
Graduate Theses, Dissertations, and Problem Reports 

2010 

Seasonal trends in separability of leaf reflectance spectra for Seasonal trends in separability of leaf reflectance spectra for 

Ailanthus altissima and four other tree species Ailanthus altissima and four other tree species 

Aaron Burkholder 
West Virginia University 

Follow this and additional works at: https://researchrepository.wvu.edu/etd 

Recommended Citation Recommended Citation 
Burkholder, Aaron, "Seasonal trends in separability of leaf reflectance spectra for Ailanthus altissima and 
four other tree species" (2010). Graduate Theses, Dissertations, and Problem Reports. 701. 
https://researchrepository.wvu.edu/etd/701 

This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research 
Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is 
permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain 
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license 
in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses, 
Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. 
For more information, please contact researchrepository@mail.wvu.edu. 

https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F701&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd/701?utm_source=researchrepository.wvu.edu%2Fetd%2F701&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu


 

 

Seasonal trends in separability of leaf reflectance spectra for 

Ailanthus altissima and four other tree species 

 

Aaron Burkholder 

 

Thesis submitted to the Eberly College of Arts and Sciences 

at West Virginia University 

in partial fulfillment of the requirements 

for the degree of 

Master of Arts 

in 

Geography 

Approved by 

 

Timothy A. Warner, Ph.D., Chair 

Rick Landenberger, Ph.D. 

Brenden McNeil, Ph.D. 

James B. McGraw, Ph.D. 

Mark Culp, Ph.D. 

Department of Geology and Geography 

Morgantown, West Virginia 

2010 

 

Keywords:  Remote sensing, Ailanthus altissima, invasive species, leaf spectral 

reflectance, least angle regression, random forests 

 

Copyright 2010 Aaron Burkholder 
 



 

 

 

 

Abstract 

Seasonal trends in separability of leaf reflectance spectra for 

Ailanthus altissima and four other tree species 

Aaron Burkholder 

This project investigated the spectral separability of the invasive species Ailanthus altissima, 

commonly called tree of heaven, and four other native species.  Leaves were collected from 

Ailanthus and four native tree species from May 13 through August 24, 2008, and spectral 

reflectance factor measurements were gathered for each tree using an ASD (Boulder, Colorado) 

FieldSpec Pro full-range spectroradiometer.  The original data covered the range from 350-2500 

nm, with one reflectance measurement collected per one nm wavelength. To reduce 

dimensionality, the measurements were resampled to the actual resolution of the spectrometer’s 

sensors, and regions of atmospheric absorption were removed.  Continuum removal was 

performed on the reflectance data, resulting in a second dataset.  For both the reflectance and 

continuum removed datasets, least angle regression (LARS) and random forest classification 

were used to identify a single set of optimal wavelengths across all sampled dates, a set of 

optimal wavelengths for each date, and the dates for which Ailanthus is most separable from 

other species.  It was found that classification accuracy varies both with dates and bands used.  

Contrary to expectations that early spring would provide the best separability, the lowest 

classification error was observed on July 22 for the reflectance data, and on May 13, July 11 and 

August 1 for the continuum removed data.  This suggests that July and August are also 

potentially good months for species differentiation. Applying continuum removal in many cases 

reduced classification error, although not consistently.  Band selection seems to be more 

important for reflectance data in that it results in greater improvement in classification accuracy, 

and LARS appears to be an effective band selection tool.  The optimal spectral bands were 

selected from across the spectrum, often with bands from the blue (401-431 nm), NIR (1115 nm) 

and SWIR (1985-1995 nm), suggesting that hyperspectral sensors with broad wavelength 

sensitivity are important for mapping and identification of Ailanthus. 
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1.  INTRODUCTION 
 Over time, humans have spread to the far reaches of the globe, taking other species with 

them in the process.  The extent to which biological invasions have taken place in recent history 

is thought to be contributing significantly to the breakdown of important natural barriers that 

sustain biodiversity around the world (Pimentel et al. 2005, Vitousek et al. 1997).  The 

movement of humans between continents has been such a substantial factor in the introduction of 

species to new habitats that it can be considered a noteworthy component of global change on its 

own (Vitousek 1994).  In fact, more than twenty percent of continental species and more than 

fifty percent of island species can be considered invasive (Asner et al. 2008b, Vitousek et al. 

1997).  The eastern deciduous forest of North America has been subject to invasions by non-

native insects and pathogens that have caused the near-disappearance of the American chestnut 

and the American elm in the eastern forest and affected other species such as the American 

beech, eastern hemlock, flowering dogwood, and sugar maple (Niemelä & Mattson 1996, 

Vitousek 1994).  Research suggests that when allowed to spread unchecked, invasive species can 

even play a role in the extinction of native species (Vitousek et al. 1997), although this 

conclusion has been recently brought into question (Sax & Gaines 2008).   

 Remote sensing is often used to map and monitor the spread of invasive species, and it 

can potentially be of assistance in management (Asner et al. 2008b, Landenberger et al. 2009, 

Lawrence et al. 2006).  Mapping the location of different species reliably using satellite-based 

and aerial imagery is challenging, and this study aims to establish a foundation for remotely 

identifying Ailanthus altissima, an invasive tree often seen in the eastern deciduous forest, by 

finding the optimal spectral wavelengths and time of year to differentiate Ailanthus from other 

tree species.    

 

1.1  Ailanthus altissima 
The invasive tree species Ailanthus altissima, or tree of heaven, was purposely introduced 

to the United States from its native China in the late eighteenth century, and in the years since it 

has become a notorious invader in the North American eastern deciduous forest (Kota et al. 

