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ABSTRACT

DRUG-DRUG INTERACTIONS: A MACHINE LEARNING APPROACH

William W. Mensah

Automatic detection of drug-drug interaction (DDI) is a difficult problem in pharmaco-

surveillance. Recent practice for in vitro and in vivo pharmacokinetic drug-drug interaction

studies have been based on carefully selected drug characteristics such as their pharmaco-

logical effects, and on drug-target networks, in order to identify and comprehend anomalies

in a drug’s biochemical function upon co-administration.

In this work, we present a novel DDI prediction framework that combines several drug-

attribute similarity measures to construct a feature space from which we train three machine

learning algorithms: Support Vector Machine (SVM), J48 Decision Tree and K-Nearest

Neighbor (KNN) using a partially supervised classification algorithm called Positive Unla-

beled Learning (PU-Learning) tailored specifically to suit our framework.

In summary, we extracted 1,300 U.S. Food and Drug Administration-approved pharma-

ceutical drugs and paired them to create 1,688,700 feature vectors. Out of 397 drug-pairs

known to interact prior to our experiments, our system was able to correctly identify 80% of

them and from the remaining 1,688,303 pairs for which no interaction had been determined,

we were able to predict 181 potential DDIs with confidence levels greater than 97%. The

latter is a set of DDIs unrecognized by our source of ground truth at the time of study.

Evaluation of the effectiveness of our system involved querying the U.S. Food and Drug

Administration’s Adverse Effect Reporting System (AERS) database for cases involving

drug-pairs used in this study. The results returned from the query listed incidents reported

for a number of patients, some of whom had experienced severe adverse reactions leading

to outcomes such as prolonged hospitalization, diminished medicinal effect of one or more

drugs, and in some cases, death.
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Chapter 1

Introduction

1.1 The Problem & Motivation

Drug-drug interactions (DDIs) by nature tend to be extremely difficult to anticipate, costly

to diagnose and treat correctly, and result in severe adverse drug reactions, some of which

may be fatal. As new drugs emerge into the consumer market, it becomes crucial for both

medical doctors and patients to understand the risk associated with co-administration of

these drugs in order to anticipate any potential threats. Unfortunately, biological methods

used today are quite cumbersome and relatively slow. Recently, a number of systems and

publicly available databases have been created to facilitate the reporting of adverse drug

events, but unfortunately, such databases only serve as sources of information and hence fail

to identify specific drugs involved in adverse drug reactions. Current commercial software

used in today’s hospitals suffice to some extent when the drugs in question are limited

to those whose adverse effects have already been reported; however, they are incompetent

when prompted with new drugs or unusual drug combinations. For example, recent studies

conducted by Vonbach et al [2] tested nine popular DDI screening software programs using

profiles from hospital patients experiencing adverse drug effects attributed to DDIs. The

outcome of their experiments showed that only 11% of the DDIs was found by all the

programs on average. Individually, none of the programs was able to detect over 50% of the
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DDIs. Intuitively, if we can predict potential DDIs for both new drugs and those already in

the hands of consumers, we would be able to set different levels of precautions for clinical

drugs administered to patients very quickly, thereby reducing the cost involved in diagnosing

and treating adverse drug reactions and saving lives in the long run.

1.2 General Approach

We collected a list of clinically approved drugs from the U.S. Food and Drug Administra-

tion’s (FDA) drugs database [3], retrieved information pertaining to specific drug attributes

for each drug and computed a number of similarity measures amongst these properties for

multiple drug-pairs to construct a dataset. From this dataset, we identified known DDIs,

with which we employed machine learning techniques to learn three classifiers. We then

determined the best classifier and saved its model for future prediction of potential DDIs.

1.2.1 Data sets

The dataset used in this work is constructed from the pairing of 1,300 unique clinically

approved drugs obtained from the FDA’s drug database marked up in Structured Prod-

uct Labeling (SPL) format [3]. Known DDI information was obtained from two sources

of ground truth: Stockley’s Drug Interactions [4] and general online sources. Information

regarding interaction between protein targets for these drugs was extracted from the Drug-

Bank database [5].

1.2.2 Drug Attributes & Feature Space

For each drug, we gathered a specific set of attributes including its chemical structure,

active ingredients, adverse drug reactions (ADR), Anatomical Therapeutic Chemical (ATC)

classification codes, human protein targets, and protein interactions. Each drug’s attributes

were combined with those of another drug during the pairing phase to create a feature

vector. However, ADRs were deliberately excluded from the feature space to be used in

the validation of our system. Combination algorithms employed to construct the feature

2



vectors include similarity measures such as Tanimoto’s Coefficient and Longest Common

Substring.

1.2.3 PU-Learning

DDIs confirmed by general online sources and Stockley’s Drug Interactions [4], our sources

of ground truth, comprised the positive set of drug-pairs. Because it is difficult to guarantee

that two drugs do not interact, the remaining drug-pairs for which we couldn’t confirm any

reported interactions comprised the unlabeled set of drug-pairs, rather than negative drug-

pairs. The lack of negative instances in the dataset makes the use of traditional machine

learning approaches very difficult. As a result, we adopt an alternate paradigm called

Positive-Unlabeled Learning which strives to extract a set of reliable negative instances

from the unlabeled set and use that, combined with the positive set, for training.

1.2.4 Performance Measurement

Evaluation of each classifier’s performance was accomplished using Precision, Recall and

F-measure metrics. Precision evaluates the measure of exactness, that is, amongst all DDIs

retrieved by the system, how many were true DDIs? On the other hand Recall measures the

completeness of the returned results. In other words, from the set of DDIs already known,

how many of the DDIs returned by the system are in the set? F-measure is a harmonic

mean between Precision and Recall that can simply be thought of as an average between

the two metrics.

1.3 Thesis Contribution

The originality of the proposed method lies in the formalization of a drug-drug interaction

inference as a semi-supervised machine learning problem and the integration of specific drug

characteristics including their chemical structure, Anatomical Therapeutic Chemical (ATC)

classification and human protein targets into a pharmacological space.

Our major contribution to the study of DDIs is the unfolding of an unexplored approach

3



to addressing the problem. We provide a novel framework for predicting DDIs by pairing

carefully selected drug attributes in a feature space in order to identify distinct similarities

and learn on the patterns that are spawned when a variety of clinical drugs are included

in this space. The framework presented facilitates the study of different causes of DDIs

simultaneously. Furthermore, we introduce the problem of inverse feature vectors that

arises from the pairing of drugs since doing so produces two distinct feature vectors that

may be classified differently even though both feature vectors involve the same drugs. To

circumvent this problem, we present a solution that could be applied even in the case where

three or more drugs are involved in the construction of a single feature vector.

1.4 Thesis Organization

The remainder of this thesis is organized as follows: Chapter 2 gives an account of back-

ground and previous work that has been done in this area. The methods and data used

in our experiment are discussed in Chapter 3. The actual experiment and results obtained

are explained and analyzed in Chapter 4. Finally, Chapter 5 concludes the thesis, and in

addition, outlines possible future work. Information regarding all software used in this work

including their version numbers can be found in Appendix A.

4



Chapter 2

Background

2.1 Overview

The Food, Drug & Cosmetic (FD&C) Act defines drugs, by their intended use, as “articles

intended for use in the diagnosis, cure, mitigation, treatment, or prevention of disease” and

“articles (other than food) intended to affect the structure or any function of the body

of man or other animals” [6]. However, within the context of this work, we restrict the

definition of a drug to clinically approved substances used to exert a pharmacological effect

on the human body. For a drug to be effective, it must be exposed to the internal organs

it is intended to act on. Generally, multiple drugs acting on the same site tend to interfere

with each other so that the effect of one drug is either suppressed or magnified by the other.

While some drug interactions may be beneficial (for example, the combination of amoxicillin

and clavulanic acid), others can lead to severe side effects that are clinically harmful. The

harmful effect of a drug interaction is often referred to as an Adverse Drug Reaction (ADR),

technically defined as “a response which is noxious and unintended, and which occurs at

doses normally used in man for the prophylaxis, diagnosis, or therapy of diseases, or for the

modification of physiological function” [7]. The cost associated with drug-related problems

in the United States from 1995 to 2000 increased from $76.6 billion to $177.4 billion [8, 9].

Severity of such ADRs has resulted in early termination of development, refusal of approval,

5



severe prescribing restrictions, and in some cases withdrawal of drugs from the market [10].

Recently, pharmacogenomic studies have led to the discovery of a connection between ADRs

and DDIs indicating that the sharing of metabolic pathways by multiple drugs may result

in competition for protein binding [11].

Recently, molecular biology has affirmed that the cytochrome P450 family of isoen-

zymes, found in the liver, is responsible for the metabolism of several drugs. Furthermore,

the broad range of drugs that undergo cytochrome P450 mediated oxidative biotransfor-

mation are involved in a large number of clinically significant drug interactions during

concomitant administration [12, 13]. Research undertaken in this area has uncovered that

inhibition based drug interactions constitute the major portion of clinically important drug

interactions and that a drug may inhibit the cytochrome P450 isoenzyme whether or not

it is a substrate for that isoenzyme. Enzyme inhibition occurs when two drugs sharing

metabolism via the same isoenzyme compete for the same enzyme receptor site. The more

potent inhibitor will predominate, resulting in decreased metabolism of the competing drug,

reduced pharmacological effect and drug toxicity. On the other hand, enzyme induction can

result in accelerated enzyme synthesis, faster drug metabolism, sub-therapeutic drug con-

centrations and potential adverse drug reactions. Nevertheless, the unanticipated effect of

both enzyme induction and inhibition, deduced from drug-drug interactions, could lead to

severe adverse drug reactions.

