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Abstract 
 

Disulfide Bridging the Gap between Src and Cortactin:  A New Paradigm in SH2 
Domain-mediated Signaling 

 
Jason V. Evans 

 
 
 
Src and cortactin are cytoplasmic proteins that are implicated in cancer progression and 
metastasis.  Src is a non-receptor tyrosine kinase that also regulates normal cell 
homeostasis through phosphorylation of multiple downstream substrates.  Cortactin is 
an actin binding protein and nucleation promoting factor that promotes the formation of 
stable branching networks within the actin cytoskeleton.  Together, these proteins work 
in concert to promote the invasive and metastatic potential of tumor cells due to tyrosine 
phosphorylation of cortactin by Src.  However, the mechanistic details of the interaction 
between Src and cortactin have never been elucidated.  Collectively, this work aims to 
define how Src and cortactin interact to drive tumor cell invasion.  The first study 
examines the mechanism of interaction between Src and cortactin, whereby the Src 
SH2 domain interacts with cortactin via a disulfide bond formation and that this binding 
event is necessary for the formation of pro-invasive invadopodia. The work here also 
defines a paradigm shift in how SH2 domain-containing proteins interact with reciprocal 
binding partners. The second study characterizes potential structural changes in 
cortactin resultant from phosphorylation by extracellular regulated protein kinases 
(ERKs) in order to gain structural insight into how cortactin conformation is regulated 
downstream of growth factor-mediated signaling events. The final study focuses on the 
creation of cortactin biosensor to directly monitor changes in cortactin conformation 
using FRET-based imaging.  Taken together, these studies provide novel insights into 
the molecular events involved in regulating invasive tumor cell signal transduction and 
overall control of cortical actin dynamics during tumor metastasis. 
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Literature Review 
 

 
Src:  Function and Domain-based Regulation 
 
     In the early 1900s, Peyton Rous discovered a virus that caused the formation and 

growth of tumors in chickens [1].  Named Rous sarcoma virus, it was later discovered 

that the transmissible virus encoded a gene product, v-src, which was responsible for 

the cellular transformation observed in infected cells.  A cellular homologue, known as 

c-Src (Src from this point on), is found in normal tissues and has been vastly studied 

over decades, where it has been shown to play a critical role in normal and human 

neoplastic cell function [2].  

     Src does not share the transforming ability of v-Src.  This is due to structural 

differences that allow Src to be precisely regulated.  Src is a non-receptor tyrosine 

kinase that acts on other proteins by phosphorylating tyrosine residues on target ligands 

to induce a litany of downstream effects.  Molecular cloning and sequence analysis 

initially revealed important structural clues regarding Src regulation.  Beginning at the 

amino (N-) terminus, Src contains a myristoylation site that tethers the kinase to the 

inner leaflet of the plasma membrane and is key for proper subcellular localization and 

function.  Carboxyl (C-) terminal to the myrostolyation site is a Src homology (SH)3 

domain.  This domain functions to facilitate protein-protein interactions by recognizing 

and binding to canonical P-X-X-P peptide motifs.  This allows for the specific recognition 

and subsequent phosphorylation of Src substrates.  The SH3 domain is also important 

in governing Src conformation and activity (see below). Following the SH3 domain is 

second protein-protein binding motif termed the Src homology 2 (SH2) domain.  

Traditionally the SH2 domain mediates protein interactions by binding to phosphorylated 
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tyrosine residues through a hydrophobic binding pocket that contains a key, conserved, 

positively charged arginine that facilitates the interaction with the negatively charged 

oxygen moieties of the phospho-group on the tyrosine residues.  Adjacent to the Src 

SH2 domain is the Src homology 1 (SH1), more commonly referred to as the kinase, 

domain.  This is the catalytic region of the kinase, consisting of an N-terminal and C-

terminal lobe connected by an activation loop that is autophosphorylated at the key 

tyrosine (Y) 418 in the human enzyme (Y416 in the avian form).  Autophosphorylation of 

Y418 is essential for Src to attain full catalytic function towards exogenous substrates.  

Lastly, Src possesses a C-terminal negative regulatory “tail” that contains the key 

tyrosine 527.  When phosphorylated, Y527 acts to hold Src in a closed, inactive state [3-

5]. 

     Organization of the Src domain structure is important in understanding the ways in 

which it is regulated in the cell.  When inactive, Src exists in a closed conformation that 

is independent of membrane association.  In this closed state, Src maintains several 

intermolecular interactions to maintain inactivity.  These include binding of the SH2 

domain to phosphorylated (p)Y527 and binding of the SH3 domain to a proline-rich 

sequence between the SH2 domain and the kinase domain.  The aggregate activity of 

these interactions helps to provide and maintain stability of the closed confirmation until 

an activation event occurs [6, 7]. 

     Src activation occurs through multiple mechanisms. The best characterized 

activation mechanism involves dephosphorylation of pY527 in the C-terminal regulatory 

tail by the protein tyrosine phosphatase PTP-1B [8].  Dephosphorylation of pY527 

abolishes the ability of the SH2 domain to bind with this portion of c-Src, allowing the 
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kinase to unfold and achieve an “open” or activated conformational state.  The active 

state is maintained by pY418 autophosphorylation, which stabilizes the two catalytic 

lobes of the kinase domain [9].  The active conformation also brings into close proximity 

two cysteine residues within the SH2 domain (C245) and the kinase domain (C487) that 

forms a disulfide bond that is also essential for maximal Src kinase activity [10]. A 

second activation mechanism involves physical disruption of the SH3/SH2 

intramolecular interactions [6].  Target substrates of Src with higher affinity for the SH2 

or SH3 domain can out-compete the intrinsic Src interaction sequences for these 

domains.  Such binding allows Src to achieve an open and subsequently active 

conformation following Y418 phosphorylation as described above [11-14]. 

     Src kinase activity is downregulated by two distinct methods. One mechanism 

involves “re”phosphorylation of Y527 by c-Src tyrosine kinase (CSK), which restores the 

SH2 domain binding site required to maintain the inactive conformation [15].  Cycles of 

dynamic Y527 dephosphorylation/phosphorylation by PTP-1B and CSK are a critical 

feature of Src functionality.  A second level of regulation involves direct destruction of 

the Src protein by CBL-mediated ubiquitination of the Src C-terminal region and 

subsequent proteosomal degradation [16]. This method serves to keep total Src levels 

in check rather than controlling localized activity throughout the cell.  

   Utilizing this wealth of knowledge regarding Src regulation, several Src mutants have 

been created in order to study the specific effects of Src in cellular processes.  It is 

worthy to discuss these scientific tools since they were critical for initially discerning Src 

function and remain important to this day.  Comparison of the v-Src gene product with c-

Src homologues indicated a large portion of the C-terminal regulatory region was 
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deleted, including Y527.  Loss of Y527 results in constitutive Src kinase activity that 

bypasses downregulation by CSK. Enhanced v-Src activity results in hyper-

phosphorylation of target substrates and chronic stimulation of downstream signaling 

pathways important in oncogenic transformation [17].  The dominant nature of v-Src 

made constructs harboring the coding sequence vital for identifying important 

downstream substrates involved in tumor initiation and progression.  A similar tool 

based off of v-Src is the Src Y527F mutant [15].  This mutant is also constitutively active 

due to the inability of Y527 to be phosphorylated, and shares a near-identical spectrum 

of transforming properties with v-Src [18].  

     There are also very useful temperature sensitive Src constructs that have been 

created.  These mutants are very useful in that the activity of Src can be controlled by 

shifting cells expressing these mutants between the temperatures 30°C and 37°C.  In 

this system, Src is inactive at 37°C and active at 30°C.  This allows for complete control 

of Src activity and allows for very careful observation of the cellular transformation as it 

manifests due to aberrant Src activity [19]. 

     Other Src mutations have been engineered and used to study the specific 

contribution of each domain in signal transduction.  One example is the mutation of the 

key arginine (R175) within the SH2 domain that is required for binding to 

phosphorylated tyrosine residues [20], as well as the D99N mutation within the SH3 

domain that prevents binding to proline-rich containing sequences [21]. 

     The discussed mutations impact control of Src activation and association with 

downstream ligands.  Conversely, mutation of lysine 298 to methionine (K298M) in the 

kinase domain prevents ATP binding and renders the Src kinase domain dormant.  This 
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mutant retains the ability to properly localize and can interact with substrate binding 

partners, but serves as a dominant-negative protein in that it cannot phosphorylate 

bound ligands, thus preventing Src-based downstream signaling [22]. 

 

Roles of Src in Normal and Cancer Cell Signaling 

     Src activity is responsible for regulating a variety of cellular process, including 

cellular growth, adhesion, and motility.  Activation of receptor tyrosine kinases including 

epidermal growth factor receptor (EGFR) and platelet-derived growth factor receptor 

(PDGFR) [14, 23] trigger increased Src activity, which in turn phosphorylates 

downstream proteins that regulate cell cycle and transcription [24]. Src transformation 

results in increased cyclin D1, E and A expression, as well as an increase in cyclin D1, 

D3/CDK4/6, cyclin E/CDK2, and cyclin A/CDK2 activity. The CDK inhibitor p27 is also 

downregulated in Src-transformed cells [25].  The collective effect of increased Src-

driven cyclin activity is sufficient to promote cell cycle progression through the G1 phase 

into the S phase [25]. 

     Src also controls cell cycle progression through activation of the transcription factor 

STAT3.  STAT3 levels are elevated in v-Src transformed cells [26], promoting  

anchorage-independent cell growth dependent in part on Src-mediated STAT 

phosphorylation.  Along with Src activity, the activation of the MAP kinase and JNK 

kinase families phoshorylate the serines on STAT3, allowing for full activation [27].   Src 

also promotes STAT3 signaling through activation of Shc, which inhibits p53 signaling, 

an inhibitor of STAT3 [28].  This pathway has also been implicated in EGFR induced 
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mitogenesis, especially since it has been shown that Src synergizes with the activation 

of EGFR and downstream signaling events [29]. 

     Another role Src plays in cellular signaling is the maintenance of cell-substratum and 

cell-cell adhesions.  Src plays an important large role in the turnover of focal adhesions, 

cytoplasmic adhesion structures that connect the actin cytoskeleton to integrin 

transmembrane extracellular matrix receptors [30].  Important Src substrates 

phosphorylated in focal adhesions include focal adhesion kinase (FAK), p190 RhoGAP, 

and R-Ras [31]. However, the primary role of Src appears to be breakdown of focal 

adhesions, since Src-null cells are capable of making focal adhesions and maintaining 

cell-substratum adhesion [32] whereas Src activity, complexed with FAK, is necessary 

for focal adhesion disassembly [17, 24, 31, 33]. 

     In addition to governing focal adhesion function, Src regulates the adhesiveness of 

E-cadherin based, cell-cell, adherens junctions by preventing E-cadherin localization 

and therefore homotypic binding to E-cadherin molecules on neighboring cells [31].  Src 

also down regulates junctional adhesion through tyrosine phosphorylation of the E-

cadherin cytoplasmic domain or through activating phosphorylation of the E3 ubiquitin 

ligase Hakai, which ubiquitinates E-cadherin to promote endocytic internalization and 

protesomal degradation [34].  

     As stated above, Src’s role in adhesion breakdown is one of its key functions to 

promote cellular motility.  Dissolution of focal adhesions is an essential step in initiating 

migration important in such normal process as  macrophage extravasation to sites of 

inflammation, early stages of development, and in would healing [35].  A key signaling 

pathway in this process is the ability of Src to induce synthesis of the protease calpain.  
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Calpain is responsible for the cleavage of FAK and adhesion disassembly.  Calpain-

mediated FAK cleavage releases Src from FAK, allowing Src to phosphorylate 

additional cytoskeletal proteins necessary for motility [36, 37].  

   Src also promotes signaling cascades that are necessary for the rearrangement of the 

actin cytoskeleton that is necessary for cellular movement to occur.  In order for cells to 

migrate, there must be a rapid formation and breakdown of F-actin networks in order to 

drive the “pushing” of the cellular membrane at the leading edge of the cell during 

motility.  Also, focal adhesions at the rear of the cell must disengage while new 

adhesions form at the leading edge in order to “grip” the matrix to give the necessary 

traction for movement [38-40].   

    In addition to adhesion-based dynamics, Src phosphorylates several key actin 

regulating proteins responsible for governing actin assembly.  One of these proteins is 

the actin binding protein cortactin.  Src phosphorylation of cortactin has been shown to 

directly impact the efficiency of the formation of branched actin networks at the leading 

edge of two-dimensional cell movement [41].  Another Src target is p130CAS, which a 

direct Src substrate and is also downstream of FAK signaling.  p130CAS is a multi 

domain adaptor molecule that binds Src and recruits several proteins essential for actin 

cytoskeletal organization [42].  It has been shown that p130CAS phosphorylation is 

implicated in increased tumorigenesis and invasion [43].  Src also controls actin 

cytoskeleton signaling through activation of the Rho family of GTPases.  Src signaling 

has an antagonistic effect on Rho’s contribution to stress fiber formation and the linking 

of the actin cytoskeleton to adhesions.  This effect is mediated by Src phosphorylation 

and activation of p190RhoGAP.  P190RhoGAP in turn binds p120RasGAP, which then 
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mediates p120RasGAP dependent activation of RhoGAP.  Activated RhoGAP acts 

directly on active Rho to facilitate GTP hyrolysis, downregulating Rho function to  result 

in stress fiber breakdown [44].  This breakdown of actin filaments in stress fibers is 

necessary in specific subcellular areas in order for motility to proceed.   Src activity also 

influences activity of the Rho GTPases Rac and Cdc42.  Src is necessary for receptor 

stimulated Rac and Cdc42 dependent signaling events in lamellipodia (flat, actin-rich, 

ribbon-like protrusions) and filopodia (thin, actin-rich, finger-like projections), 

respectively [45-47].  This studies collectively point to an essential role for Src kinase 

signaling in cell migration. 

     While Src has been studied for nearly a century and a plethora of data have been 

uncovered concerning its function, it still remains a highly studied oncogene to this day 

given its central role normal and pathological cell biological processes.  
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Cortactin:  Integrator of Actin Cytoskeletal Signaling 

     Cortactin is a multi-domain [48] actin scaffolding protein and actin nucleation 

promoting factor that plays an important role in controlling actin dynamics and is a 

critical component in several actin based cellular structures.  Nucleation promoting 

factors are proteins that assist in the formation, or nucleation, of new actin “daughter” 

filaments from the existing “mother” filament.  This is done through the enhancement of 

the activity of the actin nucleating protein Arp2/3.  Arp2/3’s role is to nucleate actin 

filaments, promoting the formation of newly branching “daughter” filaments from the 

existing “mother” filament [49].  Arp2/3, once activated, performs this function by a 

conformation change in the Arp 2 and Arp 3 subunits to mimic actin “barbed” ends, 

creating new sites of monomer addition to promote de novo filament growth [50, 51].  

Cortactin is ubiquitously expressed in mammalian tissue and has a perinuclear 

intracellular distribution in starved cells.  Growth factor or extracellular matrix (ECM) 

engagement leading to subsequent Rac activation promotes cortactin localization to 

sites of active cortical actin cytoskeletal growth [52-54].  The key base function of these 

interactions is the promotion of new branched actin structures through activation of the 

Arp2/3 complex. The resulting branched actin network provides the necessary tensile 

strength and protrusive force needed to extend the cell membrane forward during motile 

and invasive events [55].  Cortactin function is conferred mainly through its interaction 

with proteins that also play roles in actin dynamics and, conversely, also modulate 

cortactin function [41].  This scaffolding role is mediated by the diverse array of domains 

in the cortactin molecule. 
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     Beginning at the amino terminus, the first cortactin domain encountered is the N-

terminal acidic domain (NTA), so named due to the presence of numerous acidic amino 

acid residues between positions 15 to 35 in the cortactin protein [56].  Notably within 

this domain is a canonical DDW motif between positions 20-22 that creates an Arp2/3 

binding site similar to that found in other Arp2/3 nucleation promoting factor (NPF) 

proteins [57]. The DDW motif allows cortactin to bind and subsequently activate Arp2/3, 

directly driving actin nucleation [50, 56].   

     Following the NTA is a region of cortactin containing six complete and one 

incomplete 37 amino acid tandem repeats (cortactin repeats). [48].  While all repeats 

share a large degree of sequence homology, the fourth repeat has been shown to be 

central for F-actin binding, with some contributions from repeats three and five. [56].  

The ability of the cortactin repeats to bind F-actin is mediated by lysine residues that 

form charged patches on the repeat surface. F-actin binding to cortactin can be 

regulated by acetylation and deacetylation of these lysine patches through the activity of 

the acetylase P300/CBP-associated factor (PCAF) and the deacetylase histone 

deacetylase 6 (HDAC6), respectively [58].  This domain also contains a serine residue 

within repeat 1 (S113) that is a target of the actin regulatory kinase PAK1.  However, 

the functionality of this phosphorylation event has not been clearly elucidated [59].   

Together the NTA and cortactin repeats region constitute the amino terminal half of the 

protein [41, 56].    

     After the repeats region is a predicted alpha-helical domain that contains a 26 amino 

acid stretch that is a recognition sequence for calpain [60, 61].  Biochemical work has 



12 
 

shown that Src phosphorylation of cortactin promotes calpain cleavage, but the 

biological significance for this is currently unclear.   

     Carboxyl-terminal to the alpha-helical domain is an unstructured region rich in proline 

residues (proline-rich region; PRR). This region also contains both serine and tyrosine 

residues phosphorylated by multiple kinase that are absolutely critical for cortactin 

function in cell motility and invasion [41].  Serine residues 405 and 418 in the PRR are 

both targeted by the serine/threonine kinase Erk1/2 and correlate with increased in 

tumor cell motility and invasion [59, 62].  Tyrosine 421, 470, and 486 are targeted by 

Src and a variety of other kinases, serving as “hot spots” for cortactin regulation [41]. 

