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ABSTRACT 
 

Acoustics of vowel articulation in flute playing 

Jose Fernando Ramirez-Macias 

 

Through an experiment and series of acoustic analysis, this thesis evaluates if vowel articulation              

modifies flute sound. It is an initial investigation in a sequence of research on linguistics solving                

major questions in flute performance and teaching, and is a continuation of a previous pilot               

project called “Acoustics and Perception of Speech Sound on the Flute,” where participants             

attempt to distinguish vowel articulation of the mouth while playing the flute. In this thesis, the                

flute sound is tested acoustically to provide evidence of how vowels alter the timbre. To this end,                 

a professional flutist recorded A=440 Hz in the three octaves of the flute. The participant played                

one pitch while shaping the mouth using one monophthong. The first recording used peripheral              

vowels on the IPA, while in a second recording the flutist played vowels contrasting in jaw height                 

on the IPA, therefore producing a total of thirty samples. The collected data was evaluated using                

spectra analysis, overall loudness, and specific spectral prominences to explain in different            

dimensions how flute sound behaves in isolation.  

 

The results did not show consistent evidence proving timbre differences. The changes in spectra              

are small, not related to vowel articulation and quality, giving random results within a specified               

range. The results provide evidence that the acoustics of phonetic vowels do not correspond to               

flute sound; rather, different phenomena govern them.  
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CHAPTER I:  INTRODUCTION 

 

1.1  Introduction 

The beginning of this paper concerns itself with finding particular, pre-existing           

conventions as to how vowel articulations could affect the western traverse flute sounds. This              1

research systematically highlights relevant information with a narrowed focus on a two-part            

hypotheses. This thesis will discuss more precisely how vowel articulation without voicing may             

affect sounds within the flute guided by the hypothesis that, if so, humans could have the ability                 

to detect the articulated vowels in isolation and in a series. Nonetheless, this work itself does not                 

discuss some aspects of flute technique such as vibrato, tonguing, dynamics, and simultaneous             

voice/flute sound instances. The reason for this is to isolate the proposed phenomena at hand with                

the goal of precisely assessing the acoustic and perceptual aspects of subsequent research. 

Overall, physical/linguistic and flutist aspects are taken into account, noting on one hand             

that the oral cavity and the flute are in a sense two different instruments with which music can be                   

influenced. Since there is no additional, inserted, or assistive device in the mouth, such as a reed,                 

used to control the way sound is produced, there should not be any significant changes in aspects                 

of timbre if the flutist generates changes within the oral cavity. This would appear to make vowel                 

changes difficult for the listener to identify. In contrast, expert flutists utilize different vowel              

shapes, claiming that the resonance spectrum or monophthongs make it possible to blend the              

sound with other instruments and produce different resonance qualities in a instrument. In such              

1  Articulation for wind instruments is also referred to as tonguing. It is a technique that allows performers to use the tongue to 
separate and enunciate the beginning of the sound. In this work, word articulation takes its meaning from linguists, which refer to 
a broad range of change of the configuration of the vocal tract. 
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an instance, the oral cavity modifies the energy produced by the lungs, hence suggesting that the                

quality of sound changes is wavering, and humans should be capable of detecting such variances               

or changes. The methodology of this work aims to solve through experiments how vowel shapes               

affect sounds in the flute and detect if humans can identify vowel changes in flute sound. 

 

1.2  Technical background:  

This section discusses the main concepts and elements of this work, which concerns             

vowel articulations from an acoustic point of view and flute sounds from an acoustic and physics                

perspective. Finally, it assesses if the combination of vowel shapes will affect flute sound.  

 

1.2.1  Vowels 

Vowels are used mainly in speech. Linguists have exhaustively studied this phenomenon            

in order to understand it in depth. The following is a summarized explanation of how humans                

produce vowels and how vowels are measured.  

When speaking, humans produce vowels by allowing air to pass through the vocal folds              

(Johnson 2010), which consist of a two-part tissue that vibrates while air moves through the               

vocal tract. The shape of the vocal tract determines the resonant frequencies of the sound that                

comes out of the mouth. The vowel quality changes when the shape of the vocal tract changes;                 

linguists have characterized these changes principally in three dimensions (high - low, front -              

back, rounded and unrounded). The IPA (International Phonetic Alphabet) vowels are illustrated            

in   Figure 1 chart of vowels.  
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Figure 1.  IPA (International Phonetic Alphabet). Vowel chart. 
 

Vowels are measured  using a spectrogram, which identifies the formants (the frequencies            

that determinate the phonetic quality of a vowel) and is the combination of two elements: the                

harmonic spectrum of sound from the vocal folds and the resonance of the vocal tract.  Figure 2                 

shows the individual phenomena of resonance. First, it shows the resonances of the vocal tract,               

then the harmonic spectrum of the sound from the vocal folds, and finally, the bottom image is a                  

combination of both. Figure 3 shows a representation of the vocal tract in vowels [a], [i], and [u].                  

Figure 3  also illustrates the resonance and harmonic spectra of the abovementioned vowels. The              

Y-axis measures loudness and the X-axis measures Hertz (Hz). The spectrograms assemble a             

variety of spectra at different time points to visualize how energy at various frequencies changes               

over time (see  Figure 4 ). (Praat is a free computer software used to perform scientific analysis of                 

speech in phonetics.)  
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Figure 2.  Resultant spectrum resonance and harmonic spectrum. 
http://hyperphysics.phy-astr.gsu.edu/hbase/Music/vocres.html  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.  Schematic cross section of vocal tract of a male speaker for the three vowels [a:],[i:] and [u:] .Modified from                     
http://hyperphysics.phy-astr.gsu.edu/hbase/music/vowel.html ) .  

 

http://hyperphysics.phy-astr.gsu.edu/hbase/Music/vocres.html
http://hyperphysics.phy-astr.gsu.edu/hbase/music/vowel.html


5 

Figure 4 is a spectrogram of the vowels [i], [u], and [a] in the software “Praat.” The red                  

arrows show the values of formant 1 and formant 2. The Y-axis denotes Hertz values and the                 

X-axis represents time. 

 

 

 

 

 

 

 

 

 

 

Figura 4 . Formants in Praat of [i], [u], [a].  

 

If vowels are measured in formant 1 and formant 2, the values in  Table 1 are expected.                 