The clinical effect of drug-drug interactions varies in terms of severity. While some

may range from mild to severe adverse drug reactions, others could be fatal. A case is

presented in [14] of a fatal drug interaction caused by ingestion of Clozapine (Clozaril)

and Fluoxetine (Prozac). Clozapine is a tricyclic dibenzodiazepine derivative used as an

“atypical antipsychotic” in the treatment of severe paranoid schizophrenia. Fluoxetine on

the other hand is a selective serotonin reuptake inhibitor (SSRI) used for the treatment of

depression. Clinical studies have proven that concomitant administration of Fluoxetine and

Clozpine produces increased plasma concentrations of Clozapine and enhances Clozapines

pharmacological effects due to suspected inhibition of Clozapine metabolism by Fluoxe-

tine [14, 15]. In sum, the studies indicated that the combination of these drugs produced

lethal concentrations of Clozapine and high therapeutic to toxic concentrations of Fluoxe-
6



tine. The deceased suffered from pulmonary edema, visceral vascular congestion, paralytic

ileus, gastroenteritis and eosinophillia, all of which are conditions generally associated with

Clozapine toxicity [14].

Subsequently, a single report of a drug reaction in a 39-year old woman ultimately

contributed to the removal of the allergy drug Seldane (terfenadine) from the market in

1998. Doctors at the National Naval Center in Bethesda, Maryland, admitted the woman to

the hospital because of fainting episodes. She had been prescribed Seldane (Terfenadine) 10

days prior. She also started using the prescription drug Nizoral (Ketoconazole) for a vaginal

yeast infection. That combination caused potentially fatal changes in her heart rhythm.

The Food and Drug Administration (FDA) issued warnings indicating that Ketoconazole

interfered with Terfenadine’s metabolism, which resulted in increased levels of terfenadine

in the blood and slowed its elimination from the body. The FDA also warned that a similar

effect could occur if Seldane was taken with antibiotic erythromycin. The drug was taken

off the market when Allegra (Fexofenadine), a safer alternative, was approved [16].

Autonomous discovery of drug-drug interaction (DDI) in silico is an area of on-going

research that has been explored for decades. Although feasible, the task is far from triv-

ial. When two or more drugs are administered concurrently, in vivo analysis indicates that

they tend to have a pharmacologic response beyond that expected from drugs adminis-

tered individually. The outcome of a drug interaction can be synergistic, antagonistic, or

idiosyncratic [17]. When a drug substance interferes with or accentuates the absorption,

distribution, or excretion of a second drug, thereby changing the amount and duration of

a drug’s availability at receptor sites, it produces a pharmacokinetic interaction. A phar-

macodynamic interaction, on the other hand, occurs when drugs act on the same receptor,

site of action, or physiologic system and thereby have the same physiological effect [17].
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2.2 Related Work

Yildrim et al. [18] proposed the Drug-Target Network and used this to study the relationship

between drugs and their protein targets. In their work, a bipartite graph was constructed

composed of FDA-approved drugs and proteins connected by drug-target binary associa-

tions and clustered based on each drug’s Anatomical Therapeutic Chemical classification.

Although their study involved discovery of new protein targets for clinical drugs, it was not

aimed directly at solving the problem of drug-drug interactions.

Along similar lines, Ma’ayan et al. [19] proposed a drug discovery technique using bi-

partite graphs, and gene ontology analysis. They developed a bipartite network of FDA

approved drugs and their targets and conducted gene ontology analysis on the network

in order to draw a connection between pharmacology and computational graph-theoretical

Systems Biology. Albeit a promising approach, there is a major limitation preventing any

meaningful conclusions to be drawn from the network. That is, the fact that two or more

drugs share a common therapeutic target doesn’t necessarily imply the existence of an inter-

action between the two drugs; hence although a link could exist between two or more drugs

in the network, a definite or specific interaction between the drugs cannot be determined.

Scheiber et al [20] pursued a global analysis linking chemical features to Adverse Drug

Reactions (ADRs). They used datasets of marketed drugs obtained from the PharmaPendium

database [21], extracted those that shared common ADRs and toxicities (using only ADR

terms stored in the Medical Dictionary for Regulatory Activities (MedDRA)) and identified

overlaps of ADR types in chemical space to establish some biological relatedness between

the ADRs. According to their work, computing a map of ADRs in chemical space can

supposedly help better understand possible ADRs for novel compounds sharing similar

substructures.

Campillos et al [22] studied identification of drug targets using side effect similarity.

Based on a network of side effect-driven drug-drug reciprocities, they were able to validate

drug-target relations experimentally via binding assays. In general, they used phenotypic

side-effect similarities to infer whether two drugs share a target, thereby indicating that the

use of phenotypic information may be important in infering molecular interactions.
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Zhao et al [23] studied a network-based method for relating pharmacological and ge-

nomic spaces for drug target identification. By building a protein-protein interaction (PPI)

network, they were able to identify drug-target interactions and also predict biological fin-

gerprints in silico for a number of FDA approved drugs. Their methodology extends the

candidate target proteins to a genome-wide scale, which, as a result, enlarges the number

of known targets in DrugBank. Similar to the work by Yildrim et al. [18], the study focuses

on drug targets and lacks direct inference to drug-drug interactions.

Undoubtedly, the network approach provides a semantic way to organize and analyze

enormous databases and also warrants the visualization of nodes in the network whereby a

node could serve as an abstract representation of either a drug, a drug target, an adverse

reaction, or even a disease [24]. However, in a general sense, these works usually tackle the

problem of drug-drug interaction from a single point of view such as via drug ADRs for

instance. The problem with this approach is analogous to tackling an obesity problem solely

by physical exercises, while ignoring genetics and eating habits amongst other factors. In

other words, the mere fact that DDI studies can be conducted from different aspects (ADR,

PPI, etc) hints that several factors account for DDIs hence attempting to solve the problem

from a single coordinate is not sufficient.

Based on this notion, we devise a way to combine a number of DDI prediction parameters

in a multidimensional pharmacological space in order to exercise simultaneous analysis.

Our flexible framework permits the expansion of this space to accommodate a plethora of

factors easily. Furthermore, rather than simply performing sophisticated statistical analysis

on drug data sets such as FDA’s AERS database [25] or WHO’s Vigibase [26], we present a

working model that can support the prediction of potential DDIs amongst newly approved

pharmaceutical drugs and even those yet to be approved by the FDA.
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Chapter 3

Methods

For a given pharmaceutical drug-pair, we identified biomedical and biochemical charac-

teristics common to both drugs and constructed a dataset using specific attributes such

as their chemical compound structure, active ingredients, Human Protein Targets (HPT)

and Anatomical Therapeutic Classifications (ATC). Furthermore, we employed a number

of similarity measures to establish different levels of relatedness between the pair.

The process of creating the dataset involved collecting drug brand names from the FDA’s

Structured Drug Label (SPL) files [3]. The SPL is a document markup standard in XML

format approved by Health Level Seven (HL7) and adopted by the FDA as a medium for

storing and exchanging information. The files contain drug data including but not limited

to product and generic names, active and inactive ingredients, ADRs, dosage forms, routes

of administration, black box warnings, Drug Enforcement Administration (DEA) schedule

and packaging information amongst others. Although all the information provided could

be used to uniquely identify a drug, for the purpose of this research, we limited our interest

exclusively to brand names, active ingredients and ADRs for each drug.

3.1 Drug Attributes

In the process of constructing a dataset for training, we extracted a number of drug at-

tributes from different sources including FDA’s SPL files [3] and the DrugBank database [5].
10



The attributes extracted include active ingredients, Anatomical Therapeutic Classification

codes, Human Protein Targets and chemical structures. For each drug-pair’s active ingredi-

ents, we computed a similarity measure using the Jaccard Index and Tanimoto coefficient.

We did the same with each drug’s set of ATC codes but in addition, we computed a prefix

similarity match score that helps identify drugs known to act on the same organs or possess

similar therapeutic and chemical classifications. Furthermore, for each drug’s set of protein

targets, we established scores for direct and indirect interactions between the set elements

and protein targets of another drug. Finally, we appended to each drug-pair’s feature vector

a measure for the similarity between their respective chemical structures. Table 3.2 lists all

attributes that comprise any feature vector used in this work. Sections 3.1.1 through 3.1.5

describe each of the attributes and their similarity measures in detail.