Cortactin tyrosine phosphorylation also results in enhanced tumor cell motility, invasion, 

and metastasis [62] by creating docking sites for SH2-containing adaptor proteins and 

kinases the ultimately regulate increased Arp2/3 nucleation activity, actin polymerization 

and membrane protrusion [63-65].  

     Lastly, the extreme C-terminal region of cortactin contains an SH3 domain that binds 

a variety of ligands involved in regulating actin dynamics, endocytosis, and non-receptor 

kinases [50, 66, 67].  

 

Cortactin Function 

     The best characterized and established cortactin function is regulation of Arp2/3-

based actin polymerization and subsequent membrane protrusion through direct and 

indirect means.  In keeping with a role in actin dynamics, cortactin is a component of 

several actin-based subcellular structures.  Two of these structures, filopodia and 

lamellipodia, are laterally protrusive motile structures formed by motile cells in two 
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dimensional settings [68].  Filopodia are small actin-based, spike-like projections 

emanating from the cell body that are thought to function as “sensors” of the 

surrounding cellular microenvironment to promote cell polarity and directed cell 

movement [69].  Lamellipodia are flat, broad, actin-rich structures with rapid adhesion 

and actin cytoskeletal turnover that function to pull the cell along a directional trajectory 

[70].  Cortactin is also a component of actin-based dorsal ruffles, or “waves” that form 

on the surface of many cell types in response to growth factor stimulation, where they 

play a role in receptor tyrosine kinase endocytois and subsequent downregulation [71].  

On the ventral cell surface, cortactin is a major core component of extracellular matrix 

degrading structures known as invadopodia.  These structures protrude from the cell 

base into the underlying substratum and secrete matrix metalloproteinases (MMPs) that 

focally degrade ECM.  This action by invadopodia is thought to be a critical mechanism 

in initiating tumor invasion, allowing cells to cross the basement membrane and invade 

the underlying stroma, ultimately resulting in metastatic progression [72].  

      Along with motility-based actin structures, cortactin is a critical component of the 

actin machinery involved in endocytic downregulation of receptor tyrosine kinases as 

well as general endo/exocytic vesicle trafficking.  Cortactin participates in endocytosis 

through the binding of the SH3 domain to the pinchase dynamin 2, coupling dynamin 

membrane scission activity to the dynamic cortical actin cytoskeleton that surrounds 

clathrin-coated vesicles.  The ability of cortactin to activate and drive Arp2/3 actin 

polymerization in this process is thought to aid in vesicle formation by initiating 

membrane deformation prior to membrane severing by dynamin [66, 73-75].  Cortactin 

remains associated with a vesicle subset, where it is thought to aid in Arp2/3 driven 
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intracellular vesicle motility by promoting actin-based propulsion of the formed vesicle 

through the cytoplasm [76].  

     The participation of cortactin in several important actin-based cellular processes has 

led to intense investigation into the molecular mechanisms underlying cortactin 

regulation of actin binding and NPF activity.  In determining how cortactin interacts with 

F-actin, 3D reconstruction and subsequent analysis of electron micrographs depicting 

the cortactin repeats region bound to F-actin demonstrate that cortactin interacts with 

individual actin subunits within F-actin filaments in the same regions as gelsolin and 

ADF/cofilin [77-79].  Cortactin binding to F-actin deepens the cleft between adjacent 

actin monomers.  This is predicted to impart an inherent instability in the filament, 

exposing new binding surfaces for Arp2/3 complex or other F-actin interacting proteins 

[77].  In support of this, a separate study showed that cortactin preferentially binds 

newly formed actin filaments versus older pre-existing filaments [80]. 

     While the F-actin binding ability of cortactin is key for maximal Arp2/3 filament 

formation [81], cortactin plays additional roles in Arp2/3-based F-actin network formation 

besides direct Arp2/3 activation via the NTA domain.  Arp2/3 generated filaments by 

themselves are unstable, breaking apart by a process known as “debranching” to allow 

individual filaments to be severed and depolymerized [82].  Binding of cortactin to the 

Arp2/3-F-actin complex stabilizes the branch juncture, making the resulting F-actin 

networks more resistant to breakdown [81].  These stable actin branches are absolutely 

critical for proper membrane protrusion and cell motility [83, 84].  Branch stabilization is 

achieved by dual binding between the cortactin NTA domain to the Arp2/3 complex and 

the cortactin repeats binding the F-actin filament [81].  Along with cortactin, neuronal-
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Wiskott-Aldrich Syndrome protein (N-WASp) is another nucleation promoting factor that 

can bind and activate Arp2/3 at an efficiency ~ 10 fold greater than cortactin [51].  N-

WASp binds F-actin as well as monomeric globular (G)-actin.  The ability to bind 

monomeric actin enhances the process of actin filament nucleation [85].  In biochemical 

studies, N-WASp and cortactin have a synergistic effect in activating Arp2/3 [81].  

However, how both proteins function in concert is unclear and controversial.  One 

potential mechanism is that cortactin and N-WASp interact and activate Arp2/3 at the 

same time [50].  Another proposed mechanism is that N-WASp initially binds and 

activates Arp2/3.  Cortactin then displaces the N-WASp from pre-activated Arp2/3, 

binds and holds Arp2/3 in the open confirmation along with maximally stabilizing the 

branching Arp2/3-F-actin complex [86].  Cortactin also indirectly promotes Arp2/3 

activation apart from NTA-mediated interactions with Arp2/3.   Cortactin binds N-WASp 

through its SH3 domain, releasing N-WASp from an auto-inhibited state and promoting 

localization of N-WASp to sites of active polymerization [87]. The N-WASp binding 

protein WIP (WASP-interacting protein) also binds the cortactin SH3 domain [88] and 

assists in promoting cortactin-based N-WASp Arp2/3 nucleation [89].  How specific 

cortactin complexes with Arp2/3, N-WASp and cortactin are utilized and regulated in 

cells is an area of active ongoing investigation.    

     From these studies, it is clear that cortactin has a prominent role in actin 

cytoskeleton regulation that impacts many cellular processes.   As briefly mentioned 

earlier, phosphorylation of cortactin is a means of controlling its function in governing 

these events.  A main interacting partner of cortactin that is responsible for its regulation 

is the non-receptor tyrosine kinase Src.  In the following section, the history of the 
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interplay between these two molecules and their impact on normal and tumor cell 

signaling will be discussed. 

 

 



17 
 

Src and Cortactin:  Phosphoregulation of the Actin Cytoskeleton 

     Src has many target substrates that play vital roles in cell movement.  Cortactin is 

one of these substrates that was initially identified along with FAK, CAS, AFAP-110 and 

paxillin in v-Src transformed cells [90].  Cortactin was initially referred to as p80/85 due 

to its molecular weight when separated by SDS-PAGE [48].  After cloning and initial 

studies, it was aptly named “cortactin” due to its newly discovered association with actin 

filaments and localization at the cell cortex [91].  Activation of the receptor tyrosine 

kinase fibroblast growth factor receptor-1 (FGFR-1) results in Src activation and 

enhanced association of Src and cortactin [92].  A later study showed that this pathway 

activates both MAPK and Src pathways, with MAPK promoting proliferation and Src 

promoting migration [93], which was confirmed later in a study of FGF-1 signaling in  

Src-/- fibroblasts [94].  It was first shown by Okamura et al. that Src directly binds 

cortactin via its SH2 domain.  This interaction was inhibited by the addition of a pTyr 

peptide that out competed cortactin for the binding site, indicating that, most likely, the 

hydrophobic binding pocket of the Src SH2 domain is the domain region that interacts 

with cortactin [95].  However, no additional information regarding the binding 

mechanism between these two proteins was discussed in this report.   

     Src-induced tyrosine phosphorylation of cortactin is key in many cellular processes.  

Vuori et al. showed that Src phosphorylation of cortactin promotes integrin mediated 

adhesion [96].  Early in vitro studies gave evidence that tyrosine phosphorylation of 

cortactin by Src inhibits the ability of cortactin to bind and crosslink F-actin filaments 

[97], in spite of subsequent evidence that cortactin does not function as an actin-

crosslinking protein [50]. 
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     Another study showed that the presence of hydrogen peroxide, a reactive oxygen 

species, induced activation of Src, promoting downstream tyrosine phosphorylation of 

substrates, including cortactin,  as well as actin cytoskeleton rearrangement, membrane 

blebbing, and cytoplasm shrinkage [98].  

     With the studies mentioned thus far, it is easy to discern that Src-mediated 

phosphorylation, when deregulated, can have detrimental consequences in disease 

states such as cancer, due to alterations in cellular motility.  An example of this is work 

in breast cancer cell lines overexpressing cortactin that have higher incidents of bone 

metastasis than controls.    However, tyrosine phosphorylation null cortactin constructs 

showed a dramatic reduction in bone metastasis [99].  It is known that overexpression 

of cortactin and corresponding tyrosine phosphorylation is correlated with increased cell 

motility and invasion due to amplification of the cortactin gene on the chromosome 

11q13 region [62, 100]. 

     Rac-induced localization of cortactin is required for Src phosphorylation, where Src 

phosphorylates cortactin in a processive manner beginning at Y421, indicating that 

phosphorylation of cortactin by Src phosphorylation is closely tied to the ability of 

cortactin to regulate actin dynamics.  Subsequent biochemical work monitoring Arp2/3 

activation assays with N-WASp indicated that Src phosphorylation of cortactin 

prevented cortactin SH3 domain binding of N-WASp [87], and subsequent Arp2/3 actin 

nucleation, whereas phosphorylation by Erk1/2 enhanced N-WASp binding and 

activation [101].  This led to the proposal of a Erk/Src cortactin “switch” that regulated 

the ability of cortactin to govern N-WASp activity based on the impact of specific kinase 

phosphorylation events. Central to this theory is that cortactin resides in a “closed” 
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conformation with the SH3 domain unable to bind N-WASp.  Phosphorylation of 

cortactin by Erk1/2 results SH3 domain release. This allows interaction with N-WASP 

and subsequent activation of Arp2/3.  Src phosphorylation, on the other hand, inhibits 

the interaction with N-WASP, giving a cyclical regulation “on/off switch” that controls 

actin polymerization and depolymerization.  In spite of the in vitro evidence for this 

model, it does not reconcile the abundant levels of Src-phosphorylated cortactin at sites 

of active actin polymerization in cells [102, 103].  Subsequent in vitro actin assembly 

assays with Src-phosphorylated cortactin and SH2 adaptor proteins indicated that the 

tyrosine residues phosphorylated by Src create docking sites for the SH2 domain of the 

adaptor protein Nck1, which in turn binds WIP and N-WASp to facilitate Arp2/3 

activation [89].  The creation of a phospho-cortactin/Nck1/N-WASp tripartite complex 

has been confirmed within invadopodia in invasive breast cancer cells [103], raising the 

creditability of this mechanism.  Additionally, work from our laboratory indicates that 

cortactin molecules can be serine and tyrosine phosphorylated, further arguing against 

the simple “on/off” switch mechanism [104, 105]. 

     Functional interplay between Src and cortactin phosphorylation has been most 

extensively studied with respect to the formation and function of tumor cell invadopodia 

[106]. Invadopodia and related higher-order structures termed podosomes rely on Src 

activation and cortactin for their formation and function.  Src activation is an absolute 

requirement for invadopodia formation [107].  Cortactin phosphorylation is increased on 

Y421 and Y470 within podosomes in multiple cell types [108-110] and within 

invadopodia [111, 112].  Invadopodia assembly undergoes specific stages that result in 

the seeding, assembly and acquisition of proteolytic activity.  Pre-invadopodia formation 
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downstream of Src activation requires cortactin and F-actin to form [111], whereas 

dynamic cycles of Src activation and cortactin phosphorylation/rephosphorylation are 

responsible for the “maturation” of pre-invadopodia into invadopodia capable of 

degrading ECM [113, 114].  The inability of cells to properly regulate cortactin tyrosine 

phosphorylation directly contributes to impaired invadopodia degradative function, as 

evidenced through the use of point mutant and deletion constructs of both proteins [103, 

114] as well as the drugs targeting Src kinase activity [107, 115].   

     In addition to facilitating the formation of Nck1/N-WASp complexes to drive Arp2/3 

nucleation activity, Src-phosphorylated cortactin directly contributes to invadopodia 

formation through the release of the actin severing protein cofilin, which cuts pre-

existing F-actin to increase the number of barbed ends to allow increased monomer 

addition and filament growth [65].  Cofilin activity is regulated by intracellular pH levels, 

and recent work has shown that Src-phosphorylated cortactin recruits the Na+/H+ 

exchanger NHE1 to preinvadopodia, initiating cofilin activation through local increases 

in pH [116].         

     In addition to cell motility and podosome/invadopodia formation, Src phosphorylation 

of cortactin is also involved in regulating several additional cellular processes. Several 

groups have shown that Src-phosphorylated cortactin is necessary for the 

internalization of bacterial pathogens as well as their subsequent intracellular motility. 

[117-120].  Other important cellular functions that require Src phosphorylation by 

cortactin include neurite outgrowth [121], leukocyte transmigration [122], receptor 

mediated endocytosis [123], cell injury response [124], cell shrinkage [125], and 

vascular formation [126]. 
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SH2 Domains: Non-Conventional Interactions 

     Proteins generally consist of specialized domains that are intrinsic to overall function.  

One of the first discovered and best characterized protein domains is the SH2 domain.  

The SH2 domain was first discovered by Sadowski et al. when the sequence of non-

catalytic domains of cytoplasmic tyrosine kinases were compared to Src [3].  SH2 

domains consist of approximately 100 amino acids, forming a generally conserved 

structure consisting of an anti-parallel β-sheet located between two α-helices that are 

interconnected by four loop structures [127, 128].  SH2 domains are protein interaction 

domains that are critical for propagating cellular signaling networks within cells.  Recent 

work by Liu et al. show that SH2 domains are evolutionarily conserved from the simplest 

of organisms to the most complex and this conservation has co-developed with the 

multitude of complex signaling cascades seen in eukaryotic cells [129].  Interestingly, 

this study also showed that the prevalence of SH2 domains increased with the increase 

in complexity of the organisms in which they are found, supporting their role in higher 

order signaling networks.  SH2 domains primarily function by binding to phosphorylated 

tyrosine residues with specific flanking amino acid sequences in target proteins [130].   

These interactions are relatively weak so that they are easily reversible, which is 

essential for rapid responses to the ever-changing intracellular microenvironment [127].  

SH2 domains contain a hydrophobic binding pocket in which the phosphorylated target 

tyrosine binds.  Binding of phosphotyrosine to the domain is largely mediated by Van 

Der Waal interactions between the negative oxygen moieties of the tyrosine phosphate 

and a positively charged arginine residue.  This arginine lies within the highly conserved 

FLVRES sequence present in most SH2 domains.  The arginine is critical for phospho-
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tyrosine binding, as mutagenesis of this residue to lysine or leucine prevents SH2 

domains from binding target phosphotyrosines.  The pTyr residue is largely responsible 

for the binding affinity, while residues within positions -2 to +4 from the tyrosine residue 

confer specific domain-ligand binding specificity [131].  

     Although SH2 domains are predominantly known for binding phosphorylated tyrosine 

residues, there have been many studies published over the past decades that describe 

non-conventional, phosphotyrosine-independent mechanisms of binding.  These studies 

range from identifying phosphotyrosine independence to determining the precise amino 

acids responsible for the interaction and encompass a wide variety of protein classes.  

While the phosphotyrosine-dependent nature of SH2 domains has been well studied 

and reviewed, phosphotyrosine-independent interactions have not been categorically 

assessed in the literature.  This chapter will examine the lesser renowned modes of 

phosphotyrosine independent SH2 domain interactions with their target ligands.   

 

Phosphotyrosine-independent Regulation of Global SH2 Domain Function 

      Initial studies into how SH2 domain ligand binding is regulated was discovered by 

Rameh et al. in that PI3K lipid products can directly bind SH2 domains and interfere 

with their ability to bind tyrosine-phosphorylated proteins.  Initial results of this study 

showed that treatment with PI3K inhibitors stabilized the association of PI3K with 

tyrosine-phosphorylated proteins and that overexpression of PI3K reduced these 

interactions.  These results suggested the PI3K lipid products interfere with the ability of 

SH2 domains and pTyr-containing proteins.  Subsequent work showed direct lipid 

binding to all tested SH2 domains (p85 subunit of PI3K (N-terminal and C-terminal), Abl, 
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Lck, and Src). The phospholipid PtdIns-3,4,5-P3 showed competitive inhibition with pTyr 

peptides in this study, indicating that SH2 binding to target ligands is affected by the 

balance of lipid and tyrosine phosphorylated protein binding sites present in the 

cytoplasm.  Interestingly, the key arginine residue necessary for phosphotyrosine 

binding in the Src SH2 domain was not required for lipid binding, indicating different 

charged residues in the hydrophobic binding pocket facilitate the interaction.  Biological 

evidence was demonstrated by showing that binding of the PI3K p85 subunit C-terminal 

SH2 domain to tyrosine phosphorylated insulin receptor was blocked by PtdIns-3,4,5-

P3.  Overall, this study was the first to show that SH2 domains bind the lipid products of 

PI3K [132]. 

     Substrate recognition is a critical function of SH2 domains.  Typically, this consists of 

the recognition of a phosphorylated tyrosine residue and its flanking amino acids.  

However, it has been shown that more determinants are required than just simple 

sequence recognition.  Work by Bae et al. identified a secondary site on SH2 domains 

responsible for their target selectivity separate from the hydrophobic binding pocket 

utilized in phosphotyrosine-dependent interactions.  This site does not require ligand 

tyrosine phosphorylation for binding, but rather utilizes a series of charge-based 

interactions.  Crystallography and NMR-based binding studies with the PLCγ N-SH2 

and C-SH2 domains to specific pTyr binding sites on FGFR1 identified this new region, 

which was subsequently termed the “specificity pocket” and is found in all SH2 domains, 

providing additional means to reinforce domain-ligand specificity during downstream 

signaling events [133]. 
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Phosphotyrosine-independent SH2 Domain Interactions:  SH2 Domain Only Proteins 

     Some proteins consist entirely of a single SH2 domain.  These single domain 

proteins act as modulators of signaling pathways by binding to their targets to prevent 

binding to the same site by other proteins. One example of this type of protein is 

signaling lymphocyte-activation molecule (SLAM)-associated protein (SAP or SH2D1A).  

