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Abstract 
 

Effects of Aging on the Bond Between FRP and Concrete 

 

John D. Barger 

 
 
 

 Fiber Reinforced Polymer (FRP) composites are continuing to gain prominence 
for structural and non-structural applications all across the world.  FRP composites are 
being used as complete structural systems or in conjunction with conventional materials 
leading to hybrid structures. The study of using FRP rebars and wraps to reinforce our 
nation's existing bridge decks, beams and columns is proving that they are economical as 
well as future material of choice.   

This research deals with the bond behavior of FRP composite wraps 
adhered/bonded to concrete surface.  Focus of the study is on the bond degradation when 
the hybrid structure is exposed to different adverse environmental conditions including 
sustained stress.  The study involves using an epoxy based system to bond glass and 
carbon fabrics to concrete.  Specimens were aged by means of soaking them in alkaline, 
water, or acid solutions at either constant temperature or varying temperature for different 
time durations.  The duration of aging ranged from 1 to 9 months.   Some of the 
specimens were conditioned under an applied sustained load.  Upon removing the 
specimens from their conditioning environment, tension tests were performed in the 
Baldwin machine using specially manufactured concrete cube holder and grip assembly.  
The specimens were tested before and after aging to determine if any bond degradation 
occurred under hygrothermal and other chemical conditions.   The strain distribution 
along the bond line was examined.  The techniques used in this study for bonding FRP 
composites to concrete and different test methods including field application of FRP 
fabrics are also discussed. 
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Chapter 1 

Introduction 

 

1.1 General Remarks 

Corrosion of steel in reinforced concrete is one of the many causes of 

infrastructure deterioration.  This is seen greatly in colder regions of the world where 

deicing materials are used to keep highways and bridges free of ice and snow.  The 

deicing chemicals seep through micro cracks in concrete and corrode the internal steel 

reinforcement, which expands and creates tensile stresses in concrete for further 

deterioration [8].  Therefore, much effort is being put forth to minimize corrosion related 

degradation.  One of the ways to minimize corrosion related deterioration is to use fiber 

reinforced polymer (FRP) composite rebars in concrete, because of their inertness to 

electro-chemical reaction.   

Over the past 15 years researchers have been studying the effects of fiber 

reinforced polymer (FRP) rebars in concrete instead of steel to reinforce our nation’s 

bridge decks.   Fiber reinforced polymer rebar, as concrete reinforcement, is a promising 

alternative to steel.  However, methods to rehabilitate existing structures that are 

deteriorating due to the steel corrosion need to be developed.  The option of replacing 

these structures may not be the most economically feasible one due to different reasons 

such as: high expense involved in development of new land for new construction, loss of 

productivity associated with traffic and construction delays and adverse impact on local 
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businesses and industries [9].  Therefore, research is being carried out at the Constructed 

Facilities Center (CFC), West Virginia University, to investigate the use of FRP 

wrapping materials to repair/rehabilitate damaged concrete members including 

strengthening of existing structural members [5].  

 The great promise that FRPs demonstrate has elicited a widespread interest and 

evoked numerous questions regarding the long-term performance of FRPs in service.  

Innovative attempts have been made to reduce corrosion of steel in concrete, but most 

have met with limited success.  To fully demonstrate the capabilities of FRP fabrics 

wrapped around steel reinforced concrete members, long term durability, strength and 

stiffness performance studies are needed.  Some work has been carried out with wraps to 

prove the strength and stiffness enhancements on an economical basis[6,15,17].  

 

1.2  Objectives 

For a concrete member wrapped with FRP, a high degree of bond between FRP 

and concrete is essential under short and long-term service conditions. This research 

focuses on evaluating the long-term bond strength of glass/carbon fabrics with concrete. 

Degradation of bond strength and mechanical properties of FRP due to aging limits the 

effectiveness of wrapped structures in terms of strength and serviceability. Understanding 

the bond behavior under harsh environmental conditions and the results of this study will 

give designers the knowledge needed to predict the service life; thus providing a safer 

design.  Therefore, the objectives of this study are to:    

• = Evaluate possible bond strength degradation and the rate of degradation due to 

alkaline, acid, water, and freeze-thaw conditioning. 
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• = Evaluate changes in strain distribution along the bond length due to alkaline, 

acid, water and freeze-thaw conditioning. 

• = Evaluate parameters influencing bond strength in terms of specimen 

preparation and test methods. 

1.3 Scope 

More than 100 coupons were tested for bond strength evaluation between concrete 

and glass or carbon fabric.  Aging of the specimens was done through immersion in 

acidic and alkaline solutions as well as exposure to temperature and humidity changes 

(refer to Table 4.1, page 22).  Specimens were aged with or without sustained stress.  

Conditioning duration varied between 1 to 9 months.  At designated time intervals, the 

specimens were removed from the conditioning environment and tested.  Strain gages 

were used to evaluate the rate of degradation as well as the strain distribution.  A 

comparison with natural aging and control specimens was made and conclusions were 

drawn. 
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Chapter 2  
 

 Literature Review 
 
 
 
 
2.1 Background  

 It is apparent that fiber reinforced polymer composites are becoming useful for 

constructing the world's infrastructure and to rehabilitate and strengthen our existing 

structures.  The utilization of FRP is quickly gaining popularity because of its higher 

strength to weight ratio as well as its corrosion resistance.  The process of externally 

wrapping concrete beams and columns to strengthen or rehabilitate structures is an area 

that is receiving much attention.  The two major materials, concrete and FRP, are both 

durable by themselves; but the durability issues are not well understood when the two are 

chemically bonded.  Such lack of understanding may be attributed to bond forces 

generated from primers and adhesives that are typically used to bond FRP fabrics to 

concrete.  In addition, the application procedures that are necessary to bond the 

composite to the concrete face need better understanding.  Specifically, the bond 

resistance with time and under harsh environmental conditions needs to be studied to 

understand the effect of FRP wrap when exposed to different environmental conditions.  

 

2.2 Review of Aging 

Kshirsagar [12] recently completed a study at West Virginia University that dealt 

with accelerated environmental aging of FRP-wrapped concrete columns.  In his study, 
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the influence of six different accelerated aging conditions on the durability of concrete 

cylinders wrapped with a single layer of a glass fabric embedded in an epoxy resin matrix 

was examined.  Aged specimens were tested in compression after 1000, 3000, and 8000 

hours of aging.  From the results of these tests, Kshirsagar found that it is evident that 

wrapped concrete cylinders (but not the concrete itself) were deteriorated under exposure 

to either hot liquid media or extended freeze-thaw cycling.  He noted that a combination 

of moisture and elevated temperature was clearly more damaging than freeze-thaw 

cycling, and the strengthening effects of the FRP wrap were essentially lost after 3000 

hours of aging.    

In another study at West Virginia University, Javed [6] researched concrete beams 

externally bonded with carbon fiber tow sheets.  Her objective was to study the stiffness 

of the wrapped concrete beams and bond pull-off strength under accelerated aging 

conditions.  The reinforced concrete beams were 5ft x 4in x 6in and were tested as 

cantilever beams with an overhang of 3 ft 9in.  They were designed as under-reinforced 

beams to ensure ductile flexural failure.  The beams were reinforced using two #3 bars 

(Grade 60) in the compression zone as well as the tension zone.  Shear stirrups (#3-Grade 

40) were placed 6 inches center-to-center.  Two longitudinal tow sheets and one 

transverse tow sheet were applied along the tension side.  The test specimens for bond 

strength studies consisted of applying a 12" x 1" tow sheet strip, with fibers running 

along the length of the strip, to one face of a concrete cube and a second strip to the 

opposite face.  Upon application, the strips were coated with epoxy and bonded to the 

cubes over a length of 4 and 6 inches.  The externally bonded concrete beams and bond 

pull-off specimens were aged by placing them in an environmental chamber.  While in 
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the chamber, they were soaked in water as well as solutions having pH levels of 13 and 3, 

and endured different levels of humidity and temperature.   

The externally bonded beams and bond pull-off strength specimens were tested by 

Javed [6] after aging them for 5, 15, and 25 cycles.  The study concluded that the beams 

aged under acidic and alkaline environments behaved differently from the hygrothermally 

aged beams.  In all the beams aged for 5 cycles, an initial increase in stiffness was noted 

with respect to the control beams.  On aging for 15 cycles the stiffness dropped to that of 

the control beams.  However beams aged under acidic and alkaline conditions showed an 

increase in stiffness on further aging.  Such increases are attributed, typically, to better 

cure of adhesives.  However, hygrothermally aged beams showed about 17% decrease in 

stiffness before concrete cracking.  It was stated that the behavior of the beams can be 

attributed to the behavior of the epoxy adhesive in different environments. 

The bond pull-off tests revealed that the bond pull-off stress in the unaged 6-inch 

long specimens was found to be about 52% of the bond stress of the 4-inch long 

specimen.  The 48% reduction in bond stress is attributed to the parabolic distribution of 

bond force over a certain length beyond which it becomes zero.  On aging for 25 cycles, 

the bond stress in the 6-inch long specimen did not change with respect to the control 

specimens.  Whereas in the 4-inch long specimen, the ratio of bond stress in aged and 

unaged specimens at variable and constant temperature was about 0.71 and 0.80 

respectively.  Such bond stress variation can be explained from the view point of critical 

importance of bond length during aging, i.e., excess bond length over critical bond length 

can help adequate bond stress transfer even though partial degradation of bond length 

may take place under aging. 
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Katsuki et al [10] performed a study on lap joint strength, adhesion strength, and 

bond strength of continuous fiber(CF) sheets on concrete in terms of long term durability.  

They concluded that a reduction in adhesive strength and lap joint division strength by 

the interface degradation of concrete and CF sheets was not observed.  Rather, the 

strength degradation appeared to initiate in the concrete at the interface.  The destruction 

of the test specimens also occurred in the base concrete.  The bond strength durability 

tests concluded that degradation of the adhesive interface under dry and wet cycling was 

evident. 

A recent study in Canada [3] focused on the effects of freeze-thaw on the bond 

between FRP sheets and concrete.  Both glass and carbon fiber sheets were used.  Beams 

were strengthened with the sheets and subjected to 50, 150, or 300 cycles of freeze-thaw 

exposure.  At the end of exposure, the beams were tested to failure in 4 point bending.  

All of the beams failed with the same failure mode i.e., peeling of the bottom layer of 

concrete off the beam.  The tests concluded that freeze-thaw action did not cause any 

degradation to the bond at the concrete/FRP interface.   This conclusion was further 

reinforced from a similar study [19], in the United States of America.   

Two previous studies, Armstrong [1] and Kinloch [11], examined the effect of 

absorbed water on adhesive bonding in CFRP composites.  They concluded that the 

exposure of adhesive bond to water does not alter the effectiveness of bond to perform 

the necessary task to which it is entitled, i.e. no degradation was found. 
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2.3 Conclusions   

The effects that moisture, freeze-thaw, acid, alkaline, and temperature have on the 

bond characteristics will be studied through this research effort.  Little is known about the 

primers and adhesives that generate bond forces, and because there are so many different 

adhesives and primers it is difficult to tell which ones are the best for different substrates.  

Since concrete and fiber strengths are well established, the hybrid (concrete + fibers) 

strength is dependent on the bond strength.  There has been very little research done in 

this area, but it is becoming more and more of an issue leading to greater attention.  By 

exposing the primer and adhesives to harsh environments (such as acid, alkaline, freeze-

thaw, hygrothermal, and water), we can determine the magnitude of bond strength 

degradation.  These environmental factors have already proven to be detrimental to glass 

fibers [21], therefore we need to determine if any effects are occurring along the bond 

line so as to be able to predict a service life for the composite.  With just a few studies 

done in this area, it is still uncertain what is really happening in the interfacial bond. 

Additional research has to be carried out to develop the reasoning on how and why the 

bond performs as it does.  Therefore, the major thrust of this research is to help get us 

closer to developing sound engineering reasoning for bond degradation and also to 

develop bond stress reduction factors for design purposes under harsh environments. 
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Chapter 3 
 

Materials 
 

 
 

3.1 Introduction 
 

When studying the bond behavior of FRP and concrete, it is important to 

understand the materials that are involved.  This is especially true about the adhesive and 

primer.  There are many different types of adhesives that are used as bonding agents that 

may react differently under different environments.  The following chapter explains each 

material that was used in this study.   