Nevertheless, those values are going to vary for different individuals depending on several             

factors, including gender and age.  
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Table 1 
 
Average F1 and F2 values for female English speakers'  
 
Vowel F 1 (Hz) F 2 (Hz) 

i 437 2761 
e 536 2530 

I 483 2365 
u 459 1105 
ʌ 753 1426 
ɛ 731 2058 
a 555 1035 

æ 669 2349 
F 1 = Formant 1 

F 2 = Formant 2 

                           Table 1  

 

Although there is not an exact measurement for every person, the vowels could be              

represented in a plot similar to  Figure 5 . Setting formant 1 and formant 2 in the following figure                  

will roughly recreate the image of the IPA plot shown in  Figure 1 . In order to achieve this graph,                   

F2 requires the values to be more compacted than F1. Altering the configuration of F1 and F2                 

would give a different result. 
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Figure 5 . Representation of formant 1 and formant 2 in vowels. 

 

1.2.2 Flute 

The term flute in this thesis refers to the western traverse flute. In simple terms, a flute is                  

a cylindrical instrument with holes. The embouchure is where the flutists place the mouth and               

where air goes in. Modern flutes are made out of metal, but it remains part of the woodwind                  

family of orchestral instruments. In its evolution, the flute changed from wood to metal and               

added keys. As a whole, most flutes are made of nickel, silver, gold, or a combination of these                  

metals. The system of keys developed by the musician and inventor Theobald Böhm (1794 –               

1881), allows the instrument to go through the chromatic scale. 
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To produce sound, the flutist produces a rapid air jet coming from the lungs. That air jet is                  

energy that goes through the vocal apparatus and is condensed in the lips. The air goes out of the                   

lips hitting the embouchure at a speed anywhere between 20 to 60 meters per second, depending                

on the pressure impressed by the flutist. When air hits the embouchure, the jet is divided in two;                  

one part of the power goes inside the flute while the other flows outside. That phenomenon                

produces vibration that resonates in the instrument, thus projecting sound.  

Figure 6  shows the breathing process: inhaling expands the chest and contracts the             

diaphragm, while exhaling contracts the chest and relaxes the diaphragm.  Figure 7  illustrates             

how the lips direct air into the flute, then the air-power hits the embouchure, which divides the air                  

in two – one part of the air goes inside and other outside of the instrument. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figura 6 . Rebound Breath: Technique for Singers and wind players. 

http://marlenehartzler.com/rebound-breath-technique-for-singers-and-wind-players/ 

 

http://marlenehartzler.com/rebound-breath-technique-for-singers-and-wind-players/
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Figura 7.  Flutist embochure   https://newt.phys.unsw.edu.au/jw/fluteacoustics.html   
 

1.3 Theory: interactions between flute and vocal tract 

1.3.1 Previous research: scientific research and claims about flute sound and vowel            

articulations 

Research papers (Gerda 2006, Schwartz 2018, Walker 1995, Walter 1978), internet pages            

(Miyasawa) and videos (Cela 2012) make claims supporting the theory that the vowel shapes              

inside the mouth directly affect the sound of the flute. Most of the arguments suggest that the                 

chosen vowel manipulates the air going through the vocal tract, changing the vowel articulations,              

affecting the jet of air from the mouth, and altering the relative amplitude of harmonics in the                 

flute. The effect in the spectral properties of the note is changed; the color (timbre) of the sound                  

is different (Walker 1995) because some vowels seem to help produce a better tone than others in                 

the flute (Walter 1978). Adding more color to music makes it more interesting, similar to painters                

using a wide variety of colors in their work (Gerda 2006); the colors in music are associated with                  

 

https://newt.phys.unsw.edu.au/jw/fluteacoustics.html
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the frequency in the spectra. Although there is no exact consensus, there is a general notion of                 

relation between sound and qualities of matter. For instance, experts may say 'bright' and 'light'               

referring to sounds with more high-frequency energy in their spectra, and 'warm' and 'dark' refer               

to sounds with more low-frequency energy in their spectra. However, there are no exact              

measurements of when something is ‘bright’ or ‘dark’. Additionally, “certain vowel positions            

yield a more or less homogenous blend with different instruments in their registers. When the               

placement of the first and second formants, the strength of the formants in relationship to the                

fundamental frequency and each other, and the overall spectral slopes more closely align between              

the sounds produced, a higher level of blend between the two instruments is achieved. When the                

formants or higher harmonics of one instrument are more present in the sound, the tone of that                 

instrument tends to sound brighter by comparison. When the formants or higher harmonics of              

one instrument are less present in the sound, the tone tends to sound darker by comparison.”                

(Schwartz 2018). The overtones are changed; therefore the color of the instrument changes.             

(Wincenc 1998:86). 

The famous Irish flute virtuoso James Galway affirmed in 1982 that the tone of the flute                

is directly related to singing. He compares the techniques of the flute to singing techniques.               

Arguing that flutists should warm up as a singer does, a singer will use vowel sounds only, rather                  

than words. He says that each vowel has a distinct sound, a different color, which the flute player                  

can reproduce. The UK flutist Clarine Southworth also supports this idea, writing in 2010 for the                

internet page of Miyazawa, one of the most famous flute manufacturers in the world: “...vowels               

have the ability to add an open and warm quality and the articulation will create the drive and                  

excitement” (Southworth 2010).  
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According to Mayles (2017), by using back vowels such as [u] and [a], the flutist               

achieves ‘bright’ colors in sound. By using high vowels [i] and [u], the colors are               

‘darker’(Mayles 2017). The low vowels enhance louder and open sound, resulting in a warm              

tone. High vowels contribute to the articulation in the flute (the rapid stopping and starting of the                 

airstream) by separating the stream of air blown in the flute because of their close proximity on                 

the roof of the mouth  (Clare 2010). 

 

1.3.2 Linguistic claims: reasons to doubt the utility of vowel shapes in flute sound  

1.3.2.1  Effects of vowel should depend on speaker, flute, and note 

From an acoustic point of view, there are several reasons to doubt the theory proposed to                

the flutist. The information collected about vowels and acoustics does not match the assumptions              

of vowel shapes changing the timbre of the instrument. Nevertheless, in the case that the claim                

that vowel forms change the color of the flute is correct, there are many factors that should be                  

considered. It is required to know at least the gender and the age of the flutist, as these factors                   

change the spectrum values in vowels used in speech. People have different characteristics             

affecting vowel resonances due to varying vocal tract sizes and shapes. Also, the resonance              

spectrum of the flute and the pitch played affect the results. Different flutes have different spectra                

depending on the flute cavity shape. Other factors such as the thickness of the material, the                

material itself, the quality of the instrument, and the experience of the flutist also impact the                

overall results. All these variables change drastically in real life, thus the chances of different               

flutists reproducing the same results are unlikely. 
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1.3.2.2  Filtered aerodynamic output: lips and embouchure 

From an acoustic perspective, there are reasons to be skeptical about the flutists' claims of               

vowel articulations changing the timbre of the instrument. The lips in these phenomena work as a                

baffle. Imagining that some of the properties of the vowel could be transferred through the jet                

stream, those vowels would be filtered through the narrowed lips of the player. Even if a part of                  

the information survives that filter, the aerodynamic output will hit the embouchure-hole and             

transfer the remaining property to the body of the flute. That resonance would destroy any               

vestige of vowel property. It is important to highlight that the flute has its own resonant                

frequencies that cannot be changed by the mouth. Changing the instrument shape will result in               

manipulation in timbre. The vowels in speech change because the resonance occurs in the mouth               

and, due to this cavity’s ability to resonate sound, vowels are produced. 

