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ABSTRACT 

Analysis and Optimization of a Dual Free Piston,  
Spring Assisted, Linear Engine Generator 

Matthew C. Robinson 

The free piston linear engine (FPLE) generator has the potential to displace existing 
crankshaft driven engine technology because of its relative simplicity, higher efficiency, and 
increased power density. Continued interest in hybrid-electric vehicles for transportation and 
tightening emissions regulations has created a challenging market for conventional piston 
engines. Combined with rising market interest in localized power generation means there are 
exciting opportunities for innovative technologies that can satisfy both regulatory and commercial 
demands. Many groups around the world are currently working to advance the state of the FPLE, 
and recent success at West Virginia University will lead to a working prototype device within the 
next three years. 

This dissertation presents the analysis and optimization of a dual free piston, spring 
assisted, linear engine generator (SALEG). The primary moving part is a dual piston translator 
driven by 2-stroke homogeneous charge compression ignition combustion cycles such that the 
compression stroke for one cylinder corresponds to the expansion stroke of the other. The 
dynamics of the translator are augmented by the addition of springs that support higher frequency 
operation, provide energy storage to support cyclic stability, and can be tailored to achieve a 
desired translator dynamic profile. Current challenges for the device involve optimization for high 
efficiency performance at steady state and control of the translator position and combustion 
events. 

Using numeric simulation tools in MATLAB® and Simulink, the dynamic behavior of the 
translator is modeled in conjunction with the in-cylinder thermodynamics for each engine cylinder 
and the linear electric alternator load. Sweeps of the primary design parameters explore the 
design space while demonstrating the interdependency that is characteristic of the FPLE. Then, 
a genetic algorithm is employed to optimize the SALEG for efficiency based on target power and 
practical operating constraints. It is demonstrated that low maximum stroke to bore ratio and low 
intake temperature are favored. Also, the design space becomes more restrictive as target power 
is raised, but for a range of devices as high as 25 kW, efficiency greater than 40% can be 
achieved. 

Control mechanisms for the simulated SALEG are demonstrated and compared. These 
entail the control of alternator force, engine fueling, and intake conditions through the use of 
proportional and integral control methods. The control methods are applied to achieve resonant 
start-up of the device and to respond to changes in load demand and misfire. Motored, resonant 
hot-start is simulated for a device with natural frequency of 40 Hz, and the linear motor and 
controller parameters are tested. Misfire is shown to lead to rapid loss of compression, so the 
motored resonant control mechanism is employed to recover after misfire. A map-based controller 
is used to control intake temperature in response to rapid change in load. For a 50% reduction in 
load, intake temperature is raised by 15% (40 °C) and results in an efficiency drop from 38% to 
22% at steady state. Ultimately, the simulation tool represents a platform for future investigations 
where experimental data and more sophisticated modeling techniques might be included to 
enhance the research and advancement of the free piston linear engine. 
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TDC piston top dead center - 

TPMLA tubular permanent magnet linear alternator - 

𝑣 translator instantaneous velocity (Eq. 12) m/s 

𝑉 engine cylinder volume (Eq. 1) m3 

𝑉𝑑 total engine displacement volume (Eq. 37) m3 

𝑊𝑓 friction work (Eq. 37) J 

WVU West Virginia University - 

𝑥 translator instantaneous position, a function of time (Eq. 1) m 

𝑥𝑙, 𝑥𝑟 left or right translator dead center position (Eq. 14) m 

Subscripts and Superscripts 

∗ indicating dimensionless term - 

𝑖𝑛 indicates being added to a system - 

𝑙 or 𝐿 referring to the left - 

𝑟 or 𝑅 referring to the right - 

𝑚𝑝 referring to the midpoint - 

𝑖 referring to the current step in time or space - 

1, 2 referring to the state (first or second) - 

𝑠𝑠 referring to steady state operation - 
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Greek Variables 

𝛾 ratio of specific heats (Eq. 3) - 

𝛿 spring deflection (Eq. 41) m 

𝜂𝑎𝑙𝑡 alternator efficiency (Eq. 45) - 

𝜙 equivalence ratio - 
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CH. 1 INTRODUCTION 

The worldwide energy market is facing many challenges. Among these is the sustainability of 

modern crankshaft driven engine technology. Current energy storage technology cannot support a 

widespread transition to electric vehicles [1], but tightening regulations against harmful emissions and 

greenhouse gases places great strain on engine manufacturers to meet consumer demands as well as 

regulatory requirements. While marginal improvements are still available in various forms (such as 

variable valve events, increased compression, higher pressure fuel injection, and sophisticated control), 

these technologies are expensive and may not represent the level of advancement necessary to meet 

the full spectrum of demands. Power transmission through a mechanical drivetrain adds frictional losses 

as well as complexity and cost to the system. The conversion from rotation of the crankshaft to translation 

of the piston results in bearing friction on the crankshaft and side thrust on the piston which increases 

ring friction and heat loss to the engine cylinder walls. Additionally, conventional engine technology 

suffers from losses as energy is mechanically transmitted to the valve train, and overall system efficiency 

is lessened further if peripheral components such as cooling, electrical, and aftertreatment are included. 

For the on-road diesel engine specifically, exhaust treatment has become an integral part of the overall 

strategy to meet emissions requirements [2]. Unfortunately, exhaust aftertreatment components also 

carry consequences for cost, efficiency, and power. 

Hybrid electric vehicles are a leading solution to the challenge of transitioning away from 

conventional engine technology [3]. However, hybrid strategies, especially those that can meet the 

demands of long range commuter customers, must depend on the reliability and power density of 

conventional engine technology. For the sake of performance and cost, it is desirable to move away from 

the conventional slider-crank engine towards a technology that can meet power demands while reducing 

weight, cost, and complexity and raising efficiency and flexibility. 

Compared to conventional crankshaft engine technology, the proposed spring assisted, linear 

engine generator (SALEG) has the potential to operate with a reduced number of moving parts, increased 

power density, and higher efficiency. Furthermore, the SALEG directly produces electrical power which 

can be efficiently used or stored for potential use in a hybrid electric powertrain solution. Other potential 

applications for the SALEG are further explored in the literature review. 

The focus for this investigation is aimed at the development of a steady state generator system 

which is optimized for efficiency to meet target power demand while constrained by given operating 

conditions. The research supports the overall goal of a commercially viable free piston linear engine 

generator that can effectively support transient operational demands. Beginning with implementation of 
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the SALEG in a steady state application helps to build foundational understanding that can support its 

later deployment in more demanding environments such as the hybrid electric vehicle. 

1.1 SALEG Description 

The spring-assisted linear engine generator depends on only a single moving part: the free piston 

translator. Figure 1 illustrates the SALEG with the free piston translator separated for clarity. The 

translator includes the two piston heads, a connecting rod, and the permanent magnets. The translator 

oscillates within a housing that includes the engine compression cylinders and alternator stator windings. 

Driving the oscillations are opposed, two-stroke combustion cycles where the combustion and 

subsequent expansion of one cylinder drives the compression and subsequent combustion of the other. 

 

Figure 1: Illustration of dual free piston SALEG with selected dimensions included. 

Dimensions in Figure 1 correspond to primary geometric parameters and include half the length 

of the alternator mover (𝐿𝑎), length from the translator midpoint to the piston crown (𝐿𝑝), length from 

housing midpoint to cylinder head (𝐿𝑐), length from cylinder head to port location (𝐿𝑝𝑜), and piston bore 

(𝑏). The illustration also includes fuel injectors and spark plugs at the heads of each cylinder. However, 

this investigation focuses on the marriage of the SALEG with Homogeneously Charged Compression 

Ignition (HCCI) combustion – an autoignition combustion mode. The inclusion of a spark or glow plug 

may only be necessary for start-up or transient operation, and fuel injection may be accomplished by 

either direct or port injection schemes. Intake and exhaust events are accomplished by either 

electromechanical valves, allowing for quick and precise valve events, or by ports which are opened or 
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closed as the piston translates within the cylinder space. In general, the two stroke HCCI engine involves 

fuel addition with the gas exchange process so that the fuel and air are well mixed prior to the start of 

combustion. 

Electrical power is produced by an integrated tubular permanent magnet linear alternator. The 

poles of the alternator are securely mounted to the axially oscillating rod that connects the two oppositely 

facing pistons. Together, the rod, pistons, and alternator mover are called the translator. The motion of 

the translator is driven by the two stroke HCCI cycles and supported by mechanical or pneumatic springs 

located within the central chamber of the cylinder housing. The spring mechanisms act to provide 

potential energy storage which serves to buffer the system against adverse occurrences such as misfire 

or sudden load changes. The stiffness profile of the springs can be used to affect the frequency dynamics 

of the translator – varying the stiffness for a desired frequency regime. 

In the free piston SALEG, the stroke length of the translator and compression ratio are not 

geometrically constrained as in a crankshaft driven engine. Instead, they are allowed to vary from stroke 

to stroke. This variability, while presenting difficulty in terms of system control, allows for a unique 

marriage between cycle to cycle flexibility and the HCCI combustion mode. Cyclic variations are 

sympathetic with the freedom of the translator to naturally increase or decrease its stroke length which 

acts as feedback for subsequent cycles of operation. 

To investigate the SALEG, fundamental and numerical models have been built to represent the 

interactions of the thermodynamic and dynamic energy exchanges. The models are based on the 

application of Newton’s second law. The cylinder is grounded and the translator oscillates within it 

according to forces from the engine cylinders, springs, friction, and integrated alternator system. These 

forces are represented by mathematical models which depend on known physical relationships, empirical 

constants, and instantaneous state values of the system. The fundamental model is used for basic 

understanding of the system. The numeric model is then employed for extended parametric, optimization, 

and transient analysis of the SALEG.  

1.2 Research Objectives 

Given the potential of the proposed free piston linear engine system to exceed conventional engine 

technology in efficiency, cost, and power density, there is a need to advance the state of the device. This 

investigation explores the design space available for the device, revealing trends and relationships, and 

advances the understanding of controller needs for robust support of the device during transient 

operation. 
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1.2.1 Objective 1: Fundamental and Numerical Simulations 

The primary objective of this research is to advance the understanding of the SALEG steady state 

operation, design space, and transient behavior. To facilitate the research, fundamental and numeric 

models have been constructed. The fundamental analysis takes advantage of various simplifications to 

achieve a mathematically closed form solution to represent the dynamic system. Then, a numerical 

simulation is built in MATLAB® and Simulink. Sensitivity analyses are conducted to demonstrate the 

significance of various assumptions within the model, especially empirical model parameters. Because 

experimental data is limited, validation is sought in three ways. Sensitivity analysis of the numerical 

methodology demonstrates the precision of the solution achieved by the numeric model; qualitative 

comparison between model prediction and results found in the literature shows the quality of accuracy of 

the numeric model; and, relationships between input parameters and system performance are verified 

against expected trends. 

Both fundamental and numerical modeling efforts combine the dynamics of the mass-spring-

damper system with the electromechanical load from the generator and the thermodynamic processes 

within each cylinder. For the numerical model, special attention has been given to modularity so that the 

model can be extended to incorporate various methods for any of the involved processes. For instance, 

Hohenberg’s heat transfer model is exchanged for Annand’s as part of the sensitivity study. In general, 

each of the sub-models, including the engine cylinder models, are sufficiently sophisticated to represent 

the dynamics of the subsystem, but simple enough to allow for multi-cycle simulations of the system. 

These modeling efforts provide a foundational platform for the research objectives discussed in this 

dissertation as well as future investigations of free piston engine devices. 

Stemming from the construction and analysis of the fundamental and numerical models, the first 

objective is to advance the fundamental understanding of free piston linear engines. This is achieved by 

assessing the mathematical tools used within the model to represent cylinder processes and system 

dynamics. Variations of heat transfer, combustion, and alternator force relationships found in the literature 

are compared, and their effects on system performance are evaluated. 

Through this exercise, common numerical modeling tools are assessed with respect to their 

effects on SALEG behavior. The assessment advances the understanding of free piston engine generator 

modeling techniques and leads to insights regarding the impact of energy balance and the combustion 

process on steady state SALEG performance. 

1.2.2 Objective 2: Parametric Study and Optimization 

The numerical modeling in Objective 1 is extended to include integrated component design for 

the SALEG. Specifically, relationships for translator mass and device geometry are included in the 
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simulation loop. This steady state design simulation is then used for parametric sweeps of input 

parameters and within an optimization routine to study the design space. To reduce the computation 

time, the complex Simulink model is compiled using the available rapid simulation target routine which 

converts the Simulink block sets to a C code executable program. 

From the component design analysis, a total of eight independent input parameters are identified 

ranging from system geometry to engine operating conditions. The goal of the parametric study is to gain 

important insight into the design space of the SALEG regarding the effects of each design element on 

steady state performance. Each of the input parameters are studied with respect to their effects on energy 

balance and the consequences on compression ratio, stroke length, frequency, power density, efficiency, 

and stability. These discoveries aid in the discussion of system dynamical interdependence and lay the 

groundwork for the SALEG optimization study. 

With multiple input parameters and output targets, the multi-dimensional design hyperspace is 

too vast for a basic optimization routine. Thus, a genetic algorithm (GA) is employed to explore the space 

effectively. The genetic algorithm combines widespread search of the design space (avoiding local 

maxima) with the ability to exploit the strengths of known solutions (akin to common gradient based 

optimization methods). Steady state targets and constraints are combined to quantify the performance 

value of a design solution. Based on varied design targets, multiple optimization points are provided. The 

primary goal of this objective is to advance the understanding of the design space available to the SALEG.  

1.2.3 Objective 3: Control for Start-up and Transient Response 

The third objective is to advance the understanding of start-up and transient responses of the 

SALEG. Simulink is chosen as the platform on which to develop the numerical model because of its 

modularity and robust functionality. The model is partitioned between the plant (where the system 

modeling is accomplished) and the controller. Controller architecture may take many forms, but control 

of the free piston and combustion events is paramount to the success of the SALEG. Initially, a standard 

proportional-integral (PI) controller is employed to drive the system towards stability at target operation. 

The goal of this objective is to demonstrate control mechanisms capable of starting the SALEG and 

responding to adverse occurrences. 

Start-up of the SALEG is achieved by inverting the alternator so that it applies a force and compels 

the motion of the translator. By matching the switching frequency of the motor to the natural resonance 

of the non-firing SALEG, sufficient compression can be reached for fuel injection and combustion. The 

alternator inverter is then immediately switched off so that energy is extracted from the system, preventing 

over-compression. The dynamically controlled start-up routine is demonstrated with respect to response 

times and steady state performance for a range of controller parameters. 
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Responses of the SALEG to changes in load demand and misfire are demonstrated along with the 

ability of proportional and integral controllers to react effectively. Of greatest significance is fueling, intake 

conditions, and alternator loading. While some authority is available to quickly affect the alternator load, 

rapid changes in power demand can result in misfire or runaway compression. Fueling and intake 

conditions must be altered to compensate against such events. Map-based control architecture is 

demonstrated to achieve the desired responses. 

1.3 Review of Literature 

This literature review addresses both linear engine and alternator designs and behavior, as well as 

modeling and simulation techniques that can be used to aid in the optimization of a linear engine and 

alternator design. In addition, investigations of the free piston linear engine from major field researchers 

are presented. The fundamental analysis, previously published by the current author in two parts [4, 5], 

is presented in Ch. 2 of this dissertation, and it is expected that supplementary publications (e.g. [6, 7]) 

will result from research stemming  

1.3.1 Free Piston Linear Engines 

The reported efforts to advance development of the spring assisted linear engine generator are 

well grounded in the literature with a wide variety of prior art existing in the areas of both single and two 

cylinder devices. Much of the early development surrounds the use of the free piston in compressor 

devices. This application of free piston technology over the years, as well as three others, is summarized 

in a comprehensive timeline provided by Aichlmayr in [8] with more details reviewed by Mikalsen and 

Roskilly in [9]. Within the last two decades, the research has moved to emphasize electrical generation 

and hydraulic pumping. The concept of reduced mechanical losses and increased simplicity has attracted 

many researchers and innovators truly beginning in the mid-1990s. One of these examples is the 1995 

US Army funded project granted to the Southwest Research Institute and University of Texas at Austin 

to explore the feasibility of the free piston linear engine alternator device as an auxiliary power device for 

hybrid electric vehicles [10]. 

A short time later (1998), work at Sandia National Laboratories (SNL) and West Virginia University 

(WVU) began in earnest. Investigations at SNL examined the use of HCCI combustion within a free piston 

engine through the use of a rapid compression machine which achieved Otto cycle, nearly constant 

volume combustion [11]. From this, they explored the idea of HCCI combustion within a free piston linear 

engine alternator through numeric modeling of the system [12]. Their work shows the potential of such a 

device and the importance of the cylinder recharging. Continuing in this vein, researchers at SNL 

extended their modeling towards optimization of scavenging and the alternator to maximize thermal 

efficiency [13]. They found that cycle-to-cycle variations in compression did not greatly affect scavenging 
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performance and that steady, low temperature charge produced best results [14]. Today, development 

of their device continues under the sponsorship of the Department of Energy’s (DOE) Vehicle 

Technologies Office in the form of a twin, opposed piston arrangement, which includes a single, centrally 

located combustion chamber and outlying pneumatic bounce chambers (analogous to mechanical 

springs in the proposed design) to aid in control. From this program, valuable data is being gathered from 

both modeling and prototype efforts [15].  

 

Figure 2: Illustration of current SNL free piston engine device showing central combustion chamber and outlying 

pneumatic bounce chambers [15]. 

Work on a dual cylinder device at WVU began with a parallel approach where an ad-hoc, off the 

shelf benchtop prototype model was built for experimentation while at the same time, a numeric 

investigation was conducted for verification and experimental simulation [16, 17]. Valuable insight was 

gained from these works, particularly with regard to understanding adverse work around TDC and the 

implications of cycle to cycle energy balance for either stall or runaway compression ratio rise. This initial 

gasoline fueled prototype output 309 W over a sustained period of operation during which it was seen 

that stability depended greatly on combustion timing. The simulation provided the basis for a parametric 

study of the device and helped to close the loop in understanding the interactions between heat addition, 

combustion duration, peak pressure, engine frequency, and compression ratio. The effects of translator 

mass were also explored to show proportional relationships to stroke and compression and an inverse 

relationship to engine frequency. An image of the experimental rig is shown in Figure 3. 
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Figure 3: Early gasoline fueled, spark ignited, dual cylinder free piston engine experimental rig from WVU [16]. 

A second round of linear engine development at WVU applied simulation and artificial intelligence 

techniques to gain broader understanding of the effects of fuel/air ratio, moving mass, frictional losses, 

injection timing, and geometry on frequency and efficiency [18]. This fed the development of a second 

generation diesel fueled prototype. In this, a boosted, direct injected, port scavenged, dual cylinder 

engine operated between 50 and 60 Hz [19]. These research efforts revealed many important insights 

into the operation of the linear engine. Among these is the need for increased engine speed, giving rise 

to the implementation of springs presented in this dissertation as well as the reduction of translator mass 

for optimization. 

Investigation of the free piston linear engine has continued since then. In 2004, the history and 

current state of the art in linear engine technology was reviewed [20], and more recently in 2011, 

operational data from the diesel prototype were analyzed and presented [21]. This work corroborated the 

findings from the first generation prototype, such as the mass relationship to frequency, and showed that 

raising the amount of fuel and advancing the injection timing both increased power output, efficiency, and 

frequency suggesting that the engine operated near the HCCI combustion regime. The fundamental 

analysis of the dual piston linear engine was published by the current author in 2014 [4, 5] and is 

described more fully in Ch. 2. The fundamental analysis helps to lay the foundation for this dissertation 

as well as the recently announced effort to build a spring assisted, single cylinder linear engine generator 

prototype [22]. 

Researchers at Newcastle University have been exploring the free piston linear engine device 

with a single combustion chamber opposed by a pneumatic bounce chamber (analogous to the proposed 

mechanical springs). Their endeavors in simulation were preceded by the extensive review of free piston 

technology, already mentioned [9], which concluded the most difficult challenge remaining for free piston 

devices is the control of the piston and that the free piston engine offers a viable platform for HCCI 

combustion. Since then, they have studied a variety of operating conditions including spark ignition [23] 
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and compression ignition [24, 25]. Their work continues as they pursue the control of the device through 

various approaches including tailoring the bounce chamber pressure profile to the dynamics of the 

translator [26, 27]. A schematic of their device is presented in Figure 4. 

 

Figure 4: Schematic of Newcastle University’s single cylinder free piston engine device with opposing bounce 

chamber [23]. 

The researchers at Newcastle have also recently published a review of the latest free piston 

publications to gain insights into current technical challenges and commercial expectations [28]. Cited 

challenges including piston motion, heat transfer, vibration, scavenging, and lubrication are impeding the 

viability of the free piston engine, and despite its known potential, there are few operational prototypes 

and no clear path to commercialization. 

Researchers at the Beijing Institute of Technology published one of their earliest investigative 

efforts of the free piston engine in 2008 [29]. They report of their use of single free piston engine as a 

hydraulic pump in which the engine piston is directly coupled to a pumping piston. The combustion event 

compels the motion of the translator, and the hydraulic work fluid is compressed. The high pressure 

hydraulic rail is then used as supply for a bounce chamber which returns the translator for engine 

compression and cycle completion. The researchers utilized MATLAB®/Simulink tools to model the 

dynamic system response to various geometric parameters and hydraulic loading based on differential 

and empirical relationships. The numeric analysis was followed by experimental testing in 2010 [30] which 

discussed the relationships between compression pressure, injection timing, and combustion process 

and free piston diesel engine performance. Since then their attention has shifted to the application of the 

FPLE with a linear alternator. Zero dimensional modeling of a dual piston, spark ignition device was 

presented in [31] wherein a study of nondimensional parameters was used to set up design guidelines 

for the dual FPLE with alternator. From their work, efficiency is significantly dependent on ignition timing 

and there is an optimum timing that avoids adverse work during the compression stroke and reduced 
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peak pressure from late combustion. Their numeric modeling work also includes dynamic simulations for 

the control of single cylinder FPLE generator which demonstrates the use of fueling to achieve steady 

state operation in response to a step change of the alternator load [32]. In general, use of the controller 

achieves stable oscillation with a new stable condition in around three cycles for the system operating 

around 56 Hz. 

In 2014, development continued with experimental testing of the start-up sequence which used 

the alternator as a motor to compel translator motion and increase compression [33]. Simulation results 

were compared with experimental data to show the accuracy of the simplified numeric model as good for 

the first four cycles and somewhat divergent thereafter. While this represents some validation for many 

of the numeric modeling techniques applied throughout the literature (including the current work), the 

report is also important because it announces the collaborative efforts between researchers at Newcastle 

and Beijing. Since then, the combined team has made significant contributions to FPLE development 

including further validation of the dual free piston, spark ignited model [34] and the simulation with 

experimental validation of a single cylinder, spark ignited FPLE generator opposed by a permanent 

magnet linear motor [35]. For the latter, the experimental device reached an output of 25.9 W at a system 

efficiency of 13.5%. Finally, resonant start-up analyses demonstrate the relationships between bore, 

stroke, translator mass, and steady state frequency of a dual cylinder, diesel compression FPLE device 

in [36]. 

A team from the German Aerospace Center (DLR) is working towards a single piston, 8 kW 

prototype which includes a mechanical spring for rebounding and operates around 20 Hz within a battery 

backup hybrid electric vehicle. Beginning in 2012, the team at DLR started with individual component 

testing by using controlled hydraulics to emulate the motion of a free piston engine [37]. A two stroke, 

gasoline fueled, head scavenged engine system is modeled and tested in [38], and the linear electric 

generator is investigated for optimization in [39, 40]. Today, a functional demonstrator has provided up 

to 10 kWe at a frequency of approximately 20 Hz, and one of the major challenges remains to be robust 

control of the free piston. Just as in the prototype development at WVU, slow translator speed is 

associated with high linear alternator moving mass (the DLR alternator provides a maximum force of 12 

kN). The DLR prototype demonstrates a total efficiency of 17.9% with 5.9% fuel energy lost to friction 

and 68.2% lost to combustion inefficiency [41]. 

In addition to these more expansive bodies of work is a number of interesting patents and 

research pieces aimed at developing the linear engine concept in various forms. While a significant review 

of commercial developments is provided by Newcastle researchers in [28], some of the other research 

works are provided here. Pempek Systems (Australia) developed the FP3 concept device which fitted 

three free piston linear engines into a package [42]. Researchers at Chalmers University of Technology 
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simulated a dual free piston device to investigate its multifuel capabilities [43]. Researchers from IFP, 

France undertook simulation work which showed the use of high compression and EGR can yield linear 

engine indicated efficiencies around 50% [44]. Toyota has officially announced and is currently working 

towards a single cylinder, 10kW, bounce chamber supported device for use in a hybrid electric vehicle 

system [45, 46]. Investigators from South Korea’s Ulsan University has an operational prototype and has 

extensively modeled a spring supported, propane fueled, spark ignited, dual cylinder free piston linear 

engine generator to explore the control of the device and possibilities for transitioning from spark to HCCI 

operation [47]. Results from their prototype device are presented in [48] demonstrating a range of 

operating conditions and performance outcomes. Perhaps most relevant to this dissertation is their 

experimental analysis of the spring stiffness effects on combustion and free piston translator dynamics 

[49]. The novel arrangement of their dual piston device makes use of four equivalent compression 

springs. Reported are five cases with spring stiffness ranging from 0 kN/m to 14.7 kN/m. Experiments 

show that raising the spring stiffness results in increased translator frequency (raised from 35 Hz to 47 

Hz), increased thermal efficiency (from 6% to 7.22%), and increased power output (on the order of 25% 

power increase depending on operating conditions). 

From the reviewed literature, it is clear that the proposed implementation of springs to raise 

frequency and augment the performance of a free piston linear engine is well supported but in need of 

refinement. Further, it is believed that the springs (or spring-equivalent devices) offer the dual benefit of 

tailoring the piston dynamics for HCCI operation. In the next chapter, the influence of springs within an 

engine system is explored at a fundamental level – a summary of the author’s published works [4, 5]. 

1.3.2 Linear Electric Machine 

The SALEG produces power by directly converting the linear motion of the translator to electrical 

current through the use of a tubular permanent magnet linear alternator. The linear alternator is an 

example of a linear electric machine (LEM). These take on two basic applications which are defined 

essentially by the direction of power flow: into or out of the system. The first, which gained much focus in 

early research, is the linear motor, which has already been mentioned as the inverted linear alternator 

being used for start-up of the SALEG. The second, the linear generator or alternator, has become 

increasingly attractive over the past couple decades. Multiple forms of the LEM exist ranging from the 

tubular permanent magnet device used in the current research to one- and two-sided, flat-type linear 

inductance machines, and it is often dependent on the engineering application as to which is best suited. 

Regardless of the application though, the fundamental theory of the linear electric machine draws from 

the same set of principles. 
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One of the earliest presentations of the theory as applied to permanent magnet linear machines 

was made by Boldea and Nasar in [50] which described the differential equations for single- and three-

phase machines. This first paper focused on the theory, and their next demonstrated the physical design 

of a tubular type linear generator machine based on theory and practical engineering application [51]. 

The design steps outlined in the second work are widely cited and used to define geometric parameters 

for the machine including the magnets and stator windings. Later, Nasar and Chen applied a minimizing 

optimization routine to design such a device based on machine specifications and related constraints 

[52]. 

In modeling the linear machine, a variety of approaches have been taken. One of the earliest 

found in literature is that mentioned above which developed fundamental relationships to describe a 

permanent magnet system. The difficulty faced is the ability of the fundamental equations to capture the 

true physical nature of the oscillating component. While useful to describe the device at a high level, 

idealizations and simplifications were applied that undermined the general accuracy. Other methods – 

both simple and complex – have been applied to the problem. One such is the use of an equivalent 

electrical circuit. 

The equivalent circuit method was introduced for a linear machine as early as 1987 by Nasar and 

Chen [53]. Here they presented the analysis and development of a circuit which was able to account for 

saturation, leakage, and armature reaction of a tubular permanent magnet linear alternator (TPMLA). In 

1988, Pai and Boldea introduced an equivalent circuit for a linear induction motor [54]. Results of their 

per-phase circuit model were then compared and validated against experimental testing. In these and 

other examples which present equivalent circuits, component parameters (inductance and resistance 

values) typically depend on either results obtained from experimentation or from field analysis of a defined 

device. This leads to the next commonly employed modeling tool: finite element analysis. 

One of the earliest finite element method (FEM) approaches for modeling a linear machine is 

seen in [55] which presents the use of both field analysis and FEM to develop machine design and 

equivalent circuit parameters for a linear induction machine. Their work was shown to achieve sufficient 

accuracy, and FEM is now a commonly employed tool for LEM development. 

Modern computational power combined with these modeling techniques allows for sophisticated 

simulations of linear machines. Consequentially, understanding operational characteristics and 

evaluating performance of a machine is within reach at an early development stage. Furthermore, 

parametric studies provide sound justification for design choices. In 2012, the use of 3-D FEM to analyze 

and predict the performance of a three-phase, tubular transverse flux, permanent magnet machine was 

demonstrated [56]. The FEM analysis was applied to study flux distribution, density, leakage, harmonics, 
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EMF, cogging force, and main thrust force, and comparison with experimental results showed good 

agreement. In 2015, a magnetic equivalent circuit was employed to model and size a TPMLA [57]. The 

resulting position dependent circuits were validated against FEM solutions for the device and the 

cancelation of end effects was achieved by extending the stator with appropriately sized teeth. Lu and 

Ye employed FEM for the design and analysis of a TPMLA in 2009 [58]. In the analyzed device, a large 

air gap separation is required and a copper layer is applied to directly produce eddy current power. The 

dynamic FEM analysis was used to compare geometric parameters and radially versus transversely 

magnetized structures for optimal performance. Radial is shown to achieve higher power density and 

results are validated against prototype operation. This is a small sample of the many examples of LEM 

modeling that can be found in the literature. 

Linear electric machines are of interest for many applications where linear motion is involved. In 

some cases, the importance is actuation by the LEM. In others, power generation through the LEM is 

achieved as the translating component is forced through the LEM stator component. In generating 

applications, translator motion can be forced in various ways such as the periodic motion of tidal waves 

or combustion pressure. Focusing on the use of linear electric alternators within combustion engines, a 

few important works are described next. 

The earliest developments by Nasar and Boldea concerned the use of Stirling free piston engines. 

More recently, French researchers presented the optimization of a linear induction generator mover [59-

61]. A detailed theoretical analysis was first provided and then followed by a global simulation of the 

device, including its control. Then, multi-objective optimization is performed to identify three solutions 

from the cost-per-unit-of-power design space. Similar to the free piston Stirling application, the free piston 

internal combustion engine has been gaining momentum for the past 20 years as a viable application for 

LEM’s.  

 

Figure 5: Illustration of dual free piston linear engine generator concept from WVU [62]. 

Cawthorne of WVU presented a focused dissertation on the optimized design of a TPMLA [62]. 

With simplified engine modeling for the dual free piston components (see Figure 5 for illustration), FEM 
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analysis, and robust MATLAB® routines, a detailed iteration scheme was constructed to design and model 

the performance of the LEM. This was followed by optimization which found design parameters based 

on air or iron core topology to maximize efficiency and minimize translating mass. Many of the research 

groups previously mentioned as developing the free piston linear machine are assuming the use of a 

TPMLA for high efficiency energy conversion. One of the leading developers of the linear alternator, 

Libertine FPE Ltd.® from the UK, is currently in the prototype testing phase. 

Problems for the linear electric alternator become evident upon examination of the literature. 

Development efforts are being put into reduction of cogging and detent forces. Cogging forces are seen 

as the high frequency ripples evident in the force profile and are related to the geometric arrangement of 

the stator windings and translating magnets while detent forces include the end effects which vary with 

the relative length of the moving component. As the translator moves through its stroke, these fluctuations 

of the force profile can have adverse effects on translator dynamics. Methods of reducing their effects 

are given in [63, 64] and amount to optimized component design. Control of the linear electric machine 

is also a concern though often closely tied to the control of the device to which it is married. Finally, device 

optimization is difficult, and numerous optimization studies can be found in the literature for a wide set of 

applications. Balancing the mass, speed, control needs, force and power requirements, price, and other 

performance characteristics is difficult for any complex system and no exception for the linear electric 

machine. 

1.3.3 Homogeneous Charge Compression Ignition Combustion 

The simplest description of a HCCI combustion event involves a quasi-homogeneously mixed 

chamber of fuel and air which is compressed until ignition occurs. Due to the homogeneity of the mixture, 

ignition occurs at many points simultaneously causing rapid burning of the fuel and subsequently fast rise 

in chamber pressure. The concept, while simple in light of this basic description, has proven to be very 

challenging. An in depth review of HCCI can be found in [65]. Some of the key highlights will be described 

here. 

