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ABSTRACT 

 

The Association of Urinary Polycyclic Aromatic Hydrocarbons and Markers of 

Inflammation, Diabetes Mellitus and Cardiovascular Disease 

 

Omayma Alshaarawy 

 

 

Polycyclic aromatic hydrocarbons are potent atmospheric pollutants, released into air 

during incomplete combustion of fuel, industrial or domestic coal, wood, cigarette smoke and 

other organic materials. In addition to being carcinogenic, several animal studies have reported 

positive associations between polycyclic aromatic hydrocarbons and inflammation, oxidative 

stress and the development and progression of atherosclerosis. Occupational studies have 

reported positive associations between polycyclic aromatic hydrocarbons and cardiovascular 

morbidity and mortality. Moreover, there is evidence that polycyclic aromatic hydrocarbons may 

cause disruption of the endocrine system. It is still not clear if lower background exposure to 

polycyclic aromatic hydrocarbons, independent of the adverse health effects of smoking, is 

associated with increased risk of inflammation, diabetes mellitus and cardiovascular disease in 

the general population. We examined participants from the merged National Health and 

Nutrition Examination Survey 2001-02, 2003-2004, and 2005-2006. Our exposures of interest 

were eight urinary monohydroxy polycyclic aromatic hydrocarbons and our outcomes were 

serum markers of systemic inflammation, including: serum C-reactive protein and total white 

blood cell count, diabetes mellitus and self-reported cardiovascular disease. Urinary biomarkers 

of the low molecular weight polycyclic aromatic hydrocarbons were found to be positively 

associated with serum C-reactive protein, total white blood cell count and diabetes mellitus 

independent of potential confounders. Levels of 1-hydroxypyrene, the urinary metabolite of the 

higher molecular weight PAH, pyrene, showed a less strong association with serum C-reactive 

protein and diabetes mellitus. The evidence on the association between polycyclic aromatic 

hydrocarbons and self-reported cardiovascular disease was limited, only 1-hydroxynapthalene, 

summed biomarkers of low molecular weight polycyclic aromatic hydrocarbons,  and 1-

hydroxypyrene showed statistically significant positive associations with cardiovascular disease 

independent of potential confounders. In conclusion, this study provides evidence on the positive 

association of background exposure to polycyclic aromatic hydrocarbons and serum C-reactive 

protein, total white blood cell count, diabetes mellitus and cardiovascular disease. Further 

prospective studies are needed to replicate or refute our findings.
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INTRODUCTION 

 

Rationale for studying systemic inflammation, diabetes mellitus and CVD 

Despite advances in prevention, diagnosis and treatment, cardiovascular disease (CVD) 

remains the number one cause of mortality in United States (US) adults.[1] Diabetes mellitus is a 

major risk factor for CVD [2, 3] and the seventh leading cause of death in the US.[4] Systemic 

inflammation is considered a key risk factor for atherosclerosis and subsequent development of 

CVD.[5] Inflammation has been also known to associate with insulin resistance and diabetes 

mellitus.[6] Several studies have reported positive association between baseline elevations of the 

serum inflammatory marker C-reactive protein (CRP) and risk of CVD and diabetes mellitus.[7, 

8]  Moreover, elevation in total white blood cells (WBC) count within the normal range was 

found to be independently associated with CVD and diabetes mellitus.[9, 10]  

 

Environmental pollutants and systemic inflammation, diabetes mellitus and CVD 

Several studies have suggested that exposure to particulate matter present in ambient air 

is associated with increased CVD. Recent evidence has suggested that smaller particles and gases 

may pose a greater CVD risk, possibly through development of atherosclerosis.[11] In addition, 

studies have suggested that common environmental exposures , such as Dioxins [12] (group of 

halogenated aromatic hydrocarbons), affecting large sections of the population may be a 

determinant of diabetes risk [13, 14] as well as CVD risk.[15]  

 

Polycyclic aromatic hydrocarbons  
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Polycyclic aromatic hydrocarbons (PAHs) are environmental and occupational 

carcinogens released into air during incomplete combustion of fuel, industrial or domestic coal, 

wood, and grilled or smoked food.[16, 17] Active smoking and second-hand smoke (SHS) 

exposure are major sources of PAHs.[18] Individuals without occupational or tobacco smoke 

exposure are believed to be exposed primarily to PAHs through food contaminated with 

PAHs.[19] The total intake of PAHs in the general population has been estimated to be 3 

μg/day.[20]  

Polycyclic aromatic hydrocarbons are found within the environment in either a gaseous 

or particulate form.[21] PAHs with the lowest molecular weight (naphthalene, fluorene, and 

phenanthrene) have low vapor pressures, and are found mainly in a gaseous form. Polycyclic 

aromatic hydrocarbons with higher molecular weights (pyrene) have higher vapor pressures and 

are found in a particulate form. Individuals exposed to PAHs via inhalation of the ambient air are 

exposed to both low molecular weight (LMW) PAHs and higher molecular weight PAHs. 

Humans are also exposed to the higher molecular weight PAHs through gastrointestinal 

absorption of contaminated food or water and/or skin absorption of PAH particles.[22]  

Polycyclic aromatic hydrocarbons were found to have high affinity for lipid-rich tissues 

such as mammary and adipose tissues.[23] Irrespective of the route of administration, PAHs are 

rapidly and widely distributed in the body. Detectable levels of PAHs can be observed in most 

internal organs following exposure.[4] Researchers have examined PAHs directly in the blood 

and tissues of experimental animals. However, these methods have not been widely used for 

humans due to the high costs and the limited clinical significance of testing. The most commonly 

used biomarkers of PAH exposure are urinary monohydroxy-PAH (OH-PAH). Urinary OH-PAH 
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has been found to correlate well with levels of exposure to PAHs in the general populations.[24] 

Additional effects of human occupational exposures can be detected using urinary PAH 

biomarkers, independent of smoking.[25] 

 

PAHs and systemic inflammation, diabetes mellitus and CVD  

Considering the large number of deaths attributable to ambient air pollution, PAHs may 

be a significant contributor to the high prevalence and mortality rate of diabetes mellitus and 

cardiovascular disease. Several animal studies have reported positive associations between PAHs 

and inflammation [26, 27], oxidative stress [28, 29] and the development and progression of 

atherosclerosis.[30, 31] Exposure to PAHs triggers the Aryl hydrocarbon (AhR) –Xenobiotic 

response element (XRE) signaling pathway and causes expression of proinflammatory genes. It 

leads to inflammation that underlies development 

of atherosclerosis. Activation of the AhR–XRE 

pathway also induces expression of cytochrome 

P450 (CYP) and subsequently generates reactive 

oxygen species (ROS) and DNA adducts which 

contributes to endothelial injury and consequent 

atherosclerosis. Several studies have also 

suggested that PAHs may cause disruption of the 

endocrine system.[32]  

 

Figure 1: Masanori Kitamura and Ayumi 

Kasai, 2007 
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In addition, several occupational studies have reported positive associations between 

PAHs and cardiovascular morbidity [33, 34] and mortality.[35, 36] Two general population-

based studies have investigated the association between PAHs exposure and serum markers of 

CVD using the National Health and Nutrition Examination Survey (NHANES), and the results 

were inconsistent.[37, 38] Data on PAHs were withdrawn (and re-released) due to 

inconsistencies in the laboratory methods used on NHANES 2001-2002 and 2003-2004 data 

cycles. In addition, neither adjustment for active smoking and SHS exposure in addition to 

confounders known to interact with the outcomes nor stratifying by major characteristics of the 

study population was performed in those studies.  The re-release of the data provides an 

important opportunity for updated analysis. 

 The overall aim of this study was to investigate the independent association between 

urinary levels of PAH biomarkers, including 1-hydroxynapthol, 2- hydroxynapthol, 2-

hydroxyfluorene, 3-hrdroxyfluorene, 1-hydroxyphenanthrene, 2- hydroxyphenanthrene, 3-

hydroxyphenanthrene and 1-hydroxypyrene, and markers of systemic inflammation, diabetes 

mellitus and CVD, among adult participants of NHANES, a large, multiethnic, population-based, 

study representative of the general population of the United States adults (US). Since exposure to 

active smoking and SHS are major sources of PAHs, we sought to determine if this relationship 

was independent of serum cotinine, self-reported smoking status, in addition to the other 

potential confounders. 

Due to the multiple sources of PAHs in the environment, exposure to a single PAH 

compound is implausible. Metabolism, and consequently health effects of exposure to multiple 

PAHs were found to be different from that of exposure to an individual PAH compound.[39] 
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Enzyme competition was evident in the metabolism of PAH mixtures, changing significantly the 

metabolism patterns from that of individual PAHs.[39]  Therefore in the current study, and 

similar to analytical strategies employed by previous authors [40], we created a summed variable 

as a measure of cumulative exposure to multiple low molecular weight PAHs simultaneously. 

 

The specific aims of the current study were as follows:  

1. To examine the independent association of urinary PAH biomarkers and serum markers 

of systematic inflammation such as high sensitivity C-reactive protein and white blood 

cell count. 

2. To examine the independent association of urinary PAH biomarkers and diabetes 

mellitus. 

3. To examine the independent association of urinary PAH biomarkers and self-reported 

cardiovascular disease. 
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CHAPTER 1 

The Association of Urinary Levels of Polycyclic Aromatic Hydrocarbon Biomarkers and 

Serum Inflammatory Makers. 