 

1.3.2.3  Flute players and phonated vowels 

From a linguistic phonetic perspective, the claim of vowel shapes modifying flute sound             

lacks substantial argument. In traditional flute playing, the flutist does not produce phonated             

vowels. That is to say, the process of voicing never starts; the vocal folds do not move and,                  

ideally, nothing interferes with allowing the jet stream to go into the flute. As a result, the flute                  

produces a noisy jet-stream in which overtones are already set and give the characteristic sound               

of the instrument. Those are two distinct phenomena which work differently. It is possible to               

produce phonated vowels while playing the flute; however, its results and implications do not              

concern this work. 
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1.3.2.4   Biomechanical effects 

The above-stated reasons support a skeptical position from an acoustic point of view.             

However, even if there are no effects on the flute's spectrum (timbre), there are biomechanical               

effects that could interfere or allow loudness, which means that there should be parts of the body                 

that could alternate the intensity (volume) of the sound. 

Humans move parts in the vocal tract while speaking, including parts in the larynx,              

mouth, etc. Flutists do the same while playing. However, the position of the jaw or lips could                 

change the angle or velocity of the jet stream hitting the embouchure-hole. Additionally,             

interference in the vocal tract would decrease the speed of air. Both position and angle affect                

energy transfer from the lungs to the flute. 

The biomechanics should not affect the relative energy of different fundamental and            

overtones, the overtones are going to remain in their positions of the flute, but it could change                 

overall loudness (volume). 

 

1.3.2.5  Summary  

Overall, vowels have negligible effect on flute acoustics because of external factors that impede              

the transfer of vowel quality to the flute, such as speaker, flute, and note, which all change                 

drastically between each person. The sound is filtered through the lips and embouchure, which              

would destroy any transfer of the vowel quality. There are two different physical phenomena that               

apply to flute playing and phonated vowels which operate separately to produce sound. Even              
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considering scepticism regarding the previously stated factors, the biomechanical effects of the            

flutist could affect the flute sound in volume in ways that the others factors do not. Expert                 

implementation would be required in order to take these external factors into account. Even then,               

it is nearly impossible to predict a single note when measuring these factors. 
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CHAPTER II:  RESEARCH 

 

There are pieces of evidence from two perspectives. One supports a theory where the              

vowel shapes manipulate flute spectrum (timbre, color) while the other is skeptical of             

manipulation. A test was designed to prove the potential consequences of vowels shapes. If there               

is any change, there must be scientific evidence that shows those differences and suggests an               

answer that denies or supports a side of the previous claims. Moreover, the results must show                

changes in the spectrum or gross intensity of the flute sound.  

 

 2.1   Introduction 

In order to perform this experiment, an experienced flutist who had a thorough of               

knowledge of the theory of vowel articulations was recorded. This flutist not only incorporates              

this theory into her own performance but also her research. This affords the best likelihood to                

listen and compare the effects of this test. The recording contained samples of the player using                

different vowel shapes. The vowels contrasted drastically with each other to show a large amount               

of variation. In this experiment, a series of cardinal points in the IPA chart were recorded,                

followed by a set of front vowels. The recording had two pairs of samples of [i] and [e] to check                    

for consistency. [u] is the only rounded vowel in the set; therefore, if there is any difference in                  

rounding, this vowel articulation might show it. All samples were evaluated to see the spectrum               

and overall intensity of the flute sound. The software “Praat” is typically used to analyze speech,                

however, it was modified to analyze flute sound for the purpose of this experiment. A Praat script                 

was configured to detect flute sound instead of human voice. It measured energy in the               
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fundamental, first and second overtones, total intensity (volume), energy at the onset and the end               

of the note. Through this analysis, it is possible to identify the effect in vowel shape on the                  

spectrum or gross intensity of flute sounds. Once the data is collected and organized, graphs can                

be designed in a spreadsheet to compare the given information visually. 

This thesis is an exploratory study. A follow-up experiment with more data will be              

considered if there are remarkable patterns in the results. Although this study provides a limited               

data set as a first attempt, it provides enough information to make assumptions and              

generalizations about the topic and determine if it is worthwhile for students and researchers to               

continue inquiring. 

 

2.2 Methods  

This section explains the procedures carried out for this experiment, including the order             

of recording material and details about the setup, performance, and flutist. 

Thirty samples from three tones were taken into account. The recorded tones were: A4=              

440Hz, A5= 880Hz and, A6= 1760Hz. The performer played each pitch shaping the oral cavity               

while playing in the following pattern: 1) [i] as in "need" (High – front – unrounded vowel), 2)                  

[e] as in "wait" (high-mid front unrounded vowel), 3) [u] as in "boot" (High – back – rounded                  

vowel), 4) [ʌ] as in "fun" (low-mid – back – unrounded vowel), and 5) [a] as in "car" (Low –                    

back – unrounded vowel). 

To carefully investigate the impact of higher and lower vowels and analyze consistency,             

the flutist was recorded a second time playing the same notes. However, the performer followed a                
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different order: 1) [i] as in "need" (High – front – unrounded vowel, the tongue body is advanced                  

forward and the corona approximates the hard palate), 2) [ɪ] as in “bit” (near-high – front –                 

unrounded vowel) 3) [e] as in "wait" (high-mid – front – unrounded vowel), 4) [Ɛ] as in “bed”                  

(low-mid – front – unrounded vowel), and 5) [æ] as in “cat” (near-low – front – unrounded                 

vowel). This order evaluates front vowels according to height, which contrasts with the previous              

cardinal vowels recording. Therefore, comparisons between the sound in various vowel           

dimensions, such as high–low, front/unrounded–back/rounded, can be drawn. 

 

2.2.1 Recording details 

The recordings have minimal external sound and no vibrato. The recording environment            

was a non-sound proof, but reasonably quiet, room. A head-mounted microphone was used to              

record and the flute was a gold Muramatsu. The flutist pronounced the vowel or a word where                 

the vowel is included a few times before playing to ensure the shape of the mouth maintained the                  

position of the isolated vowel while playing. However, the flutist did not produce sound in the                

vocal folds while playing.  