HCCI is of interest because it potentially combines the strengths of conventional spark and 

compression ignition counterparts. Use of HCCI offers the opportunity to maintain or increase efficiency 

comparable to diesel high compression engines while meeting or reducing harmful emissions levels 

similar to spark ignited gasoline engines. A HCCI engine has the potential to reduce cost and complexity, 

as there is less need for turbulence inducing piston and inlet shapes, no high pressure injection 

requirements, and no need for sophisticated after-treatment systems. HCCI combustion also offers a 

lower operating temperature platform compatible with a wide range of fuels [66]. 



15 

 

Unfortunately, these benefits are accompanied by challenges that have not yet been met. Most 

notable of these is the lack of control available over the HCCI combustion event. Spark and compression 

ignition engines maintain spark and injection timing as highly effective control mechanisms – advancing 

or retarding the timing to affect engine performance. However, the HCCI event does not directly depend 

on either a spark or injection event. Instead, the onset of HCCI combustion is due to chemical kinetics 

and depends largely on pressure, temperature, stratification, and mixture composition. This challenge 

leads to another commonly cited problem: operation at HCCI conditions is constrained to a narrow load 

range. Practical implementation of HCCI will require the ability of the engine system to compensate for 

changes in load by affecting the HCCI event [66]. 

Progress towards control of HCCI combustion in conventional crankshaft-driven engines has 

been made through various investigations. Intake charge temperature regulation is investigated in [67, 

68]. Simulated results show successful control of HCCI over a wide load range. Internal EGR is examined 

in [69] via numeric simulation to show successful control of combustion phasing and peak pressure. Of 

particular interest is the use of variable compression ratio in [68] as a viable control option for HCCI. From 

experimentation with a multi-cylinder variable compression ratio engine, it is seen that higher 

compression can replace inlet air preheating as a control mechanism, but increased compression results 

in increased CO emissions. It was also seen that high load operation was limited by NOx emissions and 

noise, while low load operation was limited by misfire. This relates to the potential for the free piston 

engine (also with variable compression) to sympathetically operate with HCCI combustion where each 

cycle acts as feedback into the opposing cycle of the dual cylinder SALEG arrangement. Late ignition 

(relative to top dead center) leads to higher compression ratio while early ignition can result in negative 

work on the piston, thus reducing the overall system energy with the stroke and compression following. 

The free piston engine with variable compression also enables the potential to operate on a wide range 

of fuel types and under ultra-lean conditions. These potential applications and many others have been 

explored by researchers around the world, and the potential for the HCCI free piston engine is 

summarized well in the previously mentioned review by Mikalsen and Roskilly [9]. 

1.3.4 Genetic Algorithm Optimization in Engineering 

The genetic algorithm (GA) is an optimization tool that is well-suited for large design spaces with 

multiple targets and constraints. The common genetic algorithm approach involves both small and large 

changes to model parameters while in search of a parameter set that leads to best performance. Small 

changes are often referred to as exploitation and large changes as exploration. These two tools search 

the available design space and can be combined with concepts such as elitism (wherein the ‘best’ solution 

is always kept among the possible solutions) to arrive at a better and better solution. The quality of any 
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solution is quantified by the performance index which mathematically combines the desired operational 

outputs. 

A GA is most suited for difficult optimization problems with large search spaces and could be 

applied to any field of study. Relevant to modeling and ICEs is a work by Polifke et al. which uses a GA 

to determine optimum rate coefficients for a simplified set of chemical kinetic reaction mechanisms used 

to describe the combustion of methane [70]. The GA made it possible to model lean-premixed, laminar 

methane combustion using two- or three- step mechanisms with good accuracy, especially at high 

pressures. Another application of GAs is the tuning of controller parameters. An example of this out of 

Tehran employs a GA to tune a fuzzy controller which minimizes fuel consumption and harmful emissions 

in a hybrid electric vehicle over simulated transient driving cycles [71]. A final example which speaks to 

the robust capabilities of a GA and the type of application that is pursued in the current research is found 

in [72]. Sullivan et al. employed a GA to optimize the mechanics and thermodynamics of a Stephenson-

III six-bar linkage (a possible replacement for the conventional slider-crank mechanism which drives the 

piston). Their final optimization routine required about two days of computational time and resulted in 

relatively small improvements over the slider-crank mechanism in terms of engine efficiency. This study 

relates to the current research closely because of its use of a GA to optimize a dynamic-thermodynamic 

system across many domains and parameters. In much the same way, a common GA approach is used 

to optimize the simulated SALEG system. 
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CH. 2 FUNDAMENTAL ANALYSIS 

As an initial step in understanding the nature of the system, a fundamental analysis was performed 

which resulted in various important insights. The analysis described here has been published in two parts 

[4, 5]. This chapter reviews the fundamental analysis as described in these publications and lays the 

groundwork for the numeric simulation which follows. 

2.1 Basic System Description 

Modeling any complex system generally involves breaking down the system into smaller, more 

manageable pieces. A fundamental model represents the most basic combination of system processes. 

Such a model provides a foundation for understanding and a baseline for verification of other modeling 

efforts which may follow. 

The most basic elements of this linear engine system are illustrated in Figure 6. A housing is divided 

into two cylinders. Two pistons are situated opposite each other within the housing and rigidly connected 

by a rod. Between the bottom of each piston head and the dividing wall of the housing are ideal 

compression springs. Also seen in Figure 6 are three geometric dimensions: 𝐿𝐶 represents the length of 

the cylinder from the system origin to the inside of the cylinder head; 𝐿𝑃 represents the length of one of 

the pistons from the center of the translator (pistons connected by rod) to the head of the piston; 𝑏 

represents the bore (diameter) of each piston. Throughout the analysis, instantaneous position of the 

translator is measured with respect to the center of the symmetric engine housing, and subscripts 𝑙 and 

𝑟 denote the left or right cylinder respectively. 

 

Figure 6: Illustration of simplified dual free piston linear engine system for use in fundamental analysis. 

2.2 Basic Relationships 

A number of initial assumptions must be made in order to build relationships which can describe the 

motion of the translator. These include: 
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o No frictional losses 

o Perfectly linear compression springs with no material restrictions 

o No heat transfer 

o Polytropic gas compression and expansion with equal and constant coefficients 

o Ideal air with constant properties 

o Perfectly sealed chambers 

The geometric parameters can be related to find the instantaneous volume of either chamber through 

the following. 

 

𝐿 = 𝐿𝐶 − 𝐿𝑃 

𝑉𝑙 = (𝐿 + 𝑥)
𝜋𝑏2

4
                    𝑉𝑟 = (𝐿 − 𝑥)

𝜋𝑏2

4
 

Eq. 1 

The general polytropic relationship for compression and expansion of a gas is known as: 

 𝑃1𝑉1

𝐶𝑝
𝐶𝑣 = 𝑃2𝑉2

𝐶𝑝
𝐶𝑣  Eq. 2 

where the gas is characterized by the specific heat ratio (specific heat at constant pressure divided by 

the specific heat at constant volume). The subscripts 1 and 2 represent the first and second states of the 

gas respectively. 

For this portion of the analysis, combustion and exhaust processes are not included so that if a 

pressure is known at any position, the pressure at any other position can be calculated. Because of 

device symmetry, the pressure in either chamber is equal when the translator is at its midpoint position 

(𝑥 = 0). Combining the volume relationships with the polytropic equality produces the following 

instantaneous pressure relationships for each chamber. 

 𝑃𝑚𝑝 (𝐿
𝜋𝑏2

4
)

𝛾

= 𝑃𝑙 [(𝐿 + 𝑥)
𝜋𝑏2

4
]

𝛾

= 𝑃𝑟 [(𝐿 − 𝑥)
𝜋𝑏2

4
]

𝛾

 Eq. 3 

Here, the subscript 𝑚𝑝 indicates the midpoint pressure and the exponent 𝛾 is substituted for the ratio of 

specific heats (assumed constant). Solving these relationships for the pressures in each chamber and 

scaling it according to the surface area of the piston head yields the pressure forces on the translator. 

 𝐹𝑃,𝑙 =
𝜋𝑏2

4
𝑃𝑚𝑝 (

𝐿

𝐿 + 𝑥
)
𝛾

                        𝐹𝑃,𝑟 =
𝜋𝑏2

4
𝑃𝑚𝑝 (

𝐿

𝐿 − 𝑥
)
𝛾

 Eq. 4 

Because the springs are assumed to be perfectly linear and without mechanical limitations, the 

force in each spring can be related to the spring stiffness (𝑘), known free length of the spring (𝐿𝑓𝑙), and 

instantaneous position of the translator (𝑥) relative to system geometry. The relationships for each spring 

are shown in Eq. 5. 
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𝐹𝑠𝑝𝑟𝑖𝑛𝑔,𝑙 = 𝑘(𝐿𝑓𝑙 − |𝑥 − 𝐿𝑃|) = 𝑘 (𝐿𝑓𝑙 + (𝑥 − 𝐿𝑃)) 

𝐹𝑠𝑝𝑟𝑖𝑛𝑔,𝑟 = 𝑘(𝐿𝑓𝑙 − |𝑥 + 𝐿𝑃|) = 𝑘 (𝐿𝑓𝑙 − (𝑥 + 𝐿𝑃)) 
Eq. 5 

The absolute value quantities represent the deflection of the springs dependent on the translator position 

and can be simplified based on the physical limitation that the left piston will never reach a position to the 

right (𝑥 ≯ 0) of the origin and vice versa for the right piston. A free body diagram helps to demonstrate 

how the forces are applied to the translator. This is shown in Figure 7.  

 

Figure 7: Free body diagram of simple translator for fundamental analysis without friction or work terms. 

Summing the forces according to Newton’s second law and simplifying gives a second order differential 

equation in time for the position of the translator. This is shown in Eq. 6. 

 

𝜋𝑏2

4
𝑃𝑚𝑝 [(

𝐿

𝐿 + 𝑥
)
𝛾

− (
𝐿

𝐿 − 𝑥
)
𝛾

] − 2𝑘𝑥 = 𝑚�̈� 

𝑥 = 𝑥(𝑡) 
Eq. 6 

From the free body diagram presented in Figure 7, Eq. 6 represents the time dependent motion of 

the translator as it travels from some position left of the origin to the equal but opposite position right of 

the origin. The solution, however, is intractable because of its nonlinearity and requires manipulation to 

reach a non-trivial, closed form solution. The first step is to define nondimensional terms within the 

equation which can parametrically represent the system. The first of these has already been supplied. 

o The ratio of specific heats: 

 𝛾 =
𝐶𝑃
𝐶𝑉

 
Eq. 7 

o Dimensionless translator position bounded by −1 to the left and 1 to the right: 

 𝑥∗ =
𝑥

𝐿
 

Eq. 8 

o Dimensionless pressure, in this case, the midpoint pressure: 

 𝑃𝑚𝑝
∗ =

𝜋𝑏2𝑃𝑚𝑝

4𝐿𝑘
 Eq. 9 

o Characteristic time: 
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 𝑡∗ =
𝑡

√𝑚/𝑘
 

Eq. 10 

Introducing these terms into Eq. 6 yields the following (Eq. 11). 

 𝑃𝑚𝑝
∗ [

1

(1 + 𝑥∗)𝛾
−

1

(1 − 𝑥∗)𝛾
] − 2𝑥∗ =

𝑑2𝑥∗

𝑑𝑡∗2
= 𝑎∗ Eq. 11 

In Eq. 11, the dimensionless acceleration is introduced as the second time derivative of the dimensionless 

position. A substitution (shown in Eq. 12) now introduces the dimensionless velocity. 

 𝑣∗ =
𝑑𝑥∗

𝑑𝑡∗
          ⟹           

𝑑2𝑥∗

𝑑𝑡∗2
= 𝑣∗

𝑑𝑣∗

𝑑𝑥∗
 Eq. 12 

 𝑃𝑚𝑝
∗ [

1

(1 + 𝑥∗)𝛾
−

1

(1 − 𝑥∗)𝛾
] − 2𝑥∗ = 𝑣∗

𝑑𝑣∗

𝑑𝑥∗
 

Eq. 13 

The new form shown in Eq. 13 can be solved to produce a closed form solution of the dimensionless 

velocity with respect to the dimensionless position of the translator. Performing the integration yields Eq. 

14. 

 

1

2
𝑣∗2 =

−𝑃𝑚𝑝
∗

𝛾 − 1
[(1 + 𝑥∗)1−𝛾 + (1 − 𝑥∗)1−𝛾] − 𝑥∗2 − 𝐶∗ 

𝐶∗ =
−𝑃𝑚𝑝

∗

𝛾 − 1
[(1 + 𝑥𝑙

∗)1−𝛾 + (1 − 𝑥𝑙
∗)1−𝛾] − 𝑥𝑙

∗2 
Eq. 14 

Eq. 14 presents the case where no energy is added to or removed from the system, so the final 

position of the translator will be an equal distance from the origin but opposite of the starting position. 

The constant of integration comes from the initial condition which states that at some initial position to 

the left of the origin (𝑥 = 𝑥𝑙
∗), the velocity is equal to zero (𝑣∗ = 0). The solution in Eq. 14 is also limited 

by a similar boundary condition which recognizes that the translator velocity will return to zero at some 

point to the right of the origin (𝑣∗ (𝑥𝑟
∗) = 0). The first of the author’s publications [4] explores this system 

in greater detail (spring versus pressure limiting cases), but in any case the velocity profile is symmetric 

with respect to the position origin such that 𝑥𝑙
∗ = −𝑥𝑟

∗ and about the velocity axis such that 𝑣∗(0) = 𝑣𝑚𝑎𝑥
∗ . 

2.3 Basic Heat and Work 

Building upon the most basic system, it is now possible to move towards a more interesting device 

which reacts to the addition and subtraction of energy during its operation. To maintain simplicity, the 

following assumptions are made. 

o Heat is added and rejected at top and bottom dead center, respectively 

o Heat addition and rejection occur instantaneously 

o Isentropic expansion and compression of cylinder gases is maintained (no heat transfer) 

o Work output is represented as a constant energy removal over the length of the stroke 
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With these assumptions, an initial position to the left of the origin (−1 < 𝑥𝑙
∗ < 0), and a known midpoint 

pressure, the pressure and volume in each chamber can be calculated. Focusing attention on the left 

chamber at this initial state, pressure and volume are given by the following. 

 𝑃𝑙,1 = 𝑃𝑚𝑝 (
𝐿

𝐿 + 𝑥𝑙
)
𝛾

                𝑉𝑙,𝑖 = (𝐿 + 𝑥𝑙)
𝜋𝑏2

4
 Eq. 15 

For any given stroke, when the translator reaches its left-most position, the left piston is at its top 

dead center (TDC) location. Under the previously outlined assumptions, constant volume heat addition 

occurs at each top dead center event. Thermodynamic first law energy analysis for a closed system 

allows the cylinder pressure to be related to the heat addition through the following. 

 𝑄𝑖𝑛 = 𝛥𝑈 = 𝑚𝑔𝑎𝑠𝐶𝑣(𝑇2 − 𝑇1) Eq. 16 

In the previous relationship, 𝑇 represents the temperature of the gas with subscripts 1 and 2 again 

representing the first and second state respectively. Also, the heat added (𝑄𝑖𝑛), change in internal energy 

(Δ𝑈), and mass of the gas (𝑚𝑔𝑎𝑠) are represented. Because the properties and mass of the ideal gas 

within each chamber remain constant, the following substitutions can be made. 

 𝑄𝑖𝑛 = 𝑚𝑔𝑎𝑠𝐶𝑣 (
𝑃𝑙,2𝑉𝑙,𝑖
𝑚𝑔𝑎𝑠𝑅

−
𝑃𝑙,1𝑉𝑙,𝑖
𝑚𝑔𝑎𝑠𝑅

) =
𝑉𝑙,𝑖𝐶𝑣
𝑅

(𝑃𝑙,2 − 𝑃𝑙,1) 
Eq. 17 

The ideal gas constant (𝑅) can be related to the specific heat according to the following. 

 𝑅 = 𝐶𝑃 − 𝐶𝑉 
Eq. 18 

This enables the following substitution. 

 𝑄𝑖𝑛 =
𝑉𝑙,𝑖𝐶𝑣
𝐶𝑝 − 𝐶𝑣

(𝑃𝑙,2 − 𝑃𝑙,1) =
𝑉𝑙,𝑖
𝛾 − 1

(𝑃𝑙,2 − 𝑃𝑙,1) 
Eq. 19 

Then, the initial pressure and volume relationships are applied. 

  𝑄𝑖𝑛 = (
𝜋𝑏2

4
) (
𝐿 + 𝑥𝑙
𝛾 − 1

) [𝑃𝑙,2 − 𝑃𝑚𝑝 (
𝐿

𝐿 + 𝑥𝑙
)
𝛾

] 
Eq. 20 

Rearranging this to solve for the pressure at state two, that is to say the pressure after the heat has been 

added to the cylinder, the following relationship is formed. 

 𝑃𝑙,2 = 𝑄𝑖𝑛
4(𝛾 − 1)

𝜋𝑏2(𝐿 + 𝑥𝑙)
+ 𝑃𝑚𝑝 (

𝐿

𝐿 + 𝑥𝑙
)
𝛾

 Eq. 21 

So, with the cylinder pressure known at top dead center, the polytropic relationship can be applied to 

calculate the pressure and related force on the translator at any position. 

 𝑃𝑙,2𝑉𝑙,𝑖
𝛾
= 𝑃𝑙𝑉𝑙

𝛾 
Eq. 22 
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 𝑃𝑙 = [𝑄𝑖𝑛
4(𝛾 − 1)

𝜋𝑏2(𝐿 + 𝑥𝑙)
+ 𝑃𝑚𝑝 (

𝐿

𝐿 + 𝑥𝑙
)
𝛾

] (
𝐿 + 𝑥𝑙
𝐿 + 𝑥

)
𝛾

 
Eq. 23 

 𝐹𝑃,𝑙 =
𝑄𝑖𝑛(𝛾 − 1)(𝐿 + 𝑥𝑙)

𝛾−1

(𝐿 + 𝑥)𝛾
+
𝜋𝑏2

4
𝑃𝑚𝑝 (

𝐿

𝐿 + 𝑥
)
𝛾

 Eq. 24 

A work term (meant to represent a combination of friction and useful work out of the system) is added to 

the free body diagram shown in Figure 7 to arrive at Figure 8. 

 

Figure 8: Free body diagram of translator with resistive work force applied. 

Summing the forces shown in Figure 8 and simplifying, Eq. 25 is formed to represent the motion of the 

translator from left to right with heat added to the left cylinder according to Eq. 24 and work removed 

during the stroke. 

 
𝑄𝑖𝑛(𝛾 − 1)(𝐿 + 𝑥𝑙)

𝛾−1

(𝐿 + 𝑥)𝛾
+
𝜋𝑏2

4
𝑃𝑚𝑝 [(

𝐿

𝐿 + 𝑥
)
𝛾

− (
𝐿

𝐿 − 𝑥
)
𝛾

] − 2𝑘𝑥 − 𝐹𝑊 = 𝑚
𝑑2𝑥

𝑑𝑡2
 

Eq. 25 

This is similar in form to Eq. 6 with the addition of the heat and work terms previously described. Again 

forming nondimensional terms, Eq. 25 can be reduced to Eq. 26 

 𝑄𝑖𝑛
∗ [
(𝛾 − 1)(1 + 𝑥𝑙

∗)𝛾−1

(1 + 𝑥∗)𝛾
] + 𝑃𝑚𝑝

∗ [
1

(1 + 𝑥∗)𝛾
−

1

(1 − 𝑥∗)𝛾
] − 2𝑥∗ − 𝐹𝑊

∗ =
𝑑2𝑥∗

𝑑𝑡∗2
= 𝑣∗

𝑑𝑣∗

𝑑𝑥∗
= 𝑎∗ 

Eq. 26 

where the nondimensional heat addition and work are given by the following two terms respectively. 

 𝑄𝑖𝑛
∗ =

𝑄𝑖𝑛
𝑘𝐿2

                       𝐹𝑊
∗ =

𝐹𝑊
𝑘𝐿

 Eq. 27 

Again applying the velocity transformation given in Eq. 12 and integrating with the zero velocity initial 

condition (𝑣∗(𝑥𝑙
∗) = 0), the closed form solution of Eq. 26 yields the relationship between position and 

velocity shown in Eq. 28. 

 

1

2
𝑣∗2 = −𝑄𝑖𝑛

∗ [(
1 + 𝑥𝑙

∗

1 + 𝑥∗
)

𝛾−1

] −
𝑃𝑚𝑝
∗

𝛾 − 1
[(1 + 𝑥∗)1−𝛾 + (1 − 𝑥∗)1−𝛾] − 𝑥∗2 − 𝐹𝑊

∗ 𝑥∗ − 𝐶∗ 

𝐶∗ = −𝑄𝑖𝑛
∗ −

𝑃𝑚𝑝
∗

𝛾 − 1
[(1 + 𝑥𝑙

∗)1−𝛾 + (1 − 𝑥𝑙
∗)1−𝛾] − 𝑥𝑙

∗2 − 𝐹𝑊
∗ 𝑥𝑙

∗ 

Eq. 28 

This relationship represents the travel of the translator effected by instantaneous heat addition in 

the left cylinder at TDC and constant work taken out over the length of the stroke. To accomplish a full 
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cycle of engine operation, heat rejection is accomplished in the left cylinder by returning the pressure to 

the midpoint pressure polytropic curve which is analogous to a motoring curve. This instantaneous heat 

rejection acts as a highly idealized exhaust/scavenging process and is independent of position except 

that the motoring curve varies with position. The process effectively dissipates any energy within the 

cylinder in the form of internal gas energy and occurs when the left piston is at its bottom dead center 

(BDC) position. Left cylinder BDC position coincides with right cylinder TDC position. At this position, 

heat is added to the right cylinder in exactly the same fashion and amount as described above for 

instantaneous heat addition to the left cylinder. The right dead center position is identified as 𝑥𝑟
∗, and, 

through nearly the same analysis as was applied to find Eq. 28, the following closed form solutions are 

found for the dimensionless position, velocity (Eq. 30), and acceleration (Eq. 29) of the translator as it 

travels from right to left. 

 𝑎∗ = 𝑣∗
𝑑𝑣∗

𝑑𝑥∗
= 𝑄𝑖𝑛

∗ [
(𝛾 − 1)(1 − 𝑥𝑟

∗)𝛾−1

(1 − 𝑥∗)𝛾
] + 𝑃𝑚𝑝

∗ [
1

(1 − 𝑥∗)𝛾
−

1

(1 + 𝑥∗)𝛾
] + 2𝑥∗ − 𝐹𝑊

∗  
Eq. 29 

 

1

2
𝑣∗2 = 𝑄𝑖𝑛

∗ [(
1 − 𝑥𝑟

∗

1 − 𝑥∗
)
𝛾−1

] +
𝑃𝑚𝑝
∗

𝛾 − 1
[(1 + 𝑥∗)1−𝛾 + (1 − 𝑥∗)1−𝛾] + 𝑥∗2 − 𝐹𝑊

∗ 𝑥∗ − 𝐶∗ 

𝐶∗ = 𝑄𝑖𝑛
∗ +

𝑃𝑚𝑝
∗

𝛾 − 1
[(1 + 𝑥𝑟

∗)1−𝛾 + (1 − 𝑥𝑟
∗)1−𝛾] + 𝑥𝑟

∗2 − 𝐹𝑊
∗ 𝑥𝑟

∗ 

Eq. 30 

The translator returns from the right at position 𝑥𝑟
∗ with a negative velocity to a position left of the 

origin (according to Eq. 30). When the left dead center position is reached again, the instantaneous heat 

addition and heat rejection processes are applied to the left and right cylinders respectively. The cycle 

can continue in this fashion to achieve one of three final states. 

The three cases are explored in detail in [4] and are more briefly characterized here. The first 

case demonstrates how adding more energy to the system than that which is being removed results in a 

rise of compression ratio (shown in Figure 9). Over each cycle, the stroke increases and the energy within 

each cylinder rises. In a practical setting, uncontrolled runaway of compression ratio could quickly result 

in mechanical failure of engine components. 
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Figure 9: Basic free piston system including dimensionless heat and work [4]. Compression ratio rises as a result of 

energy imbalance. 

In the next case, the opposite result is demonstrated. That is, during each stroke, more energy is 

removed through work and heat rejection than is added in heat addition. This results in a dampening of 

the oscillation and decreasing compression ratio as shown in Figure 10. 

 

Figure 10: Basic free piston system including dimensionless heat and work [4]. Compression ratio falls as a result of 

energy imbalance. 

The third and final case described here is that of cyclic stability or equilibrium. The first example 

for this is shown in Figure 11. For the given heat, work, and starting position input parameters, the 

compression ratio rises with each stroke towards stable operation. 
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Figure 11: Basic free piston system including dimensionless heat and work [4]. Energy is balanced sufficiently for 

compression to rise to stability. 

In the next example, the same input parameters are applied except for the starting position of the 

translator. Figure 12 shows the operation of this system. Noting the final translator position shown in 

Figure 11 and comparing it with that in Figure 12 makes it apparent that the same stable compression 

ratio is reached in both cases. 

 

Figure 12: Basic free piston system including dimensionless heat and work [4]. Energy exchange is sufficiently 

balanced for compression to fall to stability. 

Further exploration of the equilibrium case allows for the development of a relationship between 

the heat added and work removed from the engine system. Based on Otto cycle efficiency for an engine 

(with the cold air assumption in tow), the ideal amount of energy removed from the system is a function 

of the heat addition and compression ratio. With this relationship, equilibrium operation can be attained 

for any known heat input at any given compression. This relationship is shown in Eq. 31. 
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 𝐹𝑊
∗ =

𝑄𝑖𝑛
∗

𝑥𝑟
∗ − 𝑥𝑙

∗ [1 − (
1 + 𝑥𝑙

∗

1 + 𝑥𝑟
∗)

𝛾−1

] 
Eq. 31 

In this form, the compression ratio is present in terms of the starting and ending position of the stroke. 

Constraining the work energy by this equation guarantees system stability. An example of this application 

is seen in Figure 13. 

 

Figure 13: Basic free piston system including dimensionless heat and work [4]. Energy is constrained to operate at 

equilibrium by the Otto cycle efficiency. 

In the equilibrium illustrated by Figure 13, the plot makes it evident that the left dead center and right 

dead center positions are equal but opposite in their distance from the origin. This (𝑥𝑟
∗ = −𝑥𝑙

∗) can be 

applied to simplify Eq. 31 further. 

 𝐹𝑊
∗ =

𝑄𝑖𝑛
∗

−2𝑥𝑙
∗ [1 − (

1 + 𝑥𝑙
∗

1 − 𝑥𝑙
∗)

𝛾−1

] 
Eq. 32 

The application of Eq. 32 is explored in some detail in [4], and it is shown that for any compression 

ratio (directly related to a known starting position at left dead center position), natural equilibrium involves 

a very narrow band of tolerance for the proportional amounts of heat and work exchanged within and 

without the system. 

These fundamental concepts of simple heat work and their effects on natural equilibrium are 

important for building a basic understanding of the dual piston linear engine system. And, arriving at a 

closed form solution is appealing as it excludes any uncertainty which could be introduced in the 

numerical solution of a system of nonlinear equations. Next, the model is extended, still within the 

fundamental (nondimensional) space, to gain insight into the effects of a work profile which includes 

position dependence, combustion prior to top dead center, and non-adiabatic cylinder 
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compression/expansion. These sophistications are more fully described in [5] and will be succinctly 

detailed in the next few sections.  

2.4 Spatially Dependent Work Profile 

The first step taken to extend the basic model is to develop a dimensionless work force profile 

which depends on the dynamics of the translator.  In the basic system previously examined, the work 

force was assumed to be constant throughout the entire stroke. Here, a more realistic profile is employed 

to study the effects of spatially dependent forces on the velocity and acceleration profiles. 

In [73], Aichlmayr and Van Blarigan validate a model for the magnetic flux of the alternator as a 

function of the translator position. In another work [12], Van Blarigan and researchers consider the force 

exerted by the alternator to be a function of translator velocity. While this is not a contradiction, it does 

demonstrate that the varied approaches which might be taken to represent a dependent work profile. In 

this fundamental effort, the velocity of the translator is not known a priori, so to maintain a closed form 

solution, the work force is constructed as a function of position only. In [8], Aichlmayr provides typical 

work profiles which might be seen in a free piston alternator device. Based on this, a cosine function is 

selected of the following form. 

 𝐴 𝑐𝑜𝑠 (
𝜋

2
𝑥∗) 

Eq. 33 

To maintain equilibrium operation of the system, the Otto efficiency is applied as seen in Eq. 31. 

Equating the stroke integrals of the two work curves (constant and cosine) ensures that the work output 

of the system is constrained by the Otto efficiency and allows for the solution of the coefficient 𝐴 [5]. This 

relationship is given in Eq. 34. 

 𝐴 =
𝜋𝐹𝑊

∗ (𝑥𝑟
∗ − 𝑥𝑙

∗)

2 [𝑠𝑖𝑛 (
𝜋
2
𝑥𝑟
∗) − 𝑠𝑖𝑛 (

𝜋
2
𝑥𝑙
∗)]

 
Eq. 34 

In the relationship found for the work force amplitude (𝐴), the dimensionless work force constant 

(𝐹𝑊
∗ ) is calculated using Eq. 31 allowing for easy employment of Eq. 33 to find the work force applied to 

the translator as a function of the dimensionless translator position. An example of this is seen in Figure 

14 and compared to the originally constant work profile. 
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Figure 14: Constant work force profile compared to the cosine profile [5]. The integral of each profile over the 

position is constrained to be equivalent. 

Substitution of Eq. 33 in place of the work force term (𝐹𝑊
∗ ) of Eq. 26 and Eq. 29 and then integrating to 

find the translator velocity as a function of position allows for engine cycle simulation. The effects of the 

sinusoidal work profile are demonstrated in Figure 15. 

 

Figure 15: Comparison of the effects of constant and cosine work profiles on translator dynamics [5]. 

As seen in Figure 15, peak velocity and acceleration of the translator slightly increases with the use 

of the cosine work profile. This is due to the reduced amount of resistive work force applied to the 

translator near its dead center positions (𝑣∗ = 0). Subsequently, the translator accelerates more rapidly 

towards a greater velocity. Then, around the middle of the stroke (𝑥∗ = 0), the work force is greater in the 

case of the cosine profile causing a slightly more rapid decline in velocity. The effects seen are relatively 

small given any set of operating conditions because given those operating conditions, the work force 

profile is dictated to be of the same order of magnitude. Further, in any case, the Otto efficiency constraint 

guarantees the equilibrium operation of the engine system and equal amount of work extracted 

regardless of the work force profile. Next is discussed the system in which combustion is allowed to occur 

before piston top dead center. 
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2.5 Combustion Timing Prior to TDC 

Up to this point in the fundamental analysis, two major simplifications have allowed the closed form 

model with heat addition from combustion. First, combustion has been set to occur at TDC regardless of 

any conditions within the respective cylinder. In reality, combustion timing is very much dependent upon 

cylinder pressure and temperature as well as fuel and air mixture conditions. Second, the combustion 

event has been made to occur instantaneously – manifested as a constant volume change in pressure – 

which basically represents the extremely rapid heat release during a HCCI combustion event [74]. 

Adding sophistication to the model while maintaining the closed form analytical solution, the 

combustion event is kept as a constant volume process, but the combustion timing can be augmented. 

In a true HCCI engine, combustion is initiated when temperature, pressure, and fuel composition 

conditions result in the spontaneous ignition at many points within the cylinder volume. In practical 

applications, injection timing can be used to retard ignition until after TDC [75]. However, if fuel is injected 

early during the compression stroke, achieving better homogeneity of the fuel-air mixture, ignition timing 

is constrained to before or at TDC as the highest pressure and temperature combination will be reached 

at TDC. 

To allow for combustion at a location other than TDC in the fundamental model, the first assumption 

is that ignition will occur before or up to TDC. To maintain the simplicity of the model, pressure is assumed 

a suitable surrogate for temperature while mixture conditions are assumed homogeneous. So, during any 

given stroke, ignition occurs if a prescribed pressure threshold is reached. This threshold is defined 

relative to the pressure reached in the combustion cylinder at the initial position. The relationships that 

define subsequent strokes are discretized [5], allowing for closed form solution between discrete steps 

in position as well as access to cylinder pressure information for combustion initiation. During each stroke, 

a conditional statement examines the in-cylinder pressure, and if the pressure threshold is reached, heat 

is added to represent the constant volume combustion process. 