2007).  The tree was originally planted in urban areas of the United States because of traits that 
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allow it to survive under stressful urban growing conditions, such as its tolerance for infertile, 

compacted soils and drought, its capability to grow rapidly and mature early, and its resistance to 

insect predation (Kowarik & Säumel 2007, Landenberger et al. 2009).  In addition to the 

properties that allow it to survive in urban areas Ailanthus has other traits associated with highly 

invasive plant species that allow it to move rapidly into suburban and rural environments, 

especially when disturbance is present  (Call & Nilsen 2005).  Ailanthus is dioecious, and 

females generate large numbers of seeds:  as many as three hundred thousand per tree that are 

dispersed by wind from late summer to spring (Kowarik & Säumel 2007, Landenberger et al. 

2007).  This prolonged dispersal period and large number of seeds put Ailanthus at an advantage 

by increasing the probability that many seeds will land on suitable sites and successfully 

germinate.  The tree’s seeds have also been found to be capable of germinating in a wide variety 

of habitats, but especially in disturbed areas such as highway or power line corridors and sites 

where timber has been harvested (Kota et al. 2007, Kowarik & Säumel 2007).  In addition to the 

large number of seeds each female tree produces Ailanthus is able to reproduce prolifically by 

sprouting from roots and stumps (Kowarik 1995, Kowarik & Säumel 2007), and when combined 

with the allelopathic compounds found in its leaves and roots (Heisey 1990, Kowarik & Säumel 

2007), this allows the tree to rapidly dominate an area, persist and exclude native vegetation.  

Ailanthus is also tolerant of air pollutants such as ozone, sulfur dioxide and dust, and this 

characteristic makes the tree a very strong competitor along highway edges, in urban and 

suburban areas with high traffic and other areas with significant local air pollution (Kowarik & 

Säumel 2007, Landenberger et al. 2007, Rentch et al. 2005). 

Ailanthus was largely confined to urban areas and localized disturbed sites through the 

nineteenth and twentieth centuries, but it is currently spreading from metropolitan areas into 

suburban and rural environments (Kowarik & Säumel 2007, Landenberger et al. 2009).  In the 

mid-Atlantic region Ailanthus can be found throughout the interstate highway system, and it is 

quickly becoming a harmful invasive pest in a variety of ecosystem types.  Since the tree is no 

longer confined solely to urban areas, roadsides and habitat edges, it is becoming established in 

places like clear-cut and partially cut forest stands, mature second-growth forest and other 

relatively intact forest communities in rural areas (Kowarik & Säumel 2007, Landenberger et al. 

2007).  Ailanthus has been found to be a very aggressive competitor with native species, 

especially in disturbed areas, and it is increasing in local abundance and geographic extent as it 
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continues to disperse along highway and power line corridors and into adjacent habitats.  In the 

near future Ailanthus is expected to become even more common in the mid-Atlantic region as 

development continues and a predicted increase in timber harvesting creates large openings that 

will almost surely provide ample habitat for Ailanthus to invade and colonize (Landenberger et 

al. 2009, Kota et al. 2007). 

 

1.2  Spectral Reflectance Measurements 
 Radiometry can be defined as the measurement of optical radiation in the range from 0.1 

to 1000 micrometers on the electromagnetic spectrum (Schaepman-Strub et al. 2009).  In this 

study we focus on the visible (400-700 nm), the near infrared (NIR; 700-1400 nm) and the 

shortwave infrared (SWIR; 1400-2500 nm).  Radiometry can be performed both in the field and 

in a laboratory environment.  There are certainly benefits to either approach, but making spectral 

reflectance measurements in the laboratory environment allows control over illumination and 

minimizes problems associated with atmospheric transmission and weather (Curtiss & Goetz 

1994).  Studies of the spectral properties of vegetation have shown that although nearly all 

healthy leaves have a generally similar spectral response, differences in pigments such as 

chlorophyll, as well as differences in leaf structure, water content and biochemical composition 

can yield spectral signatures that can be effective for discriminating among species (Asner et al. 

2008a).  On the other hand, it has also been suggested that there is so much variation in spectral 

reflectance among individuals of the same species that discriminating among different species 

may not be possible in all situations (Price 1994).   

 A wide variety of studies have used laboratory and occasionally field spectra to 

discriminate between species, including grassland species (Schmidt & Skidmore 2001), wetland 

species (Schmidt & Skidmore 2003), forest species (van Aardt & Wynne 2001, Pinard & Bannari 

2003), plants in an arid region of Australia (Lewis 2002) and for highly targeted surveys, such as 

differentiating marijuana plants from other species (Daughtry & Walthall 1998). 

Unlike laboratory spectra, which are normally collected as reflectance, aerial imagery is 

usually calibrated to radiance.  Converting radiance imagery to reflectance can be a challenge, 

and as an alternative continuum removal (Clark & Roush 1984) is sometimes applied.  

Continuum removal is a technique for normalizing data in which a convex hull is fitted to the 

reflectance curve.  The convex hull can be imagined as an elastic band stretched over the spectral 
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reflectance curve, touching at several points and never crossing the spectral curve.  Reflectance 

is then divided by the convex hull, resulting in a curve with values falling between zero and one, 

emphasizing absorption features and reducing differences between spectral curves due to 

brightness or illumination (Schmidt & Skidmore 2001).  This technique is often employed in 

geological remote sensing studies and has been used to varying degrees of success in 

differentiating vegetation (Clark & Roush 1984, Psomas et al. 2005, Schmidt & Skidmore 2001, 

2003).  The benefit of using continuum removal is that it effectively suppresses illumination 

differences, thus reducing variability within a scene and facilitating comparison with spectral 

library data in reflectance format that have also been transformed with continuum removal.  A 

potential disadvantage is that continuum removal eliminates albedo information that can be 

important in differentiating spectral signatures. (Chen et al. 2010). 