 

2.2.2 Recording instructions 

While playing A4(440Hz), shape the mouth as one vowel, hold the note for four seconds.               

Follow this order to record in the first recording [i], [e], [u], [^] and [a]. Leave silence space                  

between each vowel. In a second recording follow this pattern [i], [ɪ], [e], [Ɛ] and [æ]. Repeat the                  

same process for A5(880Hz) and A6(1760Hz).  
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Recording #1: [i], [e], [u], [^] and [a]. 

Recording #2: [i], [ɪ], [e], [Ɛ] and [æ]. 

 

2.2.3 Flutist background  

The flutist recorded in this thesis is a talented and successful. The performer has won               

several competitions and prizes during her career, was part of the Flute Studio at West Virginia                

University, and finished her master and doctoral degrees at the same institution. 

 

2.3 Evaluated acoustic properties 

The first part of the evaluation concerns the spectral properties of each recorded pitch and               

vowel. In phonetic vowels, the intensity of each overtone indicates the changes (principally in              

values of formant 1 and formant 2). In this study, the fundamental, overtone 1, and overtone 2                 

are evaluated in A 440Hz, A 880Hz, and A 1760Hz. The intensity in different fundamental and                

overtones would indicate the change of the used vowel.  

The second part of the evaluation concerns overall loudness in each pitch, The note is               

isolated and compared in vowel height in front vowels in IPA chart,  Figure 8 . The goal is to have                   

overall loudness in each vowel and tone, and the final result is obtained by adding the values of                  

the fundamental and the first and second overtones of the note. Additionally, the difference in               

loudness is measured by comparing the fundamental and overtones; fundamental - overtone 1             

and overtone 1 - overtone 2. Finally, the energy on the onset and end of the note is determined. 
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The third part of the test uses A 880Hz as a fundamental compared with the first overtone                 

of A 440Hz, which is also A 880Hz. The measurement in phonetic vowels notoriously changes.               

Therefore, it could show a high contrast in the flute, as in speech vowels. The same procedure is                  

made using A 1760Hz as a fundamental, it is compared with the first overtone of A 880Hz,                 

which is also A 1760Hz. That measurement is taken at the beginning of the note.  

 

2.4 Results 

This section discusses in detail the sample recording procedures of the experiment. The             

first process consists of organizing the data in IPA vowel plots. This method of organization               

allows for evaluation of every pitch and vowel from two perspectives, a shape of spectra               

analysis, and overall loudness. Finally, the specific spectral prominences explanation concludes           

the previous findings. The terms mentioned above are clarified and expanded in each section of               

the chapter. 

  

2.4.1 IPA vowel sets 

Figures 8 to 10 are IPA (International Phonetic Alphabet) charts. They separate the             

recording into different categories.  Figure 8 shows all vowels played by the flutist in the               

experiment.  Figure 9 illustrates the cardinal points taken in the first recording;  Figure 10 shows               

all front vowels taken in the second recording. Each phoneme has a number that is measured on a                  

scale that was designed for this experiment. This number shows the height of the vowel, one                

being the lowest and five the highest; the measurement is used in overall loudness and spectral                
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prominence. Vowels [i] and [e] meet the criteria of cardinal and front vowels. This repetition               

checks consistency in the results. 

 

 

 

 

 

 

 

 

Figure 8 . IPA Chart. Set of all vowels recorded 

 

 

 

 

 

 
 

Figure 9.  IPA Chart.Set of cardinal points. Recording # 1  

 

Figure 10 . IPA Chart. Set of front vowels. Recording #2 
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2.4.2 Shape of spectra analysis  

This section organizes all results and displays them in their spectral property for each              

pitch. The spectrum of the note is explained first using cardinal vowels, followed by front               

vowels. Although the real recordings do not always indicate an exact value of Hertz, they are in                 

the same category. Therefore, the results are accurate. For each note, the chart on the left side                 

shows the labels and values used in the graphs on the right side.  

Each chart has five columns. The first column specifies the octave of the flute; the second                

column shows the used vowels, followed by the solfège syllables, and the Hertz. The next three                

columns present the energy (decibels) in the evaluated frequencies: the fundamental, first            

overtone and, second overtone, which in the script were realized as a1db, a2db and, a3db. To                

make it more intelligible, both labels are above the values. Additionally, some of the decimals in                

the results were deleted for practical purposes. 

 

2.4.2.1  Fundamental - A440Hz 

The first note to analyze is A 440Hz (first octave of the flute) — the explanation                

evaluates its spectral properties from two perspectives: cardinal vowels and front vowels. 

Graph 1 is a representation of the values shown in  Table 2 . It displays the decibel in A                  

440Hz using cardinal vowel in the fundamental and its overtones.  Graph 1 shows that all vowels                

have the same shape in backness and in height except one, [i]. If there were a correlation with a                   

phonetic vowel, the line shapes should look different in their overtones, not solely upper unlike               

the others, with a remarkably similar shape. The pairs of [e] have the same form and are covering                  
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most of the possible spectrum of the other vowels; it suggests the same shape but in different                 

locations. The [i] with different measures must be a lapse, the same pairs of [e] and the rest of the                    

vowels have the same value. 

 
Table 2 
 
A 440 Hz - Decibel values in Fundamental, 1st overtone, and 2nd overtone of cardinal vowels. 
 
Filename Segment a1db  a2db  a3db  
8va_1 i_la_440 62.5 56.8 44.0 
8va_1 i_la_440 63.4 49.8 48.6 
8va_1 u_la_440 64.2 51.8 49.3 
8va_1 e_la_440 61.2 50.7 49.5 
8va_1 e_la_440 68.4 57.4 54.6 
8va_1 ʌ_la_440 65.2 51.5 46.5 
8va_1 a_la_440 66.9 55.0 53.0 
a1db = Fundamental 

a2db = Overtone 1 

a3db = Overtone 2 

    Table 2 

 

 

 

 

 

 

 

 

 

 

Graph 1.  Cardinal vowels-440Hz. Values in decibels of fundamental, 1st overtone and 2nd overtone 
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In  Table 3 , there is similar information that was shown in Graph 2 . All vowels have the                 

same shape except one [i]. There is no real contrast. The high front vowel [e] and the lowest front                   

vowel [æ] are together with a similar form. As mentioned above, the two tokens of [e] are                 

covering most of the possible spectrum of the other vowels.  

Table 3.  
 
A 440 Hz - Decibel values in Fundamental, 1st overtone, and 2nd overtone of front vowels. 
 
