on the generators located near the load.
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Figure 3.4: Efficient allocation when reactive power price is equal to zero

Thus, pricing reactive power should have a long-run affect on encouraging efficient construction of

small generators near load centers.

Market inefficiency caused by absence of reactive power pricing.

When reactive power has to be produced outside free range but it is not priced - two outcomes are

possible.

1) generator is assigned to produce reactive power without compensation. For example production

bundle at point D, figure 5 implies that reactive power is costly to produce. With no reactive

compensation generator i will incur losses, while producing reactive power.

2) reactive power is going to be produced below generator’s capacity. Production bundle at point

C, Figure 3.5 is feasible for the generator i, however, it remains outside (Qmin, Qmax) range and

thus can not be assigned by the system operator.
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Figure 3.5: Problems of accounting reactive power when it is produced outside free range

3.5 Numerical simulations of bundled pricing on 30-

bus IEEE test network

In this section we have examined benefits of pricing the reactive power simulated on the IEEE

30-bus power network. There are 6 generators with piecewise linear cost functions that provide

power for the 24 load buses of the network (see Appendix 2-C for power flow system diagram).

First, OPF solution minimized production costs of real power only. Reactive power is considered

as an additional constraint that can be produced at no costs to generators within specified limits

(Qmin, Qmax). When reactive power costs are neglected, SO operator assigns reactive power schedule

to the generators in the system, so that real power losses are minimized. Basically, the SO will

assign reactive production level based on generator’s capacity, considering costless reactive power

within production limits. Reactive power does not “travel” far and thus it is usually produced

by the expensive generators located near the load. As a result expensive units might produce a

lot of reactive power while real power is delivered by cheaper generators located further from the

load. Reactive power can be expensive to produce when it is produced alone, but its cost can be
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Table 3.2: OPF power output for 6 generators 30-bus IEEE test network
OPF with free MVAR OPF with costly MVAR

MVar above MVar above
Generator MW MVAR free range MW MVAR free range

1 36.00 -4.25 0 36 11.26 0
2 30.76 5.89 0 24.61 10.11 2.02
3 36.00 40.27 28.4 36 23.54 11.7
4 30.21 19.79 9.7 32.39 12.34 1.69
5 22.55 7.54 0.1 26.72 7.41 0
6 36.00 34.79 22.9 36 37.89 26.06

substantially reduced or eliminated entirely when it is produced in a bundle with an appropriate

amount of real power.

Table 3.2 demonstrates efficient production dispatch for two markets, one with free reactive power,

another one with costly reactive power. Lefthandside of the Table 3.2 demonstrate efficient

production dispatch that minimizes costs of real power only. Righthandside shows efficient dispatch

that minimizes costs of both real and reactive power. The lefthandside solution is equivalent to the

competitive market outcome were only real power has its price (Hogan 1992). The righthandside

solution is equivalent to competitive market outcome where both real and reactive power are sold

(Hogan 1993).

When costs of reactive power are neglected, optimal dispatch minimizes losses of the expensive real

power. Generator 1 and 2 located ”electrically far” from the load, thus they produce a lot of real

power and very little of reactive power. Reactive power is produced within free range, thus its price

is equal to zero for both generators 1 and 2 (see Figure 3.4). Other generators incur additional

costs while producing reactive power.

It makes procurement of the reactive power highly undesirable by generators 3, 4, 5 and 6. They

have to produce reactive power without being paid, while generators 1 and 2 free ride. Indeed,

without proper compensation incentives reactive power becomes a good that no one is willing to

produce. Figure 3.5, point D refers to the situation when generators are not compensated for the

reactive power output.
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When reactive power is priced generators are compensated for their reactive power output. In

this case OPF solution minimizes costs of both real and reactive power. Reactive power can be

produced at 5 % of real power costs when it is produced above free range. That is why, pricing

reactive power does not shift real power schedule a lot (see Table 3.2). This fact explains a lot why

reactive power is neglected at the modern power auction, and its costs are relatively small while

estimating overall system efficiency.

At the same time pricing reactive power substantially changes reactive power schedule among

the generators. For example, generator 6 is “specializing” in reactive power power procurement.

Naturally, with proper compensation mechanism, generator 6 would be interested in expanding its

reactive capacity, since this generator has a relative advantage in the reactive power procurement.

When production of the reactive power is profitable generators will try to expand it output above

nominal limits.