 

Abstract  

Polycyclic aromatic hydrocarbons (PAHs) are potent atmospheric pollutants, occurring 

from both anthropogenic and natural sources. Several animal studies have reported a positive 

association of PAHs with inflammation. However, it is not clear if lower background exposure to 

PAHs in the general population is associated with systemic inflammation in humans. We 

examined participants from the National Health and Nutrition Examination Survey 2001-2002, 

2003-2004, and 2005-2006. Our exposures were eight urinary monohydroxy polycyclic aromatic 

hydrocarbons (OH-PAH) and our outcomes were serum C-reactive protein (CRP) (<10 mg/L) 

and total white blood cell (WBC) count (4000-12,000 cells/µL). Compared to those with 

summed biomarkers of low-molecular weight (LMW) PAHs in the lowest quartile, the 

multivariable odds ratios (95% confidence interval) of serum CRP ≥ 3 mg/L and high total WBC 

count (defined as at or above the 95 percentile of total WBC count distribution) among those in 

the highest quartile were 1.77 (1.13, 2.76) and 1.34 (1.12, 1.60) respectively. Levels of 1-

hydroxypyrene, the biomarker of the higher molecular weight PAH pyrene, was positively 

associated with total WBC count, and to lesser extent with serum CRP. In subsequent analyses, 

the positive association between LMW PAHs and serum CRP and total WBC count was found to 

be present within the stratified subgroups. In conclusion, urinary levels of PAH biomarkers were 
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found to be positively associated with serum CRP and total WBC count independent of smoking 

and other potential confounders. 
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Systemic inflammation is considered a key risk factor for atherosclerosis and subsequent 

development of cardiovascular disease (CVD).[5] Several studies have reported a positive 

association between baseline elevations of C-reactive protein (CRP), a serum inflammatory 

maker, and future risk of CVD.[41, 42] Clinical and public health groups have recommended 

serum CRP levels to be used as a CVD risk stratifying tool.[43] In addition, elevations in total 

white blood cells (WBC) count within the normal range (4000-12,000 cells/uL) were found to be 

independently associated with increased risk of CVD and have been proposed as an alternate 

serum inflammatory marker.[44]   

Polycyclic aromatic hydrocarbons (PAHs) are potent atmospheric pollutants composed of 

fused aromatic rings.[16, 21, 45] PAHs may occur in oil, coal, and tar deposits, and are produced 

as byproducts of smoking, and indoor and outdoor fuel burning.[18, 46] PAHs can be also found 

in contaminated water, and in food as a result of food processing, preparation, and cooking. [47, 

48] Further, exposure to PAHs is markedly increased by cigarette smoking. Several in-vitro and 

animal studies have reported a positive association between exposure to PAHs and systemic 

inflammation. [28, 49-51] However, it is not clear if the lower background exposure to PAHs is 

associated with inflammatory effects in humans in the general population. 

In this context, we examined the association of eight urinary biomarkers of PAHs, the 

monohydroxy-PAHs (OH-PAH), with serum CRP and total WBC count in a nationally 

representative sample of United States (US) adults. Since exposure to active smoking and second 

hand smoke are major sources of PAHs, we sought to determine if this relationship was 

independent of serum cotinine, self-reported smoking status, and other potential confounders.  
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Due to the multiple sources of PAHs in the environment, exposure to a single PAH 

compound is implausible. Metabolism, and consequently health effects of exposure to multiple 

PAHs were found to be different from that of exposure to an individual PAH compound.[39] 

Enzyme competition was evident in the metabolism of PAH mixtures, changing significantly the 

metabolism patterns from that of individual PAHs.[39]  Therefore in the current study, and 

similar to analytical strategies employed by previous authors [40], we created a summed variable 

as a measure of cumulative exposure to multiple low molecular weight PAHs simultaneously. 

 

METHODS 

Study population  

The present study is based on merged data from the 2001-2002, 2003-2004 and 2005-

2006 National Health and Nutrition Examination Survey (NHANES). Detailed description of 

NHANES study design and methods are available elsewhere.[52] NHANES included a stratified 

multistage probability sample representative of the civilian non-institutionalized US population. 

Selection was based on counties, blocks, households and individuals within households, and 

included oversampling of non-Hispanic Blacks and Mexican Americans in order to provide 

stable estimates of these groups. Out of 31,509 participants in NHANES 2001-2006, there were 

11, 512 who were 20-65 years of age. Urinary PAH biomarkers were only measured in a 

subsample of individuals. The subsample is nationally representative, but with a smaller analytic 

sample size. 
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We excluded participants with missing information on serum CRP or with CRP levels 

>10 mg/L, indicating potential underlying non-cardiovascular causes of inflammation.[53] We 

further excluded participants with missing information on serum cotinine level, or other 

covariates included in the final CRP model. Similarly, to minimize the confounding effect of 

infection, only subjects with a WBC count within the normal range (4000-12,000 cells/uL) were 

included in the final WBC analysis. We also excluded participants with missing information on 

total WBC count, or other covariates included in the final model. 

Main outcome of interest:  Serum inflammatory markers 

 High sensitivity serum C - reactive protein. 

Serum CRP was measured using latex-enhanced nephelometry. Details of the laboratory 

collection, processing, and analysis are available in the laboratory procedures manual.[54] High 

CRP level was defined as ≥3 mg/dL, consistent with American Heart Association/Centers for 

Disease Control & Prevention (AHA/CDC) guidelines for identifying subjects with high risk of 

CVD.[7] 

Total white blood cell count within normal values. 

The methods used to derive WBC count are based on the Beckman Coulter method of 

counting. High WBC count was defined as values at or above the 95
th

  percentile of the study 

population distribution, consistent with previous studies examining the association between total 

WBC count within normal ranges and CVD risk.[10, 55] 

 

Main exposure: Urinary levels of monohydroxy-PAH  
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Urine specimens collected during the clinical exam portion of the survey were processed, 

stored, and shipped to the Division of Environmental Health Laboratory Sciences, National 

Center for Environmental Health, Centers for Disease Control and Prevention for analysis. The 

specific analytes measured in this study were monohydroxy-PAH (OH-PAH). By evaluating 

these analytes in urine, a measurement of the body burden from PAH exposure is obtained.[24] 

The procedure involves enzymatic hydrolysis of urine, extraction, derivatization and analysis 

using capillary gas chromatography combined with high resolution mass spectrometry (GC-

HRMS).  Detailed specimen collection and processing instructions are discussed in the 

NHANES Laboratory/Medical Technologists Procedures Manual (LPM). 

   Seven LMW PAH urinary biomarkers, Naphthalene biomarkers; 1- hydroxynaphthalene, 

2- hydroxynaphthalene, Fluorene biomarkers; 2-hydroxyfluorene, 3-hydroxyfluorene, 

Phenanthrene biomarkers; 1-hydroxyphenanthrene, 2- hydroxyphenanthrene, 3- 

hydroxyphenanthrene and 1-hydroxypyrene, the biomarker of the higher molecular weight PAH 

pyrene, were consistently available in NHANES 2001-2006. All analytes were measured in the 

same unit; ng/L. Urinary OH-PAH were corrected for urinary creatinine concentration, a urinary 

marker of kidney function to adjust for urinary dilution.[56] Urinary levels of OH-PAH (ng/L) 

were divided by urinary creatinine level (mg/dL) multiplied by 0.01; [(ng/L) ÷ (mg/dL*0.01)] 

and expressed as nanogram per gram of creatinine (ng/g creatinine). 

 

Exposure measurements 

Information on age, gender, race/ethnicity, alcohol intake, income, diabetes and cigarette 

smoking were obtained from a standardized questionnaire during a home interview. Alcohol 
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consumption was categorized into none and alcohol drinker. Income-poverty ratio 

(Income/poverty guideline) was used as a measure of the socioeconomic status. The Department 

of Health and Human Services’ poverty guidelines were used as the poverty measure to calculate 

this ratio. Smoking status was categorized into never smokers (smoked <100 cigarettes during 

their lifetime), former smokers (smoked ⩾100 cigarettes during their lifetime and currently not 

smoking), current smokers (smoked ⩾100 cigarettes during their lifetime and currently 

smoking). Information on anthropometric, physical and laboratory components were obtained 

during the medical examination center examination. Body mass index (BMI) was calculated as 

weight in kilograms divided by height in meters squared. Seated blood pressure was measured 

using a mercury sphygmomanometer according to the American Heart Association and 

recommendations.[57] Up to 3 measurements were averaged for blood pressure. 

Statistical analysis 

Urinary levels of OH-PAH were analyzed both as continuous as well as categorical 

variables. For analysis as continuous variables, urinary OH-PAH levels were log-transformed as 

a result of their skewed distribution. Weighted Pearson correlation coefficients between 

individual OH-PAH were calculated to evaluate the correlations between pairwise combinations 

of all eight urinary metabolites. We created an additive LMW PAH biomarkers variable by 

summing urinary levels of metabolites of the low molecular weight PAHs (naphthalene, fluorene 

and phenanthrene).  

We ran linear regression models to calculate the multivariable change and 95% 

confidence interval (CI) in serum CRP and total WBC count with increasing individual and 
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additive urinary OH-PAH levels. In addition, we ran logistic regression models to calculate the 

multivariable odds ratio (OR) and 95% CI of high serum CRP (≥ 3 mg/L) and total WBC count 

at or above the 95th percentile of the total WBC count distribution, for each higher urinary OH-

PAH quartile by using the lowest quartile as the referent. Variables were included in the model if 

they satisfied two conditions; first, a plausible association with the main exposure/outcome, and 

second, a > 10 percent change of odds ratio after adjusting for the potential. Accordingly, final 

models were adjusted for age (years), sex (men, women), ethnicity (non-Hispanic White, non-

Hispanic Black, all others), poverty-income ratio (%), alcohol drinking (yes/no), diabetes 

(absent/present), BMI (normal, overweight, obese), total cholesterol (mg/dL), serum cotinine 

(ng/mL) and systolic blood pressure (mm Hg).  

To further ensure that the association is homogenous for subgroups, we performed 

subgroup analyses by gender, race/ethnicity, BMI and smoking categories. Sample weights that 

account for the unequal probabilities of selection, oversampling, and nonresponse in the 

NHANES survey were applied for all analyses. Analyses were conducted using SAS (version 

9.3, SAS Institute, Cary, NC) software. Standard errors were estimated using the Taylor series 

linearization method.   

 

RESULTS 

Table 1 presents the baseline characteristics of the study population with CRP levels<10 

mg/L. The study population was primarily non-Hispanic White (72.9%). Approximately one-half 

(50.5%) were never smokers, and the remainder were former smokers (21.7%) and current 
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smokers (27.8%). The arithmetic mean of serum cotinine level was 74.2 ng/mL. Tables 2 and 3 

present the weighted percentiles and means of individual and additive LMW urinary OH-PAH 

metabolites used in the final CRP and total WBC count analyses, respectively. 

Table 4 present the results of the analyses examining the correlations between pairwise 

combinations of all eight urinary metabolites in addition to serum cotinine. The results indicate 

that significant correlations exist between all OH-PAH pairwise combinations, with Pearson 

correlation coefficients that ranged from 0.41 to 0.93.  

Tables 5 and 6 present the results of the linear regression analyses measuring the 

association between urinary OH-PAH levels, serum CRP and total WBC count respectively. 