SAP is a T-cell specific protein that is the product of a gene mutated in X-linked 

lymphoproliferative syndrome (XLP).  It has been shown to bind SLAM (CD150) on its 

cytoplasmic tail and inhibit the recruitment of the SH2 domain containing phosphatase 

SHP-2.  SAP was predicted to recognize Y281 of SLAM, but binding was found to occur 

regardless of the Y281 phosphorylation state.   However, phosphopeptides mimicking 

this binding site were able to block the interaction, showing that the hydrophobic binding 

pocket of the SH2 domain is necessary to mediate binding [134]. Subsequent studies 

determined that the SAP SH2 domain recognizes a T-I-Y-X-X-(V/I) motif that occurs 

twice in SLAM.  The interesting aspect of this motif is that SH2 recognition extends N-

terminally and C-terminally from the tyrosine residue, where these extended regions 

mediate SAP binding to SLAM with affinities similar to SH2-pTyr ligand interactions 

[135, 136].  

  EWS-FLI1-activated transcript 2 (EAT2) is another protein that consists of a 

single SH2 domain that may also be capable of phosphorylation-independent binding. 

Poy et al. stated in unpublished data that EAT2 is able to bind non-phosphorylated 

peptides and recognizes similar motifs as SAP [135].  However, Morra et al. showed 

that EAT2 requires tyrosine phosphorylation of SLAM before it can bind, unlike SAP. 

The structural and functional similarities of EAT2 to SAP it makes it likely that EAT2 
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contains the ability to bind substrate ligands in a phosphotyrosine-independent manner, 

regardless of its ability to bind nonphosphorylated SLAM [137]. 

 

Intramolecular SH2 Domain Interactions 

     SH2 containing proteins are subject to regulation by forming intramolecular 

interactions with peptide sequences within the parent protein.  One such mechanism is 

seen within the protein tyrosine phosphatase SH-PTP2.  It was shown that the SH-

PTP2 SH2 domains bind to the catalytic domain of the protein, and kinetic studies 

showed that non-phosphorylated, bacterially expressed SH-PTP2 was negatively 

regulated by this interaction [138].  Another example was observed in the non-receptor 

tyrosine kinase IL2-inducible T-cell kinase (Itk).  This study showed that following 

activation, Itk undergoes  autophosphorylation of  tyrosine 180 within its SH3 domain.  

In order for this to occur, the SH2 domain of Itk must bind its kinase domain.  The 

phosphotyrosine-independence of this interaction was determined by the fact that the Itk 

SH2 domain could interact with the bacterially produced full length Itk moleucule.  This 

group also showed that mutating R265 in the Itk SH2 domain to alanine, which 

eliminates its ability to interact with phosphotyrosine motifs had no deleterious effects 

on its ability to bind the Itk kinase domain, confirming the phosphotyrosine 

independence of this interaction [139]. 

     Src also undergoes phosphotyrosine independent intramolecular SH2 domain 

regulation thought to regulate Src activation.  Using phosphorylation of FAK as a 

readout, it was demonstrated that C245 in the SH2 domain and C487 of the kinase 

domain do not undergo oxidation upon cell adhesion or H2O2 treatment as expected.  
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Mutation of either cysteine prevented FAK phosphorylation, indicating that C245/467 

are vital to redox-activated Src activation.  These data are suggestive of disulfide 

bonding between C245 and C467 to stabilize Src in an active conformation, but 

evidence of cystine bonding between these two residues was not directly shown [10]. 

     Linking of a tyrosine kinase’s SH2 domain to its own kinase domain is emerging as a 

common feature in regulating kinase activity and kinase substrate recognition.  The SH2 

domains and kinase domains of Fes and Abl contain linkages that regulate protein 

function.  This study used elegant crystallographic analysis to identify these interactions.  

In the case of Fes, a stable unit forms due to a polar interaction between the N-terminal 

helix αA region of the SH2 domain and the catalytically important helix αC region of the 

kinase domain.  These residues at the SH2-kinase interface stabilize the active Fes 

conformation by correctly positioning and stabilizing the kinase helix αC region, which 

forms the active site.  This study also showed Abl kinase activity is regulated by a 

similar binding event.  The Abl SH2 domain forms a polar interaction with the N-lobe of 

the kinase domain.  As with Fes, this interaction is required for efficient Abl activity and 

substrate phosphorylation [140]. 

 

Lipases 

     Lipases play an important role in the propagation of receptor mediated cell signaling. 

Hydrolysis of the membrane phospholipid, phosphatidylinosiol 4,5-bisphosphate, is 

important in regulating the interaction of many hormones and growth factors with their 

cell surface receptors.  Catalyzation of this reaction is mediated by phosphoinositide-

specific phospholipase C (PLC) isozymes.  This produces two intracellular messengers, 
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diacylglycerol and inositol 1,4,5-trisphosphate (IP3), which activates protein kinase C 

and releases intracellular Ca2+, respectively.  Specific kinase and phosphatase activity 

further breaks down IP3 into other inositol phosphates which play roles in intracellular 

signaling [141]. 

     PLC-γ1 plays critical roles in both cellular proliferation and differentiation [142, 143].  

It is activated by tyrosine phosphorylation [144], with modulation of this activity also 

being dependent upon serine/threonine phosphorylation [145, 146].  PLC-γ1 contains 

two SH2 domains and a SH3 domain that are responsible for substrate binding.  These 

SH domains are essential for cell proliferation and growth factor-induced mitogenesis, 

although the exact mechanisms remain unclear [28].  PLC-γ1 has also been shown to 

be elevated in cancer, implicating it in a role in tumor progression [147].  

     It has been shown by two groups that the C-terminal SH2 domain of PLC-γ1 can 

interact with substrates independently of tyrosine phosphorylation.  Muller et al. 

examined a set of SH2 domain proteins for their ability to bind separately the BCR and 

Abl components of the BCR-Abl fusion protein.  A subset of the SH2 domains bound 

non-tyrosine phosphorylated BCR, including the PLC- γ1 C-terminal SH2 domain, but 

the specific binding mechanism was not evaluated [148].  Joseph et al. also reported 

another instance in which the PLC- γ1 C-terminal SH2 domain can bind to a substrate in 

a phosphotyrosine-independent manner.  PLC- γ1 is phosphorylated at Y783 by the 

non-receptor tyrosine kinase Itk following T cell receptor activation.  This 

phosphorylation event activates PLC- γ1 lipase activity.  For this phosphorylation to 

occur, the C-terminal SH2 domain of PLC- γ1 must bind to the kinase domain of Itk.  

Phosphotyrosine independence was determined by mutating R694 and R696 in the 
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PLC- γ1 SH2 domain to alanine (which abolishes phosphotyrosine-dependent binding).  

These mutations had no effect on the ability of PLC- γ1.  Follow-up work from the same 

group (Min et al.) utilized molecular modeling and NMR to elucidate the exact 

determinants of the phosphotyrosine-independent interaction between the PLC- γ1 SH2 

domain and Itk.  They found that the site of interaction with the PLC- γ1 C-terminal SH2 

domain lies outside of the phosphotyrosine binding pocket.  The residues responsible 

for binding included K711 and E709 on the CD loop of the SH2 domain and a basic 

patch C-terminal to the binding pocket consisting of R748, R749, K751, and R753.  

Non-conformational mutations of these residues to alanine effectively abolished the 

interaction of the SH2 domain with Itk and the subsequent phosphorylation of Y783 by 

Itk.  This study also showed that the PLC- γ1 C-terminal SH2 domain retains the ability 

to bind its canonical ligands while interacting with Itk in this phosphotyrosine 

independent manner, indicating that increased complexity is found in select SH2 

domain-ligand interactions [139]. 

 

G-protein Regulators 

     Guanine nucleotide exchange factors (GEFs) and GTPase activating proteins 

(GAPs) are two protein classes responsible for regulating proteins with GTPase activity.   

GTPases cycle between an active (GTP bound) and inactive (GTP unbound) state.  

This cycling is activated by GEFs by their promotion of the exchange of GDP for GTP 

and the activity is terminated by GAPs, which promote the hydrolysis of GTP to GDP 

[149].  Close regulation of GTPases are crucial considering the roles they play in 
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diverse processes such as cell migration, vesicle trafficking, cell survival, and cell cycle 

progression [149, 150].   

     Subsets of GEFs and GAPs contain SH2 domains to aid in specifying ligand 

recognition, aiding in proper regulation of GTPase activity.  Some SH2-containing GEFs 

and GAPs bind ligands in a phosphotyrosine-independent manner.  The GEF Vav1 

constitutively interacts with the receptor tyrosine kinase Mer through a phosphotyrosine-

independent interaction that regulates Vav1 subcellular localization and downstream 

Rho family GTPase activity [151].  The GTPase-activating protein (GAP) contains two 

SH2 domains, and the N-terminal domain is capable of binding to the non-tyrosine 

phosphorylated BCR segment of the BCR-Abl fusion protein. Interestingly, the GAP C-

terminal SH2 domain was not able to bind to the BCR protein, suggesting that these two 

SH2 domains possibly function to regulate different subsets of ligands. [148]. 

 

Adaptor Proteins 

     Adaptor proteins play an important role in propagating signals in cellular pathways by 

bridging catalytic proteins to their specific substrates.  Adaptor proteins can also serve 

as substrates, whereby tyrosine phosphorylation creates binding sites for additional 

signaling molecules.  Adaptor proteins also serve as scaffolds by holding 

macromolecular complexes together, such as focal adhesions [152]. Like the other 

aforementioned protein classes, certain SH2 domain-containing adaptor proteins bind 

target proteins in a phosphotyrosine-independent manner. 

     The growth factor receptor-binding protein (Grb) family of adaptor proteins serve to 

bridge proteins important in transmitting intracellular signals.  Grb proteins share a 
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similar structure, having a proline-rich N-terminal region, a Ras-associating-like domain, 

a pleckstrin homology domain, a BPS domain specific to the Grb family, and a C-

terminal SH2 domain [152, 153]  In order to study binding specificity, the Grb2 SH2 

domain was screened against a phage display library of 107 different peptide sequences 

and 18 binding peptides were identified that all had identical sequences.  The peptide is 

referred to as G1 and is a 9-mer peptide containing a single tyrosine residue flanked by 

two cysteine residues that can form a disulfide bond to stabilize the peptide in a cyclic 

conformation.  This peptide binds the Grb2 SH2 domain in a phosphotyrosine-

independent manner, and contains a Tyr-X-Asn (YXN) motif similar to other Grb2 SH2 

domain phosphotyrosine ligands.  The G1 peptide requires an intact disulfide bond 

between the flanking cysteine residues, since reduction with dithiothreitol (DTT) 

diminishes binding.  The G1 peptide inhibits binding of the Grb2 SH2 domain to the 

ligand Shc, as well as preventing binding of short phospho-tyrosine peptides, 

suggesting that G1 binds in the hydrophobic binding pocket of the Grb2 SH2 domain.  

When introduced into cells, non-reducible thioester G1 derivatives prevent Grb2 SH2 

binding to cellular targets, confirming that Grb2 phosphotyrosine independent binding 

occurs in within the cytoplasm [154]. 

     A parallel study evaluating binding partners for the Grb7 SH2 domain indicated that 

peptides with a YXN motif interacted independent of tyrosine phosphorylation. Mutation 

of the βD5 and βD6 positions in the Grb7 SH2 domain to residues present in the Grb14 

SH2 domain blocked binding of YXN peptides, as well as to pY1139 on the receptor 

tyrosine kinase ErbB2, a known Grb7 interacting partner.  YXN peptides were able to 

compete with Grb7 binding to tyrosine phosphorylated ErbB2, demonstrating that a non-
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phosphorylated peptide could out-compete a known phosphotyrosine target of the Grb7 

SH2 domain [155]. 

     Grb10 is another Grb family member that utilizes SH2 domain phosphotyrosine-

independent binding. Yeast two-hybrid screening indicated that the Grb10 SH2 domain 

binds the Erk1/2 activating kinases Raf1 and MEK.  Binding to MEK1 requires 

phosphorylation of threonine 386 and the presence of the key phosphotyrosine-binding 

arginine (R520) in the Grb10 SH2 domain, indicating that other phosphorylated amino 

acids in select instances can substitute for phosphotyrosine in mediating SH2 domain 

docking [156]. 

     A series of separate studies determined that the Grb10 SH2 domain also mediates 

protein-protein interactions outside of the phosphotyrosine binding cleft.  Binding of the 

Grb10 SH2 domain to Nedd4 (neuronal precursor cell-expressed developmentally 

down-regulated 4) occurs in a phosphotyrosine manner [157], utilizing three separate 

charged patches between the Grb10 SH2 domain and Nedd4 determined by NMR of 

the Grb10 SH2-Nedd4 complex [158]. These studies raise the potential for select SH2 

domains to bind multiple ligands through the use of sequences within and external to 

the phosphotyrosine binding cleft.   

     The tensin family of adaptor proteins plays roles in the formation of focal adhesions.  

Generally the structure of this family consists of a central region necessary for protein 

function, such as F-actin binding with Tensin1, and then an SH2 domain followed by a 

phosphotyrosine binding domain (PTB) that interacts with integrin cytoplasmic tails 

[159].  The family member cten (C-terminal tensin like) differs in that it has a smaller 

molecular mass and only shares homology with other family members through its SH2 
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and PTB domains.  Cten has been show to be absent in prostate cancer, suggesting a 

role as a tumor suppressor [160].  One role discussed for this function of cten is its 

interaction with the protein DLC-1 (deleted in lung cancer-1).  Binding to DLC-1 is 

mediated by the cten SH2 domain through pTyr independent means that utilizes the key 

arginine in the hydrophobic binding pocket (R474).  DLC-1 contains a motif (SIYDNV) 

that is similar to the SAP SH2 binding site on SLAM.  Using this information, point 

mutants in the DCL-1 SIYDNV region analogous to required residues on SLAM tyrosine 

ablate cten SH2 binding, indicating that these proteins share similar SH2 binding motifs.   

[161].  Similar studies conducted with the related protein tensin2 indicated that the 

tensin2 SH2 domain binds to the same SIYDNV region on DLC-1, where NMR studies 

suggest that tyrosine 41 within the SH2 domain was important for mediating 

phosphotyrosine independent binding to the DCL-1 sequence [162]. 

     The adaptor protein suppressor of cytokine signaling-1 (SOCS1) regulates Vav1 

GEF activity through binding of the SOCS1 SH2 domain to Vav1.   While this binding 

was shown to be independent of Vav1 tyrosine phosphorylation, this study did not 

determine the precise mechanism utilized in tyrosine phosphorylation independent 

binding [163].  In addition to SOCS1, the SH2 domain of the adaptor protein Shc also 

interacts with proteins independent of tyrosine phosphorylation.  Shc plays roles in 

linking activated cell surface receptors to Ras signaling following receptor tyrosine 

kinase activation.  Shc proteins contain a C-terminal SH2 domain, a glycine/proline rich 

domain, and an N-terminal PTB domain. The novel Shc SH2 domain binding partner 

Protein Activating in Lymphocytes (mPAL) binds Shc without being tyrosine 

phosphorylated, utilizing the key phosphotyrosine binding arginine (R397) on Shc to 
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mediate mPAL binding.  This study thus demonstrated that binding of the Shc SH2 

domain to mPAL requires some of same molecular constituents as phosphotyrosine 

binding [164]. 

 

Transcription Factors 

     Transcription factors are proteins that bind to specific DNA sequences and control 

RNA production within the cell.  They can act alone or in a complex as either activators 

or repressors of gene transcription.  The signal transducers and activators of 

transcription (STAT) proteins are a family of seven proteins that function by relaying 

signals from membrane receptors to the nucleus, where they regulate gene 

transcription.  One member of this family, STAT3, is a master regulator of gene 

transcription.  Structurally, STAT3 contains an N-terminal coiled-coiled domain, a DNA 

binding domain, an SH2 domain, and a C-terminal transactivation domain.  The primary 

function of the SH2 domain is to bind to phosphotyrosine residues on activated 

transmembrane receptors [165, 166].  However, the STAT3 SH2 domain also 

participates in phosphotyrosine-independent interactions by binding to the p32 subunit 

of replication protein A (RPA).  This interaction augments the phosphorylation of STAT3 

upon EGF stimulation.  While the mechanism of how this is achieved is not clear and 

was not further investigated, it was shown that STAT3 retains a higher level of 

phosphorylation when interacting with p32 RPA, resulting in increased transcriptional 

activity. 
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Kinases 

     Protein kinases act on proteins to modify their activity by transferring phosphate 

groups from ATP to specific substrates.  The main function of kinases is to transmit 

signals in order to control a variety of complex signals in cells.  Two subsets of protein 

kinases are lipid and tyrosine kinases, which are named for the small molecule 

substrates they phosphorylate.  These two kinase groups have members that utilize 

non-conventional SH2 domain interactions. 

     An important lipid kinase in cellular signaling is phosphoinositide 3-kinase (PI3K).  It 

has been shown to play key roles in cell survival, proliferation, differentiation and 

cancer.  PI3K propagates cellular signaling from growth factors and cytokines into 

intracellular messages by phosphorylating phosphatidylinositol 4,5 bisphosphate (PIP2) 

at the 3 position of the inositol ring, producing phosphatidylinositol 3,4,5-triphosphate 

(PIP3).  PIP3 functions as a second messenger, activating the serine kinase Akt and 

other downstream pathways that control the cellular events mentioned above.  PI3K is a 

heterodimer that is made up of a p110 catalytic subunit and a p85 regulatory subunit 

that controls binding, activation and localization [167, 168].  The p85 subunit contains N-

terminal and C-terminal SH2 domains that are responsible for protein interactions and 

these domains have been implicated in phosphotyrosine-independent interactions.  