However, for smaller generators specializing in the reactive power procurement cost of reactive

power will vary depending on its proportion with real power. Therefore, having a bundled pricing

approach is required for the bundled output of two goods. It implies that opportunity costs of

reactive power are higher than real power output for the generator 6. Naturally, generator 6 would

be interested in expanding its reactive reserves only in case of proper compensation for the reactive

power. When production of the reactive power is profitable generators will try to expand it output

above nominal limits.

Generators 3 and 4 procure a lot less reactive power when it is priced. Instead more reactive

power is scheduled to be produced by other generators, capable to produce reactive power cheaper

(generators 1 and 2).

Figure 3.3, illustrates optimal dispatch for the generators 2, 3, 4 and 6. All those generators produce

reactive power above free range. Figure 3.4, illustrates production schedule of generators 1 and

5. Both generators produce reactive power within free limits, implying zero price for the reactive

power.
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3.6 Conclusions

In this paper a pricing mechanism for real and reactive power was proposed. The offer for reactive

power is generated as a function of real power prices. One price is imposed for certain level of real

and reactive power. As a result, the supply function of a generator becomes a surface in three-

dimensional space. The efficiency gain for the bundled pricing over traditional real power LMP

is equivalent to the gain for using an OPF solution that with reactive power cost, over the OPF

with free reactive power. That is the bundled pricing scheme allows more efficient distribution of

reactive power resources and creates autonomous competitive market mechanism for the reactive

power. In particular it will positively influence the generators located close to the load. These

generators usually produce relatively more reactive power without proper compensation. It makes

procurement of the reactive power highly undesirable by market participants. Reactive power in

a sense becomes a public good that no one is willing to produce. Generators will either have to

produce reactive power at loss, or include it in the cost of real power.

At the same time generators located further, might not be affected by this pricing mechanism.

When reactive power is produced within free range, its competitive price is equal to zero.

It would be interesting to analyze strategic bidding of generators under the bundled price

competition. That is generators acting strategically could withhold their production capacity

causing energy prices to increase. In particular competition for reactive power is focused among

smaller number of participants located near the load.

46



Chapter 4

Mean-Variance Portfolio Analysis of

the Locational Value of Generation

Assets

Abstract. This paper addresses the problem of optimal investment in generation based on mean-

variance portfolio analysis. It is assumed the investor can freely create a portfolio of shares in

generation located on buses of the electrical network. Investors are risk averse, and seek to minimize

the variance of the weighted average Locational Marginal Price (LMP) in their portfolio, and to

maximize its expected value. I conduct simulations using a standard IEEE 68-bus network that

resembles the New York - New England system and calculate LMPs in accordance with the PJM

methodology for a fully optimal AC power flow solution. Results indicate that the network topology

is a crucial determinant of the investment decision as line congestion makes it difficult to deliver

power to certain nodes at system peak load. Determining those nodes is an important task for an

investor in generation as well as the transmission system operator.
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4.1 Introduction

The emergence of centralized physical markets in electric power has led to complexities and new

opportunities for managing risks in both the operation and finance of power generation facilities. In

a typical power markets such as PJM, compensation of generators is based on locational marginal

cost prices (LMPs) calculated at each node on the system. The main factor that causes dispersion

of the nodal prices of electricity is network congestion, which requires expensive generators to

be dispatched before cheaper ones. An important task for the system operator is to identify the

locations of chronically congested lines, and to determine the best places to add new generators or

transmission system enhancements.

Identifying congested lines requires numerical simulations due to the non-linearity and complexity

of the full AC power flow problem (Bergen 2002). In addition, demand for electricity is a highly

stochastic variable that depends on weather, development of industrial units etc. Resulting

fluctuations in nodal electricity prices make it hard to estimate the ideal location of additional

generators or transmission lines. The non-linear nature of the physical power flows causes price

peaks to appear in different places on the network as the load changes. It is even possible for the

high price of electricity in one area to be eliminated by a demand increase in another area. Evidence

of this can be found in the PJM (2004) data in the form of negative prices. Negative prices imply

that an increase in consumption of power can relieve congestion and save production costs.

While planning additional generating units, it is important to consider both the nodal price and

its variance. The price of electricity is a highly volatile variable. It can jump from $30 per MW/h

to more than a $1000 during peak demand.