Urinary levels of OH-PAH were positively associated with serum CRP levels independent of 

potential confounders. All the associations were statistically significant except for 1- 

hydroxynaphthalene, 3-hydroxyphenanthrene and 1-hydroxypyrene. Similarly urinary levels of 

OH-PAH were positively associated with total WBC count independent of potential confounders.  

Table 7 presents the odds ratio of the association between urinary levels of OH- PAH and 

high CRP, defined as CRP levels ≥ 3 mg/L.  Overall, urinary levels of OH-PAH were positively 

associated with high CRP in the multivariable adjusted models. Using urinary OH-PAH levels as 

continuous variables, the observed associations were still positive. Although positive, the 

associations between urinary 3-hydroxyphenanthrene and serum CRP were not statistically 

significant. 

Table 8 presents the odds ratios of the association between urinary levels of OH-PAH and 

high WBC count (defined as at or above the 95
th

 percentile of the total WBC count distribution). 
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Similar to the results for CRP, urinary levels of OH-PAH were positively associated with high 

total WBC count in the multivariable adjusted models. Using urinary OH-PAH levels as 

continuous variables, the observed associations were still positive. Although positive, the 

associations between urinary 1-hydroxyphenanthrene and 3-hydroxyphenanthrene and total 

WBC were not statistically significant. 

Table 9 investigates several types of potential confounding. We performed subgroup 

analyses by gender, race/ethnicity, BMI and smoking categories. Overall, consistent with the 

findings for the whole cohort, we found that higher urinary levels of LMW PAHs biomarkers 

were positively associated with high CRP and high total WBC count within these stratified 

subgroups. Compared to females, urinary biomarkers of LMW PAH showed stronger 

associations with serum CRP and high total WBC count among males. Compared to non-

smokers, urinary biomarkers levels of LMW PAH showed a stronger association with high total 

WBC count among current smokers. Some of the odds ratios failed to reach the conventional 

levels of statistical significance. P-interaction values for cross-product terms between urinary 

OH-PAH levels and stratifying variables were all >0.15 except for gender in the CRP analysis 

(P=0.001) and in the WBC analysis (P=0.003).  

 

DISCUSSION 

In a multiethnic sample of US adults, we found that higher levels of urinary PAH 

biomarkers were positively associated with high serum CRP levels and total WBC count, 

independent of surveyed smoking status, serum cotinine and other potential confounders. The 
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association was stronger for the low molecular weight PAH biomarkers, compared to 1-

hydroxypyrene, a urinary metabolite of the higher molecular weight PAH pyrene.  

Researchers have examined PAHs directly in the blood and tissues of experimental 

animals, and in humans.  The most commonly used biomarkers of PAH exposure are urinary 

OH-PAH. Urinary OH-PAH has been found to correlate well with levels of exposure to PAHs in 

the general population.[24] In addition, there is an evidence that the additional effect of human 

occupational exposures can be detected, independent of cigarette smoking.[25] 

Humans are usually exposed to PAHs occurring in either a gas or particulate phase. 

PAHs with the lower molecular weight (Naphthalene, Fluorene, and Phenanthrene) are more 

abundant in the gas phase and are absorbed mainly through inhalation.[58] In contrast,  PAHs 

with higher molecular weight (Pyrene) have higher vapor pressure and are found in a particulate 

form.[58] They can be absorbed through ingestion, skin contact and inhalation.[16, 22]  

The mechanisms underlying the positive association of urinary PAH biomarkers with 

serum CRP and total WBC count remain unknown. Several in-vitro and animal studies have 

reported a positive association between exposure to PAHs and systemic inflammation. [28, 49-

51] Upon exposure to PAHs, detoxification occurs, leading to the formation of highly reactive 

intermediates that can interact with the DNA, forming PAH-DNA plaques in animal arteries. [28, 

30]  Several studies have suggested that PAHs might exert this atherogenic effect via stimulation 

of an inflammatory process involving an increased influx of proinflammatory cells into these 

plaques.[49] 

Stratifying by gender, the positive association between urinary LMW PAH biomarkers 

and serum CRP ≥3 mg/L and total WBC at or above the 95
th

 percentile was found to be stronger 
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in males when compared to females, suggesting possible gender differences. It is possible that 

hormonal differences in the way in which men and women metabolize PAHs may explain this 

observation. PAHs are known to be metabolized by cytochrome P450.[59] It has been shown that 

women have increased lung expression of CYP enzymes compared with men which is related to 

estrogen.[60, 61] Consequently, accelerated breakdown of PAHs in the lungs may potentiate the 

pulmonary response to PAHs in females while reducing the circulating PAH concentrations.[62]  

Only two human studies have investigated the association between PAH exposure and 

serum inflammatory markers, and the results were inconsistent. In a study of 999 participants 

using NHANES 2003–2004, higher exposure to PAHs was associated with elevated levels of 

serum CRP.[37] However, in a study of participants in NHANES 2001–2004, urinary levels of 

OH-PAH were not associated with other serum inflammatory markers such as total WBC 

count.[63] The differences in the results may be partly due to the fact that some NHANES data 

on PAHs were withdrawn (and re-released) due to inconsistencies in the laboratory methods used 

in 2001-2002 and 2003-2004 data cycles. The re-release of the data provides an important 

opportunity for updated analysis.   In addition, previous studies included participants with CRP 

levels of higher than 10 and total WBC count higher than 12,000 cells/µL, where infection or 

autoimmune diseases might have confounding effects. Also adjustment for major confounders 

known to interact with inflammatory markers such as alcohol drinking, total cholesterol and 

socioeconomic status, and stratifying by major characteristics of the study population were not 

performed in these previous studies.  

The current study used merged data from NHANES 2001-2002, 2003-2004 and 2005-

2006. The strengths of the study include the relatively large multiethnic sample of the US adults, 
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the high quality of NHANES data due to standardized data collection and the ability to adjust for 

potential confounders and to stratify by major sociodemographic characteristics. In addition, we 

investigated the association of PAH exposure with serum CRP and total WBC count, 

independent of the health effects of smoking by adjusting for serum cotinine, an objective 

measure of cigarette smoke exposure in addition to stratifying by self-reported smoking status. 

Cotinine is the principal metabolite of nicotine. [64] Serum cotinine is considered a more precise 

measure of exposure to cigarette smoking when compared to self-reported smoking status, [65, 

66] and is considered an accurate biomarker of second-hand smoke exposure. [67]  

  The study has limitations as well. The cross-sectional nature of NHANES does not allow 

us to draw temporal or causal inferences regarding the relationship between PAHs and serum 

inflammatory markers. Urinary OH-PAH measurements reflect recent exposure to PAHs and do 

not reflect differences between the current exposure sources and the past exposure sources for 

each subject. Due to its short half-life, serum cotinine also reflects recent exposure to tobacco 

smoke. However, these biases are likely to be non-differential biases, which would minimize any 

associations observed.  

In conclusion, lower background exposure to PAHs was found to be positively associated 

with serum markers of systemic inflammation, i.e. serum CRP and total WBC count independent 

of potential confounders. Active smoking appears to play a significant role in the association of 

urinary OH-PAH and total WBC count, yet the association persists after adjustment for serum 

cotinine and self-reported smoking status. There is a need to replicate these findings in future 

prospective studies with adequate sample size. 
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Table 1. Baseline characteristics of the study population (20-65 years of age) with measured 

urinary levels of OH-PAH and CRP≤ 10mg/L 

Characteristics 
Mean values (Std error of mean) or  

Sample size (weighted percentages)  

Female (%) 1136 (47.7) 

Age (years) 40.9 (0.34) 

Race/Ethnicity (%)  

  Non-Hispanic Whites 1200 (72.9) 

  Non-Hispanic Blacks 463 (10.0) 

  Others 691 (17.1) 

Education categories (%)  

  Less than high school 547 (14.2%) 

  High school 541 (24.2) 

  Above high school 1266 (61.6) 

Below poverty level (%) 392 (12.1) 

Smoking categories (%)  

  Never  1229 (50.5) 

  Former smokers 501 (21.7) 

  Current  smokers 624 (27.8) 

Alcohol drinking (%)  

  Yes  1731 (77.2) 

Body mass index (%)  

  Normal weight (<25.0 kg/m
2
) 784 (36.5) 

  Overweight (25.0-29.9 kg/m
2
) 827 (32.9) 

  Obese (>30.0 kg/m
2
) 743 (30.6) 

Serum cotinine (ng/mL) 74.2 (4.25) 

Total cholesterol (mg/dL) 201.6 (1.43) 

Systolic blood pressure (mmHg) 119.1 (0.47) 
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Table 2: Weighted percentiles of OH-PAH (ng/g creatinine) among participants included in the final analysis with serum CRP levels ≤ 10mg/L 

Chemicals Selected percentiles 

 Sample 

size 

Mean  Minimum  10
th
  25

th
  50

th
  75

th
  90

th
   Maximum 

                  

1- Hydroxynaphthalene 2480 44914  50.8  502.6  843.7  2009.3  7116.1  17899   39226536 

2-Hydroxynaphthalene 2488 6235.5  93.5  795.9  1341.8  2820.7  7947.9  16009   404573 

                  

2-Hydroxyfluorene 2465 654.4  2.2  102.4  143.3  247.8  751.2  1756.9   29914 

3-Hydroxyfluorene 2450 339.0  1.2  34.5  52.5  97.6  407.4  1014.8   19084 

                  

1-Hydroxyphenanthrene 2469 215.31  0.7  60.8  89.3  139.7  232.7  371.3   8341.9 

2-Hydroxyphenanthrene 2448 96.6  0.5  22.3  35.1  56.9  99.9  177.1   5069.4 

3-Hydroxyphenanthrene 2444 191.5  0.7  37.7  55.4  91.8  176.2  342.0   20248 

                  

1-Hydroxypyrene 2461 136.5  0.9  22.3  35.5  66.1  136.6  272.7   10014 

                  

Summed LMW PAH biomarkers 2369 54230  620.0  2119.5  3156.6  6140.5  18777  38131   39235478 
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Table 3: Weighted percentiles of OH-PAH (ng/g creatinine) among participants included in the final analysis with total WBC count between 

4000-12,000 cells/µL 

Chemicals and blood markers Selected percentiles 

 Sample 

size 

Mean  Minimum  10
th
  25

th
  50

th
  75

th
  90

th
   Maximum 

                  

1-Hydroxynaphthalene 2620 43340  50.8  485.6  825.2  1963.4  6878.0  17816   39226536 

2-Hydroxynaphthalene 2628 6156.1  9.2  796.5  1357.5  2825.1  7829.2  15544   404573 

                  

2-Hydroxyfluorene 2604 632.8  2.2  102.8  143.4  244.4  735.1  1687.9   29914 

3-Hydroxyfluorene 2588 325.5  1.2  34.3  52.3  95.7  377.7  950.2   19084 

                  

1-Hydroxyphenanthrene 2610 213.2  0.7  60.9  89.7  140.4  229.3  366.9   8341.9 

2-Hydroxyphenanthrene 2587 96.3  0.5  22.7  35.7  58.3  101.2  177.3   5069.4 

3-Hydroxyphenanthrene 2585 189.1  0.7  37.5  54.9  90.0  170.6  331.0   20248 

                  

1-Hydroxypyrene 2600 133.9  0.9  22.5  35.4  65.4  132.0  267.3   10014 

                  

Summed LMW PAH biomarkers 2505 52480  508.7  2122.4  6085.4  18255  18255  37021   39235478 
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Table 4: Weighted Pearson correlations between log-transformed urinary levels OH-PAH (ng/g creatinine). 