     The Anderson laboratory has extensively studied the interaction of the N-terminal 

and C-terminal SH2 domains of the p85 subunit of PI3K with the Raf isoform A-Raf.  

Initial work using phage display to identify binding partners to a section of basic 

residues in A-Raf that bound the A-Raf SH2 domain identified both PI3K SH2 domains 

as capable of binding to A-Raf independent of A-Raf tyrosine phosphorylation.  The 
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common theme between the phage display A-Raf peptides is that they all contained the 

same core motif of (L/I)-A-(R/K)-I-R.  A-Raf has four of these sequences (LIKGRK, 

LQRIRS, EQRERK, and DKKKVKNL) and both p85 SH2 domains can bind all four of 

these regions.  Typically the p85 SH2 domains recognize pY-X-X-M ligands.  This study 

shows that both p85 domains can interact with several basic-X-basic and led the 

authors to conclude that the site of p85 SH2 domain binding is separate from the 

hydrophobic binding pocket necessary for phosphotyrosine binding [169].  Follow up 

work by the same group indicated that mutation of the key arginines in the p85 N-

terminal (R358) and C-terminal (R649) SH2 domains had no effect on their ability to 

bind A-Raf.  A series of mutational studies on A-Raf, along with phosphatase treatment 

and phosphotyrosine peptide competition experiments resulted in the conclusion that 

that there are two separate binding sites for A-Raf on the PI3K SH2 domains, both of 

which are phosphotyrosine independent.  The first binding site overlaps the region of 

the SH2 domain responsible for phosphotyrosine binding, since a phosphopeptide 

based on the p85 PDGFR docking site could partially block SH2 domain binding.  This 

is termed the phosphotyrosine-dependent binding site (PDB).  The second site lies in an 

area away from the PDB and does not overlap.  This was referred to as the 

phosphorylation-independent binding site (PIB) [170].   

     Tyrosine kinases occur as transmembrane receptor and cytoplasmic non-receptor 

tyrosine kinases.  An important group of non-receptor tyrosine kinases are the ABL 

family of proteins.  ABL proteins contain an SH3, SH2, and catalytic domain that is 

typical of many cytoplasmic tyrosine kinases. ABL also has a DNA biding domain that 

plays a nuclear role in DNA repair [171].  The ABL SH2 domain binds several 
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substrates in a phosphotyrosine-independent manner in the BCR-ABL and v-ABL 

variants.  

     Sequences in BCR necessary for transformation by the BCR-Abl oncogene bind to 

the Abl SH2 domain in a phosphotyrosine-independent manner. The Abl SH2 domain 

binds to two serine/threonine rich regions in the BCR protein in a 

phosphoserine/threonine dependent manner as determined by phosphoamino analysis 

of the BCR protein, but further information regarding the precise mode of SH2 domain 

interaction were not reported.    Other work demonstrated that the Abelson murine 

leukemia virus encoded protein, v-Abl, binds via its SH2 domain to the adaptor protein 

Shc with phosphotyrosine-independence.  The interaction occurs within the first 85 

amino acids of the Shc N-terminus, however the exact binding site was not identified 

[172]. 

     Another important family of non-receptor tyrosine kinases is the Src gene family, 

which consists of nine members.  Src family kinases are all similarly structured as 

described earlier.  Src family proteins regulate important cellular functions such as 

growth, adhesion, invasion, and motility [31].  Some of the Src family members are 

ubiquitously expressed, while others are only present in cells of hematopoietic lineage.  

Src family members that have been implicated in non-conventional SH2 domain 

interactions to date are Blk, Lck, Fyn and c-Src. 

     Blk is found in B lymphocytes where the SH2 domain binds the protein p130PITSLRE
, a 

high molecular weight homologue of cyclin-dependent kinases.  This interaction occurs 

in a serine and glutamic acid rich region within p130PITSLRE, where no tyrosine 

phosphorylation is detected.  Serine phosphorylation of p130PITSLRE by the 
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serine/threonine kinase casein kinase II (CKII) is necessary to facilitate Blk SH2 domain 

binding, utilizing the phosphotyrosine hydrophobic binding pocket. [173, 174].  The Blk 

SH2 domain also binds an acidic region of the protein p150TSP, a component of the RNA 

polymerase II complex, which is devoid of tyrosine residues.  However, it is dependent 

on phosphorylation of serine and/or threonine residues within this acidic region.  This 

interaction was shown to be mediated by the Blk SH2 domain phosphotyrosine binding 

region [175]. 

     Another Src family cytoplasmic kinase that is found mainly in cells of lymphoid origin 

and exhibits phosphotyrosine-independent interactions is p56lck.   A series of papers 

published from the Shin lab show that Lck binds and is regulated by a previously 

undescribed 62kDa protein [176-178].  This protein was later identified as a member of 

a novel class of ubiquitin binding proteins that controls signaling in part by ubitiquin-

mediated protein degradation and forms a structure known as the sequestosome [178, 

179].   p62, or sequestosome 1, binds the Lck SH2 domain independent of 

phosphotyrosine, and in a follow-up study, p62 was cloned and the binding specificities 

with Lck SH2 domain were further determined, mapping the site of interaction between 

proline 29 and arginine 50 in the p62 amino terminus [176].  However, no specific 

residue(s) was indicated as being essential for mediating binding. 

     The Lck SH2 domain also binds the Human Immunodeficiency Virus (HIV) Type 1 

Nef protein.  Binding assays with the Lck SH2 domain showed that the SH2 interaction 

of Nef was reduced when lysates were pre-treated with phosphatase.  Nef contains 

seven tyrosine residues but when mutated individually to phenyalanine, none of the 

variants affected Lck SH2 binding. Binding was additionally tested with a Lck SH2 
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domain phosphotyrosine binding mutant (R134S-R154Q) and no interaction with Nef 

was observed, although the specific Nef amino acids responsible for the interaction 

were never deduced [180]. 

     Fyn is a more ubiquitously expressed Src family member that also binds a ligand 

subset in a SH2-mediated phosphorylation-independent manner.  The Fyn SH2 domain 

interacts with the serine/threonine kinase Raf-1 when Raf-1 is exclusively serine 

phosphorylated [181].  Treatment of Raf-1 with phosphatase ablated of the ability of the 

Fyn SH2 domain to bind Raf-1, indicating that serine phosphorylation is necessary for 

the interaction to occur.  Binding assays in the presence of phosphotyrosine or phenyl 

phosphate reduced the interaction, indicating that the hydrophobic pTyr binding pocket 

in the Fyn SH2 domain is responsible for binding [182]. 

     Src is a ubiquitously expressed protein that plays many important roles in cell 

growth, adhesion, and motility.  The Src SH2 domain also binds Raf-1 and exhibits the 

same phosphoserine Raf-1 binding requirements as the Fyn SH2 domain described 

above.   In neurons, Src phosphorylates the N-methyl-D-aspartate subtype of glutamate 

receptor (NMDAR) to upregulate its activity.   Within the activated receptor complex, the 

protein PSD-95 acts as a negative regulator of Src-induced NMDAR activation.  Src 

binds PSD-95 through SH2 domain binding independent of tyrsosine phosphorylation.  

Deletion analysis of PSD-95 identified amino acids 1-54 as the region responsible for 

Src SH2 binding.  Three tyrosine residues present within this region are not responsible 

for SH2 domain binding.   Further mapping narrowed the binding region between amino 

acids 43-54.  Mutation of the phosphotyrosine binding arginine 175 in the SH2 domain 

did not impact binding, further confirming phosphotyrosine indpendence  [183]. 
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Discussion 

     There are a number of reports describing non-conventional, phosphotyrosine-

independent SH2 domain interactions with their cognate ligands.  The remarkable 

aspect of these studies is that these binding methods differ from protein to domain, 

showing very little mechanistic conservation.  An interesting speculation could be that 

these interactions evolved in a very protein-specific manner to suit the signaling needs 

of cells as organisms became more complex.  SH2 domains have appeared in simple, 

single-celled organisms such as amoeboa [129], so it is no surprise that evolutionary 

pressure may have occurred to promote such binding events.  However, to our 

knowledge these pTyr-independent interactions have only been shown using SH2 

domains from mammalian proteins.  One scenario that comes to mind that could give 

arise to such a need is that of cells being in a state of nutrient deprivation.  In this state, 

nutrient intake and thus, ATP production would be low, producing a need for a 

mechanism of basal-state signaling to allow the most basic cellular processes to occur.  

ATP scarcity would lead to a lack of traditional pTyr binding.  The non-conventional SH2 

domain binding would allow for critical protein-protein interactions to occur and maintain 

signaling integrity, enabling cell survival.   

     Another possibility is that these types of interactions act as priming events for the 

activation of signaling pathways and cellular functions.  In other words, these events 

could set into motion the series of interactions that would allow tyrosine phosphorylation 

that creates the conventional SH2 domain binding sites.  We see this in several 

instances, where tyrosine phosphorylation of proteins is critical for their function due to 
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the creation of docking sites for SH2 domain containing interaction partners.  The 

question is then how do these proteins get phosphorylated in the first place?  Of course, 

kinases that contain SH3 domains can interact with targets independent of pTyr status; 

however this would not explain all of the initial phosphorylation events of proteins.  Non-

conventional binding would allow critical initial phosphorylation events; enabling a litany 

of translocation, transcription and protein bridging events to occur, giving a “jump start” 

to initiating cellular signaling systems. 

     Given the knowledge at hand further studies seeking out and classifying additional 

phospho-tyrosine independent interactions is warranted. Such studies would lead to a 

much more in-depth understanding of the intricacies of many different signaling 

pathways, potentially providing novel targets for therapeutics for a variety of disease 

states.  It will be exciting and enlightening to see what additional new discoveries lay in 

wait with SH2 domains as well as other well known interaction domains that are thought 

to have been exhaustively characterized in terms of function. 
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Summary 

Tyrosine kinase-based signal transduction mediated by modular protein domains is 

critical for cellular function.  The Src homology (SH)2 domain is an important conductor 

of intracellular signalling that binds to phosphorylated tyrosines on acceptor proteins, 

producing molecular complexes responsible for signal relay.  Cortactin is a cytoskeletal 

protein and tyrosine kinase substrate that regulates actin-based motility through 

interactions with SH2 domain-containing proteins.  The Src kinase SH2 domain 

mediates cortactin binding and tyrosine phosphorylation, but how Src interacts with 

cortactin is unknown.  Here we demonstrate that Src binds cortactin through cystine 

bonding between Src C185 in the SH2 domain within the phosphotyrosine binding 

pocket and cortactin C112/246 in the cortactin repeats domain independent of tyrosine 

phosphorylation.  Interaction studies in the presence of reducing agents ablate Src-

cortactin binding, eliminates cortactin phosphorylation by Src, and prevents Src SH2 

domain binding to cortactin.  Tandem MS/MS sequencing demonstrates cystine bond 

formation between Src C185 and cortactin C112/246.  Mutational studies indicate that 

an intact cystine binding interface is required for Src-mediated cortactin 

phosphorylation, cell migration, and pre-invadopodia formation.  Our results identify a 

novel phosphotyrosine independent binding mode between the Src SH2 domain and 

cortactin.  Besides Src, one quarter of all SH2 domains contain cysteines at or near the 

analogous Src C185 position.  This provides a potential alternative mechanism to 

tyrosine phosphorylation for cysteine-containing SH2 domains to bind cognate ligands 

that may be widespread in propagating signals regulating diverse cellular functions. 
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Introduction 

     Signal transduction through protein-protein interactions is essential for cellular 

function and is mediated by specialized protein domains.  The SH2 domain is one of the 

initially discovered and best-characterized protein interaction motifs [1]. SH2 domains 

are ~100 amino acids in length, and genomic analysis indicates that 121 SH2 domains 

are found in 115 individual human proteins that participate in a wide range of signaling 

events [2].  SH2 domains function by binding to phosphorylated tyrosine residues in 

target proteins typically specified by residues in positions -2 to +4 of the 

phosphotyrosine [3, 4].  SH2 domains are structurally conserved, consisting of a β-sheet 

flanked by opposing α-helices [5].  A positively charged binding pocket within the β-

sheet contains the canonical FLVRES sequence, where arginine βB5 forms the critical 

electrostatic bond with two oxygen atoms in the phosphotyrosine to generate domain-

ligand binding [6].  While this contact is central for SH2-phosphotyrosine interactions, 

carboxyl-terminal residues within the β-sheet create variable binding interfaces 

(“specificity pockets”) that dictate ligand specificity based on the residues flanking the 

phosphotyrosine [7-9].  Though well characterized in terms of phosphotyrosine ligand 

binding, emerging reports have determined that select SH2 domains bind certain 

ligands independent of tyrosine phosphorylation [7, 10, 11].  These interactions are 

mediated by ligand binding to regions on the SH2 domain that either include or exclude 

participation of the phosphotyrosine binding cleft, potentially increasing the variability 

and complexity of SH2 domain function in signal relay systems. 

     Src and related tyrosine kinases are highly regulated enzymes where the SH2 

domain plays a pivotal role in controlling kinase function.  Binding of the Src SH2 
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domain to the phosphorylated carboxyl-terminal tyrosine 527 is key in maintaining Src in 

a closed autoinhibitory state [12, 13].  Tyrosine 527 dephosphorylation results in an 

open conformation, allowing the kinase (SH1) domain to phosphorylate substrates. 

Elimination of tyrosine 527 results in constitutive kinase activation and neoplastic 

transformation [14].  The Src SH2 domain also potentiates kinase activity through stable 

binding to several tyrosine phosphorylated substrates, notably focal adhesion kinase 

(FAK) and p130CAS [15, 16].  Src regulates cellular growth, division, adhesion, and 

motility through SH2-mediated interactions and subsequent cis and/or trans substrate 

tyrosine phosphorylation [17].  Elevated growth factor signaling in human cancer leads 

to Src hyperactivation, promoting tumor progression through increased growth and 

invasive potential.  Increased Src activity accomplishes this by promoting tumor cell 

migration, invadopodia formation, and matrix metalloproteinase (MMP) activity [18].  

These attributes have resulted in the development of kinase-targeted Src inhibitory 

compounds that are currently being evaluated for efficacy as anti-tumor and -metastatic 

therapeutics. [19]. 

     Several actin-binding proteins serve as Src targets for SH2 domain binding and 

phosphorylation that modulate actin dynamics essential for whole and intracellular 

motility. Cortactin is a filamentous (F)-actin binding protein that regulates actin related 

protein (Arp)2/3-based actin network formation responsible for cortical actin-based 

membrane protrusion [20].  Src phosphorylates cortactin at three positions 

(Y421/466/482 in the murine form) within a proline (P)-rich domain near the carboxyl 

terminus [21].  Cortactin tyrosine phosphorylation coincides with cellular membrane 

deforming events involving cortical actin remodeling, including cell migration, pathogen 
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uptake, endocytosis, osmotic shock, synaptic remodeling, cell junction regulation, and 

invadopodia formation [22].  Mechanistic insight to date indicates that cortactin tyrosine 

phosphorylation creates binding sites for SH2 domain-containing adaptor proteins.  

These include Crk during Shigella internalization [23] and Nck1 in invadopodia 

maturation [24].  For Nck1, additional Nck1 domains mediate the assembly of N-WASp-

containing macromolecular complexes that further enhance Arp2/3 actin network 

formation [25].  Src-mediated cortactin phosphorylation also enhances binding of the 

cortactin carboxyl-terminal SH3 domain to proline-rich domains in target proteins [26], 

although the molecular details of this process are currently unclear. 

     While the SH2 domain has been previously shown to be solely responsible for 

mediating Src association with cortactin [27], the precise SH2 Src interaction site on 

cortactin is unknown.  Here we demonstrate that Src associates with cortactin through a 

phosphotyrosine-independent SH2 domain interaction involving the formation of a 

cystine linkage.  Deletion and mutational mapping indicates that cysteine residues 112 

in the 1st and 246 in the 5th cortactin repeat represent two separate docking sites for 

the Src SH2 domain.  Src and cortactin form a stable redox-sensitive linkage in cells 

that is required for cortactin phosphorylation.  Molecular modeling of the Src SH2 

domain shows peptides containing cortactin C112 and C246 dock within the Src 

phosphotyrosine-binding cleft, with cortactin cysteine residues in close proximity to Src 

C185 at position βC3.  Tandem mass spectroscopy of the Src SH2 domain mixed with 

cortactin peptides demonstrates formation of cystine bonds between Src C185 and 

cortactin C112 and C246.  Cells containing cortactin mutants lacking C112 and C246 

display reduced cortactin tyrosine phosphorylation, motility, and adhesion.  Cortactin 
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C112/246 is required for the formation of initial (pre-) invadopodia complexes and 

extracellular matrix degradation.  Our results indicate that Src interacts with cortactin 

independent of tyrosine phosphorylation through novel cystine bonding within the Src 

SH2 domain phosphotyrosine-binding region.  Sequence inspection indicates that 25% 

of all SH2 domains contain a cysteine at, or in close proximity to βC3, pointing to 

potential widespread usage of cystine-based SH2 domain interactions in numerous 

signaling pathways.  
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Results 

The Src SH2 domain binds cortactin independent of tyrosine phosphorylation 

  Src and other tyrosine kinases phosphorylate cortactin on tyrosines 421, 466, 

and 482 [26, 28].  Using affinity precipitation assays with purified Src SH2, SH3, and 

tandem SH2/SH3 fusion proteins, we confirmed previous work [27] that the Src SH2 

domain is the only region on Src responsible for binding cortactin (Fig. S1A).   To 

determine whether the Src SH2 domain can interact with any of the primary cortactin 

phosphotyrosine residues, a commercial SH2 domain array was screened with cortactin 

peptides surrounding the two main Src phosphorylation targets (Y421 and Y466).  