 
3.2 Concrete 
 

In order to save money and time, the cubes used in this research were constructed 

from two different types of concrete.  One was a pea gravel and the other was of ½ in.  

aggregate size. Both were supplied by Hoy REDI-MIX, Morgantown, WV, and were of 

about 4000 psi strength.  The concrete was poured in two batches.  The first specimens 

were used for the five month and nine month durations whereas the specimens used for 

the shorter durations were poured a few months later.  The form work was removed about 

5 days after pouring and the cubes were stacked together and wet burlap and plastic were 

placed over them for 28 day curing.  The average compressive strength of the cylinders 

from the two batches was 4535 psi.  
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Table 3.1  Compressive strength of concrete cylinders 

Batch Compressive strength 

#1 4450 psi 

#2 4620 psi 

 

 

 

3.3    Carbon and Glass Fibers  

         The carbon fiber tow sheet came from a Japanese company known as Tonen Corp.   

It was of type FT-C-20 and had unidirectional fibers supported on a paper backing.  The 

fibers behave linear-elastically unto failure.  Some properties of CFRP are: [6,22] 

 
Design thickness of a single ply: .0043 inches (0.11 mm) 
 
Tensile strength:   2.2 kip/inch (382 N/mm) 
 
Tensile Modulus:   33 Msi (23.03 x 104 N/mm2) 
 
Ultimate strain:   1.5% or .015 
 
Density:                                                0.056 lbs/in3 

 

Shear Modulus:                                    7687 ksi 
 
Poisson Ratio:                                       .28  
 
 
    
 
The carbon fibers are resistant to moisture, some solvents, bases and weak acids. 
 



 11

 The glass fabric was provided by Master Builders of Cleveland, OH.  It was of 

unidirectional fibers and had no backing.  The fibers behave linear-elastically unto 

failure.  Some properties of GFRP are: [6,22] 

 
Design thickness of a single ply: .0235 inches (0.60 mm) 
 
Tensile strength:   76.9 ksi 
 
Tensile Modulus:   3770 ksi 
 
Ultimate strain:   2-3% 
 
Density:                                                0.063 lbs/in3 

 

Shear Modulus:                                    1450 ksi 
 
Poisson Ratio:                                       .28  
 

    

 
 

        
Figure 3.1  GFRP (left) and CFRP (right) 
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3.4    Primer and Adhesive 
 

The adhesive used was known as the Mbrace system.   The manufacturer, Master 

Builders, provided this material.  The primer was a two-part primer with a mix ratio of 

part A to part B of 3:1 by weight or volume.  It was applied to the concrete surface and 

allowed to cure for 24 hours.  The adhesive was also a two-part mixture with the mix 

ratio being the same as that of the primer.  It was applied to the concrete surface as well 

as the fabric the day after the primer was applied.  The method used to apply the material 

was suggested by the manufacturer.  The proper procedure for application of primer, 

epoxy and FRP is given in appendix A. 

For a detailed explanation of the materials that make up the adhesive, including 

properties and curing effects, refer to the manufacturer’s notes in appendix A.    
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Chapter  4 
 

Test Specimens and Experimental Set-Up 
 
 
 
 

4.1 Introduction 
 

The following chapter explains in detail how the specimens were constructed and 

tested, and the conditioning scheme of test specimens under hygro-thermal fluctuations.  

The specimens were fabricated and tested in the Major Units Laboratory at WVU.  It 

should be noted that each specimen is not an exact duplicate of the next due to varying 

surface conditions and dimensions.  The most severely distorted specimens were 

discarded. 

 

4.2 Specimen Description and Preparation 

A typical specimen consisted of two 4 x 4 x 4 inch concrete cubes connected by 

two strips of FRP composite.  The cubes were constructed using formwork that consisted 

of long steel plates and angles (see Figure 4.1).  Wooden forms were also constructed so 

as to produce more cubes per pour.  The plates were laid flat on the floor and the 4" high 

angles were laid along them.  At four inch intervals, 4 x 4 inch wooden spacers were 

placed between the angles as to separate one cube from the next (Figure 4.1).  After these 

cubes were poured and allowed to cure for 28 days, they were then paired up and 

numbered (two that resembled each other the most in size would make up one pair).  

Some cubes were discarded because they were over-sized due to the movement of the 

wooden spacers during vibration of the concrete.  Also, upon removing the wooden 
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forms, it was discovered that about half of the specimens were unacceptable, therefore 

these forms were not used in future pours.   

 

                          Figure 4.1  Formwork for concrete cubes 

 

 

4.2.1 Attachment of Strip 

 The next step was the application of the primer.  The primer, which was a two-

part mix ratio of 3:1 (by volume as well as weight), was mixed and applied to all six sides 

of the cube using a paint roller.  The cubes were placed on a sheet of wax paper and left 

to dry for 24 hours.   After this, the strips were ready to be cut from the sheets of fiber.  A 

sheet of carbon or glass was laid out on a piece of wax paper.  Using a paint roller, we 
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would then apply a very thin coat of resin to one side of the sheet.  This was done for two 

reasons:  1)It made the material easier to handle and cut; and 2) upon application of the 

epoxy, it kept the fibers from fraying out.  For example, when using glass a thin coat was 

needed on both sides of the sheet due to the thickness of the material.  After the resin on 

the sheet was cured (approx. 24 hours), the strips were cut out using scissors.  Each strip 

was 10 inches long and approximately 1¼" wide.   

The resin system (resin & epoxy) was now ready to be made.  This would consist 

of the two-part mixture (parts A & B) with a weight or volume ratio of 3:1 because of 

near identical specific gravity of parts A and B.  The mixture was stirred for five minutes.  

Using a paint brush, the adhesive was then applied to the ends of the strip and onto the 

cubes where the strip was to be bonded.  Another strip was placed on the opposite side of 

the cubes in the same manner.  The clearance between the cubes was about 6" and 

therefore about a 2" bond was allowed on each end (Figure 4.2).  While curing took place 

(24-48 hours), pressure was required to hold the strip in place.  Our first method for doing 

this was to apply some weights (small steel plates) to the bond area.  However, this would 

mean that we would have to return the next day and flip the specimen over and apply the 

second strip; thus requiring two days and another mixture of epoxy to complete the 

process.  There were also only a limited number of weights available for this kind of 

manual operation.  Therefore, in order to apply pressure to both sides of the specimens at 

the same time, we laid the specimens on their sides and butted them against each other 

(with an elastomeric pad between them) and applied a giant clamp to the ends (Figure 

4.3).  Not only did this allow us to create more specimens but it also helped us to 

complete the process in one day.  As the pressure was applied some strips did move a 
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little which resulted in having slight variation in bond lengths of exactly two inches.   

Therefore, both methods for applying pressure were used and it was discovered that as 

long as some pressure was applied, slight variation in bond length did not affect the bond 

strength. 

                                                                                             

                                                                                                  

                                            10" long strips                                                       4” 

                                                                        1¼" wide                      

                                                                
                      4”                                      6 ”                                                           4” 
 

Figure   4.2  Typical dimensions of specimen 

 

 
Figure 4.3  Application of pressure to specimens during curing 
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4.3 Instrumentation 

In order to find the most effective way to apply stress and distribute it along the 

bonded area, two strain gages were placed one behind the other with the first one starting 

at the edge of the strip bonded to concrete(Figure 4.4).  The gages, type CEA-06-

250UW-350, were from Micro-Measurements(MM).  The lead wires (type DFV-326, 

also from MM) were then connected to the gages and the specimen was then transported 

to the testing machine.  

 

Figure 4.4  Gage detail  

4.4 Testing Set-Up  

Special grips, designed and built to fit over each cube so that the specimens could 

be loaded in the Baldwin machine(Figure 4.5), were placed on the specimens (Figures 4.6 
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and 4.7). The grip was designed so that the shafts that were placed into the machine could 

rotate, thus preventing any eccentricity during loading. The grips, along with the 

specimen, were then placed into the loading machine (Figure 4.8—Note: the figure 

depicts an apparatus used for sustaining a load which is discussed in section 4.5, this 

apparatus was removed prior to testing). The lead wires that were connected to the strain 

gages were hooked up to strain indicators and the initial readings were taken.  The load 

was then applied at a rate of approximately 2 lbs./sec.(this exact rate was not easily 

maintained due to the sensitivity of the machine).  Strain readings were taken every 50 

lbs. until failure occurred.  The data were then recorded into Excel software so that 

graphs and charts could be produced to display the results. 

 
Figure 4.5  Baldwin Machine used for testing specimens 
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Figure 4.6  Grip detail 

 

 

                          Figure 4.7  Application of grips to specimen 
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               Figure 4.8  Specimen placed in Baldwin 
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4.5      Test Parameters/Conditioning 

After curing the adhesive, the specimens were each placed in a specific aging 

environment (see Table 4.1).  These environments include pH 3 at room temperature, pH 

13 at room temperature, 100% moisture (soaking) at room temperature, freeze-thaw 

effect through environmental chamber, pH 3 & chamber, pH 13 & chamber and natural 

aging (Table 4.1).  The chamber takes 5 days to complete one cycle.  This cycle goes 

through different humidity and temperature levels (Table 4.2).  The specimens were 

conditioned for 1 month, 3 months, 5 months and 9 months.  Specimens conditioned for 1 

month and 3 months were under a sustained stress whereas the 5 and 9 month specimens 

were not.  To perform a sustained stress, threaded rods with nuts were put through steel 

shafts that were placed between the cubes.  Then the specimens were loaded in the 

Baldwin machine to a level of 500 lbs (100 psi).  When the machine reached 500 lbs. the 

nuts were tightened and the machine was shut down thus maintaining the load (Fig. 4.9).    

 
                       Figure 4.9   Application of sustained load 
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         Table 4.1  Conditioning Scheme 

Specimen Conditioning Duration 

1-2,18,120 Control 0 days 

6-7,19-20 Chamber 9 months 

8-9, 29-30 Chamber/pH 13 5 months 

12,15,26-27 100% moisture 9 months 

13-14,21-22 Chamber/pH 13 9 months 

16,32,47,48 Chamber/pH 3 5 months 

28,31,35-36 Chamber/pH 3 9 months 

37-38,51-52 100% moisture 5 months 

33-34,49-50 Chamber 5 months 

41-44,57-60 Natural Aging 
(outside) 

9 months 

65-67,83-85 Chamber 3 months 

71,73-74,90,92,94 Chamber/pH 13 3 months 

69,70,86,87,89 Chamber/pH 3 3 months 

63-64,72,80-82 Room Temp./pH 13 3 months 

61-62,68,77-79 Room Temp./pH 3 3 months 

102-104,115-117 Chamber 1 month 

140,137,128,134-136 Chamber/pH 13 1 month 

97-99,141,142,132 Chamber/pH 3 1 month 

109,105,113,118,93, 
95 

Room Temp./pH 13 1 month 

101,107,112,121, 
123 

Room Temp./pH 3 1 month 
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Aside from the accelerated aging, specimens were (4 carbon & 4 glass) naturally 

aged.  These were placed outside without a sustained load applied to them (Figure 4.11).  

We also had 6 control specimens (3 carbon & 3 glass).  These were used to develop the 

standard to which the aged specimens would be compared.   

 

Figure 4.10a  Environmental Chamber 

 

                                    
           Figure 4.10b   Specimens located inside of Chamber 
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Table 4.2  Temperature and Humidity Cycle of Environmental Chamber 
 

 
Number of Hours 

 
Chamber Temperature 

          °F                      °C  

Avg. Chamber 
Temperature 

      °F                      °C 

 
Humidity  (%) 

1 69.8 to 109.4 21 to 43 89.6 32 0 to 95 
23 109.4 43 109.4 43 95 
1 109.4 to 120.2 43 to 49 114.8 46 95 to 10 

23 120.2 49 120.2 49 10 
1 120.2 to 71.6 49 to 22 95.9 35.5 10 to 95 

23 71.6 22 69.8 22 95 
4 71.6 to 12.2 22 to -11 41.9 5.5 95 to 0 
8 12.2 -11 12.2 -11 0 
3 12.2 to 109.4 -11 to 43 60.8 16 0 to 95 

31 109.4 43 109.4 43 95 
3 109.4 to 69.8 43 to 21 89.6 32 95 to 0 

Average Chamber Temperature:  93.68°F  ( 34.27°C) 
 
 
 

 
Figure 4.11  Natural Aging of Specimens 
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4.6 Beam Specimens 

Tests were also conducted using the Baldwin machine (Fig. 4.14) on small beam 

specimens.  These specimens had been sitting at room temperature for at least 24 months.  