3.1.1 Active Ingredient Similarity

With active ingredient information successfully extracted, we applied the Jaccard Index as a

similarity measure to enable us identify the relationship between two drugs in terms of their

chemical make-up. The Jaccard Index measures similarity between two sets and is defined

as the cardinality of the intersection divided by the cardinality of the union of the sample

sets. We employ this measure to identify the similarity between two drugs given their active

ingredients. Suppose the sets A and B represent the active ingredients for drugs A and B

respectively, then the Jaccard Index similarity between the two drugs can be computed as

J(A,B) =
|A ∩B|
|A ∪B|

(3.1)

Furthermore, since the Tanimoto Coefficient, an extended version of Jaccard Index for

binary attributes, takes into account dissimilarity between two sets we include it in the

feature space as well. It is defined as:

T (A,B) =
A ·B

‖A‖2 + ‖B‖2 −A ·B
(3.2)
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3.1.2 Anatomical Therapeutic Similarity

The Anatomical Therapeutic Chemical (ATC) classification system classifies therapeutic

drugs. In this classification system, the drugs are divided into different groups according to

the organ or system on which they act and their chemical, pharmacological and therapeu-

tic properties. This classification system is maintained by the World Health Organization

Collaborating Center for Drug Statistics and Methodology (WHOCC) [27]. According to

the classification scheme, drugs are grouped at five different levels. At the first level, the

drugs are divided into fourteen main groups. At the second level they are categorized into

pharmacological/therapeutic subgroups. The third and fourth levels are chemical/pharma-

cological/therapeutic subgroups and the fifth level is the chemical substance. Table 3.1

reveals the complete classification of Metformin as an antidiabetic drug.

ATC Code Clasification

A Alimentary tract and metabolism (1st lvl: anatomical)

A10 Drugs used in diabetes (2nd lvl: therapeutic)

A10B Blood glucose lowering drugs (3rd lvl: pharmacological)

A10BA Biguanids (4th lvl: chemical subgroup)

A10BA02 Metformin (5th lvl: chemical substance)

Table 3.1: Anatomical Therapeutic Chemical classification for the anti-diabetic drug Met-
formin

Prefix Similarity Match

By comparing the characters of two ATC codes, we are able to derive a measure of similarity

between the two codes. Moreover, repeating the process for all ATC codes for two drugs,

we are able to obtain a measure of similarity between them. ATC codes constitute 6 out of

the 21 attributes in the dataset. These attributes include:

a) Cardinality of the set of ATC codes for drug A

b) Cardinality of the set of ATC codes for drug B, and

c) Therapeutic similarity score for pair-wise comparison of drug A and B’s ATC codes.

The similarity between two ATC codes is derived according to their prior probabilities

and the probability of their commonality, which is defined as their longest prefix match [23]
12



S(i, j) =
2× log(Pr(prefix(i, j)))

log(Pr(i)) + log(Pr(j))
(3.3)

prefix(i,j) is the longest matched prefix between ATC code i and j. Since a single

drug could have several therapeutic functions and hence multiple ATC codes, we define the

maximum ATC code similarity as TS:

TS(d1, d2) = max
i∈ATC(d1),j∈ATC(d2)

(S(i, j)) (3.4)

ATC(d) represents all the ATC codes belonging to drug d.

In addition, we include a normalized longest prefix match score (atc lp) to each feature

vector by counting the number of prefix matches between two ATC codes for a drug-pair

and normalize by the total number of ATC codes between the two drugs. Formally defined

as:

L =
prefix(i, j)

||ATC(d1) ∪ATC(d2)||
(3.5)

3.1.3 Protein-Protein Interaction

Target proteins are biomolecules manipulated by active compounds [28]. Protein binding

generally refers to the binding of a drug to proteins in the blood plasma. The amount of drug

bound to a protein determines how effective the drug is in the body since the bound drug is

kept in the blood stream while the unbound components of the drug may be metabolized.

Hence, if a drug is 90% bound to a binding protein and the remaining 10% is free, then

only 10% of the drug is active in the system and causing pharmacological effects. However

the pharmacological effects of one drug may be altered by another if a protein that can

be bound to by both drugs is already saturated by one before the other becomes present.

For example, if drug A is bound to a binding protein and drug B is unable to bind to that

protein, then there would be a higher concentration of unbound drug B. Drug B could also

competitively displace drug A from the binding protein, thus raising the unbound fraction
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of drug A and effectively influencing drug A’s pharmacological effect. The competition

between two drugs to bind a protein is technically referred to as protein-protein interaction

(PPI) [29]. If two drugs target similar proteins, then the probability that they will interact

is high. Accordingly, the more protein-targets two drugs have in common, the greater the

probability of interaction. Based on this, we identified known protein targets for each drug

and for each drug-pair, we assign a measure for the number of protein-targets common to

both drugs and include it in the feature vector.

PPI Expansion

Human protein targets constitute 8 out of 21 attributes in the feature space, two of which

are cardinalities for the set of proteins each drug targets. Also included is a count for the

number of protein targets both drugs have in common and that are known to interact [30].

We represent an interaction between two protein-targets α and β as:

L(α, β, λ) =

 λ if a λ-hop PPI exists between α and β, λ ≥ 1

0 Otherwise
(3.6)

λ is the maximum depth of indirect interaction on the PPI network. When λ = 1, we

refer to the interaction as direct. On the other hand, a λ-hop PPI where λ ≥ 2 is referred

to as an indirect PPI. In this work, we restrict the value of λ to 3 to ensure that a high

level of proximity in terms of closeness between entities is maintained.

For λ ≥ 2, we employ an implication logic model to infer the existence of an indirect

interaction between two protein-targets. In the simplest sense, suppose the set of protein-

targets for drug A = {a1, a2, a3, ..., an}, B = {b1, b2, b3, ..., bm} and C = {c1, c2, c3, ..., cq},

and L(ai, bj , 1) = 0, we can infer a 2-hop indirect PPI via

((ai ⇒ cr) ∧ (cr ⇒ bj))⇒ (ai ⇒ bj) (3.7)

where 1 ≥ i ≤ n, 1 ≥ j ≤ m and 1 ≥ r ≤ q. That is, in the absence of a direct interaction

between protein targets ai and bj , if protein-target ai interacts with cr, and cr interacts with
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bj , then ai interacts with bj , so that L(ai, bj , 2) = 1. By including the set of protein-targets

for a fourth drug D = (d1d2d3...dt), with t ≥ 1, we are able to extend the inference to

formulate a 3-hop indirect PPI expansion:

((ai ⇒ cr) ∧ (cr ⇒ dl) ∧ (dl ⇒ bj))⇒ (ai ⇒ bj) (3.8)

where 1 ≥ l ≤ t Finally, we adopt a closeness measure [23] to define the relative distance

between a protein p and a drug d based on the PPI network.

ϑpd =
∑

Pk∈T (d)

e−L
2
ppk (3.9)

Pk is the known target of the given drug d, T (d) denotes the known protein targets

of d. Lppk ∈ {0, 1, 2, 3} is the shortest distance between p and pk in the PPI network

obtained from L(α, β, λ). e−L
2
ppk is used to convert protein-protein distance to protein-

protein closeness. This equation denotes that the closeness between drug d and protein p

equals the summation of closeness between p and all targets of d.

Finally, we define a binary PPI expansion as:

LB(α, β) =

 1 if L(α, β, λ) > 0

0 Otherwise
(3.10)

for which the number of hops leading to a PPI is not accounted for, just the mere fact

that a PPI was found is taken into consideration.

3.1.4 Protein Sequence Alignment

To further investigate the relationship between two drugs, we provide a third similarity

measure between the pair based on their protein target sequences. To do so, we employ

the Basic Local Alignment Sequence Tool (BLAST), a rapid sequence comparison tool

that uses a heuristic approach to construct alignments by optimizing a measure of local

similarity [31, 32]. Since BLAST compares protein and nucleotide sequences much faster

than dynamic programming methods such as Smith-Waterman and Needleman-Wunsch [33,
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34], it is widely used for database searches. In this study, we limit our interest to the

comparison of two protein sequences at a time, rather than with every protein sequence

in the database, hence a complete and time-consuming query as required by the standard

BLAST tool is less desirable. As a result, we adopt the BLAST 2 Sequences program, an

optimized version of the standard BLAST program which finds multiple local alignments

between any two given sequences [35].

Usually, a single drug may have multiple protein targets, hence we sum the scores

obtained from the comparison of any two sequences and normalize by the total number

of human protein targets for both drugs. For instance, suppose A = (a1, a2, a3...an) and

B = (b1, b2, b3...bm) represent the protein targets for drugs A and B respectively, m,n ≥ 1,

and suppose T (ai, bj) represents the similarity score obtained from BLAST for a pair-wise

comparison of protein targets ai, bj , taken from drugs A and B respectively, then ST (A,B),

the score assigned to the pair is computed as

ST (A,B) =
n∑

i=1

m∑
j=1

T (ai, bj)

and normalized as

Sn(A,B) =
ST (A,B)/

√
ST (A,A)

√
ST (B,B)

|A| × |B|
(3.11)

Processing and runtime information is provided in Chapter 4 under Section 4.1.2.

3.1.5 Chemical Compound Similarity

By definition, the structure of a chemical compound includes its molecular geometry, elec-

tronic structure and crystal structure of molecules. Molecular geometry refers to the spatial

arrangement of atoms in a molecule and the chemical bonds that hold the atoms together.