Interestingly, neither phosphorylated nor unphosphorylated peptides interacted with the 

Src SH2 domain, although both peptides showed phospho-dependent binding to the 

SH2 domains of the tyrosine kinases Abl and Fyn (Fig. S1B-D), both which target 

cortactin [29, 30].  We pursued this finding utilizing GST-Src SH2 pull-down assays from 

lysates of epidermal growth factor (EGF)-stimulated cells. There was no difference 

between the amounts of cortactin precipitated with the Src GST-SH2 domain from EGF-

stimulated cells compared to non-stimulated cells, even though stimulated cells showed 

increased cortactin tyrosine phosphorylation (Fig. 1A).  We next evaluated the direct 

association of GST-Src SH2 with cortactin using Far Western analysis.  Cells were 

transfected with FLAG-tagged constructs expressing full-length cortactin (FL) or 

cortactin containing phenylalanine substitutions at the dominant Src phosphorylation 

site (Y421F;[21]) or all three Src phosphorylation sites (triple tyrosine mutant; TYM). 

The Src SH2 domain bound cortactin at equivalent levels from starved or EGF-

stimulated cells whether or not Src-targeted cortactin tyrosine residues were present 
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(Fig. 1B).  The same result was obtained by GST-Src SH2 affinity precipitation (Fig. 

1C).  To further confirm phosphotyrosine independence, we assayed bacterially-

produced, non-phosphorylated recombinant cortactin by GST-SH2 affinity precipitation.  

A dose-dependent increase in cortactin binding by the Src SH2 domain was observed 

above saturated GST control levels (Fig. 1D). Constitutively active Src phosphorylated 

recombinant cortactin (Fig. S2A) and GST-Src SH2 interacts with FAK Y397 in a 

phosphotyrosine-dependent manner (Fig. S2B), indicating that the assayed proteins 

retained correct functionality.  

The Src SH2 domain binds to cortactin repeat 1 and repeat 5 

     To identify the cortactin region responsible Src SH2 binding, we utilized a series of 

deletion mutants with the systematic removal of cortactin structural domains that 

independently retain their respective functions [31, 32] (Fig. S3).  Far Western and 

affinity precipitation assays indicated that GST-Src SH2 bound to the amino terminal 

(NT) half of cortactin (residues 1-330) rather than the carboxyl terminal (CT) half that 

contains the sites of tyrosine phosphorylation (Fig. S2C-D).  Separation of the Arp2/3-

binding N-terminal acidic (NTA) domain from the F-actin binding repeats domain 

indicated that the Src SH2 domain associated with the cortactin repeats region (Fig. 

1E).  Serial deletion of individual cortactin repeats beginning with repeat 3 and retaining 

the carboxyl terminus demonstrated a significant reduction of Src SH2 domain binding 

with removal of the 5th cortactin repeat (Fig. 1F).  Deletion of repeat 5 in the context of 

the full-length cortactin protein failed to prevent SH2 binding (Fig. S4A), suggesting that 

there is at least one additional repeat that binds the Src SH2 domain.  To test this, we 

utilized a carboxyl terminal deletion series by Far Western analysis where each 
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cortactin repeat was serially removed (Fig. S4B). Src SH2 binding was observed in all 

constructs containing repeat 1.  Since either set of deletion constructs cannot clearly 

determine that repeats 1 and 5 are the only repeats capable of Src SH2 binding, we 

created chimeric constructs by adding each individual cortactin repeat in tandem amino 

terminal to repeat 6 in the SH2-null binding R6-CT construct (Fig. S3).  Far Western 

assays of these constructs unambiguously established cortactin repeat 1 and repeat 5 

as individual interaction regions for Src SH2 domain binding (Fig. 1G).   

 

Cysteine 112 and cysteine 246 mediate cortactin binding to the Src SH2 domain 

     Sequence alignment of each cortactin repeat identified cysteine 112 in repeat 1 and 

cysteine 246 in repeat 5 as residues that lacked significant homology with cortactin 

residues in the same position (Fig. 2A).  To determine if these residues were 

responsible for their respective cortactin repeats to bind the Src SH2 domain, we 

mutated each cysteine individually to alanine in the full-length wild type molecule (WT 

C112A and WT C246A) and in their respective dual tandem repeat 6 chimeras (R1R6 

C112A and R5R6 C246A). Far Western assays indicated that Src SH2 binding was 

retained in the WT C112A and WT C246A constructs but not by the R1R6 C112A and 

R5R6 C246A chimeric mutants (Fig. 2B-C).  These data indicate that C112 and C246 

function as separate, independent binding motifs for the Src SH2 domain. Given the 

duplicity of these SH2 binding sites, we mutated cysteine 112 and 246 to alanine in the 

WT cortactin construct (double cysteine mutant; DCM) and tested Src SH2 binding by 

Far Western analysis and affinity precipitation.  Mutation of both cysteine residues 
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abolished Src SH2 domain binding (Fig. 2D-E). These data indicate that cysteine 112 

and 246 are required for Src SH2 association with cortactin.  

 

Molecular modeling of cortactin C112 and C246 pentapeptides with the Src SH2 

domain 

     Given the apparent unique binding requirements for cortactin to the Src SH2 domain, 

we conducted molecular modeling with cortactin C112 and C246 peptides to gain 

mechanistic insight into how the cortactin cysteine residues might interact with the SH2 

domain.  The SH2 domain of Src was obtained from the published crystal structure [33].  

As a positive control, a pentapeptide encompassing Src pY527 was docked to Src SH2.  

The peptide was predicted to dock in the phospho-tyrosine binding pocket in close 

proximity with the βB5 arginine 175 (Fig. 3A).  The phosphotyrosine in the docked 

structure displayed the identical 2.72 Å distance between R175 and the pY527 

phosphate group obtained by co-crystallization and NMR analysis [34].  Analogous 

cortactin and corresponding control pentapeptides, encompassing C112, A112, C246, 

and A246, docked in the presence the SH2/pY527 complex failed to produce sufficient 

binding energies predictive of cortactin binding.  This suggested that the tested cortactin 

peptides might bind within the Src SH2 phosphotyrosine binding cavity.  To test this, 

similar docking studies were conducted in the absence of the pY527 Src peptide.  

Under these conditions all cortactin peptides were predicted to bind within the Src SH2 

phospho-tyrosine binding cleft (Fig. 3A).  Interestingly, the cysteine/alanine residues 

within each cortactin peptide dock in close proximity to Src C185 in the βC3 position 
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(C112; 5.83 Å, A112; 5.96 Å, C246; 3.56 Å, A246; 3.17 Å) (Fig. 3A).   These data 

suggested the possibility that cortactin C112 or C246 might form a cystine bond with Src 

C185 to mediate Src-cortactin binding.  The predicted distances between cortactin 

C112/246 and Src C185 are greater than the typical ~2 Å distance for cystine bonds 

determined by Raman spectroscopy [35].  This difference is attributed to the inability of 

the modeling program to construct disulfide bonds, as well as program-predicted 

deprotonation of all cysteines in the assay, imparting negative charges to C112/246 and 

Src C185.  In spite of the introduced repulsive effects, the predicted binding energies of 

the C112/C246 cortactin peptides are lower than the A112/A246 peptides by 6-8 

kcal/mole, suggesting a more favorable binding affinity for the cysteine-containing 

cortactin peptides (Fig. 3B).  Although nearly 50% weaker than predicted pY527 peptide 

binding, the presence and location of cysteine at cortactin 112 and 246 within the Src 

SH2 binding pocket suggested a potentially favorable interaction with the Src SH2 

domain.  These data implicate Src C185 as a key residue within the SH2 domain 

responsible for cortactin binding through cystine bond formation. 

 

Cystine bonding mediates Src SH2 binding to cortactin 

     To evaluate if cystine bonding mediates Src binding to cortactin, the association of 

endogenous Src and cortactin was determined under differential redox conditions.  

Cortactin specifically co-immunoprecipitated with Src from UMSCC1 HNSCC cells 

migrated at the typical 70 kDa Mr when immune complexes were incubated with 2-

mercaptoethanol and analyzed by SDS-PAGE and Western blotting (Fig. 4A).  
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However, cortactin Mr was severely retarded when immunoprecipitates were prepared 

in the absence of reductant, banding as several higher molecular weight species at 90, 

120 and 165 kDa (Fig. 4A).  A similar pattern was observed for Src in cortactin 

immunoprecipitates (Fig. 4B), indicating that a subset of Src and cortactin complex 

under oxidative conditions required for cystine bonding.  Cortactin phosphorylation by 

Src is also oxidation dependent, as incubation of Src immunoprecipitates with purified 

recombinant cortactin in the presence of dithiothreitol (DTT) prevents Src 

phosphorylation of cortactin Y421 (Fig. 4C).   

     Since Src C185 is predicted to be the key residue mediating Src-cortactin bonding, 

Src C185 was mutated to alanine (C185A) and the recombinant SH2 domain assayed 

for cortactin binding.  C185A eliminated WT cortactin binding but did not perturb 

phosphotyrosine-dependent binding to FAK (Fig. 4D-E).  Mutation of the arginine 

responsible for phosphotyrosine binding (R175) to alanine did not alter binding to WT or 

NT cortactin, verifying phosphotyrosine independence (Fig. S5).  Reduction of the Src 

SH2 domain with DTT did not impact binding to FAK but abolished cortactin binding 

(Fig. 4D).      

     To directly verify the existence of cystine bonding between Src C185 and cortactin 

C112/246, we incubated the GST-Src SH2 domain with saturating amounts of 7 mer 

peptides encompassing cortactin C112 and C246 in the absence of reducing agents.  

Control (GST-SH2 alone) and SH2-cortactin peptide mixtures were subjected to LC-

MS/MS to identify cystine bonding between the Src SH2 domain and each cortactin 

peptide.  The predicted trypsin digest product from the Src SH2 domain containing 

C185 is a 14 mer peptide with C185 in position four.  The fragment composition and 
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mass for the Src SH2 domain alone and cystine-bound to the digested C112 and C246 

cortactin peptides are shown in Fig. 5A.  Fragmentation and subsequent spectral 

sequence analysis indicated that cystine bonding occurred between Src C185 and 

cortactin C112 or C246, as evidenced by mass shifts of the b4 ions in the Src C185 

peptide fragment in experiments containing cortactin C112 (Fig. 5B vs 5C) and C246 

(Fig. 5B vs 5D) peptides.  Analogous shifts were observed upon inspection of the y11 

ions for each experimental condition (Fig. S6).  Complete sequence coverage of the 

SH2 domain fragment from the SH2-C112 and SH2-C246 experiments in the b- and y- 

planes yielded observed peptide masses identical or very close to the predicted mass at 

each ion parameter (Table 1).  These data collectively indicate that Src C185 is capable 

of forming cystine bonds with cortactin C112 and C246 under oxidizing conditions, 

representing a novel mode of interaction between an SH2 domain and its respective 

target ligand.  

 

Cortactin C112/C246 are required for cortactin tyrosine phosphorylation and Src-

based cellular processes  

     To evaluate the impact of cortactin C112/C246 on biochemical and cellular functions 

involving Src, we initially determined the ability of Src to phosphorylate cortactin DCM.  

While expression of cortactin WT with WT Src (c-Src) in murine fibroblasts lacking Src, 

Yes, and Fyn (SYF) demonstrated robust cortactin Y421 phosphorylation, expression of 

cortactin DCM with c-Src resulted in a complete lack of cortactin tyrosine 421 

phosphorylation (Fig. 6A).  Expression of cortactin DCM in MTLn3 cells resulted in 
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diminished Y421 phosphorylation on par with the phosphorylation-null cortactin TYM 

construct (Fig. 6B), indicating that cortactin C112/C246 are essential for Src-mediated 

cortactin phosphorylation.  We next analyzed the effect of cortactin DCM on cell 

migration and adhesion, two processes that involve Src activation and downstream 

cortactin tyrosine phosphorylation.  Cortactin DCM expression in 1483 head and neck 

squamous cell carcinoma (HNSCC) cells with stable endogenous cortactin knockdown 

(Fig. S7A) failed to rescue adhesion and migration to levels similar to control or WT 

cortactin, and were equivalent to knockdown (sh) and TYM expressing cells (Fig. 6C-D).  

Finally, we analyzed how cortactin DCM affects invadopodia formation and extracellular 

matrix degradation, processes dependent on Src and cortactin.  Control (Ctl) OSC19 

HNSCC cells spontaneously form numerous invadopodia that focally degrade labeled 

gelatin matrices.  Invadopodia were completely absent in cortactin knockdown (sh) cells 

(Fig. 6E) as previously shown [36, 37].  Re-expression of WT cortactin rescued the 

knockdown phenotype, restoring matrix degradation to control levels.  However, rescue 

of cortactin sh cells with cortactin TYM resulted in the formation of invadopodia 

structures with limited matrix degradation ability.  These structures are likely pre-

invadopodia as previously described [24, 38].  Rescue of cortactin sh cells with cortactin 

DCM failed to restore invadopodia/pre-invadopodia formation and geletin degradation.  

These results indicated that the genesis of pre-invadopodia requires initial binding of 

Src to cortactin (Fig. 6E).  The DCM protein correctly localizes within lamellipodia (Fig. 

6E), suggesting that the C112/246A mutations do not deleteriously impact cortactin 

structure or alter proper cortactin subcellular localization.  C112/246A does not 

significantly alter binding to F-actin as determined by F-actin co-sedimentation assays 
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(Fig. S7B, C).  Collectively these data indicate that cystine-mediated Src binding is 

required for Src phosphorylation of cortactin and regulation of cellular events required 

for pro-motile and invasive activity. 
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Discussion 

While SH2 domains have been shown to interact with ligands through 

phosphorylation-dependent and -independent mechanisms, binding to phosphotyrosine 

residues within target proteins is the predominant mode of interaction, having been 

characterized at the structural and thermodynamic levels for numerous ligand/domain 

pairs [39, 40].  SH2 domains are present in proteins that mediate most cellular functions 

and provide a wide combinatorial variety for selective intracellular signal transfer [2].  

The identification of a cystine-based, tyrosine phosphorylation-independent interaction 

between the phosphotyrosine binding interface of the Src SH2 domain with cortactin 

increases the potential ability for Src to interact with substrate ligands in a previously 

unrealized manner, expanding the repertoire and complexity of Src SH2 domain 

interactions in signal transduction.  

Evidence from our analysis of Src SH2 domain binding to cortactin indicates that 

Src C185 forms a cystine bond with C112 and/or C246 in the cortactin repeats region 

that is critical for mediating cortactin binding, tyrosine phosphorylation, and downstream 

cellular events.  When bound to tyrosine phosphorylated ligands, C185 lies in close 

proximity to the phosphate group within the binding pocket, where the intrinsic repulsive 

nature of the deprotonated C185 facilitates release of pY527 from the SH2 domain, 

assisting in relieving the kinase from the autoinhibited state [41].   Our data provides an 

additional and alternative function for Src C185 in docking to cortactin, where cystine 

bonding to C112 or C246 mediates association with activated Src.  Structural studies 

indicate cortactin exists as a partially globular protein, where the repeats are in a 

paraordered molten globule state that is highly dynamic in solution [42, 43].  Biophysical 
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and biochemical analysis indicates that the carboxyl terminus folds back onto the amino 

terminal region, suggesting that the protein resides in a “closed” conformation as 

supported by previously observed conformational isomers [44, 45].  C112 and C246 can 

be crosslinked to each other, suggesting they are exposed and either lie in close 

proximity or are dynamically brought together [42, 43].  The relatively unstructured 

nature of the cortactin repeats therefore provides the flexibility and accessibility of C112 

and C246 to freely dock with the Src SH2 domain, allowing cystine bonding to occur.  

The nearness of the cortactin repeats region to the carboxyl terminal target tyrosine 

residues would allow for SH2-directed Src binding to the cortactin amino terminus, 

followed by subsequent processive phosphorylation of Y421/466/482 within the P-rich 

domain [46].  In conjunction with Erk1/2 phosphorylation at S405/418 [45, 47], cortactin 

is predicted to assume an open conformation, exposing the phosphotyrosine residues 

for association with SH2 containing adaptor proteins [25] or Abl-family kinases [48] (Fig. 

7A).  The net effect of Src-based phosphorylation would enhance actin dynamics 

through adaptor protein interactions or by maintaining activation of SH2-bound Abl or 

Arg, promoting phosphorylation of cortactin and neighboring target proteins [48, 49].  

This model could be regulated by additional binding interactions and modifications that 

involve the cortactin repeats region.  While mutation of the C112/246 Src docking sites 

does not alter F-actin binding, other modifications to the cortactin repeats region do 

modulate F-actin binding, including binding of phosphatidylinositol 4,5-bisphosphate 

[50], acetylation of the cortactin repeats [51], and phosphorylation of S113 in the first 

repeat by PAK [52].  Whether these events impact the association of Src with cortactin 

remains to be determined.   
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Given the unprecedented nature of SH2 domains utilizing cystine bonding for 

binding ligands, we conducted a phylogenetic analysis of sequences containing 

cortactin C112/C246 and Src C185 in species ranging from Homo sapiens to Suberites 

domuncula (Fig. 7B).  This analysis shows that the cortactin cysteine 112 equivalent 

appears in accord with the equivalent Src C185 residue in Danio rerio and is conserved 

throughout higher species.  Cortactin C246 first appears in Xenopus laevis and is 

present in all higher organisms, collectively indicating co-conservation of the Src and 

cortactin cysteines in vertebrates. 