As a first example, Figure 15 could represent the simulation of this system in which 100% of the 

initial pressure was required to achieve combustion. Because heat and work were related through the 

Otto cycle efficiency, the pressure threshold was reached during each stroke at exactly top dead center 

and thus no effects are seen. In another example (simulation results seen below in Figure 16), the 

combustion pressure threshold was set to 20% of the initial cylinder pressure to cause combustion 

significantly prior to TDC. The combustion event is manifested by a sharp change in the velocity profile 

caused by the constant volume heat release and subsequent instantaneous change in translator 

acceleration. In the position velocity plot from Figure 16, the abrupt change is most evident during the 
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first few strokes and can be seen in the top right and bottom left of the curve – circled areas in the position-

velocity plot, just before top dead center positions. 

 

Figure 16: Fundamental simulations where the combustion pressure at 20% causes combustion to occur prior to top 

dead center [5]. 

Also observable in the Figure 16 plots is the decrease of the compression of the engine towards 

equilibrium operation with TDC combustion. This trend holds for any set of operating parameters with 

combustion occurring prior to top dead center. 

2.6 Non-Adiabatic Expansion and Compression 

In the basic system, one of the most significant simplifications was the neglecting of heat transfer 

during cylinder compression and expansion processes. While the theoretical Otto cycle includes 

isentropic pressure changes (polytropic, adiabatic) for each cylinder, a realistic engine loses heat to the 

cylinder walls and piston head during both compression and expansion. To achieve this sophistication in 

the fundamental model, the polytropic exponent (𝑛) is altered such that it no longer equals the specific 

heat ratio and varies between the compression and expansion processes. This is a simple approach with 

respect to the large body of research dedicated to studying engine heat transfer, but the next simulations 

demonstrate its effectiveness. First, Figure 17 illustrates the effect of the polytropic pressure curves 

during a single cycle simulation with combustion prior to TDC. The curves are compared to the adiabatic 

pressure curves which have been applied up to this point. 
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Figure 17: Pressure curves to demonstrate heat transfer and adverse work [5]. The adiabatic profile is compared to 

the polytropic profiles. Advanced combustion timing and heat transfer combine to allow adverse work. 

Energy lost due to heat transfer is evident in the plots through the decreased amount of cylinder 

pressure in the actual (polytropic) case than in the adiabatic (previously used) case. With the inclusion of 

pre-TDC combustion, this also allows for adverse work, seen in the zoomed plot as an inversion of the 

pressure curve. This adverse work is energy further lost in the system because it is consumed in turning 

the translator around for the next stroke. Previously, adverse work was not present because the cylinder 

pressure followed the same curve during both expansion and compression processes. 

2.7 Combined Effects 

In combining the effects of these three sophistications, a large number of system responses can 

be achieved. These are more fully explored in [5] leading to the need to balance heat and work exchanges 

to maintain equilibrium oscillation. To achieve equilibrium in the simulation, a second law thermodynamic 

efficiency is applied to the work output to balance the heat transfer and adverse work losses. The position, 

velocity, and acceleration profiles of a high compression simulation are shown in Figure 18.  

 

Figure 18: Dynamic profiles for multi-cycle simulation [5]. Fundamental analysis concepts are combined for a high 

compression equilibrium simulation. 

Due to the high compression ratio, the translator residence time around TDC is very short. This 

is indicated by the steep sides of the position-velocity curve. The combustion event prior to TDC is evident 
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in the acceleration profile as the sharp increase before velocity equals zero. Figure 19 gives two additional 

plots from the same simulation to help further describe the nature of the system. 

 

Figure 19: Transient settling of compression ratio and energy balance for multi-cycle simulation [5] – continued from 

Figure 18. 

The initial transience of the system are seen in the variation of the compression ratio as the 

system settles into its natural dynamic equilibrium operation. In the right hand plot of Figure 19, the results 

of an energy analysis of the final equilibrium cycle are shown to quantify the simulation. In the chart, 

energy lost is accounted for in heat transfer losses, heat rejection at BDC, and adverse work around 

TDC. The work and friction were not handled independently in the model, but if a portion of this were 

taken to be friction – possibly on the order of <10% for the SALEG system [76], the work output and thus 

overall efficiency would be just under 50%. This is consistent with the high compression ratio application. 

The trends and fundamental relationships developed throughout Ch. 2 and the two associated 

publications [4, 5] offer a foundational platform and verification tool for the numeric and Simulink models. 

The concept of adverse work around top dead center is demonstrated to be the result of early combustion 

and heat transfer – i.e. advancing the combustion timing or allowing for high heat transfer both increase 

the adverse work. Early combustion is shown to reduce stroke length. And, the shape of the work force 

profile is shown have small effects on the dynamics of the translator. Finally, the relationships – such as 

the Otto cycle stability relationship between heat and work – might be applied to parametrically study the 

design and optimization of the SALEG.  
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CH. 3 NUMERIC SIMULATION 

Because this research is highly dependent upon simulations of the SALEG, significant effort has 

been made to develop a sophisticated and robust virtual model. The primary outcome of the modeling is 

increased understanding of the operation of the device over many cycles at steady state and during 

transient events. To achieve this, each sub-model is as sophisticated as computationally allowable. For 

example, there are a number of possible approaches for modeling any single combustion event. 

Computationally expensive efforts have attempted to combine chemical kinetics with computational fluid 

dynamics (CFD) across multiple zones within a cylinder. However, the amount of time necessary to 

complete the routine (on the order of hours for a relatively fast computing system) is not practical for 

multiple cycles of simulation, especially when those cycles contain multiple combustion events. In 

addition, pressure wave dynamics, flame front propagation, quench, and knocking are all complex 

phenomena which compound the difficulty of combustion modeling. Thus, a model is chosen which 

sufficiently approximates the combustion event but does not encumber the total effort with excessive 

computational needs. The same principle is applied to each process that contributes to the operation of 

the SALEG. 

This chapter provides a detailed description of the numeric model at the heart of the research and 

validates the model against examples and results found in current literature. The conceptualization of the 

linear engine under analysis is illustrated in Figure 1 with selected dimensions. The dual cylinder housing 

holds the tubular permanent magnet linear alternator (TPMLA) with mechanical compression springs or 

bounce chambers on either side of the alternator moving mass. Outside of the spring systems are the 

dual engine pistons and cylinders. Under the piston heads are crankcase spaces and bearing locations 

for the piston rods which rigidly connect the piston heads to the alternator moving mass. The crankcases 

allow for compression of the intake gas or mixture, depending on the choice of direct or port injection of 

fuel, and splash lubrication. Spark plugs in the cylinder heads might be included to provide assistance 

for low temperature HCCI combustion when necessary. Alternatively, glow plugs could replace the spark 

plugs to aid in combustion timing and control, or it may be found that neither are required for stable 

operation. 

Just as in the fundamental analysis, Newton’s second law (shown in Eq. 35) provides the basis 

for the translator dynamics. The sum of the forces acting on the translator is proportional to the moving 

mass and acceleration (�̈� = 𝑎). The forces acting on the translator are illustrated in the free body diagram 

(FBD) shown in Figure 20 along with the inertial response of the translator. 

 ∑�⃗� = 𝑚�̈� 
Eq. 35 
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Figure 20: Free body diagram of SALEG translator with forces and inertia terms included. 

In the FBD, 𝐹𝑝,𝐿 and 𝐹𝑝,𝑅 are the left and right forces associated with the engine cylinder pressures 

acting against the piston heads, 𝐹𝑠,𝐿 and 𝐹𝑠,𝑅 are the spring forces acting on the translator whether bounce 

chambers or compression springs, 𝐹𝑤 is the force from the linear electric machine, and 𝐹𝑓 is the friction 

acting against the motion of the translator at the bearing and piston ring locations. These forces cause 

the motion of the translator which is described by position (𝑥), velocity (𝑣 = �̇�), and acceleration (𝑎). 

Introducing these terms into Eq. 35 yields the dynamic relationship shown in Eq. 36. 

 𝐹𝑝,𝐿 − 𝐹𝑝,𝑅 + 𝐹𝑠,𝐿 − 𝐹𝑠,𝑅 − 𝐹𝑤 − 𝐹𝑓 = 𝑚�̈� 
Eq. 36 

To develop the model properly, each of the force terms deserves careful attention and so are described 

in the subsequent sections. 

3.1 Friction 

One of the anticipated benefits of FPLE technology is the reduction of friction as compared to 

conventional crankshaft engine technology. Because the linear engine directly drives the generation of 

electrical power rather than converting from linear kinetic energy (piston) to rotational kinetic energy 

(crankshaft), the number of components and contact surfaces is significantly reduced. According to 

researchers in [76] and corroborated in [77], 30% of the fuel consumed in an engine goes to frictional 

losses. That is broken down into more specific losses: valve train and crankshaft friction can account for 

as much as 35% of the total friction lost; accessories (e.g. oil and water pump, A/C compressor, 

alternator) then account for 10-20%; and the piston group losses range from 30-45% of the total friction. 

The FPLE married to the linear electric alternator eliminates the frictional losses associated with valve 

train, crankshaft, and accessories. Furthermore, piston group losses are expected to be reduced because 

of the lack of side thrust applied to piston head by the relatively lateral motion of the connecting rod in a 
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crankshaft engine. Recent experimental results from DLR show total friction losses at 5.9% [41] which is 

a significant reduction compared to crankshaft technology. 

In any case, modeling of the friction force has taken four routes throughout investigations seen in 

the literature. A sensitivity analysis conducted in [78] shows that the shape of the friction force profile 

may be insignificant, but the available options are described for completeness. The trivial case is to ignore 

friction with the assumption that its affects are negligible [79]. However, the work at DLR and many others 

demonstrate that the amount of energy lost to friction is too significant to be ignored. The second 

approach for modeling friction is that of a constant force applied to the translator throughout its range of 

motion. Early correlations for this constant friction within a two-stroke engine are presented by Blair [80] 

and depend on the mean frictional pressure (𝑓𝑚𝑒𝑝) as shown in Eq. 37 and have been applied in recent 

modeling investigations [35]. 

 

𝑊𝑓

𝑉𝑑
= 𝑓𝑚𝑒𝑝 = 𝐴𝑆𝑓

𝑉𝑑 =
𝜋𝑏2𝑆

4
 

𝑊𝑓 = 2𝐹𝑓𝑆 }
  
 

  
 

⇒ 𝐹𝑓 = 𝐴
𝜋𝑏2

8
𝑆𝑓  

Eq. 37 

In Eq. 37, 𝑊𝑓 is the frictional work, 𝑉𝑑 is the displaced volume, 𝑆 is the stroke length, 𝑓 is the 

engine speed or frequency as applicable, and 𝐴 is a constant 150 kg ∙ m−2 ∙ s−1 independent of system 

geometry. A third approach is the correlation presented by researchers from Sandia National 

Laboratories [12] – shown in Eq. 38. 

 𝐹𝑓 = 𝑠𝑖𝑔𝑛(�̇�)[𝑓1 + 𝑓2|�̇�|]  Eq. 38 

In the correlation from SNL, model constants 𝑓1 and 𝑓2 were matched to experimental data 

gathered from a rapid compression machine used to test free piston technology with HCCI combustion. 

The model itself combines viscous damping effects proportional to the velocity of the translator and static 

friction associated with the force required to move the translator from rest. Unfortunately, the correlated 

constants are not reported. Finally, the friction has been modeled as only viscous damping (Eq. 39).  

  𝐹𝑓 = 𝑐𝑓�̇� 
Eq. 39 

Researchers from WVU correlated the model constant (𝑐𝑓) with experimental data gathered from 

a free piston linear engine and validated the model in ring-down testing [19], showing good success for 

the model. The same research suggested that the damping coefficient should be dependent on the piston 

bore and translator mass. Without more experimental data, such a correlation cannot be validated. 

Further, the translator mass effect may be less consequential than the stroke length based on the 

previously mentioned work by Blair. The viscous damping model is chosen for the present investigation 



36 

 

because of its simplicity and proven effectiveness. The friction coefficient is calculated for a given model 

based on Blair’s relationship for the average frictional pressure which has been shown to depend on 

engine geometry and operation. This relationship is given in Eq. 40 

 𝑐𝑓 = 𝐴(
𝜋𝑏2

8
)𝑆𝑚𝑎𝑥(60𝑓𝑎𝑣𝑔) Eq. 40 

In this representation, the leading coefficient (𝐴) is tuned to corroborate with the frictional energy 

consumption (~6%) findings from DLR, 𝑆𝑚𝑎𝑥 is the maximum stroke, and 𝑓𝑎𝑣𝑔 is the average engine cycle 

speed in Hz scaled by 60 to match Blair’s use of engine speed in revolutions per minute (rpm). 

3.2 Compression Springs 

For this investigation, the springs are modeled simply according to a constant stiffness (𝑘) and 

instantaneous deflection (𝛿) according to Eq. 41. 

 𝐹𝑠 = 𝑘𝛿 
Eq. 41 

With the assumption of perfect, symmetric springs, the total spring force acting on the translator reduces 

to Eq. 42 which was demonstrated in the derivation of Eq. 6 and shows an independence of the combined 

spring effect with respect to geometry so long as symmetry is upheld. 

 𝐹𝑠,𝐿 − 𝐹𝑠,𝑅 = −2𝑘𝑥 
Eq. 42 

While Eq. 42 represents a linear force profile for the combined spring effect, it is notable that 

compression springs do not necessarily have a linear profile and that compression springs do not have 

to be used at all. The use of regulated (compressed air) bounce chambers is being explored as an 

alternative, and may in fact offer a suitable means of controlling the SALEG through a wide range of 

operation. 

3.3 Alternator 

The primary objective of modeling the alternator is to find a relationship for the thrust force applied 

to the translator (notated as 𝐹𝑤 in Eq. 36) based on design parameters and instantaneous translator 

dynamics. Early analysis of a linear electric alternator by Boldea and Nasar [50, 51] describes the general 

equations and practical design of single- and three- phase linear permanent magnet machines. Soon 

after, they continued their investigation of linear electric machines by demonstrating the use of an 

equivalent circuit to model a linear induction motor [54]. Previously at WVU, Cawthorne presented his 

dissertation on the modeling and optimization of a single-phase TPMLA where he employed finite 

element methods in ANSYS and an equivalent circuit to model the steady state solution of the device 

[62]. The process was extended to a three-phase device and validated against experimental data in [81, 
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82]. The computationally expensive routine employed by Cawthorne is out of the scope of this 

investigations, but the use of an equivalent circuit continues to be seen in literature due to its 

computational simplicity. 

Aside from the simplicity, the choice of the simplified equivalent circuit model is supported in 

another sensitivity study presented in [78]. In the study, it is shown that the simplified alternator force 

model tends to fit the mean value of the more complex model which includes the oscillating, position 

dependent flux pattern. Despite the apparently large variation in the force profile, the net energy effects 

on the translator dynamics are consistent between the two model choices. 

Three recent publications demonstrate the use of the equivalent circuit model. The first [83], from 

Ulsan University in South Korea, represents the magnetic field strength with a Fourier series which 

enables the derivation of position dependent coil flux. Knowing the flux, the equivalent circuit equation 

can be manipulated to yield a relationship for the alternator thrust force dependent on design parameters 

and translator dynamics. At the heart of the resulting thrust force equation is a relationship which 

multiplies the translator velocity by a derived term that includes alternator geometry, equivalent circuit 

parameters, and translator position. In the second [35], researchers from the Beijing Institute of 

Technology in China and Newcastle University in the UK consider a simpler approach which multiplies 

the translator velocity by a load constant – in other words, the simplified thrust force is assumed to be 

proportional to the translator velocity by a given load constant. Their value for the load constant is given 

to be 100 N ∙ s/m. 

Finally, the third example of the equivalent circuit model for the alternator comes out of Shanghai 

Jiaotong University in Shanghai, China [84, 85]. Finite element analysis and simple equivalent circuit 

models were compared to demonstrate the validity of the simple model. Their solution involved a 

proportionality constant to relate the back EMF voltage to velocity which allowed the instantaneous 

current calculation via transfer function derived from the equivalent circuit. The thrust force was finally 

calculated based on its proportionality to the current and a second modeling constant. In any case, the 

simple model is shown to be effective and computationally cheap, but requires the use of modeling 

constants to accurately represent the nature of the alternator with respect to translator dynamics. 

Furthermore, these constants must be derived either from empirical data or computationally expensive 

analysis. 

For the current investigation, the simplest of the models is chosen which relates the alternator thrust 

force to a single lumped parameter and translator velocity. The derivation of the model starts with the 

equivalent circuit as shown in Figure 21. 
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Figure 21: Equivalent circuit for alternator modeling – adapted from [62]. 

The equivalent circuit represents the average current flow through the alternator coils (𝑖) with an inductor 

(𝐿𝑖𝑛𝑑) and coil resistance (𝑟𝑐𝑜𝑖𝑙) along with the externally applied, resistive load (𝑅𝑙𝑜𝑎𝑑) [81]. The total 

circuit voltage equation set is given in Eq. 43. 

 
𝑉𝐸𝑀𝐹 = 𝐿𝑖𝑛𝑑

𝑑𝑖

𝑑𝑡
+ 𝑖(𝑟𝑐𝑜𝑖𝑙 + 𝑅𝑙𝑜𝑎𝑑) 

𝑉𝑜𝑢𝑡 = 𝑖𝑅𝑙𝑜𝑎𝑑                            𝑃𝑜𝑢𝑡 = 𝑖
2𝑅𝑙𝑜𝑎𝑑 = 𝑖𝑉𝑜𝑢𝑡 

Eq. 43 

The back EMF voltage (𝑉𝐸𝑀𝐹), output voltage (𝑉𝑜𝑢𝑡), and output power (𝑃𝑜𝑢𝑡) are all related to lumped 

alternator parameters. Now, Faraday’s Law for Electromagnetics states that the EMF voltage is equal to 

the flux time derivative which can be expanded by the chain rule as shown in Eq. 44. 

 𝑉𝐸𝑀𝐹 = −
𝑑𝜆

𝑑𝑡
= −(

𝑑𝜆

𝑑𝑥
) �̇� Eq. 44 

The total alternator flux (𝜆) is assumed to be a function of translator position such that 𝑑𝜆/𝑑𝑥 =

𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. This is shown to be approximately true in [79] where the end effects (flux profile around the 

limits of the translator stroke) show slight deviation from the assumed linear relationship. The force 

applied by the alternator on the translator is related to the power output through the velocity and the 

alternator efficiency (𝜂𝑎𝑙𝑡) – given in Eq. 45. 

 𝑃𝑜𝑢𝑡 = −𝜂𝑎𝑙𝑡𝐹𝑤�̇� 
Eq. 45 

Assuming that the alternator efficiency encompasses the dissipation effects (inductor and resistor in the 

circuit) between the EMF and output voltage, the alternator force equation can be written as shown in 

Eq. 46. 

 𝐹𝑤 = −
𝑖𝑉𝐸𝑀𝐹
𝜂𝑎𝑙𝑡�̇�

= (
𝑑𝜆 𝑑𝑥⁄

𝜂𝑎𝑙𝑡
) 𝑖 

Eq. 46 

Assuming again that the eventual load constant will compensate for dissipation, the current can be 

directly related to the load resistance and substitution with Eq. 44 yields Eq. 47. 
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 𝐹𝑤 = −(
𝑑𝜆 𝑑𝑥⁄

𝜂𝑎𝑙𝑡
) (
𝑑𝜆 𝑑𝑥⁄

𝑅𝑙𝑜𝑎𝑑
) �̇� = −(𝑐𝐴)�̇� 

Eq. 47 

The alternator force equation describes the proportionality of the force to velocity through the load 

resistance and a load constant (𝑐𝐴) which lumps the flux profile and alternator efficiency together. The 

inverse relationship to load resistance illustrates that an increase of power output requires a decrease of 

load resistance, and the negative sign shown in Eq. 47 ensures that the alternator force always acts in 

the opposite direction of the translator velocity. 

3.4 Free Piston Engine Cylinders 

Perhaps the most important and complex of all the processes in the SALEG is that which occurs in 

each of the engine cylinders. The proposed dual piston linear engine operates as an alternating two-

stroke, port scavenged, methane fueled, HCCI combustion engine. The synergetic relationship between 

HCCI combustion and the variable compression free piston engine is well described by Lee [78]. 

Compression ratio rises and auto-ignition timing advances with respect to top dead center 

sympathetically. However, as start of combustion timing continues to advance, adverse work and heat 

transfer losses increase leading to reduced system energy and reduced compression. Conversely, as 

SOC timing recedes towards TDC, compression ratio tends to rise because the turn-around of the 

translator depends largely on cylinder pressure rise due to combustion. Capturing this and other 

dynamically interdependent relationships within the SALEG system can only be achieved with sufficient 

detail given to the engine modeling. 

The two engine cylinders are modeled identically with 1-D cylinder pressure modeling techniques 

found throughout the free piston linear engine simulation literature. Use of a 1-D cylinder model sacrifices 

the greater accuracy that may be attained from a multi-zone approach which employs either chemical 

kinetics, computational fluid dynamics, or both to solve for cylinder pressure and temperature. However, 

such a method substantially increases the computational requirements for a simulation. It is the objective 

of this investigation to parametrically study the SALEG across a wide array of design possibilities, so 

model simplicity and accuracy must be balanced against sophistication and computational time. 

The engine model is divided into four distinct processes: compression, combustion, expansion, and 

gas exchange. Cylinder gas leakage around the piston rings is neglected allowing for closed system 

analysis of the cylinder during compression, combustion, and expansion. While empirical correlations are 

available for each of these processes, they are often based on conventional engine technology and 

related through crankshaft position. As such, care must be taken to properly translate each expression 

to proper representation in the time domain. In addition, positional referencing such as that used in 

conventional engine technology (e.g. degrees after top dead center) has no real meaning for the free 
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piston. Knowing the length of the stroke for a given cycle, it may be mathematically related to conventional 

terminology, but dead center positions are not fixed for the free piston and so cannot be used in the same 

manner. 

With the assumption that gas leakage around the piston rings is negligible, compression, 

combustion, and expansion can be modeled as closed system processes. It is also assumed the cylinder 

gases behave according to the ideal gas law, so the cylinder pressure can be represented in the 

differential form given by Eq. 48. 

 
𝑑𝑃

𝑑𝑡
= (−𝛾

𝑃

𝑉
)
𝑑𝑉

𝑑𝑡
+ (

𝛾 + 1

𝑉
) (
𝑑𝑄ℎ𝑡
𝑑𝑡

+
𝑑𝑄𝐻𝑅
𝑑𝑡

) Eq. 48 

In Eq. 48, 𝛾 is instantaneous specific heat ratio, 𝑃 is instantaneous cylinder pressure, 𝑉 is 

instantaneous cylinder volume, and 𝑄ℎ𝑡 and 𝑄𝐻𝑅 are heat transfer with the cylinder walls and heat release 

due to combustion respectively. For the ratio of specific heat, a 3rd order polynomial fit is given in [86] 

which shows good correlation to HCCI engine data over a temperature range of 550 K – 2150 K. This 

relationship is provided in Eq. 49 and is correlated to temperature in units of Kelvin. 

 𝛾 = (−9.967 ∙ 10−12) ∙ 𝑇3 + (6.207 ∙ 10−8) ∙ 𝑇2 + (−1.436 ∙ 10−4) ∙ 𝑇 + 1.396 
Eq. 49 

Cylinder heat transfer is modeled by convection and so depends on the instantaneous surface area within 

the cylinder (𝐴) and temperature difference between cylinder gas and cylinder wall (𝑇 and 𝑇𝑤𝑎𝑙𝑙 

respectively), as shown in Eq. 50. 

 
𝑑𝑄ℎ𝑡
𝑑𝑡

= ℎ𝐴(𝑇 − 𝑇𝑤𝑎𝑙𝑙) Eq. 50 

The wall temperature is assumed constant over the head, cylinder walls, and piston crown. The 

heat transfer coefficient (ℎ) can be calculated using various empirically correlated formulae, each with 

strengths and weaknesses according to application. Unfortunately, these empirical relationships are 

based upon slider-crank motion rather than the unusual and variable motion of the linear engine system. 

Piston velocity is the usual reference for the in-cylinder charge motion that enhances the heat transfer, 

along with instantaneous gas temperature, pressure, and cylinder volume. Hohenberg’s formulation [87] 

has seen recent application in free piston engine modeling by Newcastle and Beijing researchers [34]. 

The relationship (Eq. 51) maintains the desired simplicity while including the terms which have proven to 

be most significant for cylinder heat transfer.  

 ℎ = 𝑎 ∗ 𝑉𝑏 ∗ 𝑃𝑐 ∗ 𝑇𝑑 ∗ (�̅� + 1.4)𝑒 
Eq. 51 

In the Hohenberg formulation, 𝑉 is volume in m3, 𝑃 is pressure in bar, 𝑇 is temperature in K, and  �̅� is 

mean piston speed in m/s. In the original formulation, the empirical constants are: 𝑎 = 130, 𝑏 = −0.06, 
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𝑐 = 0.8, 𝑑 = −0.4, and 𝑒 = 0.8. However, the leading constant (𝑎) can be tuned to achieve a desired 

quantity of heat transfer per cycle. This feature is used to check simulation sensitivity to the selected heat 

transfer model in a later section. 

Heat addition depends on the rate of combustion, which is readily programmed into a time-based 

model. However, empirical models such as those based on Wiebe functions [88, 89] were also originally 

derived from slider-crank engine data. There are several possible approaches for modeling any single 

combustion event. The current 1-D pressure model approach is considered single zone, as opposed to 

multi-zone methods which sacrifice simplicity and computation time for the potential of increased 

accuracy. These more extensive studies typically differ in overall objective and do not seek to achieve 

multiple cycles of operation for the simulated engine – see examples [90, 91]. 

In his dissertation [92], Mo concludes that combustion timing is the single most important variable for the 

entire combustion process and presents a series of relationships which sufficiently predicts 1-D HCCI 

engine performance. Unfortunately, these correlations are highly dependent on crankshaft position and 

cannot be adequately re-expressed for the free piston engine in the time domain. Such research indicates 

that single zone simulations can be satisfactory for accurate prediction of engine cylinder pressure during 

HCCI combustion operation, but such accuracy is dependent on proper correlation and application. The 

current work employs a time-based, single Wiebe function of the classic form [93]. 

 𝜒(𝑡) = 1 − 𝑒𝑥𝑝 [−𝑎 (
𝑡 − 𝑡𝑆𝑂𝐶
𝐶𝑑

)
1+𝑏

] 
Eq. 52 

In Eq. 52, the mass fraction burn (𝜒) is represented as a function of time, combustion timing (𝑡𝑆𝑂𝐶), 

combustion duration (𝐶𝑑), and shape parameters 𝑎 and 𝑏 equal to 5 and 2 respectively [34]. The same 

investigation also records a constant combustion duration of 5 ms. Model sensitivity to the combustion 

profile and duration is demonstrated later in this chapter. With the mass fraction burn relationship, the 

heat release equation can be formulated. 

 

𝑑𝑄𝐻𝑅
𝑑𝑡

= 𝜂𝑐𝑜𝑚𝑏𝐸𝑓𝑢𝑒𝑙
𝑑𝜒(𝑡)

𝑑𝑡
 

𝑑𝑄𝐻𝑅
𝑑𝑡

= 𝜂𝑐𝑜𝑚𝑏𝐸𝑓𝑢𝑒𝑙 [𝑎
𝑏 + 1

𝐶𝑑
(
𝑡 − 𝑡𝑆𝑂𝐶
𝐶𝑑

)
𝑏

𝑒𝑥𝑝 (−𝑎 (
𝑡 − 𝑡𝑆𝑂𝐶
𝐶𝑑

)
1+𝑏

)] 
Eq. 53 

In Eq. 53, the heat release rate is dependent on the mass fraction burn rate and the total heat 

released which is the product of combustion efficiency (𝜂𝑐𝑜𝑚𝑏) and total fuel energy (𝐸𝑓𝑢𝑒𝑙). The fuel 

energy is calculated as the product of total fuel mass in the cylinder and the lower heating value (LHV) 

of the fuel. It is noted here that while a LHV of 48 MJ/kg is assumed for this investigation, the energy 

content of the fuel is somewhat arbitrary given the number of other parameters which must be dealt with. 

In fact, fuel energy changes can be achieved by either varying the LHV or the fuel mass (akin to adjusting 
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the equivalence ratio), and any single combustion event is additionally dependent on combustion 

efficiency which is out of reach for this investigation. On the other hand, fuel properties in general can 

have significant impact on combustion performance and a range of fuels have been examined for HCCI 

combustion [94-96].  The given LHV, along with stoichiometric air-to-fuel ratio of 17.5, is meant to be 

representative of methane – a relatively high energy content, gaseous fuel with simple molecular 

structure. Meanwhile, the combustion efficiency is assumed to be 95%, but as Mo demonstrates in [92], 

efficiency depends on operating conditions such as engine speed, combustion timing, equivalence ratio, 

and wall temperature. Mo finds a correlation for efficiency based on crankshaft driven engine data, but 

no such data yet exists for the free piston engine.  

For HCCI combustion, the ignition timing is independent of an external trigger (such as spark or 

injection) but instead depends on chemical kinetics: temperature, pressure, mixture composition, and 

stratification [65]. Because the employment of a sophisticated combustion prediction routine is outside 

the scope of this investigation, the ignition timing is predicted with the use of a knock integral. The general 

form for the knock integral is given in Eq. 54. 

 ∫
1

𝜏
𝑑𝑡

𝑡𝑆𝑂𝐶

0

= 1.0 
Eq. 54 

When the ports close and compression begins, the integration is initiated. The combustion ignition 

timing (start of combustion, 𝑡𝑆𝑂𝐶) is found when the integral of 1/𝜏 equals unity where 𝜏 is a correlated 

relationship that involves the effects of fuel mixture, temperature, and pressure. Two notable relationships 

for 𝜏 are available in the literature. The first of these is described in [97] and is validated against data 

from a Cooperative Fuel Research (CFR) engine fueled by iso-octane and operating on HCCI 

combustion. The relationship is provided in Eq. 55 

 𝜏 = 𝐴𝜔𝜙−𝑥 𝑒𝑥𝑝 (
𝑏

𝑇
𝑃𝑛) Eq. 55 

In Eq. 55, 𝐴, 𝑏, 𝑛, and 𝑥 are model parameters with base values of 9.291 ∙ 10−7, 16909, −0.1121, and 

−0.688, respectively. Meanwhile, 𝜔 is engine speed in revolutions per minute which is equivalent to 

frequency in units of min-1 for the two-stroke free piston engine, 𝜙 is equivalence ratio, 𝑇 is gas 

temperature (K), and 𝑃 is cylinder pressure in (kPa). The second of the two relationships correlates auto-

ignition of iso-octane from a rapid compression machine (RCM) [98] according to the relationship for 𝜏 

given in Eq. 56. 

 𝜏 = 1.3 ∙ 10−7 ∙ 𝑃−1.05 ∙ 𝜙𝐹𝑂
−0.77 ∙ 𝜒𝑂2

−1.41 ∙ 𝑒𝑥𝑝 (
𝐸

𝑅 ∙ 𝑇
) Eq. 56 
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Similarities between the two ignition timing models are evident by the use of pressure (𝑃 in atm), 

temperature (𝑇 in K), and mixture composition. However, mixture composition is given as the product of 

effects from equivalence ratio (𝜙) and oxygen mole fraction (𝜒𝑂2 in %) while 𝑅 is the universal gas 

constant (J/mol-K) and 𝐸 is activation energy (33.7 kcal). This model was employed by Lee in recent free 

piston engine modeling efforts [78], and both are used in the current investigation for the sake of 

comparison. 

The final engine cycle process to be described is the gas exchange. For the ported two stroke 

engine, cylinder recharge is accomplished as the motion of the piston head around bottom dead center 

enables the flow of exhaust out and fresh charge into the cylinder. It is a complex process dependent on 

many factors including pressure, temperature, mixture stratification, port geometry, intake conditions, and 

engine speed. For the free piston engine, the complexity is exacerbated because stroke length, bottom 

dead center position, and engine speed can vary with each cycle. Throughout the modeling literature, a 

common practice is to simplify the problem by assuming an instantaneous process which results in 

immediate replacement of exhaust gas with intake mixture at intake pressure and temperature. While 

experimental data is still rare, the technique is validated by Newcastle and Beijing researchers in [34] 

and by South Korean researchers in [83]. Thus, the simplification is assumed to be reasonable and is 

applied to the current study. The cylinder mass is divided between three types: burnt mixture, fuel, and 

ideal air (21% O2 and 79% N2 by volume). The relationship is given in Eq. 57. 