We immediately tested three samples and recorded the results.  A couple of test samples 

were placed into the environmental chamber for future testing.  The beam specimens 

were investigated to validate their bond behavior to the cube specimens.  The carbon 

composite materials used for these specimens were identical.  A carbon fiber strip that 

ran along one side of the beam connected two blocks made of mortar.   The blocks were 

approximately 2 inches wide.  The same “Mbrace” adhesive system was used for bonding 

the strips.  On the opposite side was a hinge, which allowed the beam to become a 

determinate structure.  Detailed drawings of these specimens are shown below (Figures 

4.12 & 4.13).  

 

 

                          14” 

 
         2.5” 
 
 
                        4”         
          5” 
 
 
 
 
                5 3/4” 
 
 2” 
                                support 
 
 
 
Figure 4.12  Dimensions of One Mortar Block 
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    CFRP Strip 
        
       Figure a. 
 
 
  P 
 
 
 
 
 
 
                                                                  F    
            R      Figure b. 
 
 
     Figure 4.13 a/b   Beam Specimen Details 
 
Force Equilibrium 
 
ΣMhindge = 5P + 2.75F – 17R = 0 
 
 
Solving for F: 
 
F = (17R – 5P)/2.75 
 

P = R,  therefore 
 
F = 12P/2.75 
 
The force (F) is then divided by the bonded area, to get the bond stress. 
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                        Figure 4.14  Test set-up for Beam Specimens 
 
 
 
 
 
 

The following chapter (chapter 5) evaluates the test results under each aging 

condition and offers explanations to the outcomes, including failure modes. 
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Chapter 5 
 
 

Experimental Results and Discussion 
 

 
5.1 Introduction 

The following chapter presents the results that were found from the aged 

specimens as well as the unaged.  The graphs show the distribution of strain along the 

bond length of composite strips.  The strain readings were taken at different distances 

from the edge of the concrete block, along the bonded length of composite strips.  Each 

graph shows the locations of strain gages with respect to the edge of the concrete block 

(i.e. where the bond force transfer begins).  The bar charts depict the bond strength of the 

aged specimens.  In all the charts and graphs, the bond strength of aged specimens is 

compared with the unaged specimens.  The bond strength results are evaluated in this 

chapter in reference to their strain distribution.  In addition, modes of failure have been 

identified and delineated, i.e. which failure mode occurs under what condition.  Finally, 

test results are theoretically evaluated to provide proper engineering explanation for 

failure strains and bifurcation of stress-strain plots. 

 

5.2 Control (Unaged) Specimens 

The following graphs (Figures 5.1--5.5) show the strain distribution for the 

unaged glass and carbon specimens and these are designated as control specimens.  The 

data from unaged specimens are used to compare with the data from the aged specimens 

to determine the bond strength degradation rate.  Two GFRP and four CFRP unaged 

specimens were tested.  From these results, a control graph for each material was derived.   
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In case of bond tests using carbon fibers, two control graphs (Figures 5.5 & 5.6) were 

used.  The average bond strength was 405 psi for glass and 480 psi for carbon.  This was 

found by averaging the ultimate bond strength of the specimens. 

 
 
5.2.1  Glass—Control 

     Figure 5.1  Strain Distribution for Control Specimens with Glass strips                Figure 5.1a  Bond Strength for GFRP control specimens 
 

 

It can be seen in Figure 5.1 that the two strain gages located 1” from the edge are 

both in total agreement.  Figure 5.2 displays strain as a function of location for the 

unaged GFRP specimens of Figure 5.1.  These two gages came from separate specimens.  

Figures 5.3 and 5.4 show the placement of the gages.  From control specimen #1, the 

ultimate bond strength, found from dividing the force by the area, is 430 psi.   The 

average bond strength of the two control specimens is 405 psi (Figure 5.1a).  It can be 

seen that the change in slope occurs at lower stress levels for gages closest to the edge.  

The change in slope occurs around 200 psi for gages located approximately ½” from the 

beginning of the bond stress transfer location, and at about 300 psi for those located 1” 
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back.  This difference in stress level (200 vs. 300 psi) where change in slope is starting to 

happen, is attributed to stress concentration due to edge effects, i.e. near the edge of the 

test sample.  However, the strain level where nonlinearity begins is about the same for all 

gages.  The cause of this may be that the strip is delaminating causing the effective bond 

area to shift back until it propagates completely[14], or at least some bending effects start 

exerting on the bond line in addition to pure in-plane shear. 

 The slope of the lines in Figure 5.2 represents the rate at which the strain is 

propagating along the bond line.  This is approximately 3683-3937 µstrain/inch (145-155 

µstrain/mm) for GFRP.  The rate of strain propagation can be related to the concrete 

strength, the stronger the concrete the lower the rate.  This has been confirmed 

independently by a Japanese study [14]. 

 

 

 

            Figure 5.2  Strain as a Function of Location at Different Stress Levels for GFRP control 
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    S.G.3         S.G.1 

      FRP Strip   

   S.G.2 

        Concrete Cube 

Figure 5.3  Gage location for GFRP Control #1 

 

 

 

        S.G.1 

   S.G.2 

 

Figure 5.4  Gage location for GFRP Control #2 

 

 

Table 5.1   GFRP Control  Stress and Strain Ratios 

GFRP 

Control 

A: Stress at 

Bifurcation (psi) 

B: Stress at 

Failure (psi) 

A / B C: Strain at 

Bifurcation (µε) 

D: Strain at 

Failure (µε) 

C / D 

Unaged 180 380 .47 600 3980 0.15 
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5.2.2  Carbon—Control 

 
       Figure 5.5  Strain Distribution for three Control Specimens with Carbon strips 
 
 
 
 

The results in Figure 5.5 are from three different control specimens using carbon 

strips. The ultimate bond strength is 570 psi.   The average bond strength, found from 

averaging the ultimate bond strength of all three specimens, is 517 psi.  The bi-linear 

behavior in this strain distribution graph is very similar to that of the GFRP control 

specimens, as shown in Figure 5.1. 
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Figure 5.6  Strain Distribution for Control Specimens with Carbon Strips 

 

    Figure 5.7 Strain Distribution as a Function of Location at Different Stress Levels 

 

 

Figure 5.6 is another graph for a second set of control specimens using carbon 

strips.  The gages listed in the legend are from two different unaged specimens that were 

superimposed to develop a single graph (similar to the previous case shown in Figure 

5.5).  Figure 5.7 shows the strain as a function of location for the specimens of Figure 

5.6.  The strain distribution rate for CFRP was calculated to be about 3302 µstrain/inch 
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(130µstrain/mm).  In a similar study, Maeda [14] found a rate of about 110-115 

µstrain/mm for CFRP.  The difference in our results from the Japanese results can be 

explained from the variation in strength of the concrete.  In this study f 'c is 4 ksi whereas 

in Maeda’s study it was 6 ksi.  A higher strength concrete would demonstrate less strain 

than a lower strength concrete, because of higher modulus of elasticity of concrete. 

In Figure 5.6, the gage on the edge, S.G.1, measured composite stress in the 

unbonded part of the strip.  It can be seen that the strain is decreasing as the bond length 

is increasing.  This is due to the fact that bond stress is not constant over its overlapping 

length and it is distributed over a certain length in a parabolic form, and goes to zero 

beyond a certain distance from the edge [2,6].  It can also be observed that after the point 

of bifurcation the strain is increasing rapidly unto failure.  Because in-plane bond strain 

concentration is the highest at the edge due to stress concentration near edges (or edge 

effects) and decreases with the increasing edge distance, sudden increase in strain is seen 

sooner in gages that are closest to the edge of the bond. 

 

 

Table 5.2   CFRP Control  Stress and Strain Ratios 

CFRP 

Control 

A: Stress at 

Bifurcation (psi) 

B: Stress at 

Failure (psi) 

A / B C: Strain at 

Bifurcation (µε) 

D: Strain at 

Failure (µε) 

C / D 

Unaged 210 440 .48 261 3327 0.08 
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5.3       Conditioned Specimens 

In this section the bar charts show the comparison of bond strength of the 

conditioned specimens versus the unconditioned ones.  The graphs depict the strain 

distribution for the aged specimens.  GFRP results are given first followed by CFRP in 

section 5.3.2.  

 

5.3.1 Glass--GFRP 

The following sections (5.3.1.1—5.3.1.5) provide results for accelerated aged 

glass specimens. 

 

5.3.1.1  Acid and Alkaline—Room Temperature 

Figure 5.8  Effects of Aging on Bond Strength Between GFRP and Concrete  
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Figure 5.8 gives the bond strength for specimens that were aged at room 

temperature while soaking in the solutions.  In test samples conditioned for both the acid 

and salt, the bond strength initially increases due to better curing of resin and then begins 

to decrease as the resin is aged due to plasticization.  The acid environment seems to have 

more adverse effect on bond strength than the alkaline environment. 

  Figure 5.9  Strain Distribution of GFRP/pH3/RT 

It can be seen in figure 5.9 that the strain distribution is very similar for all three 

aging durations.  If the first few points from the control line were to be removed then all 

three lines would follow the same path, thus suggesting that no bond strength was lost 

upon aging.  It can also be seen that the lines make a change in slope when the stress 

level is between 200 - 250 psi and the strain is about 400 microstrains. The chart also 

reveals that the specimens fail at a different strain and stress level. 
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Figure 5.10 gives the strain distribution for a GFRP specimen soaking in an 

alkaline solution.   It was discovered that almost all glass specimens that were exposed to 

alkaline conditions had a premature failure within the strip itself.  However, due to 

specimen replications, more than one specimen was available from this aging condition.  

Therefore, just prior to testing, unaged strips were bonded onto the aged strips so as to 

prevent fabric failure.  This was done in such a manner as to keep the sample  

undisturbed in terms of aging of bond between the first layer and the concrete surface. 

 

 Figure 5.10  Strain Distribution for GFRP/pH 13/RT 

 

In figure 5.10 the specimens were aged at room temperature.  Because the gages 

were located on the second layer (reinforcing layer to prevent fiber failure) rather than the 

first, the strain readings may be lower than those recorded for the single layered 
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not have developed from the glue line or bond resistance from resin may have 

deteriorated with aging. 

 

 

Table 5.3   GFRP/pH 13/RT  Stress and Strain Ratios 

GFRP-pH 13  

Room Temp. 

A: Stress at 

Bifurcation (psi) 

B: Stress at 

Failure (psi) 

A / B C: Strain at 

Bifurcation (µε) 

D: Strain at 

Failure (µε) 

C / D 

1 month 200 450 .44 300 5100 0.06 

3 months 200 390 .51 300 3750 0.08 

              

Table 5.4   GFRP/pH 3/RT  Stress and Strain Ratios 

GFRP-pH 3  

Room Temp. 
A: Stress at 

Bifurcation (psi) 

B: Stress at 

Failure (psi) 

A / B C: Strain at 

Bifurcation (µε) 

D: Strain at 

Failure (µε) 

C / D 

1 month 150 270 .55 250 1740 0.14 

3 months 225 440 .51 250 1375 0.18 

              

 

Tables 5.3 and 5.4 give the ratios of the stress and strain at the point of bifurcation 

to the value at failure.  The bifurcation takes place at a range of 45%-55% of ultimate 

load. 
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5.3.1.2 Acid and Alkaline—Freeze-thaw 

Figure 5.11  Effects of Aging on Bond Strength Between GFRP and Concrete  

 

Figure 5.11 gives the results for glass specimens soaked in pH 3 and 13 solutions 

under freeze-thaw conditions.  Acid shows a 3% decrease in strength from 1 month to 3 

months whereas alkaline solution based aging does not.  However, when these results are 

compared to those aged samples at room temperature (Figure 5.8), it can be seen that the 

bond strength is decreasing 16% more with respect to freeze-thaw for both acid and 

alkaline conditions.  This can be expected.  Due to the thermal fluctuations, the freeze-

thaw environment tends to be a more severe environment on bond strength than at room 

temperature.   
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   Figure 5.12  Strain Distribution for GFRP/pH3/chamber(FT) 

 

Figure 5.12 follows much of the same characteristics as the previous ones.  The 

linear portion of the lines can be attributed to the properties of fibers, resin and the 

concrete strength.  At the second linear portion of the lines, the slope is thought to be 

related mostly to the resin properties.  This is because during initial loading the resin, 

glass and concrete elongate together; but at approximately 300 microstrains concrete 

begins to fracture.  The resin compensates for the loss of the concrete strength by trying 

to carry the load.  Then, plasticization of adhesive leads to greater strain rate with respect 

to stress.  However, concrete deterioration is what is thought to lead to failure. 
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 Figure 5.13  Strain Distribution for GFRP/pH 13/FT 

 

Figure 5.13 is the strain distribution for glass specimens soaking in an alkaline 

solution in the environmental chamber.  It reveals that the aged specimens tend to be 

following the same distribution as the control specimens.  As in the previous case 

involving alkaline and glass (Figure 5.10), the specimens required an additional layer of 

glass fiber reinforcement to prevent premature failure in the fabric.  Because of this, the 

low strains are the result of having the strain gages on the second layer.   