 There is mounting evidence to date that oxidative-based cystine and disulfide 

bonding occurs within and between multiple different cytoplasmic proteins during 

conditions of cytoplasmic oxidative stress as a mechanism that serves to regulate 

protein functionality [53-55].  Src activity can be regulated by reactive oxygen species 

(ROS) [56], which have a broad impact on multiple cellular processes that utilize 

oxidative signaling [57].  Specifically, ROS-induced cysteine thiol oxidation of Src C245 

in the SH2 domain and C487 in the kinase domain has been proposed to sustain Src 

activity by cystine bonding between these residues, maintaining Src in an open 

conformation to promote kinase activity [58].  The proximity of Src C185 to cortactin 

C112/246 docked within the SH2 phosphotyrosine binding cleft provides the molecular 

setting that allows for a similar redox-mediated oxidation and consequential cystine 

bonding between the two proteins. Oxidative regulation of Src-cortactin binding is 

supported by increased Src-based cortactin phosphorylation in cells treated with 

hydrogen peroxide [59].  The requirement for cortactin C112/246 in tumor cell motility, 
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adhesion, and invadopodia formation is in line with oxidative Src regulation utilized in 

these processes [57, 60].  Furthermore, work in invadopodia has shown that localized 

ROS production generated by the nicotinamide adenine dinucleotide phosphate 

(NADPH) oxidase (Nox) system occurs through association of the invadopodial protein 

Tks5 with the Nox component p22phox [61].  Tks5 generated ROS promotes invadopodia 

formation and generates a feed forward loop through ROS-induced Src activity by 

suppression of the Src inactivating phosphatase PTP-PEST [61] and potentially by 

sustaining cystine-based Src activity as described.  ROS production in invadopodia 

would therefore facilitate oxidation of Src C185 and cortactin C112/246, promoting 

cystine bonding and maintenance of the Src-cortactin complex at sites of invadopodia 

formation. Since pre-invadopodia can form in the absence of cortactin phosphorylation 

[24], we speculate that the initial event for pre-invadopodia formation involves oxidative-

based cystine binding of Src to cortactin.  Once established, successive cycles of Src 

activity coupled with dynamic cortactin phosphorylation/dephosphorylation promotes 

establishment of SH2 protein-based actin regulatory complexes to propagate actin 

filament production and ECM matrix degradation [24, 38]. While recent work in MD-

MBA-231 cells suggests that Arg, and not Src, is responsible for regulating cortactin 

phosphorylation during invadopodia formation [62], our data in HNSCC cells suggests 

that the tyrosine-independent binding event between Src and cortactin is the essential 

trigger for pre-invadopodia production.  Determination of whether these differences are 

tumor specific remains to be resolved.  
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     Cystine formation between Src and cortactin must be transient and reversible, since 

the Src SH2 domain does not stably interact with cortactin as opposed to other 

phospho-tyrosine ligands [63, 64]. Also, dynamic cycling of Src kinase activity is 

required for invadopodia maturation [24, 47].  Cytoplasmic glutathione likely plays a part 

in providing the reductive counterbalance to Tks5-generated ROS production, providing 

the necessary redox balance to generate and reduce thiolate anions at pH levels 

present in invadopodia [53, 65].  Another possibility is that Src and cortactin binding 

may be downregulated through the action of thiol reductases, although the subcellular 

localization of these enzymes has not been extensively evaluated. 

 

 Collectively our data indicates that the Src SH2 phosphotyrosine binding cleft is 

capable of phosphotyrosine and cystine dependent and independent interactions.  The 

dual specificity of this SH2 subregion may be utilized to increase the selectivity between 

different classes of Src substrates (Fig. 7C) and may warrant reinvestigation of Src 

SH2-targeting compounds designed to react with C185 as alternative therapeutic 

strategy to the current class of kinase targeted Src inhibitors being evaluated as anti-

cancer therapeutics in clinical trials [66].  Ablating C185 reactivity, while retaining 

phosphotyosine binding, would selectively impair the Src-cortactin axis without impeding 

essential phosphorylation-based SH2 domain-ligand interactions.  This rationale may be 

warranted in HNSCC, where Src activating epidermal growth factor receptor (EGFR) 

and cortactin are frequently amplified and overexpressed, corresponding with poor 

patient outcome [67, 68].   
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Database analysis indicates that Src is the only SH2 domain-containing cytoplasmic 

tyrosine kinase in its class that harbors a cysteine residue within the SH2 domain (Fig. 

7D).  However, there are thirty additional SH2 domains (25% of the total known number) 

that contain cysteine residues within the phosphotyrosine binding region in close 

proximity to the Src βC3 (Fig. 7D).  While untested, this indicates that SH2 domains 

containing cysteine residues within this region may broadly utilize cystine bonding to 

select ligands. This alternate SH2 signaling mode may be commonplace in conditions of 

high intracellular ROS due to environmental stress (e.g.; heat, ionizating radiation, 

ultraviolet light), as well as in hypoxic tumors.  Alternatively, cystine-based SH2 

signaling may serve as a “backup” mode of preserving domain-ligand binding to ensure 

that essential survival signals are mediated in conditions of low ATP availability, where 

tyrosine kinase signaling might be compromised (i.e.; Warburg effect).  While future 

investigation is required to examine these possibilities, our results demonstrating 

cystine bonding between Src and cortactin represent a new paradigm for SH2 domain 

function in mediating domain-based signal transduction. 
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Materials and Methods 

Cell Culture 

MTLn3 cells were maintained in alpha-minimal essential medium (α-MEM) (Mediatech) 

with 10% FBS (Hyclone) in a 5% CO2 humidified atmosphere.  SYF, 293T, 1483, and 

OSC19 cell lines were maintained in Dulbecco’s modified Eagles medium (DMEM) 

(Mediatech) with 10% FBS.   

Generation of Plasmids 

Cortactin truncation, Y421, and TYM mutants were previously described [31, 46].  

Tandem repeat chimeric mutants were generated by subcloning each individual repeat 

containing flanking BamH1 and Xho1 restriction sites with the Xho1/EcoR1 R6-CT 

fragment into BamH1/EcoR1 digested pcDNA3 FLAG-2AB.  CFP-Src was produced by 

subcloning the Src containing Xho1/BamH1 fragment from GFP-Src (a gift from 

Margaret Frame) into pECFP-N1 (Clontech). FAK WT and Y397F were subcloned into 

FLAG-2AB using BamH1 and EcoR1 restriction sites.  Site-directed mutagenesis of 

cortactin constructs was performed using the QuickChange II™ Site-directed 

mutagenesis kit (Agilent Technologies) according to the manufacturer’s protocol. 

Virus Production and Generation of Stable Cell Lines 

Stable knockdown of cortactin in 1483 and OSC19 cells was achieved by lentiviral 

transduction using short hairpin lentiviral constructs from Open Biosystems (1483:  

TRCN0000040275, OSC19:  TRCN0000040275 and TRCN0000040273).  Complete 

cortactin knockdown in OSC19 cells was achieved by subsequent transfection of 
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cortactin-targeting siRNA (ON-TARGETplus SMARTpool cat# L-010508-00-0020, 

Dharmacon).  

Confocal Microscopy and Gelatin Degradation Assay 

Immunofluorescent labeling, confocal microscopy, preparation of fluorescently-labeled 

gelatin coated coverslips, and ECM degradation assays were conducted as previously 

described [69].  

Peptide Synthesis and SH2 Domain Array Screening 

Peptides were synthesized by Macromolecular Resources at Colorado State University.  

Screening of Transignal™ SH2 Domain Arrays (Panomics Cat. # MA3040) was 

conducted using 1.0 mg of each cortactin peptide according to the manufacturer’s 

protocol. 

Fusion Protein Purification 

Purification of recombinant proteins were performed as described previously [27].  

Cell Transfection, Western Blotting, and Immunoprecipitation 

Plasmid transfection, Western blotting, and immunoprecipitation were performed as 

described [70].  

Far Western Assays 

Initially, cells transfected with FLAG-tagged cortactin plasmids were lysed and 

immunoprecipitated using EZ-View anti-FLAG resin (Invitrogen).  Immune complexes 

were separated by SDS-PAGE, transferred to nitrocellulose membranes and proteins 
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renatured in TBS-Tween containing 5% nonfat milk.  Far Western binding with Src SH2 

domain constructs was conducted essentially as described [71], except 2h incubations 

with 50-200 µg of fusion protein were used.  In reduction experiments (Fig. 4D), 1 mM 

DTT was added to the incubation solution containing the GST-Src SH2 domain. 

Affinity Precipitation 

SH2 domain precipitations were conducted as described [27], except 100-200 µg of 

recombinant fusion protein and 1.0-1.5 mg of cell lysate were used for each assay.  

Electric Cell-Substrate Impedance Sensing (ECIS) 

ECIS was performed as described [70].  

F-actin Cosedimentation Assay 

F-actin cosedimentation assays were performed as described [31]. 

Statistical Analysis 

For standard errors (d-SE), variances were pooled using residual standard error from 

one-way ANOVA without the intercept.  Delta-method approximation was used for all 

confidence bands (Fig. 6).  Transformations performed in ANOVA used standard 

statistical model evaluation tools. 

Molecular Modeling  

Docking studies were performed using the program eHiTS (SymBioSys Toronto, CA).  

Prior to docking, the hydrogens were added to the crystal structure PDBID: 1FMK [33] 

of the Src SH2 domain, solvated, and ions to neutralize the charge were added.  The 
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entire structure was then relaxed by running molecular dynamics (300 ps) using Amber 

(ver. 10) [72].  The cortactin peptides were built de novo in an extended conformation 

using Insight II (Accelrys, San Diego, CA) and each allowed to relax through 2500 steps 

of steepest descent molecular mechanics.  The resulting structures were then docked.  

To obtain binding energies, molecular dynamics simulations were performed for 300 ps 

for: 1) each cortactin peptide in complex with the Src SH2 receptor, with docking results 

used as the starting structure; 2) the Src SH2 receptor alone and 3) each cortactin 

ligand alone.  The resulting average potential energies calculated from the molecular 

dynamics simulation were then used to calculate the binding energy for each cortactin 

ligand to the SH2 receptor as the energy of the complex minus the energy of the Src 

SH2 receptor alone minus the energy of the cortactin ligand alone.  Parameters for the 

phosphotyrosine were used [73]. 

Mass Spectrometry  

Purified GST-Src SH2 domain was incubated alone or mixed with a 10-fold molar 

excess of cortactin C112 peptide (SKHCSQV) or C246 peptide (QDKCALG) (Anaspec) 

in TBS (pH 7.2) for 2 h at room temperature.  GST-Src SH2 samples (40 g) we re  

subsequently digested with trypsin (Promega) at a 1:50 (wt/wt) ratio in 1 mM Tris, 150 

mM NaCl (TBS), pH 7.2 overnight at 37oC. Digested samples were frozen at -80oC and 

lyophilized to remove solvents.  Tryptic peptides were separated using an Acquity 

UPLC® System (Waters).  Samples were separated using a reverse-phase Acquity 

BEH C18 1.7 mm, 1.0 x 50 mm column (Waters) directly coupled to a Waters Synapt® 

G2 HDMS mass spectrometer.  Data were acquired using time of flight (TOF) MSE 

mode, which provides a comprehensive catalog of information for both precursor and 
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fragment ions in a single analysis.  A customized database was created using the GST-

Src SH2 sequence, and the resulting precursor masses and MS/MS spectra were 

searched against the database using Biopharmalynx 3.1 (Waters).  To evaluate 

cortactin C112 and C246 peptide binding to the Src SH2 domain, custom post-

translational modifications were specified in Biopharmalynx based on monoisotopic 

masses for the C112 and C246 peptides binding at cysteine residues to Src C185 

through disulfide bond formation.  Extracted ion chromatograms (XIC) were obtained 

using MassLynx 2.2 (Waters).  

 

Accession Numbers for Phylogenetic Sequence Analysis 

Respective Genebank accession numbers for cortactin and Src are as follows: Homo 

sapiens AAH08799.1, NP_005408.1; Canis familiaris XP_851317.1, XP_865870.1; Mus 

musculus AAA19689.1, AAX90616.1; Gallus gallus Q01406.1, NP_990788.2; Xenopus 

laevis BAB79435.1, AAH45134.1; Danio rerio NP_001004121.1, AAI65380.1; 

Tetraodon nigroviridis CAF92908.1, CAG10364.1; Drosophila melanogaster 

NP_524426.2, NP_001189051.1; Anopheles gambiae XP_557457.3, XP_316537.2; 

Loa loa XP_003142854.1, EFO14749.1; Stongylocentrotus purpuratus  AAD08655.1, 

ACI14304.1;  Suberites domuncula  CAC80140.1, AAT67598.1. 

SH2 Domain Alignments 

Twenty amino acids within the phosphotyrosine binding pocket of the Src SH2 domain 

beginning with the FLVRES sequence were aligned relative to Src C185, which was 

used as the zero residue reference point.  SH2 domain sequence data were obtained 
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from the University of Chicago Nash Laboratory SH2 domain database 

(http://sh2.uchicago.edu/clustalalignment.html). 

Antibodies 

Antibodies for immunoblotting were as follows: anti-cortactin (4F11), 1:1000; anti-pY421 

cortactin (Invitrogen), 1:1000; anti-FLAG and anti-GST (Millipore), 1:1000; anti-GFP 

(JL8; Clontech), 1:1000; anti-phosphotyrosine (BD Transduction), 1:1000.  Antibodies 

for immunofluorescent labeling were used as described [69].   
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Figure Legends 

 

Figure 1. Src SH2 Binding to Cortactin Does not Involve Tyrosine 

Phosphorylation and Binds Cortactin Repeats 1 and 5. 

(A) GST and GST-Src SH2 affinity precipitation from MTLn3 cells evaluated for cortactin 

tyrosine phosphorylation.  The ratio of phosphorylated cortactin levels and the 

normalized amounts of total precipitated cortactin are indicated.  (B) Src SH2 Far 

Western analysis of FLAG-tagged recombinant wild-type and cortactin phosphorylation 

mutants. (C) Affinity precipitation analysis of FLAG-tagged recombinant wild-type and 

cortactin phosphorylation mutants from extracts with GST-Src SH2 domain.  (D) Affinity 

precipitation of non-phosphorylated, recombinant cortactin with GST and GST-Src SH2.   

Normalized intensity levels are shown relative to GST control.  (E) GST-SH2 domain 

Far Western blotting of the cortactin NTA and repeats region.  (F) GST-SH2 Far 

Western analysis of cortactin deletion cortactin constructs.  (G) Far Western binding of 

the GST-Src SH2 domain to tandem cortactin repeat chimeric constructs. Asterisks 

indicate position of recombinant cortactin proteins.  Arrows denote position of IgG heavy 

chain (HC) recognized by cross reactivity with secondary antibodies during the blotting 

process.  

Figure 2. Cortactin Cysteines 112 and 246 are Required for Src SH2 Domain 

Binding 

(A) Alignment of cortactin repeats denoting C112 and C246.  (B and C) Far Western 

blotting of GST-Src SH2 domain with cortactin cysteine to alanine mutants.  WT; full-
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length wild type cortactin.  Dashed line separates heavy chain (HC) from chimeric 

cortactin proteins (asterisks) due to similar molecular weights. (D)  Far Western analysis 

of Src SH2 domain binding to the C112/C246A cortactin double cysteine mutant (DCM). 

(E) Affinity precipitation analysis of Src SH2 domain binding to the C112/C246A 

cortactin double cysteine mutant (DCM).  

Figure 3. Cysteine-containing Cortactin Peptides Dock Within the Src SH2 

Phosphotyrosine Binding Region 

(A) Molecular modelling of the Src SH2 domain with phosphorylated Src and cortactin 

pentapeptides.  Enlarged views show position of Src R175, Src C185 and respective 

central Src or cortactin peptide residue.  (B) Calculated binding energies for each 

peptide docking condition shown in (A). 

Figure 4. Binding and Phosphorylation of Cortactin by Src is Redox Dependent 

and Requires Src C185 

(A) Co-immunoprecipitation of cortactin with Src followed by analysis under reducing 

(R) and non-reducing (NR) conditions.  Asterisks denote equivalent bands in cortactin 

and Src immunoblots.  (B). Co-immunoprecipitation of Src with cortactin followed by 

analysis under reducing (R) and non-reducing (NR) conditions.  Asterisks denote 

equivalent bands in cortactin and Src immunoblots. (C) Phosphorylation of cortactin by 

Src in the absence and presence of DTT.  (D) Far Western analysis of GST-Src SH2 

and C185A.  (E) Affinity precipitation analysis of FAK and cortactin binding to GST-Src 

SH2 C185A. 
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Figure 5. Src C-185 Forms a Cystine Bond with Cortactin C112 and C246 

(A) Sequence of the predicted Src SH2 domain tryptic fragment containing C185.  

Predicted cystine bonding between Src C185 and the cortactin C112 and C246 tryptic 

peptides with predicted masses are shown below.  (B-D) Extracted ion chromatogram 

(left) and ion fragmentation spectra (right) from tandem LC-MS/MS of the GST-Src SH2 

domain (B), the GST-SH2 domain with the cortactin C112 peptide (C) and the GST-SH2 

domain with cortactin C246 peptide (D).  Spectra were enlarged to indicate the position 

of the Src C-185 b-4 ion (boxed in red).   

Figure 6. Cortactin C112/246 is Essential for Phosphotyrosine-based Cortactin 

Function  

(A) Analysis of Src-mediated cortactin Y421 phosphorylation in cortactin WT and DCM 

proteins following reintroduction of Src into SYF cells.  Ratio indicates pY421 

phosphorylation to total cortactin levels.  (B) Analysis of cortactin WT, TYM and DCM 

tyrosine phosphorylation in MTLn3 cells.  Asterisks show position of the 80kDa and 

85kDa cortactin forms. (C) Quantitation of ECIS cell adhesion assays (n = 3) in control 

(Ctl) and shRNA (sh) knockdown 1483 cells re-expressing the indicated FLAG-cortactin 

constructs. (D) Quantitation of ECIS cell migration assays (n = 3) in control (Ctl) and 

shRNA (sh) knockdown 1483 cells re-expressing the indicated FLAG-cortactin 

constructs.  Bars in (C-D) represent residual standard error from one-way ANOVA 

without the intercept.  Asterisks indicate p-values that are < 0.001.  (E) OSC19 cells 

transfected with the indicated FLAG-cortactin constructs were assayed for invadopodia 

formation and matrix degradation (n = 50 cells from three independent experiments). 
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Bars represent residual standard error from one-way ANOVA without the intercept.  