Another important preprocessing step is the decision of whether to apply feature selection 

to reduce the number of variables used in the classification (Warner 2010).  The observation that 

using fewer bands often results in decreased classification error is known as the Hughes 

Phenomenon (Hughes 1968). Although it might be supposed that additional bands would provide 

more information, increased dimensionality often reduces classifier performance (Warner & 

Nerry 2009).  Spectral reflectance measurements of vegetation are very often highly correlated 

and datasets usually must be simplified prior to performing statistical analyses, for example 

through stepwise discriminant analysis (SDA) (Palacios-Orueta & Ustin 1996, van Aardt & 

Wynne 2001), or principal components analysis (PCA) either on its own or in combination with 

SDA (Lewis 2002, Palacios-Orueta & Ustin 1996).  A recently developed technique is least 

angle regression (LARS) (Efron et al. 2004), which to our knowledge has not yet been applied to 

remotely sensed data.  LARS is a linear model that identifies a subset of the input variables 

according to their importance in the regression.  It is a type of forward selection method that is 

computationally efficient, intuitive and elegant, and it has been reported as handling high 

dimensionality well (Efron et al. 2004).  Another advantage LARS has over techniques like PCA 

and SDA is that while the latter are based on Euclidean distances, LARS draws upon the 

correlation of the input variables to the response variables.  Potential disadvantages of LARS 

include susceptibility to high correlation and especially the extreme case of co-linearity (Efron et 

al. 2004, Hastie & Efron 2007).  This issue is a possible concern for remote sensing data, which 

tend to be highly correlated. 
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 Statistical methods used to evaluate spectral separability vary considerably, but there are 

several common approaches for species differentiation.  Original reflectance data and continuum 

removed reflectance data are often subjected to the Mann-Whitney U-test, which is a non-

parametric pairwise comparison (Psomas et al. 2005, Schmidt & Skidmore 2001, 2003).  Other 

studies use the D discrimination metric, or the average root-mean-square difference over the 

spectral range being observed, and the θ discrimination metric, which examines the difference in 

shape between spectra according to the angle between two vectors (Cochrane 2000, Price 1994), 

and still others use ordinary discriminant analysis (Lewis 2002, Palacios-Orueta & Ustin 1996, 

van Aardt & Wynne 2001).   

A relatively new classification technique that has been used recently with some success 

in remote sensing is the random forest algorithm (Breiman 2001, Bunn et al. 2005, Ghimire et al. 

2010, Lawrence et al. 2006, Pal 2005).  It is a bootstrap aggregation procedure where multiple 

classification trees are grown, with each based on a different random subset of training data 

(Breiman 2001, Lawrence et al. 2006, Liaw & Wiener 2002).  A classification tree attempts to 

classify the dataset by recursively splitting it into groups, with each split termed a node.  Nodes 

are split based on subsets of the input data that are randomly chosen at each node.  In the random 

forest algorithm many of these trees are grown, and the algorithm chooses the best classification 

from all of the classification trees (Lawrence et al. 2006, Liaw & Wiener 2002).  Advantages of 

this approach are that it performs well compared to techniques like discriminant analysis, it 

works with non-parametric data and has been described as robust (Breiman 2001, Lawrence et al. 

2006, Liaw & Wiener 2002).   

  

1.3  Research Objectives 
Designing a vegetation remote sensing project involves many challenges, particularly 

those related to image aquisition (Warner 2010).  There are questions of the optimal dates of 

image acquisition, the wavelengths of the imagery that will be collected and the analysis 

techniques that will be applied.  For example, vegetation changes through the growing season 

and these changes can help to differentiate species at specific times of year.  For image 

acquisition there are choices involving multispectral versus hyperspectral data, the choice of the 

specific bands to acquire for programmable sensors (such as the Digital Compact Airborne 

Spectrographic Images sensor (CASI), ITRES, Calgary, Canada) and whether band selection 
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leads to more efficient processing.  There are also choices involved in analysis, including how to 

normalize for atmospheric effects.  

To address these challenges and lay a foundation for subsequent analysis focused on 

mapping Ailanthus altissima from remotely sensed imagery, the overarching aim of this project 

was to characterize seasonal trends in separability of leaf reflectance spectra for Ailanthus and 

four other tree species, with the specific goal of finding the best wavelengths for differentiating 

Ailanthus individuals from other species during the spring and summer.  Ailanthus is often 

distinctive to the human eye in the early spring when the leaves have a red hue due to the 

increased expression of anthocyanins relative to chlorophyll (Gitelson et al. 2001), and although 

autumn is a distinctive time of year for many Eastern deciduous forest species, Ailanthus leaves 

tend to have a nondescript brown color at that time.  Because of this it was hypothesized that 

Ailanthus would be most separable in the spring with a decline in separability through the 

growing season.  The project also sought to address issues relating to preprocessing, particularly 

the effects of continuum removal and the benefits of band selection.  The following specific 

questions were posed: 

1.  Is there a single, consistent set of wavelengths that is best for differentiating Ailanthus 

from other species across all of the sampled dates?   

 2.  What are the optimal wavelengths for differentiating Ailanthus individuals from other 

species for each sampled date? 