Generally, two drugs similar in structure tend to have similar molecular weights and biolog-

ical activity. The introduction of one in the presence of another could result in unexpected

reactions which could either improve or deter their clinical effects.
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Longest Common Substring

Chemical compound similarity between the chemical structures of both drugs based on the

Longest Common Substring (LCS) of each drug’s isomorphic chemical structure. LCS is

used to compute a global similarity score by computing the ratio between the size of largest

common substructure. Given two strings S and T , the longest common substring may be

found inO(|S|+|T |) time using suffix trees as illustrated in figure 3.2. Structural information

for the drugs used in this study was obtained from the KEGG/LIGAND database [36, 37, 38]

by mapping each drug’s PubChem ID in our database to the respective Entry ID in the

KEGG/LIGAND database. Obviously, the more similar two drugs are in terms of their

chemical makeup, the closer the cardinality of the LCS would be to the length of either

drug, and presumably the more probable it is that the two drugs manifest the same clinical

effect on the human body.

For instance, for the drug-pair [Abilify, Vistaril] shown in Figure 3.1., the associated

molecular formula for both drugs is given as [C23H27CL2N3O2, C21H27CLN2O22HCL].

From this pair, and ordering from right to left, we can extract the following set of substrings

{“C2”, “H27CL”, “O2”} without permutating the set elements, so that the LCS from the

set is “H27CL”. In the case where the LCS begins with a numerical character, it is simply

discarded and the next LCS is accepted if it qualifies. If there are two or more LCSs, any

one of them will suffice since only the length of the LCS is relevant and not necessarily the

characters in the substring. In the case of Abilify and Vistaril, the normalized LCS score

of 0.208 that is finally appended to the feature vector is then computed as:

NLCS(A,B) =
|LCS(A,B)|

(|A|+ |B|)− |LCS(A,B)|
(3.12)
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Figure 3.1: Chemical structure similarity for FDA-approved drugs Abilify (KEGG ID:
D01164) and Vistaril (KEGG ID: D00672). Longest Common Substring components have
been marked with bold lines.

Figure 3.2: Generalized suffix tree for strings S1 = xabxa and S2 = babxba. The first number
at a leaf indicates the string; the second number indicates the starting position of the suffix
in that string [1]. Edges marked with double lines highlight the path to the LCS, which is
abx in this case.
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Index Attribute Description

1 pid Drug-pair Identification

2 aiA Cardinality of the set of Active Ingredients for drug A

3 aiB Cardinality of the set of Active Ingredients for drug B

4 ai c Number of active ingredients drugs A and B have in common

5 ai tc Active Ingredient Tanimoto Coefficient similarity between drugs A and B

6 ai ji Active Ingredient Jaccard Index similarity between drugs A and B

7 atcA Cardinality of the set of ATC codes for drug A

8 atcB Cardinality of the set of ATC codes for drug B

9 atc c Number of ATC codes drugs A and B have in common

10 atc lp Normalized Longest Prefix Match between ATC codes (Equation 3.5)

11 atc ji Jaccard Index similarity between a pair of ATC codes

12 atc zpm Prefix Matching (Equation 3.4)

13 ptA Cardinality of the set of Human Protein Targets for drug A

14 ptB Cardinality of the set of Human Protein Targets for drug B

15 pt c Number of Human Protein Targets drugs A and B have in common

16 pt tc Tanimoto Coefficient for drug A and B’s Human Protein Targets

17 pt ji Jaccard Index for drug A and B’s Human Protein Targets

18 ppi Normalized count of Protein-Protein interactions

19 ppi c Continuous PPI expansion (Equation 3.9)

20 ppi b Binary PPI expansion (Equation 3.10)

21 blast BLAST score for drug A and B’s protein targets

22 sfmsim Chemical Formula Similarity score for the drug pair

23 class Class Label

Table 3.2: Attributes that constitute a feature vector in the dataset. Owing to the relatively
small size of the positive set, drug-pairs comprising known DDIs are assigned IDs between
0 and 1000 while IDs for unlabeled pairs are greater than 1000.
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3.2 Database Architecture

Information pertaining to all drugs, their active ingredients, human protein targets and

anatomical therapeutic classification was extracted from various datasets and stored in a

relational database to allow easy querying of information pertinent to a specific drug. The

structure of the database is shown in Figure 3.3. It consists of 8 tables in total of which 4

are independent and the remaining 4 are bridge tables connecting the 2 independent tables.

3.2.1 Drugs Table

The drugs table stores brand names for drugs extracted from FDA’s SPL files and their

PubChem IDs. Also in this table, unique ID numbers are assigned to each brand name.

3.2.2 Active Ingredients Table

The active ingredients table stores information about every active ingredient, for every

drug, extracted from the SPL files. In this table, the active ingredients are independent

and no association with any drug can be inferred from this table alone. Names are distinct

and are assigned unique ID numbers.

3.2.3 Protein Targets Table

The protein targets table stores information about all known human protein targets, for

each drug used in this work including their sequence structures. The protein target infor-

mation was extracted from the DrugBank database [5] for each drug by performing a brand

name lookup. Like the Active Ingredients table, the protein targets listed in this table

are independent and no association with any drug can be inferred from this table alone.

Furthermore, duplicate entries are not permitted and each entry is assigned a unique ID

number.
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3.2.4 ATC Codes Table

The atc codes table stores information about Anatomical Therapeutic Chemical classifi-

cation codes for each drug studied in this work. All ATC codes used in this study were

extracted from the DrugBank database [5]. ATC codes in this table are independent, mean-

ing association between drugs and their respective ATC codes cannot be inferred from this

table alone.

3.2.5 Drugs-Active Ingredients Table

The drugs ai table serves as a bridge between the drugs table and the active ingredients

table. It permits the querying of which active ingredients can be found in a given drug

simply by executing the SQL statement

SELECT name FROM a c t i v e i n g r e d i e n t s

WHERE i d IN (SELECT a i i d FROM d r u g s a i

WHERE drug id = (SELECT i d FROM drugs WHERE name = ’x ’ ) )

where x is the drug whose set of active ingredients is to be determined.

3.2.6 Drugs-Protein Targets Table

The drugs pt table acts as a bridge connecting the drugs table to the protein targets table.

If permits the querying of which proteins are targeted by a specific drug by executing the

SQL statement

SELECT name FROM p r o t e i n t a r g e t s

WHERE i d IN (SELECT p t i d FROM drugs pt

WHERE drug id = (SELECT i d FROM drugs WHERE name = ’x ’ ) )

where x is the drug whose set of protein targets is to be determined.

3.2.7 Protein-Protein Interaction Table

The ppi table contains a list of protein-pairs known to interact. Information about protein-

protein interaction was obtained from the BioGrid database [30]. Protein-target IDs in this
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table reference protein-target IDs in the protein interactions table.

active_ingredients
id INTEGER P
name VARCHAR(255)

adverse_reactions
id INTEGER P
name VARCHAR(255)

atc_codes
id INTEGER P
name VARCHAR(10)

drugs
id INTEGER P
name VARCHAR(255)

drugs_ai
drug_id INTEGER F
ai_id INTEGER F
UNIQUE(drug_id,ai_id)

drugs_ar
drug_id INTEGER F
ar_id INTEGER F
UNIQUE(drug_id,ar_id)

drugs_atc
drug_id INTEGER F
atc_id INTEGER F
UNIQUE(drug_id,atc_id)

drugs_pt
drug_id INTEGER F
pt_id INTEGER F
UNIQUE(drug_id,pt_id)

ppi
pid1 INTEGER F
pid2 INTEGER F
UNIQUE(pid1,pid2)

protein_targets
id INTEGER P
name VARCHAR(255)
sequence TEXT

Figure 3.3: Drug Database Architecture. The tables drugs ar, drugs atc, drugs ai, drugs pt,
and ppi serve as bridges to the drugs, adverse reactions, atc codes, active ingredients
and protein targets tables. Although we deliberately omitted ADR information from our
dataset, we later used it to prove the credibility of our system in Section 4.3.
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Figure 3.4: Top 10 drugs from the drug database with the most active ingredients, most
ATC classifications and most human protein targets.
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Figure 3.4 shows some statistics of sample drugs in our drugs database. Notably, no

drug appeared in the top 10 for more than one attribute implying that the presence of one

attribute does not necessarily dictate the presence of another. In other words, an increase

in the number of active ingredients, for example, does not directly imply an increase in the

number of human protein targets for the drug, since if that was the case, then the statistics

visualized would have included at least one drug common to all three sets. Nevertheless it

is equally likely that the attributes are inversely related. That is, hypothetically, the more

active ingredients found in a drug, the fewer human proteins the drug is likely to target

and vice versa. Hence, clearly the relationship between these attributes is non-trivial. The

complete distribution of drug-attribute cardinalities that can be found in our database has

been visualized in Figure 3.5.

Figure 3.5: Distribution of drug-attributes stored in the database within which all drugs
studied in this work are stored.
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3.3 PU-Learning

Traditional supervised learning classification algorithms train on datasets whose class labels

are explicitly known. In reality however, the availability of such datasets is scarce. For a

given dataset, if its class labels are unknown, then unsupervised learning techniques such as

data clustering would suffice. Admittedly, unsupervised learning is beneficial if none of the

classes in the dataset are known prior to classification, even though the results obtained are

typically not at par with supervised learning classifiers. In sum, researchers either know of

all classes in a dataset prior to their experiments or none at all. Between the two extremes

one employs semi-supervised learning techniques.