Asterisks indicate p-values that are < 0.001.  Arrows indicate Invadopodia and regions 

of degraded matrix.  Scale bar = 20 mm. 

Figure 7. Model of cysteine-mediated interactions in cortactin regulation 

(A) Model of cysteine-based cortactin activation and phosphorylation by Src.  (B) 

Phylogenetic co-conservation of cortactin C112/246 and Src C185.  Conserved 

cysteines are in red and the homologous position noted in yellow.  (C) Cartoon 

representation of Src SH2 binding to phosphotyrosine and cysteine residues.  Src 

amino acids 172-191 within the SH2 domain binding pocket are shown in white, 

interacting arginine 175 and cysteine 185 residues are noted in red.  Cystine bonding is 

indicated as a red line.  Phosphotyrosine and cystine binding ligands are listed.  (D) 

Alignment of cysteine-containing SH2 domains.  Domains known to bind ligands in a 

phosphotyrosine-independent manner are bolded and italicized.  Cysteine residues are 

noted in red.  Shaded codes: Green; hydrophobic, blue; + charged, red; – charged, 

yellow; polar. 

Table 1.  Observed and predicted ion masses of GST-Src-SH2, GST-Src-SH2 + 

cortactin C112 and GST-Src-SH2 + cortactin C246 tryptic peptides. 

 



86 
 

 
 



87 
 

 
 



88 
 

 
 



89 
 

 
 



90 
 

 
 



91 
 

 
 



92 
 

 
 



93 
 

 
 
 



94 
 

Supplemental Information  

Figure S1, Related to Figure 1.  Src Binding to Cortactin Requires the SH2 Domain 

and is Phosphotyrosine Indpendent 

(A) Affinity precipitation (AP) assays from MTLn3 cells with immobilized GST Src-SH2, -

SH3 or tandem SH2-SH3 fusion proteins.  Cortactin was detected with mAb 4F11.  (B) 

Cortactin schematic showing protein domains and tyrosine phosphorylation sites.  (C) 

Sequence of cortactin peptides used for SH2 domain array screening.  (D) SH2 domain 

arrays (Panomics #MA3040) screened with cortactin peptides. 

 

Figure S2, Related to Figure 1.  Phosphorylation of Recombinant Cortactin by Src 

and Mapping of Src SH2 Binding to the Cortactin Amino Terminal Domain  

(A) Phosphorylation of purified recombinant murine cortactin with activated Src 

monitored by Western blotting with anti-cortactin pY421 antibodies. (B) Far Western 

blotting of immunoprecipitated FAK proteins with GST-Src SH2 domain.  (C) Far 

Western analysis of cortactin full length (FL), amino terminal (NT) and carboxyl terminal 

(CT) binding to Src SH2 domain.  Far Westerns were probed with anti-GST antibodies 

to detect bound GST-Src SH2 domain.  The position of immunoglobulin heavy chain 

(HC) is indicated on the right.  (D) Affinity precipitation of cortactin proteins with GST-

Src SH2 domain.  Co-precipitated and total (lysate) myc-tagged FL, CT and NT 

cortactin proteins were identified by anti-myc Western blotting.    

Figure S3, related to Figure 1.  Schematic Diagram of Cortactin Constructs Used 

in this Study  

Deletion and chimeric constructs are shown.  NTA; amino terminal acidic domain, R; 
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individual cortactin repeat units within the repeats domain, helix; predicted alpha helical 

domain, P rich; proline-rich domain, SH3, Src homology 3 domain.  

 

Figure S4, related to Figure 1. Src SH2 Domain Does not Bind to the 5th Cortactin 

Repeat 

(A)  Far Western binding analysis of the GST-Src SH2 domain with FLAG-WT full-

length cortactin (WT), lacking the 4th cortactin repeat (∆4), lacking the 5th cortactin 

repeat (∆5), amino terminal (NT) and carboxyl terminal (CT) proteins.  (B) Far Western 

analysis of GST-Src SH2 with the indicated FLAG-cortactin constructs.  The membrane 

was reprobed with an anti-FLAG monoclonal antibody to verify protein expression.   

 

Figure S5. Related to Figure 4.  Src SH2 R175A Retains Binding to Cortactin 

Far Western binding analysis of GST-Src SH2 R175A with full-length (FL),NT and CT 

cortactin proteins.  The membrane was stripped and reprobed with anti-FLAG antibody 

to verify cortactin fusion protein expression. 

 

Figure S6, Related to Figure 5.  Y-ion Analysis of Cystine bonding between Src 

C185 and cortactin C112 and C246.  

(A)  LC-MS/MS ion fragmentation spectra of the GST-Src SH2 domain showing the 

position of y11.  (B)  Position of y11 in the GST-SH2 domain with the cortactin C112 

peptide.  (C) Position of Y11 in the GST-SH2 domain with cortactin C246 peptide. 
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Figure S7, Related to Figure 6.  Expression of Cortactin Mutants in Cortactin 

Knockdown Cells and F-actin Co-sedimentation of Cortactin Mutants 

(A)  Total cell lysate from 1483 cells (Ctl), cells with stable lentiviral-transduced shRNA 

cortactin knock-down (sh), and sh cells transfected with FLAG-cortactin WT (WT), TYM, 

and DCM mutants were analyzed for knockdown efficacy and construct expression by 

cortactin immunoblotting.  (B) Western blot analysis F-actin co-sedimentation from 293T 

cells transfected with empty vector (EV), cortactin WT, DCM and Δ4 constructs.  

Constructs in supernatant (S) and pellet (F) fractions were detected with anti-FLAG and 

percentages of constructs in each fraction determined by densitometry.  (C) 

Quantitation of F-actin co-sedimentation assays. Data are shown from two independent 

experiments. Bars indicate standard error, asterisk indicate p-value < 0.05.   

 



97 
 

 
 



98 
 

 
 



99 
 

 



100 
 

 
 



101 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



102 
 

 
 

                                                    
 

     
 
 
 
 
 
 
 
 
 
 
 



103 
 

 



 104 

Study 2:  Further Insights into Cortactin Conformational Regulation 
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Abstract 
 
The actin regulatory protein cortactin is involved in multiple signaling pathways 

impinging on the cortical actin cytoskeleton. Cortactin is phosphorylated by ERK1/2 and 

Src family tyrosine kinases, resulting in neuronal Wiskott Aldrich Syndrome protein (N-

WASp) activation and enhanced actin related protein (Arp)2/3-mediated actin 

nucleation. Cortactin migrates as an 80/85kDa doublet when analyzed by SDS-PAGE.  

Phosphorylation by ERK1/2 is associated with conversion of the 80kDa to the 85kDa 

form, postulated to occur by inducing a conformational alteration that releases the 

carboxyl-terminal SH3 domain from autoinhibition.  Our recent analysis of the 80-85kDa 

cortactin “shift” in tumor cells indicates that while ERK1/2 phosphorylation is associated 

with the 85kDa shift, this phosphorylation event is not required for the shift to occur, nor 

does ERK1/2 phosphorylation appreciably alter global cortactin confirmation.  These 

data indicate that additional factors besides ERK1/2 phosphorylation contribute to 

generating and/or maintaining the activated 85kDa cortactin form in stimulated cells.  
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Changes in protein conformation are important for generating and propagating 

intracellular signal transduction events.  During normal and pathogenic cell motility, 

regulation of actin cytoskeletal dynamics responsible for generating movement is 

dependent on conformational alterations in protein relay systems that activate and 

terminate signaling pathways responsible for initiating and maintaining motility.  Proteins 

at the intersection of this molecular circuitry are key mediators in motility-driven signal 

regulation.  The filamentous (F)-actin binding protein cortactin interacts with Arp2/3 

complex to stimulate and stabilize Arp2/3-F-actin networks in lamellipodia and 

invadopodia of motile and invasive tumor cells.[1, 2] Cortactin is also a substrate for 

multiple protein kinases; most notably by ERK1/2 at S405 and S418[3], and Src family 

tyrosine kinases at Y421, Y470 and Y486.[2] The ERK1/2 and Src phosphorylation sites 

all reside within a proline-rich region adjacent to a SH3 domain at the extreme carboxyl 

terminus[2, 3].  Phosphorylation of cortactin by ERK1/2 and tyrosine kinases promotes 

tumor cell migration and is required for invadopodia-mediated extracellular matrix 

degradation activity[4, 5], demonstrating important functional roles for these 

phosphorylation events in cancer progression. 

At the mechanistic level, cortactin tyrosine phosphorylation stimulates pro-invasive 

activity by providing binding sites at Y421 and Y466 for the SH2 domain of the adaptor 

protein NCK1.[6-8] NCK1, through its SH3 domain, binds N-WASp to release an acidic 

carboxyl-terminal (VCA) domain that is responsible for binding to and activating Arp2/3 

complex, promoting actin polymerization.[9, 10] In the case of ERK1/2, cortactin 

phosphorylation at S405/418 promotes association of the carboxyl-terminal SH3 domain 

with N-WASp, resulting in a similar Arp2/3 activation cascade.[11] 
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Cortactin purified from most cell types as well as from recombinant cell-free sources 

typically migrates as an 80/85kDa doublet in SDS-PAGE gels.[12-14] This doublet most 

likely represents a single polypeptide, since electrophoresis in urea-containing gels 

results in the sole presence of the 85kDa form[14], supporting the notion that the 80kDa 

and 85kDa cortactin bands represent different conformational isomers.  Phosphorylation 

of cortactin downstream of epidermal growth factor receptor (EGFR) activation results in 

a shift from 80kDa to 85kDa.  Under these conditions the 85kDa cortactin form displays 

increased serine and threonine phosphorylation[15], with the “shift” in cortactin Mr 

occurring concurrently with ERK1/2-mediated S405 and S418 phosphorylation.[3] 

Collectively these reports have resulted in proposing that non-phosphorylated cortactin 

exists in the 80kDa “closed” form with the carboxyl-terminal SH3 domain binding back 

upon the proline-rich cortactin domain, blocking the ability of the SH3 domain binding 

interface to interact with other ligands.  ERK1/2 phosphorylation in turn results in 

displacing the SH3-proline-rich homotypic cortactin interaction, rendering cortactin in an 

“open” 85kDa state where the SH3 domain can bind N-WASp and other cortactin SH3 

binding proteins.[3, 11, 16] These conclusions are supported by chemical crosslinking 

studies with non-phosphorylated cortactin that indicate cortactin exists as a monomeric 

globular protein in solution, with the SH3 domain in close proximity to a helical domain 

amino terminal to the proline-rich region[17] as well as the prevalence of the 85kDa 

form in metastatic colorectal carcinoma cases.[18] 

 

We recently analyzed the cortactin “shift” through a combination of phosphorylation-

specific antibodies against cortactin pS405/pS418 and point mutant constructs for these 
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residues.  Phosphorylation-specific antibodies confirm the presence of pS405 and 

pS418 predominantly in the 85kDa cortactin form in tumor cells following EGF 

treatment.  However, analysis of the cortactin shift with phosphorylation-null point 

mutants downstream of v-Src mediated ERK1/2 activation reveals a more intricate 

result.  Cortactin S418A and S405A/S418A proteins exhibit the same electrophoretic 

mobility as wild-type cortactin, with the prominent band at 80kDa, while a S405A 

cortactin mutant runs at the shifted 85kDa Mr. This could suggest that S418 

phosphorylation alone is responsible for driving the 80/85kDa cortactin shift, with S405 

phosphorylation occurring subsequent to S418 phosphorylation in the 85kDa form. 

However, cortactin phosphorylated by ERK1 at pS418 in vitro does not shift from 80kDa 

to 85kDa (Fig. 1A) and ERK1-phosphorylated cortactin does not demonstrate significant 

alterations in secondary structure compared to non-phosphorylated cortactin when 

evaluated by circular dichroism (Fig. 1B).  These results demonstrate that ERK-

mediated cortactin phosphorylation on S405 and S418 is associated with, but is not 

exclusively responsible for production of the 85kDa open cortactin form.  

We conclude that other factors besides S405/418 phosphorylation are involved in 

generating and/or maintaining the cortactin shift in EGF-stimulated cells.  While the 

identity of these additional regulatory elements is presently unclear, the proline- rich 

region where serine 405 and serine 418 reside allows ample opportunity for substantial 

global conformational alterations through cis-trans isomerization of proline peptide 

bonds by prolyl isomerases.[19] The compact globular conformation (presumably 

representative of the closed 80kDa isomer), with the SH3 domain folding back onto 

amino-terminal peptide sequences assumed by cortactin in solution[17] is in contrast to 
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the 220Å-long rod-like cortactin protein characterized by rotary shadowing and electron 

microscopy[20] that may represent the 85kDa form.  These studies provide indirect 

evidence for involvement of the proline-rich region in extensively altering cortactin 

structure. 
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Figure Legends 

Figure 1.  Analysis of cortactin secondary structure following ERK1 phosphorylation.  (A) 

Phosphorylation of cortactin by ERK1.  Recombinant cortactin (25µg) was phosphorylated with 

the indicated amounts of ERK1 at 30ºC for 30 min.  Aliquots of each reaction were analyzed by 

Western blotting with anti-pS418 and total cortactin antibodies.  The positions of the 80kDa and 

85kDa forms are denoted.  (B) Kinase reactions containing recombinant cortactin (25µg) and 

ATP (500µM) incubated without (red line) or with (blue line) 250ng ERK1 were analyzed with a 

Jasco J-810 Spectropolarimeter using a scan speed of 50nm/min with a 4 sec response time, 1 

nm band width and 0.1nm data pitch (top).  The absorbance for each reaction was monitored 

throughout the analyzed wavelength range (bottom) to control for sample-to-sample variability.  

Scans are shown for each reaction condition following rendering with Spectra Manager software 

(v 1.53.01). 
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Study 3:  Construction of a FRET-based Cortactin Biosensor 
 
 
 

Abstract 

The discovery of fluorescent resonance energy transfer (FRET) in 1946 by Theodore 

Förster is an invaluable tool for cell biologists, allowing for the spatiotemporal study of 

individual proteins within specific cellular compartments.  One tool that has emerged 

from this discovery are FRET-based biosensors that give information on a wide array of 

protein functions.  Here we have created a dual tag YFP/CFP biosensor for the actin 

cytoskeletal protein cortactin.  Our preliminary data shows that cortactin activity can be 

measured and followed by looking at the presence/absence of FRET signal throughout 

the cellular cytoplasm.  This work promises to give rise to an important functional tool 

that will advance our understanding of cortactin function in regulating cortical actin 

cytoskeletal networks. 

 

Introduction 

     Biosensors have become an invaluable tool in recent years for studying the 

spatiotemporal dynamics of protein activity in fixed and living cells.  Biosensor usage 

has increased in the past two decades with technical advances in light microscopy.  

These tools enhance the ability to study individual proteins on subcellular levels.  This is 

achieved by providing a readout of the inherent changes in activity and conformation 

within the protein.  One key feature of biosensors is the usage of a biophysical 

phenomenon known as fluorescent resonance energy transfer, or FRET. 
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     The beginnings of the concept of FRET were discovered by the father-son team of 

Jean-Baptiste and Francis Perrin in the 1920s.  Together they discovered energy 

transfer between two identical molecules that were connected by intermolecular dipole-

dipole interactions and were the first to recognize that this transfer of energy is distance-

dependent.  However, their initial calculation of the efficient distance for energy transfer 

(15-25nm) was too high.  It wasn’t until 1946 that Theodore Förster worked out the 

correct equation for determining the correct distance in which FRET can occur, which is 

10nm [1].  Through his equation, he also determined that FRET is dependent upon two 

other factors in addition to distance.  The first is the orientation of the energy donating 

and energy accepting molecules in relation to one another.  Maximum efficiency occurs 

when the molecule are aligned parallel to with the other.  The second factor is that the 

two molecules must have an emission spectra (donor) and excitation spectra (acceptor) 

that overlap one another [2].  These unique features allow scientists to apply this 

technique to design FRET-based biosensor to visually evaluate conformational changes 

and molecular interactions associated with any aspect of intracellular signaling. 

Applications of FRET biosensors include using molecules as sensors for determining 

ligand concentrations [3, 4], reporting protein activation states [5-7], translocation of 

second messengers [8, 9], protein conformational changes [10], activation of untagged 

proteins [11, 12], and detection of protein post-translational modifications [13].  Further 

applications are likely to be discovered in the future [14].  

   A protein that may be well suited for biosensor design is the cortical actin-binding 

protein cortactin.  As previously noted, phosphorylation of cortactin by Erk and Src has 

been implied to drive changes in cortactin conformation, supported by prediction of a 
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notion that cortactin must undergo some degree of conformational reordering to allow 

binding to the phosphorylated tyrosines or to free the SH3 domain.   

     In this preliminary study, we have designed a cortactin biosensor that can provide a 

readout of altered cortactin conformation, providing a means to directly measure 

cortactin “activity”.  The biosensor is designed with a yellow fluorescent protein (YFP) 

tag on the N-terminus of cortactin and a cyan fluorescent protein (CFP) tag on the C-

terminal end.  This type of FRET biosensor is beneficial in that the ratio of donor and 

acceptor fluorophores remain equal [21].  We propose that in its closed, or “inactive”, 

conformation, a FRET signal due will be detected due to the close proximity of the YFP-

CFP FRET pair.  Cortactin phosphorylation or SH3 domain binding is predicted to open 

the cortactin molecule, disrupting and thus altering the YFP-CFP FRET signal.  Our 

preliminary data with various control constructs would indicate that this proposed model 

holds true.  The cortactin biosensor construct should therefore prove useful in 

monitoring cortactin function, providing new insight and spatiotemporal detail of 

cortactin regulation in areas undergoing cortactin-mediated Arp2/3 actin polymerization.    