3.  What is the date (or dates) at which Ailanthus is most spectrally separable from the 

surrounding forest community when using i) all available wavelengths, ii) using the optimal 

wavelengths for any date, and iii) using the optimal wavelengths across all dates? 

4.   How different are the results for the previous three questions for the original 

reflectance data compared to the continuum removed data? 

5.   What difference, if any, does band selection make as a preprocessing step prior to 

application of random forest classification? 
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2.  METHODS 

2.1  Study area 
 The city of Morgantown, in Monongalia County in north-central West Virginia, provides 

a useful area for observing the spread of Ailanthus, because the area contains a variety of land 

uses and habitat types where the tree has either been found or could potentially spread.  The 

region is experiencing extensive changes in land use associated with growth such as sprawling 

development at the city’s edges and the conversion of farmland and forested areas both within 

the city and in its suburban areas to make space for housing and commercial activities.  These 

activities combine with timber harvesting and other types of disturbance in the region to 

contribute to increasingly fragmented natural habitats that have been shown to be receptive to 

invasion by non-native species.  Ailanthus trees have been found in a variety of habitats in the 

area, from developed urban environments with poor soils and extremes of light and temperature 

to highly disturbed forest stands and edges of intact forest communities (Landenberger et al. 

2009, Kota et al. 2007).   

 

2.2  Field data collection  
Seventeen trees along a section of public rail-trail in downtown Morgantown were 

identified and tagged for the purpose of collecting and spectrally analyzing leaves throughout the 

sampling period.  This sampling occurred on at least a biweekly basis throughout the period from 

mid-May through late August of 2008, resulting in eleven total collection dates.  Leaf samples 

were collected from Ailanthus and four other tree species:  staghorn sumac (Rhus typhina), silver 

maple (Acer saccharinum), black locust (Robinia pseudoacacia), and box elder (Acer negundo).  

The four native species were chosen because they are typically found in association with 

Ailanthus in disturbed habitats in the study area, and therefore typically comprise the background 

against which we wish to differentiate Ailanthus.   Five leaves per tree from three individuals of 

each of the four non-Ailanthus species, and five leaves per tree from each of five individual 

Ailanthus trees were collected at random from sunlit portions of each tree’s canopy.  For each 

tree random sampling was achieved by generating five random numbers between 0 and 180° that 

were used as compass bearings from each tree’s trunk.  The 180° range was used because the 

ground sloped steeply away from the rail-trail and only half of the canopy of each tree was easily 

accessible.  The leaves were clipped from the tree using a pole pruner with a 5.5 m extension.  
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Samples from each tree were kept separate and viable using plastic bags containing damp towels 

until the samples could be analyzed within a few hours.  Each tree and its tag were photographed 

in the field on each collection date for documentation. 

 

2.3  Spectral measurement and preprocessing 
Upon returning to the laboratory the samples from each tree were photographed using a 

Sigma SD9 digital SLR, and then spectral reflectance factor measurements were made for each 

leaf collected (total of 85 leaves), resulting in five complete spectra for each of the seventeen 

trees.  The spectral measurements were made with an ASD (Boulder, Colorado) FieldSpec Pro 

full-range (350 – 2500 nm) spectroradiometer with a spectral resolution of 3 nm in the 350 – 

1000 nm range and 10 nm in the 1000 – 2500 nm range and a spectral sampling interval of 1.4 

nm in the 350 – 1000 nm range and 2 nm in the 1000 – 2500 nm range. These data are then 

interpolated to a one nanometer sampling interval across the spectrum.  The spectra were 

collected using an ASD contact and plant probe with a 10 mm spot size and an attached leaf clip 

assembly (ASD 1997).  A “white reference” reflectance measurement was acquired using the 

Gortex white background standard mounted on the leaf clip assembly of the plant probe, and 25 

spectra were averaged for each recorded leaf spectrum (ASD 1997). 

The raw spectral data exhibited a step offset feature centered near 986 nm, apparently due 

to calibration differences between the NIR and the first of the SWIR detectors in the 

spectrometer.   This was suppressed using the ASD ViewSpec Parabolic Correction program 

(ASD 1997), and the bands between 985 and 987 nm were removed.  As the spectral data were 

collected in the laboratory, problems with atmospheric absorption were not evident, but it was 

decided to remove wavelengths where atmospheric transmission is sufficiently low to limit aerial 

and satellite applications.  The USGS Spectral Viewer website (USGS 2008) was used to 

identify the wavelengths of major atmospheric absorption features where atmospheric 

transmittance is less than 40%, and as a result the following wavelength ranges were removed:  

less than 400 nm, 1121-1160 nm, 1341-1470 nm, 1781-1980 nm, and greater than 2400 nm. 

In order to work at the native resolution of the spectrometer and reduce dimensionality of 

the dataset the data were sub-sampled to the original resolution by averaging over a 3 nm range 

from 400 to 1000 nm and over a 10 nm range from 1001 to 2400 nm.  This resulted in a total of 

302 bands that were used in all subsequent analysis. 
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In order to produce the continuum removed dataset the ENVI continuum removal 

function was applied to the raw reflectance data (ITT Visual Information Solutions 2007).   