 𝑚𝑔𝑎𝑠 = 𝑚𝑏𝑢𝑟𝑛𝑡 +𝑚𝑓𝑢𝑒𝑙 +𝑚𝑎𝑖𝑟 
Eq. 57 

The total mass inside the closed cylinder remains constant at all times, but the amounts of burnt 

mixture, fuel, and air vary throughout each engine cycle. If the piston does not reach a position which 

enables the gas exchange process, the burnt mixture is not replaced by fuel and air. During combustion, 

the fuel and air are converted to burnt mixture according to the mass fraction burn rate and combustion 

efficiency. The burnt mixture is assumed to be entirely inert, and the equivalence ratio determines the 

amount of fuel and air to add to the cylinder during the gas exchange process. Additionally, the cylinder 

mixture is retained at a specified EGR rate. For each cycle where gas exchange is achieved, amounts of 

burnt mixture, fuel, and air are all retained in the cylinder according to the EGR rate and fuel and air are 

added so that the total fuel and air in the cylinder satisfy the specified equivalence ratio. In later 

simulations, fueling is controlled by affecting the equivalence ratio to cause either increase or decrease 

in the amount of fuel. 

3.5 Simulink Implementation 

Simulink and MATLAB® offer a powerful set of tools to model and simulate a wide variety of 

systems. For this investigation, special attention is given to modularity, or component based modeling, 
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so that the model can be passed on to future researchers who might desire to incorporate alternative and 

possibly more sophisticated sub-models for the various processes. In particular, experimental efforts at 

WVU may eventually result in free piston engine correlations that would greatly increase the accuracy of 

the virtual model. Moreover, the Simulink model serves as a convenient platform to perform parametric 

sweeps and testing of various control architectures. This section details the basic architecture of the 

model beginning at the highest level, shown in Figure 22. At the master level, the main feedback loop is 

evident as system bus signals are gathered and fed back into the three primary model partitions.   

 

Figure 22: Master level of the Simulink model. 

One of the Simulink tools utilized is that of linked library blocks. These are built and stored in an 

external Simulink file. The use of a Simulink library provides a source for reusable Simulink subsystems 

and helps to facilitate modeling consistency and reduced simulation time (via treatment of some library 

blocks as atomic units). In Figure 22, the ‘Logging and Visualization’ block has a dark gray background 

to signify that it is a library block. Throughout the Simulink model, all library blocks are designated with 

the dark gray background. Also, color coding is applied throughout the model to help maintain 

organization of signal routing. ‘Plant’ signals are given in blue and ‘Controller’ signals are in orange.  
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The ‘Logging and Visualization’ subsystem provides no information to the simulation, but stores 

the data in the MATLAB® workspace for post-processing. The ‘Controller’ block is developed in greater 

detail later in Ch. 5 of this dissertation. The primary focus of this section is on the ‘Plant’ system which 

calculates all of the forces acting on the translator according to the previously given relationships and 

solves for the translator dynamic response. Figure 23 shows the layout of the ‘Plant’ with signal 

organization evident. 

 

Figure 23: ‘Plant’ subsystem of the Simulink model. 

The ‘Plant’ system is composed of three subsystems: ‘Electrical Output,’ ‘Translator Dynamics,’ 

and ‘Forces.’ The ‘Electrical Output’ subsystem calculates the power output of the ‘Plant’ via the product 

of alternator force and translator velocity with an assumed alternator efficiency of 95% – a fixed value 

throughout this investigation. The subsystem is shown in Figure 24. 

 

Figure 24: ‘Electrical output’ subsystem of the Simulink model. 

Because the power output of the ‘Plant’ oscillates in sympathy with the translator velocity, Root 

Mean Squared (RMS) power is calculated as an additional output. Alternator efficiency is shown with a 
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negative to convert the energy lost from the system (a negative value) to positive power output. The 

‘Translator Dynamic’ subsystem is shown in Figure 25. 

 

Figure 25: ‘Translator Dynamics’ subsystem of the Simulink model. 

The primary function of the ‘Translator Dynamics’ subsystem is to calculate the translator position, 

velocity, and acceleration based on Newton’s second law (discussed previously). Additional calculations 

are seen in Figure 25 which enable various model functions such as simulation stop conditions in cases 

where a solution grows unstable (e.g. engine ring-up or ring-down). The ‘Translator State’ flow diagram 

enables calculations for translator frequency, stroke length, dead center positions, and mean change in 

compression ratio based on the state of the translator motion. The ‘Parameter Calculations’ subsystem 

will be discussed in more detail in a later section. For this particular Simulink model which focuses only 

on steady state performance, it enables an iterative component design routine for translator mass and 

system geometry. The ‘Parameter Calculations’ routine is not included in a separate Simulink model 

which assumes all system parameters are known and is used to predict transient behavior. 
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Figure 26 shows the Forces subsystem which is divided between the four main force groups: 

‘Alternator,’ ‘Friction,’ ‘Springs,’ and ‘Cylinder Pressures.’ Once the forces are calculated, they are 

summed and passed to the common bus to be distributed with the rest of the system signals as 

necessary. The appropriate sign (negative or positive as required by the free body diagram in Figure 20) 

is applied within each of the subsystems. 

 

Figure 26: ‘Forces’ subsystem of the Simulink model. 

The ‘Alternator’ subsystem calculates the force exerted by the alternator on the translator as a 

function of translator velocity and a load constant. This is shown in Figure 27. Also evident is the effect 

of the controller which encourages the stability of the system by increasing or decreasing the load 
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constant of the alternator depending on the change in stroke length of the translator from stroke to stroke. 

The effects of this controller are demonstrated in the next section covering model sensitivity. 

 

Figure 27: ‘Alternator’ subsystem of the Simulink model. 

The friction model as described in Eq. 40 is shown in Figure 28. 

 

Figure 28: ‘Friction’ subsystem of the Simulink model. 

The friction model is scaled by a friction factor (fco) to tune the frictional losses according to the 

loss analysis given by DLR in [41]. The two, symmetric ideal compression springs exert a force on the 

translator according to Eq. 42. The subsystem for the springs is shown in Figure 29. 

 

Figure 29: ‘Springs’ subsystem of the Simulink model. 

The most complicated force models are those that involve the engine cylinder pressures. Because 

of the similarity between the two cylinders, only the right cylinder subsystem is described in this section. 

Figures describing the left cylinder can be found in Appendix A. For the right cylinder, Figure 30 shows 

the overall structure of the cylinder model separated between elements that are unique to the right 

cylinder – calculations for volume and compression ratio, the state flow subsystem, initial conditions, and 
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signal storage – and a library block which is common for each of the cylinders and is primarily responsible 

for cylinder pressure calculation given spatial and temporal changes with each step in the solution. 

 

Figure 30: ‘Right_Cylinder’ subsystem of the Simulink model. 
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The cylinder state flow diagram (given in Figure 31) is used to manage the cylinder processes. 

The ports opening or closing is dependent on position and begins or ends the gas exchange process. If 

gas exchange does not occur, in other words the piston head does not reach a bottom dead center 

position which opens the ports, combustion is not enabled during the subsequent compression stroke 

which begins as soon as the expansion stroke ends. This condition is generally indicative of an unstable 

system and an eventual ring-down of the translator. Combustion can end during either the compression 

or expansion stroke, a condition dependent on the translator velocity. 

 

Figure 31: ‘Cylinder States’ subsystem of the Simulink model. 

The library block ‘Cylinder model’ is common between the two engine cylinders and has 

undergone the greatest number of revisions throughout the investigation. The ‘Cylinder model’ takes the 

complete set of state values for the cylinder and computes the cylinder state for the next time step based 

on the relationships described in section 3.4 of this dissertation. 
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Figure 32: ‘Cylinder model’ subsystem of the Simulink model. 
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The four distinct cylinder processes are evident in Figure 32 along with calculations for process 

parameters that vary from cycle to cycle. The ‘Start of Combustion values’ subsystem computes 

combustion parameters such as the amount of fuel energy to be released during the combustion event. 

The ‘Perfect gas exchange model with EGR’ subsystem calculates the amount of fuel to be added to the 

cylinder during the gas exchange process. Later, a controller signal is supplied to this subsystem to 

increase or decrease the fueling. The ‘Initialization’ subsystem passes the initial conditions directly 

through for the first time step in the simulation. The ‘Compression’ subsystem is shown in Figure 33. 

 

Figure 33: ‘Compression’ subsystem of the Simulink model. 

The compression process is divided into four sets of calculations. The cylinder pressure increases 

according to the pressure differential and Hohenberg heat transfer relationships described in Eq. 48 and 

Eq. 51, respectively. The motoring pressure, which is useful in its own right for post-processing analysis 

and must be supplied for certain heat transfer correlations, is calculated in the same fashion as the actual 

cylinder pressure. However, after the end of combustion, the cylinder state can return to compression 

and the separation between motoring and actual pressure profiles requires distinct calculations. The 
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‘Ignition Timing Prediction’ subsystem computes the knock integral according to the CFR HCCI engine 

correlation in Eq. 55 (or RCM ignition model if selected) and provides the trigger which changes the 

cylinder state to the combustion process. The knock integral integration is reset each cycle at the start of 

the compression process. Finally, actual and motoring temperatures are calculated based on the ideal 

gas relationship and the assumed ideal gas constant for air. 

 

Figure 34: ‘Combustion’ subsystem of the Simulink model. 

Figure 34 shows the ‘Combustion’ subsystem with four sets of calculations. Depending on 

pressure calculations and the assumed gas properties, actual and motoring temperatures are calculated. 

Motoring pressure is calculated with the Hohenberg heat transfer model and pressure differential. The 

‘1D Pressure Wiebe HR’ subsystem calculates the heat released during combustion and heat transfer to 

the cylinder wall for the given step in time and provides the mass fraction burnt as a percentage of the 

total fuel that will combust during the cycle (see Figure 35 for detail). In the ‘Cylinder gas mass 

calculations’ subsystem, the mass fraction burnt percentage is used to calculate the distribution of the 

mass within the cylinder, decreasing the amount of fuel and air while increasing the amount of burnt gas. 

The total amount of mass within the cylinder remains constant according to mass conservation and the 

assumption of no leakage. 
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Figure 35: ‘1D Pressure Wiebe HR’ subsystem of the Simulink model. 

The expansion process follows the same set of calculations as the compression process, except 

that the knock integration is not computed. For this simplified 1-D pressure model, it is assumed that 

HCCI combustion ignition can only occur during the compression process. The gas exchange process is 

greatly simplified compared to reality so that the pressure and temperature immediately match intake 

conditions. The mass calculations then follow Eq. 57 and the corresponding description. 

To summarize, the simulation is constructed as a large feedback loop. The position of the translator, 

conditions in the engine cylinders, loading from the alternator and friction, and translator inertia result in 

the instantaneous net acceleration. Integrating the acceleration then provides velocity and position of the 

translator for the next step in time. These values are then used to compute the forces on the translator 

at the next time step. The process continues until a stop time condition is reached – for example, the 
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simulation may be constrained to stop after 3.5 seconds is reached within the simulation space. The 

complexity of the model stems from the sub-models used to calculate the forces. Specifically, the engine 

cylinder models consist of numerous calculations related to combustion, heat loss, thermodynamic 

behavior, and mass flow, even for the relatively simple single zone pressure modeling approach 

presented. While improvement of the cylinder modeling (and other processes) would greatly benefit the 

accuracy, simulation of multiple cycles requires greater computation time and limits the model 

sophistication. The next sections test the given model and its sub-models to demonstrate its precision 

and repeatability. 

3.6 Model Sensitivity and Validation 

Because this investigation is entirely dependent on the numeric model, it is paramount to verify the 

prediction capabilities of the simulation. Experimental data is unavailable for direct corroboration, so 

validation is achieved through a combination of solution method sensitivity testing and comparison to 

results and trends seen in the literature. 

3.6.1 Base Case 

To facilitate the validation process, a base case is provided. In addition to the Simulink model 

already described, tuning mechanisms are included to achieve reasonable steady state operation. These 

tuning mechanisms apply to: the physical parameters by affecting system geometry and translator mass 

depending on device performance to effectively design the device during and around its operation; the 

friction model by affecting the friction coefficient depending on energy exchange to ensure a reasonable 

friction percentage; and the alternator force by affecting the alternator factor based on the change in 

stroke length to encourage stability. With these mechanisms in place, only steady state solutions are 

relevant. Later, after optimized device parameters have been established, the tuners are disabled to allow 

the study of controlled and uncontrolled transient behavior. For now, Table 1 describes the case that is 

considered for testing and validation. 

Table 1: Parameters and steady state performance characteristics for the base case used for testing and validation. 

Bore 64 mm 

Maximum stroke 200 mm 

Port closing distance from cylinder head 133 mm 

Equivalence ratio 0.6 

EGR 0.12 

Intake pressure 1.05 bar 

Intake temperature 51.9 °C 

Cylinder mixture mass 0.484 g 

Wall temperature 277 °C 

Spring stiffness 30 kN/m 
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Total moving mass 2.39 kg 

Hohenberg leading parameter, 𝑎 65 

Stroke length 181 mm 

Compression ratio 20.2 

Frequency 46.9 Hz 

Power 22.7 kW 

System efficiency 35.5 % 

Mean alternator force 1.27 kN 

Peak cylinder pressure 106 bar 

Maximum translator acceleration 16.3 km/s2 

Fuel energy added per cycle 1.38 kJ 

The next plots (Figure 36 - Figure 41) are used to describe this system in more detail. The first shows 

the velocity of the translator as a function of its position. 

 

Figure 36: Velocity versus position profile for the testing and validation base case. 

The position-velocity profile shown in Figure 36 displays attributes which are seen to be typical 

for the dual FPLE. The steep sides indicate high acceleration around top dead center and short residence 

time around the end of the stroke. The velocity profile is also skewed so that maximum velocity occurs 

prior to the midpoint position (𝑥 = 0). This effect is dependent on the relative dominance of the springs 

and is de-emphasized as the spring stiffness increases. The sharp increase in acceleration prior to top 

dead center is more evident in the velocity-acceleration profile shown in Figure 37. 
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Figure 37: Acceleration versus velocity profile for the testing and validation base case. 

Combustion heat release causes rapid increase in translator acceleration prior to top dead center 

position. Also, a small discontinuity can be seen just prior to the combustion event and is caused by the 

port opening and instantaneous gas exchange process occurring within the opposite cylinder. The 

pressure as a function of position is shown in Figure 38. 

 

Figure 38: Pressure versus position profile for the testing and validation base case. 

The pressure profiles in Figure 38 show the rapid heat addition from combustion as well as the 

instantaneous drop in cylinder pressure that corresponds to the simplified gas exchange model. Pressure 

and heat transfer to the cylinder walls are shown as functions of time in Figure 39. 
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Figure 39: Pressure and heat flux as functions of time for the testing and validation base case. 

In the pressure profiles, dotted lines represent the motoring pressure curves which separate from 

actual cylinder pressure at the point of ignition. Discontinuities in the heat flux profiles are due to the 

simple gas exchange model which does not include heat transfer. Heat flux rises sharply due to 

combustion and falls off more slowly than the corresponding pressure profile. The next figure 

demonstrates the oscillatory nature of power output and system efficiency over one cycle of system 

operation. 

 

Figure 40: Power and efficiency as functions of time for the testing and validation base case. 

Power is proportional to the velocity squared – the product of force and velocity where the force 

is defined as proportional to the velocity. Thus, the power output profile in Figure 40 is shown to oscillate 

at twice the cycle frequency of the translator. Efficiency is also shown to oscillate within a narrow band 

due to the periodic nature of combustion events and power output. The solid black lines correspond to 
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the mean power and efficiency values over the cycle. Mean efficiency over a complete cycle is used to 

define the steady state system efficiency. The final figure given for the base case shows the energy loss 

distribution at steady state. 

 

Figure 41: Energy balance for the testing and validation base case. 

The pie chart in Figure 41 shows exhaust heat rejection as the leading cause for energy 

inefficiency. Combined with cylinder heat transfer, more than half (55%) of the fuel energy is lost to heat. 

Along with the frictional losses, these values corroborate well with the energy consumption findings 

presented by DLR researchers in [41]. Additionally, high efficiency power output (relative to conventional 

engine technology) is shown for this un-optimized case, but it is worth noting that peripheral components 

(such as fuel and air compressors), along with power conversion inefficiencies, will likely reduce the 

overall efficiency. 

3.6.2 Effects of Solution Method 

Within Simulink, a wide variety of solution method parameters can be specified. For the base 

case, a fixed step size of five microseconds is employed for a simulated time of 3.5 seconds to ensure a 

steady state solution is reached. While the fixed step approach is required due to the complexity of the 

model and the need to compile the model for rapid simulation deployment, various solvers are available 

ranging from first- to eighth-order accuracy. MathWorks® help documentation within Simulink provides 

guidelines for selecting an appropriate solver given model complexity, desired accuracy, and 

computational limitations. This sensitivity analysis demonstrates a process similar to that suggested by 

MathWorks® and begins with Table 2 which shows the importance of step size for the solution. 
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Table 2: Effects of step size on the steady state solution while all other base case attributes are held constant. 

Step 

size [s] 

Time 

required [s] 

File 

size [MB] 

Peak  

pressure [bar] 

Stroke 

length [mm] 

Efficiency 

[%] 

Power 

[kWe] 

1.0E-4 0.589 0.263 unstable unstable unstable unstable 

5.0E-5 0.829 12.14 179.7 187.8 53.30 33.47 

1.0E-5 2.22 59.64 108.2 181.6 36.90 23.75 

0.5E-5 4.19 117.6 105.9 181.1 35.53 22.71 

1.0E-6 29.1 562.7 103.6 180.7 34.50 22.04 

0.5E-6 68.4 1084 103.3 180.7 34.38 21.99 

As might be expected, computational time and file size increase linearly with reduced step size. 

However, improvement to model precision plateaus as step size continues to decrease. Modeling work 

presented by Newcastle and Beijing researchers utilized a step size of ten microseconds [35]. Given the 

desire to balance model precision, computation time, and file size, the base case step size appears to 

be reasonable. Next, Table 3 demonstrates how the order of accuracy of the Simulink solver can affect 

model precision. 

Table 3: Effects of Simulink solver order of accuracy on the steady state solution while all other base case attributes 

held constant. 

Simulink 

solver, accuracy 

Time 

required [s] 

Peak  

pressure [bar] 

Stroke 

length [mm] 

Efficiency 

[%] 

Power 

[kWe] 

ode1 (Euler) 3.11 106.9 181.2 35.94 22.90 

ode2 (Heun) 3.12 105.9 181.1 35.53 22.71 

ode3 (Bogacki-Shampine) 3.63 105.9 181.1 35.53 22.71 

ode4 (Runga-Kutta) 4.19 105.9 181.1 35.53 22.71 

ode5 (Dormand-Prince) 5.30 105.9 181.1 35.53 22.71 

ode8 (Dormand-Prince) 9.66 105.9 181.7 35.53 22.71 

Simulink offers the selection of various fixed step solvers, each with different orders of accuracy. 

In Table 3, six of the solvers are examined, each with the order of accuracy indicated by the value tacked 

to the abbreviation ‘ode.’ For example, ode1 refers to an ordinary differential equation solver of first order 

accuracy. As the order or accuracy increases, the computation time required increases. However, model 

precision ceases to be improved after the increase from first to second order accuracy. For the 

demonstrated base case, the fourth order solver was selected to ensure precision. To reduce the 

simulation time while remaining conservative against the possibility that different simulations may require 

higher solver accuracy, the third order solver is selected. 

Finally, the virtual time at which the simulation ends (termed ‘Stop Time’ in Simulink) can be varied 

to allow more or less time for the simulated system to achieve steady state operation. This is not to be 

confused with the computational time required to complete the simulation that has been discussed so far. 

As an example, Figure 42 demonstrates the base case simulation achieving steady state operation after 
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around 0.2 seconds. The simulation stop time was set for one second, and the time required to complete 

the simulation (computational time) was 1.24 seconds. 

 

Figure 42: Example of the testing and validation base case achieving steady state after 1 second of virtual time. 

The results of this analysis are presented in Table 4. 

Table 4: Effects of stop time on steady state simulation results. 

Stop 

time [s] 

Time 

required [s] 

File 

size [MB] 

Peak  

pressure [bar] 

Stroke 

length [mm] 

Efficiency 

[%] 

Power 

[kWe] 

1.0 1.24 34.42 105.7 181.0 35.51 22.61 

1.5 1.67 51.10 105.8 181.0 35.50 22.69 

2.0 2.23 67.76 105.4 181.0 35.51 22.92 

2.5 2.64 84.40 105.8 181.1 35.52 22.81 

3.0 3.21 101.1 106.1 181.1 35.53 22.71 

3.5 3.64 117.7 105.9 181.1 35.53 22.71 

Table 4 shows no obvious trend as the virtual stop time is increased aside from the computational 

time required to complete the simulation and resulting file size required to store the results. While the 

demonstrated base case was presented with a stop time at 3.5 seconds to ensure steady state operation, 

the stop time can be reduced to shorten computation time and file size as necessary. It is noted that 

different parameter cases will result in a range of dynamic response times, so a conservative stop time 

of two seconds is chosen as the lower limit. 

3.6.3 Effects of Heat Transfer Model 

The convection heat transfer model previously described depends on the gradient between gas 

and wall temperature, instantaneous cylinder surface area, and an instantaneous heat transfer 

coefficient. While the correlation by Hohenberg was presented for use in this model, various empirically 

correlated formulae, each with strengths and weaknesses, can be found in the literature. Unfortunately, 
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these empirical relationships are based upon slider-crank motion rather than the unusual and variable 

motion of the linear engine system. Piston velocity is the usual reference for the in-cylinder charge motion 

that enhances the heat transfer, along with instantaneous gas temperature, pressure and cylinder 

volume. Hohenberg’s formulation is chosen because of its relative simplicity and recent application by 

Newcastle and Beijing researchers [35]. However, this section compares the model by Hohenberg with 

models by Woschni [99], Annand [100], and Chang [86]. Note that the model by Chang is also referred 

to as the HCCI modified Woschni correlation. These four models are summarized well in [101], and 

Hohenberg’s relationship is provided in Eq. 51 (repeated here for reference). 

 ℎ = 𝑎 ∗ 𝑉𝑏 ∗ 𝑃𝑐 ∗ 𝑇𝑑 ∗ (�̅� + 1.4)𝑒 
Eq. 51 

The Hohenberg correlation is examined with respect to its empirically correlated parameters. 

Referring back to Eq. 51, five parameters are used to define the correlation: 𝑎 is the leading coefficient 

equal to 130 in the original publication but set to 65 in the base case to scale down the heat transfer; 𝑏 

is the volume exponent equal to -0.06; 𝑐 is the pressure exponent equal to 0.8; 𝑑 is the temperature 

exponent equal to -0.4; and 𝑒 is the velocity exponent equal to 0.8.  Figure 43 shows the results of the 

Hohenberg heat transfer model parametric sweeps with the Hohenberg parameters normalized against 

the base case values so that the base case corresponds to unity in each of the figures. The figures 

demonstrate that each of the correlated parameters can have significant impact on translator dynamics 

and can play an important role in heat loss and subsequent steady state performance. 

  

Figure 43: Effects of Hohenberg parameters on frequency and heat flux. 

Figure 44 and Figure 45 show the effect of using four different formulae to describe the heat loss. 

In these four cases, the total heat lost is equal to the base case (16%), but the distribution of the heat 

loss with respect to the translator position is shown to yield subtle difference in stroke length and peak 

pressure. The differences associated with the heat transfer models is most noticeable in terms of 
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instantaneous heat flux, whereas the thermodynamic relationships tend to mask the differences in the 

pressure domain. This is explained by the fact that the total heat loss over the time span is most important, 

rather than the precise heat loss at any moment. In addition, the formulae do not differ substantially and 

all employ the temperature difference in calculating the heat flux. 

 

Figure 44: Comparison of cylinder pressure and heat flux profiles four heat transfer models. 

 

Figure 45: Comparison of translator dynamic profiles four heat transfer models. 
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3.6.4 Effects of Ignition Timing Model 

The combustion process is perhaps the most challenging process to represent accurately with 

the 1-D pressure model. Using the knock integral method as described for this numeric model enables 

prediction of the ignition timing, but it will be shown in this section that the empirical relationship can have 

significant effect on the start of combustion and subsequent device operation. The base case employs 

the relationship given in Eq. 55 which was correlated to CFR engine data. This relationship is repeated 

here for reference. 

 𝜏 = 𝐴𝜔𝜙−𝑥 𝑒𝑥𝑝 (
𝑏

𝑇
𝑃𝑛) Eq. 55 

The given formulation employs four parameters: the leading coefficient, 𝐴 = 9.291 ∙ 10−7; the equivalence 

ratio exponent, 𝑥 = 16909; the temperature coefficient, 𝑏 = −0.1121; and the pressure exponent, 𝑛 =

−0.688. Starting with the leading coefficient (𝐴), Figure 46 shows how reducing 𝐴 can advance the 

combustion timing and lead to adverse work around top dead center. 

 

Figure 46: Effect of varying the CFR ignition model leading coefficient (𝑨) on pressure profile. 

The departure of the pressure curves from the motoring curve in pressure-volume diagram 

corresponds to the earlier or later ignition due to varying values of 𝐴. The largest value of 𝐴 implies the 

longest ignition delay in the Eq. 54 integral, and results in pressure rise later in the cycle. In contrast, the 

very early onset of combustion causes rapid pressure rise as the piston is still moving towards the head, 

and results in adverse pressure and negative work. This negative work arises because heat is being lost 
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to the cylinder walls at a higher rate than combustion is contributing to pressure rise in this location. Just 

as in a slider-crank engine, both early and late ignition can be detrimental to the efficiency. If combustion 

were to occur all on the compression stroke, then without heat transfer, the rising and falling parts of the 

pressure curve would lie on top of one another around top dead center. With heat transfer, unacceptable 

losses occur. Performing a similar parameter sweep of the temperature coefficient (𝑏) provides insight 

on the effect of ignition timing on system stability. Figure 47 shows the position-velocity profiles for a 

range of cases where 𝑏 is varied. 

 

Figure 47: Effect of varying the CFR ignition model temperature coefficient (𝒃) on translator dynamic profiles. The 

color of each profile corresponds to the pressure profiles in Figure 48. 

The position-velocity profiles with the smallest stroke shows the lack of cyclic repeatability: the 

SALEG is in the process of “ringing down” and will eventually stall. The cause becomes clear with the 

pressure-volume plots shown in Figure 48. 
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Figure 48: Effect of varying the CFR ignition model temperature coefficient (𝒃) on pressure profiles. The color of each 

profile corresponds to the dynamic profiles in Figure 47. 

When the ignition is sufficiently late, the peak pressures lie above 80 bar and the SALEG enjoys 

a full stroke; but for the earliest ignition conditions, stable operation cannot be achieved due to the 

excessive adverse work and eventual misfire. Figure 49 examines the case where power density (due to 

varying equivalence ratio) is varied rather than the point of ignition. 

 

Figure 49: Effect of equivalence ratio on CFR model ignition timing prediction on cylinder pressure. 

In these pressure curves, negligible adverse work is evident because ignition does not occur early 

enough to allow heat transfer to compete with the combustion pressure rise. The ignition timing at larger 

volumes when less fuel is added coincides with the reduced stroke. Peak pressure is reduced not only 

due to the reduced amount of heat that is released during combustion, but because the stroke (and 

compression ratio) is reduced. The effects of 𝐴, 𝑏, and equivalence ratio are summarized along with the 

remaining two parameters in Figure 50. 
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Figure 50: Effects of varying CFR model ignition timing parameters on compression ratio, efficiency, frequency, and 

total heat transfer. 

The previous two plots show how the ignition timing can have significant impact on system 

performance and that ignition model parameters play a very important role. For both plots, the horizontal 

axis corresponds to the parameter being varied normalized against the base case so that the base case 

is seen at unity. Parameters 𝑏 and 𝑛 are seen to have the greatest impact on ignition timing as indicated 

by the unstable operation points (points corresponding to efficiency of zero or infinity). 

 𝜏 = 1.3 ∙ 10−7 ∙ 𝑃−1.05 ∙ 𝜙𝐹𝑂
−0.77 ∙ 𝜒𝑂2

−1.41 ∙ 𝑒𝑥𝑝 (
𝐸

𝑅 ∙ 𝑇
) Eq. 56 

The alternative model given in Eq. 56 and recently used in free piston modeling work by Lee [78] 

involves a slightly different structure and takes into account EGR effects on ignition timing. The model 

parameters are correlated to combustion data gathered from a rapid compression machine operating 

with iso-octane. Figure 51 shows the comparison between the base case with the CFR model and RCM 

ignition models. 
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Figure 51: Comparison between CFR and RCM ignition timing models on cylinder pressure. 

The base case with the RCM ignition model shows significantly earlier combustion timing as 

compared to the CFR model. As before, the advanced ignition timing causes earlier rise in pressure 

leading to negative work around TDC, shorter stroke length, smaller compression ratio, and reduced 

peak pressure. Examining the effects of EGR within the RCM model more closely, Figure 52 shows that 

EGR has little effect on performance, but increased EGR delays ignition timing while at the same time 

reducing peak pressure because of reduced power density. 

 

Figure 52: Effects of EGR on the base case cylinder pressure with the RCM ignition model. 
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Because the combustion timing is of paramount importance for accurate modeling of the engine, 

the simplifications made to represent the engine with the 1-D pressure model add significant uncertainty 

to the model. The stochastic nature of gas exchange, heat transfer, and combustion are exacerbated 

within the free piston whose dynamic response is greatly interdependent on many variables. The choice 

to employ the CFR engine within the base case is no more or less supported than the RCM model, and 

it is emphasized that additional research is necessary for the free piston engine operating within an auto-

ignition combustion regime. 

3.6.5 Effects of Combustion Heat Release Profile 

The single Wiebe heat release profile is presented in Eq. 53 and its corresponding mass fraction 

burn profile given in Eq. 52. For reference, these equations are repeated below. While the Wiebe function 

is classically used in 1-D pressure modeling of an engine, alternatives have been presented throughout 

the literature. Additionally, combustion is a highly stochastic process dependent on cylinder wall 

temperature, cylinder geometry, mixture stratification, fuel properties, and rate of pressure rise. For the 

slider-crank engine, single zone modeling at a constant engine speed allows correlations to be drawn for 

HCCI combustion duration, efficiency, and heat release profile based on engine operation parameters 

and known crank angle [92]. However, correlations for the free piston engine are more difficult to form 

and depend on experimental data which is more difficult to gather. Nonetheless, examining the effects of 

combustion duration and burn profile on translator dynamics is important to understand the impact of 

assumptions made within the numeric model. Thus, Figure 53 and Figure 54 show the results of varying 

the combustion duration through a range of values from 0.1 milliseconds to 0.03 seconds. Note that 

because the shortest duration is near the same order of magnitude as the base case solution step size, 

the step size was reduced to one microsecond for this set of simulations. 

 𝜒(𝑡) = 1 − 𝑒𝑥𝑝 [−𝑎 (
𝑡 − 𝑡𝑆𝑂𝐶
𝐶𝑑

)
1+𝑏

] 
Eq. 52 

 
𝑑𝑄𝐻𝑅
𝑑𝑡

= 𝜂𝑐𝑜𝑚𝑏𝐸𝑓𝑢𝑒𝑙 [𝑎
𝑏 + 1

𝐶𝑑
(
𝑡 − 𝑡𝑆𝑂𝐶
𝐶𝑑

)
𝑏

𝑒𝑥𝑝 (−𝑎 (
𝑡 − 𝑡𝑆𝑂𝐶
𝐶𝑑

)
1+𝑏

)] 
Eq. 53 
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Figure 53: Effect of varied combustion duration on translator dynamic profiles. The color of each profile corresponds 

to those seen in Figure 54. 

The dynamics of the translator are demonstrated in Figure 53 for the given range of combustion 

duration values so that each profile represents a separate simulation wherein the combustion duration is 

assumed constant. For some cases, the combustion event is extended for too great a length of time 

leading to unstable behavior. 

 

Figure 54: Effect of varied combustion duration on cylinder pressure. The color of each profile corresponds to those 

seen in Figure 53. 

Trends for the variation of combustion duration are given in Figure 55.  
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Figure 55: Effects of varied combustion duration on base case frequency, compression ratio, efficiency, and heat 

transfer. Stable and unstable cases are distinguished by ‘o’ or ‘x,’ respectively. 

The points marked with an ‘x’ indicate unstable systems, while the ‘o’ points can be used to identify 

trends for stable, steady state operation. Increasing combustion duration results in significant decrease 

to engine speed and reduced heat transfer losses. Relatively smaller changes are seen for compression 

ratio and efficiency. 

Next, a second combustion heat release profile is considered within the model. The double Wiebe 

function is presented by Yasar et al. as a means to account for the cooler gas regions near the cylinder 

walls that burn more slowly [102]. In his dissertation, Shoukry applied single zone modeling with a 

variation of the double Wiebe profile to study a direct injection compression ignition free piston engine 

[103]. This formulation is given in Eq. 58.  