When Figures 5.13 and 5.10 are compared, it can be seen that the slopes (M1 & 

M2) are identical.  Therefore, maybe the freeze-thaw environment is no more detrimental 

to the strain distribution than is room temperature. 
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Table 5.5   GFRP/pH 3/FT  Stress and Strain Ratios 

GFRP-pH 3  

Room Temp. 

A: Stress at 

Bifurcation (psi) 

B: Stress at 

Failure (psi) 

A / B C: Strain at 

Bifurcation (µε) 

D: Strain at 

Failure (µε) 

C / D 

1 month 200 350 .57 300 2625 0.11 

3 months 200 340 .58 300 3710 0.08 

              

Table 5.6   GFRP/pH 13/FT  Stress and Strain Ratios 

GFRP-pH 13  

Room Temp. 

A: Stress at 

Bifurcation (psi) 

B: Stress at 

Failure (psi) 

A / B C: Strain at 

Bifurcation (µε) 

D: Strain at 

Failure (µε) 

C / D 

1 month 200 340 .58 490 1710 0.29 

3 months 200 260 .77 490 814 0.60 

              

 

Tables 5.5 and 5.6 give the ratios of stress versus strain at the points of bifurcation 

to the values at failure.  Again, the low strain values at failure can be directly related to 

the additional reinforcement that was required to prevent premature failure in glass fibers 

exposed to pH 13 solution.  The low failure stress of the three month aged specimen in 

table 5.6 may be the result of a bad specimen sample, i.e., misalignment of strips or rough 

concrete surface. 
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5.3.1.3  Freeze-thaw (FT) 

The specimens (Figure 5.14) were placed in the environmental chamber to 

undergo freeze-thaw conditioning.  They were not immersed in any type of solution.  

However, some of these specimens were subjected to sustained stress (25% ult. bond 

strength) while others had no sustained stress. 

      

     Figure 5.14  Effects of Aging on Bond Strength Between GFRP and Concrete 

 

 It can also be noted that the bond strength for specimens under sustained stress  

decreased by about 25% more than the specimens aged without any sustained stress.  In 

both cases, the trends in bond strength results are the same, i.e., a decrease in strength 

followed by an increase. The decrease seen by the one month aged specimen under 

sustained stress may be explained from Horiguchi's research [4].  The study focused on 

the effect of test methods and quality of concrete on the bond strength of FRP sheets.  

Horiguchi suggested that a high correlation exists between the bond strength and the 
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compressive strength of concrete.  When the compressive strength was low, micro 

fracture occurred in the matrix of the concrete.  Therefore, based on the method for 

curing used in this study, it is possible that some cubes were better cared for during 

curing than others.  When some cubes were placed for curing, they were stacked upon 

each other.  Wet burlap was placed over the cubes followed by a sheet of plastic to hold 

in the moisture.  The cubes on the bottom of the stack did not receive much moisture and 

therefore may not have as high a compressive strength as the ones towards the top. 

 

 Figure 5.15   Strain Distribution for GFRP/FT under Loading-Unloading 

 

Loading-Unloading Effects: 

Figure 5.15 reveals again that the strain distribution is unchanged after aging. 

When the aged specimens were tested it was decided to load them to certain stress levels 

and then drop back to zero to see if the strains would be recovered.  The specimens were 
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stressed to levels of 80 psi, 160 psi, and 240 psi.  After returning to zero from the 240 psi 

level, the specimen was tested to failure.   In all the test specimens that this procedure 

was repeated, the 80 psi level was always recovered and in most cases so was the 160 psi 

level.  However, specimens tested to 240 psi level did not usually recover back to zero 

strain.  This was done to see when and where the adhesive was changing its 

characteristics.  Again, the low strain value to failure of the one month aged specimen  

can be attributed to poor concrete. 

                     Figure 5.16  Strain Distribution for GFRP/FT  

 

Figure 5.16 gives results for specimens aged for 5 and 9 months along with the 

results for the control specimen.  These strain readings were recorded one inch back from 

the beginning of the bond area.  These results are revealing the same distribution as in all 

the previous cases.   Because strain readings at the ½” location were unavailable due to a 

faulty gage, it should be noted that the strain readings were taken at a distance farther 
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back from the edge of the concrete cube along the strip than in the previous cases (1” vs. 

½” or ¾”).  Therefore, the nonlinearity begins about 50 psi higher stress than in the 

previous cases.  However, due to plasticization, nonlinearity of the nine month aged 

specimen still occurred at about the same stress levels as those of the preceding test 

specimens.  The strain at the change in slope seems to remains constant no matter the 

gage location.  The low failure strain of the 5 month specimen can again be related to 

poor concrete quality and/or placement (alignment) of strips. 

 

 

 

Table 5.7   GFRP/FT  Stress and Strain Ratios 

GFRP--FT A: Stress at 

Bifurcation (psi) 

B: Stress at 

Failure (psi) 

A / B C: Strain at 

Bifurcation (µε) 

D: Strain at 

Failure (µε) 

C / D 

1 month 200 280 .71 600 1400 0.43 

3 months 170 350 .49 450 5100 0.09 

              

Table 5.8   GFRP/FT  Stress and Strain Ratios 

GFRP--FT A: Stress at 

Bifurcation (psi) 

B: Stress at 

Failure (psi) 

A / B C: Strain at 

Bifurcation (µε) 

D: Strain at 

Failure (µε) 

C / D 

9 months 200 450 .44 300 2852 0.11 

              

 

Tables 5.7 and 5.8 give the ratios of the stress and strain at the point of bifurcation 

to the stress and strain values at failure.  The nine month specimen was aged without a 

sustained stress.  The stress and strain at bifurcation is about 50% and 10% of the failure 

values respectively.  With the exception of the one month specimen, the values are falling 
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into the same range as those from the previous aging conditions.  In comparing the 

specimens, the failure stress is increasing along with bifurcation strain.  This is due to 

plasticization.  Strain to failure goes up from 1 month to 3 months and starts decreasing at 

the 9 month level. 

 

 

5.3.1.4   Water Conditioning  

The following results are from specimens that were placed in water at room 

temperature. 

Figure 5.17  Effects of Moisture on Bond Strength between GFRP and Concrete 

 

Figure 5.17 shows a decrease in strength followed by an increase.  The reasons for 

this may be due to a longer curing time for the nine month specimen.  Of all the 

specimens tested in this study, this nine month specimen soaked in water demonstrated 
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the highest bond strength.  This may be due to improved cross-linking of chemical bonds 

[7] with time. 

 

 

             Figure 5.18  Strain Distribution of GFRP/water 

Figure 5.18 provides results of glass specimen soaked in water for five months.  

The strain distribution is given at ½" and 1" distances from the edge of the cube, i.e., 

where bond stress started to resist.  The results here seem to reveal that the distribution 

was not altered upon soaking.  Even though the slope change occurs at a lower stress 

level than that of the unaged, the slope remains unchanged.  The slope change may 

suggest that as the moisture is being absorbed, the adhesive is plasticizing.  Therefore, we 

conclude that increase in moisture absorption leads to increase in plasticization.   As it 

can be seen, slope of the aged specimen decreases, suggesting that more plasticizing has 

occurred.  This may be what is occurring in all specimens that are being exposed to 
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moisture.  The severity of reduction is represented by the slope change of the line after 

plasticizing begins. 

Table 5.9   GFRP/Water  Stress and Strain Ratios 

GFRP--

WATER 

A: Stress at 

Bifurcation (psi) 

B: Stress at 

Failure (psi) 

A / B C: Strain at 

Bifurcation (µε) 

D: Strain at 

Failure (µε) 

C / D 

5 month 

@1/2” gage 

150 270 .55 500 3600 0.14 

5 months @ 

1” gage  

170 270 .62 250 2700 0.09 

     

 

        

Table 5.9 gives the ratios of the stress and strain at the point of bifurcation to the 

stress and strain values at failure.  The stress and strain at bifurcation is about 55% and 

10% of the failure values respectively.  The values here agree with the values from the 

previous conditions. 
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5.3.1.5   Natural Aging 

 Figure 5.19  Bond Strength of Naturally Aged GFRP Specimens 

 

In Figure 5.19, bond strength is given for glass specimens that were placed 

outside for eight months of conditioning.  The bond strength of 360 psi for the naturally 

aged specimens was determined by averaging the ultimate strength of all the naturally 

aged tested specimens.  The strength is within 6% of the unaged suggesting that no severe 

degradation is evident.  These specimens were placed outside in January and remained 

there until summer was over, thus being exposed initially to cold weather and finally to 

warm weather. 
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               Figure 5.20  Strain Distribution for GFRP/Natural Aging 

In figure 5.20 we see that the natural aging has caused the adhesive to plasticize a 

little.  However, the distribution of strain across the bond area continues to be similar to 

that of the control specimens.  It also appears that the difference in accelerated aging to 

that of natural aging is not significant with respect to bond degradation. 

 

Table 5.10   GFRP/Natural Aging Stress and Strain Ratios 

GFRP—

Natural 

Aging 

A: Stress at 

Bifurcation (psi) 

B: Stress at 

Failure (psi) 

A / B C: Strain at 

Bifurcation (µε) 

D: Strain at 

Failure (µε) 

C / D 

8 month 170 360 .47 350 3320 0.11 

              

The ratio values in table 5.10 again fall in the range of 50% stress and 10% strain. 

 

 

GFRP--Natural Aging

0
50

100
150
200
250
300
350
400
450

0 500 1000 1500 2000 2500 3000 3500

strain (x10-6)

B
on

d 
St

re
ss

 (p
si

)

3/4"--control
3/4"--8M

M1=0.8, M2=0.06

M1= slope of 
1st linear 
portion. 
 
M2= slope of  
2nd linear 
portion. 



 52

5.3.2 Carbon--CFRP 

 

5.3.2.1   Acid and Alkaline—Room Temperature 

      Figure 5.21  Effects of Aging on Bond Strength Between CFRP and Concrete 

 

Figure 5.21 gives the results for carbon specimens soaking in solutions at room 

temperature.  The acid shows a 15% decrease in bond strength with time, whereas, 

immersion in alkaline solution has an increase from one month to three months.  This 

increase however is still well below the control specimen strength.  The decrease in bond 

strength of the one month aged specimen immersed in alkaline may be due to improper 

application of epoxy in the bond area upon applying the strips or a reaction with the 

epoxy resulting in a loss of strength [7].   In contrast to glass (Figure 5.8), the alkaline 

solution seems to have a greater effect on bond strength of carbon strips than the acid. 
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               Figure 5.22  Strain Distribution for CFRP/pH3/RT 

 

Figure 5.22 continues to show similar strain distribution between the aged and 

unaged specimens.  The change in slope occurs around 200 psi stress and 400 

microstrains.  When comparing Figures 5.22 and 5.9 (same conditioning but different 

material), the bond behavior remains unchanged.  However, the strains at the change in 

slope in the glass specimens are slightly higher than the strains at bifurcation for carbon 

at the same stress levels.  This is because carbon has a higher stiffness than glass.  

Therefore it is thought that the initial slope can be related to a combination of the material 

plus the concrete strength.  
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Figure 5.23  Strain Distribution for CFRP/pH 13/Room Temperature 

 

 

The specimens shown in Figure 5.23 were aged at room temperature.  Overall, the 

specimens showed similar distribution trends. When the aged specimens were tested it 

was decided to load them to certain stress levels and then drop back to zero to see if the 

strains would be recovered (same procedure used when testing specimens of Figure 5.15).  

This procedure demonstrates a loss in slope as the specimen is loaded to higher stress 

levels.  This can be related to permanent set in strain beyond a certain threshold level, 

approximately 170-200 psi.   
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Table 5.11   CFRP/pH 13/RT  Stress and Strain Ratios 

CFRP-pH 13  

Room Temp. 