 

2.4  Statistical Analysis 

2.4.1  Identification of a single, optimum set of wavelengths across all sampled dates 

For the analysis of a single, optimum set of wavelengths for the combined dataset across 

all dates and all statistical analyses to follow two specific packages (LARS and randomForest) 

within the R environment were used (R Development Core Team 2008).  In order to identify a 

single optimal set of wavelengths from the entire multitemporal dataset the LARS algorithm 

(Hastie & Efron 2007) was applied to the reflectance data to generate a ranked list of the ten best 

bands, which were selected based on their ability to separate Ailanthus from the four other 

species.  The choice of ten for the number of bands was chosen arbitrarily, but is partly based on 

previous hyperspectral band selection work which suggested that ten bands could represent the 

major spectral features for vegetation communities (Warner et al. 1999).  This analysis was 

repeated for the continuum removed dataset. 

 

2.4.2  Identification of optimal wavelengths for each date 

In order to identify a subset of ten bands for each date individually, the LARS algorithm 

was applied separately to the reflectance data for each date.  This resulted in 11 sets of ten 

ranked bands – one for each date.  This analysis was repeated for the continuum removed 

dataset. 

 

2.4.3  Identification of dates for which Ailanthus is most separable 

To address the question of the date for which Ailanthus is spectrally most separable, 

separability was defined according to the performance of the random forest classification 

algorithm in differentiating Ailanthus from the other four species.  Three approaches were used 

in answering this question:  making all bands available to the random forest classification 

algorithm (Liaw & Wiener 2002), using the ten best bands across all dates, and using the ten best 

bands selected for each date individually.  Beginning with the classification using all available 

bands, the number of classification trees to be grown was set to 500 and the number of variables 
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used at each node was left at the default value, which is the floor of the square root of the total 

number of the available spectral variables (302 total spectral variables, 17 used at each node).  A 

bootstrap procedure was used to evaluate performance.  500 replications were run using thirteen 

Ailanthus spectra and thirty spectra from the other four species for training, leaving forty-two 

spectra for evaluation.  This resulted in a classification error value for each of the 500 

replications, and from these 500 error values the average error value for each date was 

calculated.  To quantify the relative accuracy of classification using the ten best bands across all 

dates only the ten bands selected by the LARS algorithm were made available to the random 

forest classifier, and to quantify the accuracy of using the ten best bands for each date only the 

ten bands selected by the LARS algorithm for each date were made available to the classifier.  

The analysis was repeated for the continuum removed dataset. 

 

3.  RESULTS AND DISCUSSION 
 Before evaluating the statistical results a brief qualitative exploration of the variability of 

the spectra in both the reflectance and continuum removed datasets is presented.  Figure 1 shows 

the variability present in the mean Ailanthus spectra across the eleven collection dates.  In figure 

1a the green-to-yellow (530-630 nm) region and the NIR plateau exhibit relatively high 

variability across the growing season.  In contrast, the SWIR shows relatively limited variability 

for the majority of the growing season, but shows a large change for the last two dates (August 

12 and 24).   Continuum removal reduces variability in the NIR as well as in the SWIR around 

2200 nm, but it increases the variability in other areas, especially in the green around 500 nm 

(Figure 1b).   

 Variability of Ailanthus spectra is also present within each date.  Figure 2 shows 

variability within two selected dates (May 29 and July 22).  It is apparent from the reflectance 

dataset (Figure 2a) that the relative amount of variability changes both across the spectrum and 

between dates, and in some places variability between dates is larger than variability within one 

date.  Continuum removal (Figure 2b) selectively suppresses both within and between date 

variability at certain wavelengths, especially in the NIR and around 2200 nm.   

 Figure 3 compares spectra of the five species for the same two dates shown in Figure 2.  

The most important feature of this figure is that it shows that the relative separability of 
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Ailanthus from the other four species changes over time.  Continuum removal (Figures 3b and 

3d) appears to enhance variability in the visible ranges and reduce differences between species in 

the NIR and in the SWIR around 2200 nm. 

 In the following sections quantitative statistical results are presented. 

 

3.1  Single, optimum set of wavelengths across all sampled dates 
 Table 1 lists the ten best bands across all sampling dates for both reflectance data and 

continuum removed data, and Figure 4 displays the same information graphically.  In Figure 4 

and other similar graphs to follow the height of each bar represents its rank, and there are ten 

bars per graph, although some graphs appear to have fewer because the bars are very close 

together in some cases.  The ranks of individual wavelengths are displayed against a reflectance 

curve or continuum removed curve to show their locations in the spectrum.  For both graphs in 

Figure 4 wavelengths are well-distributed across the spectrum with bands in the visible, near 

infrared and shortwave infrared.  In Figure 4a (reflectance) there are fewer bands in the visible 

range and no red wavelengths, but there are two wavelengths at the red edge of the NIR plateau.  

In Figure 4b (continuum removed reflectance) the visible range is well represented, with five 

total bands and two in the red.  In both figures SWIR wavelengths are highly ranked, suggesting 

that multispectral sensors that do not include these wavelengths are potentially missing important 

information. 

 

3.2  Optimal wavelengths for each date 
Tables 2 and 3 list the ten best bands for each date for both reflectance data and 

continuum removed data, respectively.  Figure 5 reproduces this information graphically.  The 

most striking aspect of the reflectance data (Figure 5a, Table 2) is that the location of the best 

bands changes over the growing season.  Wavelengths are generally well-distributed throughout 

the spectrum, but the NIR region becomes less important over the last three dates (August 1, 12 

and 24).  It is notable that a band at 1985 nm is present for all dates, and in all but June 8 and 

August 12, 1995 nm is also present.  Also, a blue wavelength band from the region 401-431 nm 

is present in all dates except the first (May 13), and bands from the red edge of the NIR plateau 

are selected for all dates except August 24.   
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For the continuum removed data (figure 5b) the near infrared region is generally less 

important on the first two dates (May 13 and 20) and becomes more important over the growing 

season, in contrast to the pattern seen in the reflectance data, where near infrared is less 

important in late summer.  In addition, bands from the red edge are only selected for six of the 

eleven dates.  The wavelength region 1985-2065 nm is consistently important and highly ranked 

in the continuum removed dataset.  There is at least one, and often many, bands from this region 

on each date.  For example, there are five bands present from this region on May 13 and four on 

May 20.  Also, more than half of the dates do not have any wavelengths from the lower range of 

the SWIR (1400-1900 nm). 