Mean-variance portfolio theory developed by Harry Markowitz (1962) is widely used by financial

economists to determine the investment portfolios that produce efficient outcomes under various

economic conditions. In the framework of investment planning policy it can be used to identify

where in the network additional generation capacity should be installed, or alternatively, which

buses will be most affected by network congestion as the load increases.
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There have been several academic studies on mean-variance analysis for the deregulated electricity

market in both the economics and the engineering literatures. Economists usually focus the

attention of the investor on the cost of electricity generation. For example, Awerbuch and Berger

(2003) look at the value of diversification of investment among various production technologies

such as nuclear, fossil fuel, or green power. An efficient generating portfolio minimizes expected

costs of electricity for a given risk of fuel cost increase. This approach is useful in the long run

(more than a year) since it does not consider line congestion, network topology, and production

constraints. Yu (2003) analyzed a spatial mean-variance model, with its spatial nature captured

using the correlation of prices in geographically separated markets. Overall, economic literature

applies mean-variance to diversify risk on the cost side. Optimal frontier determines investment

shares into various production technology. Optimal investment share into each technology provides

the lowest expected price for the electricity for given fluctuations in the costs of fuel.

The revenue side of the power market represents nodal price, paid per unit of output at each node.

Hogan (1992) showed that the LMP pricing mechanism should provide proper incentives for efficient

distribution of power production among generators. LMP’s volatility depend a great deal on the

network congestion. The volatility level of the nodal prices exceeds fluctuation of the fuel costs a

lot.

In contrast, the engineering literature emphasizes the importance of full AC load flow analysis,

subject to network topology, voltage constraints, transmission losses, etc, and none emphasize the

use of financial tools in investment policy.

Denton(2003) suggests construction of an efficient frontier to determine intermediate term market

risk (from one month to a year).

The mean-variance approach helps to estimate nodes with the highest expected LMP taking into

consideration the correlation among prices at each node. Simulations targeted to determining

the most attractive buses for future investment are conducted on the standard IEEE 68-bus test

network with generators, high voltage lines, and loads that represent a simplified New York - New
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England power system.

4.2 Simulation methodology

The goals of modeling are to simulate a competitive power auction using an electrical engineering

network model and then examine correlations among nodal prices and construct the efficient frontier

from a financial perspective. The model uses a 16-generator system with 86 transmission lines (see

Appendix B) and is a simplified representation of the existing power system in the New York New

England area. The following 6 steps represent the simulation algorithm:

1) Simulate a load increase;

2) Calculate the optimal power flow (OPF) for each given load;

3) Determine the LMP at each node for each given load;

4) Calculate the LMP mean and variance-covariance matrix;

5) Estimate the mean-variance efficient frontier;

6) Determine optimal investment shares at each bus for the representative agent.

The first 3 steps represent the “engineering” part of the research. Each simulated load scenario is

satisfied in the least expensive way. Production costs are minimized when generators sell power on

the competitive market such as PJM power auction. Both cost minimization and nodal prices are

calculated for the full AC load flow model following PJM algorithm.

Steps 4, 5 and 6 represent the financial part of the research. A mean-variance frontier is constructed

for the nodal prices calculated for the stochastic load increase. The representative agent selects a

portfolio on the mean-variance frontier, depending on his risk aversion. That portfolio yields the

highest expected nodal prices for the given level of risk. Put in another way, the investor will be

interested in adding generators to the buses that pay the most for the power, at lowest possible

risk.
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Each of the steps is explained below in detail

Load simulation scenario

A random walk with drift is used to simulate a 10 % increase in load over the T simulation periods.

LOADi
t = LOADi

0 + αit + εt

where

t = 1, 2 . . . T

LOADi
0 = initial load at the i.

αi =
M LOADi

M T
=

0.1 ∗ LOADi

T − 1
slope of the drift

ε ∼ N(0, 0.001 ∗ LOADi)

Figure 4.1 demonstrates load simulation example for the 2.53 MW load at one of the buses over

30 periods. The straight line represents the trend line without shocks. The load at each bus of the

system was simulated independently using the same technique.

0 5 10 15 20 25 30
2.5

2.55

2.6

2.65

2.7

2.75

2.8
Exaple of load fluctuation over time (T=10)

time

M
W

Figure 4.1: Example of load fluctuation over time (T=30)
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Linear programming OPF and LMP

For the purposes of this simulation, it is assumed that power is sold competitively on the

power auction maintained by PJM. Hogan(1992) shows, that under sufficient competition among

generators, a power auction will yield an efficient dispatch. The LMP is the market clearing price

at each node of the power network that yields lowest possible cost of generation (efficient solution).

In the current paper, the power auction was simulated in reverse order. First, lowest possible

generation costs were found (solution of the OPF) and second, nodal prices (LMP) for the efficient

allocation were found.