Given the nature of the dataset used in this study, specifically with reference to the lack

of negative instances due to the difficulty in confirming or establishing a certainty that two

drugs do not interact, we employed a partially supervised learning technique called Positive-

Unlabeled Learning (or PU-Learning for short) [39, 40, 41, 42, 43]. PU-Learning involves

learning from Positive (P) and Unlabeled (U) examples. The main algorithm involves 2

steps:

Step 1: Identify a reliable set of negative examples RN, from the given unlabeled dataset

U using techniques such as Näıve Bayesian approach, spy technique, 1-Disjunctive Normal

Form (DNF) and Rocchio algorithm [42]. In this work, we employed Näıve Bayes as the

primary extractor of Reliable Negative instances from U because of its strong independence

assumptions used in classification.

Step 2: Build a set of classifiers by applying a classification algorithm iteratively using

the given labeled positive examples P, the extracted negative examples RN and the remain-

ing unlabeled instances U-RN. Finally, select a good classifier from the set. For this step, we

trained three classifiers: Support Vector Machine (SVM), J48 Decision Tree, and K-Nearest

Neighbors (KNN) simultaneously using a modified version of the Co-Training algorithm [44]

called Tri-Training [45]. In Tri-training, the learning process of each classifier is greatly in-

fluenced by the other two classifiers, akin to a majority-vote scheme. Collectively, the two

steps summarized above make up the Expectation Maximization (EM) Algorithm. Section

3.3.1 elaborates on this algorithm.
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Unfortunately, PU-Learning performs rather poorly when P is relatively small compared

to U. This drawback is circumvented by the Positive Document Enlarging PU Classifier

(PE-PUC) [43], a slightly modified PU-Learning protocol that is distinguished by a cru-

cial Entity Set Expansion step. This step involves expanding the size of P by extracting

Reliable Positive (RP) instances from U-RN. Customized to suit the nature of our work,

we combined the Näıve Bayes approach and the spy technique [39, 46] in order to obtain

a set of Reliable Negative drug-pairs. Generally, this would be interpreted as drug-pairs

that do not interact. Acknowledgement of this interpretation is erratic, especially since a

100% certainty of the fact is nearly impossible. Therefore, within the scope of this work,

RN encapsulates drugs whose attributes when combined to determine similarities, exhibit

patterns that are emphatically distinguishable from proven drug-drug interactions.
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3.3.1 EM/S-EM Algorithm

The Expectation Maximization algorithm is a popular class of iterative algorithms for max-

imum likelihood estimation in the presence of unlabeled data. Generally, it is used to proba-

bilistically assign values to unlabeled instances in a corpus by computing the expected value

for each missing value [39]. The EM algorithm consists of two steps, the Expectation step

and the Maximization step. Generally, the Expectation step simply fills in the missing

data, after which parameters are estimated by the Maximization step.

In order to obtain reliable information for identification, the Expectation step is altered

to include the act of spying, hence the name S-EM. Spying typically involves migrating s%

randomly selected ”spy” instances, S, from the positive set P to the unlabeled set U . The

instances in S are collectively referred to as spies. By adding S to U , positive instances in

U can easily be inferred and extracted since they would exhibit characteristics and behavior

of instances in S. For our experiment, we used a sampling ratio s = 15% to generate the

spy set S.

The spying technique enables us to extract both Positive and Negative examples from

U , respectively referred to as Reliable Positive (RP ) and Reliable Negative (RN) instances.

The subsample P ∪RP ∪RN can then be used to efficiently construct a classification model

in the Maximization step. Figure 3.6 shows the general procedure.
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Figure 3.6: PU-Learning procedure, showing incorporation of the spy technique with the
EM Algorithm..
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3.3.2 Co-Training

Co-training involves the training of two distinct classifiers on different attributes of the

same instance [44]. That is, for a given instance x = (x1, x2), two classifiers h1 and h2 are

trained on x1 and x2 respectively. From the unlabeled set U , the instances most confidently

classified by both classifiers as positive and negative are added to the labeled set L.

3.3.3 Tri-Training

The Tri-training algorithm [47, 45] incorporates the E step from the EM algorithm and a

modified version of the idea of Co-Training in order to accommodate a third classifier. In

the original algorithm, three SVM classifiers were used. The reason for choosing SVM as

the primary classifier was not explicitly discussed, however, after training, the best of the

three SVM classifiers is returned.

In our experiment, we follow the logic behind Tri-training very closely, yet, rather than

training three instances of the same classifier, we train three distinct classifiers and return

the best of the three, since the performance of either classifier could greatly be influenced

by both the training data and the parameters used. The modified Tri-training algorithm is

outline in Algorithm 1.

29



Algorithm 1 The Tri-training algorithm for PU Learning

Input: P : Positive examples set
U : Unlabeled examples set
RN0, RN1, RN2: Reliable negatives extracted by näıve Bayes
h1, h2, h3: Classifiers to be trained. We use KNN, J4.8 and SVM

Output: hi: Classifier with best score, 1 ≤ i ≤ 3
Step

1: P0:=P1:=P2:=P % initial positive example
2: for i ∈ 1..3 do
3: attrs:=AttributeSelection(Pi,RNi); % Feature selection
4: hi:=SetF ilter(attrs);
5: hi:= BuildClassifier(Pi, RNi); % Build initial classifier
6: end for
7: while (true)
8: for i ∈ 1...3 do
9: Qi = U − Pi −RNi;

10: end for
11: if null(Q0) and null(Q1) and null(Q2) % orlearning has halted
12: then exit while-loop;
13: end if
14: for i ∈ 1...3 do
15: for each example e ∈ Qi do
16: if hi(e) equals (hi+1 mod 3(e) or hi+2 mod 3(e))
17: and hi(e

′) equals (hi+1 mod 3(e
′) or hi+2 mod 3(e

′))
18: then if hi(e) > hi(e

′) % Compare Probability Memberships
19: if positive(hi(e))
20: Then Pi+2 mod 3 := Pi+2mod3 ∪ e;
21: elseif negative(hi(e))
22: Then RNi+2 mod 3 := RNi+2 mod 3 ∪ e;
23: end if
24: Qi := Qi - e′

25: elseif hi(e) < hi(e
′)

26: if positive(hi(e
′))

27: Then Pi+2 mod 3 := Pi+2mod3 ∪ e′;
28: elseif negative(hi(e

′))
29: Then RNi+2 mod 3 := RNi+2 mod 3 ∪ e′;
30: end if
31: Qi := Qi - e
32: end if
33: end for
34: end for
35: for i ∈ 1...3 do
36: hi := BuildClassifier(Pi, RNi); % retrain classifier
37: end for
38: end while-loop
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The algorithm accepts four sets of parameters, namely the set of Positive instances, the

set of Unlabeled instances, the set of Reliable Negative instances extracted using a Näıve

Bayes classifier, and the set of classifiers to be trained, specifically, k-Nearest Neighbors

(with k = 7), J48 decision tree, and Support Vector Machines (SVM) [48].

The first step of the Tri-training algorithm involves the initialization of three sets of

Positive instances: P0, P1 and P2 (line 1). The algorithm then builds the initial classifiers

h1, h2, and h3 by first selecting the most influential attributes and filtering the dataset,

retaining only the attributes that were selected (line 2 − 6). The next step involves the

main loop (lines 7−38) which commences by removing each set of Positive (Pi) and Reliable

Negative (RNi) instances from the set of Unlabeled instances in order to obtain three sets of

unlabeled instances (Qi) to be used in further training of the three classifiers (lines 8−10),

and terminated when Qi is empty (or subsequent removal of Pi and RNi from U produces

the same Qi as in the previous iteration) (lines 11− 13). If Qi is non-empty, the algorithm

proceeds to the training step (lines 14 − 34) where the classification of an example e in

Qi by a classifier hi is dependent on a majority vote (i.e. in concurrence with at least one

other classifier). If the classification of both e and its inverse e′ obtain a majority vote,

then the example (e or e′) that is classified with the highest probability of membership (or

confidence) is appended to either the Positive set Pi, if it was classified as positive, or to the

Reliable Negative set RNi otherwsise (lines 15 − 33). This is how the algorithm handles

the inverse feature vector problem. Although not outlined in the pseudocode, during the

training process, we keep records of each classifier’s F-measure computed per iteration and

after 20 iterations, return the classifier with the highest average F-measure as the best

classifier.

Figure 3.6 provides a generalized overview of PU-Learning without the details of the

algorithmic steps. Step 1 indicates identification and separation of the Positive (P ) and

Unlabeled (U) sets of data. In Steps 2 and 3, a portion of both P and U is allocated for

testing and the remainder is used to training. Steps 4 and 5 depict removing a fraction of

instances from the Positive training set to act as spies (s) and appending this set to U . In

Step 6, Reliable Positive (RP ) and Reliable Negative (RN) instances are extracted from

s ∪ U and concatenated with the Positive training set (P ). This step is repeated until no
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new RN instances can be extracted. The learners are then trained one last time using the

dataset P ∪(RP ∪RN) and test on the allocated test set. The best classifier is then selected

after evaluating classification performance on the test set.