 
𝑑𝑄𝑖𝑛
𝑑𝑡

= 𝑎
𝑄𝑖𝑛,𝑝

𝑡𝑝
(𝑀𝑝 + 1)(

𝑡

𝑡𝑝
)

𝑀𝑃

𝑒𝑥𝑝 [−𝑎 (
𝑡

𝑡𝑝
)

𝑀𝑝+1

] + 𝑎
𝑄𝑖𝑛,𝑑
𝑡𝑑

(𝑀𝑑 + 1) (
𝑡

𝑡𝑑
)
𝑀𝑑

𝑒𝑥𝑝 [−𝑎 (
𝑡

𝑡𝑑
)
𝑀𝑑+1

] 
Eq. 58 

The double Wiebe is composed of two Wiebe functions where the first captures the premixed 

burn phase and the second is for the diffusive burn phase. The shape factors 𝑀𝑝 and 𝑀𝑑 are given as 3 

and 0.5, respectively, and 𝑎 is taken to be 1.2. For a fixed amount of heat released during combustion, it 

is assumed that the heat released during premixed and diffusion burn phases must add up to the total 

heat (i.e. 𝑄𝑖𝑛 = 𝑄𝑖𝑛,𝑝 + 𝑄𝑖𝑛,𝑑). Similarly, the combustion duration must be the sum of the time spent in 

each of the burn phases (𝐶𝑑 = 𝑡𝑝 + 𝑡𝑑). Using the double Wiebe relationship, two profiles are formed for 

comparison and shown in Figure 56. It is noted that the author is not suggesting the use of the double 

Wiebe or any particular profile, but it has been shown to be a viable option depending on application so 

should be considered within the numeric model. 
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Figure 56: Comparison between single and double Wiebe heat release profiles. 

Comparing the double Wiebe heat release profiles, the first shows a rapid initial burn of a small 

amount of fuel followed by a decrease in burn rate and second rapid burn phase until completion. The 

second shows burning of just over half of the fuel very early in the combustion process followed by a long 

steady diffusion burn phase. The effects of each burn profile are compared in Figure 57 and Table 5. 

 

Figure 57: Effects of the varied burn profiles on cylinder pressure for the testing and validation base case. 
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Table 5: Summary of effects for the base case simulation with varied burn profiles. 

Profile 

Peak 

pressure 
[bar] 

Stroke 

length 
[mm] 

Compression 

ratio 

Efficiency 

[%] 

Power 

[kWe] 

Frequency 

[Hz] 

single Wiebe (base) 103.2 180.7 19.69 34.49 22.25 47.02 

double Wiebe (1) 105.9 181.2 20.27 35.50 22.56 46.61 

double Wiebe (2) 96.94 179.9 18.86 32.75 21.39 47.83 

Examining the results of the varied combustion heat release profile, effects on performance are 

seen, but the high interdependence of the system makes assessment difficult. Based on Figure 56, the 

combustion duration is slightly longer for the double Wiebe profiles and longest for the second case 

because of the inclusion of a diffusion burn phase. The second double Wiebe profile also resulted in the 

poorest performance of the three simulations. This might be explained by the relatively long diffusion 

burn phase which allowed heat transfer losses to compete with combustion heat release to decrease the 

peak pressure and total energy in the system. While the frequency was not so greatly affected, stroke 

length and compression were decreased, contributing again to the lower efficiency and power output. 

3.6.6 Effects of Alternator Proportional Controller 

For the steady state simulation, a simple proportional controller is incorporated into the load 

equation to raise the value of the constant if stroke length increases and reduce the constant if stroke 

length falls. This approach is meant to encourage the stability of the translator for steady state analysis 

and does not represent any true effort in practical controller design for transient response. Furthermore, 

component design is integrated into the current simulation package so that transient analysis is irrelevant. 

The weighting factor (𝑊𝐴) is multiplied directly to the alternator load constant (as shown in Eq. 47), and 

its relationship with stroke (the proportional controller equation) is given in Eq. 59.  

 𝑊𝐴 = 1 − 𝐺𝐴 (
𝑆𝑡𝑎𝑟𝑔 − 𝑆

𝐿
) Eq. 59 

The weight applied to the alternator load depends on a gain (𝐺𝐴) and the difference between 

target stroke length (𝑆𝑡𝑎𝑟𝑔) and instantaneous stroke length (𝑆) normalized by the system geometry (𝐿 is 

the neutral clearance gap between piston head which is synonymous with half of the maximum stroke 

length). While the purpose of the controller is to encourage system stability, either the target stroke length 

or proportional gain can be varied to affect the dynamic response of the translator. For the base case, a 

low gain of 7.5 is used to allow the SALEG to find stability at different stroke lengths (and hence 

compression ratios) as other parameters are varied. To understand the effects of the gain value, two 

plots are given in Figure 58. 
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Figure 58: Normalized steady state performance characteristics compared when the alternator proportional controller 

gain is varied. 

For the Figure 58 plots, each of the data are normalized against their own mean and then against 

the base case to present them together for comparison. The left-hand plot demonstrates the statistical 

spread of the data while the right-hand plot demonstrates that within a certain range, the gain has no 

significant effect on the performance of the SALEG. Performing the same type of parameter sweep for 

the target stroke length, the results are shown in Figure 59. 

 

Figure 59: Effects of target stroke length on translator dynamics. Steady state stroke length and velocity are shown 

to increase as target stroke length is raised. 

Demonstrated by the position-velocity plot is the significant effect of target stroke length on the 

steady state response of the SALEG. Except for the unstable cases, the magnitude of the position-

velocity profile grows with the value for target stroke length. By imposing a high stroke length target within 
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the base case (90% of the maximum possible stroke), the translator is encouraged to operate at a higher 

stroke (thus higher compression ratio). However, as demonstrated throughout the previous sensitivity 

analyses, the controller is not given the authority to affect the same steady state response for all sets of 

operating conditions. 

3.6.7 Comparison to Literature Results 

Experimental data for the SALEG is not available, so validation of the numeric model relies on 

the sensitivity studies given in the previous sections and comparison to experimental data that has been 

reported in the literature. Namely, data from two published experimental studies is presented here and 

compared with the numerical model. Details of the experimental models are presented in Table 6, and 

the available parameters are applied within the numeric model with the goal of achieving similar results 

between simulation and experiment. 

Table 6: Summary of prototype device parameters validated in literature 

 
University of 

Ulsan [83] 
West Virginia 
University [17] 

Bore 30 mm 36.4 mm 

Maximum stroke 31 mm 50 mm 

Mass 0.8 kg 2.5 kg 

Pistons 2 2 

Fuel or LHV* 46.296 MJ/kg - 

Combustion duration not given 2.85 ms 

Intake pressure 1.1 bar 1.35 bar 

Intake temperature 300 K 341 K 

Equivalence ratio* 1.0 - 

Exhaust port location 18 mm 19 mm 

Spring stiffness 2.9 N/mm 0 

Ignition Spark Spark 

*WVU researchers assumed 25 J of heat addition per stroke 

Starting with the Ulsan model comparison, Figure 60 demonstrates the corroboration between the 

numeric model and Ulsan’s prototype operation. The main difference between the two models is over-

prediction of peak cylinder pressure and translator velocity by the numeric model. With more intimate 

knowledge of the combustion and heat transfer characteristics, it would likely be possible to achieve a 

better fit. As it is, energy loss pathways and model parameters were estimated, while holding to the given 

physical parameters listed in Table 6, to achieve the given results. Additionally, Ulsan’s prototype used 

spark to initiate the combustion event at a known translator location for steady state operation. The 
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numeric model with RCM ignition timing model, EGR rate of 30%, single Wiebe heat release profile, and 

combustion duration of three milliseconds is employed to approximate the combustion timing and event. 

  

Figure 60: Comparison of simulation to University of Ulsan experimental data. 

Second, the model from West Virginia University is compared with the current numerical simulation.  

 

Figure 61: Comparison of current simulation to West Virginia University experimental data. 

In terms of peak pressure magnitude and location, the numeric model is shown to better predict 

the performance of the WVU device than the Ulsan device. The CFR ignition model is used to predict 

ignition timing while the single Wiebe is used for combustion heat release profile. The numeric model 

suffers most from under-prediction of the expansion pressure profile which likely leads to the under-

prediction of stroke length: close scrutiny of the left turn around point shows the current model stroke 

ending sooner than the WVU prototype. The lower expansion curves are due the differences in 
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combustion profile and duration. The rapid HCCI combustion is short compared to the flame front 

propagation burn of the spark ignited engines, causing the reduced expansion profile. 

3.7 Conclusions 

A detailed description of the numerical simulation model and its implementation is given along with 

sensitivity analysis and validation of the results from the model. Significant focus has been placed on 

development of the model because of its importance for the rest of this work. Additionally, construction 

of the model in Simulink affords substantial modularity for additions and alterations in support of future 

research. 

From the sensitivity analysis, thresholds were given for time step and simulation time. By examining 

these and the solution method, it is shown that computational time can be minimized to around 2.5 

seconds per simulation. Note that this is the time required after the model has been compiled and run as 

an executable rather than from the Simulink environment. Nonetheless, the build and run operations can 

be completed via MATLAB® script, and this feature is extensively used to accomplish the parametric study 

and optimization in the next chapter. 

The choice of combustion heat release and heat transfer profile shape is shown to be of small 

importance. In fact, the shape of the flux curve is of much lesser importance than the total amount of 

energy added to or subtracted from the system. This is corroborated by Lee [78] concerning both friction 

and alternator models as well. Predicting the relative amounts of energy exchanged within the system 

represents the most significance as well as the most uncertainty. 

Essential characteristics for accurate modeling are combustion duration and ignition timing. For 

HCCI combustion, these parameters can entirely shape the performance of the device (allowing that a 

stiff enough spring could be used to de-emphasize the effects of the cylinder pressures but not the overall 

energy balance). Two ignition delay models are presented as viable options and each are used in 

comparison with prototype device data. The RCM model tends to predict earlier combustion and tries to 

account for the effects of EGR while the CFR model has also been proven to adequately predict transient 

HCCI combustion. The data suggests that ignition control will be a key parameter to ensuring operational 

stability, and certainly efficiency. Although it has been claimed that FPLE’s can adapt automatically in 

HCCI operation by increasing compression ratio until ignition occurs, the authority of this adaptation is 

limited. For the next chapters, CFR model is employed within the model, but the choice is somewhat 

arbitrary given the current state of free piston engine development and the amount of uncertainty involved 

in modeling other engine processes. For instance, constant values are assumed for combustion duration 

and efficiency, but are certainly subject to scrutiny and detract from the accuracy of the model. 
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While the current investigation focuses on the use of this model to study the dynamics of the 

SALEG, the overarching achievement presented here is a robust modeling platform which can be passed 

on to support a wide variety of FPLE research. It is the author’s expectation that experimental data will 

eventually be available for improvement of the simulation. Additionally, advanced computational methods 

(such as finite element analysis for the linear alternator or chemical kinetics calculations for the 

combustion process) could be integrated into the simulation or design routine to augment the predictive 

accuracy of the model.  
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CH. 4 PARAMETRIC STUDY AND OPTIMIZED DESIGN 

In the previous chapter, the numeric model was described and tested to show that the model 

presents valid responses for comparison of the simulated SALEG. This chapter examines the design 

space of the SALEG based on the numeric model. Data gathered from parametric sweeps are used to 

demonstrate trends and relationships between input settings and steady state behavior. Unique to this 

study is the integration of component design within the simulation. 

While detailed component design is not within the scope of this investigation, practical design 

considerations must be taken into account for a parametric study of system design to have meaning. As 

an example, the total moving mass of the system has significant impact on performance (i.e. increased 

mass corresponds to lower frequency and reduced power density). To raise the frequency, the spring 

stiffness might be increased. However, raising the stiffness of a mechanical spring system also entails 

an increase of the total system inertia, implying a loss to the frequency. Many similar “give and take” 

examples can be seen as a result of the highly interdependent nature of the SALEG. It is the purpose of 

this chapter to explore the design space with respect to some practical design considerations and to gain 

important insights into the behavior of the SALEG. 

4.1 Parameter Definitions 

 

Figure 62: Illustration of the right half of the SALEG with primary dimensions included. 

For this study, the primary dimensions of the SALEG are described in Figure 62. The illustration 

shows only the right half of the SALEG with the translator in its neutral position. In other words, with the 



80 

 

free piston translator at its position in the figure (the midpoint position), the entire system is symmetric. 

The midpoint of the system is indicated at the 𝑥 = 0 location. All horizontal dimensions originate from the 

midpoint and all diameters are revolved around a horizontal axis running through the midpoint. 

Descriptions for each dimension are given in Table 7. 

Table 7: Summary of the dimensions and their descriptions from the SALEG illustration in Figure 62. 

Dimension Description 

𝐷𝑜  Outer diameter of alternator mover 

𝐷𝑖  Inner diameter of alternator mover 

𝐷𝑅  Diameter of translator connecting rod 

𝑏 Engine cylinder bore 

𝐿𝐴 Length of alternator mover from midpoint  

𝐿𝐵  Length from midpoint to inner rod bearing location 

𝐿𝑝𝑜 Length from midpoint to ports opening location 

𝐿𝑃  Length from midpoint to piston crown 

𝐿𝐶  Length from midpoint to cylinder head 

Each of these dimensions are related to practical design requirements. The alternator mover 

dimensions are dependent on alternator design calculations; the connecting rod diameter must meet 

structural design requirements; and the spring seat depth is a defining parameter for design of the 

compression springs. It is notable that significant literature is dedicated to designing the tubular 

permanent magnet linear alternator (e.g. [50, 51]). Mechanical spring design is a topic which might 

deserve similar attention. Design optimization for stiffness, size, weight, and fatigue life is difficult, and 

might be made more so by thermal influences as heat is transferred from the engine cylinders. Novel 

spring mechanism design, which might include everything from air springs to cantilever bars, could be 

the topic of multiple studies. This study considers only the simple case which involves the linear spring 

force relationship given in Eq. 41. Other practical design considerations encompass the horizontal 

dimensions given in Figure 62. The length of the alternator mover (as well as its inner and outer 

diameters) is defined by the steady state stroke length, engine speed, and power output according to [51] 

and given in Eq. 60. 

 𝐷𝑜 =
𝑃𝑜𝑢𝑡

𝜋𝑚𝑟𝜏𝑓𝑥𝑟�̅�𝜂𝑎𝑙𝑡
 

Eq. 60 

The relationship in Eq. 60 shows the outer diameter (𝐷𝑜 in m) as a function of power (𝑃𝑜𝑢𝑡 in W), number 

of poles (𝑚𝑟), pole pitch (𝜏 in m), specific thrust force (𝑓𝑥𝑟 = 1.32 ∙ 10
4 N/m2), mean translator speed (�̅� in 

m/s), and rated alternator efficiency (𝜂𝑎𝑙𝑡). For high efficiency in the range of 95%, it is recommended to 

match the alternator design to the steady state operation of the translator [51]. So the pole pitch is set to 

equal the stroke and, along with mean velocity and power output, taken from steady state operation. This 

implies a feedback loop where steady state operation affects the alternator design which in turn affects 
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steady state performance. The speed of the engine in cycles per second can be used to compute the 

mean velocity of the translator at steady state (Eq. 61). 

 �̅� = 2 ∙ 𝑆�̅�𝑠 ∙ 𝑓�̅�𝑠 
Eq. 61 

The mover diameter can now be mapped according to four parameters: stroke, frequency, power, 

and number of alternator poles. This map is given for a two pole design in Figure 63 which shows very 

large alternator diameters (20 m) are required to achieve high power output at low speed and short stroke. 

Alternator diameter decreases exponentially with increases in frequency and stroke. By Eq. 60, as the 

number of poles increases, the diameter of the alternator decreases. In contrast, the length of the 

alternator increases with the increase of poles, and the real importance of this discussion is the alternator 

moving mass which is a function of both alternator length and diameter. For a more rigorous design 

process, the optimal magnet height would be found via the magnet volume for a given flux density with 

finite element analysis tools. Such an endeavor is beyond the scope of this investigation, so the inner 

diameter of the magnets is assumed to be 80% of the calculated outer diameter. For a constant material 

density and with known length, the volume and mass of the alternator mover is available. 

 

Figure 63: Alternator parameter map for a two pole design based on Eq. 60. Points are given for reference where X 

indicates stroke, Y indicates frequency, and Z indicates diameter. 

Assuming a two pole design (which differs from that shown in Figure 62), the length parameter 𝐿𝐴 must 

be equal to length of the stroke (𝐿𝐴 = 𝑆𝑠𝑠). To avoid clearance issues, the space between the bearing 

location (𝐿𝐵) and the alternator is set equal to the piston and cylinder neutral clearance length (Eq. 62). 
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 𝐿𝐶 − 𝐿𝑃 = 𝐿𝐵 − 𝐿𝐴 = 𝐿 
Eq. 62 

The neutral clearance length was previously given in Eq. 1, and it remains to be one of the defining 

parameters of the system as the maximum stroke is equal to twice the natural clearance length. Bearing 

and piston skirt lengths are assumed to equal a total of 14 mm, but it is noted that bearing design for 

minimal friction deserves the attention of a separate design study. To accommodate the opposite piston 

and cylinder geometry, the ‘crankcase’ space beneath the piston must also have a neutral clearance of 

length 𝐿. With these constraints, the length from the midpoint of the alternator mover to the piston crown 

can be related to a previously defined term (Eq. 63). 

 𝐿𝑃 = 𝐿𝐵 + 0.014 𝑚 
Eq. 63 

The length of the piston is important for calculation of the rod mass and for parameterizing the 

port location. The port opening location is parameterized according to the theoretical limits of the 

translator motion. If the piston shown in Figure 62 were moved to its leftmost limit (achieving the maximum 

clearance between piston and cylinder head), the port opening value at the piston crown location would 

correspond to zero. Conversely, a parameterized value of one for the port location corresponds to the 

point at which the piston crown contacts the cylinder head. The subscripted percentage in Eq. 64 

corresponds to the port location parameter which must be in the domain (0, 1). 

 𝐿𝑝𝑜 = 𝐿𝑝𝑜% ∙ (2 ∙ 𝐿) + (𝐿𝑃 − 𝐿) Eq. 64 

Now that the diameter and length parameters are defined, the mass of the translator can be 

represented. Without a rigorous design effort, assumptions are made to complete the calculations. 

Starting with the piston head, an increase of piston bore corresponds to an increase of mass.  

 

Figure 64: Illustration of the basic piston head design. The underside of the piston head is shown in the forefront and 

the crown of the piston head is assumed to be a flat surface. 

Assuming a fixed skirt length of 8 mm, basic design (Figure 64), and material density (7800 kg/m3), 

mass data can be gathered as bore is varied. A second order polynomial relationship is formed to relate 

the mass of the piston heads to the bore. The relationship is shown in Eq. 65 and its plot follows in Figure 

65. 
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 𝑚𝑏𝑜𝑟𝑒 = 82.3 ∙ 𝑏
2 + 0.0136 ∙ 𝑏 − 8.16 ∙ 10−5 

Eq. 65 

 

Figure 65: Quadratic relationship for the mass of piston heads dependent on bore diameter. 

It is assumed that the translator connecting rod extends from beneath the right piston head, 

through the alternator mover, to beneath the left piston head. Practically, the cross sectional surface area 

of the rod must withstand the maximum acceleration and associated dynamic stresses that could lead to 

mechanical failure. The rod also acts as the bearing surface for the translator, so thermal effects from 

friction and heat conduction from the piston head are worth investigation. In short, the mass of the 

translator should be minimized while maintaining safe performance. The geometry of the translator does 

not lend itself to simple analysis, so a fixed cross sectional area of 75 mm2 is assumed for the full length 

of the translator rod. With constant material density (same as that given for the piston heads), the mass 

of the rod (𝑚𝑟𝑜𝑑 in kg) scales proportionally with its length (𝐿𝑃 in m) by Eq. 66. 

 𝑚𝑟𝑜𝑑 = 0.585 ∙ 2(𝐿𝑃 − 0.008) Eq. 66 

Spring design was mentioned as a complicated endeavor with many possible paths. This 

investigation cannot deal with such complexity within the simulation, but it is important to recognize a 

relationship between spring stiffness and total moving mass. Thus, a linear relationship is formed to 

represent the mass penalty associated with increased spring stiffness (Eq. 67) where the mass in 

kilograms is calculated with respect to spring stiffness in Newtons per meter. 

 𝑚𝑠𝑝𝑟𝑖𝑛𝑔𝑠 =
10

350000
𝑘 Eq. 67 

Recognizing that the natural frequency of an oscillating system is strongly dependent on √𝑘/𝑚, the 

frequency of the free piston engine is directly affected by Eq. 67. These effects are demonstrated in 

Figure 66. 



84 

 

 

Figure 66: Comparison between natural frequency increase with and without the inclusion of spring inertia variation. 

Separation between the case with constant mass and the varying mass case reinforces the 

importance of spring design. While increasing the frequency of the engine may lead to better performance 

and may be accomplished by raising the spring stiffness, the increase of inertia must be managed to 

maintain the effectiveness of the spring design. Furthermore, the relationship between spring stiffness 

and moving mass is not as simple as the linear relationship given in Eq. 67. For true spring design, 

system geometry and operation will play important roles. 

Aside from the geometric and mass relationships given, additional independent parameters are 

used to define the intake conditions and engine cylinder characteristics. The eight total independent 

parameters under consideration are summarized in Table 8 with descriptions for each. 

Table 8: Summary of independent parameters used to define the SALEG steady state design simulation. 

Symbol Description 

𝑏 engine cylinder bore 

𝐿 maximum half stroke (𝐿𝐶 − 𝐿𝑃) 

𝐿𝑝𝑜% location of ports given as percentage of allowable 

𝑘 spring stiffness 

𝑃𝑖𝑛  intake pressure  

𝑇𝑖𝑛 intake temperature 

𝜙 equivalence ratio 

𝐸𝐺𝑅 exhaust gas retained as percentage 

Aside from the input parameters, primary system outputs and measures of performance must 

also be defined. System efficiency is defined as the amount of fuel energy converted to alternator power 

after losses occur due to combustion and alternator inefficiencies, adverse work around top dead center, 

heat transfer, friction, and heat rejection. Mean power output by the alternator, peak cylinder pressure, 

compression ratio, stroke, frequency, and designed translator mass provide a quantitative view of the 
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system. Finally, cycle stability is measured as the change in translator start and stop locations after a full 

cycle, normalized by the system length geometry (𝐿). This is shown in Eq. 68 where 𝑥1 and 𝑥2 correspond 

to the start and stop positions of the translator, respectively. 

 𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
|𝑥1 − 𝑥2|

𝐿
 Eq. 68 

For the following parametric study and optimization, these eight inputs and outputs are the focus for 

understanding the nature of the SALEG. 

4.2 Effects of Primary Parameters 

The eight parameters given in Table 8 do not include all of the parameters that could be used to 

define the system (such as spring or alternator design parameters, variations in fuel characteristics, or 

more specific port or cylinder geometry). They do, however, represent the primary defining parameters 

of the system and bring to bear a large multi-dimensional design space. This parametric study begins 

with individual parameter sweeps stemming from the Ch. 3. base case. Starting with bore, Figure 67 

demonstrates the effect of bore on system stability. 

Again, stability is measured by the difference between translator start and stop positions for the 

final cycle of simulation where each simulation is stopped after 2.5 seconds of simulated time or if the 

piston contacts the cylinder head. The stability calculation is then normalized by the neutral clearance 

length so that zero corresponds to perfect stability. This is not the only possible measure of stability. The 

cycle-to-cycle variation of stroke length is a similar measure. A weakness in either approach is that the 

stop time (discussed in section 3.6.2 as the time within the simulation space that the simulation is 

stopped) is apart from the translator behavior. In other words, the simulation could end at any point during 

a cycle if the stop time is reached. Furthermore, for two different simulations, the stop time will likely 

cause each simulation to end at different points along the respective cycle. Based on the sensitivity 

analysis in section 3.6.2, the selected stop time ensures that steady state behavior is reached if possible. 

However, for an unstable simulation, the repeatability of the stability calculation is low if the stop time is 

varied. For the following parametric study, stability is viewed within the context of regions of unstable 

behavior and with respect to complimentary indications such as excessively high compression ratio. The 

change in dead center position has proven to be a sufficient measure of stability for this parametric study 

and the following optimization. In the final chapter, the dead center position is shown to be useful as a 

mechanism for control. 
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Figure 67: Parametric sweep of bore showing its effects on compression ratio, stroke, and stability. 

In Figure 67, the left-hand plot shows stability while the right-hand plot shows compression ratio and 

normalized stroke length, all as functions of bore. For the base case, bore was equal to 64 mm. 

Demonstrated in the stability plot is a central region where stability is consistent and then two outer 

regions where unstable behavior arises. Instability is particularly high in the left region when bore drops 

below a threshold, in this case about 50 mm. The left-hand unstable region corresponds to erratically 

decreasing compression ratio and stroke length in the right-hand plot, eventually falling off as 

compression falls below ten and combustion is no longer achieved. 

Instability is related to the relative cylinder energy. Reducing the cylinder bore results in lower 

cylinder energy. In the lower unstable region, cylinder energy is sufficiently reduced so that stable 

oscillation cannot be maintained. For the simulation cases between about 20 and 40 mm cylinder bore, 

ring-down of the translator is prevented within the simulation space by the alternator controller and 

integrated component design calculations. The ‘transient’ nature of these solutions results in the 

instability. 

Comparing the stability plot to the compression and stroke length plot, the stable region coincides 

with smooth increases of compression ratio and stroke length. Through the stable region, increasing bore 

leads to higher system energy and higher compression ratio. The stable simulations in this region reflect 

negligible cycle-to-cycle variations, resulting from balanced energy exchange within the system.  

The lack of stability in the right-hand region is shown to coincide with unrealistically high 

compression which increases by a factor of ten from 50 when the bore exceeds about 80 mm. These 

high compression cases are the result of excess cylinder energy that leads to runaway compression 

events beyond the ability of the system to dissipate energy through friction, heat transfer, and the 
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electromagnetic resistance of the alternator. The ability of the small alternator controller to increase load 

is purposefully limited to reduce its effect on steady state performance. 

The excessive compression shown in Figure 67 corresponds to peak pressures of greater than 

250 bar in the right-hand plot of Figure 68. The current model does not include material limitations, and 

therefore knows no limit to in-cylinder pressure. In the same figure, peak pressure, power density, 

frequency, and efficiency increase almost linearly through the stable region. Power density is calculated 

as the ratio of steady state power output to designed translator mass and is considered a reasonable 

surrogate for power density. 

  

Figure 68: Parametric sweep of bore showing its effects on frequency, efficiency, power density, and peak pressure. 

Through the stable region, efficiency rises linearly as a function of bore. The rise in efficiency is 

enabled by the rise in compression ratio, and overcomes the increased heat transfer losses that are 

associated with greater in-cylinder surface area. This is substantiated by the behavior in the upper 

unstable region. Despite the unrealistically high compression ratio, the compression ratio remains 

generally constant as bore continues to increase. Meanwhile, the increasing in-cylinder surface area 

allows for greater heat transfer and decline in efficiency. The insights discussed here related to energy 

balance are similarly demonstrated throughout the next parametric sweeps. Next, variation of allowable 

stroke length is considered with all other parameters kept constant according to the base case. 
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Figure 69: Parametric sweep of neutral clearance length showing its effects on compression ratio, stroke, and 

stability. 

Figure 69 demonstrates the effects of the neutral clearance length on stability, compression ratio, 

and stroke length. Recall that the neutral clearance length is the space between the piston crown and 

cylinder head when the translator is at its midpoint position. Raising the neutral clearance length is 

equivalent to raising the maximum stroke. It is helpful to recognize again that the steady state stroke 

length is normalized by the maximum possible stroke even while the maximum stroke parameter is varied. 

This ensures unbiased comparison between solutions as the neutral clearance length is increased. The 

base case neutral clearance length is 100 mm. 

System stability is mostly held through the range of clearance values but falters as the clearance 

drops below 50 mm. Additionally, a peak of instability arises in the region around 250 mm. Further 

investigation reveals that the instability is caused not by an uncontrolled rise in expansion or ringing 

down, but is rather a case of rhythmic stability (showing a beat frequency). Rhythmic stability is not 

applicable within this steady state discussion due to the integrated component design routines. However, 

it is notable that the unstable behavior is manifested as the compression ratio falls near ten, similar to 

the unstable threshold seen previously when bore was varied. As the neutral clearance is raised past the 

300 mm mark, natural steady state solutions are again found, though the decline in compression ratio 

and stroke length becomes more rapid. Comparing these plots with efficiency and power density seen in 

Figure 70, it becomes evident that the simulations with clearance length above 300 mm are ‘ringing down’ 

and will eventually come to rest. 

Aside from stability concerns, raising the maximum stroke (clearance length) decreases 

compression ratio and stroke length. These effects are primarily the result of greater in-cylinder surface 

area and thus greater heat transfer loss. In line with the impact on compression, maximum stroke is 

shown to also effect efficiency. The lowest stable clearance length corresponds to efficiency greater than 
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40% and the lowest to below 20%. For power density, a maximum is seen (considering only the stable 

region) around 135 mm. For an extended view of the combined effects of bore and maximum stroke, the 

interested reader can refer to Figure 117 and Figure 118 in Appendix C. 

  

Figure 70: Parametric sweep of neutral clearance length showing its effects on frequency, efficiency, power density, 

and peak pressure. 

During the design phase, port geometry is an essential design element that defines the gas 

exchange process. Unfortunately, the simplification of the gas exchange process undermines the 

usefulness of the parametric sweep through port location, but Figure 71 and Figure 72 demonstrate that 

the port location is bounded. The left bound – corresponding to a port location very near bottom dead 

center minimum – is due to the inability of the piston to reach a location with the port open. The right 

boundary indicates port placement that does not allow sufficient compression for ignition. Otherwise, 

moving the port location towards the cylinder head leads to decreases in frequency, compression ratio, 

power density, and peak pressure, but has negligible effect on efficiency. While these are consistent with 

the implied reduction of trapped cylinder volume (thus reduced cylinder energy), the true effects are 

uncertain due to the likely yet unspecified variations of cylinder pressure, temperature, and mixture 

associated with port location and geometry.  
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Figure 71: Parametric sweep of relative port location showing its effects on stability, compression ratio, and stroke 

length. 

  

Figure 72: Parametric sweep of relative port location showing its effects on frequency, efficiency, power density, and 

peak pressure. 

Next are considered the effects of intake pressure and temperature with pressure leading the 

discussion. Figure 73 shows the effects of raising the intake pressure on stability, compression ratio, and 

stroke length. Consistent throughout both Figure 73 and Figure 74 (showing the effects on frequency, 

efficiency, power density, and stroke length) is the intake pressure limitation around two bar. Above two 

bar, high cylinder energy leads to runaway compression and instability. It is notable here that intake 

pressures above about 1.5 bar result in peak cylinder pressures that may not be permissible considering 

material constraints. 
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Figure 73: Parametric sweep of intake pressure showing its effects on stability, compression ratio, and stroke length. 

Within the stable region, raising the intake pressure results in increases for all performance 

characteristics, pointing towards the possible benefit of a boosted intake system. Practically speaking 

however, the inclusion of boost may add cost and complexity and detract from overall system efficiency 

and power density by requiring additional system components.  

  

Figure 74: Parametric sweep of intake pressure showing its effects on frequency, efficiency, power density, and peak 

pressure. 

The effects of intake temperature are given in Figure 75 and Figure 76. Similar to the effects of 

intake pressure, stable operation is seen for increasing intake temperature but is limited by an upper 

bound. Dissimilar to intake pressure, increasing intake temperature is seen to cause decreases of 

compression, stroke length, efficiency, power density, and peak pressure. These decreases are due to 

the impact of temperature on start of combustion and inverse relationship between temperature and 

cylinder mass (according to ideal gas law). As intake temperature increases, combustion timing is 
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advanced with respect to TDC. Early combustion timing combined with heat transfer has been shown to 

cause an inversion of the pressure-volume profile that causes adverse work while turning the piston 

around. The negative work then leads to lower compression and efficiency loss. The shortened stroke 

allows for higher frequency operation. It is important to note that the wall temperature is assumed to be 

550 K through all parametric simulations. This is not consistent with steady state operation when intake 

temperature is raised. A more robust model for wall temperature should be pursued in future research to 

ensure the accuracy of these findings. 

  

Figure 75: Parametric sweep of intake temperature showing its effects on stability, compression ratio, and stroke 

length. 