 

3.3  Dates for which Ailanthus is most separable 

3.3.1  All available wavelengths 

 Figure 6 shows the mean classification error for the 500 random forest classifications as 

well as the standard error of the mean at a 95% confidence interval for each date for the 

reflectance (Figure 6a) and continuum removal (Figure 6b) data.  Three curves are shown on 

each graph representing classification error when the random forest algorithm uses all available 

wavelengths, the best wavelengths for each date, and the best wavelengths across all dates, 

respectively.  Starting with the classification error when all wavelengths are available it is 

apparent in the reflectance data (Figure 6a) that the overall pattern of the change in accuracy over 

time is complex.  It was anticipated that the lowest classification error would be found in the 

spring, when Ailanthus leaves tend to have a distinctive red color, but instead it was found that 

error was generally higher in spring and lower in late summer, with the most separable date 

falling on July 22.  The least separable dates were May 29 and June 8, and their classification 

error is significantly higher than all dates in July and August. 

 In the continuum removed data seen in Figure 6b the lowest mean classification error is 

found on the first date (May 13), as expected, but it is not significantly different from the error 

on July 22.  The highest error values are seen on June 18, August 12 and August 24.   
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3.3.2  Best wavelengths for each date 

 When the best bands are selected for each date independently July 22 is the date when 

Ailanthus reflectance is most separable from other species, and in general, mid-to-late summer is 

more separable than early in the growing season, though on August 1 and 24 separability is not 

significantly better than when all bands are made available to the classifier. (Figure 6a). 

 For the continuum removed data (Figure 6b) the dates with the lowest mean classification 

errors are May 13, May 20 and August 1.  May 29, mid-to-late June and mid-to-late August have 

significantly higher error values.   

  

3.3.3  Best wavelengths across all dates  

 When the ten best bands are selected across all dates Ailanthus reflectance is most 

separable from the four other species on July 22, and in general, mid-to-late summer is more 

separable than early in the growing season (Figure 6a). 

 The dates in Figure 6b (continuum removed data) with the lowest mean classification 

errors are May 13, July 11 and August 1.  Late May, early June and mid-to-late August have 

significantly higher error values.   

 

3.4  Effects of continuum removal 
 As previously discussed, the application of continuum removal resulted in the selection 

of a different set of wavelengths than the bands selected for the original reflectance data.  This is 

true for a single set of bands across all dates (Figure 4), and for bands selected for each date 

individually (Figure 5).  This result is consistent with Psomas et al. (2005), who found that with 

continuum removal a different set of bands were selected in their multi-temporal analysis of 

grassland separability.  In this study the application of continuum removal resulted in different 

patterns of error values as well as different dates when Ailanthus is most and least separable.  

The changing importance of the NIR and SWIR between the reflectance and continuum removed 

data in Figures 2 and 3 appears to be the result continuum removal’s suppression of albedo, 

especially in the areas where the convex hull is close to or touching the spectral curve. 

Applying continuum removal in many cases reduced error, although not consistently.  

This is somewhat surprising considering the fact that applying continuum removal suppresses 

albedo information without providing any benefit due to normalizing for illumination, because 
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data were collected in reflectance format.  Schmidt and Skidmore (2003) noted mixed results 

when applying continuum removal, with improved separability in the chlorophyll absorption 

regions and generally decreased separability in the NIR and SWIR.  However, Schmidt and 

Skidmore (2001), who found an increased number of species were statistically separable after 

applying continuum removal, suggested that the benefit of continuum removal is that it reduced 

the high within species variance in the NIR plateau.  Psomas et al. (2005) also found a general 

trend towards increased accuracy after applying continuum removal.  The improved results 

obtained through the use of continuum removal are encouraging because they imply that 

continuum removal is a viable alternative to more complex methods of converting aerial imagery 

radiance data to reflectance.   

 

3.5  Effects of band selection 
 Band selection has a notable effect in reducing classification error for the reflectance 

data, in that for every date the mean classification error is significantly lower for the ten best 

bands selected across all dates compared to making all bands available to the random forest 

algorithm.  When all bands are made available to the random forest classifier the algorithm 

performs a type of band selection as part of the analysis.  Therefore, it can be interpreted that 

band selection using LARS is preferable to the band selection inherent within the random forest 

algorithm for these data.  In contrast to the results for the reflectance data band selection has little 

effect for the first five dates for the continuum removed dataset.  However, from June 30 onward 

the ten best bands selected for each date resulted in significantly lower error with the exception 

of July 22, when the mean classification error is significantly higher.  Since one would expect 

that bands selected for each date individually would have lower classification error than a 

uniform set of bands selected across all dates, it is surprising that for the reflectance data the 

lowest classification error in most cases was observed when bands were selected across all 

sampling dates (Figure 6a), although this difference is only statistically significant on June 8, 