The Tri-training algorithm has a computational complexity of O(N2). This is primarily

due to the fact that the main loop is only terminated when U is either null or learning

has halted, which means that all possible RN instances that can be extracted from U have

been extracted. Therefore in the worst case, a single RN instance is extracted for each

of the N iterations, where N is the cardinality of U . If that is the case, then the main

loop (lines 7− 38) will be executed N times and be restarted N times after rebuilding the

classifiers, yielding a worst case runtime of O(N2).

32



Chapter 4

Experiment

4.1 Experimental Setup

4.1.1 Data Sets

We constructed a dataset:

D = (xi, yi)|xi ∈ Rp, yi ∈ −1, 1ni=1

where yi is either 1 or -1, indicating the class to which xi belongs. Each xi is a p-

dimensional vector, where p = 23, representing the number of drug attributes (including

drug-pair ID and class label).

From the 1,300 unique drugs extracted from FDA’s SPL files, we paired each drug with

all others in the list and produced 1,688,700 unique drug-pairs. The inclusion of each pair’s

feature vector produces a 1, 688, 700 × 21 matrix (1, 688, 700 × 19 matrix if the drug-pair

ID and class label are excluded), which represents the dataset used in this study. For 412

of these drug-pairs, we were able to confirm drug-drug interactions (DDIs) via Stockley’s

Drug Interactions [4] and general online sources. These drug-pairs were labeled as positive

and served as our ’Gold Standard’ dataset. The remaining 1,686,088 drug-pairs were left

unlabeled. After running BLAST queries on the drug-pairs, we were able to obtain scores
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for 397 positive instances and 1,587,397 unlabeled instances.

4.1.2 Computational Environment

We forked 21 UNIX terminal processes to execute BLAST 2 on 1,688,700 drug-pairs (n(n−

1), where n = 1, 300) with the first 20 terminals processing 80,000 pairs and the last

terminal processing 90,000 pairs on a 2010 Macbook Pro equipped with a 2.4 GHz Intel

Core 2 Duo processor, 4 GB 1067 MHz DDR3 memory chip and 1.07 GHz Bus Speed.

Processing all the drug-pairs took approximately 3 weeks to complete at a rate of 0.2% per

hour per terminal (and all-together as a matter of fact due to parallelization), providing us

with protein sequence alignment scores for at least 397 positive drug-pairs and 1,587,397

unlabeled drug-pairs. Mathematical analysis indicates that sequential execution of BLAST

2 on all 1,688,700 drug-pairs on the same hardware could have taken up to 63 weeks (15

months) to complete.

All pre- and post-processing scripts were written in Python.

GNUPLOT served as the main graphing utility, and

Cytoscape provided tools for visualization of all DDI networks.

Version numbers and additional information pertaining to Python, GNUPLOT and

Cytoscape can be found in Appendices A.1, A.2 and A.3 respectively.

4.1.3 Data Pre-processing

Generally, pre-processing of data used in data-mining and machine learning involves cleaning

the data to avoid learning a classifier on erroneous or inconsistent information such as

{alive : yes, deceased : yes} or {weight : 180, height : −6}. A dataset that contains such

values should not be trained on and failure to identify and remove such information from a

dataset would result in a poorly trained, inconsistent and unreliable classifier.

Although the dataset constructed and used in this work does not contain such erroneous

data, it is comprised of duplicate instances and continuous data which equally affects the

performance of certain classifiers when learned on, hence instance selection and discretiza-

tion turned out to be crucial pre-processing procedures in this work.
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Discretization

Continuous values within a dataset for a given feature can be converted to discrete values

by means of discretization. Discretization is necessary prior to building a classification

model because not only is it impossible for certain classifiers to accept continuous values

as input but also certain attributes in a dataset may contain so many values that the

classification algorithm cannot easily identify interesting patterns from which to create a

model. Well-known classifiers such as Support Vector Machines, Random Forests and even

Naive Bayes tend to exhibit better performance when trained on discretized variables rather

than continuous, attributable to their sensitivity to the dimensionality of the data.

Discretization is the process of putting values of a column into bins so that there are a

limited number of possible states. Assuming each bin is assigned a unique ID with respect

to the total number of buckets, then a continuous value can simply be replaced by the bin

ID. This method of discretization referred to as Binning.

Overall performance of a classification model involving discretization can greatly be

influenced by the total number of bins used. Decision on the number of bins to use can be

made by defaulting to a specific value, such as 5 or 10, or by computing
√
n, where n is the

number of distinct values in the column.

Out of the 19 attributes contained in the dataset used in this work, 7 consist of con-

tinuous values. These are specifically the Tanimoto Coefficient and Jaccard Index related

attributes, normalized similarity counts, ATC Prefix Matching scores, BLAST scores, and

Protein-Target expansions. For each column to be discretized, we set the number of bins

to
√
n if (

√
n < 10), otherwise we defaulted to 10 bins.
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4.2 Training

The training process involved applying the PU Learning algorithm on the dataset con-

structed with feature vector attributes discussed in section 3.2.

4.2.1 Performance Measures

Evaluation measures used in this work and as illustrated in Figures 4.1 and 4.2 are Precision,

Recall and F-measure, with each defined as:

Precision =
TP

TP+FP

Recall =
TP

TP+FN

F-measure = 2× Precision×Recall

Precision + Recall

Precision represents the number of correct positive predictions per positive predictions while

Recall represents the number of correct positive predictions per positive examples. TP is

the number of True Positives while FP and FN represent the number of False Positives and

False Negatives respectively. These metrics enable us to effectively evaluate the competence

of our classifiers with respect to the ground truth.
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4.3 Results

4.3.1 Training

Instance Selection

The first step we took to prepare the data for mining was to identify and discard duplicate

instances. This was achieved by ignoring the first and last columns that store the instance ID

and class labels respectively, leaving only drug-pair attributes to used for comparison. The

removal of duplicates left behind 363,277 unique unlabeled instances. We then proceeded to

remove instances with attributes similar to those in the positive set so as to avoid class-label

inconsistencies among similar feature vectors and in turn avoid confusing the classifier. Not

doing so would mean an instance could be positive and unlabeled at the same time. And

being unlabeled, as far as a classifier is concerned, could very well mean that the instance

could be negative, hence a contradiction. Learning on such data is likely to produce a very

poor classifier.

We then identified the most influential number of instances (of reasonable size) that

should be used in training. From Figure 4.1, it can be noted that training with 700 instances

yields the best results and since 700 is approximately twice the number of positive instances,

it suffices.
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Figure 4.1: Influence of the size of unlabeled data on PU Learning using all 21 attributes.
The best output is realized when 700 unlabeled instances are used in training.
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Feature Selection

Feature selection is a dimensionality reduction technique used to decrease the time taken

to train classification models and occasionally improve classification. Also known as subset

selection, the primary motive is to select a subset of input variables among an array of

others by means of eliminating those with little relevance in terms instance-class predic-

tion. Feature selection can significantly improve the learning of a classifier and increase its

potential for correctly classifying unseen data. A number of algorithms have been devised

for feature selection such as Forward Selection, Backward Selection, Sequential Forward

Selection, Sequential Backward Selection and InfoGain.

In this work, we adopted Sequential Backward Selection as the Feature Selection algo-

rithm. Table 4.1 shows the attribute’s index and name as specified in Table 3.2, the feature

subset selection (FSS) score, number of time selected out of the 20 runs, and the statistical

analysis metrics F-ratio and p-value. As discussed in Section 4.3.3, if P ≤ 0.05, the null

hypothesis may be rejected. In general categories selected are drug ATC codes, protein-

protein interactions, human protein targets and active ingredients, however with rejection

of the null hypothesis, the main attribute category selected is human protein targets
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Index Attribute FSS Score Frequency F-ratio p-value

20 ppi b 0.57 1.00 7.98 0.000560

13 ptA 0.56 1.00 5.50 0.005193

7 atcA 0.38 1.00 4.93 0.008748

14 ptB 0.36 0.95 4.10 0.018923

22 sfmsim 0.28 0.95 2.91 0.058532

8 atcB 0.54 1.00 2.52 0.084606

12 atc zpm 0.96 1.00 3.33 0.039211

10 atc lp 0.94 1.00 2.13 0.123846

15 pt c 0.74 0.55 1.58 0.210207

17 pt ji 0.27 0.55 1.01 0.368922

4 ai c 0.73 0.55 1.03 0.358883

9 atc c 0.38 0.55 0.43 0.654283

11 atc ji 1.12 0.35 0.48 0.619021

19 ppi c 0.6 0.65 1.75 0.178261

5 ai tc 0.18 1.00 0.88 0.416748

Table 4.1: Top attributes selected during the feature-selection process. Each value is an
average of 20 runs.