A: Stress at 

Bifurcation (psi) 

B: Stress at 

Failure (psi) 

A / B C: Strain at 

Bifurcation (µε) 

D: Strain at 

Failure (µε) 

C / D 

1 month 200 280 .71 400 1503 0.27 

3 months 200 360 .55 600 2313 0.26 

              

 

Table 5.12   CFRP/pH 3/RT  Stress and Strain Ratios 

CFRP-pH 3  

Room Temp. 
A: Stress at 

Bifurcation (psi) 

B: Stress at 

Failure (psi) 

A / B C: Strain at 

Bifurcation (µε) 

D: Strain at 

Failure (µε) 

C / D 

1 month 200 470 .43 312 3400 0.09 

3 months 200 390 .51 392 3150 0.12 

              

 

Tables 5.11 and 5.12 give the ratios of the stress and strain at the points of 

bifurcation to the values at failure.  Here again, these values demonstrate that the 

bifurcation takes place at approximately 50% of ultimate load.   
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5.3.2.2 Acid and Alkaline—Freeze-thaw 

       Figure 5.24  Effects of pH on Bond Strength Between CFRP and Concrete 

 

Figure 5.24 shows the results for carbon specimens soaking in solutions at freeze-

thaw conditions.  Note that the five and nine month specimens did not undergo a 

sustained load while conditioning.  The results for acid are showing an initial decrease in 

bond strength followed by an increase.  The acid also appears to have a greater effect on 

the bond strength than alkaline solution.  The acid soaked specimens are showing an 

average decrease in strength of 15% when compared to the alkaline soaked ones. When 

compared to results at room temperature (Figure 5.21), the acid soaked specimens are 

showing a lower bond strength than those conditioned in the chamber (freeze-thaw).  
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             Figure 5.25  Strain Distribution for CFRP/pH3/chamber 

 

 

In Figure 5.25 the slope of the linear portion of the lines can be related to the 

CFRP strips, the resin and the concrete strength.  However, after the bifurcation point, the 

slope is thought to be directly related to the resin stiffness only.  The aging does not seem 

to have an effect on the strain distribution.  However, the slopes for the aged specimens 

change at a lower stress level than that of the unaged specimens.  This can be due to 

moisture causing the resin to plasticize.   
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            Figure 5.26  Strain Distribution for CFRP/pH 13/FT 

 

 

In figure 5.26 the strain distribution for the aged specimens appears to be 

unchanged.  The increase in strain at a lower bond stress is again due to the amount of 

moisture in the conditioned specimens, causing the adhesive to plasticize sooner than in 

the control specimen. 
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Figure 5.27  Strain Distribution for CFRP/pH 13/FT 

 

 

Figure 5.27 depicts the results of the five and nine month aged specimens soaked 

in an alkaline solution and placed in the chamber.  These specimens were aged without 

any sustained load and appear to be unharmed by the conditioning scheme.   
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Table 5.13   CFRP/pH 13/FT  Stress and Strain Ratios 

CFRP-pH 13  

Freeze-thaw 
A: Stress at 

Bifurcation (psi) 

B: Stress at 

Failure (psi) 

A / B C: Strain at 

Bifurcation (µε) 

D: Strain at 

Failure (µε) 

C / D 

1 month 165 470 .35 300 2856 0.11 

3 months 200 470 .43 300 3605 0.08 

              

Table 5.14   CFRP/pH 13/FT  Stress and Strain Ratios 

CFRP-pH 13  

Freeze-thaw 
A: Stress at 

Bifurcation (psi) 

B: Stress at 

Failure (psi) 

A / B C: Strain at 

Bifurcation (µε) 

D: Strain at 

Failure (µε) 

C / D 

5 month 300 480 .63 220 3400 0.06 

9 months 280 420 .67 250 2313 0.11 

              

Table 5.15   CFRP/pH 3/FT  Stress and Strain Ratios 

CFRP-pH 3  

Freeze-thaw 

A: Stress at 

Bifurcation (psi) 

B: Stress at 

Failure (psi) 

A / B C: Strain at 

Bifurcation (µε) 

D: Strain at 

Failure (µε) 

C / D 

1 month 200 260 .77 380 1200 0.32 

3 months 170 360 .47 380 3148 0.12 

              

 

Tables 5.13-5.15 give the ratios of the stress and strain at the point of bifurcation 

to those at failure.  Here again the average stress ratio is 55% and the strain is about 10%. 
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5.3.2.3 Freeze-thaw (FT) 

 

 

Figure 5.28  Effects of Aging on Bond Strength Between CFRP and Concrete 

 

Figure 5.28 gives results for carbon specimens placed in the chamber with and 

without sustained stress.  The sustained stress specimens show a continued decrease in 

strength with aging while the other specimens show a decrease followed by an increase.  

There are no significant changes in bond strength among sustained stress versus non-

sustained stress specimens. 
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                     Figure 5.29  Strain Distribution for CFRP/FT 

 

In figure 5.29 the specimen aged for three months under freeze-thaw conditions, 

is showing an increase in strain sooner than the others.  This is because plasticization has 

caused the resin stiffness to decrease during aging due to temperature fluctuations and the 

sustained load or the resin may have begun to degrade while aging for a longer duration 

(3 months) under a sustained stress.  
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Figure 5.30  Strain Distribution for CFRP/FT 

 

In figure 5.30 the strains are again showing similar distribution trends up to about 

200 psi.  If we look at the last few points on the specimen aged for 9 months, we can see 

that the lines of different aged specimens are running parallel to each other.  This tells us 

that the strain increase with load is occurring at the same rate.  But as we can see the aged 

curves fall below the control curve and therefore less load is required to reach the same 

levels of strain.  This suggests that upon aging some degradation may be occurring in the 

fibers or the adhesive--most likely the adhesive. 

In looking at figures 5.29-5.30, it can be decided that the freeze-thaw conditioning 

scheme as well as aging with or without a sustained stress are demonstrating no obvious 

adverse effects on the specimen behavior.  The trend indicates that conditioning of 

specimens is only causing the adhesive to plasticize at a lower stress level than that in the 

unaged specimens. 
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Table 5.16   CFRP/FT  Stress and Strain Ratios 

CFRP--  

Freeze-thaw 
A: Stress at 

Bifurcation (psi) 

B: Stress at 

Failure (psi) 

A / B C: Strain at 

Bifurcation (µε ) 

D: Strain at 

Failure (µε) 

C / D 

1 month 280 500 .56 350 2190 0.16 

3 months 200 390 .51 700 2356 0.29 

              

Table 5.17   CFRP/FT  Stress and Strain Ratios 

CFRP--  

Freeze-thaw 
A: Stress at 

Bifurcation (psi) 

B: Stress at 

Failure (psi) 

A / B C: Strain at 

Bifurcation (µε) 

D: Strain at 

Failure (µε) 

C / D 

5 month 170 320 .53 200 3212 0.06 

9 months 170 430 .40 250 3362 0.07 

              

Tables 5.16 and 5.17 give the ratios of the stress and strain at the point of 

bifurcation to those at failure.  Here again the average stress ratio is around 50% 

and the strain is about 15%. 
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5.3.2.4  Water Conditioning 

 

 

        5.31  Effects of Moisture on Bond Strength between CFRP and Concrete  

 

 

Results in Figure 5.31 show a slight increase in strength followed by a 12% 

decrease.  The decrease can be attributed to moisture causing the resin to lose stiffness.   

Overall, the moisture effects are minimal and minimal (within 10% of original value) 

degradation is thought to be occurring.  Exposure to water was done only for 5 and 9 

month durations because it was felt that the specimens were getting enough exposure to 

moisture from other aging conditions, i.e. the pH 3 and pH 13 solutions. 
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The following graph (Figure 5.32) is the stress vs. strain distribution for carbon 

specimens placed in water at room temperature for five and nine months.  The strain 

readings were taken ¾” back from the beginning of the bond area. 

            Figure 5.32  Strain Distribution of CFRP soaked in water 

 

Figure 5.32 seems to be revealing that the strain distribution again is not altered 

upon aging.  It can also be seen that the strain level at failure in the aged specimens is 

about half of what it is for the control specimen.  The slope of the linear portion of the 

lines can be correlated to stiffness of CFRP and concrete substrate.   
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Table 5.18   CFRP/Water Stress and Strain Ratios 

CFRP and 

Water 
A: Stress at 

Bifurcation (psi) 

B: Stress at 

Failure (psi) 

A / B C: Strain at 

Bifurcation (µε) 

D: Strain at 

Failure (µε) 

C / D 

5 month 280 510 .55 300 2000 0.15 

9 months 300 450 .67 200 1965 0.10 

              

 

Table 5.18 gives the ratios of the stress and strain at the point of bifurcation to the 

stress and strain at failure.  The average stress ratio is approximately 60% and the strain 

is about 15%.  

With the exception of a couple of specimens, average ratios are all coming out to 

be about the same for all aging conditions.  The stress and strain ratios are approximately 

50% and 15% respectively.   
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5.3.2.5  Natural Aging 

 

         Figure 5.33  Bond Strength for CFRP/Natural Aging 

 

Upon observing the strip at failure for the naturally aged specimens it was found 

that an inadequate amount of adhesive was applied when attaching the strips.  The entire 

bond area was not coated thus resulting in a reduction of bond strength from 480 psi to 

380 psi.  Such a reduction would not have occurred if a greater amount of adhesive would 

have been applied when attaching the strips. 
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         Figure 5.34  Strain Distribution for CFRP/Natural Aging 

 

Figures 5.34 is the strain distribution for a naturally aged CFRP specimen.  The 

premature failure was due to inadequate amounts of adhesive.   Upon application of the 

strip an inadequate amount of pressure and adhesive were applied to the bond area.  This 

suggests that an undetermined amount of pressure may need to be applied while curing of 

the adhesive is taking place.  How to achieve this in the field is discussed in section 6.2.2. 

Table 5.19   CFRP/Naturally Aged Stress and Strain Ratios 

CFRP--

Natural 

Aging 

A: Stress at 

Bifurcation (psi) 

B: Stress at 

Failure (psi) 

A / B C: Strain at 

Bifurcation (µε) 

D: Strain at 

Failure (µε) 

C / D 

8 months 150 270 .55 200 1000 0.20 

              

The ratios in table 5.19 are 55% and 20% for stress and strain respectively. 
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5.3.3  Beam Specimens 

Refer to section 4.6 and figure 4.14 for description of beam specimen. 

             Figure 5.35 Bond Strength of Beam Specimen 

 

Figure 5.35 shows bond stress versus number of months of aging for the beam 

specimens that were placed inside the environmental chamber for 10 months.  The value 

of 280 psi is the average of the ultimate bond strength of all the beam specimens aged 

under freeze-thaw conditions.  Figure 5.35 shows a slight decrease in bond strength from 

300 psi to 280 psi, i.e. 6-7% reduction under freeze-thaw conditions.  It should be noted 

that this specimen sat in the Major Units Lab at room temperature for many months       

(≈ 18 months) before it was placed into the chamber.  This may suggest that the specimen 

could have experienced small amounts of degradation while sitting at room temperature 

before being placed in the chamber. 
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            Figure 5.36  Strain Distribution of Beam Specimens 

 

Figure 5.36 shows the results from the beam specimens that were tested.  The two 

lines marked “uncond.” are two of the specimens that were tested upon finding these 

leftover specimens in the Major Units Laboratory for over two years.  The third line 

represents the results from placing a couple of specimens in the chamber.  This was the 

only conditioning done to these specimens.  The results of the unaged specimens show 

that the lines follow much the same pattern, with the aged line being shifted a little, 

which can be attributed to resin plasticization.  

Table 5.20  Ratios for CFRP/Freeze-thaw Aged Beam Specimens 

CFRP—FT 

Beam 

Specimens 

A: Stress at 

Bifurcation (psi) 

B: Stress at 

Failure (psi) 

A / B C: Strain at 

Bifurcation (µε) 

D: Strain at 

Failure (µε) 

C / D 

10 month 170 270 .63 140 370 0.38 

          

The ratios in table 5.20 are for the beam specimens.  The ratios are a little higher when 

compared to previous results but this can be attributed to the low strength of the mortar. 
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5.4       Failure Modes 

Through the testing and evaluation of over 100 test specimens through this 

program, better understanding of the bond response of cube and beam specimens, failure 

modes have been noted.  By looking at failure type, we may be able to determine the 

force transfer between FRP strips and concrete.  We can also look at the adhesive bond 

and see how much, if any, of the failure is occurring within the adhesive. Theoretically, if 

degradation of the adhesive is occurring then we should see a failure along the bond line 

of the FRP strip and concrete.  If the failure is occurring within the FRP material 

somewhere along the strip then we can conclude that the material is degrading upon 

aging.  For the glass specimens soaked in alkaline solutions, this was the case.  If a 

cohesive failure is occurring in concrete, then this tells us that the strain induced in 

concrete is too large for the material to withstand.  Thus, a closer look at the strain to 

failure would give us a better idea of failure behavior and type.  In order to use these 

strain readings for concrete, we must assume that the adhesive is fully transferring the 

stresses between the composite and concrete.   