The PJM(2004) methodology was used to calculate LMP in this paper. This approach takes into

account line congestion and the marginal costs of generators but neglects line losses.

The optimal power flow (OPF) was solved for load simulations at each point of time, and LMPs

representing the system operator’s (SO) willingness to pay per unit of power at each bus were

calculated.

Constructing the Efficient Frontier and Finding Optimum Investment Buses

In classical portfolio theory, maximizing the expected return for a specified level of risk is a

standard problem (Markowitz 1952). Simply put, portfolio optimization is the search for a vector

of investment portfolio shares that satisfies all constraints and provides minimum total variance

with maximum return. There are typically many such vectors, and their risk/return metrics allow

construction of the “Efficient Frontier” of this problem space.

The Efficient Frontier approach requires calculating the mean and variance of return for each

portfolio. In our case, the portfolio consists of ownership shares of nodes on the system. We

calculate returns at each node from the LMP. Mean LMP at each bus was calculated by taking the

arithmetic average of its LMP over time. Calculating LMP variance required construction of the

variance-covariance matrix between LMPs.
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Table 4.1: An example where portfolio of two assets are preferred to the higher return lower
risk asset

Correlation Table
ρ Asset 1 Asset 2 Asset 3 µ σ2

Asset 1 1 -1 0 0 49
Asset 2 -1 1 0 2 9
Asset 3 0 0 1 10.5 6.25

Portfolio Selection

The efficient frontier for the investor represents the set of portfolios that have highest expected

LMP for each given variance. Choice of a particular portfolio on the frontier depends on investor’s

degree of risk aversion. This level of aversion to risk can be characterized by defining the investor’s

indifference curve. Constant absolute risk aversion (CARA) preferences U = −e−wγ are typically

used in financial theory (Grossman and Stiglitz 1980). U is investor utility and w is wealth. The

parameter γ represents investor’s risk aversion. Typical risk aversion coefficients range between

2.0 and 8.00, with the higher number representing less tolerance to risk. The same CARA utility

function was used to simulate the representative investor in the power network. Note, that V =

E(w)− γ
2V ar(w) captures the investor’s trade-off between risk and return. Also, maximizing V is

equivalent to maximizing U (Grossman and Stiglitz 1980).

Below we provide an example that emphasizes importance of the mean-variance analysis. Each

asset is characterized by its expected return µ, risk of the return σ2 and its correlation with

another assets. These data are summarized in the Table 4.1.

At first sight it seems that an investor should spend all his money purchasing asset 3. This asset has

highest expected return and lower variance. However, it is possible to design a portfolio investment

from the asset 1 and 2, so that the investor will prefer it over spending all his money on asset 3.

Assets 1 and 2 are perfectly negatively correlated, but asset 3 is not correlated with any other asset

ρ12 = −1, ρ13 = ρ23 = 0. Negative correlation between two assets implies that increase in expected

return of one asset is followed by a decrease of return in the other. In the scope of this paper, LMP

increase in the business area can be followed by LMP decrease in the residential area. Therefore,
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an investor can mitigate portfolio risk by diversifying its investment portfolio among negatively

correlated assets.

For example, when the investment dollar is split (0.3, 0.7) among asset 1 and asset 2 respectively,

expected return of portfolio E(Rp) = 0.3 ∗ 0 + 0.7 ∗ 2 = 1.4, portfolio variance V ar(Rp) = 0.32 ∗

49 − 2 ∗ 0.3 ∗ 0.7 ∗ 7 ∗ 3 + 0.72 ∗ 9 = 0. It implies that two assets that have high value of risk can

be combined in the portfolio with the smaller value of risk. In this particular example, portfolio

of the assets 1 and 2 is risk-free. An investor with CARA utility function will prefer this portfolio

over the investment everything into asset 3 when his risk aversion parameter γ > 2.9121.

This example demonstrates that for investment planning it is important to consider portfolio of

assets, as well as correlation between assets, rather than analyzing prices at the single nodes.

4.3 Simulation Results
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Figure 4.2: Efficient frontier for 68-bus power system

Figure 4.2 demonstrates the outcome of the simulations for the 68-bus New-York New England IEEE

1when γ = 2.912 U(Rp) = U(asset 3)
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system. The efficient frontier is calculated for the LMPs using an OPF algorithm in the increasing

load scenario (steps 1-5). The highlighted area on the efficient frontier is a set of portfolios that

would be chosen by representative investors with risk aversion coefficient in the range from 2 to 8 of

the CARA utility function. Those portfolios represent set of buses that will have highest expected

LMPs after the anticipated 10% load increase. In other words, the efficient portfolio identifies

nodes that will have the highest average price at each level of price risk for the given load increase.