Evaluation of SVM, J48 and KNN using varying sets of feature-subset selected attributes

is provided in Figure 4.2. For each iteration, the top n attributes returned by the feature-

selection algorithm are used in training on 700 randomly selected unlabeled instances, where

2 ≤ n < 22. Notably, the best results are obtained when 16 attributes are used to train

SVM in terms of Precision and F-measure averaging approximately 71%

40



Figure 4.2: Impact of feature subset selection on 700 unlabeled instances.
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4.3.2 Testing

Evaluation of the test results produced by the SVM classifier has been provided in Figure 4.3.

Each measure is an average of 100 runs on a test set of 200 instances (100 positive, 100

unlabeled) randomly selected during each iteration. As confidence is increased from 0%

to 100%, Precision drops from 75% to 20% while Recall increases from 65% to 71%. An

equilibrium of 65% is realized between the two metrics and their F-measure at a confidence

of 50%. No test instances were classified at a confidence of 100% therefore Recall is 0% and

Precision cannot be computed.

In addition, a DDI network showing known interactions and probabilistic interactions

predicted by the SVM classifier has been illustrated in Figure 4.4. Potential DDIs in the

network comprise interactions predicted by our system with confidence ≥ 98%.

To further evaluate the applicability of our system, we obtained a list of medications

prescribed to 20 patients at the Chestnut Ridge Psychiatric Hospital located in Morgantown,

West Virginia. For each patient’s medication list, we paired the drugs and passed them to

our system, which then flagged potential interactions among a number of pairs found in 9

out of 20 medications lists. We then queried the Adverse Event Reporting System (AERS)

database [25] for reported events involving any of the drug-pairs predicted to interact and

actually found cases for DDIs predicted in 6 out of 9 medication lists. The results from this

experiment have been tabulated in Tables 4.2 and 4.3.

Finally, we provide a list of potential DDIs predicted by our system involving psy-

chotropic medications retrieved from the dataset employed in this study. The complete

list can be found in Table 4.4 along with the level of confidence on which the prediction is

based.
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Patient Drug A Drug B Confidence

2 proair (ALBUTEROL) flexeril (CYCLOBENZAPRINE) 98.78
flexeril (CYCLOBENZAPRINE) accuneb (ALBUTEROL) 97.18

5 zocor (SIMVASTATIN) prozac (FLUOXETINE) 84.23
zocor (SIMVASTATIN) sarafem (FLUOXETINE) 84.23
zocor (SIMVASTATIN) vistaril (HYDROXYZINE) 81.23
zocor (SIMVASTATIN) namenda (MEMANTINE) 64.62
sarafem (FLUOXETINE) atarax (HYDROXYZINE) 55.82

7 anafranil (CLOMIPRAMINE) toprolxl (METOPROLOL) 93.07
lopressor (METOPROLOL) anafranil (CLOMIPRAMINE) 72.91

8 tricor (FENOFIBRATE) klonopin (CLONAZEPAM) 85.21
tricor (FENOFIBRATE) glucophage (METFORMIN) 81.69
tricor (FENOFIBRATE) riomet (METFORMIN) 81.69
triglide (FENOFIBRATE) klonopin (CLONAZEPAM) 78.77
plavix (CLOPIDOGREL) riomet (METFORMIN) 61.82
plavix (CLOPIDOGREL) fortamet (METFORMIN) 58.16
plavix (CLOPIDOGREL) lofibra (FENOFIBRATE) 55.63
plavix (CLOPIDOGREL) tricor (FENOFIBRATE) 55.63
plavix (CLOPIDOGREL) antara (FENOFIBRATE) 54.11
zyprexa (OLANZAPINE) plavix (CLOPIDOGREL) 50.00

11 riomet (METFORMIN) cogentin (BENZTROPINE) 88.88
cogentin (BENZTROPINE) glucophage (METFORMIN) 83.28
cogentin (BENZTROPINE) riomet (METFORMIN) 83.28
cogentin (BENZTROPINE) fortamet (METFORMIN) 73.56
depakote (DIVALPROEX) fortamet (METFORMIN) 68.44
klonopin (CLONAZEPAM) vistaril (HYDROXYZINE) 64.51
vistaril (HYDROXYZINE) glucophage (METFORMIN) 60.31
atarax (HYDROXYZINE) riomet (METFORMIN) 51.88

13 cogentin (BENZTROPINE) haldol (HALOPERIDOL) 97.39
epitol (CARBAMAZEPINE) depakote (DIVALPROEX) 97.31
fortamet (METFORMIN) epitol (CARBAMAZEPINE) 93.56
riomet (METFORMIN) cogentin (BENZTROPINE) 88.88
cogentin (BENZTROPINE) glucophage (METFORMIN) 83.28
cogentin (BENZTROPINE) riomet (METFORMIN) 83.28
cogentin (BENZTROPINE) fortamet (METFORMIN) 73.56
depakote (DIVALPROEX) fortamet (METFORMIN) 68.44
zyloprim (ALLOPURINOL) zegerid (OMEPRAZOLE) 66.24
aloprim (ALLOPURINOL) zegerid (OMEPRAZOLE) 56.09

16 invega (PALIPERIDONE) pepcid (FAMOTIDINE) 96.02
invega (PALIPERIDONE) flexeril (CYCLOBENZAPRINE) 89.85
invega (PALIPERIDONE) buspar (BUSPIRONE) 88.77
flomax (TAMSULOSIN) buspar (BUSPIRONE) 88.09
invega (PALIPERIDONE) zonegran (ZONISAMIDE) 82.97
buspar (BUSPIRONE) invega (PALIPERIDONE) 82.35
zegerid (OMEPRAZOLE) buspar (BUSPIRONE) 78.89
zegerid (OMEPRAZOLE) zonegran (ZONISAMIDE) 76.51
pepcid (FAMOTIDINE) invega (PALIPERIDONE) 75.78
flexeril (CYCLOBENZAPRINE) invega (PALIPERIDONE) 72.87
flexeril (CYCLOBENZAPRINE) zegerid (OMEPRAZOLE) 63.85

18 topamax (TOPIRAMATE) prozac (FLUOXETINE) 63.25
topamax (TOPIRAMATE) sarafem (FLUOXETINE) 63.25

19 zofran (ONDANSETRON) prilosec (OMEPRAZOLE) 97.78
carafate (SUCRALFATE) zofran (ONDANSETRON) 91.55
prinivil (LISINOPRIL) zegerid (OMEPRAZOLE) 77.52
carafate (SUCRALFATE) zegerid (OMEPRAZOLE) 60.55
lipitor (ATORVASTATIN) prilosec (OMEPRAZOLE) 54.83
lipitor (ATORVASTATIN) zegerid (OMEPRAZOLE) 52.83

Table 4.2: Potential Psychotropic Drug-Drug Interactions from 20 separate sets of medica-
tion lists for 20 patients.

43



Patient Drug A Drug B Confidence Most Common ADRs Reported Cases

5

zocor prozac 84.23 nausea, fatigue 7
zocor vistaril 81.23 type 2 diabetes mellitus, hypergly-

caemia, diabetic neuropathy, breast
cancer metastatic

2

zocor namenda 64.62 pulmonary oedema, lethargy 2

8

tricor klonopin 85.21 vomiting, nausea, dizziness 4
tricor glucophage 81.69 coronary artery disease 6
plavix fortamet 58.16 muscle spasms 1
plavix tricor 55.63 diarrhoea 9
zyprexa plavix 50.00 vomiting, fall, extrapyramidal disorder,

dyspnoea, diarrhoea, chest pain, asthe-
nia

3

11

cogentin glucophage 83.28 leukocytosis, hypoglycaemia, diabetic
neuropathy

2

klonopin vistaril 64.51 panic attack 4
vistaril glucophage 60.31 tremor, stress, sleep apnoea syn-

drome,peripheral coldness, memory im-
pairment, incorrect dose administered,
hypoaesthesia, hyperhidrosis, feeling
abnormal, drug tolerance, chills

1

13

cogentin haldol 97.39 schizophrenia, renal failure acute, poi-
soning, neutrophil count decreased,
neuroleptic malignant syndrome, men-
tal disorder, inappropriate schedule of
drug administration, dysphagia, drug
abuse, constipation, bradycardia, ag-
gression

2

cogentin glucophage 83.28 leukocytosis, hypoglycaemia, diabetic
neuropathy

2

16

flomax buspar 88.09 type 2 diabetes mellitus, pneumonia,
hypoglycaemia, diabetes mellitus, chest
pain, cardiac disorder, angina pectoris

1

flexeril zegerid 63.85 fibromyalgia 1

18

topamax prozac 63.25 drug ineffective 6
topamax sarafem 63.25 vision blurred, speech disorder, paraes-

thesia, muscular weakness, motor
dysfunction, hypoaesthesia, headache,
dysarthria, dizziness, confusional state,
cerebrovascular accident, aphasia, aba-
sia

2

19

zofran prilosec 97.78 pain 45
carafate zofran 91.55 dysphagia, anaemia 7
lipitor prilosec 54.83 pain 46
lipitor zegerid 52.83 arthralgia 1

Table 4.3: Potential Psychotropic DDI ADRs for drug-pairs listed in Table 4.2. The table
also shows the most common side effects and number of cases reported in the 2010 Q4
AERS data set.
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Figure 4.3: Evaluation of SVM classifier on 100 positive and 100 unlabeled instances.