 
 

Figure 76: Parametric sweep of intake temperature showing its effects on frequency, efficiency, power density, and 

peak pressure. 

Significant to the SALEG is the application of mechanical springs to support cyclic stability and 

increased frequency of the free piston engine. Previously it was shown that including a fraction of the 
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spring mass in the total moving mass can have negative consequences on system frequency compared 

to the case where spring mass is neglected (via the natural frequency discussion around Figure 66). 

Figure 77 and Figure 78 demonstrate that while stability is ensured with spring stiffness greater than 50 

kN/m, continuing to raise the stiffness results in decreased performance. The most significant loss in 

performance is in power density, where increasing spring mass contributes to the loss in conjunction with 

lowered frequency, while slightly lowered compression is tied to small losses in efficiency and peak 

pressure. 

 

 

Figure 77: Parametric sweep of spring stiffness showing its effects on stability, compression ratio, and stroke length. 

  

Figure 78: Parametric sweep of spring stiffness showing its effects on frequency, efficiency, power density, and peak 

pressure. 

Operating in the ultra-lean HCCI combustion regime was discussed in the literature review as 

having high potential when combined with the free piston engine. While this investigation cannot cover 

the effects of equivalence ratio on the combustion process with any real detail, the high level effects of 
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equivalence ratio are demonstrated in Figure 79 and Figure 80. For the given range of equivalence ratio, 

stability is consistent until the ratio nears a threshold around 0.2. Otherwise, rising equivalence ratio 

shows a positive influence on all performance factors. The responses for stroke length and peak pressure 

are linear while the ability to raise frequency and power density are limited after around 0.6. 

  

Figure 79: Parametric sweep of equivalence ratio showing its effects on stability, compression ratio, and stroke 

length. 

  

Figure 80: Parametric sweep of equivalence ratio showing its effects on frequency, efficiency, power density, and 

peak pressure. 

Finally, the effects of EGR are shown in Figure 81 and Figure 82. These results prove to be less 

insightful because the base case simulation involves the CFR ignition model (which does not include 

EGR effects) meaning that increase of EGR is equivalent to reduced equivalence ratio. This applies in 

the current model where both are related only to the amount of fuel energy added for each stroke of the 

engine, but not is in fact more complex within a real engine where EGR can significantly affect the in-

cylinder processes. As it happens, the given EGR range (0 - 50%) coincides with the equivalence ratio 
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range of approximately 0.4 – 0.7. For the same parametric sweep of EGR with the RCM ignition model, 

see Figure 115 and Figure 116 in Appendix C. The RCM model usage produces similar trends, except 

for efficiency which sees negligible increase as EGR is raised. 

  

Figure 81: Parametric sweep of EGR showing its effects on stability, compression ratio, and stroke length. 

  

Figure 82: Parametric sweep of EGR showing its effects on frequency, efficiency, power density, and peak pressure. 

Reviewing the trends shown through the previous parametric sweeps, decreasing compression 

ratio and stroke length are nearly always accompanied by decreases in efficiency, power density, and 

peak pressure. In general, it is difficult to affect frequency, but the most effective tool is shown to be the 

cylinder pressure (through either intake pressure or port location). Intake temperature is shown to strongly 

affect combustion timing and system performance. Fuel ignition too far in advance of top dead center 

reduces the compression ratio and stroke length leading to lower efficiency. 

System stability is shown to be a function of the energy balance. Intake conditions and system 

geometry are seen to have lower and upper limits. These limits depend on the management of energy 
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within the system. If combustion energy is not utilized or rejected, compression rises. If instead energy is 

used or rejected in excess to that added by the fuel, compression is reduced. Unchecked, the former will 

lead to excessive cylinder pressure while the latter will eventually result in system stall. 

The parametric study shows that between the ‘ring-up’ and ‘ring-down’ operational boundaries is a 

significantly large design space around the given base case. Moreover, for a fixed design, controllable 

operating conditions, such as intake temperature and equivalence ratio, are shown to have significant 

impact on performance. Throughout this study, model simplifications limit the accuracy of the results. 

However, the trends demonstrated by the study are consistent and important for understanding the 

design space and implications for energy balance and system stability. These few plots present a small 

amount of information that can be gathered through parametric analysis. Supplemental figures in 

Appendix C present more data for the interested reader. 

4.3 Optimization of the SALEG 

Given the size of the design space (with eight input parameters and a wide range of possible 

performance targets and constraints), an optimization routine for high efficiency, steady state operation 

could take many forms. For this investigation, a genetic algorithm is chosen for its simplicity and 

robustness. The general concepts behind the GA was described in the introduction, and a flow chart is 

given in Figure 83 to help describe it further. 
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Figure 83: Flow chart diagram for the genetic algorithm optimization routine. 

Essential parameters are required to begin the GA. First, the number of generations defines the 

maximum number of times the optimization loop is allowed to proceed. The size of the population defines 

the number of individuals that are held at any time. A larger population with more data might speed up 

the optimization process but at the cost of computational time required. Crossover and mutation rates 

define the percentage of individuals that undergo reproduction by genetic alternation for each generation. 

This may seem redundant given that the size of the population could be used to accomplish the same 

task. However, increasing the crossover rate relative to the mutation rate is useful for more exploratory 

searching of the design space while mutation is useful for exploiting the strengths of current individuals. 

The current investigation is used as an example. At the start of the GA routine, a population size 

of 500 individuals is defined along with equal mutation and crossover rates of 25%. Raising the population 

size or genetic alteration rates will require greater computational time for each generation, but can result 
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in more robust searching of the design space. For common GA approaches, it is typical to strive for a 

balance between the computational requirements and GA parameters that suits that application. In 

addition, the application drives the suitability of the genetic alteration rates in relation to each other 

(mutation versus crossover). Crossover causes more significant alterations to an individual and is best 

suited for exploration of the design space. A ‘good’ crossover rate avoids local maxima within the design 

space while not overriding the benefits of mutation. 

Meanwhile, mutation is responsible for smaller alterations to an individual and is best suited for 

exploitation of favorable genetic traits. A ‘good’ mutation rate enables improvement of existing solutions, 

similar to gradient-based optimization routines. For the current investigation, the given population size 

and alteration rates prove to be effective. Each optimization run is allowed to continue for a maximum of 

70 generations or until the best individual performs better than 0.999 out a best possible of one. 

When an individual undergoes mutation, each of the eight input parameters (commonly referred 

to as genes) may or may not be perturbed according to an additional uniformly random value. The amount 

of perturbation depends on a randomly selected value according to a normal distribution centered on the 

current value where the standard deviation is scaled according to the allowable range for the given gene. 

For crossover, a ‘parent’ individual is paired with a second, randomly selected individual to serve as its 

‘mate.’ Then, a split point is randomly chosen based on a uniform distribution. At this split, both the parent 

and its mate are broken apart, and the parent’s genes before the split point are combined with the mate’s 

genes after the split point. Examples of these functions are illustrated in Figure 84. 

 

Figure 84: Illustrations to describe mutation and crossover genetic alterations. 

After the new individuals have been formed, the steady state simulation routine (the same that 

was applied for the parametric sweep study) is applied to determine system performance with the given 

set of input parameters. The performance function determines a performance value (PV) for each 

individual. This function can be customized to accommodate multiple performance targets and system 

constraints. The primary optimization targets are efficiency and stability where efficiency is maximized. 
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Additionally, a target power can be specified, driving the SALEG optimization towards high efficiency 

operation at the desired power output. Constraints are included in the performance function to help limit 

the optimization routine to practical responses. In the current algorithm, these constraints are applied to 

compression ratio and peak pressure. 

With targets and constraints established, performance is assessed on a scale from zero to one 

where ill-performing individuals receive as low as zero and optimal individuals can receive as high as 

one. Weights are assigned to targets and constraints to specify the relative importance of each. A weight 

function is defined for each target and constraint. Exponential functions are used for the weight profiles 

to enable continuous profiles and encourage gradient climbing behavior within the optimization routine. 

The shapes of each weight function can be used to raise or lower the flexibility of a target or constraint 

based on a specified tolerance. For a given individual, its performance value is calculated by summing 

its score from each of the weighted target and constraint maps and normalizing the score against the 

maximum possible. Figure 85 shows the weight functions defined for determination of individual 

performance values. Note that variations of the profiles are explored later in this section. 

 

Figure 85: Typical weight function profiles for performance value calculation in the genetic algorithm optimization 

routine. 

It is shown that stability and efficiency are weighted highest among the targets with target power 

following. Compression ratio and peak pressure constraints are weighted to be least impactful. The 

maximum pressure (peak in-cylinder pressure during steady state cycling) constraint is set at 250 bar. 

Though, cylinder gas blow-by past the piston rings is neglected in the simulation and will likely increase 

with maximum pressure. The compression ratio constraint is set to a range of 5 – 35, extending above 
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and below practical engine operation. These constraints can be modified, and additional constraints can 

be added to the performance function. 

The relative weights of each target and constraint can be adjusted to affect the behavior of the 

genetic algorithm. The weights shown in Figure 85 reflect that high efficiency and stability are sought 

more than any other target or constraint. After performance is assessed for the new individuals, the 

original population and new individuals are combined and sorted by rank so that the best performing 

individual is ranked first. Selection of the individuals within the population that survive to the next 

generation is based on elitist and roulette wheel selection strategies. Elitist selection ensures that the 

best performing individual always survives to the next generation to maintain the traits of the individual. 

Roulette wheel selection gives more opportunity for survival to individuals with higher performance values 

so that ill-performing individuals could survive but are less likely to do so. The selection strategy tends to 

raise average performance of the population as the generations pass. 

  

Figure 86: GA optimization response for 2 kW (left) and 4 kW (right) SALEG devices. 

Given the GA as described, typical responses for the GA optimization routine with specified target 

power are shown in Figure 86. The average performance of the population is assessed at the end of 

each generation along with the best performing individual within the population. The left plot shows the 

optimization of a 2 kW SALEG while the right plot shows the same for a 4 kW device. In Table 9, optimized 

parameter sets for a range of devices is given, each based on the weight maps shown in Figure 85 but 

with different target powers. 
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Table 9: Summary of optimized SALEG devices based on weight maps in Figure 85. 

Target power 1 kW 2 kW 3 kW 4 kW 5 kW 10 kW 15 kW 20 kW 25 kW 

Compression ratio 14.59 29.84 17.04 19.70 20.14 22.29 29.57 26.43 25.41 

Frequency [Hz] 47.49 49.10 44.14 73.86 45.55 48.84 45.97 44.58 52.51 

Efficiency [%] 45.11 49.26 43.91 47.01 45.40 46.93 48.17 46.04 44.85 

Power [kW] 1.058 2.015 2.964 3.925 5.003 10.02 15.13 20.03 25.14 

Peak pressure [bar] 81.99 237.0 137.3 74.69 128.3 100.5 182.1 185.9 206.6 

Stroke length [mm] 50.92 42.26 75.39 49.26 84.57 107.9 125.9 153.6 148.2 

Moving mass [kg] 3.119 4.785 5.539 1.186 5.028 3.675 4.274 5.769 6.463 

Power density [kW/kg] 0.3392 0.4211 0.5351 3.3094 0.9950 2.727 3.540 3.472 3.890 

Bore [mm] 25.34 24.34 25.03 47.65 34.47 54.48 47.56 49.87 60.00 

Maximum stroke 
to bore 

2.305 1.857 3.387 1.144 2.710 2.167 2.833 3.323 2.672 

Neutral clearance 
length [mm] 

29.21 22.60 42.39 27.26 46.70 59.02 67.37 82.85 80.16 

Actual 
displacement [cc] 

51.36 39.33 74.19 175.7 157.8 503.1 447.3 600.1 838.1 

Port location [%] 27.87 47.41 43.47 39.83 40.40 45.24 43.50 44.45 38.92 

Intake pressure [bar] 1.426 1.695 1.715 1.420 1.315 1.389 1.168 1.489 2.355 

Intake temperature [K] 250.0 250.0 250.0 319.3 263.5 250.0 250.0 250.0 259.2 

Spring 
stiffness [kN/m] 

100.0 147.1 178.0 15.00 151.7 89.87 96.67 144.8 202.2 

Equivalence ratio 0.2264 0.8661 0.6170 0.2418 0.6550 0.3000 0.6286 0.5682 0.2426 

EGR rate [%] 10.60 34.02 25.51 7.718 30.73 18.57 8.995 20.81 22.32 

Examining the data, very few trends are evident. Generally, bore and neutral clearance length 

(maximum stroke) rise with power output (corresponding to longer stroke and greater displacement). The 

strong weighting for efficiency helps to ensure that the >40% target is met. Intake temperature is 

consistently low. Referring back to the parametric sweep, lower intake temperature enables higher 

cylinder energy, higher compression ratio, and greater efficiency. The 4 kW SALEG device stands out 

amongst the other optimizations with substantially higher frequency. The same device also records the 

smallest maximum stroke to bore ratio, smallest spring stiffness, greatest power density, and lowest peak 

cylinder pressure. The relatively high power density is related to the high frequency (which enables 

smaller alternator design) and low spring stiffness (recalling the total moving mass relationship with spring 

stiffness discussed previously). The relatively high frequency is also facilitated by the lower maximum 

stroke to bore ratio (demonstrated by the left-hand plot of Figure 118). 
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The wide range of results points towards a flaw in the optimization routine. The GA did find 

parameter sets which met the performance requirements – the performance value for each individual in 

Table 9 is greater than 0.998 out of a maximum of one. However, the combination of targets and 

constraints given in Figure 85 allows multiple high performance solutions to exist. To address this fault, 

the compression ratio constraint is tightened to an upper limit of 25. These results are summarized in 

Table 10. 

Table 10: Summary of optimized SALEG devices with varied target power and tightened compression ratio constraint 

rangind from 5-25. 

Target power 1 kW 2 kW 3 kW 4 kW 5 kW 10 kW 15 kW 20 kW 25 kW 

Compression ratio 18.02 20.15 23.07 22.53 21.59 23.48 24.13 23.50 21.96 

Frequency [Hz] 57.62 65.33 59.56 64.09 56.07 52.51 56.42 56.55 51.86 

Efficiency [%] 47.71 48.9 48.46 47.68 45.17 42.62 42.56 41.81 39.34 

Power [kW] 0.9833 2.000 2.975 4.025 4.996 9.994 15.01 20.04 25.04 

Peak pressure [bar] 54.50 86.82 155.6 80.60 129.8 101.9 166.2 104.1 76.28 

Stroke length [mm] 32.50 38.50 47.5 52.56 67.44 96.51 110.9 131.4 164.4 

Moving mass [kg] 2.172 1.755 3.161 2.393 3.747 4.428 4.326 2.717 5.077 

Power density [kW/kg] 0.4530 1.140 0.9412 1.682 1.333 2.257 3.470 7.376 4.932 

Bore [mm] 37.50 37.50 36.89 54.18 46.13 60.00 61.61 77.85 97.50 

Maximum stroke 
to bore 

0.9685 1.134 1.404 1.060 1.604 1.752 1.955 1.837 1.847 

Neutral clearance 
length [mm] 

18.16 21.26 25.90 28.72 37.00 52.55 60.22 71.52 90.05 

Actual 
displacement [cc] 

71.79 85.04 101.5 242.4 225.4 545.8 661.2 1251 2455 

Port location [%] 29.72 29.07 28.50 19.52 19.99 40.03 15.60 33.83 26.50 

Intake pressure [bar] 0.9000 1.274 1.774 0.9000 1.388 1.250 1.473 1.332 0.9000 

Intake temperature [K] 250.0 250.0 250.0 250.0 250.0 250.0 250.0 250.0 250.0 

Spring 
stiffness [kN/m] 

63.28 43.47 86.91 53.17 101.3 132.0 96.01 29.87 121.3 

Equivalence ratio 0.2000 0.2065 0.2000 0.2000 0.2000 0.2784 0.2000 0.2000 0.2000 

EGR rate [%] 20.89 11.39 3.64 22.62 9.818 12.34 17.75 16.59 19.13 

Comparing these results with the previous set where compression was constrained from 5-35 

(Table 9), it is evident that limiting the compression ratio has significant impact on the design optimization. 

Reducing the compression ratio constrains the optimization space to reduce maximum stroke to bore 

ratio. This in turn raises the frequency, reduces moving mass, and increases power density (as compared 

to the higher compression ratio results). 
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The downfalls of this design regime are low equivalence ratio, low intake temperature, and for 

some designs, low intake pressure. While auto-ignition of fuel may be possible for these ultra-lean 

conditions, actual engine operation will be greatly affected by charge stratification. The risk of misfire 

increases as equivalence ratio is reduced. Additionally, intake temperature and intake pressure are not 

reflective of common ambient conditions. 

Focusing on the design of the 4 kW device, a range of optimization points can be achieved. For 

these designs, the lower limit for intake temperature is 300 K, the lower limit for intake pressure is 1 bar, 

and the lower limit for equivalence ratio is 0.35. Having retained the data collected through many 

optimization runs, multi-dimensional scatter plots can be used visually explore the design space for the 

described case. The first plot is given in Figure 87. 

 

Figure 87: Design map of maximum stroke to bore ratio, compression ratio, efficiency, and overall performance for 

the 4 kW SALEG. Lower limits are applied so that intake temperature is greater than 300 K, intake pressure is greater 

than 1 bar, and equivalence ratio is greater than 0.35 for all data points. 

For each of the data points shown in Figure 87, the performance value is calculated according to 

the maps given in Figure 85 except that the compression ratio constraint is set for 5-25. The design map 

shows that peak performance is achieved with low maximum stroke to bore ratio, maximum compression 

ratio (with respect to the upper constrain limit), and results in an efficiency grouping around 40%. The 

plot demonstrates only a single design zone. The next design map relates the maximum stroke to bore 

ratio to frequency and power density (Figure 88). 
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Figure 88: Design map of maximum stroke to bore ratio, frequency, power density, and overall performance for the 4 

kW SALEG. Lower limits are applied so that intake temperature is greater than 300 K, intake pressure is greater than 

1 bar, and equivalence ratio is greater than 0.35 for all data points. 

This second scatter plot with maximum stroke to bore ratio shows a bifurcation in the design 

space. While the performance is maximized for maximum stroke to bore ratio values near 1 with 

frequency grouped around 60 Hz, a second design space with ratios around 5 shows higher power 

density. It is worth recalling that power density is not included in the current performance definition. The 

next plots shift the focus to intake temperature and equivalence ratio. 

 

Figure 89: Design map of equivalence ratio, intake temperature, compression ratio, and overall performance for the 4 

kW SALEG. Lower limits are applied so that intake temperature is greater than 300 K, intake pressure is greater than 

1 bar, and equivalence ratio is greater than 0.35 for all data points. 
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Figure 89 shows the effects of equivalence ratio and intake temperature on compression ratio 

and design performance. Referring to the compression ratio, a ‘floor’ is observed representing the 

threshold for combustion and SALEG stability. Also, the high performance individuals are grouped around 

compression ratio of 20. As intake temperature is reduced, the compression ratio ceiling is raised allowing 

for more high performance individuals. This concurs with the findings seen throughout the optimization 

and parametric studies. For equivalence ratio, high performance individuals are seen throughout the 

domain of equivalence ratio values available in the data set, but are grouped between the lower limit of 

0.35 and about 0.7. This indicates that optimized performance can be found for a wide range of 

equivalence ratio. Improvement of the cylinder model, specifically regarding the combustion process, 

could very likely affect the design space around equivalence ratio. 

 

Figure 90: Design map of equivalence ratio, efficiency, peak cylinder pressure, and overall performance for the 4 kW 

SALEG.  Lower limits are applied so that intake temperature is greater than 300 K, intake pressure is greater than 1 

bar, and equivalence ratio is greater than 0.35 for all data points. 

Figure 90 shows a second perspective of the equivalence ratio design space with respect to peak 

pressure, efficiency, and performance. Efficiency and performance are strongly related due to the 

definition of performance. In the high performance region, corresponding to efficiencies around 40%, 

wide ranges for both equivalence ratio and peak pressure are seen. Lastly, the design space for intake 

temperature, frequency, power, and performance is shown in Figure 91. 
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Figure 91: Design map of intake temperature, frequency, power, and overall performance for the 4 kW SALEG. Lower 

limits are applied so that intake temperature is greater than 300 K, intake pressure is greater than 1 bar, and 

equivalence ratio is greater than 0.35 for all data points. 

Figure 91 shows a well-defined design space for the power output as a function of engine speed 

and intake temperature. A band of comparatively high performance cases is seen along the 4 kW plane. 

Otherwise, the design space for intake temperature and frequency narrows as power demand is raised. 

Again, lower intake temperature results in higher performance. Performance is not significantly affected 

by frequency so long as frequency remains above a lower threshold (about 45 Hz for the current space). 

The design space scatter plots serve as visual aids for understanding the design space of the 

simulated SALEG. They also serve to verify the repeatability of the optimization routine. The design space 

plots (specifically Figure 87 and Figure 91) show unambiguous regions of optimal design. 

Despite the repeatability of the design optimization, it is worth examining the weights given for the 

targets and constraints to understand their effect on the design space. Thus, Table 11 is given to show 

the effects of four different weighting schemes. Each set of weights is given as a set of integers ordered 

according to the following: {efficiency, stability, power, compression ratio, peak pressure}. For each set 

of weights, the top two optimization points are provided. Examining the table, the top two design points 

are identical regardless of the weighting. This is in part due to the fact that the same source of data was 

used to quickly search the design space. However, the data source consists of many thousands of design 

points, so is reasonable for this sensitivity analysis.  

 



107 

 

Table 11: Sensitivity of 4 kW optimized designs to variations of the GA performance weights. 

Weights* {3, 3, 2, 1, 1} {1, 1, 1, 1, 1} {2, 2, 2, 1, 1} {1, 1, 1, 3, 3} 

Compression ratio 19.64 21.29 21.29 19.64 21.29 19.64 21.29 19.64 

Frequency [Hz] 49.26 46.25 46.25 49.26 46.25 49.26 46.25 49.26 

Efficiency [%] 42.58 41.77 41.77 42.58 41.77 42.58 41.77 42.58 

Power [kW] 3.882 3.953 3.953 3.882 3.953 3.882 3.953 3.882 

Peak pressure [bar] 96.79 112.2 112.2 96.79 112.2 96.79 112.2 96.79 

Stroke length [mm] 70.94 71.50 71.50 70.94 71.50 70.94 71.50 70.94 

Moving mass [kg] 3.871 8.176 8.176 3.871 8.176 3.871 8.176 3.871 

Power density [kW/kg] 1.0028 0.4835 0.4835 1.0028 0.4835 1.0028 0.4835 1.0028 

Bore [mm] 40.68 40.68 40.68 40.68 40.68 40.68 40.68 40.68 

Maximum stroke 
to bore 

1.931 1.931 1.931 1.931 1.931 1.931 1.931 1.931 

Neutral clearance 
length [mm] 

39.27 39.27 39.27 39.27 39.27 39.27 39.27 39.27 

Actual 
displacement [cc] 

184.4 185.9 185.9 184.4 185.9 184.4 185.9 184.4 

Port location [%] 47.17 47.17 47.17 47.17 47.17 47.17 47.17 47.17 

Intake pressure [bar] 1.498 1.498 1.498 1.498 1.498 1.498 1.498 1.498 

Intake temperature [K] 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 

Spring 
stiffness [kN/m] 

113.1 261.9 261.9 113.1 261.9 113.1 261.9 113.1 

Equivalence ratio 0.4190 0.4830 0.4831 0.4185 0.4831 0.4185 0.4831 0.4185 

EGR rate [%] 21.93 26.12 26.16 21.93 26.16 21.93 26.16 21.93 

* Weights are given as ordered integer sets according to the following: {efficiency, stability, power, compression 

ratio, peak pressure}. The weighting given in Figure 85 would be represented by {3, 3, 2, 1, 1}. 

To finish the optimization study, a final design point is presented in Table 12. For this design point, 

the performance function did not include a target power, leaving the GA open to optimize any output 

power within the space. The SALEG device specified in Table 12 is presented to the reader as a 

reasonable design solution. Given the limitations of the numeric modeling brought on by the previously 

described simplifications, it is recommended that the design be investigated through more sophisticated 

modeling of its combustion and gas exchange processes and prototype development with the intent to 

match the target performance. In addition, designs shown in previous tables may also be viable and might 

warrant similar treatment. 
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Table 12: Final design optimization without target power included in performance evaluation. 

Compression ratio 21.51 

Frequency [Hz] 52.53 

Efficiency [%] 44.77 

Power [kW] 5.723 

Peak pressure [bar] 116.6 

Stroke length [mm] 77.09 

Moving mass [kg] 2.758 

Power density [kW/kg] 2.075 

Bore [mm] 40.67 

Maximum stroke to bore 2.080 

Neutral clearance length [mm] 42.30 

Actual displacement [cc] 200.3 

Port location [%] 31.35 

Intake pressure [bar] 1.028 

Intake temperature [K] 301.3 

Spring stiffness [kN/m] 75.0 

Equivalence ratio 0.6047 

EGR rate [%] 20.93 

4.4 Conclusions  

Combining the numeric model presented in Ch. 3 with simplified component design, the SALEG 

has been defined in terms of eight independent parameters. Sweeps of these parameters are used to 

study the SALEG with respect to performance characteristics such as stability, energy balance, efficiency, 

power density, and frequency. Employing the same steady state design simulation tool and a genetic 

algorithm optimization routine, the design space of the SALEG is explored and designs are presented for 

the SALEG with varied target output power. 

The study shows that low intake temperature and low maximum stroke to bore ratio promotes high 

efficiency with high power density. The size and shape of the design space indicates that the currently 

simulated SALEG may be better suited for steady state power production below 10 kW, as the design 

space narrows when target power is raised. Optimizing for efficiency with reduced compression ratio is 

shown to reduce the maximum stroke to bore ratio.  

While this study of the design space is not exhaustive, at least one bifurcation is evident regarding 

the relationship between power density and maximum stroke to bore ratio. Other branches of the design 

space might be observed given different model conditions or optimization goals. Of particular interest is 
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improvement of the relationships between EGR, port geometry, equivalence ratio, and combustion. The 

simplified 1-D pressure model does not account for the complex relationships between these parameters 

and performance characteristics. 

Additionally, liberties were taken in this investigation to simplify the component design calculations. 

The use of mechanical compression springs is assumed, but many spring designs are available. 

Particularly interesting is the possibility of air springs (where the pressure in the bounce chamber can be 

tailored to specific operation and react to transient behavior). Assuming the air mass is negligible, bounce 

chambers would contribute no moving mass to the system, thus mitigating the negative impact on 

frequency and power density. 

Recognizing that the simplifications taken in the modeling limit that accuracy of the results, this 

parametric and optimization study represents early steps towards a commercially viable product. The 

SALEG is shown to have excellent potential, and defining the true and ideal operating regime will likely 

require years of prototype testing and validation. However, optimization work similar to what has been 

presented here has also been instrumental in successful proposal efforts at WVU, and it will presumably 

similar research efforts that move the free piston linear engine towards optimized operation. 
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CH. 5 TRANSIENT OPERATION AND CONTROL 

One of the most significant challenges barring the path of the free piston linear engine is that of 

piston motion control. Without the constraints of mechanical linkages (such as the crankshaft and piston 

rod in the conventional engine), the free piston translator moves only according to its own inertia and the 

forces acting upon it. Thus, cycle-to-cycle variation becomes both a source of opportunity (enabling the 

potential to affect compression ratio to enhance performance) and a source of difficulty. Performance of 

the SALEG at steady state operation was explored through the parametric study, showing that high 

efficiency could be reached under the right conditions. During transient operation, however, maintaining 

operation becomes the primary concern while the return to high performance becomes the secondary 

goal. The first transient event to be discussed is that of motored, resonant start-up. 

5.1 Resonant Start-Up 

The concept of employing device resonance to achieve start-up stems from the fact that the free 

piston within the SALEG is essentially a mass-spring-damper system. The engine cylinders and 

compression springs (still assumed to be mechanical for the current investigation) provide an effective 

stiffness while the heat transfer and friction combine to dampen the oscillations of the translator. Without 

combustion, the engine cylinders operate along their motoring curves, and the alternator is inverted to 

provide an excitation force for the translator. The excitation continues until sufficient stroke and 

compression ratio are achieved to facilitate fuel injection and combustion. Once combustion is achieved, 

the alternator inverter is disengaged, and the alternator is allowed to draw power. 

This bounced starting method has been suggested by various researchers and explored in both 

analytical and numerical spaces for a dual cylinder free piston device. In 2006, an investigation from 

Kyungnam University in South Korea considered the use of an inverted three-phase permanent magnet 

linear alternator as a motor to force the oscillation in a linear engine at resonance to achieve sufficient 

compression [104]. They concluded that feedback control from translator position sensing would be 

required for precise control of the alternator inverter. In 2014, researchers from Newcastle University and 

the Beijing Institute of Technology published the developmental and experimental results which showed 

the motored resonance approach can achieve sufficient compression in a dual piston free piston engine 

device [33]. The Beijing researchers then extended the bouncing start-up investigation in [36], where a 

constant starting force, which changed with velocity, was employed to achieve a pulse width modulated 

square wave. For a 3 kg translator mass with bore of 50 mm, they simulated a compression ratio of ~20 

and engine frequency of ~21 Hz with a forcing amplitude of 55 N. They parametrically explored the effects 

of cylinder bore and translating mass, concluding that decreased stroke-to-bore ratio increases steady 

state frequency response. Reducing the translator mass can also increase frequency but additionally 
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results in lower force capabilities of the electric motor due to physical limitations. Former research at 

WVU suggested that, like other dynamic resonance systems, it would be frequency of the excitation force 

rather than its magnitude that would lead to suitable stroke length and compression ratio [82]. 

Recent research by the author investigated the resonant start-up of a single cylinder free piston 

linear engine, also a steady state generator device [7]. The work was conducted with a numeric model 

and found that motoring force frequency is indeed more impactful than motoring force magnitude. It was 

shown that friction is highly influential on the resonant behavior of the free piston, but that the effects (as 

well as the effects of heat transfer) were more significant with regard to the overshoot and settling time 

responses of the free piston rather than the steady state response. While the single cylinder device differs 

from the dual cylinder SALEG in dynamic profiles as well as architecture, it is expected that these findings 

hold true for any free piston engine. It is also expected that the resonance of any system will depend on 

its geometric and physical parameters. 

However, unlike the former investigation, the purpose of the current research is not to explore the 

effects of device parameters on resonance, but rather to achieve start-up of a given device. This depends 

on the implementation of a controller that can detect the dynamic state of the translator and respond to 

affect motor operation and resulting compression ratio. Then, after sufficient compression has been 

achieved, the controller must cause fuel injection and engagement of the alternator. Additionally, the 

controller should be able to provide transitional support to ensure successful steady state operation with 

combustion and alternator load. To facilitate the transient study, the following SALEG device is presented 

with respect to its nominal steady state performance. The device is described through Figure 92, Figure 

93, and Table 13. 

  

Figure 92: Translator dynamic profiles and pressure traces for the Ch. 5 base case. 
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Figure 93: Forces acting on the translator and steady state energy analysis of the Ch. 5 base case. 

Table 13: Summary of design parameters and stead state performance characteristics of the Ch. 5 base case. 

Bore 34.5 mm 

Maximum stroke 93.4 mm 

Port closing distance from cylinder head 57.6 mm 

Equivalence ratio 0.655 

EGR 30.7 % 

Intake pressure 1.20 bar 

Intake temperature 263 °K 

Cylinder mixture mass 0.0853 g 

Wall temperature 550 °K 

Spring stiffness 151.7 kN/m 

Total moving mass 4.93 kg 

Hohenberg leading parameter, 𝑎 65 

Stroke length 83.5 mm 

Compression ratio 17.9 

Frequency 44.8 Hz 

Power 3.81 kW 

System efficiency 38.2 % 

Mean alternator force 449 N 

Peak cylinder pressure 102 bar 

Peak translator acceleration 4.46 km/s2 

Peak translator velocity 11.2 m/s 

Fuel energy added per cycle 222 J 

Because a fixed cylinder wall temperature is used in the current investigation, this start-up 

discussion is limited to the hot-start scenario where the engine is at rest but is already at steady state 

operational temperatures. Given the base case SALEG device, the numeric model is altered to include 

two modes of operation for the alternator. Motoring mode is modeled with a sinusoidal force profile with 



113 

 

constant frequency and amplitude while the previously used alternator mode is maintained to convert 

translator kinetic energy into output power. Examining the natural resonance of the device can be 

accomplished by applying a spectrum of motor frequency and amplitude conditions until the translator 

reaches steady state under the motored condition. For this phase of the study, the controller is not allowed 

to transition the device out of motored operation thus allowing steady state to be reached for any motor 

excitation condition. Figure 94 shows the effects of varied motor force amplitude on stroke length 

(normalized against maximum stroke) and compression ratio.  