Chemicals  1-NAP*  2- NAP*  2-FLUO
+
  3-FLUO

+
  1-PHENᵟ  2-PHENᵟ  3-PHENᵟ  1-PYR

ŷ
 

                 

1- Hydroxynaphthalene  1  0.60  0.61  0.62  0.43  0.41  0.48  0.49 

2- Hydroxynaphthalene  -----  1  0.71  0.71  0.43  0.48  0.53  0.57 

                 

2-Hydroxyfluorene  -----  -----  1  0.93  0.66  0.68  0.75  0.73 

3-Hydroxyfluorene  -----  -----  -----  1  0.60  0.62  0.73  0.71 

                 

1-Hydroxyphenanthrene  -----  -----  -----  -----  1  0.76  0.78  0.72 

2-Hydroxyphenanthrene  -----  -----  -----  -----  -----  1  0.76  0.71 

3-Hydroxyphenanthrene  -----  -----  -----  -----  -----  -----  1  0.72 

                 

1-Hydroxypyrene  -----  -----  -----  -----  -----  -----  -----  1 

* NAP= Hydroxynaphthalene      + FLUO= Hydroxyfluorene        ᵟ PHEN= Hydroxyphenanthrene        ŷ PYR = Hydroxypyrene 
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Table 5: Linear regression:  Association of urinary OH-PAH levels (ng/g creatinine) and serum CRP (mg/L). 

     Chemicals  Sample size Log OH-PAH Log OH-PAH 

  Age-sex adjusted change in CRP 
+
 Multivariable change in CRP * 

1- Hydroxynaphthalene 2480 0.04(-0.03, 0.11) 0.07(-0.01, 0.14) 

2-Hydroxynaphthalene 2488 0.15(0.04, 0.26) 0.14(0.04, 0.25) 

    

2-Hydroxyfluorene 2465 0.14(0.05, 0.24) 0.16(0.06, 0.26) 

3-Hydroxyfluorene 2450 0.07(0.00, 0.14) 0.10(0.02, 0.18) 

    

1-Hydroxyphenanthrene 2469 0.20(0.07, 0.32) 0.21(0.10, 0.33) 

2-Hydroxyphenanthrene 2448 0.24(0.05, 0.43) 0.19(0.01, 0.36) 

3-Hydroxyphenanthrene 2444 0.02(-0.11, 0.15) 0.05(-0.06, 0.17) 

    

1-Hydroxypyrene 2461 0.11(0.001, 0.22) 0.11(-0.004, 0.21) 

    

Summed LMW PAH biomarkers 2369 0.13(0.02, 0.23) 0.15(0.04, 0.25) 
+ 

Adjusted for age (years) and sex (Male/ Female). 

* Adjusted for age (years), sex (Male/ Female), BMI (Normal weight/ Overweight/ Obese), race (Non-Hispanic white/ Non-Hispanic black/ all 

others), alcohol drinking (yes/ no), poverty-income ratio, total cholesterol (mg/dL), serum cotinine (ng/mL), diabetes mellitus (absent/ present) and 

systolic blood pressure (mm Hg). 
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Table 6: Linear regression:  Association of urinary OH-PAH levels (ng/g creatinine) and total WBC count (cells/uL). 

     Chemicals  Sample size Log OH-PAH Log OH-PAH 

  Age-sex adjusted change in WBC
+
 Multivariable change in WBC * 

1- Hydroxynaphthalene 2620 176.1(108.8, 243.4) 89.7(8.9, 170.5) 

2-Hydroxynaphthalene 2628 345.5(233.4, 457.6) 229.2(103.2, 355.3) 

    

2-Hydroxyfluorene 2604 396.2(310.8, 481.5) 310.1(190.1, 430.0) 

3-Hydroxyfluorene 2588 305.8(237.5, 347.1) 235.9(135.9, 335.9) 

    

1-Hydroxyphenanthrene 2610 206.9(110.8, 503.0) 132.4(19.5, 245.3) 

2-Hydroxyphenanthrene 2587 354.7(258.1, 451.3) 213.6(117.3, 309.9) 

3-Hydroxyphenanthrene 2585 308.0(204.3, 411.7) 199.8(81.8, 317.7) 

    

1-Hydroxypyrene 2600 283.5(201.4, 365.6) 144.5(53.8, 235.2) 

    

Summed LMW PAH biomarkers 2505 296.4(202.3, 390.44) 186.0(73.0, 299.0) 
+ 

Adjusted for age (years) and sex (Male/ Female). 

* Adjusted for age (years), sex (Male/ Female), BMI (Normal weight/ Overweight/ Obese), race (Non-Hispanic white/ Non-Hispanic black/ all 

others), alcohol drinking (yes/ no), poverty-income ratio, total cholesterol (mg/dL), serum cotinine (ng/mL), diabetes mellitus (absent/ present) and 

systolic blood pressure (mm Hg). 
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Table 7. Logistic regression: Association of urinary OH-PAH levels (ng/g creatinine) and CRP ≥3mg/L 

     Chemicals  Sample size Quartile 1 Quartile 2 Quartile 3 Quartile 4 Log-PAH 

          Multivariable odds ratio  (95% confidence interval)* 

   

1-Hydroxynaphthalene
 
 2480 1 (Referent) 0.94(0.69, 1.28)  1.07(0.75, 1.52) 1.53(1.01, 2.32) 1.08(0.98, 1.20) 

2-Hydroxynaphthalene  2488 1 (Referent) 1.10(0.80, 1.51)  1.22(0.81, 1.82) 1.66(1.10, 2.48) 1.15(1.01, 1.32) 

       

2-Hydroxyfluorene  2465 1 (Referent) 1.09(0.79, 1.50)  1.34(0.95, 1.89) 1.63(1.14, 2.33) 1.22(1.09, 1.37) 

3-Hydroxyfluorene  2450 1 (Referent) 0.97(0.72, 1.31)  1.17(0.87, 1.59) 1.58(1.15, 2.16) 1.14(1.03, 1.25) 

       

1-Hydroxyphenanthrene 2469 1 (Referent) 1.45(1.00, 2.12)  1.84(1.38, 2.46) 1.67(1.25, 2.22) 1.23(1.09, 1.40) 

2-Hydroxyphenanthrene
  
 2448 1 (Referent) 1.23(0.74, 2.05)  1.58(1.00, 2.51) 1.88(1.26, 2.80) 1.25(1.01, 1.54) 

3-Hydroxyphenanthrene  2444 1 (Referent) 1.01(0.71, 1.43) 1.03(0.76, 1.40) 1.21(0.90, 1.64) 1.09(0.96, 1.24) 

       

1-Hydroxypyrene
 
 2461 1 (Referent) 1.24(0.86, 1.78) 1.41(1.09, 1.81) 1.38(0.92, 1.95) 1.14(1.01, 1.29) 

       

Summed LMW PAH biomarkers 2369 1 (referent) 1.09(0.73, 1.61) 1.18(0.80, 1.75) 1.77(1.13, 2.76) 1.16(1.03, 1.31) 

*Adjusted for age (years), sex (Male/ Female), BMI (Normal weight/ Overweight/ Obese), race (Non-Hispanic white/ Non-Hispanic black/ all others), 

alcohol drinking (yes/ no), poverty-income ratio, total cholesterol (mg/dL), serum cotinine (ng/mL), diabetes mellitus (absent/ present) and systolic 

blood pressure (mm Hg). 
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Table 8. Logistic regression: Association of urinary OH-PAH levels (ng/g creatinine) and high total WBC count (cells/uL) at or above the 95
th
 

percentile of the total WBC distribution 

     Chemicals  Sample size Quartile 1 Quartile 2 Quartile 3 Quartile 4 Log-PAH 

 Multivariable odds ratio  (95% confidence interval)* 

  

1-Hydroxynaphthalene  2620 1 (Referent) 1.44(0.78, 2.64)  1.20(0.60, 2.39) 2.18(1.17, 4.05) 1.18(1.02, 1.37) 

2-Hydroxynaphthalene  2628 1 (Referent) 0.70(0.30, 1.59) 0.98(0.49, 1.97) 2.58(1.05, 6.35)    1.33(0.87, 2.03) 

       

2-Hydroxyfluorene  2604 1 (Referent) 1.02(0.44, 2.36)  1.63(0.86, 3.08) 3.07(1.47, 6.43) 1.50(1.17, 1.92) 

3-Hydroxyfluorene  2588 1 (Referent) 1.34(0.62, 2.89)  1.90(0.93, 3.87) 4.15(1.93, 8.92) 1.42(1.14, 1.78) 

       

1-Hydroxyphenanthrene
 
 2610 1 (Referent) 1.04(0.51, 2.13)  1.67(0.90, 3.10) 1.52(0.77, 3.02) 1.20(0.91, 1.58) 

2-Hydroxyphenanthrene
 
 2587 1 (Referent) 1.94(0.89, 4.23)  1.45(0.69, 3.04) 2.25(1.07, 4.75) 1.32(1.03, 1.70) 

3-Hydroxyphenanthrene  2585 1 (Referent) 1.55(0.85, 2.83) 1.19(0.64, 2.20) 1.86(0.92, 3.76) 1.27(0.99, 1.64) 

       

1-Hydroxypyrene  2600 1 (Referent) 1.68(0.80, 3.55)  1.94(0.98, 3.82) 2.27(1.12, 4.61) 1.31(1.03, 1.66) 