4.3.3 Statistical Analysis

To evaluate the credibility of the dataset and establish a more concrete validation for our

classification results, we performed a one-way Analysis of Variance on the drug features in

order to comprehend the correlation or dissimilarity between known DDIs (λk), potential

DDIs (λp) and unknown DDIs (λu). The null hypothesis here indicates that the drug

attributes used in this work have no influence when distinguishing between known, predicted

and unknown DDIs. If an attribute’s F-test score is greater than the critical value, then we

reject the null hypothesis and accept the fact that known and potential DDIs are indeed

distinguishable from the unlabeled set, since we initially assumed them (known and potential

DDIs) to possess similar characteristics. Furthermore, rejecting the null hypothesis enables

us to identify the most influential attributes.

For a given attribute x, it’s F-test score was computed as follows: For each of the three

categories: λk, λp, λu, randomly select n samples of attribute xi, where x1 = λk, x2 = λp

and x3 = λu. The null hypothesis, denoted H0, for the overall F-test is that all three

categories produce the same response on average. Suppose we let x = attribute 20 (ppi)
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Figure 4.4: Network showing drugs involved in known (blue nodes, 397 pairs) and predicted
(red nodes, 181 pairs) drug-drug interactions. Blue edges indicate a connection between two
nodes known to interact prior to experiments while red edges represent probable connections
predicted by our system.
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Table 4.4: DDI for Psychotropic medications found in the unlabeled drug-pair dataset
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and n = 41, such that xi = {xi1, xi2, . . . , xi41} represents the 41 randomly chosen values

for xi, then the F-ratio can be obtained by:

Step 1: Calculating the mean within each group:

Yi =
1

n

n∑
j=1

Yij , i = 1, 2, .., g (4.1)

where g is the total number of groups

Step 2: Calculating the overall mean

Y =

∑
iYi
g

, g = 3 (4.2)

Step 3: Calculate ”between-group” sum of squares:

SB = n(Y 1 − Y )2 + n(Y 2 − Y )2 + n(Y 3 − Y )2 (4.3)

The between-group degrees of freedom is one less than the number of groups

fb = a− 1

so the between-group mean square value is

MSB =
SB
fb

(4.4)

Step 4: Calculate the within-group sum of squares

SW =

g∑
i=1

n∑
j=1

(xij − Y i)
2 (4.5)

The within-group degrees of freedom is

fw = g(n− 1) (4.6)
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Thus, the within-group mean square value is

MSW =
SW
fW

(4.7)

Step 5: The F-ratio is

F =
MSB
MSW

(4.8)

Applying Equation 4.1 on the group elements tabulated in Figure 4.5, we obtain a

mean of 0.03, 0.04 and 0.14 for λk, λp and λu respectively, giving an overall mean of 0.07

applying Equation 4.2. Computing the between-group sum of squares gives 0.30, and with

a between-group degrees of freedom of 2, MSB gives 0.15. Following Step 4, we computed

a within-group sum of squares of 2.66, and with fb = 120, MSW gave 0.02, producing a

final F-ratio of 7.5.

Since for each attribute, values were selected at random, this process was repeated 100

times and the average was selected as the final F-ratio. Data samples from this process

have been listed in Table 4.6 to highlight the difference in the distribution of K and P from

that of U. The F-ratio for the top 15 attributes selected during the feature subset selection

process is presented in 4.1, showing the average F-ratio for Protein-Protein Interactions as

a feature as 7.5. The critical value is the number that the test statistic must exceed to

reject the null hypothesis. In this case, Fcrit(2, 120) = 3.07 at a significance level of 0.05.

Since F = 7.5 > 3.07, the results are statistically significant and therefore we can safely

reject the null hypothesis. The p-value for this test is 0.000180. From the table it can be

noted that Human Protein Targets serve as the best determinant for distinguishing known

and potential drug-drug interactions from unknown ones. To demonstrate this, we plot the

distribution of binary protein-protein interactions (pp b - attribute index 20) against the

distribution of structural formula similarity (sfmsim - attribute index 22), and present the

results in Figure 4.6.
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Figure 4.5: F-Distribution showing critical value F(2,120) = 3.07, which is the starting point
of the blue shaded region indicating the area within which the null hypothesis is rejected.

Table 4.5: Forty-one randomly selected attribute-values for attribute ppi b (index 20). K,
P, U represent known DDIs, predicted DDIs and unknown DDIs respectively. Columns
containing no information (0.0) across all three rows have been compressed
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Table 4.6: Twenty-one samples of data obtained from the process described in Table 4.5.
The mean, standard deviation (std), minimum and maximum values for K, P and U has
been computed for each iteration. From the table, it can be observed that the P and K
have similar distributions, both of which are different from U.
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Figure 4.6: Distribution of Known, Predicted and Unlabeled instances based on mean val-
ues of attributes ppi b (binary protein-protein interaction) and sfmsim (structural formula
similarity) for 41 randomly selected drug-pairs, and repeated 100 times. Therefore each
class (i.e. K, P and U) plotted consists of exactly 100 points, some of which overlap each
other. The plot clearly shows a separation of clusters of K and P from U.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

By combining drug attributes in a pharmacological space and employing Machine Learning

techniques to identify unique patterns in this space we have been able to establish a novel

framework for automating the prediction of potential drug-drug interactions for clinical

drugs in a matter of minutes, completely bypassing traditional in vivo and/or in vitro

methods which usually take a significant amount of time to complete.

In this work, we have presented a novel approach and framework for automating the de-

tection of drug-drug interactions among clinically approved drugs. This was accomplished

by exploiting a number of drug attributes and their similarities, combining them in a phar-

macological space and employing machine learning techniques to identify patterns of interest

within this multidimensional space.

Furthermore, in this framework, we have introduced and addressed a very critical, yet

interesting problem of inverse feature vectors when constructing datasets based on drug-

pairs. A problem which becomes very sophisticated due to the generation of highly complex

local patterns as more drugs are combined to create a single feature vector. We have

provided a modified version of the PU-learning algorithm which addresses the case for

two drugs by choosing the class label assigned to a feature vector, or its inverse, with the
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maximum probability of membership.

5.2 Future Work

The feature space could be expanded to include a number of other drug attributes such as

polarity and blackbox information.

Our initial intention was to use the Smith-Waterman algorithm for protein sequence

alignment but due to its demanding nature in terms of time and memory resources especially

when processing millions of entries we had to consider other alternatives, hence the use of

BLAST 2 in this work. Although BLAST is not guaranteed to find optimal alignments,

it is much more practical and efficient. Another well known algorithm is FastA (Fast

Alignment) [49], an extension of FastP (for protein alignment) and FastN (for nucleotide)

alignment.

Furthermore, implementation of an automatic validation mechanism for false positive

DDIs via web content mining could prove very useful in this context. This can be achieved

by scraping social media including micro-blogging sites such as Twitter, public forums such

as Momcafe, news websites and popular social networks such as Facebook. This would

warrant the identification of real world cases where people may have encountered adverse

pharmacological effects attributable to drug-drug interactions and posted their experiences

on the Internet.

Moreover, an optimal solution to the inverse feature vectors problem so that only one

feature vector is required for any given drug-pair will cut the computation time in half, all

things being equal. Extending feature vectors to support more than two drugs may require

new data structures to be developed in order to support the complex vectors they produce.

Finally, automating the process of collecting drug-attribute information from the vari-

ous data sources such as FDA’s SPL database, KEGG/LIGAND database and DrugBank

in order to facilitate rapid construction of feature vectors for new drugs and render the

detection of DDI using this framework even more practical.
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5.3 Broader Application Domains

The methodology presented and employed in this research can be extended to a number of

other domains. For instance, in the case of a car manufacturing company such as Toyota,

this could provide a solution to the mechanical malfunction that led to the 2009-2011 vehicle

recalls [50]. Here, the positive set would comprise data collected from faulty vehicles while

data from all other vehicles would make up the unlabeled set. Classifiers can then be trained

to predict potentially faulty vehicles amongst the unlabeled set.

Additionally, the system could be modified to identify websites of common interest.

In the simplest sense, this can be accomplished by generating a list of websites, pairing

the entries, and then creating feature vectors based on certain attributes pertaining to

each website’s content such as word-count, presence of certain HTML tags and Cascading

Style Sheet (CSS) properties, number of hyperlinks, number and type of multimedia files

embedded and so on. By identifying the positive set, that is, website-pairs that are known

to be similar such as Cable News Network (CNN) and FOX News (both broadcast breaking

news and other information regarding business, weather, entertainment, etc), classifiers

can be trained to expand this positive set by identifying potential website-pairs among the

unlabeled set that may share some degree of similarity.
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Appendix A

Tools

A.1 Python

All pre- and post-processing was accomplished with Python 2.6.1 (r261:67515, Jun 24 2010,

21:47:49).

A.2 GNUPLOT

GNUPLOT is the primary graphing utility used in this project. Specifically GNUPLOT

Version 4.4 patchlevel 3, which was last modified on March 2011.

A.3 Cytoscape

All network visualizations accompanying this project were designed in Cytoscape 2.8.1 -

an open source software platform for visualizing complex networks and integrating these

networks with any type of attribute data [51].
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