Investment shares for this portfolio can be interpreted as corresponding weights that each node

contributes for the expected peaking LMP. In this network, locational prices on buses 3, 33 and 65

(see Appendix 3-B) will form highest expected LMP. Basically, the mean-variance technique allows

the SO to determine system nodes that will have highest expected price, with the lowest possible

variation of that price. Optimal investment shares will determine how much the peaking price at

each bus contribute to the overall expected LMP. For example, the optimal investment share is

around 99 % in buses 3 and 33. Those buses are located in the congested part of the network.

This requires more expensive generators to produce power, which raises the nodal price. Therefore,

these buses should be considered for installing additional generation capacity or planing to build

additional transmission line.

It is important to mention that the expected peaking price determined in the scope of this paper

does not count anticipate withholding production capacity, exercising market power, or any other

form of generator gaming. Hence, the predicted peak might be substantially lower than actual price

experienced in a real system that is subject to market power manipulation.

4.4 Adding generators

The task of the SO is to plan future expansion of the network in such a way that the load increase

will cause minimal increase in electricity prices due to network congestion. One way to do so is to

install additional generators on the buses with high predicted LMPs.
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Figure 4.3: Shift of the efficient frontier after adding generators to buses 3 and 33

The effect of adding generators can be measured by constructing the the new mean-variance frontier

with the new generation installed and comparing it to the one found with no additional generation.

This makes it easy to compare projects of adding generators to the network. When one or more

generators are added, the mean-variance curve will be shifted down due to lower prices at each

nodes at all time.

These effects were calculated when additional two average generators were added to the bus 3 and

33 and all the simulations steps where done over again. The resulting mean-variance curve together

with original one is depicted in the Figure 4.3.

4.5 Optimal Investment Strategy

The efficient frontier represents the highest expected price of electricity when load increases. This

will maximize the objective function of the investor in generation with the output share negligible to

the total output. For example, installing wind generators on buses 3 and 33, will have no influence

into the price distribution. Zero fuel costs, but high installation and maintenance costs make a
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wind project sensitive to the expected price paid per unit of output. Therefore, this investment

strategy will maximize expected profit of the small power producer.

Some investors will desire lowest possible expected price at each node. In particular, when SO

plans to add large generator to the network. The SO’s objective is to plan construction of a large

scale generator that can satisfy increasing demand, reduce network congestion and thus yield lower

electricity prices. A substantial increase in production capacity will cause a shift of the efficient

frontier. A downward shift of the efficient frontier serves the SO’ interest.

Figure 4.3 represents a set of efficient frontiers achieved by installing a generator at various nodes

of the network. Adding a generator to bus 4 produces the almost horizontal frontier located below.

First, it implies low expected price of the network. Second, a flat frontier implies the same price

for any level of load variation, implying market stability and low congestion. Efficient frontier after

adding a generator to the bus 4 is located below the one obtained by adding two generators (at the

bus 3 and 33) to the network. It implies that larger capacity can not be injected into the buses 3

and 33 due to network topology, resulting congestion and high prices.

Finally, large scale generation capacity may be sponsored by the profit maximizing firm. Such a

firm will want the highest possible location of the efficient frontier. The highest expected LMP

after the efficient frontier shift will maximize profit of the company (in the framework of constant

marginal costs).

At first sight, it may seem impossible for production costs to fall, while market clearing price rise

in a competitive market. A decrease in production costs occurs when a generator whose production

cost is lower than that of the most expensive generator on the network. The electricity market a

competitive equilibrium yields efficient allocation (power is produced at the lowest possible cost).

However, the reward paid per unit of power yields an uneven profit distribution. For example,

below is a simple demonstration of the power auction showing this phenomenon:

Table 4.2 represents the basic principle of assigning a nodal price to the generators that do not

face network congestion. All the generators have linear cost functions and constant marginal
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Table 4.2: Examples of power auction where decrease in output costs does not change LMP

Example 1 Example 2
MC MW TC MC MW TC

Gen. 1 $20 idle $0 Gen. 1 $20 idle $0
Gen. 2 $15 2 $30 Gen. 2 $15 2 $30
Gen. 3 $10 5 $50 Gen. 3 $10 5 $50
Gen. 4 $10 6 $60 Gen. 4 $5 6 $30

costs (MC). We assume a competitive power auction with all participants bidding their marginal

costs. In example 1 generators 3 and 4 are producing at maximum capacity, while generator 2 is

producing only 1 unit due to demand constraint. The total costs of production for Example 1 is

0 + 15 + 50 + 60 = $125 and $15 is a market clearing price paid to all the generators that produce

electricity.