       

Summed LMW PAH 

Biomarkers 

2505 1 (Referent) 0.98(0.51, 1.90)  1.03(0.59, 1.80) 2.57(1.27, 5.19) 1.34(1.12, 1.60) 

*Adjusted for age (years), sex (Male/ Female), BMI (Normal weight/ Overweight/ Obese), race (Non-Hispanic white/ Non-Hispanic black/ all others), 

alcohol drinking (yes/ no), poverty-income ratio, total cholesterol (mg/dL), serum cotinine (ng/mL), diabetes mellitus (absent/ present) and systolic 

blood pressure (mm Hg). 
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Table 9. Logistic regression: Association of summed urinary biomarkers of LMW PAHs (ng/g creatinine) and serum inflammatory markers by 

sociodemographic characteristics 

Subgroups Multivariable odds ratio of CRP 

≥3mg/L* 

P interaction Multivariable odds ratio of total WBC count in 

the 95
th
 percentile* 

p-interaction 

     

Gender*  0.001  0.003 

 Female  1.08(0.93, 1.25)  1.21(0.95, 1.55)  

 Male 1.32(1.12, 1.55)  1.90(1.41, 2.56)  

     

Race-ethnicity*  0.29  0.29 

 Non-Hispanic white 1.16(1.00, 1.34)  1.34(1.10, 1.64)  

 All others 1.18(0.98, 1.41)  1.27(0.92, 1.74)  

     

Body mass index
+
  0.55  0.71 

Non obese 1.20(1.01, 1.41)  1.39(1.11, 1.75)  

Obese 1.08(0.91, 1.27)  1.28(1.00, 1.64)  

     

Smoking*  0.27  0.35 

 Never smokers 1.21(0.98, 1.50)  1.21(0.88, 1.68)  

 Former smokers 1.03(0.88, 1.19)  1.15(0.83, 1.59)  

 Current  smokers 1.10(0.81, 1.49)  1.78(1.28, 2.48)  

* Adjusted for age (years), sex (male, female), ethnicity (non-Hispanic white, non-Hispanic black, all others), poverty-income ratio, alcohol drinking 

(yes/no), diabetes (absent/present), BMI (normal, overweight, obese), total cholesterol (mg/dL), serum cotinine (ng/mL) and systolic blood pressure 

(mm Hg), except for stratified variables. 

+ Adjusted for age (years), sex (male, female), ethnicity (non-Hispanic white, non-Hispanic black, all others), poverty-income ratio, alcohol drinking 

(yes/no), diabetes (absent/present), BMI (Kg/m
2
), total cholesterol (mg/dL), serum cotinine (ng/mL) and systolic blood pressure (mm Hg), 
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CHAPTER 2 

The Association of Urinary Polycyclic Aromatic Hydrocarbon Biomarkers and Diabetes 

Mellitus. 

Abstract 

  Diabetes mellitus is a major cause of morbidity and mortality in the United States. Recent 

evidences has suggested that common environmental exposures affecting large sections of the 

population may be a determinant of diabetes risk. Polycyclic aromatic hydrocarbons (PAHs) are 

a group of compounds produced as byproducts of incomplete combustion of organic materials. 

Animal studies have reported a positive association between PAHs and inflammation, and 

subsequent development of diabetes mellitus. Occupational studies have suggested that exposure 

to other aromatic hydrocarbons such as Dioxins, a group of halogenated aromatic hydrocarbons, 

may be associated with diabetes mellitus risk in humans.  In the current study we investigate 

whether background exposure to PAHs is associated with increased risk of diabetes mellitus in 

the general population. We examined participants from the merged National Health and 

Nutrition Examination Survey 2001-02, 2003-2004, and 2005-2006. Our exposures of interest 

were eight urinary monohydroxy polycyclic aromatic hydrocarbons (OH-PAH) and our outcome 

was diabetes mellitus defined as a serum glucose ≥126mg/dL after fasting for a minimum of 8 

hours, glycosylated hemoglobin level ≥ 6.5%, a self-reported physician-diagnosed diabetes, or 

current use of oral hypoglycemic medication or insulin. Compared to participants with summed 

urinary  biomarkers of LMW PAHs in the lowest quartile, the multivariable odds ratio (95% 

confidence interval) of  diabetes mellitus among those in the highest quartile was 2.79 (1.46, 
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5.32). In addition, urinary levels of 2-hydroxynapthalene, 2-hyrdroxyfluorene, and 2-

hydroxyphenanthrene showed statistically significant associations with fasting blood glucose 

(mg/dl) and glycosylated hemoglobin (%), independent of potential confounders. Levels of 1-

hydroxypyrene, the urinary biomarker of the higher molecular weight PAH pyrene, showed a 

less strong association with diabetes mellitus.
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Diabetes mellitus is the seventh leading cause of death in the US.[30] Approximately 

8.3% of the American population has diabetes.[30] Diabetes is a major risk factor for 

cardiovascular disease, kidney failure, non-traumatic lower limb amputations, and retinopathy 

among adults in the US.[2, 3] Recent studies have suggested that common environmental 

exposures affecting large sections of the population may be a determinant of diabetes risk.[13] 

Polycyclic aromatic hydrocarbons (PAHs) are a group of atmospheric pollutants 

composed of aromatic rings.[16, 21, 45] Major sources of PAHs include coal, oil, tar, cigarette 

smoking and grilled/smoked food.[47, 48, 68] PAHs are usually found in gaseous or particulate 

form. Low molecular weight (LMW) PAHs (naphthalene, Fluorene and Phenanthrene) are 

usually found in gaseous form in the ambient air where they are absorbed by inhalation. Higher 

molecular weight PAHs (pyrene) are usually found in particulate form where they can be 

ingested, inhaled or absorbed through the skin.[22, 69]  

Several in-vitro and animal studies have reported a positive association between exposure 

to PAHs, and inflammation with subsequent development of diabetes mellitus.[70] In addition, 

several studies have suggested that exposure to other aromatic hydrocarbons such as Dioxins, a 

group of halogenated aromatic hydrocarbons is associated with diabetes mellitus in humans.[14] 

However, there are no studies investigating the association of lower background exposure to 

PAHs with diabetes mellitus in the general population independent of smoking, a major source 

of PAHs. 

 In this context, we examined the association between eight urinary monohydroxy-PAH 

(OH-PAH) and diabetes mellitus in a nationally representative sample of United States (US) 

adults after adjusting for age, gender, race/ethnicity, body mass index(BMI), serum cotinine, 
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self-reported smoking status and other potential confounders. Because metabolism and health 

effects of exposure to PAHs mixtures were found to be different from that of exposure to 

individual PAHs [39] , we created a summed LMW PAH biomarker variable, indicating a 

graduating level of exposure to multiple LMW PAHs simultaneously. 

 

METHODS 

 

Study population  

The present study is based on merged data from the 2001-2002, 2003-2004 and 2005-2006 

National Health and Nutrition Examination Survey (NHANES). NHANES surveys were 

designed to be nationally representative of the non-institutionalized U.S. civilian population by 

using a complex stratified multistage probability sample.[71] Selection was based on counties, 

blocks, households and individuals within households, and included oversampling of non-

Hispanic Blacks and Mexican Americans in order to provide stable estimates of these groups. 

Data were collected from interviews, questionnaire, examinations, and laboratory tests of 

biological samples. The data have been released for public use in two-year increments since 

1999. 

Out of 31,509 participants in NHANES 2001-2006, there were 3326 participants, 20-65 years 

of age with measured levels of urinary PAH biomarkers. We excluded participants with missing 

information on serum cotinine level or other variables included in the multivariable model. This 

resulted in 2661 participants included in the additive LMW PAH-diabetes analyses. We excluded 
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those on oral hypoglycemic medications or insulin to avoid the confounding effect of 

antidiabetic medications, resulting in 2583 participants included in the added PAH biomarkers-

HbA1c analysis and 1275 participants included in the added PAH biomarkers- fasting blood 

glucose analyses 

Main outcome of interest:  Diabetes mellitus 

 

Plasma glucose concentration was determined by a hexokinase method. One-half of the 

NHANES participants were sampled to attend the morning session. Those participants ages 12 

and older appointed to attend the morning session were instructed to fast at least 9 hours prior to 

their appointment time. Glycohemoglobin measurements for NHANES 2001-2002 and 2003-

2004 were performed by the Diabetes Diagnostic Laboratory at the University of Missouri-

Columbia using Primus CLC330 and Primus CLC 385 (Primus Corporation, Kansas City, MO). 

Glycohemoglobin measurements for NHANES 2005-2006 were performed by the Diabetes 

Laboratory at the University of Minnesota using Tosoh A1c 2.2 Plus Glycohemoglobin Analyzer 

(Tosoh Medics, Inc., San Francisco, CA). Both assays use a High Performance Liquid 

Chromatography (HPLC) system. 

Diabetes was defined based on the guidelines of the American Diabetes Association as a 

serum glucose ≥126mg/dL after fasting for a minimum of 8 hours, glycosylated hemoglobin 

level ≥ 6.5% a self-reported physician-diagnosed diabetes, or current use of oral hypoglycemic 

medication or insulin.[72] 

Main exposure: Urinary levels of monohydroxy-PAH  
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Urine specimens are processed, stored, and shipped to the Division of Environmental 

Health Laboratory Sciences, National Center for Environmental Health, Centers for Disease 

Control and Prevention for analysis. The specific analytes measured in this method are 

monohydroxy-PAH (OH-PAH). By evaluating these analytes in urine, a measurement of the 

body burden from PAH exposure is obtained. The procedure involves enzymatic hydrolysis of 

urine, extraction, derivatization and analysis using capillary gas chromatography combined with 

high resolution mass spectrometry (GC-HRMS).  Detailed specimen collection and processing 

instructions are discussed in the NHANES Laboratory/Medical Technologists Procedures 

Manual (LPM). 

  Eight urinary OH-PAH analytes, 1- hydroxynaphthalene, 2- hydroxynaphthalene, 2-

hydroxyfluorene, 3-hrdroxyfluorene, 1-hydroxyphenanthrene, 2- hydroxyphenanthrene, 3- 

hydroxyphenanthrene and 1-hydroxypyrene, are consistently available in NHANES 2001-2006. 

All analytes were measured in the same unit, ng/L. Urinary OH-PAH were corrected for 

creatinine concentration, a urinary marker of kidney function to adjust for urinary dilution [56]. 