Filename Segment  a1db  a2db a3db 
8va_1 i_la_440 62.5 56.8 44.0 
8va_1 i_la_440 63.4 49.8 48.6 
8va_1 I_la_440 63.5 52.3 51.1 
8va_1 e_la_440 61.2 50.7 49.5 
8va_1 e_la_440 68.4 57.4 54.6 
8va_1 Ɛ_la_440 67.0 54.5 52.6 
8va_1 æ_la_440 67.3 58.5 55.0 
a1db = Fundamental 

a2db = Overtone 1 

a3db = Overtone 2 

Table 3  

 

 

 
 

 

 

 

 

 

 

 

 

Graph 2. Front   vowels - 440Hz. Values in decibels of fundamental, 1st overtone and 2nd overtone. 
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4.2.2.2  Fundamental - A 880Hz 

The second pitch to analyze is A 880Hz (second octave of the flute). Graph 3  uses the                 

information on Table 4 - A 880Hz;  Graph 4 take values of Table 5 - A 880Hz. The two tokens of                     

[i] cover almost the whole possible spectrum of the other results, which eliminates any possible               

correlation between a front/back and high/low vowel.  Graph 4 shows the same results. In              

conclusion, there is no remarkable contrast, including cardinal vowels and front of vowels. 

Table 4  
 
A 880 Hz - Decibel values in fundamental, 1st overtone, and 2nd overtone of cardinal vowels. 
 

Filename Segment  a1db  a2db a3db 
8va_2 i_la_880 70.6 51.8 46.8 
8va_2 i_la_880 67.4 39.6 39.0 
8va_2 u_la_880 69.2 47.6 37.6 
8va_2 e_la_880 68.7 45.4 37.3 
8va_2 e_la_880 67.6 42.7 38.7 
8va_2 ʌ_la_880 68.0 49.4 41.3 
8va_2 a_la_880 68.5 49.2 41.9 
a1db = Fundamental 

a2db = Overtone 1 

a3db = Overtone 2 
Table 4 

 

 

Graph 3.  Cardinal vowels - 880Hz. Values in decibels of fundamental, 1st overtone and 2nd overtone. 
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Table 5 
 
A 880 Hz - Decibel values in Fundamental, 1st overtone, and 2nd overtone of front vowels. 
 
Filename Segment a1db  a2db a3db 
8va_2 i_la_880 70.6 51.8 46.8 
8va_2 i_la_880 67.4 39.6 39.0 
8va_2 I_la_880 70.9 4.0 44.4 
8va_2 e_la_880 68.7 45.4 37.3 
8va_2 e_la_880 67.6 42.7 38.7 
8va_2 Ɛ_la_880 69.7 47.5 44.5 
8va_2 æ_la_880 69.4 44.2 41.6 
a1db = Fundamental 

a2db = Overtone 1 

a3db = Overtone 2 

Table 5 

 

 

 

 

Graph 4. Front  vowels - 8800Hz. Values in decibels of fundamental, 1st overtone and 2nd overtone. 
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2.4.2.3   Fundamental - A 1760Hz 

The third note to analyze is A 1760Hz (third octave of the flute). As in the previous two                  

pitches, there is a similar shape in overtones. The two tokens of [e] cover any possible difference                 

between another vowel. One token of [i] is slightly different, having a decline in the second                

overtone. However, that difference is not relevant. There is no significant contrast between             

cardinal vowels ( Table 6  and  Graph 5 ) and front vowels ( Table 7  and  Graph 6).  

Table 6 
 
A 1760 Hz - Decibel values in Fundamental, 1st overtone, and 2nd overtone of cardinal vowels. 

Filename Segment  a1db  a2db a3db 
8va_3 i_la_1760 63.9 33.9 39.9 
8va_3 i_la_1760 57.5 38.4 34.9 
8va_3 u_la_1760 58.9 39.3 28.0 
8va_3 e_la_1760 62.3 43.8 33.9 
8va_3 e_la_1760 52.0 31.0 27.4 
8va_3 ʌ_la_1760 55.6 36.8 30.1 
8va_3 a_la_1760 58.0 36.9 31.0 
a1db = Fundamental 

a2db = Overtone 1 

a3db = Overtone 2 
Table 6 

 

Graph 5.  Cardinal vowels - 1760Hz. Values in decibels of fundamental, 1st overtone and 2nd overtone 
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Table 7  
 
A 1760 Hz - Decibel values in Fundamental, 1st overtone, and 2nd overtone of front vowels. 
 
Filename Segment a1db  a2db a3db  
8va_3 i_la_1760 63.9 33.9 39.9 
8va_3 i_la_1760 57.5 38.4 34.9 
8va_3 I_la_1760 55.7 34.5 24.2 
8va_3 e_la_1760 62.3 43.8 33.9 
8va_3 e_la_1760 52.0 31.0 27.4 
8va_3 Ɛ_la_1760 53.3 36.1 34.4 
8va_3 æ_la_1760 57.8 42.0 39.6 
a1db = Fundamental 

a2db = Overtone 1 

a3db = Overtone 2 

Table 7 

 

 

 

Graph 6.  Front vowels - 1760Hz. Values in decibels of fundamental, 1st overtone, and 2nd overtone. 
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2.4.3 Overall loudness 

This section evaluates each note in decibels. Every pitch has its chart and graph. The table                

has seven columns: the first column shows the used vowels, followed by the solfège syllables and                

Hertz; the second column lines up the ranking of vowels, [i] and [u] being the highest and [a] and                   

[æ] the lowest. The third column has the overall loudness of every vowel; it is the outcome of                  

combining all overtones of the note in that vowel. This column of the graph illustrates overall                

loudness; the Y-axis shows intensity and the X-axis shows vowel intensity, as in column two of                

the chart. 

The fourth column displays the difference between the fundamental and the first overtone,             

column five does the same but taking the distance between the first overtone and the second                

overtone. It is visually appreciable in the previous spectrum graphs, however, there is exact              

distance between them. Finally, column six measures the energy at the beginning of the note.               

Column seven does the same but at the end of it. 

 

2.4.3.1   Fundamental - A 440Hz 

In 440Hz,  Table 8 and  Graph 7  show that the lower vowels are louder than the high                 

vowels, which could be argued. However, [e] (high vowel) is in both extremes (loud and quiet)                

which removes any support to the previous evidence. Intensity at the beginning and the end of                

the note seems to have random values, not corresponding to vowel height or backness.  
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Table 8 
 
A - 440Hz Overall intensity index, distance between overtones, energy onset and end of the note. 
 