August 1 and August 24. In the continuum removed data selecting bands by date is generally 

more accurate than selecting a single set of bands across all dates, but this difference is only 

statistically significant in late August.  In summary it appears that LARS is an effective band 

selection technique, particularly for reflectance data.   
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3.6  General discussion 
 For both reflectance and continuum removal datasets the single set of optimal bands 

selected from the across the growing season (figure 4) included bands selected from each of  the 

major regions of the spectrum that are associated with major structural and chemical properties 

of plants.  Specifically, the selected bands included the visible range, which is dominated by leaf 

pigments and especially chlorophyll; the NIR, which is affected by leaf structure; and the SWIR, 

where the overall reflectance is governed by leaf water content.  In addition, the red edge of the 

NIR plateau appears to be important when a single set of bands is selected across all dates for 

both the reflectance data and the continuum removed data.  Bands chosen from the red edge are 

also generally important for the reflectance data and less important for the continuum removed 

data when a set of bands is selected for each date.  The importance of the red edge in this work is 

similar to findings by Schmidt and Skidmore (2001) and Daughtry and Walthall (1998). 

 Looking more closely at the individual bands chosen in the lists of optimal bands it seems 

likely that many of the bands identified as important were chosen because they fall within 

absorption features related to certain plant chemicals.  For example, the short wavelength end of 

the blue (401-431 nm) among the most consistently identified optimal spectral regions in this 

study, is a region of chlorophyll absorption (Tucker & Garratt 1977, Woolley 1971).  This focus 

on the blue wavelengths differs from the findings of Schmidt and Skidmore (2001), who found 

that red (550-680 nm) was most important in their reflectance data.  In fact, red is notable in this 

work for its general absence in the bands selected from the reflectance data and only occasional 

presence in the bands selected from the continuum removed dataset.  The band centered at 1115 

nm, which is near an absorption feature associated with lignin (Curran 1989), is important for 

both the reflectance and continuum removed data when choosing a set of wavelengths across the 

growing season and for each individual date.  Absorption features associated with protein and 

nitrogen are found throughout the SWIR, particularly near 1980 nm and 2060 nm (Curran 1989), 

and in this work the band centered on 1985 nm is among the most important bands for both 

datasets, whether one chooses a set of wavelengths for the entire set of sampling dates or for 

each individual date.  One or both of the bands centered on 2055 nm and 2065 nm also appear in 

five of eleven dates when a set of bands is selected for each date from the continuum removed 

data.  The wavelength bands centered at 1985 nm and 1995 nm stand out for their near-consistent 

selection and high rank in the single set of bands selected across all dates as well as the set of 
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bands selected for each date in both the reflectance and continuum removed datasets.  Both of 

these bands are associated with leaf water (Curran 1989). 

 The results of this research have implications for resources managers and scientists 

choosing sensors for image acquisition for mapping invasive species.  Judging by the broad 

distribution across the spectrum of optimal bands selected it seems important to choose a sensor 

that is sensitive across the full spectrum, from blue to the SWIR, and that is not limited to only 

the visible and NIR, for example.  When a single set of bands was selected across all sampling 

dates four bands were common for both the reflectance and continuum removed datasets as seen 

in Table 1:  413 nm, 1115 nm, 1985 nm and 1995 nm.  The same general pattern is apparent 

when choosing a set of wavelengths for each date individually for the reflectance data, with 

bands often selected from the blue (401 to 431 nm), the NIR (1115 nm) and SWIR (1985 nm and 

1995 nm).  When bands are selected from the continuum removal dataset for each date the same 

wavelengths are usually selected, with the addition of 1995 nm to 2070 nm and 2285 nm to 2350 

nm in the SWIR. 

 While there is a degree of commonality in bands selected, as discussed above, there is 

also some variation, suggesting that limiting a collection to specific wavelength bands may not 

be the best approach.  Instead, working on a scene-by-scene basis by collecting all bands using a 

sensor with broad wavelength sensitivity and then performing feature selection after data 

collection is advisable.   

Mapping individual trees generally implies that high spatial resolution imagery is needed.  

However, satellite-borne high spatial resolution sensors are generally limited to four 

multispectral bands that do not include SWIR wavelengths.  The high spatial resolution satellite-

borne sensor with the largest number of spectral bands currently is WorldView-2, which has 

eight bands that extend from 400 nm to 1040 nm (DigitalGlobe 2009).  The limited spectral 

range of high spatial resolution sensors suggests that hyperspectral aerial sensors will continue to 

be optimal for mapping and identification of invasive species.   

Finding the date (or dates) when Ailanthus is most spectrally separable from the four 

other species was one of the main objectives of this work, and it was hypothesized that Ailanthus 

would be most separable in the spring.  In contrast, the data show that late summer had the best 

separability in general with the exception of May 13 for the continuum removed data.  Thus, 

there appears to be a window in the month of July for the continuum removed dataset and in late 
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July and August for the reflectance data (when band selection is applied) where image 

acquisition would potentially be most useful.  The presence of bands selected from the edges of 

leaf water absorption features might suggest that the high separability in the summer was related 

to drought.  However, weather and climate data indicate that the study area had four to nine 

centimeters above average precipitation in the months of May, June and July 2008, although 

August precipitation was four centimeters below the average (National Climatic Data Center 

2008).  A review of the photographs of the leaves from each date showed no obvious visual 

change in the leaves during the late summer either. 