Urinary levels of OH-PAH (ng/L) were divided by urinary creatinine level (mg/dL) multiplied 

by 0.01 i.e.; [(ng/L) ÷ (mg/dL*0.01)], and expressed as nanogram per gram of creatinine (ng/g 

creatinine). 

Exposure measurements 

Information on age, gender, race/ethnicity, alcohol intake, income and cigarette smoking 

were obtained from a standardized questionnaire during a home interview. Alcohol consumption 

was categorized into none and alcohol drinker. Income-poverty ratio was used as a measure of 

the socioeconomic status. The Department of Health and Human Services’ poverty guidelines 
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were used as the poverty measure to calculate this ratio. Smoking status was categorized into 

never smokers (smoked <100 cigarettes during their lifetime), former smokers (smoked ⩾100 

cigarettes during their lifetime and currently not smoking), current smokers (smoked ⩾100 

cigarettes during their lifetime and currently smoking). Information on anthropometric, physical 

and laboratory components were obtained during the medical examination center examination. 

Body mass index was calculated as weight in kilograms divided by height in meters squared. 

Seated blood pressure was measured using a mercury sphygmomanometer according to the 

American Heart Association and JNC7 recommendations.[57] Up to 3 measurements were 

averaged for blood pressure. Total cholesterol was measured enzymatically. Serum cotinine was 

measured by isotope dilution-high performance liquid chromatography atmospheric pressure 

chemical ionization tandem mass spectrometry (ID HPLC-APCI MS/MS). 

Statistical analysis 

Urinary levels of OH-PAH were analyzed both as continuous as well as categorical 

variables. For analysis as continuous variables, urinary levels of OH-PAH were log-transformed 

as a result of their skewed distribution. We created a summed LMW PAH variable by adding the 

urinary levels of the LMW PAHs (naphthalene, fluorene and phenanthrene). 

We ran linear regression models to calculate the multivariable change and 95% 

confidence interval (CI) in HbA1c (%) and fasting plasma glucose (mg/dl) for increasing urinary 

OH-PAH levels. In addition, we ran logistic regression models to calculate the multivariable 

odds ratio (OR) and 95% confidence interval (CI) of diabetes mellitus, for each higher urinary 

OH-PAH quartile by using the lowest quartile as the referent. Variables were included in the 
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model if they satisfied two conditions: first, a plausible association with the main outcome that is 

not causal, and second, if the percent change of the odds ratio after adjusting for the potential 

confounder was over 10 %. Accordingly, final models were adjusted for age (years), sex (men, 

women), ethnicity (non-Hispanic White, non-Hispanic Black, all others), poverty-income ratio, 

alcohol drinking (yes/no), BMI (normal, overweight, obese), total cholesterol (mg/dL), serum 

cotinine (ng/mL) and systolic blood pressure (mm Hg).  

To further ensure that the association was parallel for subgroups, we performed subgroup 

analyses by gender, race/ethnicity, BMI and smoking categories. Sample weights that account 

for the unequal probabilities of selection, oversampling, and nonresponse in the NHANES 

survey were applied for all analyses. Analyses were conducted using SAS (version 9.3, SAS 

Institute, Cary, NC) software. Standard errors were estimated using the Taylor series 

linearization method. 

 

RESULTS 

Table 1 presents the baseline characteristics of the study population. The study 

population was primarily non-Hispanic White (72.2%). Normal weight, overweight, and obese 

BMI categories were equally distributed. Approximately one-half (50.5%) were never smokers, 

and the remainder was former smokers (21.5%) and current smokers (26.0%). The mean of 

serum cotinine level was 74.4 ng/mL. Diabetes was reported in 7.8 % of the population. Table 2 

presents the sample sizes, weighted means and weighted percentile of urinary levels of OH-PAH 

used in the final analysis. 
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Table 3 presents the results of the analyses examining the linear association between 

urinary OH-PAH, and HbA1c (%). Urinary levels of OH-PAH were positively associated with 

HbA1c levels in the multivariable adjusted model; however, 1- hydroxynaphthalene, 1-

hydroxypyrene and summed LMW PAH biomarkers were not statistically significant. Table 4 

presents the results of the analyses examining the linear association between urinary OH-PAH 

and fasting plasma glucose (mg/dl). Urinary levels of OH-PAH were positively associated with 

fasting blood glucose; however, only 2-hydroxynapthalene, 2-hrdroxyfluorene, 2-

hydroxyphenanthrene and 1-hydroxypyene were statistically significant. 

Table 5 presents the odds ratio of the association between urinary levels of OH- PAH and 

diabetes mellitus. Overall, urinary levels of OH-PAH were positively associated with diabetes 

mellitus in the multivariable adjusted models. Using urinary OH-PAH levels as continuous 

variables, the observed associations were still positive. Although positive, the associations 

between urinary 1-hydroxyphenanthrene and 1-hydroxypyrene and diabetes were not statistically 

significant. 

Next, to examine confounding, we performed subgroup analyses by gender, 

race/ethnicity, BMI and smoking categories (Table 6). Overall, higher summed levels of LMW 

PAH biomarkers were positively associated with diabetes within the stratified subgroups. 

Although positive, some of the odds ratio failed to reach the statistical significance. P-interaction 

values for cross-product terms between urinary OH-PAH levels and stratifying variables were all 

>0.10 except for BMI (P=0.03). Urinary 1-hydroxypyrene levels showed a less strong 
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association with diabetes mellitus within the stratified subgroups when compared to LMW 

PAHs. 

DISCUSSION 

In a relatively large multiethnic sample of US adults, we found that higher levels of 

urinary biomarkers of LMW PAHs were positively associated diabetes mellitus, independent of 

potential confounders. In addition, urinary levels of 2-hydroxynapthalene, 2-hrdroxyfluorene, 

and 2-hydroxyphenanthrene showed positive associations with glycosylated hemoglobin and 

fasting plasma glucose in the multivariable adjusted model. In subsequent subgroup analyses, the 

positive association was present within subgroups of gender, race, BMI and smoking status. 

Urinary biomarker levels of the higher molecular weight pyrene showed a less strong association 

with diabetes mellitus. Since LMW PAHs are usually found in gaseous form, absorption of 

PAHs through inhalation from the ambient air may exert the greatest effect on the association 

between PAHs and diabetes when compared to the higher molecular weight PAHs. 

Researchers have examined PAHs directly in the blood and tissues of experimental 

animals; however, these methods have not been widely used in humans due to the high costs and 

the limited clinical significance of testing. The most commonly used biomarkers of PAH 

exposure are urinary OH-PAH biomarkers and PAH-DNA adducts. Urinary OH-PAH 

biomarkers and, to a lesser extent, PAH-DNA adducts have been found to correlate well with 

low background levels of exposure to PAHs.[24] 

The mechanisms underlying the positive association between urinary PAH biomarkers 

and diabetes remain unknown. Several in-vitro and animal studies have reported a positive 
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association between exposure to PAHs and subsequent development of oxidative stress.[28] 

Increasing evidence suggests that oxidative stress plays a major role in the pathogenesis of 

diabetes mellitus.[73] Animal studies have reported a positive association between PAH 

exposure and inflammation.[49] In addition, higher exposure to PAHs was associated with 

elevated levels of C-reactive protein, a serum inflammatory marker in humans.[37] Inflammation 

has been found to strongly associate with insulin resistance and diabetes mellitus.[74, 75] 

Moreover, chronic exposure to PAHs was found to cause intestinal inflammation with 

subsequent increase in the risk of type 2 diabetes in animals.[70] Besides its suggested 

inflammatory effects, several studies suggested that PAHs may cause disruption of the endocrine 

system, with changes in plasma estrogen concentrations in rats upon exposure to PAHs.[32] 

Exposure to PAHs was suggested as a predisposing factor in the etiology of breast cancer by 

disrupting the expression of BRCA-1 transcription in estrogen receptor-positive tumors.[76] In 

the same context, women with a BRCA-1 mutation were found to have a 2-fold increase in the 

risk of developing diabetes.[77] 

The current study has strengths including the relatively large multiethnic sample of US 

adults, the high quality of NHANES laboratory and data collection methods and the ability to 

adjust for potential confounders. In addition, this is the first study to investigate the association 

between PAHs and diabetes in humans adjusting for potential confounders including serum 

cotinine, an objective measure of cigarette smoke exposure. Serum cotinine is considered a more 

precise measure of exposure to cigarette smoking when compared to self-reported smoking 

status[65, 66] and is considered an accurate biomarker of SHS exposure.[67]  
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The study has several limitations. The cross-sectional nature of NHANES does not allow 

us to draw temporal or causal inferences regarding the relationship between PAHs and diabetes 

mellitus. Urinary PAH measurements reflect recent exposure if there are great differences 

between the current exposure sources and the past exposure sources for each subject. However, 

these biases are likely to be non-differential biases, which would minimize any associations 

observed. In addition, because NHANES does not collect information to identify the type of 

diabetes, we cannot not distinguish type 1 and type 2 diabetes. However, we believe that the 

majority of diabetes subjects in our sample have type 2 diabetes mellitus. 