Segment Height SumA1To3 A2-A1 A2-A3 AmpRise AmpFall 
i_la_440 5 163.3 5.8 12.8 5.7 -1.0 
i_la_440 5 161.7 13.6 1.2 -5.7 -1.8 

u_la_440 5 165.4 12.4 2.5 2.2 -2.0 
I_la_440 4 166.8 11.2 1.2 2.6 -1.8 
e_la_440 3 161.5 10.5 1.2 5.4 -0.4 
e_la_440 3 180.3 11.0 2.8 -0.9 1.4 
ʌ_la_440 2 163.1 13.7 5.0 8.9 -5.1 
Ɛ_la_440 2 174.1 12.5 1.9 -3.7 -3.2 
a_la_440 1 174.8 12.0 2.0 -1.8 -2.6 
æ_la_440 1 180.8 8.8 3.5 -2.5 -0.9 
SumA1to3 = Overall intensity index. 

A2 - A1 = Distance between fundamental and 1st overtone. 

A2 - A3 = Distance between 1st overtone and 2nd overtone. 

AmpRise= Energy at the beginning of the note. 

AmpFall= Energy at the end of the note. 

Table 8 

Graph 7.  440Hz Index of overall intensity. X-Axis decibels; Y-Axis vowel height.  
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2.4.3.2   Fundamental - A 880Hz 

In 880Hz,  Table 9 and  Graph 8 shows that the two tokens of the high vowel [i] cover the                   

whole range of overall intensity of the other vowels; it is the loudest and quietest. It is hard to see                    

any correlation. As in the previous pitch, the intensity at the beginning and at the end of the note                   

seems to have random values, not corresponding to vowel height or backness.   

 
Table 9 
 
A - 880Hz Overall intensity index, distance between overtones, energy onset and end of the note. 
 
Segment Height SumA1To3 A2-A1 A2-A3 AmpRise AmpFall 

i_la_880 5 169.3 18.8 5.0 -5.6 -3.8 

i_la_880 5 146.0 27.8 0.6 -22.2 3.5 

u_la_880 5 154.5 21.6 10.0 4.2 1.3 

I_la_880 4 162.3 23.9 2.6 3.3 0.0 

e_la_880 3 151.5 23.3 8.2 6.4 0.8 

e_la_880 3 149.0 24.8 4.0 11.0 0.2 

ʌ_la_880 2 158.7 18.5 8.2 -12 2.9 

Ɛ_la_880 2 161.7 22.3 3.0 0.6 5.7 

a_la_880 1 159.6 19.4 7.2 -8.6 -10.6 

æ_la_880 1 155.2 25.2 2.6 5.8 -3.3 
SumA1to3 = Overall intensity index. 

A2 - A1 = Distance between fundamental and 1st overtone. 

A2 - A3 = Distance between 1st overtone and 2nd overtone. 

AmpRise= Energy at the beginning of the note. 

AmpFall= Energy at the end of the note. 

Table 9 
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Graph 8.   Overall loudness 880Hz. X-Axis decibels; Y-Axis vowel height.  

 

 

2.4.3.3  Fundamental - A 1760Hz 

This octave seems even more random than the previous results; there is no evident              

pattern. In  Table 10 and  Graph 9,  the same intensity is seen in tokens of high, mid, and low                   

vowels. 
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Table 10 
 
A - 1760Hz Overall intensity index, distance between overtones, energy onset and end of the note. 
 

Vowel  Height SumA1To3 A2-A1 A2-A3 AmpRise AmpFall 

i_la_1760 5 137.7 30.0 -6.0 -4.1 -10.6 

i_la_1760 5 130.7 19.1 3.5 -2.2 8.5 

u_la_1760 5 126.2 19.7 11.2 13.4 2.5 

I_la_1760 4 114.4 21.2 10.3 15.7 -2.6 

e_la_1760 3 140.1 18.5 9.9 1.4 14.4 

e_la_1760 3 110.4 21.0 3.6 14.8 -4.1 

^_la_1760 2 122.5 18.9 6.6 12.8 -4.6 

Ɛ_la_1760 2 123.8 17.2 1.6 9.9 3.2 

a_la_1760 1 125.9 21.2 5.8 14.7 -0.4 

æ_la_1760 1 139.4 15.9 2.4 4.4 6.5 
SumA1to3 = Overall intensity index. 

A2 - A1 = Distance between fundamental and 1st overtone. 

A2 - A3 = Distance between 1st overtone and 2nd overtone. 

AmpRise= Energy at the beginning of the note. 

AmpFall= Energy at the end of the note. 

Table 10 

 

 

 

 

 

 

 

 

 

 

 

Graph 9.   Overall loudness 1760Hz. X-Axis decibels; Y-Axis vowel height.  
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2.4.3.4   Combination of all vowels in all registers 

Graph 10  is the result of combining  Graphs 7, 8, and 9. It gives a global perspective of                  

overall loudness and appears to show a random pattern within a range. A possible argument               

would be that low vowels are louder. However, it does not have a strong fundamental. Even                

assuming that the previous claim is valid, the change would be minimal and hard to predict                

because it varies drastically in the same vowel. 

Graph 10.   Overall loudness of all registers. X-Axis decibels; Y-Axis vowel height.  
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2.4.4 Specific spectral prominences 

The specific spectral prominences take two frequencies, A 880Hz and A 1760Hz. Both             

have their chart and graph. Each spectrum is evaluated in two dimensions, as an overtone and as                 

a fundamental. The lowest octave measured is 440Hz; its fundamental is 440Hz and its overtone               

is 880Hz. The middle octave measured is 880Hz; its fundamental is 880Hz. These two octaves               

are compared through 880Hz as an overtone and as a fundamental. The next octaves to be                

compared are the middle octave 880Hz and the highest octave 1760Hz. These octaves are              

compared through the overtone and fundamental 1760Hz. If there is any change in a vowel, this                

comparison should show it. Phonetic vowels differ significantly, especially in their second            

formant (first overtone). So, it is expected that the vowel shape would show different results               

modifying flute sound. 