 

Figure 94: Simulation of base case being motored by the inverted alternator with sinusoidal force profile. Force 

frequency is 35 Hz and force amplitude is varied. 

Noting the scale of the left and right vertical axes, varying the motor force amplitude brings no 

significant change to the steady state operation of the translator. The small step change in the otherwise 

linear profile is a result of the stroke having increased sufficiently to open the ports and enable gas 

exchange. It may be that continuing to increase the motor amplitude could eventually achieve desired 

compression and stroke, but the force amplitude of the motor is physically limited depending on alternator 

parameters. Eventually, further increase of the force amplitude would require a larger alternator. Instead, 

it is the frequency of the motoring force that should be varied to achieve sufficient stoke and compression. 

This is demonstrated in Figure 95. 
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Figure 95: Simulation of base case being motored by the inverted alternator with sinusoidal force profile. Force 

amplitude is 66 N and force frequency is varied. 

By varying the motor frequency, the natural resonance of the base case SALEG device is shown 

to be just above forty cycles per second. The start-up concept is based on the existence of this resonant 

point, calling for a controller that can tune the motor frequency according to the rise or fall of the 

compression ratio, eventually matching the motor frequency to the resonant frequency to succeed in high 

compression and stroke. Theoretically, the system resonant frequency for the current SALEG device is 

known (by Figure 95), so it would be possible to immediately match the motor frequency and achieve 

desired operation to enable the transition to fired operation. However, practical operation of the device 

would likely affect its resonance (e.g. carbon build-up on a piston, compression spring fatigue, or cylinder 

gas blow-by around the piston rings). Thus, it is more desirable to construct a controller that can find the 

resonance and affect start-up without a priori knowledge of the resonance. 

In building this controller, it is considered that the only signal information available is the translator 

position, but that the signal information is continuous and accurate. From the model, copious amounts of 

data are generated (including compression ratio, stroke length, translator dynamics, and cylinder states), 

but it cannot be assumed that this information is entirely available to the controller. Limiting the signals 

available to the controller is based on realistic considerations and results in a controller algorithm that 

must perform additional computations. 

From the position signal, velocity and acceleration are immediately available through its 

derivative, though it is noted that the derivative of a noisy signal increases the noise in the derived signals. 

When the translator velocity equals zero, a dead center position has been reached, and at every dead 

center position, the stroke length and compression ratio are calculated. These calculations provide 
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continuous stair-stepped signals for compression ratio and stroke length which are employed by the 

controller to adjust the motor frequency and alternator state as necessary. 

The controller is composed of four parts: a state flow diagram to command the mode of the 

alternator (motor or alternator); the motor controller which adjusts the motor frequency to increase 

compression ratio and stroke; the alternator controller that was previously discussed in section 3.6.6; and 

the fuel control which at this point is limited to one of two states, command fuel at a constant equivalence 

ratio or command no fuel. The state flow diagram operates according to a simple threshold. If the 

compression ratio is above the threshold, fired operation is commanded; otherwise, motored operation 

is commanded. For the current device, a suitable threshold is found to be a compression ratio of twelve. 

The fuel control needs no further explanation and details for the alternator controller can be found in the 

previous section. 

The motor controller consists of proportional and integral components. The controller is built on 

the premise of beginning with a motor frequency that is known to be less than the resonant frequency. 

While this limits its robustness, it enables a simpler controller that can be built to adjust the motor 

frequency in a single direction (increasing) rather than in two (increasing and decreasing). Starting with 

a base frequency, the proportional component raises the motor frequency according to the error between 

a target compression ratio and the actual compression ratio. By itself, the proportional controller was 

found to be insufficient. The total controller is shown in Figure 96.  

 

Figure 96: Motor controller subsystem in the Simulink model used for SALEG start-up. 

By including the integral component, a moving bias (dependent on the accumulation of 

compression ratio error) is added to the base frequency along with the proportional component. Note that 

the compression ratio error is normalized by the target compression so that the controller gains are 

independent of system scale aside from motor frequency results. The relationship for the controller is 

presented in Eq. 69. 
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𝑓𝑚𝑜𝑡𝑜𝑟 = 𝑓𝑚𝑜𝑡𝑜𝑟,𝑏𝑎𝑠𝑒 + 𝐸 + 5∫ 𝐸𝑑𝜏
𝑡

0

 

𝐸 =
𝐶𝑅𝑡𝑎𝑟𝑔𝑒𝑡 − 𝐶𝑅𝑎𝑐𝑡𝑢𝑎𝑙

𝐶𝑅𝑡𝑎𝑟𝑔𝑒𝑡
 

Eq. 69 

For the current SALEG device, a target compression ratio (𝐶𝑅𝑡𝑎𝑟𝑔𝑒𝑡) of 19 is chosen because it 

exceeds the steady state performance compression, and the controller gains are set at one and five for 

the proportional and integral components, respectively. These values are shown to be effective, but are 

not optimized. Meanwhile, base motor frequency (𝑓𝑚𝑜𝑡𝑜𝑟,𝑏𝑎𝑠𝑒) can be varied parametrically to achieve 

different transient responses. The next two figures demonstrate a successful start-up given an initial 

motor frequency of 30 Hz. 

  

Figure 97: Controller outputs and engine cylinder transient response during start-up of the SALEG. 

Figure 97 provides selected outputs from the controller in the left-hand plot. In the right-hand plot 

are the transient response of the left cylinder temperature and pressure for a successful start-up of the 

current SALEG with a base motor frequency of 30 Hz and motor force amplitude (peak force) of 264 N. 

The alternator weight refers to the scaling factor applied to the alternator force by the alternator controller 

to encourage stability – a value of one corresponds to an unaffected alternator force while zero 

corresponds to no alternator force. The maximum alternator weight is limited by the physical alternator 

parameters, so a saturation limit of 1.1 is applied within the controller. 

Both alternator weight and equivalence ratio rises coincide with the fall of motor frequency and 

rise in cylinder temperature and pressure of the right hand plots. These sudden changes, occurring just 

prior to two seconds, indicate the point at which motored operation transitions to fired operation. Prior to 

the transition, the motor frequency is slowly raised in accordance with controller demand. At the same 

time, the cylinder pressure and temperature undergo two distinct phases. Before the one second mark, 
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the wall temperature causes the cylinder gases to heat and pressure to rise. These changes occur 

because the stroke length does not yet accommodate gas exchange. The sharp change near the one 

second mark occurs as the stroke length increases sufficiently to open the ports and allow gas exchange. 

Then, between one and two seconds, peak pressure and temperature rise according to the increase of 

compression ratio. Just before the two second mark, sufficient compression is achieved to cause fuel 

injection leading to combustion and sharp rise in peak pressure and temperature. The transient behavior 

of compression ratio and stroke are shown in Figure 98. 

  

Figure 98: Forces acting on the translator, compression ratio, and stroke length during SALEG start-up. 

Noting that the force from the springs is reflective of the translator position, early oscillatory motion 

is evident leading up to the point at which the resonant zone is entered, beginning around the one second 

mark and leading up to the transition point near two seconds. For this case, the total start-up time is 

under 2.5 seconds, and the steady state performance matches that seen in Table 13 and the preceding 

figures. Next, four different responses are given in Figure 99, each resulting from a different initial motor 

frequency. 
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Figure 99: Variations in SALEG start-up response as initial motor frequency is varied. 

Recalling that the resonant frequency for this simulated SALEG is just above 40 Hz, both cases 

where the motor frequency begins sufficiently below the resonant zone result in successful start-up. The 

start-up time can be reduced by causing the base frequency to be closer to the resonant frequency. 

However, the third case – where the initial motor frequency is set to nearly match the resonant frequency 

– results in overshoot by the controller and unsuccessful start-up. Because the controller is designed only 

to raise the motor frequency, both the third case (40 Hz) which overshoots and the final case (50 Hz) that 

is clearly above the resonant frequency cannot result in successful start-up. 

This section demonstrates two important concepts for start-up of the SALEG or likely any free 

piston device. First, the dynamic behavior of the translator is similar to a classical mass-spring-damper 

system wherein a natural frequency exists and resonance can occur when the frequency of the excitation 

force concurs. Second, a controller, dependent only on translator position, may be sufficient to “hot-start” 

the SALEG by employing its resonance to increase the compression ratio and stroke length until sufficient 

for combustion and steady state, fired operation. Alternative architectures for the controller as well as 

optimized controller parameters could improve the response of the SALEG. And, the controller would be 

made more robust if it could both raise and lower the motor frequency to achieve start-up regardless of 

the initial motor frequency. 

5.2 Response to Change in Load Demand 

During operation, an engine must be able to respond to changes in load. In the conventional engine, 

change in power output is accomplished by fuel and air management and results in a change of engine 
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speed. Previously discussed in the literature review as a concern for the HCCI engine is its narrow 

operating range. The free piston engine has the potential to enlarge the envelope with the use of varied 

compression ratio, but requires a controller that can balance system stability against meeting load 

demand. For the steady state SALEG, performance is optimized for engine operation at peak power 

output. To maximize the power density, the alternator mover mass is minimized. Together these 

statements imply that maximum power draw by the alternator coincides with optimized power output. 

Allowing that maximum alternator power draw may exceed optimized power gives authority to the 

alternator controller to help maintain stability (as described in section 3.6.6) and leads to the overshoot 

seen in the previous start-up figures.  

Load demand, however, may vary from the optimized load point and should be met so long as the 

demand is less than the maximum output of the alternator. The current SALEG device is optimized to 

provide 3.8 kWe of power, but it is possible that the alternator would only be required to provide a 

percentage of that power. Two steps are taken to impose a change in load demand within the simulation 

space. The first is to supply the power demand signal in the alternator controller. The power demand 

signal can be altered as desired to simulate step changes, ramp changes, or duty cycles. The second is 

to build a controller that attempts to drive the alternator output towards meeting the performance target 

by affecting the alternator load constant. The power demand controller consists of both proportional and 

integral components, but is held secondary to the stability controller by a weighted mean of the two 

controller commands. The total alternator controller is referred to as the P+PI controller. Given that the 

current hot start routine achieves nominal maximum power output, decreasing step and ramp changes 

are applied within the simulation. The result of a decreasing step changes is seen in Figure 100. 

 
 

Figure 100: Response of the SALEG as it reacts to a step decrease in power demand. Runaway compression results 

from using only the alternator P+PI controller to respond to the change in load demand. 
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The left-hand plot in Figure 100 demonstrates the mean power output of the alternator as a 

function of time along with the power demand and alternator P+PI controller command signal. The early 

start-up phase of the simulation is shown followed by a steady state operation phase. At the two second 

mark, a decreasing step change of -2 kWe is imposed. The P+PI controller reacts slowly because the 

proportional gain on the demand component is kept low to aid in stability. Examining the right-hand plot 

of Figure 100 shows that the decreasing load command results in increasing compression ratio and 

engine speed. This leads to the unintended consequence of increased power output despite the controller 

signal. The system eventually grows unstable. 

After extensive experimentation with gain values, the simple alternator P+PI controller proved to 

be insufficient. This result is not surprising given the architecture of the P+PI controller which attempts to 

maintain stability at a constant stroke length regardless of the desired power output. The dynamics of the 

SALEG demand that the applied load be matched to energy input through fuel and subsequent losses. 

This is a tenuous balance for the free piston, as demonstrated by the fundamental analysis and unstable 

regions seen throughout the parametric analysis. In short, an additional control variable is needed that 

responds to the load demand to affect the total operation of the SALEG. 

The parametric sweeps also demonstrated the strong response of the SALEG to intake 

temperature. Returning to the literature, intake temperature is demonstrated as a possible control 

mechanism for HCCI combustion in a crankshaft driven engine [67] via the use of simulation to map the 

engine response to varied input conditions. A similar approach is taken here to drive the SALEG operation 

through intake temperature management. Figure 101 shows the power and compression ratio of the 

SALEG as functions of intake temperature. 

 

Figure 101: Parameter sweep of intake temperature showing the relationships between intake temperature, power, 

and compression ratio. 
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To affect power output of the system, an intake temperature controller is constructed. Mapping 

between power demand and compression ratio provides the target compression for the SALEG. The 

error between target and actual compression then drives an integral controller to affect intake 

temperature. Because the map shows that the SALEG is limited to a specific range, the interpolation 

between power and compression ratio is clipped rather than extrapolated. For the Simulink representation 

of this controller, see Figure 113 in Appendix A. With the intake temperature controller included in the 

simulation, the same step down of power demand is applied. The results are given in Figure 102. 

 
 

Figure 102: Successful response of the SALEG to a step decrease in load demand. Target compression ratio is 

matched to power demand and intake temperature is controlled to meet target compression ratio. 

The ability of the intake temperature controller to meet the power demand is evident in Figure 

102. The increase of intake temperature corresponds to the drop in compression ratio. This occurs 

because intake temperature causes earlier combustion and thus adverse work around top dead center. 

Both peak pressure and efficiency are reduced – with the system efficiency dropping to 22%. 

Unfortunately, inclusion of the intake temperature controller also increases the time needed for the 

SALEG to achieve peak performance after start-up, as shown in the left-hand plot. Next, the response to 

ramp decrease in power demand is shown. 
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Figure 103: Successful response of the SALEG to a ramp decrease in load demand. Target compression ratio is 

matched to power demand and intake temperature is controlled to meet target compression ratio. 

Figure 103 shows that the intake temperature controller responds well to the steadily decreasing 

demand of power until the power demand falls outside the stable range shown in Figure 101. For this low 

load operation, the intake controller is no longer sufficient. This low load operation also carries 

significance for efficiency which is reduced to 15% as compared to the 38% at full throttle. 

While the intake temperature greatly improved the ability of the SALEG to respond to changes in 

load, it is limited in its ability. Practically, the intake temperature can be heated by the exhaust stream 

from the engine. Exhaust pulses are minimized in the SALEG because of the alternating two stroke 

cycles, but increasing intake temperature might still be considered a long term control variable with its 

effects not being fully realized for multiple cycles. Fuel control is the more immediate option for affecting 

engine operation. Control over fuel injection can be used to change engine operation within one cycle 

and is strongly related to power and compression ratio.  
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Figure 104: Relationship between equivalence ratio, power, and compression ratio. 

Figure 104 shows power and compression ratio dependent on equivalence ratio for the base case 

SALEG except with intake temperature set to 370 K, the limiting temperature in Figure 96. This 

demonstrates that stable operation can be achieved for output power of less than 1000 W at the maximum 

stable intake temperature. Extending the use of equivalence ratio, a map of stable operating points can 

be constructed for compression ratio and power as functions of both equivalence ratio and intake 

temperature. These maps are given in Figure 105. 

  

Figure 105: Intake temperature and equivalence ratio maps for power and compression ratio. 

The maps shown in Figure 105 reveal that a significant amount of operating space is available for 

the current SALEG device. The relationship between power and compression remains consistent, 

however, so that power demand can be translated to target compression ratio which can then be used 

within a controller to drive either the equivalence ratio or intake temperature. Unfortunately, the combined 

use of intake temperature and equivalence ratio does not appear to offer benefits for efficiency, which is 
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significantly reduced at part load. The strong relationship between power and compression ratio, and 

then between compression ratio and efficiency, may indicate that reduced power is tied to reduced 

efficiency. 

5.3 Recovery from Engine Misfire 

Simple misfire can be simulated in the Simulink model with the use of a step change applied to the 

fuel control that causes the fuel to be cut after a specified time. Combining this with the start-up might be 

said to represent a shortened duty cycle for the SALEG, and is illustrated in Figure 106. Demonstrated 

are three modes of operation. The first is start-up wherein compression ratio, stroke length, and frequency 

are raised as the motor frequency is controlled to match resonance. The initial motor frequency is set to 

38 Hz to achieve rapid start-up, and only the alternator proportional stability controller is active. The 

alternator power shows increasing negative power during the first mode indicating that the alternator is 

operating as a motor and that power input by the alternator is increasing with translator speed. The 

second mode is steady state operation with constant fuel and power output. Frequency has a relatively 

long rise time compared to compression ratio and stroke length. 

  

Figure 106: Simulated short duty cycle of SALEG with motored resonant start-up, steady state operation, and ending 

with fuel being cut. 

The final mode is after fuel has been cut. Looking closely at the power plot, there is a short 

transition period between full power draw and no power draw as the alternator controller reacts to the 

sudden lack of fuel input. Through the remainder of the third mode is translator “ring-down” as friction 

dampens the translator motion. It is notable that the fall-off of compression is very steep after misfire, 

indicating that recovery depends on rapid controller response. Another condition that might lead to misfire 

is excessive load and loss of compression. This case is presented in Figure 107. 
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Figure 107: Steadily increasing alternator load applied to the SALEG translator, eventually resulting in engine misfire. 

Rapid loss of compression follows the misfire and results in engine ring-down. 

To simulate the excessive load scenario, a ramp increase was applied to the load resulting in the 

ramp decrease in compression occurring between two and three seconds. Near three seconds, the 

compression ratio falls below 10 and misfire occurs. The steep drop-off of compression ratio and stroke 

follow. The pressure and temperature plots for the left cylinder show this drop-off, along with the ring-

down of the translator. Because the alternator controller cuts the power draw after compression ratio is 

sufficiently low, friction is the only damping component. After the ports close, the hot cylinder walls act to 

heat the cylinder charge and raise the cylinder pressure. A latent combustion event is predicted by the 

CFR ignition model causing a spike in cylinder energy and translator stroke. Regardless, the SALEG 

continues to lose energy and would eventually stall without motor excitation. 

Both of these cases demonstrate the need for rapid recovery of translator oscillation after the 

occurrence of misfire. Intake temperature was used successfully to control the power output of the stroke 

because of its ability to advance the combustion timing. Unfortunately, the gas exchange process for one 

engine cylinder coincides with the combustion (or misfire) of the other, rendering the intake temperature 

useless as an immediate recovery tool. This same reasoning applies to fuel injection, thus eliminating all 

except the alternator controller as a candidate for recovery of the engine after misfire. 

A simple method for recovery may be to fall back on the resonant start-up routine if the 

compression ratio falls below a given threshold. As in the start-up study, this threshold is twelve. The 

control logic is implemented within the state model of the controller, and the results are demonstrated in 

Figure 108. 
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Figure 108: Transient response and recovery of SALEG stable operation after misfire via the resonant start-up 

controller. 

Misfire is imposed within the simulation space by cutting the fuel for a single engine stroke. Rapid 

loss of compression activates the alternator inverter which then causes a force to be applied to the 

translator just as in the start-up sequence. The motor frequency is increased to the point of resonance, 

and steady state operation is recovered within half of a second after the misfire occurs. 

5.4 Conclusions Regarding Control 

Through the last three sections, some basic control methodology has been explored for the SALEG. 

Free piston resonance was demonstrated to be a viable method for both initial start-up of the device (it 

is expected that both hot-start and cold-start could be achieved) and recovery after misfire. Partial load 

performance is achieved with the use of intake temperature management and performance mapping 

between desired power and compression ratio. It is shown that the same effects could be achieved with 

similar mapping between equivalence ratio and desired power. While these tools are effective within the 

given simulation space, no optimization of controller parameters is sought, and many more paths to 

successful control might be available. This becomes especially true if the engine model is enhanced with 

valves that can be actuated on command, direct fuel injection, or spark/glow plugs in the engine cylinders 

for combustion. 

Despite the overall robustness demonstrated by the Simulink model, the controllers presented here 

command simple models that do not represent the physical systems with accuracy. For instance, the 

intake temperature command is met instantaneously within the perfect gas exchange cylinder model and 

the alternator inverter model consists of a mathematical sign change rather than modeled electronics. 

These represent areas where increased model sophistication might prove the simple control methods to 

be inadequate. 
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Of particular interest in the area of control is a method to increase efficiency at part load. It was 

shown that power, compression ratio, and efficiency may be too closely tied for high efficiency at low 

load. However, full mapping of the system and sophisticated control architecture may provide avenues 

to maintain high efficiency at low load, even if that efficiency is below that of peak load operation. The 

sophisticated control architecture might be based on the system mapping or could consist of model based 

components with predictive capabilities. Though not pursued in this investigation, it may be possible to 

predict an event such as misfire and to take early preventative action to prevent the misfire or prepare 

for rapid recovery. It is also possible that a controller, built to include knowledge of the HCCI combustion 

parameters, could tune the combustion performance to match the dynamics of the translator for high 

efficiency over a wider load range. 
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CH. 6 THE LAST CHAPTER 

6.1 Summary and Conclusions 

The dual free piston HCCI SALEG presented in this dissertation has the potential to succeed in a 

very competitive energy market because of its simplicity, energy density, and high efficiency. Realizing 

this potential depends on research and development of the device on many fronts. As a prelude to 

prototype testing of the SALEG, a series of simulation based investigations has been presented to 

advance the understanding of the device and the surrounding concepts. 

This dissertation contributes to advancing the free piston linear engine in three primary areas. The 

first is evaluation of the behavior of the SALEG through fundamental and numerical simulation. To 

achieve this, a theoretical, closed form solution is presented to show the fundamental nature of the 

SALEG. This is followed by the development and testing of a numeric simulation tool that has been 

extensively used to study the behavior of the SALEG during steady state and transient operation. Testing 

of the model provides important understanding of the free piston behavior, and compares the common 

modeling approaches seen in the literature. Using MATLAB® and Simulink, the virtual model is able to 

be modified to accommodate many research goals. The natural modularity of Simulink is employed so 

that the model architecture is well segregated and more easily understood. Each of the various processes 

within the model can be altered or enhanced to augment the accuracy or purpose of the simulation. And 

the model could be adapted to simulate a variety of free piston linear engine configurations and functions. 

Most importantly, it provides a foundation for future endeavors that might involve experimental data and 

improvement of the simulation by correlation. 

The model is then tested with respect to the underlying mathematical relationships. This serves to 

test its sensitivity to the numerical methodology and modeling options found throughout the literature. 

The model is verified against concepts and data found in the literature, but the predictive quality of the 

simulation does not account for many of the impactful complexities of a real device. One of the most 

important of these is the combustion event. Sensitivity of the numeric model to combustion profile, 

duration, and ignition timing is demonstrated, and duration and timing are shown to significantly impact 

steady state performance. However, the HCCI combustion model is greatly limited with respect to these 

findings. The 1-D pressure model does not characterize cylinder charge stratification; ignition timing is 

predicted by a model not correlated to the free piston engine; and combustion efficiency and combustion 

duration are fixed for a given simulation, independent of device behavior and conditions in the cylinder. 

Other simplifications further limit the simulation accuracy, but the model retains its usefulness as a tool 

to study trends and behavior of the SALEG and as a platform for future research. 
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The second contribution is greater understanding of the SALEG design space. This is achieved 

through parametric and optimization studies using the SALEG simulation tool. The numeric model input 

parameters are reduced by including geometry and translator mass within the simulation loop so that 

stable, steady state operation depends on energy balance as well as reasonable component design. The 

simulation tool and parametric study serve as a platform for the optimized design of the SALEG through 

the use of a genetic algorithm. The optimization routine is constructed to maximize efficiency for a given 

target power with constraints applied to ensure a stable design with reasonable compression ratio and 

peak pressure. A table of optimized designs is presented, and the design space is illustrated with multi-

dimensional scatter plots. While the simulated design space affords a wide range for optimization, the 

HCCI SALEG benefits from low intake temperature (~ 300 K) and low maximum stroke to bore ratio (~ 

1.2). Reducing the intake temperature enables higher compression, higher cylinder energy, and higher 

efficiency. Low stroke to bore ratio allows higher frequency and greater power density. 

The parametric study shows that raising the spring stiffness might actually degrade system 

performance if doing so severely increases system inertia. This points toward the need for careful 

consideration of spring design. Spring design will need to achieve high spring stiffness with low inertia to 

maximize frequency and power density. These advances in understanding of the design space will be 

instrumental for advancing the commercial viability of the free piston engine. 

The third and final contribution presented in this dissertation is greater understanding of transient 

operation and then the demonstration of suitable control mechanisms achieve start-up, meet load 

demand, and recover stable oscillation after misfire, within the simulation space. Hot start is successfully 

modeled with the alternator inverted to act as a motor and compel the motion of the translator. By 

matching the motor switching frequency to the natural resonance of the free piston SALEG, compression 

ratio and stroke are raised sufficiently to enable combustion. After combustion, the alternator inverter is 

deactivated and the controller switches to alternator mode where a light proportional controller helps to 

maintain stability at peak, steady state operation. The simulated start-up demonstrated in this dissertation 

serves as additional proof of concept for the use of resonance for start-up of the free piston engine, and 

encourages further testing in prototype devices. 

Step and ramp changes in load demand are applied to the SALEG to investigate reduced load 

operation. By itself, the alternator controller is unable to reduce system output power. Alone, the reduction 

in load results in runaway compression. Instead, the output power of the SALEG must be matched to the 

engine performance. So, an intake temperature controller is established from mapped relationships 

between intake temperature, power output, and compression ratio. The results are successful response 

of the SALEG to change in load demand for a given range of intake temperature at the cost of efficiency. 

It is also shown that equivalence ratio (or more generally, the amount of fuel) can be controlled to achieve 
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similar results, but it is not clear if the approach can benefit the system in terms of higher efficiency at 

part load. The combined use of equivalence ratio and intake temperature could likely extend the ability 

of the SALEG to respond to any load demand and further sophistication may be necessary to achieve 

high efficiency at low load. 

The final controller demonstration consists of recovery from the misfire. Despite the inclusion of 

relatively stiff springs (evident by the elliptical shape of the position-velocity profile), misfire still results in 

very rapid loss of compression and eventual stall. Thus, the resonant start-up mechanism is employed 

to recover stable oscillation. While it may not be ideal to motor the SALEG during practical operation, it 

was shown to be an effective solution within the given simulation space.  

6.2 Recommendations for Future Research 

The leading recommendation to improve the quality of any research stemming from this dissertation 

is further improvement and validation of the numeric model. Accuracy of the single zone cylinder model 

is greatly tied to the supporting empirical correlations and simplifications. Improvements for each process 

of the two stroke cycle should be pursued, especially including more accurate models of ignition timing, 

combustion duration, combustion efficiency, and gas exchange. The complexity of these processes are 

grossly neglected in this dissertation and deserve attention due their influence on engine performance. 

Additionally, a more accurate alternator model could be implemented and should be based on 

experimental data or finite element analysis to attain accurate values for model parameters. It would also 

be beneficial to investigate the influences of cogging forces and end effects on the transience of the 

SALEG as well as thermal effects on the alternator. 

While the simulated design process proved useful for demonstrating the impact of selected design 

parameters, it involved many simplifications as well. Of particular interest is the design and 

implementation of mechanical springs. The parametric study brought to light the importance of reducing 

the inertia of the springs, showing that the frequency gained by increased spring stiffness might then be 

lost by the increase of inertia. The finding does not eliminate the usefulness of springs, but rather supports 

the innovative implementation of spring devices. Air springs (bounce chambers) might be the solution to 

this difficulty, and the increased complexity also affords additional control capabilities. However, if 

simplicity (and reduced cost) are to be maintained, the traditional coil spring might be avoided in favor of 

a unique design that provides stiffness while minimizing mass. Regardless, spring design for use within 

a free piston linear engine deserves further investigation. 

Finally, limited control of the SALEG has been demonstrated in this dissertation. The use of 

resonance as a start-up strategy has excellent potential, and was shown to be achieved simply and with 

low power requirements. While this start-up investigation focused on hot-start due to the complexity of 
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thermal transience, the resonance of an actual free piston device should be examined for a range of 

temperature conditions. The ability to sufficiently increase stroke and compression under resonant 

operation has yet to be validated on a physical device, and would be a large step towards successful 

start-up. 

Control over the SALEG has also been demonstrated for changes in load demand and engine 

misfire. Responding to low load operation required reduced compression ratio, and thus incurred a 

penalty on efficiency. To avoid the loss, more sophisticated control might make use of parameter mapping 

or model-based control to find and drive operation towards the highest possible efficiency for the given 

load. Similar control methods could also prove powerful for predicting misfire or low efficiency 

combustion. These predictions could be used to take precautionary or preventative action against device 

failure. Such control sophistication would certainly require either experimental data or advanced 

computational methods capable of accurately predicting engine cylinder behavior. 
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VII. APPENDIX A – ADDITIONAL SIMULINK MODEL DIAGRAMS 

This appendix provides additional figures for the Simulink modeling subsystems which are not included 

in the main text body. 

 

Figure 109: ‘Translator State’ subsystem of the Simulink model. 

 

Figure 110: ‘Cylinder Pressures’ subsystem of the Simulink model. 
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Figure 111: ‘Left_Cylinder’ subsystem of the Simulink model. 
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Figure 112: ‘Cylinder States’ subsystem of the Simulink model. 

 

Figure 113: ‘Intake control’ subsystem of the Simulink model. 

 

Figure 114: ‘Alternator control’ subsystem of the Simulink model. 
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VIII. APPENDIX B – MATLAB® SCRIPTS AND FUNCTIONS 

VIII (i) Parametric Study 

MATLAB® script used to compile the Simulink model and perform the various parametric sweeps. 

%% parametric study 

  

% Matthew Robinson 

% West Virginia University 

% Dec. 2015 

  

% adapted from example given in 

% https://www.mathworks.com/help/rtw/examples/using-rsim-target-for-parameter-survey.html 

  

%% preparation 

close all 

clc 

clear all 

  

startTime = tic; 

  

mdlName = 'engine_2_parit_rev25'; 

open_system(mdlName) 

engine_2_parit_rev25_init 

  

cs = getActiveConfigSet(mdlName); 

cs.switchTarget('rsim.tlc',[]); 

  

bore = Simulink.Parameter(bore); 

bore.StorageClass = 'SimulinkGlobal'; 

L_NC = Simulink.Parameter(L_NC); 

L_NC.StorageClass = 'SimulinkGlobal'; 

L_ss_v = Simulink.Parameter(L_ss_v); 

L_ss_v.StorageClass = 'SimulinkGlobal'; 

L_epo_v = Simulink.Parameter(L_epo_v); 

L_epo_v.StorageClass = 'SimulinkGlobal'; 

P_intake = Simulink.Parameter(P_intake); 

P_intake.StorageClass = 'SimulinkGlobal'; 

Temp_intake = Simulink.Parameter(Temp_intake); 

Temp_intake.StorageClass = 'SimulinkGlobal'; 

springs_stiffness = Simulink.Parameter(springs_stiffness); 

springs_stiffness.StorageClass = 'SimulinkGlobal'; 

fuel_eq_ratio = Simulink.Parameter(fuel_eq_ratio); 

fuel_eq_ratio.StorageClass = 'SimulinkGlobal'; 

EGR = Simulink.Parameter(EGR); 

EGR.StorageClass = 'SimulinkGlobal'; 

  

prmFileName = [mdlName, '_prm_sets.mat']; 

batFileName = [mdlName, '_run_scr']; 

exeFileName = mdlName; 

  

exeFileName = [exeFileName, '.exe']; 

batFileName = [batFileName, '.bat']; 

  

aggDataFile = [mdlName, '_results_GAbase']; 

  

%% build model and get default parameter set 

rtwbuild(mdlName); 

  

rtp = rsimgetrtp(mdlName); 

  

%% create parameter sets 

  

bore_vals               = 0.047867; 

% bore_vals               = linspace(0.04,0.1,5); 

L_NC_vals               = 0.12132; 

% L_NC_vals               = linspace(0.1,0.14,5); 

L_epo_v_vals            = 0.3221; 
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% L_epo_v_vals            = linspace(0.25,0.55,3); 

P_intake_vals           = 90000; 

% P_intake_vals           = linspace(100000,150000,3); 

Temp_intake_vals        = 258.88; 

% Temp_intake_vals        = linspace(250,600,2); 

springs_stiffness_vals  = 1.3411e+05; 

% springs_stiffness_vals  = linspace(5000,350000,10); 

fuel_eq_ratio_vals      = 0.80036;%0.3 0.65 1 

% fuel_eq_ratio_vals      = linspace(0.3,1,3); 

EGR_vals                = 0.11888;%0.2 0.4 0.1 0.01 

% EGR_vals                = linspace(0.01,0.4,3); 

  

  

nPrmSets = length(bore_vals) *... 

    length(L_NC_vals) *... 

    length(L_ss_v_vals) *... 

    length(L_epo_v_vals) *... 

    length(P_intake_vals) *... 

    length(Temp_intake_vals) *... 

    length(springs_stiffness_vals) *... 

    length(fuel_eq_ratio_vals) *... 

    length(EGR_vals) 

%% 

aggData = struct('CR',[],'freq',[],'Eff',[],'Power',[],'P_max',[],'S',[],'dCR',[],... 

    'mass_pistons',[],'mass_rod',[],'mass_springs',[],'mass_alt',[],'mass_trans',[],... 