In conclusion, urinary biomarker levels of LMW PAHs were found to be positively 

associated with diabetes mellitus, independent of potential confounders. Both PAH exposure and 

diabetes mellitus are highly prevalent in the United States. Considering the limitations of our 

study, further prospective studies are necessary to determine the causal relationship between 

PAH exposure and the risk of diabetes mellitus.  
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Table 1. Baseline characteristics of the study population 20-65 years of age with measured 

urinary levels of OH-PAH (n=2661) 

Characteristics 
Mean values ± (Std error of mean) or  

Sample size (weighted percentages)  

Female (%) 1354 (49.6) 

Age (years) 41.0 ± (0.32) 

Race/Ethnicity (%)  

  Non-Hispanic Whites 1332 (72.2) 

  Non-Hispanic Blacks 551 (10.6) 

  Others 778 (17.3) 

Education categories (%)  

  Less than high school 637 (14.4) 

  High school 619 (24.7) 

  Above high school 1405 (60.9) 

Below poverty level (%) 461 (12.6) 

Smoking categories (%)  

  Never  1395 (50.5) 

  Former smokers 559 (21.5) 

  Current  smokers 707 (26.0) 

Alcohol drinking (%)  

  No   742 (23.7) 

  Yes  1919 (76.3) 

Body mass index (%)  

  Normal weight (<25.0 kg/m
2
) 824 (34.3) 

  Overweight (25.0-29.9 kg/m
2
) 901 (31.8) 

  Obese (>3vSZ0.0 kg/m
2
) 936 (33.9) 

Serum cotinine (ng/mL) 74.4 ± (3.84) 

Total cholesterol (mg/dL) 201.3 ± (1.33) 

Systolic blood pressure (mmHg) 119.3± (0.47) 

Diabetes (%) 254(7.8) 
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Table 2: Weighted percentiles of OH-PAH (ng/g creatinine) among participants included in the final analysis  

Chemicals Selected percentiles 

 Sample 

size 

Mean  Minimum  10
th
  25

th
  50

th
  75

th
  90

th
   Maximum 

                  

1- Hydroxynaphthalene 2785 41708  50.8  488.7  832.6  1996.3  7120.0  17952   39226536 

2-Hydroxynaphthalene 2794 6263.3  9.2  798.4  1356.5  2885.2  7952.5  16001   404573 

                  

2-Hydroxyfluorene 2767 651.3  2.2  102.8  144.0  245.6  752.1  1740.4   29914 

3-Hydroxyfluorene 2751 334.5  1.2  34.4  52.3  96.7  400.7  1004.8   19084 

                  

1-Hydroxyphenanthrene 2773 214.1  0.7  60.8  89.4  140.9  234.6  370.2   8341.9 

2-Hydroxyphenanthrene 2747 96.6  0.5  22.7  35.7  58.4  101.7  178.4   5069.4 

3-Hydroxyphenanthrene 2745 188.5  0.7  37.6  55.0  90.7  173.8  333.7   20248 

                  

1-Hydroxypyrene 2764 134.4  0.9  22.5  35.8  65.9  136.6  270.4   10014 

                  

Summed LMW PAH biomarkers 2661 50970  508.8  2131.3  3180.1  6207.5  18772  38592   39235478 
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Table 3 Linear regression: Association of urinary OH-PAH (ng/g creatinine) and HbA1c (%) 

     Chemicals  Sample size Age-sex adjusted change (95% C.I) 

in HbA1c+ 

Multivariable adjusted change (95% C.I) 

in HbA1c* 

    

1-Hydroxynaphthalene 2707 -0.01(-0.03, 0.01) 0.01(-0.01, 0.03) 

2-Hydroxynaphthalene 2715 0.02(-0.003, 0.40) 0.03(0.004, 0.06) 

    

2-Hydroxyfluorene 2688 0.01(-0.01, 0.04) 0.05(0.02, 0.09) 

3-Hydroxyfluorene 2672 0.004(-0.01, 0.03) 0.04(0.01, 0.07) 

    

1-Hydroxyphenanthrene 2694 0.02(-0.03, 0.06) 0.05(0.002, 0.10) 

2-Hydroxyphenanthrene 2668 0.05(0.02, 0.08) 0.06(0.02, 0.10) 

3-Hydroxyphenanthrene 2643 0.02(-0.01, 0.05) 0.05(0.01, 0.09) 

    

1-Hydroxypyrene 2685 0.01(-0.02, 0.04) 0.03(-0.01, 0.06) 

    

Summed LMW PAH biomarkers 2583 0.00(-0.02, 0.02) 0.01(-0.01, 0.04) 

*Adjusted for age (years), sex (male, female), race/ethnicity (non-Hispanic White, non-Hispanic Black, all others), poverty income ratio, alcohol 

drinking (yes/no), BMI (normal, overweight, obese), total cholesterol (mg/dL), serum cotinine (ng/mL) and systolic blood pressure (mm Hg). 
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Table 4 Linear regression: Association of urinary OH-PAH (ng/g creatinine) and fasting glucose levels (mg/dL) 

     Chemicals  Sample size Age-sex adjusted change (95% C.I) in 

fasting glucose+ 

Multivariable adjusted change (95% C.I) in 

fasting glucose* 

    

1-Hydroxynaphthalene 1339 -0.08(-0.92, 0.77) 0.50(-0.66, 1.65) 

2-Hydroxynaphthalene 1342 1.11(0.10, 2.11) 1.95(0.26, 3.63) 

    

2-Hydroxyfluorene 1325 0.87(-0.45, 2.19) 2.50(0.28, 4.72) 

3-Hydroxyfluorene 1316 0.29(-0.83, 1.41) 1.75(-0.16, 3.65) 

    

1-Hydroxyphenanthrene 1326 2.14(-0.57, 4.84) 2.88(-0.11, 5.87) 

2-Hydroxyphenanthrene 1317 2.49(0.50, 4.47) 2.82(0.53, 5.11) 

3-Hydroxyphenanthrene 1314 0.95(-0.94, 2.83) 2.15(-0.29, 4.59) 

    

1-Hydroxypyrene 1322 1.34(-0.36, 3.04) 2.15(0.01, 4.30) 

    

Summed LMW PAH biomarkers 1275 0.27(-0.82, 1.36) 1.16(-0.50, 2.83) 

*Adjusted for age (years), sex (male, female), race/ethnicity (non-Hispanic White, non-Hispanic Black, all others), poverty income ratio, alcohol 

drinking (yes/no), BMI (normal, overweight, obese), total cholesterol (mg/dL), serum cotinine (ng/mL) and systolic blood pressure (mm Hg). 
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Table 5: Logistic regression: Association of urinary OH-PAH (ng/g creatinine) and diabetes mellitus 

     Chemicals  Sample 

size 

Quartile 1 Quartile 2 Quartile 3 Quartile 4 P-

Trend 

Log-PAH 

          Multivariable odds ratio  (95% confidence interval)* 

        

1- Hydroxynaphthalene
 
 2785 1 (Referent) 1.40(0.80, 1.05)  1.65(0.99, 2.75) 3.04(1.50, 6.17) 0.003 1.19(1.02, 1.39) 

2-Hydroxynaphthalene  2794 1 (Referent) 2.70(1.55, 4.69)  1.85(1.05, 3.24) 3.25(1.75, 6.04) 0.002 1.40(1.14, 1.72) 

        

2-Hydroxyfluorene  2767 1 (Referent) 0.71(0.43, 1.17)  1.03(0.64, 1.67) 1.37(0.81, 2.31) 0.13 1.22(1.02, 1.47) 

3-Hydroxyfluorene  2751 1 (Referent) 0.77(0.47, 1.26)  1.09(0.71, 1.70) 1.49(0.84, 2.66) 0.09 1.08(0.92, 1.26) 

        

1-Hydroxyphenanthrene 2773 1 (Referent) 1.39(0.83, 2.33) 1.25(0.69, 2.25) 1.43(0.86, 2.37) 0.24 1.14(0.93, 1.41) 

2-Hydroxyphenanthrene
  
 2747 1 (Referent) 1.00(0.60, 1.68)  1.26(0.82, 1.94) 1.87(1.13, 3.10) 0.005 1.26(1.06, 1.51) 

3-Hydroxyphenanthrene  2745 1 (Referent) 1.00(0.65, 1.52) 1.27(0.84, 1.91) 1.28(0.85, 1.94) 0.12 1.21(1.01, 1.44) 

        

1-Hydroxypyrene
 
 2764 1 (Referent) 1.53(0.85, 2.72) 1.83(0.99, 3.39) 1.68(1.00, 2.83) 0.03 1.14(0.96, 1.35) 

        

Summed LMW PAH 

biomarkers 

2661 1 (referent) 1.67(0.97, 2.90) 1.91(1.19, 3.07) 2.79(1.46, 5.32) 0.002 1.26(1.02, 1.56) 

*Adjusted for age (years), sex (male, female), BMI (normal weight, overweight, obese), race (non-Hispanic White, non-Hispanic Black, all others), 

alcohol drinking (yes/ no), poverty-income ratio, total cholesterol (mg/dL), serum cotinine (ng/mL) and systolic blood pressure (mm Hg). 
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Table 6. Logistic regression: Association of urinary OH-PAH (ng/g creatinine) and diabetes mellitus by sociodemographic characteristics 

Subgroups Summed urinary levels LMW PAH biomarkers 1-hydroxypyrene 

 

 

 

Multivariable odds ratio of diabetes 

mellitus 

p-interaction Multivariable odds ratio of diabetes 

mellitus 

p-interaction  

Gender*  0.51  0.27  

 Female  1.22(0.92, 1.62)  0.97(0.73, 1.27)   

 Male 1.38(1.07, 1.78)  1.26(1.002, 1.58)   

      

Race-ethnicity*  0.97  0.45  

 Non-Hispanic White 1.27(1.00, 1.63)  1.13(0.91, 1.40)   

 All others 1.19(0.90, 1.56)  1.18(0.94, 1.48)   

      

Body mass index
+
  0.03  0.19  

Non Obese 1.18(0.85, 1.64)  1.20(0.98, 1.48)   

Obese 1.26(0.96, 1.66)  1.05(0.81, 1.37)   

      

Smoking*  0.73  0.33  

 Never smokers 1.26(1.01, 1.56)  0.99(0.77, 1.28)   

 Former smokers 1.14(0.88, 1.49)  1.32(1.00, 1.75)   

 Current  smokers 1.63(0.96, 2.79)  1.36(0.93, 1.99)   

* Adjusted for age (years), sex (male, female), ethnicity (non-Hispanic White, non-Hispanic Black, all others), poverty-income ratio, alcohol 

drinking (yes/no), BMI (normal, overweight, obese), total cholesterol (mg/dL), serum cotinine (ng/mL) and systolic blood pressure (mm Hg), 

except for stratified variables. 
+ 
Adjusted for age (years), sex (male, female), ethnicity (non-Hispanic White, non-Hispanic Black, all others), poverty-income ratio, alcohol 

drinking (yes/no), BMI (Kg/m
2
), total cholesterol (mg/dL), serum cotinine (ng/mL) and systolic blood pressure (mm Hg), except for stratified 

variables. 
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CHAPTER 3 

The Association of Urinary Polycyclic Aromatic Hydrocarbon Biomarkers and 

Cardiovascular Disease. 