In  Tables 11 and 12 , the first column specifies the rank in height followed by the vowel;                 

the second column shows the used vowel, followed by the solfège syllable; the third column               

presents the energy (in decibels) of the note as an overtone; and the fourth column shows the                 

energy of the note as a fundamental. All measurements are taken at the onset of the note.  Graphs                  

11 and 12 represent the first overtone and the fundamental in decibels on the X-axis; on the                 

Y-axis the value in decibels are measured. Notice that the values in the fundamental are higher                

than the values of 440Hz overtone. This phenomenon is common in voice and every instrument.  
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2.4.4.1   880Hz Specific spectral prominences 

In 880Hz, the overtone of 440Hz covers a range of 8.7 decibels, which is shown in  Table                 

11 and  Graph 11 . The lowest vowel [æ] has the highest value, which contains one token. In                 

contrast, one of the highest vowels [i] has the lowest value but contains two tokens. The two                 

tokens of [i] encompass all the possible results in a range of 7 decibels in the first overtone at                   

440Hz, whereas the single token of [æ] is outside of this range by 2 decibels. [e] covers a range                   

of 6.7 decibels, similar to the range of [i]. However, the distance of [e] is closer in proximity to                   

the token of [æ] in 1.1 decibels. Overall, [i] and [e] are a major part of the possible results. 

Table 11 
 

A - 880Hz Specific spectral prominences 

Vowel a2db a1db 
5-i 56.8 70.6 
5-i 49.8 67.4 
5-u 51.8 69.2 
4-I 52.3 70.9 
3-e 50.7 68.7 
3-e 57.4 67.6 
2-ʌ 51.5 68.0 
2-Ɛ 54.5 69.7 
1-a 55.0 68.5 
1-æ 58.5 69.4 

a2db = 1st Overtone 440Hz 

a1db =  Fundamental 880Hz 

Values in decibels  
Measured at the beginning of the note 
 

Table 11 
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Graph 11  Value in decibels of 440Hz first overtone and 880Hz fundamental. 
 

 

 

 

2.4.4.2   1760Hz Specific spectral prominences 

In 1760Hz, the overtone of 880Hz covers a range of 12.2 decibels. In  Table 12 and  Graph                 

12, the highest value is [i] and the lowest value is [i]. In the fundamental 1760Hz, the highest                  

value is one of the tokens of [i] and the lowest value is one of the tokens of [e], which are in the                       

same area in a vowel phonetic perspective. 
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Table 12 
A - 1760Hz Specific spectral prominences 

Vowel a2db a1db 

5-i 51.8 63.9 

5-i 39.6 57.5 

5-u 47.6 58.9 

4-I 47.0 55.7 

3-e 45.4 62.3 

3-e 42.7 52.0 

2-ʌ 49.4 55.6 

2-Ɛ 47.5 53.3 

1-a 49.2 58.0 

1-æ 44.2 57.8 

a2db = 1st Overtone 880Hz 

a1db =  Fundamental 1760Hz 

Values in decibels.  

Measured at the beginning of the note 

Table 12 

 

 

 

 

 

 

 

 

 

 

 

 

Graph 12.  Value in decibels of 880Hz first overtone and 1760Hz fundamental. 
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CHAPTER III: DISCUSSION 

 

3.1  Results: summary  

After collecting the results and analyzing them individually, the measurements give us            

enough information to discuss in broad terms what happened in each part of the experiment and                

its analysis.  

The main concern of this thesis is to discover any correlation between vowel shapes and               

flute sound. First, we consider the first three partials of the spectral analysis. All notes have the                 

same form except two. The first different note is one token of [i] in the first octave of the flute. It                     

still follows the same pattern, the fundamental being higher than the second one and the third one                 

being lower. The second note is one token of [i] in the third octave, its second overtone is higher                   

than the others, but it is 0.3 decibels away to [æ] (low vowel) which is contradictory if there were                   

a vowel correlation. 

Additionally, the difference is minimal, and the two tokens of the same vowel show the               

difference in those minimal changes. The results in this part of the experiment seem to support                

the claim that vowel shapes affect flute sound. If the argument were correct, each form would                

look different. Due to its spectral properties, it is expected that vowels having a high energy                

component in two notes would have the same quality, but the data shows different results. 

In overall loudness, it seems that low vowels tend to sound louder in the first octave.                

Nevertheless, one token of [e] (high mid front vowel) is almost at the same level than the loudest                  

pitch. The difference between [e] and [æ] is 0.5 decibels. Furthermore, one token of [e] is the                 
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loudest, and the other token of [e] is the quietest with a range of 18.8 decibels. In the second                   

octave, one token of [i] is the loudest and the softest, covering a range of 23.3 decibels. It is                   

difficult to see any pattern, including the third octave and the combination of all notes. It seems                 

that the data is forming random patterns inside a range of loudness, which is not directly                

connected with vowel quality. 

The specific spectral prominences are a comparison between the same frequency as a             

fundamental and as an overtone. It presents some correlation between the two data sets, as the                

values share spectral properties. However, no evidence corresponds with the already known            

vowels. In the results, it is shown that the tokens of [i] cover a considerable portion of the                  

possible outcomes of the other vowels, suggesting no systematicity. Nevertheless, some of the             

loudest components are high vowels. 

In the tests, [u] does not show any notable difference from any other vowels. It is not at                  

the extreme high or low end of the observed values. The results fail to demonstrate that vowel                 

height make a significant difference. The front-back dimension, as the tongue body advances             

forward and the corona approximates the hard palate, also fails to demonstrate any notable              

change. [u] it is both back and rounded, and in contrast to most of the other vowels does not seem                    

to have any systematic effect on loudness, spectral slope, or the strength of partials at any                

particular frequency.  

Additionally, a statistical measurement was used to determine correlation. It determines if            

the values in the first variable (first overtone) are explained in the second variable (fundamental).  
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3.1.1  Measure correlation between series: 

The Pearson Product-Moment Correlation Coefficient (PPMCC) was used to measure the           

strength of the linear relationship between the two variables. It gives a value on how closely                

related the two variables are.  

The PPMCC is expected to give values between +1 and −1. +1 indicates total positive               

linear correlation, 0 is no linear correlation, and −1 suggests a negative linear correlation. 

Variables 
440Hz Overtone 1 880Hz Fundamental 
Pearson's value for 880Hz =  0.24 

Variables  
880Hz Overtone 1 1760Hz Fundamental 
Pearson's value for 1760Hz  = 0.35 

%VarianceExplained 0.12 
 

The statistical results show that there is a certain amount of variability in the values               

ranging from 6% - 12%. The rest is variability that we do not know, 88% – 94%. The percentage                   

of variance is small, random, and not explained by the Theory of Vowels. 

 There are two levels in which the correlation results raise interesting questions.  First, it              

needs to be determined whether a vowel articulation that reinforces a particular frequency on one               

occasion also tends to reinforce that frequency on other occasions. In the collected data, there is a                 

small and variable tendency for correlation. The second question raised is whether the             

frequencies that different vowels appear to reinforce bear any systematic relationship to their             
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physical/acoustic properties, which does not seems to be true. It is not the case, for instance, that                 

low vowels with F1 values near 880Hz reinforce that frequency more than high vowels with F1                

values far away from 880Hz. Even if we accept that the tendency of particular vowel               

articulations to reinforce certain frequencies is 'real', the relationship must be governed by             

something other than the specific resonant frequencies of the vowels in question. According to              

the results, it is difficult to say what that relationship would be.  