    

'geom_L_A',[],'geom_L_s',[],'geom_L_B',[],'geom_L_P',[],'geom_L_C',[],'geom_L_epo',[],'geom_alt_D_out'

,[],'geom_alt_D_in',[],... 

    'prms_bore',[],'prms_L_NC',[],'prms_L_epo_v',[],... 

    

'prms_P_intake',[],'prms_Temp_intake',[],'prms_springs_stiffness',[],'prms_fuel_eq_ratio',[],'prms_EGR

',[]); 

aggData = repmat(aggData, nPrmSets, 1); 

  

idx = 1; 

for ib = bore_vals 

    for iln = L_NC_vals 

        for ile = L_epo_v_vals 

            for ip = P_intake_vals 

                for it = Temp_intake_vals 

                    for isp = springs_stiffness_vals 

                        for ifu = fuel_eq_ratio_vals 

                            for ieg = EGR_vals 

                                aggData(idx).prms_bore = ib; 

                                aggData(idx).prms_L_NC = iln; 

                                aggData(idx).prms_L_epo_v = ile; 

                                aggData(idx).prms_P_intake = ip; 

                                aggData(idx).prms_Temp_intake = it; 

                                aggData(idx).prms_springs_stiffness = isp; 

                                aggData(idx).prms_fuel_eq_ratio = ifu; 

                                aggData(idx).prms_EGR = ieg; 

                                 

                                rtp = rsimsetrtpparam(rtp,idx,'bore',ib); 

                                rtp = rsimsetrtpparam(rtp,idx,'L_NC',iln,... 

                                    'L_epo_v',ile,'P_intake',ip,'Temp_intake',it,... 

                                    'springs_stiffness',isp,'fuel_eq_ratio',ifu,'EGR',ieg); 

                                idx = idx + 1; 

                            end 

                        end 

                    end 

                end 

            end 

        end 

    end 

end 

  

save(prmFileName,'rtp'); 

  

%% create batch file 

fid = fopen(batFileName, 'w'); 

idx = 1; 



145 

 

for ib = bore_vals 

    for iln = L_NC_vals 

        for ile = L_epo_v_vals 

            for ip = P_intake_vals 

                for it = Temp_intake_vals 

                    for isp = springs_stiffness_vals 

                        for ifu = fuel_eq_ratio_vals 

                            for ieg = EGR_vals 

                                outMatFile = [mdlName, '_run',num2str(idx),'.mat']; 

                                cmd = [exeFileName, ... 

                                    ' -p ', prmFileName, '@', int2str(idx), ... 

                                    ' -o ', outMatFile]; 

                                fprintf(fid, ['echo "',cmd, '"\n']); 

                                fprintf(fid, [cmd, '\n']); 

                                idx = idx + 1; 

                            end 

                        end 

                    end 

                end 

            end 

        end 

    end 

end 

fclose(fid); 

pause(0.001) 

%% execute and gather results 

system(['.' filesep batFileName]); 

%% 

figure(100) 

idx = 1; 

for ib = bore_vals 

    for iln = L_NC_vals 

        for ile = L_epo_v_vals 

            for ip = P_intake_vals 

                for it = Temp_intake_vals 

                    for isp = springs_stiffness_vals 

                        for ifu = fuel_eq_ratio_vals 

                            for ieg = EGR_vals 

                                outMatFile = [mdlName, '_run',num2str(idx),'.mat']; 

                                try 

                                    load(outMatFile); 

                                     

                                    aggData(idx).mass_pistons = rt_pistons_mass(end); 

                                    aggData(idx).mass_rod = rt_rod_mass(end); 

                                    aggData(idx).mass_springs = rt_springs_mass(end); 

                                    aggData(idx).mass_alt = rt_alt_mass(end); 

                                    aggData(idx).mass_trans = rt_trans_mass(end); 

                                     

                                    aggData(idx).geom_L_A = rt_L_A(end); 

                                    aggData(idx).geom_L_s = rt_L_s(end); 

                                    aggData(idx).geom_L_B = rt_L_B(end); 

                                    aggData(idx).geom_L_P = rt_L_P(end); 

                                    aggData(idx).geom_L_C = rt_L_C(end); 

                                    aggData(idx).geom_L_epo = rt_L_epo(end); 

                                    aggData(idx).geom_alt_D_out = rt_alt_D_out(end); 

                                    aggData(idx).geom_alt_D_in = rt_alt_D_in(end); 

                                     

                                    poi = find([0,diff(rt_Tran_SC)']~=0); 

                                    poi1 = poi(end-3); 

                                    poi2 = poi(end-1); 

                                    dom = poi1:poi2; 

                                     

                                    figure(100);hold on;plot(rt_Tran_X(dom),rt_Tran_V(dom));hold off 

                                     

                                    aggData(idx).S = rt_Tran_RDC(end)-rt_Tran_LDC(end); 

                                    aggData(idx).CR = mean([rt_Rcyl_CR(end),rt_Lcyl_CR(end)]); 

                                    aggData(idx).freq = rt_Tran_freq(end); 

                                    aggData(idx).P_max = 

mean([max(rt_Lcyl_Pre(dom)),max(rt_Rcyl_Pre(dom))]); 

                                    aggData(idx).Power = mean(rt_Power(dom)); 
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                                    Lcyl_dfuel = [0 diff(rt_Lcyl_m_fuel_in)']; 

                                    Rcyl_dfuel = [0 diff(rt_Rcyl_m_fuel_in)']; 

                                    rt_Lcyl_m_fuel_in(Lcyl_dfuel<=0)=0; 

                                    rt_Rcyl_m_fuel_in(Rcyl_dfuel<=0)=0; 

                                    FuelE = (sum(rt_Lcyl_m_fuel_in(dom))+sum(rt_Rcyl_m_fuel_in(dom))) 

* fuel_LHV * 1000; 

                                    AltWork = trapz(rt_time(dom),rt_Power(dom)); 

                                    Eff = AltWork/FuelE; 

                                    aggData(idx).Eff = Eff; 

                                     

                                    aggData(idx).dCR = mean([0 

diff((rt_Lcyl_CR(poi)+rt_Rcyl_CR(poi))/2)']); 

                                catch 

                                    aggData(idx).mass_pistons = nan; 

                                    aggData(idx).mass_rod = nan; 

                                    aggData(idx).mass_springs = nan; 

                                    aggData(idx).mass_alt = nan; 

                                    aggData(idx).mass_trans = nan; 

                                     

                                    aggData(idx).geom_L_A = nan; 

                                    aggData(idx).geom_L_s = nan; 

                                    aggData(idx).geom_L_B = nan; 

                                    aggData(idx).geom_L_P = nan; 

                                    aggData(idx).geom_L_C = nan; 

                                    aggData(idx).geom_L_epo = nan; 

                                    aggData(idx).geom_alt_D_out = nan; 

                                    aggData(idx).geom_alt_D_in = nan; 

                                     

                                    aggData(idx).S = nan; 

                                    aggData(idx).CR = nan; 

                                    aggData(idx).freq = nan; 

                                    aggData(idx).P_max = nan; 

                                    aggData(idx).Power = nan; 

                                    aggData(idx).Eff = nan; 

                                    aggData(idx).dCR = nan; 

                                end 

                                delete(outMatFile) 

                                idx = idx + 1; 

                            end 

                        end 

                    end 

                end 

            end 

        end 

    end 

end 

save(aggDataFile, 'aggData'); 

disp(['Took ', num2str(toc(startTime)/60), ... 

    ' minutes to generate results from ', ... 

    num2str(nPrmSets), ' simulation runs.']); 

ResultsTab = struct2table(aggData); 

%% plot and analyze results 

  

idx = 1; 

for ib = bore_vals 

    for iln = L_NC_vals 

        for ile = L_epo_v_vals 

            for ip = P_intake_vals 

                for it = Temp_intake_vals 

                    for isp = springs_stiffness_vals 

                        for ifu = fuel_eq_ratio_vals 

                            for ieg = EGR_vals 

                                 

                                figure(1); hold on 

                                plot(2*iln/ib,aggData(idx).CR,'ro'); hold off 

                                figure(2); hold on 

                                plot(aggData(idx).mass_trans,aggData(idx).Eff,'ro'); hold off 

                                figure(3); hold on 

                                plot(iln,aggData(idx).Power,'ro'); hold off 

                                 

                                idx = idx + 1; 
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                            end 

                        end 

                    end 

                end 

            end 

        end 

    end 

end 

  

fs = 14; 

  

figure(1); grid on 

ylabel('compression ratio','fontweight','bold','fontsize',fs) 

xlabel('max stroke to bore ratio','fontweight','bold','fontsize',fs) 

  

figure(2); grid on 

set(gca,'ylim',[0,1]) 

ylabel('system efficiency','fontweight','bold','fontsize',fs) 

xlabel('translator mass','fontweight','bold','fontsize',fs) 

  

figure(3); grid on 

ylabel('output power','fontweight','bold','fontsize',fs) 

xlabel('neutral clearance length','fontweight','bold','fontsize',fs)  

VIII (ii) Genetic Algorithm 

This is the master script which calls the initial population and allows the user to set optimization 

parameters.  

% Matthew Robinson 

% West Virginia University 

% November 2015 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Special acknowledgement given to colleague Robert Heltzel 

  

% Genetic Algorithm Optimization 

  

  

clearvars 

clc 

close all 

%% Simulink model initialization 

global mdlName dir_GA dir_sim 

  

mdlName = 'engine_2_parit_rev25'; 

dir_GA = pwd; % path name for GA directory 

dir_sim = dir_GA(1:end-3); % path name for simulation directory 

  

%% GA parameters 

startTime = tic; 

% All outside information 

% Population size 

pop_size = 600; 

% Define the Number of Generations 

generations = 20; 

% Define the rate of Crossover 

% Rate of Change of Segments 

crossover_rate = 0.2; 

% Define the rate of mutation 

% Rate of Change of Application of Smoothing Function 

mutation_rate = 0.2; 

%% Initial population and target setting 

  

load('GAinitpop4') 

GApop(:,30:31) = []; 

GAinitpop = GApop; clear GApop 

GAinitpop.index = (1:size(GAinitpop,1))'; 

  

target_power = 4000; 
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[ GAinitpop.PV,Targ ] = Healthfn( GAinitpop ); 

y = datasample(GAinitpop.index,pop_size); 

GApop = GAinitpop(y,:); 

GApop.index = (1:size(GApop,1))'; 

  

%% variable initialization 

  

elite_PV       = zeros(generations,1); 

average_PV     = zeros(generations,1); 

  

%% GA starts here 

h = waitbar(0,'First generation...'); 

for current_gen = 1:generations; 

    %% MUTATION 

     

    inds_counter = pop_size; 

     

    % a is the current cycle 

    for a = 1:pop_size 

        % Determine which members of the population will experience mutation 

        if rand < mutation_rate 

            inds_counter = inds_counter + 1; 

            % Mutation 

            % [ child ] = MutateInd( parent,index ) 

             

            [ GApop(inds_counter,:) ] = MutateInd( GApop(a,:), inds_counter ); 

        end 

    end 

     

     

    %% CROSSOVER 

     

    % a is the current individual 

    % b is the individual selected for crossover 

    for a = 1:pop_size 

        % Determine which members of the population will experience crossover 

        if rand < crossover_rate 

            inds_counter = inds_counter + 1; 

             

            % Crossover 

            % Choose another cycle to crossover with 

            b = datasample(1:pop_size,1); 

            % [ child ] = CrossoverInd( parent,mate,index ) 

            [ GApop(inds_counter,:) ] = CrossoverInd( GApop(a,:),GApop(b,:),inds_counter ); 

                         

        end 

    end 

     

    %% Simulations for new individuals 

    % 

     

    % Results = NewIndSim( GApop(pop_size+1:inds_counter,:), current_gen ); 

    inds = GApop(pop_size+1:inds_counter,:); 

    NewIndSim_script 

     

    for idx = pop_size+1:inds_counter 

        GApop(idx,1:20) = Results(idx-pop_size,1:20); 

    end 

    [ GApop.PV(pop_size+1:inds_counter),Targ ] =... 

        Healthfn( GApop(pop_size+1:inds_counter,:) ); 

    clc 

    clearvars -except average_PV crossover_rate current_gen dir_GA dir_sim ... 

        elite_PV GApop generations inds_counter mdlName mutation_rate pop_size ... 

        startTime Targ target_power h Results 

    %% Sorting Population based Health 

    % descending order with healthiest at top 

    [Y,I] = sort(GApop.PV,'descend'); 

    GApop = GApop(I,:); 

    GApop.index = (1:size(GApop,1))'; 
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    %% Formulate probabilities 

    TF = sum(GApop.PV); 

    prob = GApop.PV./TF; 

     

    %% Elitist and Quit condition 

    elite_PV(current_gen) = GApop.PV(1); 

    average_PV(current_gen) = TF / inds_counter; 

     

    % If  Performance Value Greater Than 0.999, end optimization 

    if elite_PV(current_gen) > 0.999 

        BEST_ind = GApop(1,:); 

        break 

    end 

     

    %% Roulette wheel with elitist selection 

    % Determine the q's for the roulette wheel 

    q = zeros(size(prob)); 

    q(1) = prob(1); 

    for idx = 2:inds_counter 

        q(idx) = q(idx-1) + prob(idx); 

    end 

     

    % Elitist Selection (Ensure that the Highest PV advances) 

    new_pop(1,:) = GApop(1,:); 

     

    % Select Members of the New Population 

    for idx = 2:pop_size 

        roulette = rand; %spin the wheel 

        if roulette < q(1) 

            select = 1; 

        else 

            [ select ] = RouWheelSelect( roulette,q ); 

        end 

        new_pop(idx,:) = GApop(select,:); 

    end 

     

    % End of the generation 

     

    %% reset base population 

    clear GApop 

    GApop = new_pop; 

    GApop.index = (1:pop_size)'; 

    BEST_ind = GApop(1,:); 

    perc = current_gen/generations*100; 

    try 

        waitbar(perc/100,h,sprintf('Generation %i/%i (%0.0f%%) complete...\nThe current best 

individual has a PV of %0.3f/1.',... 

            current_gen,generations,perc,BEST_ind.PV)); 

        drawnow 

    catch 

        break 

    end 

end 

  

%% plotting 

try 

    close(h) 

catch 

end 

  

figure;hold on 

plot(1:generations,elite_PV,'r','linewidth',2) 

plot(1:generations,average_PV,'g','linewidth',2) 

  

figure 

subplot(4,1,1); plot(Targ.Eff.Map.x,Targ.Eff.Map.y,'linewidth',2); grid on 

xlabel('efficiency') 

subplot(4,1,2); plot(Targ.Pow.Map.x*10^-3,... 

    Targ.Pow.Map.y,'linewidth',2); grid on 

xlabel('power [kW]') 

subplot(4,1,3); plot(Targ.dCR.Map.x,Targ.dCR.Map.y,'linewidth',2); grid on 
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xlabel('stability [dCR/dt]') 

subplot(4,1,4); plot(Targ.P_max.Map.x*10^-5,... 

    Targ.P_max.Map.y,'linewidth',2); grid on 

xlabel('max pressure [bar]') 

The health or performance value of each individual is assessed with this function. 

function [ health,Targ ] = Healthfn( data,varargin ) 

% Matthew Robinson 

% West Virginia University 

% November 2015 

% Receives table data taken from parametric sweep data and computes health 

% (performance) of individuals based on variable target inputs 

  

%% construct maps from targets 

if ~isempty(varargin) 

    [ maxweight,Targ ] = GAweightmapbuilder( varargin{1} ); 

else 

    [ maxweight,Targ ] = GAweightmapbuilder(  ); 

end 

  

if istable(data) 

    data = table2array(data); 

end 

  

health = zeros(size(data,1),1); 

%% interpolates within map data to calculate individual health 

for idx = 1:size(data,1) 

     

    if isnan(data(idx,3)) || isinf(data(idx,3)) || data(idx,3)>1 

        health(idx) = 0; 

    else 

        if ~isempty(varargin) 

            health(idx) = interp1(Targ.Eff.Map.x,Targ.Eff.Map.y,data(idx,3),'nearest',0) +... 

                interp1(Targ.Pow.Map.x,Targ.Pow.Map.y,data(idx,4),'nearest',0) +... 

                interp1(Targ.dCR.Map.x,Targ.dCR.Map.y,data(idx,7),'nearest',0) +... 

                interp1(Targ.P_max.Map.x,Targ.P_max.Map.y,data(idx,5),'nearest',0); 

        else 

            health(idx) = interp1(Targ.Eff.Map.x,Targ.Eff.Map.y,data(idx,3),'nearest',0) +... 

                interp1(Targ.dCR.Map.x,Targ.dCR.Map.y,data(idx,7),'nearest',0) +... 

                interp1(Targ.P_max.Map.x,Targ.P_max.Map.y,data(idx,5),'nearest',0); 

        end 

    end 

end 

health = health./maxweight; 

  

  

end 

The performance target weight maps are built by the following function which receives variable inputs 

based on user specification. 

function [ maxweight,Targ ] = GAweightmapbuilder( varargin ) 

% Matthew Robinson 

% West Virginia University 

% November 2015 

%% target specification and mapping 

maxweight = 0; 

  

Targ = struct('Eff',struct('val',[],'Map',struct('x',[],'tol',[],'weight',[]))); 

  

Targ.Eff.val = 0.4; 

Targ.Eff.Map.tol = 0.4; 

Targ.Eff.Map.weight = 2; 

  

Targ.Eff.Map.x = linspace(0,1,5000); 

Targ.Eff.Map.y = zeros(1,5000); 

xs = Targ.Eff.val-Targ.Eff.Map.tol; 

tempx = Targ.Eff.Map.x(Targ.Eff.Map.x > xs); 

tempy = Targ.Eff.Map.weight *... 
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    ( 1-exp( -2.*((tempx-xs)./Targ.Eff.Map.tol).^(1+5) ) ); 

Targ.Eff.Map.y(Targ.Eff.Map.x > xs) = tempy; 

maxweight = maxweight + Targ.Eff.Map.weight; 

  

if nargin 

    Targ.Pow.val = target_power; 

    Targ.Pow.Map.weight = 2; 

    Targ.Pow.Map.tol = 0; 

     

    [ Targ.Pow.Map.x,Targ.Pow.Map.y ] =... 

        weightmap_Gauss( Targ.Pow.val,Targ.Pow.Map.weight,200,50000,Targ.Pow.Map.tol ); 

    maxweight = maxweight + Targ.Pow.Map.weight; 

end 

  

Targ.dCR.val = 0; 

Targ.dCR.Map.weight = 2; 

Targ.dCR.Map.tol = 0.1; 

  

[ Targ.dCR.Map.x,Targ.dCR.Map.y ] =... 

    weightmap_Gauss( Targ.dCR.val,Targ.dCR.Map.weight,-0.5,0.5,Targ.dCR.Map.tol ); 

maxweight = maxweight + Targ.dCR.Map.weight; 

  

Targ.P_max.val = 250*10^5; 

Targ.P_max.Map.weight = 2; 

Targ.P_max.Map.tol = 20*10^5; 

  

Targ.P_max.Map.x = linspace(0.9*10^5,350*10^5,5000); 

Targ.P_max.Map.y = zeros(1,5000); 

xs = Targ.P_max.val+Targ.P_max.Map.tol; 

tempx = Targ.P_max.Map.x(Targ.P_max.Map.x < xs); 

tempy = Targ.P_max.Map.weight * ... 

    ( 1-exp( -1.*((tempx-xs)./Targ.P_max.Map.tol).^(1+5) ) ); 

Targ.P_max.Map.y(Targ.P_max.Map.x < xs) = tempy; 

maxweight = maxweight + Targ.P_max.Map.weight; 

Individuals undergo mutation according to the mutation rate and this function. 

function [ child ] = MutateInd( parent,index ) 

% Matthew Robinson 

% West Virginia University 

% November 2015 

%% causes mutation of individuals passed to function 

 

if istable(parent) 

    parentarray = table2array(parent); 

end 

  

childarray = zeros(1,31); 

childarray(30) = index; 

  

maxa = [zeros(1,20),0.50,0.50,1.000,0.95,500000,1000,400000,1.2,0.4]; 

mina = [zeros(1,20),0.01,0.01,0.003,0.05,090000,250,015000,0.2,0.0]; 

  

for i = 21:29 

    if rand<0.6 

        childarray(i) = parentarray(i) + (maxa(i)-mina(i))/15 * randn(1); 

        if childarray(i) > maxa(i) 

            childarray(i) = maxa(i); 

        elseif childarray(i) < mina(i) 

            childarray(i) = mina(i); 

        end 

    else 

        childarray(i) = parentarray(i); 

    end 

end 

  

if istable(parent) 

    child = array2table(childarray); 

else 

    child = childarray; 

end 
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end 

Individuals undergo crossover according to the crossover rate and this function. 

function [ child ] = CrossoverInd( parent,mate,index ) 

% Matthew Robinson 

% West Virginia University 

% November 2015 

%% causes crossover of individuals passed to function 

 

if istable(parent) 

    parentarray = table2array(parent); 

    matearray = table2array(mate); 

end 

     

split = randi([21,29],1); 

childarray = [zeros(1,20),... 

    parentarray(21:split),matearray(split+1:29),index,0]; 

  

if istable(parent) 

    child = array2table(childarray); 

else 

    child = childarray; 

end 

 

end 

New parameter sets developed by mutation and crossover are simulated by with the use of a script similar 

to the parameter sweep script. 

% Matthew Robinson 

% West Virginia University 

% November 2015 

%% calculates simulation data for new individuals 

 

global mdlName dir_GA dir_sim 

  

%% change directory 

cd(dir_sim) 

  

%% initialize model 

engine_2_parit_rev25_init 

cs = getActiveConfigSet(mdlName); 

  

bore = Simulink.Parameter(bore); 

bore.StorageClass = 'SimulinkGlobal'; 

L_NC = Simulink.Parameter(L_NC); 

L_NC.StorageClass = 'SimulinkGlobal'; 

L_ss_v = Simulink.Parameter(L_ss_v); 

L_ss_v.StorageClass = 'SimulinkGlobal'; 

L_epo_v = Simulink.Parameter(L_epo_v); 

L_epo_v.StorageClass = 'SimulinkGlobal'; 

P_intake = Simulink.Parameter(P_intake); 

P_intake.StorageClass = 'SimulinkGlobal'; 

Temp_intake = Simulink.Parameter(Temp_intake); 

Temp_intake.StorageClass = 'SimulinkGlobal'; 

springs_stiffness = Simulink.Parameter(springs_stiffness); 

springs_stiffness.StorageClass = 'SimulinkGlobal'; 

fuel_eq_ratio = Simulink.Parameter(fuel_eq_ratio); 

fuel_eq_ratio.StorageClass = 'SimulinkGlobal'; 

EGR = Simulink.Parameter(EGR); 

EGR.StorageClass = 'SimulinkGlobal'; 

  

prmFileName = [mdlName, '_prm_sets.mat']; 

batFileName = [mdlName, '_run_scr']; 

exeFileName = mdlName; 

  

exeFileName = [exeFileName, '.exe']; 

batFileName = [batFileName, '.bat']; 
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% aggDataFile = [mdlName,'_results_GA_gen',num2str(gen),'.mat']; 

  

%% build model and get default parameter set 

if current_gen == 1 

    open_system(mdlName) 

    rtwbuild(mdlName) 

end 

rtp = rsimgetrtp(mdlName); 

  

%% create parameter sets 

if istable(inds) 

    indsarray = table2array(inds); 

end 

  

nPrmSets = size(indsarray,1); 

aggData = struct('CR',[],'freq',[],'Eff',[],'Power',[],'P_max',[],'S',[],'dCR',[],... 

    'mass_pistons',[],'mass_rod',[],'mass_springs',[],'mass_alt',[],'mass_trans',[],... 

    

'geom_L_A',[],'geom_L_s',[],'geom_L_B',[],'geom_L_P',[],'geom_L_C',[],'geom_L_epo',[],'geom_alt_D_out'

,[],'geom_alt_D_in',[],... 

    'prms_bore',[],'prms_L_NC',[],'prms_L_epo_v',[],... 

    

'prms_P_intake',[],'prms_Temp_intake',[],'prms_springs_stiffness',[],'prms_fuel_eq_ratio',[],'prms_EGR

',[]); 

  

for idx = 1:nPrmSets 

    ib = indsarray(idx,21); 

    iln = indsarray(idx,22); 

    ile = indsarray(idx,23); 

    ip = indsarray(idx,24); 

    it = indsarray(idx,25); 

    isp = indsarray(idx,26); 

    ifu = indsarray(idx,27); 

    ieg = indsarray(idx,28); 

     

    aggData(idx).prms_bore = ib; 

    aggData(idx).prms_L_NC = iln; 

    aggData(idx).prms_L_epo_v = ile; 

    aggData(idx).prms_P_intake = ip; 

    aggData(idx).prms_Temp_intake = it; 

    aggData(idx).prms_springs_stiffness = isp; 

    aggData(idx).prms_fuel_eq_ratio = ifu; 

    aggData(idx).prms_EGR = ieg; 

     

    rtp = rsimsetrtpparam(rtp,idx,... 

        'bore',ib,'L_NC',iln,... 

        'L_epo_v',ile,'P_intake',ip,'Temp_intake',it,... 

        'springs_stiffness',isp,'fuel_eq_ratio',ifu,'EGR',ieg); 

end 

  

save(prmFileName,'rtp'); 

  

%% create batch file 

fid = fopen(batFileName, 'w'); 

  

for idx = 1:nPrmSets 

    outMatFile = [mdlName, '_run',num2str(idx),'.mat']; 

    cmd = [exeFileName, ... 

        ' -p ', prmFileName, '@', int2str(idx), ... 

        ' -o ', outMatFile]; 

    fprintf(fid, ['echo "',cmd, '"\n']); 

    fprintf(fid, [cmd, '\n']); 

end 

fclose(fid); 

  

%% execute batch simulation 

system(['.' filesep batFileName]); 

%% gather results 

for idx = 1:nPrmSets 

    outMatFile = [mdlName, '_run',num2str(idx),'.mat']; 



154 

 

    try 

        load(outMatFile); 

         

        aggData(idx).mass_pistons = rt_pistons_mass(length(rt_pistons_mass)); 

        aggData(idx).mass_rod = rt_rod_mass(length(rt_rod_mass)); 

        aggData(idx).mass_springs = rt_springs_mass(length(rt_springs_mass)); 

        aggData(idx).mass_alt = rt_alt_mass(length(rt_alt_mass)); 

        aggData(idx).mass_trans = rt_trans_mass(length(rt_trans_mass)); 

         

        aggData(idx).geom_L_A = rt_L_A(length(rt_L_A)); 

        aggData(idx).geom_L_s = rt_L_s(length(rt_L_s)); 

        aggData(idx).geom_L_B = rt_L_B(length(rt_L_B)); 

        aggData(idx).geom_L_P = rt_L_P(length(rt_L_P)); 

        aggData(idx).geom_L_C = rt_L_C(length(rt_L_C)); 

        aggData(idx).geom_L_epo = rt_L_epo(length(rt_L_epo)); 

        aggData(idx).geom_alt_D_out = rt_alt_D_out(length(rt_alt_D_out)); 

        aggData(idx).geom_alt_D_in = rt_alt_D_in(length(rt_alt_D_in)); 

         

        poi = find([0,diff(rt_Tran_SC)']~=0); 

        poi1 = poi(end-3); 

        poi2 = poi(end-1); 

        dom = poi1:poi2; 

         

        aggData(idx).S = rt_Tran_RDC(length(rt_Tran_RDC))-rt_Tran_LDC(length(rt_Tran_LDC)); 

        aggData(idx).CR = mean([rt_Rcyl_CR(length(rt_Rcyl_CR)),rt_Lcyl_CR(length(rt_Lcyl_CR))]); 

        aggData(idx).freq = rt_Tran_freq(length(rt_Tran_freq)); 

        aggData(idx).P_max = mean([max(rt_Lcyl_Pre(dom)),max(rt_Rcyl_Pre(dom))]); 

        aggData(idx).Power = mean(rt_Power(dom)); 

         

        Lcyl_dfuel = [0 diff(rt_Lcyl_m_fuel_in)']; 

        Rcyl_dfuel = [0 diff(rt_Rcyl_m_fuel_in)']; 

        rt_Lcyl_m_fuel_in(Lcyl_dfuel<=0)=0; 

        rt_Rcyl_m_fuel_in(Rcyl_dfuel<=0)=0; 

        FuelE = (sum(rt_Lcyl_m_fuel_in(dom))+sum(rt_Rcyl_m_fuel_in(dom))) * fuel_LHV * 1000; 

        AltWork = trapz(rt_time(dom),rt_Power(dom)); 

        Eff = AltWork/FuelE; 

        aggData(idx).Eff = Eff; 

         

        aggData(idx).dCR = mean([0 diff((rt_Lcyl_CR(poi)+rt_Rcyl_CR(poi))/2)']); 

    catch 

        aggData(idx).mass_pistons = nan; 

        aggData(idx).mass_rod = nan; 

        aggData(idx).mass_springs = nan; 

        aggData(idx).mass_alt = nan; 

        aggData(idx).mass_trans = nan; 

         

        aggData(idx).geom_L_A = nan; 

        aggData(idx).geom_L_s = nan; 

        aggData(idx).geom_L_B = nan; 

        aggData(idx).geom_L_P = nan; 

        aggData(idx).geom_L_C = nan; 

        aggData(idx).geom_L_epo = nan; 

        aggData(idx).geom_alt_D_out = nan; 

        aggData(idx).geom_alt_D_in = nan; 

         

        aggData(idx).S = nan; 

        aggData(idx).CR = nan; 

        aggData(idx).freq = nan; 

        aggData(idx).P_max = nan; 

        aggData(idx).Power = nan; 

        aggData(idx).Eff = nan; 

        aggData(idx).dCR = nan; 

    end 

    delete(outMatFile) 

end 

  

% save(aggDataFile, 'aggData'); 

  

%% store results and prep outputs 

if istable(inds) 

    Results = struct2table(aggData); 
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else 

    Results = struct2array(aggData); 

end 

cd(dir_GA)  

After performance of new individuals has been reassessed by the health function, roulette wheel selection 

is used to form the new population. 

function [ select ] = RouWheelSelect( roulette,q ) 

% Matthew Robinson 

% West Virginia University 

% November 2015 

%% determines which individuals survive to the next generation based on Roulette Wheel selection 

 

j=1; 

while j < length(q); 

    if roulette > q(j) && roulette <= q(j+1) 

        select=j+1; 

        break 

    else 

        j=j+1; 

    end 

end 

 

end 
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IX. APPENDIX C – SUPPLEMENTAL FIGURES FROM PARAMETRIC STUDY 

  

Figure 115: Effects of EGR on stability, compression ratio, and stroke length for the testing and validation base case 

with the RCM ignition delay model. 

 
 

Figure 116: Effects of EGR on frequency, efficiency, power density, and peak pressure for the testing and validation 

base case with RCM ignition delay model 

The following figures (Figure 117 – Figure 124) present parametric study data in support of Ch. 4. They 

are presented as functions of four dimensionless parameters: 

1. maximum stroke to bore ratio 

𝑆𝑚𝑎𝑥
𝑏

 

2. dimensionless intake pressure (stemming from the fundamental analysis) 

𝜋𝑏2𝑃𝑖𝑛
4𝐿𝑘

 

3. dimensionless heat addition (stemming from the fundamental analysis)| 
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𝑄𝑖𝑛
𝑘𝐿2

 

4. actual steady state to fundamental frequency ratio 

𝑓𝑠𝑠

√𝑘/𝑚
 

  

Figure 117: Effects of maximum stroke to bore ratio on performance, compression ratio, and stroke length. 

Performance is calculated based on the weight profiles given in Figure 85, but without target power. 

  

Figure 118: Effects of maximum stroke to bore ratio on frequency, efficiency, power density, and peak pressure. 
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Figure 119: Effects of dimensionless intake pressure on performance, compression ratio, and stroke length. 

Performance is calculated based on the weight profiles given in Figure 85, but without target power. 

  

Figure 120: Effects of dimensionless intake pressure on frequency, efficiency, power density, and peak pressure. 
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Figure 121: Effects of dimensionless heat addition on performance, compression ratio, and stroke length. 

Performance is calculated based on the weight profiles given in Figure 85, but without target power. 

  

Figure 122: Effects of dimensionless heat addition on frequency, efficiency, power density, and peak pressure. 
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Figure 123: Effects of frequency ratio on performance, compression ratio, and stroke length. Performance is 

calculated based on the weight profiles given in Figure 85, but without target power. 

  

Figure 124: Effects of frequency ratio on frequency, efficiency, power density, and peak pressure. 
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