It was found in most every case, that a cohesive failure of concrete was occurring 

just beneath the bonded area [3].  In most cases only a thin layer of concrete remained 

attached to the strip after failure.  Concrete located at the beginning of the bond (i.e. 

where the highest strain occurs) would break and remain adhered to the strip.  This meant 

that a small amount of bending was occurring with initial compression.  This suggests a 

compressive failure of concrete coupled with bending of concrete. This can be better 

explained in reference to the following diagram (Fig. 5.37a).  As exemplified by the 

configuration shown, the load path eccentricity is not obvious, and there may be a 
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tendency to assume that peel stresses are not present because, as a result of lateral 

symmetry, there is no overall bending.  However, a little reflection brings to mind the fact 

that while the load in the symmetric lap joint flows axially through the central adherend 

prior to reaching the overlap region, there it splits in two directions, flowing laterally 

through the action of bond shear stresses to the two outer adherends.  Thus eccentricity of 

the load path is present.  As seen in Fig. 5.37b, the shear force (FSH) produces a 

component of the total moment about the neutral axis of the upper adherend equal to 

FSH*t/2 where t is the thickness of the upper adherend.  The peel stresses have to be 

present to react the moment produced by the offset of FSH about the neutral axis of the 

outer adherend [16].  

 

        

F           Figure 5.37 a 

        

          

             t/2 
                 Figure 5.37 b 
          FSH   

    
Restraining Effect of Bond 
 
 
 
 
 
 
 
 

The following pictures show how the failure looked. 
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                    Figure 5.38  Thin Layer of Concrete Remaining on Strip 

                                  

Figure 5.39  Concrete Remaining on Strip Where Strains are the Highest 
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The following calculation was performed in order to determine the amount of 

concrete in compression just beneath the bond area.   

    Elastic Modulus (Ecomp) of the composite was first calculated: 

Ecomp.= 10 x 106 [tglass+epoxy/tglass] = 5 x 106 ,  where 10x106psi is the E value for 

glass and t represents the thickness of composite (glass+fiber) and the thickness of 

glass alone as measured in the lab. 

This value (5 x 106 psi) multiplied by the strain value at the point of plasticization 

on the strain distribution graph, 300x10-6in/in) yields a tensile stress of 1500 psi.  

Therefore in order to satisfy the following equation, 

 σ = Force/ Area,  or  1500psi = 450 lbs/ [tcomp+(Econcrete/Ecomp)tconcrete]1.25in. 

where area is the cross-sectional area of the composite plus a small layer of 

concrete and 1.25 inches is the width of the cross-sectional area, the thickness of 

concrete(tconcrete) in compression would have to be approximately ¼” thick.  Upon 

failure the average concrete thickness that remained adhered to the strip was 

measured to be precisely ¼” thick. 
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5.5       Discussion of Methods Used which May Affect Results 

5.5.1 Test Set-Up 

For this research the concrete cubes were poured prior to deciding on standardized 

test methods.  Though many possibilities were examined, the chosen set up (see section 

4.4) was used for two reasons.  First, we were limited by the equipment that was 

available to us.  Second, many specimens need testing and therefore, we needed a set up 

that would be both accurate and efficient.  The Baldwin machine was our best candidate.  

Upon this decision, the grips were made.  In order to fasten the grips onto the specimens 

easily, it would require about a 6” space between the cubes.  Thus a large space between 

the two cubes has to be maintained during testing.  However, a large space here meant 

that there would be a larger margin of error when trying to center the strips onto the 

cubes; but the trade off would be that localized bending would be minimized. 

Overall the set-up was good and test results would have been even more 

consistent had the cubes been more uniform.  This uniformity was very hard to achieve 

due to the small size of the test specimens.  The form work that was made available to us 

was ideal for constructing beams but not small cubes. 
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5.5.2 FRP Application 

When applying the strip to the concrete, pressure was applied over the bond area 

during the setting of the resin.  The amount of pressure varied as different size plates 

were used for applying the pressure.  The amount of pressure did not seem to have any 

effect on how well the bond performed.  Whether the amount was small or large did not 

affect the amount of load the bond could withstand.  Thus, how to apply such a pressure 

in the field becomes a concern.  The method used now involves applying the FRP by use 

of paint rollers to uniformly coat the epoxy.  The epoxy is sticky enough to hold the FRP 

in place while curing is taking place.  Although this method is fine, it seems as though if 

uniform pressure could be applied during curing, then the amount of air voids would be 

reduced and thus a stronger and more adequate bond would suffice.  Finding a way to 

achieve this in the field is something that needs to be contemplated.  One idea that may 

work well when applying FRP to columns is to apply some kind of air pressure around 

the column via air bags.  After the FRP is applied using the rollers then the air bag would 

be pumped with air, thus applying a uniform pressure around the FRP.  Though this idea 

may need more thought, suggestions for practical field applications have to be made and 

tested to see if the application of uniform pressure during curing is making a significant 

difference. 
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5.6      Overall Discussion of Results 

In studying the results for failure modes of each specimen, it was discovered that 

most every tested specimen demonstrated a cohesive concrete failure.  This reveals that 

the failure is driven by the strain to failure in concrete.  In addition, surface strength of 

concrete with higher cement paste content has a role to play in the failure strain level.  

Yet another factor that appears critical is the in-plane bond force at the crack surface 

inducing moments and stresses due to eccentric force leading to bending tension failure 

in concrete (Figure 5.38).  In every case the failure strain is around 2800-4000 

microstrains although a few aged specimens had a failure strain below this range.  

Therefore, the failure strain range suggests that aging may be affecting the concrete more 

so than the adhesive.   

A similar trend was also found in every specimen with reference to strain 

bifurcation point, i.e., the location on the strain distribution graph (see Figures 5.25-5.26) 

where the line begins to change slope, i.e. M1 and M2.  This bifurcation point is very 

revealing in that it was found in every case to occur at approximately 300-500 

microstrains.  However, the stress at the bifurcation point differed by about 10% between 

the two materials with carbon being slightly greater than glass due to its higher stiffness.  

Therefore, from a stiffness view point, the fibers seem to be playing a role in determining 

the slope of the initial line (M1).  Because the strain levels at bifurcation are about the 

same in all specimens, dramatic change in slope value from M1 to M2 suggests that  

something may be occurring within the adhesive or the concrete.  The suggestion here is 

that concrete and the composite with adhesive elongate together up to a certain strain 

level (300-500 µ) upon which the primer-adhesive begins to yield and loses structural 
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compositness between concrete substrate and the FRP.  Beyond the point of bifurcation, 

the strain distribution line begins a second linear slope (M2).  This slope is a function of 

either the adhesive or the fibers.  Because no failure is observed in fibers, the slope of the 

second linear portion of the line (i.e. M2, slope after bifurcation point) is thought to be 

solely related to the adhesive properties.  The distribution proceeds until the strain in  

concrete is large enough to cause concrete to locally fail in compression.  This can be 

proven in the following calculation: 

ECFRP=33 Msi (23 x 104 N/mm2) 

Econcrete=3.5 x 106 psi 

Assume that the fiber volume fraction of composite strip is 60% of the load and that 

of the resin is 40%. 

  Therefore, ECFRP=33 Msi (.6) = 19.8 Msi 

  The modular ratio of  ECFRP to Econcrete is 19.8/3.5 = 5.66 

Strain in concrete from modular ratio and composite strip strain  =  

5.66 x (425 x 10-6) = .0024 in/in 

where 425 x 10-6  is the average strain where non-linearity begins, i.e. the 

point of bifurcation, and the value of .0024 in/in is the strain induced in 

concrete at that location.  Therefore, as the strain continues to increase and 

goes beyond the bifurcation point, the calculated value of .0024 in/in 

approaches the ultimate strain of concrete, .003 in/in.  Then failure occurs. 

 

 A similar explanation was cited from a study by Maeda et al[14].  He suggests 

that at initial loading, i.e.at low bond strain levels, the adhesive transfers 100% of the 
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force and demonstrates 100% structural compositeness.  As the bond stress level 

increases, the bonding material (adhesive) begins to yield at the tip of the bonded area, 

i.e. near the edge of the concrete cube.  As induced bond force increases, the effective 

bond area is getting shifted further back along the bond line.  The material is again stiff 

until this new area begins to yield and then the effective bond area shifts back again; thus 

a kind of a hinge mechanism to failure is noted.  This continues until a certain strain level 

is reached to a value wherein concrete is led to fail, either in pure concrete compression 

at the surface or through compression coupled with bending near the concrete surface; 

thus resulting in a cohesive concrete failure just beneath the effective concrete bond area.  

This is also in agreement with a similar study from Tysl et al [20]. 

In looking at the rate of strain distribution for carbon, the values found in this 

study are compared to values found in the study by Maeda [14].  The strain distribution 

values for this study were 120-130 µstrains/mm.  Maeda’s values were 110-115 

µstrains/mm.  The 10% difference can be correlated to the concrete strength; 4 ksi in this 

study and 6 ksi for Maeda.  It is thought that the stronger the concrete, the stiffer it is and 

stiffer concrete leads to lower strain inducement.  The strain distribution rate for glass in 

this study was 140-150 µstrains/mm.  The 14% difference between the two materials is 

the result of carbon having greater stiffness than glass.  

When studying slopes M1 and M2, where M1 is the slope of the strain distribution 

line prior to bifurcation and M2  is the slope of the line after bifurcation.  For glass the 

average value for M1 was 0.663 x 106 psi.  For carbon the average value of M1 was 0.816 

x 106 psi.  The 19% difference can be explained by carbon having greater stiffness than 

glass.  When comparing M2, glass had an average value of 0.055 x 106 psi as did carbon.  
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This confirms that the initial slope of the stress-strain line, M1, is controlled by the fiber 

type, while M2 is independent of the fibers, however, directly related to the adhesive.   

Surprisingly, the shear stiffness value for epoxy adhesive given in the Euro-Code [17] is 

exactly the average value that we found for M2, .055 x 106 psi. 

 

5.7       Correlation of Natural to Accelerated Aging 

Actual calibration of accelerated aging to natural weathering is not complete in 

this study.  However, it is previously established that the reduction trends in parameters 

such as tensile and compressive strengths have a maximum value during initial periods of 

aging and the rate of reduction decreases with time and reaches an asymptotic value [13], 

[21].  The maximum reduction found of all parameters in this accelerated aging study 

was approximately 25%.  Therefore, the experimental info of this study coupled with the 

previous studies indicated that the 25% reduction is conservatively extrapolated to be 

about 30 years.  

 

 

 

 

 

 

  

 

 



 82

 

Chapter  6 

 Conclusions and Recommendations 

 
 
6.1 General Remarks and Summary 
 

The conclusions in section 6.2 are based on the evaluation of mbrace epoxy 

adhesive system with glass and carbon fabrics bonded to concrete and subjected to 

accelerated aging methods.  Results may vary with adhesives other than epoxies.   

        Identical trends in strain distribution and bond stress were noted in different test 

specimens and these trends coincided with those from other researchers. Overall, the 

results suggest that the adhesive is marginally affected by aging and in most situations 

unaffected by aging. The evaluation of test results led to the following conclusions. 

 

 
6.2   Conclusions 

 

��Average variations in bond strength of specimens (glass and carbon) under 

accelerated aging were found to be within 10% of unaged.  Accelerated aging 

consisted of parameters such as pH change (3 to 13), temperature fluctuations (room 

temperature and freeze-thaw between 12°F-120°F) and varied degree of sustained 

stress (0%-20%). 

��Bond Strength variations of glass fabrics under natural weathering for 8 

months were found to be less than 8% with a strength value of 380 psi. 
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��On average, bond strength reductions under accelerated aging were less than 

10% even though small increase in strength was noted for samples 

conditioned for about 30 days.  Specimens aged under freeze-thaw 

conditioning exhibited an additional 5 to 10% reduction in bond strength as 

compared to specimens aged under room temperature, which is attributed to 

temperature fluctuations slightly affecting the adhesive and pore water near 

the surface freezing and thawing leading to higher strength degradation.    

 

��Bond strain distribution along the bond line was found to have a quadratic shape that 

was almost identical under different aging conditions. 

 

��Bond stress-strain curves showed two distinct slope regions, M1 and M2.  The first 

region ended between 40-60% of ultimate stress.  Corresponding strain values where 

slope bifurcation was initiated, ranged from 300x10-6 to 500x10-6 in./in which 

depended on concrete ultimate stress and conditioning schemes.  These strains were 

approximately 10% of the ultimate strain of concrete. 