Generator 3 is called marginal generator, since market clearing price is equal to its marginal costs.

When production costs of the 4th generator decrease (Case 2), the market clearing price of the

auction remains at $15. This situation shows that in general decrease in production costs does not

neccesary decrease LMP.

When a generator with costs lower than marginal generator is added to the network, overall

production costs usually decrease. However, the network congestion caused by adding cheaper

generator can yield higher LMP. It happens when the congestion caused by cheaper generation

shifts marginal generator. Table 4.3 demonstrates how network constraints can raise the price. A

generator 5 is added to the network. New generator is capable to produce at most 1 MW of power

$10 cheaper than marginal generator 2. Assume that production of the marginal unit is at its

minimal generation level. That is generator 2 has a minimimal operating capacity of 2 MW.

Consequently, SO will consider two dispatch options (see Table 4.3):

1) generator 5 is on, generator 2 has to go offline, causing increase of the marginal unit;

2) generator 5 is not allowed to enter, thus generator 2 remains marginal.

The SO will select the first option, since it allows to produce electricity cheaper. Total production
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Table 4.3: Example demonstrating increase in LMP while production costs are decreasing

Initial Condition Adding a generator 5
Option 1 Option 2
MC MW TC MC MW TC

Gen. 1 $20 idle $0 Gen. 1 $20 1 $20
Gen. 2 $15 2 $30 Gen. 2 $15 offline $0
Gen. 3 $10 5 $50 Gen. 3 $10 5 $50
Gen. 4 $10 6 $60 Gen. 4 $10 6 $60

Gen. 5 $5 1 $5

cost of the second option is $135, which is $5 less than option 1.

This example shows that higher LMP is followed by the efficiency gain (decrease in the overall

costs). Hence, profit maximizing investor will try to allocate production resources in such a way

that production expansion will shift marginal generation upwards. That is why, it is possible

to have efficient frontier actually moving upwards, while overall production costs go down. The

upward shift of the efficient frontier is an empirical evidence of average increase in price while

overall production costs does not increase.2 High expected LMP represent the investment strategy

of the profit maximizing generator. Therefore, an investor in the large power generator will be

interested to install generation so that it will result the most upward shift of the efficient frontier

(depending on the index of the risk-aversion).

4.6 Conclusion

Mean-variance analysis can be used by the system operator and investors to calculate the risk and

returns from investments at various nodes in the system with stochastic load fluctuations. This

approach takes into consideration both nodal price variance and covariance with the prices on the

other nodes. It can be applied to guide investment projects for the intermediate term time span

(more than one month but less than a year (Denton 2003)). In this paper, standard IEEE 68 bus

2the generator added has no start-up and shut-down costs, hence OPF solution after adding the generator
will not raise overall production costs

59



0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

1

1.5

2

2.5

3

3.5

4

4.5

5

Market risk (σ of LMP)

E
xp

ec
te

d 
LM

P

Selecting Optimal Investment Strategy

Before investment 

Adding two generators
on buses 3 and 33 

Optimal invesmtent strategy
adding a generator on bus 4 

Figure 4.4: efficient frontiers for various investment projects

test system was analyzed. The load was allowed to increase stochastically by 10 %. Then, OPF

was calculated for the given load fluctuations and LMP were calculated using the PJM calculation

methodology. The mean-variance efficient frontier was constructed based on the fluctuations of

LMP for the given load increase. A typical representative agent with CARA preferences selects an

optimal portfolio based on his or her risk averse index. Buses 3, 33 and 65 are the only buses that

form an optimal portfolio of investment in the network for the risk averse index in the range from 2

to 8. Adding additional generation will maximize profit of the generating company, whose output

is negligible comparing to the overall system.

When the production capacity of the new entrant is substantial it reduces the network congestion

and changes nodal prices of the system. Objective function of the SO is to minimize network

congestion and consequently keep nodal prices low. In that case adding a large scale generator

to the bus 4 will yield lowest expected price at all nodes. Flat efficient frontier implies low price

for any risk level, meaning high network stability. Finally, it will result cheaper electricity for the

ultimate consumers.