 

3.2 Conclusion 

The evidence in this thesis fails to find a pattern of preliminary influences of vowel               

articulation on flute sound. The theory of vowels and acoustics more generally suggest that              

claims concerning vowel quality and flute timbre may not be correct; empirically, this             

exploratory study failed to find any systematic or obvious effects of vowel features on the               

acoustics of flute sounds. There is no gross difference in vowels; all shapes are overall the same,                 

and there are no significant differences in loudness of different vowels. In conclusion, there is not                

a consistent pattern between back/round or front/unrounded vowels. If there is any change in              

high and low vowels, it would be minimal, and any consistent output would be complicated to                

obtain. The difference that we are considering is in decibels (loudness), not any change in timbre                

(color). That change in loudness could be obtained by playing with high volume without              

considering any vowel. Strictly judging from the results measured in this experiment, there was              

no detectable pattern in vowel articulations resonating with flute sound.  

The topic of vowel shape could have a story similar to the myth of the diaphragm                

supporting the air column in singers and wind instruments. Both are topics that go beyond the                
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musicians’ knowledge, and there could be misunderstandings. However, a flutist does not            

necessarily know about vowel acoustics or the physic-acoustics of the instrument. On the other              

hand, an expert flutist is not necessarily an expert physician, and their knowledge regarding the               

anatomy of the diaphragm could be limited. When two branches of knowledge meet, they can               

solve misunderstandings and clarify myths. Presently, we know that the saying “use your             

diaphragm to support the pitch” (Alt 1990) it is not true, and took decades to comprehend. The                 

efforts to improve the field and discover what is behind the myth comes from curiosity and                

questioning the patterns that have already been established. This thesis strives to encourage             

interdisciplinary studies challenging those pattern and exploring other perspectives. Here, the           

field of linguistics is clarifying that it is unlikely to change the color of the flute by shaping                  

vowels in the mouth. 

Because singing is one of the first expressions of music, flutists often try to imitate               

singing while playing. There are multiple teachings that reinforce the concept that singing and              

playing the flute are similar, such as support of air flow, vibrato, expression, connecting and               

shaping phrasing. Those concepts are supported by qualified musicians, which leads to            

widespread belief that singing and flute playing are closely related. Professional musicians are             

often motivated to explore all possible sounds and techniques of an instrument. By doing this,               

musicians create different ideas to modify sound and expand an instrument’s possibilities.            

Through this exploration, false ideas could spread and are considered facts even though they              

have not been proven. Overall, these issues contributed to the false belief that vowel articulations               

can modify the timbre of a flute according to the data collected in this experiment. However, if a                  
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wider range of data were gathered in this experiment, different patterns could be detected, which               

would cause overall conclusions to change.  

 

3.3 Pedagogical implications 

There is literature and commentary from different flutists supporting a theory where            

vowel shapes make music more interesting; some instructors suggest practicing vowels to expand             

the possible interpretative skills of the students. Based on the results of this study, there is no                 

substantial evidence to support that claim. Instead, students should concentrate their time and             

energy on overcoming other difficulties on the flute. If there is any vowel preference, that               

decision will come from a subjective basis of the performer, for instance giving a comfortable               

feeling playing, sounding better to the flutist, or matching with that particular instrument. Those              

claims would change depending on individual perception, not scientific fact. Additionally, there            

could be a claim stating that a minimal change would affect the music. However, from the data                 

that we have, that minimal difference is difficult to predict. If there is a concrete recommendation                

for flutists, it would be to allow the air to go through and reduce any unnecessary resistance in                  

the jetstream of air. 

 

3.4 Pilot perception study  

In spring 2018, the author, an experienced flutist with a graduate degree, conducted a              

pilot study. The goal of the study was to determine if participants can audibly distinguish               

between different vowels articulations in a flute. The author recorded the samples; no voicing of               

vowels or vibrato were used. The shape inside the mouth was the only differentiating factor when                
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comparing the recordings. The cardinal vowels [a], [i], and [u] were recorded in one pitch, A=                

440Hz. Five musicians with nine to twenty years of experience in music and one without               

experience took the survey. Two of the musicians were flutists. The survey asked for their               

instrument, years of experience in music, and five tests of vowel distinction. Three of the tests                

asked to identify each cardinal vowel in isolation. The other two tests challenged the participants               

to identify the order of vowels articulations in series of three (eg. [i], [a], [u] and [a], [i], [u]).                   

Although, participants could hear the recording as many times as they wanted, they answered              

correctly less than half of the time; of 25 total answers, only 5 were correct. For [i] there were no                    

correct answers, for [u] 60% of the answers were correct, and [a] 20% of the answers were                 

correct. In the series of three vowel articulations [i], [a], [u] there were 20% correct answers and                 

in the series of [a], [i], [u] there were no correct answers. Results and questions can be found in                   

the appendix. 

 

3.5 Future studies 

A subsequent researcher can replicate this work of analysis and perception using more             

data from different flutists, preferably performers who believe vowel shapes change the timbre of              

the instrument. In this acoustic analysis, one experienced flutist was recorded and in the pilot               

perceptual study, one flutist was recorded and five participants took the survey. The results in               

these two studies contradict other researchers’ results as well as years of conventional knowledge              

of colleagues and famous flutists, and it would be valuable to perform these experiments on a                

larger scale despite the present evidence suggesting no correlation. In future auditory tests, it              
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would be beneficial to create general questions that ask participants if they can detect any               

differences in sound production, which would be simpler than the hearing test in the pilot study. 

The next step for this research is to investigate consonants in flute sounds. Future              

research would investigate how consonants in flute sound work physically, acoustically, and any             

implication in the relationship between consonants and vowels. Although every mouth is            

different and every flutist is a whole universe, a study of this kind would yield generalizations                

and suggestions. 

Although this study failed to find a consistent pattern regarding vowel articulations, there             

are many variables that determine the individual characteristics of flute sound. In the future, it               

would be beneficial to explore which characteristics contribute to the unique production of sound              

in a flute. After identifying the major contributing factors, it would allow the specific variables               

that influence the sound variation to be measured and analyzed.  
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APPENDIX 
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Pilot perception study 

Results: 
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Correct answer: [i] 

  

 Correct answer: [u] 
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 Correct answer: [a] 

  

Correct answer: [i] [a] [u]. 

  

Correct answer: [a] [i] [u] 
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