   

��Slope M1 for carbon fabric was 23% higher than that of glass fabric, whereas slope 

M2 was found to have similar slope in both carbon and glass fabric cases.  This 

implies that the first region of the stress-strain curve, M1, is influenced by fiber type, 

whereas the second region, M2, is dominated by adhesive properties.  Typical shear 

stiffness of epoxy adhesive is 55,000 psi [17], which is what the average slope of M2 

was found to be. 
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��In the bond stress vs. strain curves, slope of the initial line, M1, was found to be about 

15 and 12 times higher than that of M2 respectively for carbon and glass fabric 

bonded to concrete. 

 

��Sustained stress of 20% was found to have no noticeable effect on bond strength of 

both carbon and glass fabric with concrete.  Bond Strength of specimens aged with 

20% sustained stress was within 5% of those aged without sustained stress. 

 

��The average bond strain at failure was found to be .0035 in/in for both glass and 

carbon specimens and this was observed over a bond length of 2 inches.  The failure 

mode was a cohesive failure in concrete just below the bonded area.  A uniform layer 

of cement and aggregate particles from the surface of the bonded concrete area was 

found to be adhering to carbon and glass strips (see Figure 5.37).  In most cases, 

chipping off of a small wedge of concrete, with an average dimension of ¼”, was 

observed closest to the end (see Figure 5.38).  It is concluded that an adhesive failure 

may have been observed if the aging were to be carried for a longer duration beyond 

10 months. 

  

��The strain distribution trend as well as the failure mode was similar in the beams 

(Figure 5.36) as for the cubes.  However, the bond stress at failure was about 300 psi 

in the beams and 400 psi for the cubes.  This is due to low strength mortar being used 

for the beams.   
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��No confinement effects were investigated in this study.  In reality, positive 

confinement effects may be noted through the proper use of transverse fabrics. 

 

 

6.3    Recommendations 

• = Calibration of natural vs. accelerated aging of concrete beams with wraps is 

required. 

• = Initiation of failure and progression of failure needs to be understood 

• = Investigation of greater permeation of primers into concrete is suggested to 

improve the depth of concrete layer that is effective in resisting compressive 

forces near the concrete surface. 

• = Ease of application techniques of wraps needs to be developed 

• = Understanding of response of wrapped beams under combined bending, shear 

and torsion effects, i.e., how does a wrap perform under stress reversal, i.e., 

forces changing from tension to compression is needed. 

• = Investigation of ductility improvements of concrete as result of wrapping has to    

be researched more fully. 

• = Effect of confinement on bond strength using varying numbers of transverse 

wraps with different anchorage lengths has to be evaluated. 
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The MBrace System

Technology | Components | Features & Benefits | Applications | Installation

MBrace Carbon Unidirectional Fiber

Technology
Fiber reinforcement has been used for 25 years in aerospace and
manufacturing applications where low weight, high tensile strength and
noncorrosive structural properties are required. These field proven
materials exhibit low creep and elongation, and compared to steel, they
are thinner, lighter, and have 10 times the tensile strength capacity. The
MBrace Composite Strengthening System, an externally bonded fiber
reinforcement system for concrete and masonry structures, exhibits all
of these properties.

Strengthening Techniques Presentation
View HTML slide show
(Notes provided - audio or plug-in not required)

●   

View VIDEO slide show
(Narrated, video streaming, 28.8kbps, 43 minutes)

 Need the plug-in?

●   

Components
The MBrace system consists of advanced materials including:

Surface primer●   

Putty surface defect filler●   

High solids epoxy saturant●   

Carbon or e-glass fiber reinforcement●   

Protective/aesthetic topcoat●   

The backbone of the MBrace system is the unidirectional continuous
fiber sheet that is laminated with an epoxy matrix. Fiber/epoxy
laminates, noted for their high strength-to- thickness ratio, establish
structural integrity in a manner similar to bonding steel plates to
structural elements. The result is tremendous flexibility for structural
upgrades as well as significant savings relative to conventional
strengthening methods.

Product Specification (Adobe Acrobat file 2 pages)

Need Acrobat Reader 3.0?

Product Overview
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MBrace used to reinforce new slab opening

Features & Benefits
Lightweight - Minimal additional dead load

Noncorrosive - High durability, low maintenance

Ease of Installation - Cost savings, minimal down time

Minimal Thickness - Minimal increase in member geometry,
easily concealed

Flexible - Adapts to various shapes

10-Year History - Well-established technology

Single Source Support - Quality assurance through use of
integrated components

Applications
MBrace technology provides solutions for strengthening beams,
slabs, walls, columns, chimneys, silos, tunnels, tanks, and other
structural elements that are subjected to deterioration, additional
service loads or excessive deflection created by:

Change in Use●   

Construction or design defects●   

Code changes●   

Seismic retrofit●   

Installation
The MBrace system is installed exclusively within a national
network of selected contractors. Each MBrace installation site
requires the presence of trained contractors who are experienced
in repair and strengthening strategies, product information,
installation methods and QC testing.

The easy to use MBrace system components assure fast, user
friendly installation. A complete system is installed in only six
steps to properly prepared surfaces within appropriate working
conditions.

1. Roll MBrace Primer
A low viscosity, high solids epoxy that can be applied using a
roller.

Product Overview
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2. Level Surfaces with MBrace Putty
A high solids, nonsag paste epoxy material that is applied using a
squeegee or trowel to level uneven surfaces.

3. Apply First Coat of MBrace Saturant
A high solids resin that can be applied using a roller to begin
saturation of the fiber reinforcement sheet.

4. Apply MBrace Fiber Reinforcement
The backbone of the MBrace composite strengthening system,
carbon fiber or e-glass sheet, is placed into the first layer of wet
saturant and backing paper is removed.

5. Apply Second Coat of MBrace Saturant
The second coat of saturant is applied using a roller. For multiple
plies, repeat steps 3, 4, & 5.

6. Apply Optional MBrace Topcoat
Where required, the high solids, high gloss, corrosion-resistant
topcoat provides a protective/aesthetic outer layer.

Need plug-in? System Specification (Adobe Acrobat file, 12 pages)
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Need the plug-in? Installation Videos (real video format)

MBrace Application on Pre-cast Double-Tee Stems
Video streaming, 28.8kbps, 39 minutes

●   

MBrace Application of Beams to Increase Live Load
Capacity
Video streaming, 28.8kbps, 40 minutes

●   
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MBrace™      Composite Strengthening System
with carbon fiber reinforcement for

CONCRETE SUBSTRATES

NOTES TO THE SPECIFIER
The specification information below is intended for use by architects, engineers or other specifiers in defining

the criteria needed to specify carbon fiber reinforcement systems.

CARBON FIBER REINFORCEMENT

PART 1  GENERAL

1.01 WORK INCLUDING

A. Existing concrete shall be repaired and reinforced with dry, unidirectional carbon fiber fabric sheet.

B. The bid is deemed to include furnishings of materials, labor and equipment and all items necessary for
repair and reinforcing of the concrete as specified on contract drawings and specifications, complete.

C. Drawings and the general provisions of the contract, including general conditions and general
requirements are hereby made a part of this section.

D. Cooperate and coordinate with all other trades in executing the work described in the contract.

G. Inspect the structural members specified to be reinforced with Carbon Fiber Reinforced Plastic (CFRP)
on the contract drawings to check the location and inspect cracks and existing conditions of beams.

H. Design and install CFRP laminates to reinforce [Beams, Slabs, Columns, Walls, or other].

1.02 CODES AND REFERENCE STANDARDS

A. Comply with provisions of the following codes, specifications and standards, except as otherwise
indicated.  Standard specifications of the applicable societies, Manufacturer’s associations and agencies
shall include the latest issues of the specifications.  The Contractor shall have the following references at
the project site at all times and shall be familiar with the reference contents.

1. State of Art Report on Fiber Reinforced Plastic Reinforcement for Structures (ACI 44OR-96).

2. Building Code Requirements for Structural Concrete (ACI 318-95) and (ACI 318R-95).

3. Pull-Out Test-Relates Pull-Out Resistance of Driven Pins to Concrete Strength (ACI 503R)

4. ICRI Surface Preparation Guidelines for Repair of Deteriorated Concrete Resulting from Reinforcing Steel
Oxidation, selection of repair materials and placement of repair materials.

5. SACMA 4-88 Test method for tensile properties of oriental fiber resin composites.

6. Concrete Repair Guide (ACI 546R).

7. Guide to the Use of Waterproofing, Dampproofing, Protective, Decorative
Barrier Systems for Concrete (ACI 515.R-85).

Master Builders Technologies
Restoration Products

SPECIFICATION BULLETIN

Building Tomorrow Together®



1.03 QUALITY CONTROL AND QUALITY ASSURANCE

A. Manufacturer/Contractor Qualifications

1. Materials Manufacturer/Supplier Company must be specialized in the manufacturing of the products
specified in this section.

2. Materials Manufacturer/Supplier Company must have been in business for a minimum of 5 years, with
a program of training and technically supporting a nationally organized Contractor Training Program.

3. Contractor shall be a trained Contractor of the Manufacturer/Supplier of the specified product, who has
completed a program of instruction in the use of the specified material.

B. Quality Control

The Contractor shall conduct a quality control program that includes, but is not limited to the following:

1. Inspection of all materials to assure conformity with contract requirements, and that all materials are
new and undamaged.

2. Inspection of all surface preparation prior to CFRP laminate application.

3. Inspection of work in progress to assure work is being done in accordance with established procedures
and established Manufacturer’s instructions, specific Engineer Instructions, if given, or recommended
practices listed in the references of Section 1.02.

4. Inspection of all work completed including sounding all repairs to check for debonding and correction of
al defective work.

C. Quality Assurance

1. Attend pre-installation conference to be held with a representative of the Owner, Engineer, the
Contractor’s Superintendent and Foreman, Manufacturer’s Field Representative and other trades
involved to discuss the conduct of the work of this Section.

2. In-situ load testing of structural member prior to and after installation of CFRP sheet as required by
these specifications. Quantity and location of member(s) to be tested shall be determined by Engineer of
Record prior to proposal.

1.04 SUBMITTALS

A. Contractor’s Qualifications

B. Manufacturer’s product data indicating product standards, physical and chemical characteristics, technical
specifications, limitations, installation instructions, maintenance instructions and general recommendations
regarding each material.

C. Test results on the properties of the epoxy and the carbon fiber (CF) sheet / systems to be used on the
project.

D. Provide a two year proven record of performance of strengthening projects with CFRP laminates, and five
successful installations (in North America).

E. Provide field supervision specifically trained in the installation of CRFP laminates.

F. Samples of all materials to be used, each properly labeled as specified in Section 2.01.

G. Manufacturer’s MSDS for all materials to be used.

H. Certifications (in time to prevent delay in the work) by the Producers of the materials that all materials
supplied comply with all the requirements and standards of the appropriate ASTM and other agencies.

I. Submit to the Owner’s representative two copies of the design calculations and remedial design details
prepared by the Contractor’s professional Engineer using the CFRP laminates to be used on the job.

J. Submit stamped design drawings by a professional Engineer, including the necessary information listed
above in a timely manner to obtain a building permit for the work.
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K. Adhesion testing process for 3.07-D1.

L. Load testing program (process, loads, shoring) as required.

1.05 STRUCTURAL DESIGN

A. Design the repair with CFRP laminates according to the design guides for the CFRP laminates and
instructions supplied by the manufacturer.

B. Structural drawings of the existing structure included in the contract drawings.

1.06 GENERAL PROCEDURES

A. Work only in areas permitted by the Owner approved schedule.

B. Remove all tools, buckets and materials form work areas and store neatly at an approved location daily at
the end of work.

C. Protect the building and its contents from all risks related to the work in this Section.  Schedule and
execute all work without exposing adjacent building areas to water, dust, debris or materials used by the
Contractor.  Protect adjacent areas from damage and stains with appropriate barriers and masking.
Repair all damage as a result of the work to its condition at the start of work, or if such cannot be deter-
mined, to its original condition.

D. Protect the work from damage such as impact, marring of the surfaces and other damage.

F. Compliance with OSHA and all other safety laws and regulations is the exclusive responsibility of the
Contractor, his Subcontractors, Suppliers, Consultants and Servants.

1.07 TECHNICAL SUPPORT

A. The Contractor shall provide the services of a trained field representative at the work site at all times to
instruct the work crew in the CRFP application procedures.

1. The Manufacturer’s Field Representatives must be fully qualified to perform the work.

2. The Contractor shall be completely responsible for the expense of the services of the required
Manufacturer’s Field Representative and the contract price shall include full compensation for all costs
in connection therewith.