When the owner of the large generator is responsible for the investment decision making, the most
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upward location frontier will represent his or her investment plan. This will represent production

allocation where decrease in production costs are followed with higher electricity prices.
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Chapter 5

Policy Conclusions and Paths for

Further Research

This dissertation comprises a set of three papers on strategic bidding, pricing and risk management

in electricity markets. The second chapter demonstrates how, in a price and quantity constrained

electricity market, generators can increase their profits by bidding strategically. The bidding process

will not converge (no Nash Equilibrium exists) unless mitigative measures are taken by the system

operator. I propose a simple tax mechanism to mitigate strategic bidding. It produces incentive-

compatible bids that allow the SO to minimize costs of satisfying the load without knowing actual

parameters of the generators cost function. With the imposition of this tax, it is possible to identify

the true costs of generation, minimize production costs and extract tax revenues at the same time.

Price constraints due to price caps usually occur during the few hours of peak load, which may

narrow the applicability of this research. However, these times are particularly important to

mitigate market power and for collecting rents needed for financing large-scale capital investment.

As with all theoretical work, modeling the tax mechanism and its analysis required a number of

simplifications, some of which could affect the conclusions. Therefore, I future research in this area

should extend this work in several ways. First, transmission constraints, network topology, and
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other associated constraints that impact dispatch decisions should be considered and simulated in

future research. These factors are in particular relevant for the fixed price and quantity markets

discussed in the paper. Second, the analysis should be extended to consider strategic behavior

under uncertainty. That is, how will the firms’ incentives change if they know beforehand that

price and quantity will be fixed, but they are uncertain as to the values? Strategic deviation from

true costs at peak could hurt generators during off-peak.

In the third chapter I have extended traditional LMP pricing mechanism by designing a bundled

pricing approach for real and reactive power. The price mechanism explicitly incorporates the

production and cost relationships between the two products. Reactive power is costly to produce

in the realistic power system. It accounts for three to five percent of the real power costs

when produced by synchronous condensers. Reactive power supply or consumption can create

opportunity costs when generators must reduce real power output to supply reactive power.

Prices for both real and reactive power should reflect opportunity costs. That is, for all scarce

services, compensation must be received by the suppliers and be paid for by the consumers.

Otherwise, market participants must mark up the remaining priced products in hopes of

compensation for the loss of complete pricing. Therefore bundled pricing would help to stimulate

competition and correct incentives for future investments.

A pricing method that takes both needs into account can provide incentives to ensure that the

market produces lower total system costs and provide more opportunities for short-run efficiency

gains. Developing software to allow efficient pricing of reactive power in real time could be a barrier

to practically implement proposed pricing method. Further research agenda should investigate

strategic bidding under imperfect competition, applying bundled pricing approach.

In the fourth chapter I have addressed the problem of optimal investment in generation assets

based on mean-variance portfolio analysis. This is a simulation-based study that applies existing

financial theory to the electrical network. The optimal portfolio of investments at different nodes

in the system is analyzed in terms of locational marginal prices, their fluctuations and correlations.
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Research findings indicate that network topology is a crucial determinant of the investment decision

as line congestion complicates power delivery to certain nodes.

In addition, I investigated the ex-ante effects of adding an average size generator to the various

locations of the power network. It turned out that adding a generator can shift the efficient

frontier either upward and downwards. A downward shift of the efficient frontier implies that by

adding a generation expected prices decrease through releasing network congestion. An upward

shift of the efficient frontier implies that a reduction in production costs can occur simultaneously

with increase in expected prices. It happens when profit maximizing investor will try to allocate

production resources in such a way that production expansion will shift marginal generation

upwards. Therefore, existing rules of power auction allow gaming of the network in the long

run.

An interesting extension should develop investment behavior under cooperative behavior of the

generators. So far, I have shown that even in perfectly competitive markets strategic entrance

can shift marginal generators. Withholding production capacity is an easier way to do it. These

kinds of investigations can bring new insights into our understanding of newly deregulated power

markets.
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The solution to the SO’s bidded cost-minimization problem can be represented by the system

∂Bi(ai(xi), xi)

∂ai(xi)

[

1

∂xi(·)/∂ai

]

+
∂Bi(ai(xi), xi)

∂xi
= λ i = 1, 2 . . . n, (A1)

which represents n independent non-linear first order differential equations. We assume that the

bid is a monotonic function of the bid parameter, i.e.,

∂Bi(·)

∂ai
6= 0

for the region under consideration, (ai ≤ ai ≤ ai ; xi ≤ xi ≤ xi). We can, without loss of generality,

rewrite equation (5) in the form:

∂ai(xi)

∂xi
= a′i = g(ai, xi) i = 1, 2 . . . N

where

g(ai, xi) ≡
λ− ∂Bi(ai(xi),xi)

∂xi

∂Bi(ai(xi),xi)
∂ai(xi)

Assuming that all functions and their partial derivatives are continuous in the rectangle (ai ≤ ai ≤

ai ; xi ≤ xi ≤ xi), there exists a unique solution ai = φ(xi) given the initial value ai(xi0) = ai0 .