      

Results 

     We have created a dual tag (YFP/CFP) FRET based biosensor to study the 

spatiotemporal dynamics of cortactin activity and regulation.  We propose a model in 

which the cortactin biosensor gives a FRET signal when cortactin is in its closed 

conformation.  Serine and/or tyrosine phosphorylation of cortactin then confers a 

structural change which allows cortactin to interact with its binding partners (Figure 1A).  

We suspect this phosphorylation event to induce these changes due to the large 
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numbers of studies indicating the importance of serine/tyrosine phosphorylation in 

governing cortactin activity [17].  To perform FRET analysis of this biosensor, proper 

controls were constructed.  Along with the biosensor, we cloned an N-terminally YFP 

tagged cortactin construct as well as a C-terminally CFP tagged construct (Figure 1B).  

These allow us to perform the proper analysis for FRET signal changes, mainly by 

allowing determination and removal of nonspecific YFP and CFP signal.  We next used 

these constructs to perform FRET analysis on fixed, epidermal growth factor-stimulated 

MTLn3 rat breast adenocarcinoma cell line.  This cell line was used because of its high 

expression of the EFG receptor and that these cells form well defined lamellipodia 

containing cortactin and Arp2/3 complex.  Our preliminary data suggest that our 

cortactin biosensor functions as predicted, with a  strong FRET signal observed at the 

perinuclear region of the cell (inactive cortactin) and gradual decrease in FRET signal 

towards the edge of the dominant lamellipodia.  This would indicate that as cortactin is 

recruited to sites of actin polymerization from perinuclear stores, it becomes activated 

by undergoing a conformational change that results in the observed loss of FRET 

signal.  It should be noted that we see the individual YFP and CFP signals at the 

lamellipodial edge of the cell, showing that the biosensor has localized to these sites 

and is functioning properly (Figure 1C). 

     Based on these observations, a second construct was designed to aid in determining 

if the loss of cortical FRET signal parallels cortactin activity.  Expression of these 

constructs were evaluated (Figure 2A) and schematic summaries demonstrating 

proposed function are shown (Figure 2B-D).  Briefly, the YC construct is a fusion of the 

fluorescent tags YFP and CFP separated by a small amino acid linker (a generous gift 
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from Dr. Alexander Sorkin, University of Pittsburgh).  This molecule will give a FRET 

signal throughout the cellular cytoplasm with no specific localization to any subcellular 

compartment.  In this case the entire cell should demonstrate a FRET signal, acting as 

a positive control for FRET visualization (Figure 2B).  A second control was designed 

with cortactin containing tandem YFP/CFP tags located at the C-terminal end of the 

protein.  This arrangement will give a constitutive FRET signal wherever cortactin is 

localized within the cell (Figure 2C).  How these constructs are predicted to function is 

demonstrated in Figure 2D. 

 

Discussion 

     Biosensors allow for the study complex signaling pathways in very fine detail.  The 

ability to study single molecule functionality in subcellular compartments has been an 

astonishing feat and has led to important discoveries, as well as a more in depth 

knowledge of protein function.  Here we have created a biosensor that monitors the 

activity of the actin cytoskeletal protein cortactin.  Our preliminary data indicates that 

this tool will serve its intended purpose of detecting cortactin conformational changes in 

areas of active actin polymerization (e.g.; lamellipodia and invadopodia).  This 

biosensor was designed based off of the N-WASP biosensor created by the Condeelis 

lab [23].  The functional and predicted structural similarities of N-WASP and cortactin, 

along with and their presence in the same subcellular compartments, supported the use 

of N-WASp as the cortactin biosensor template.   In support of this, recent structural 

data concerning cortactin suggests that cortactin does not exist as a rod-shaped 

molecule as reported [15].  Coweison et al. found through crosslinking studies, circular 
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dichroism analysis, and small angle X-ray scattering that cortactin exists as a partial 

globular protein, with the domains C-terminal of the acidic region and first two cortactin 

repeats forming the globular portion of the molecule [20].  This structure give rise to the 

hypothesis that cortactin needs to undergo some form of conformational change in 

order to function properly and interact with binding partners.  Furthermore, since 

phosphorylation of cortactin is such a key moderator of its activity, we propose that 

these phosphorylation events serve to trigger cortactin conformational change.  Data 

from our lab show that cortactin does not undergo drastic conformational changes 

following serine or tyrosine phosphorylation ([24] and unpublished data).  However, 

these studies are unable to detect subtle changes that may be associated with 

alterations in cortactin activity.  Another major caveat to this work is that the crystal 

structure for cortactin has not yet been elucidated, preventing precise determination for 

the best location of each fluorophore.   

     When properly validated, the cortactin biosensor will be an invaluable tool in studying 

the dynamics of actin-based structures including lamellipodia in motile cells and 

invadopodia formation in cancer cells.  Insight into cortactin activity will provide a real-

time look at the formation, duration, and disassembly of these dynamic cellular features 

that could ultimately lead to better understanding of the actin cytoskeletal as well as 

cellular responses in disease states. 
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Methods 

FRET Biosensor Constructs 

YFP and CFP fluorophores were purchased from Clonetech, Inc.  Single tagged human 

cortactin was cloned into the YFP and CFP backbones using the restriction enzymes 

BamH1 and Sac1 (Roche).  The cortactin biosensor was cloned in two steps:  1. 

Cloning cortactin into the YFP backbone using BamH1 and Xho1 restriction sites.   2.  

Subcloing the CFP fluorophore through the addition of Xho1 and Sac1 restriction sites. 

Biosensor C was a trimolecular ligation of cortactin containing BamH1 and Xho1 

restriction sites and the YFP fluorophore containing Xho1 and Sac1 restriction sites 

cloned into the BamH1 and Sac1 digest CFP backbone. 

Western Blotting 

Constructs were transfected into 293T HEK cell lines.  The cells were lysed in RIPA 

buffer and subjected to SDS-PAGE separation.  Proteins were then transferred to 

nitrocellulose and blotted for the fluorescent tags using the JL-8 anti-fluorescent tag 

antibody (BD Living Colors). 

FRET microscopy 

Microscopy experiments were performed using a Nikon TE-2000 Eclipse and analysis 

was performed by MetaMorph FRET software.  Briefly, images from YFP alone, CFP 

alone, and Raw FRET were obtained and intensity values were determined for 

individual cells.  These values were entered into the MetaMorph software, which 

performed background subtractions and calculations to produce a FRET sensitized 

emission result and image.  The image is represented as a gradient “heat map” where 

black/blue areas represent no/weak FRET signal to red areas of “peak” FRET signal. 
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Figure Legends 

Figure 1.  Design and testing of a FRET-based cortactin Biosensor.  (A)  Schematic 

of cortactin FRET biosensor and proposed mechanism of function.  (B)  Western blot of 

control and biosensor constructs. (C)  Microscopy FRET analysis of cortactin FRET 

biosensor in MTLn3 cells. 

Figure 2.  Creation and schematic of function of cortactin biosensor and controls.  

(A)  Western blot of control constructs and the cortactin biosensor.  (B-D)  Schematic of 

proposed function of YC, Biosensor C, and Biosensor A (cortactin biosensor) constructs 

during FRET microscopy analysis. 
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Discussion 
 
 
     Src and cortactin have an interesting, intermingled history.  From the initial  

discovery of cortactin as a hyperphosphorylated 80/85kD protein in Src transformed 

fibroblasts  to recent work on Src and cortactin in invadopodia regulation [1, 2], it has 

become abundantly clear that Src is a key regulator of cortactin function through 

phosphorylation of Y421, Y466, and Y482 [3].  Cortactin function is central to proper 

formation of branched actin networks and the dynamics in which these networks are 

formed and dissolved.  It performs this role through two main mechanisms.  One is to 

act as a scaffolding protein for proteins essential in controlling actin dynamics.  

Cortactin is able to interact directly with F-actin filaments.  With this trait, its interactions 

with binding partners bring these proteins in close proximity to these locations of active 

filament growth where they can perform their respective regulatory functions [4].  The 

other mechanism of cortactin action is to act as an NPF.  Here cortactin is responsible 

for regulating activation of the Arp2/3 complex.  This critical creation of a branched 

network of actin filaments is what gives cells their shape and promotes processes such 

as cell motility, protrusion, and adhesion.[5]. 

     Essentially, cortactin acts as a key intersection point for multiple signaling pathways 

that impinge on actin cytoskeletal regulation. To date regulation of cortactin by Src is 

mostly measured by the levels of cortactin tyrosine phosphorylation.  This was primarily 

due to the incomplete understanding of the binding mechanism between Src and, as it 

was assumed to be mediated by the Src SH2 domain binding to cortactin pY421 and/or 

pY466 [6].  Our work in Study 1 details this missing mechanism as well as the 

previously unrecognized signaling pathways that potentially control this interaction.  
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     In the past decade there have been conflicting data debating the differential roles of 

serine and tyrosine phosphorylation of cortactin has on actin filament assembly [7, 8].  

From this, it has emerged that Src is the primary kinase that is responsible for cortactin 

tyrosine phosphorylation and this promotes actin polymerization.  Our work from Study 

1 supports these claims as well [9].  However, these studies do not address the idea of 

cortactin undergoing a conformational change upon serine and/or tyrosine 

phosphorylation.  This concept gained traction with data from Coweison et al. that 

showed, through circular dichroism analysis, chemical crosslinking, and small angle x-

ray scattering, that cortactin holds to a “lollipop” conformation.  In this model, the acidic 

domain and a portion of the repeat region (how many repeats is not known) forms the 

“stick” of the lollipop, while the rest of the C-terminal portion folds into a globular state 

[10].  This gives rise to the question of how the tyrosine/serine residues and the SH3 

domain is situated to allow cortactin to function properly.  This also gives credence to 

the idea of conformational regulation of cortactin function.  In Study 2, we sought to 

answer this question using Erk [9] and Src (data not shown) kinase assays and circular 

dirchroism.  This work was performed on the heels the study from our lab by Kelley et 

al., where it was shown that upon EGF stimulation the cortactin doublet band shifts to 

just one band, possibly indicating a conformational shift [11].  This data confirms 

previous studies [12, 13].  Our data indicates that if a conformational change exists at 

all, then it is very small.  CD spectra from serine phosphorylated cortactin only showed 

minute shift in spectra, but the overall shape of the curve did not indicate we were 

seeing global changes in molecular confirmation.  Similar results were seen with Src 

tyrosine phosphorylated cortactin.  One caveat is that CD spectra are difficult to use as 
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a stand-alone readout.  Generally, this data is coupled with NMR, x-ray scattering, or 

crystallography data and, unfortunately, a large hole in the cortactin field is that the 

crystal structure of cortactin has never been solved.  In fact, up until the “lollipop” study, 

cortactin was thought to hold a “rod shaped” conformation, in which it is fully laid out 

from end to end, with little or no tertiary structure [5].  Once the crystal structure of 

cortactin is determined, it will be exciting to see what interesting studies emerge; aimed 

at discovering the exact molecular mechanisms of cortactin function and how it interacts 

with dynamic actin complexes. 

     In a more elegant attempt to study cortactin conformational changes detailed in 

Study 3, we created a FRET-based cortactin biosensor.  This tool is designed to give a 

sensitive readout of minute changes in cortactin conformation that will lead to altered 

levels of FRET activity.  Biosensors have been widely used in the study of protein 

function within the cell and, when properly controlled, have given beautifully informative 

spatial-temporal images and analyses of protein function and activity.  Although very 

preliminary, our data indicates that the cortactin biosensor undergoes enough of a 

conformational shift that we see differential FRET signals within areas of cortactin 

localization.  We predict cortactin to give a FRET signal when in its “closed” or inactive 

conformation.  Upon localization to sites of actin cytoskeletal formation, we see a loss in 

this FRET signal which would indicate a change in conformation or “open” conformation, 

allowing cortactin to actively participate in cytoskeletal signaling events.  This data looks 

at cortactin in the context of lamellipodia formation at the leading edge of the cell.  As 

we know, cortactin is located in the perinuclear region of the cytoplasm and upon Rac1 

activation is translocated to the cell edge [14].  This activation process falls in line with 
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our data, in that we see a FRET signal at the perinuclear region (inactive) and then 

observe a gradient loss of FRET signal as we move out toward the leading edge of the 

cell (active), indicating that the biosensor may be a useful tool for studying cortactin 

function in multiple cellular settings such as endocytosis and invadopodia formation.  

Again, the biggest caveat is because of a lack of cortactin crystal structure, we cannot 

fully determine if our biosensor is truly an indicator of cortactin conformational changes 

as it regards to activity.  However, we do feel that with the proper controls, as the ones 

we have created, we can, with relative confidence, apply this biosensor in a meaningful 

way. 

     Much work has been performed looking at the cellular and downstream signaling 

events that result from the Src-mediated tyrosine phosphorylation of cortactin.  Until our 

work, the exact mechanism of binding of cortactin was not known other than it was 

mediated by the Src SH2 domain.  Our work has ultimately shed light upon this mystery 

and has opened a mechanistically novel mode of interaction for SH2 domains that are 

subject to regulation in a previously unrealized manner.  We have shown that a cysteine 

residue in the hydrophobic pocket of the Src SH2 domain (C185) forms a disulfide bond 

with two separate cysteine residues within the cortactin repeats.  C185 of Src has been 

previously noted in the literature.  In a study looking at the mechanisms of specificity of 

the Src SH2 domain, it was shown that when this cysteine was mutated to alanine that 

an 8-fold increase in affinity for phosphotyrosine peptides was observed.  This gave rise 

to the idea that the negative charge located on the deprotonated cysteine residue 

provides a repulsive negative charge to the oxygen moieties on the phosphate group of 

the tyrosines.  This would allow an easier detachment from these residues, allowing 
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dynamic binding and unbinding events to occur [15].  This means of binding between 

Src and cortactin is unique, to say the least.  It is generally thought that kinase 

interactions with their substrates are transient in nature.  However, we find the formation 

of a stable bond that is necessary for cellular functions.  Our data shows that when this 

bond is disrupted, HNSCC cells are unable to form their spontaneous, invasive 

structures, known as invadopodia.  It’s not the phosphorylation that is necessary, as has 

been shown to be the case for many cellular processes, but the binding event itself.  

This would suggest that this stable interaction is necessary to act as the core foundation 

upon which all other components of invadopodia build upon. 

     This unique interaction also brings up the question of “how it is regulated?”  The 

short answer is that it has not been determined as of yet.  However, there are instances 

in the literature that shed light on possible mechanisms.  The cytoplasm is largely a 

reducing environment due to the ample presence of glutathione.  This type of 

environment would not be conducive to the formation of stable disulfide bonds. 

However, recent reports by two laboratories indicate that focal sites of oxidative 

environments can persist.  This work has shown that invadopodia formation in colon 

cancer cells is dependent upon Tks5 generated ROS, which creates an oxidative pocket 

within the cell.  Without this ROS production, the formation of invadopodia is inhibited 

[16, 17].  Other data that supports this is that upon hydrogen peroxide treatment of cells, 

there is an increase in Src-dependent tyrosine phosphorylation of cortactin, indicating 

that an increase in hydrogen peroxide induced ROS promotes the Src/cortactin 

interaction [18].  There are also other instances of disulfide bonds being able to form in 

the cellular cytoplasm, however, how these form has not been studied extensively [19-
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21].  So far, this explains how this bond can form in the cytoplasm, but neglects how 

such a stable bond can be broken.  The simplest answer is that upon dissolution of the 

invadopodia structure, the oxidative environment is quickly dissipated and reduced by 

the large presence of cytoplasmic glutathione.  Another alternative is that proteins 

known as oxidoreductases may perform this function.  Particularly, the PDI family of 

thiol oxidoreductases has been shown to localize to the cell surface, which is a unique 

feature since most oxidoreductases are found in the endoplasmic reticulum where they 

play a critical role in the proper folding of newly translated proteins [22].  This new 

mechanism of SH2 domain mediated interaction gives credence to analyzing the levels 

and localization of ROS in cells and promoting future studies to address this as a means 

of regulation of intracellular processes.  Interestingly, sequence alignment of all known 

SH2 domains indicate that this mode of interaction may be more widespread than the 

Src SH2 domain, possibly encompassing 25% of these domains over a wide array of 

protein classes. 

      In summation, the major focus of this work details a novel mode of interaction for the 

Src SH2 domain.  Non-conventional, phospho-tyrosine independent interactions 

between SH2 domains and their substrates have been documented; however, these 

have been shown to be weaker, electrostatic interactions.  Our work identifying a 

cystine bond formation between Src and cortactin opens a new paradigm to how 

proteins interact with one another.  Turning our focus to understanding protein-protein 

interactions may prove to be beneficial in targeting certain molecular pathways in order 

to treat disease states such as cancer.  Much emphasis has been put on inhibiting the 

functionality of proteins in cancer cells, mainly through inhibiting kinetic activity of 
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particular enzymes, such as Src.  Preventing specific protein interactions may be 

enough to help trigger a response in these disease states while eliminating unintended 

side effects.  As we have shown, the simple elimination of the ability of two proteins to 

interact has had detrimental effects on the ability of HNSCC cells to form invasive, 

metastatic structures.  We have provided a potential mechanism of attack to prevent 

HNSCC from turning into metastatic disease, which could enhance patient survival.    

Additionally, this work exemplifies that ligand-receptor based signaling pathways may 

not be the sole driving force in cancer progression, as the current research trend seems 

to support.  In closing, we feel that we have illustrated a significant, paradigm shifting 

mechanism that has implications in metastatic tumor cell signaling. This work also 

opens the door to new ideas about how proteins can interact with one another and how 

the signaling events that control these interactions may be infinitely more complicated 

and intricate than previously thought. 
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