4.  CONCLUSIONS 
This study investigated the potential for discriminating the invasive species Ailanthus 

altissima from four native tree species in the spring and summer.  The accuracy of identification 

of Ailanthus was found to vary both with date and combination of bands used in the 

classification, and the optimal subset of bands tended to be drawn from each of the major regions 

of the spectrum that are important for the remote sensing of vegetation, including the visible, red 

edge, NIR and SWIR.  For certain dates some regions have reduced importance.  However, this 

pattern of reduced importance is not consistent between continuum removal and the original 

reflectance data.  For example, in the reflectance data, SWIR bands became more important in 

the reflectance data towards the end of the growing season (from August 1 onward), whereas in 

the continuum removed data the date with the most bands drawn from the SWIR is May 13. 

Our expectation was that, based on anecdotal visual observations, early spring would be 

best for separability and error would increase into the summer.   The observed pattern, however, 

is much more complex.  For reflectance data the lowest error was found on July 22, and error in 

the spring was significantly higher.  This is true both when all available bands are available to 

the classifier and when the ten best bands across all dates are used.   The continuum removed 

data behaved more as expected, with low error in the early spring but also showed comparatively 

low error in July and early August before increasing again for the last two dates (August 12 and 

24). 

Continuum removal as a data transformation has a notable impact on the bands selected.  

Continuum removal generally results in lower classification error than seen with the original 

reflectance data when all spectral bands are made available to the random forest classifier.  
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Because methods of processing image data to reflectance are often complex, continuum removal 

would appear to be acceptable as an alternative and simple preprocessing step. 

LARS was found to be an effective band selection tool, and it should be investigated 

further for remote sensing applications.  Band selection seems to be more important for 

reflectance data in that it results in greater improvement in classification accuracy, though band 

selection can also have a positive effect for continuum removed data, but this is not always the 

case.  In summary, these findings suggest that hyperspectral sensors with broad wavelength 

sensitivity are important for mapping and identification of Ailanthus. 
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6.  FIGURES 

a 

b 

 

Figure 1.  Mean Ailanthus spectra for the eleven collection dates for (a) reflectance data and (b) 

continuum removed reflectance data.  
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 a 

b 

 

Figure 2.  Variability within two dates (May 29 and July 22) for (a) reflectance data and (b) 

continuum removed reflectance data. 
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a 

b 

 

Figure 3a & b.  Spectra of the five species for May 29 for (a) reflectance data and (b) continuum 

removed data. 
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c 

d 

 

Figure 3c & d.  Spectra of the five species for July 22 for (c) reflectance data and (d) continuum 

removed data. 
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a 

b 

 

Figure 4.  The ten best bands across all sampling dates for both (a) reflectance data and (b) 

continuum removed data. 
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Figure 5a.  Ten best bands for each date for the reflectance data. 
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Figure 5b.  Ten best bands for each date for the continuum removed data. 
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b 

 

Figure 6.  Average classification error per date for the random forest algorithm for (a) reflectance 

data and (b) continuum removed data. 
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7.  TABLES 
 

Table 1.  Ten best bands across all sampling dates for both reflectance data and continuum 

removed data.  The data are ordered in increasing wavelengths to facilitate comparison between 

the two datasets.  Figure 4 displays this information graphically. 

Reflectance 
 

Continuum Removed 
 

Wavelength (nm) Rank Wavelength (nm) Rank 

413 2 413 2 

416 4 515 4 

527 10 518 10 

722 7 686 7 

725 6 689 5 

1115 1 749 8 

1275 5 1115 6 

1665 9 1315 9 

1985 3 1985 1 

1995 8 1995 3 
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Table 2.  Ten best bands for each date for the reflectance data.  The data are ordered in 

increasing wavelengths to facilitate comparison between this table and Table 3.  Figure 5a 

displays this information graphically. 

Date 

13-May 20-May 29-May 8-Jun 18-Jun 30-Jun 11-Jul 22-Jul 1-Aug 12-Aug 24-Aug 

536 413 404 410 404 401 416 416 413 410 407 

539 416 410 416 410 404 419 425 416 419 419 

719 533 725 512 428 410 422 431 419 422 1475 

722 722 728 515 719 503 725 683 425 521 1655 

1095 725 1115 734 722 722 728 722 719 524 1665 

1115 1095 1265 932 1115 725 1115 1115 1665 695 1985 

1275 1105 1275 983 1275 1115 1275 1265 1985 1655 1995 

1665 1115 1665 1115 1665 1275 1665 1275 1995 1665 2145 

1985 1985 1985 1275 1985 1985 1985 1985 2175 1985 2155 

1995 1995 1995 1985 1995 1995 1995 1995 2185 2185 2185 

 

 

Table 3.  Ten best bands for each date for the continuum removed data.  The data are ordered in 

increasing wavelengths to facilitate comparison between this table and Table 2.  Figure 5b 

displays this information graphically. 

Date 

13-May 20-May 29-May 8-Jun 18-Jun 30-Jun 11-Jul 22-Jul 1-Aug 12-Aug 24-Aug 

404 401 404 416 494 497 404 416 407 410 407 

1995 413 410 425 500 500 410 680 521 518 419 

2005 1055 413 512 740 674 413 683 524 521 920 

2035 1475 767 818 743 989 416 1115 926 740 923 

2055 2035 815 821 989 992 749 1495 1115 1095 1115 

2065 2045 818 998 1065 1985 752 2015 1985 1115 1985 

2285 2055 1495 1985 1115 2055 923 2025 2225 1275 1995 

2335 2065 1505 1995 1985 2065 1115 2285 2285 1665 2215 

2345 2225 2045 2225 2065 2295 2005 2295 2315 1675 2285 

2375 2345 2055 2295 2295 2335 2015 2335 2325 1985 2315 
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