(See Boyce, 1996, p.41).

Assuming that vector (ai ; xi) ≥ 0 ∀ i there exists a positive vector of bids (a1, a2, ...aN ) ≥ 0

and a positive production vector (x1, x2, ...xN ) ≥ 0 that solves the SO’s bidded-cost minimization

problem, in equation (2). Solution of (2) implies equality of marginal bidded costs across generators,

which, by solution of (1), is consistent with individual generators cost-minimization.

EFFICIENCY PROOF OF BUNDLED LMPS
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SO’s cost minimization problem

min
{P1,...Pn}

n
∑

i=1

Ci(Pi, Qi(Pi))

s.t.
n
∑

i=1

Pi − P loss(P2, . . . Pn, Q2(P2), . . . Qn(Pn)) = PD

n
∑

i=1

Qi(Pi)−Qloss(P2, . . . Pn, Q2(P2), . . . Qn(Pn)) = QD

(Voltage, transmission, capacity etc. constraints)

ÃL =
n
∑

i=1

Ci(Pi, Qi) + λ

(

PD −
n
∑

i=1

Pi + P loss(P2, . . . Pn, Q2(P2), . . . Qn(Pn))

)

+

+ µ

(

QD −
n
∑

i=1

Qi(Pi) + Qloss(P2, . . . Pn, Q2(P2), . . . Qn(Pn))

)

F.O.C.

∂ ÃL

∂P1
≡
∂C1(·)

∂P1
+
∂C1(·)

∂Q1

∂Q1

∂P1
= λ + µ

∂Q1

∂P1

∂ ÃL

∂Pi
≡
∂Ci(·)

∂Pi
+
∂Ci(·)

∂Qi

∂Qi

∂Pi
=λ

(

1−
∂P loss(·)

∂Pi
−
∂P loss(·)

∂Qi

∂Qi

∂Pi

)

+

+ µ

(

∂Qi

∂Pi
−
∂P loss(·)

∂Pi
−
∂P loss(·)

∂Qi

∂Qi

∂Pi

)

∀ i ≥ 2

LMPi ≡
∂Ci(·)

∂Pi
+
∂Ci(·)

∂Qi

∂Qi

∂Pi

LMPi ≡ λ

(

1−
∂P loss(·)

∂Pi
−
∂P loss(·)

∂Qi

)

+ µ

(

1−
∂Qloss(·)

∂Pi
−
∂Qloss(·)

∂Qi

)

∀ i ≥ 2

LMPi
LMP1

=

λ

(

1−
∂P loss(·)

∂Pi
−
∂P loss(·)

∂Qi

∂Qi

∂Pi

)

+ µ

(

∂Qi

∂Pi
−
∂P loss(·)

∂Pi
−
∂P loss(·)

∂Qi

∂Qi

∂Pi

)

λ + µ
∂Q1

∂P1

where

λ =
C1(·)

∂P1
marginal cost of real power only at the swing bus generator;

µ =
C1(·)

∂Q1
cost of reactive power for given level of real power at the swing bus generator.

When reactive power is free we get standard textbook result (see Bergen(2000))
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MRS =
LMPi
LMP1

=

∂Ci(Pi,Qi)
∂Pi

∂C1(P1,Q1)
∂P1

= 1−
∂P loss(·)

∂Pi

Generator’s Problem

In the competitive market each generator is a profit maximizer.

Generators profit

π(Pi) = LMPi × Pi − Ci(Pi, Qi(Pi))

Profit maximizing condition

LMPi =
∂Ci(·)

∂Pi
+
∂Ci(·)

∂Qi

∂Qi

∂Pi

These LMPs solve overall cost minimization problem above and hence are efficient.
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Appendix 3-C

6-generators, 30 bus IEEE test power network.
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Figure 5.1: Economics of Competitive Prices for the Bundle of Real and Reactive Power
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