PART 2 PRODUCTS

2.01 PRODUCT DELIVERY, STORAGE AND HANDLING

A. Deliver materials clearly marked with legible and intact labels with Manufacturer’s name and brand name,
product identification and batch number.

B. The products shall be in original, unopened containers.

C. Store materials in areas where temperatures conform with Manufacturer’s recommendations and instruc-
tions.

MBrace™       Composite Strengthening System Specification
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2.02 ACCEPTABLE MANUFACTURERS/SUPPLIERS

A. The following vendors shall be used:

1. CFRP laminates:  (Dry, unidirectional sheet only).  MBrace Fiber Reinforcement Systems supplied by
Master Builders, Inc.  23700 Chagrin Blvd., Cleveland, OH  44122  216-831-5500, 800-MBT-9990, Fax:
216-831-6910.

2. Epoxy resin adhesive:  an approved epoxy system for application of MBrace Composite System.  The
system shall include:

a. Primer

b. Base Coat/Filler

c. Saturant

d. Topcoat

3. Substitutions:  No substitutions allowed, except as requested by the Manufacturer/Supplier of the
product and approved by the Engineer of Record.

PART 3  EXECUTION

3.01 GENERAL PREPARATION FOR APPLICATION

The contract drawings show locations of CFRP reinforcement.

A. Ambient Temperature

Conditions of CFRP process application must be examined carefully during the winter season and/or cold
zones.  DO NOT APPLY CFRP SHEET WHEN AMBIENT TEMPERATURES ARE LOWER THAN 40
degrees 

o
F (5 degrees 

o
C).  Auxiliary heat may be applied to raise surface and air temperature to a suitable

range.  Utilize “clean” heat source (electric, propane) so as not to contaminate bond surfaces by the carbon-
ation of the substrate.

B. Condensation

Presence of moisture may inhibit adhesion or primer and/or resin.  DO NOT APPLY CFRP WHEN RAIN-
FALL OR CONDENSATION IS ANTICIPATED.

C. Concrete Surface Defects and Corners

UNEVEN CONCRETE SURFACE IRREGULARITIES (OFF SETS) MUST BE GROUND AND
SMOOTHED TO LESS THAN 0.04 in. (1 mm).  WHEN CFRP SHEET IS TO RUN PERPENDICULAR TO
CORNERS, CONCRETE CORNERS MUST BE ROUNDED TO A RADIUS OF AT LEAST 0.5 in. (15 mm).
INTERNAL CORNERS MUST BE SMOOTHED.  NO DETAILING IS REQUIRED IF SHEET IS RUN PARAL-
LEL TO CORNERS.

D. Handling of Primer and Resin

Refer to Manufacturer’s specifications.  DO NOT DILUTE PRIMER AND RESIN WITH ANY SOLVENT.  After
the resin has been mixed with hardener, the mixed resin batch must be used within its batch-life.  The mixed
batch resin must not be used after expiration of its batch-life because increased resin viscosity will prevent
proper impregnation of CFRP Sheet.

E. Handling of CFRP Sheet

CFRP Sheet must not be handled roughly.  CF Sheet must be stored either by being rolled to a radius
greater than 12 in. (300 mm) or being dry stacked after cutting.  When multiple lengths of CFRP Sheet are
adhered to a concrete surface, a 4 in. (100 mm) OVERLAPPING LENGTH MUST BE APPLIED IN LONGI-
TUDINAL (FIBER) DIRECTION.  No overlapping is required in the lateral direction.

MBrace™       Composite Strengthening System Specification
p 4 0f 8



3.02 SURFACE PREPARATION

A. All substrates must be clean, sound and free of surface moisture and frost.  Remove dust, laitance,
grease, curing compounds, waxes, impregnations, foreign particles and other bond inhibiting materials
from the surface by blast cleaning or equivalent mechanical means.  Any steel reinforcement should be
cleaned and prepared thoroughly by abrasive cleaning, and the area patched prior to installation of CFRP
laminates.

Any deteriorated concrete or corroded reinforcing steel must be repaired as per ICRI Specifications.  Do
not cover corroded reinforcing steel with CFRP.

B. Existing uneven surfaces must be filled with an appropriate repair mortar or must be ground flat.   If required,
the strength of the concrete or repaired area can be verified after preparation by random pull-off testing.
Minimum tensile strength required is 200 psi (1.4 MPa).

C. Prior to initiating surface preparation procedures, the Contractor shall first prepare a representative
sample area.  The sample area shall be prepared in accordance with the requirements of this Specifica-
tion, and shall be used as a reference standard depicting a satisfactorily prepared surface.

D. (OPTIONAL) Where applicable, Contractor shall install a sample area (2 ft2 or 0.2 m2) of CFRP for purposes
of in-situ bond testing to verify bond.  Cost for test to be additional.

E. Maintain control of concrete chips, dust and debris in each area of work.  Clean up and remove such
material at the completion of each day of blasting.

3.03 APPLICATION STEPS

A. The deteriorated surface layer of the base concrete (weathered layer, laitance, surface lubricants, broken
mortar pieces, paint coatings, staining, etc.)  must be removed and the surface ground using a disc sander
or abrasive blasting.

Dusting from surface grinding must be removed using an air blower or other suitable means.  If the dust
has been removed by means of water washing, the surface must be thoroughly dried.

B. Restoration of Concrete Cross Section

Defects in the base concrete (such as broken pieces, voids, honeycomb, corrosion, etc.) must be chipped
off and removed.  If reinforcing bar has been exposed and corrosion exists, it must be repaired before the
concrete restoration commences.  The repair material shall be selected as per ICRI “Guide To Selecting
Repair Material”, and project requirements.

Epoxy resin or similar material must be injected into cracks greater than 0.010 in. (0.25 mm) wide.

If water leaks through cracks or concrete joints are significant, water protection and a water conveyance or
run-off must be provided prior to concrete surface restoration.

3.04 MIXING EPOXY RESIN

A. Epoxy based material used in the composite system may develop higher viscosity and/or slow curing and
insufficient curing at low ambient temperature.  The ambient temperature of the epoxy components shall
be between 50 and 100 degrees 

o
F (10 to 38 degrees 

o
C) at the time of mixing.  Presence of moisture may

inhibit adhesion of the system to the concrete substrate.  Provide necessary weather protection to protect
surfaces from rain or cold.

B. Premix each component of the primer according to Manufacturer’s recommendation.  Use the appropriate
mixing tools, at proper speed to achieve the proper mix.  Take care to scrape the sides of the pail during
mixing.

C. Components which have exceeded their shelf-life shall not be used.

D. Mix only that quantity of epoxy which can be used within its pot life.
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3.05 APPLICATIONS

A. No primer coat should be applied if the ambient temperature is lower that 40 degrees F (5 degrees C),
or if rainfall or condensation is anticipated.

1. Primer must be thoroughly mixed with hardener at the specified ratio in the mixing pot until it is
uniformly mixed (about 2 minutes).  Agitation shall be by means of electric hand mixer.  Volume of
primer prepared at one time must be such that it can be applied within its batch life.  A mixed primer
batch which has exceeded its batch life must not be used.  (The batch life may vary subject to ambient
temperature or volume of the mixed primer batch and care must be taken accordingly.)

2. Prime the concrete surface with the penetrating primer prior to application of any subsequent coatings
using brush or roller.  Alternatively, the primer may be spray applied with airless spray equipment,
followed immediately by thorough back rolling to work the primer into the concrete surface.  The primer
shall be applied uniformly in sufficient quantity to fully penetrate the concrete and produce a nonporous
film in the surface not to exceed two (2) dry mils (50 micrometers) in thickness after full penetration.
Volume to be applied may vary depending on direction and roughness of the concrete surface.

3. Surface irregularities caused by primer coating must be ground and removed using disc sander, etc.
If any minor protrusions on the concrete surface still remain, such surface defects may be corrected
again using epoxy resin base coat/filler as needed.

4. Apply base coat/filler to primed surfaces with the penetrating primer to fill all substrate voids and
irregularities.  (See 3.01-C.)

C. Adhesion of CFRP Sheet

CF Sheet shall not be applied whenever ambient temperature is lower than 40 degrees F (5 degrees C),
or whenever rainfall or condensation is anticipated.

1. CF Sheet must be cut beforehand into prescribed sizes using scissors and/or cutter.  The size of
CF Sheet to be cut is preferably less than 10 ft (3 m) in length, but may be longer if access allows.

2. When the primer coat has been left unattended for more than one week after the application, the
surface of the primer coat must be roughened using sandpaper.  Do not solvent wipe.

3. Apply saturant coat to primed surface or CF sheet using a medium nap roller (3/8 in. or 9.5 mm) to
approximately 20 mil (500 micrometers) film thickness.

4. CF Sheet is placed fiber side down onto the concrete surface onto which the wet saturant coat has
been applied.  After smoothing down by hand, the backing paper is peeled away.  The surface of
adhered CF Sheet must be squeezed in the fiber longitudinal direction using a defoaming roller and
rubber spatula in order to impregnate resin into CF Sheet and to defoam the resin coat.

For joining strips of CF Sheet in the fiber longitudinal direction, a 4 in. (100 mm) overlapping length is
required.  At the overlapping location, additional resin is applied to the outer surface of the CF Sheet
layer to be overlapped.  No lapping is required in the fiber lateral direction.

Minimize the elapsed time between mixing and application of the saturant to ensure the material is
applied to the sheet at least 15 minutes prior to any thickening or gelling.

5. The CF Sheet shall have a minimum of 30 minutes between application of sheet into first coat
of wet saturant on the concrete and the application of the second coat.  This is to allow for epoxy
impregnation.

When applying the first saturant coat directly to CF Sheet, allow for minimum of 30 minutes between
resin application to sheet and second saturant coat.  Less than 30 minutes can result in dry
unsaturated areas of CFRP.  Any listing or dislocation which may occur during this period must be
corrected by pressing down the CFRP using a defoaming roller or spatula.

6. The secondary saturant coat of mixed resin must then be applied onto the surface of the CF Sheet.
The surface onto which resin has been applied must be applied in fiber longitudinal direction, in order to
impregnate and replenish resin into the CF Sheet using a roller in the same film thickness as detailed in
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Items 3 above.

7. In case more than one layer of CF Sheet must be laminated, the processes as detailed in Items
3 through 6 must be repeated.

8. In the case of outdoor application, the work must be protected from rain, sand, dust, etc. by using
protective sheeting and other barriers.  Curing of adhered CFRP must be for no less 24 hours.

3.06 REPAIR OF DEFECTIVE WORK

A. Repair of all the defective work after the minimum cure time for the CFRP laminates.  Comply with
material and procedural requirements defined in this specification.  Repair all defects in a manner that will
restore the system to the designed level of quality.  Repair procedures for conditions that are not
specifically addressed in this specification shall be approved by the Owner’s representative.  All repairs
and touch up shall be made to the satisfaction of the Owner’s representative.

3.07 TESTING OF THE INSTALLED CFRP LAMINATES

A. Test all the repaired areas to check for voids, bubbles and delaminations.  Repair all voids, bubbles and
delaminations by approved methods per manufacturer’s direction.

B. Conduct direct pull-off test to verify the tensile bond between the CRFP and the existing concrete sub-
strate.  Inspect the failure surface of the core specimen.  Failure at the bond line at tensile stress below
200 psi (1.4 MPa) is unacceptable.

C. Perform a minimum of one pull-off test per _______ ft2 (______ m2) strengthened with the CFRP laminate
system.  The test is to be completed prior to the application of finishes on the CFRP laminates.

D. Repair the test areas of the composite system to the satisfaction of the Owner’s representative.

3.08 QUALITY CONTROL AND INSPECTION

A. In Process Control

A certified inspector shall observe all aspects of onsite material preparation and application, including
surface preparation, resin component mixing, application of primer, resin and CF Sheet, curing of
composite, and the application of protective coatings.

B. Inspection for Void/Delaminations

After allowing at least 24 hours for initial resin cure to occur, perform a visual and acoustic tap test
inspection of the layered surface.  Large delamination shall be marked for repair.  For small delaminations,
which are typically less than 2 in.2 (1300 mm2) and which are not localized, do not require corrective action.

C. Adhesion Testing

Adhesion Test:  The Contractor  will conduct adhesion testing of the fully cured CFRP Sheet concrete
assembly.  (See 3.07.)

D. Load Testing

If required by Engineer, a representative area(s) determined by the Engineer of Record shall be in-situ
load tested before and after application of CFRP Sheet to verify results.

E. Report

The inspector shall submit report to the Engineer of Record.
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Master Builders, Inc.
United States
23700 Chagrin Boulevard
Cleveland, Ohio 44122-5554
(800) MBT-9990
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