 

Abstract  

Polycyclic aromatic hydrocarbons (PAHs) are potent atmospheric pollutants produced by 

incomplete combustion of organic materials. Several animal studies have reported a positive 

association of PAHs with oxidative stress, inflammation and subsequent development of 

atherosclerosis, a major underlying risk factor for cardiovascular disease (CVD). In addition, 

several occupational studies have reported positive associations between PAH exposure and 

CVD morbidity and mortality. However, it is not clear if lower background exposure to PAHs in 

the general population is associated with CVD. We examined participants from the merged 

National Health and Nutrition Examination Survey 2001-02, 2003-2004, and 2005-2006. Our 

exposures of interest were eight urinary monohydroxy polycyclic aromatic hydrocarbons (OH-

PAH) and our outcomes were self-reported CVD. Urinary levels of PAH biomarkers were 

positively associated with CVD, however only 1-hydroxynapthalene and additive biomarkers of 

low molecular weight (LMW) PAHs were statistically significant. Compared to those with 

summed urinary biomarkers of LMW PAHs in the lowest quartile, the multivariable odds ratio 

(95% confidence interval) of self-reported CVD among those in the highest quartile was 

2.27(1.03, 5.02). Levels of 1-hydroxypyrene, the urinary biomarker of the higher molecular 

weight PAH pyrene, also showed a significant positive association with CVD. In subsequent 
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subgroup analyses, the positive association was found to be present in subgroups of gender, 

race/ethnicity, body mass index and smoking status. This study suggested that background 

exposure to PAHs was positively associated with self-reported CVD in the U.S. general 

population. Further prospective studies with adequate sample size are needed to replicate or 

refute our findings.
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Despite advances in prevention, diagnosis and treatment, cardiovascular disease (CVD) 

remains the number one cause of mortality in United States adults.[1] From a public health point 

of view, identifying novel risk factors for CVD is therefore important. Recent epidemiological 

evidence suggests that exposure to particulate matter present in ambient air is associated with 

increased CVD risk.[78, 79] In addition, there is increasing evidence that smaller particles and 

gases may pose a greater CVD risk possibly through development of atherosclerosis.[80] 

Polycyclic aromatic hydrocarbons (PAHs) are potent atmospheric pollutants that occur in 

oil, coal, and tar deposits, and are produced as byproducts of smoking, indoors and outdoors fuel 

burning and food grilling.[18, 46-48] Active smoking and second-hand smoke (SHS) exposure 

are major sources of PAHs.  PAHs are predominantly found in gaseous or particulate form. Low 

molecular weight (LMW) PAHs are abundant in gaseous form in the ambient air and are usually 

absorbed into the human body through inhalation. The higher molecular weight PAHs are 

usually found in particulate form and therefore, can be ingested, inhaled or absorbed through the 

skin.[22, 69]  

Several animal studies have reported a positive association between exposure to PAHs, 

oxidative stress, inflammation and development of atherosclerosis[28, 30, 50, 51], a major 

underlying risk factor for CVD.[81-83] In addition, occupational studies have reported positive 

associations between exposure to PAHs and CVD morbidity and mortality.[33-36] Only one 

general population based study has investigated the association between PAH exposure and 

CVD, reporting a positive association between PAHs exposure and CVD; however adjustment 

for major confounders known to interact with CVD such as diabetes mellitus and cholesterol 

http://en.wikipedia.org/wiki/Oil
http://en.wikipedia.org/wiki/Coal
http://en.wikipedia.org/wiki/Tar
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levels and stratification by major characteristics of the study population were not reported in this 

paper. [84]  

In this context, using a nationally representative sample of United States (US) adults, we 

examined the association of eight urinary biomarkers of PAHs; specifically, monohydroxy-PAH 

(OH-PAH) and self-reported CVD, independent of serum cotinine, and other potential 

confounders. Since exposure to active smoking and SHS are major sources of PAHs, we sought 

to determine if this relationship was independent of serum cotinine, self-reported smoking status, 

and other potential confounders. Because metabolism and health effects of exposure to PAHs 

mixtures were found to be different from that of exposure to individual PAHs [39] , we 

additionally created a summed LMW PAH biomarker variable, indicating a graduating level of 

exposure to multiple LMW PAHs simultaneously. 

 

METHODS 

Study population 

The National Health and Nutrition Examination Survey (NHANES) consists of a series of 

surveys designed by the National Center for Health Statistics (NCHS) to continuously monitor 

the health status of the U.S. civilian non-institutionalized US population.  The NHANES survey 

includes a stratified multistage probability sample. Selection is based on counties, blocks, 

households and individuals within households, and included oversampling of non-Hispanic 

Blacks and Mexican Americans in order to provide stable estimates of these groups. After all 
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data are collected for a two-year survey cycle, data files are made available for analysis via the 

NHANES website.[85, 86]  

In the current study we merged 2001-2002, 2003-3004 and 2005-2006 data cycles, where 

eight metabolites of PAHs have been consistently measured. Out of 31,509 participants in 

NHANES 2001-2006, there are 11, 512 who were 20-65 years of age. Urinary PAHs were only 

measured in a subsample of NHANES. We further excluded participants with missing 

information on serum cotinine and other covariates that were included in the final model. This 

resulted in 2661 participants in final added LMW PAH biomarkers model and 2764 participants 

in the final 1-hydroxypyrene model. 

 

Outcome: Self-reported cardiovascular disease 

 The participant was considered as being a prevalent CVD case if she/he answered “yes” 

to any of the following questions: ”Has a doctor or other health professional ever told you that 

you have: angina pectoris/ coronary heart disease/ heart attack/ stroke?” (These were 4 separate 

questions with the same wording style). 

 

Main exposure: Urinary levels of OH-PAH 

 Urine specimens were processed, stored, and shipped to the Division of Environmental 

Health Laboratory Sciences, National Center for Environmental Health, Centers for Disease 

Control and Prevention for analysis. Detailed specimen collection and processing instructions are 

discussed in the NHANES Laboratory/Medical Technologists Procedures Manual (LPM) [87]. 
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Vials are stored under appropriate frozen (–20°C) conditions until they are shipped to the 

National Center for Environmental Health for testing.  

Specific analytes measured in NHANES are monohydroxy-PAH (OH-PAH). The 

procedure involves enzymatic hydrolysis of urine, with extraction, derivatization and analysis 

using capillary gas chromatography combined with high resolution mass spectrometry (GC-

HRMS). This method uses isotope dilution with carbon-13 labeled internal standards. Ions from 

each analyte and each carbon-13 labeled internal standard are monitored, and the abundance of 

each ion is measured. The ratios of these ions are used as criteria for evaluating the data. By 

evaluating these analytes in urine, a measurement of the body burden from PAH exposure is 

obtained. 

Seven urinary LMW PAH analytes, 1-hydroxynapthol, 2- hydroxynapthol, 2-

hydroxyfluorene, 3-hyrdroxyfluorene, 1-hydroxyphenanthrene, 2- hydroxyphenanthrene, 3- 

hydroxyphenanthrene and one urinary high molecular weight analyte, 1-hydroxypyrene, were 

consistently available in NHANES 2001-2006. All analytes were measured in the same unit, 

ng/L. Urinary metabolites of PAHs were corrected for creatinine concentration, a urinary marker 

of kidney function.[88] Urinary levels of OH-PAH (ng/L) were divided by urinary creatinine 

level (mg/dL) multiplied by 0.01, i.e., [(ng/L) ÷ (mg/dL*0.01)] and expressed as nanogram per 

gram of creatinine (ng/g creatinine). 

 

Exposure variables 

In NHANES, information on age, gender, race/ethnicity, alcohol intake, income, and 

cigarette smoking were obtained during a standardized questionnaire during a home interview. 
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Information on anthropometric, physical and laboratory components were obtained during the 

medical examination center (MEC) examination. Body mass index was calculated as weight in 

kilograms divided by height in meters squared. Serum total cholesterol was measured 

enzymatically. Seated systolic and diastolic blood pressures were measured using a mercury 

sphygmomanometer according to the American Heart Association and JNC7 

recommendations.[89] Serum cotinine was measured by an isotope dilution-high performance 

liquid chromatography atmospheric pressure chemical ionization tandem mass spectrometry (ID 

HPLC-APCI MS/MS).[87] 

Statistical analysis 

Exploratory data analysis techniques were used to assess the presence of any outliers, and 

the distribution of all continuous variables was examined. For analysis as continuous variables, 

urinary OH-PAH levels were log-transformed as a result of their skewed distribution. We created 

a summed low molecular weight PAH biomarker variable by adding the urinary levels of the 

metabolites of low molecular weight PAHs (Naphthalene, Fluorene and Phenanthrene).  

We ran logistic regression models to calculate the multivariable odds ratio ([OR] and 

95% confidence interval [CI]) of self-reported CVD, for each higher urinary OH-PAH quartile 

by using the lowest quartile as the referent. Variables were included in the model if they satisfied 

two conditions: first, a plausible association with the main outcome that is not causal, and 

second, if the percent change of the odds ratio after adjusting for the potential confounder was 

over 10 %. Accordingly, final models were adjusted for age (years), sex (men, women), ethnicity 

(non-Hispanic White, non-Hispanic Black, all others), poverty-income ratio, alcohol drinking 
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(yes/no), diabetes (absent/present), BMI (normal, overweight, obese), total cholesterol (mg/dL), 

serum cotinine (ng/mL) and systolic blood pressure (mm Hg).  

To further ensure that the association is parallel for subgroups, we performed subgroup 

analyses by gender, race/ethnicity, BMI and smoking categories. Sample weights that account 

for the unequal probabilities of selection, oversampling, and nonresponse in the NHANES 

survey were applied for all analyses. Analyses were conducted using SAS (version 9.3, SAS 

Institute, Cary, NC) software. Standard errors were estimated using the Taylor series 

linearization method. 

 

RESULTS 

Table 1 presents baseline characteristics of the study population. About one half of the 

study population was female (49.6%). The majority of the study population was non-Hispanic 

White (72.2%). The arithmetic mean of serum cotinine was 74.4 ng/mL. Table 2 presents the 

sample size, weighted means and percentiles of individual urinary OH-PAH and added 

biomarkers of LMW PAHs. 

Table 3 presents the results of the analyses measuring the association between urinary 

OH-PAH levels and self-reported CVD. Higher quartiles of 1-hydroxynapthalene and additive 

biomarkers of LMW PAHs showed positive association with self-reported CVD, when compared 

to the lowest quartiles. Using urinary levels of OH-PAH as continuous variables, 1-

hydroxypyrene showed statistically significant positive association with self-reported CVD.  
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Table 4 presents the association between urinary OH-PAH and self-reported CVD by 

major sociodemographic characteristics. The positive association between added urinary 

biomarkers of LMW PAHs and self-reported CVD was present among subgroups of gender, 

race, BMI and smoking. The positive association was stronger among the non-obese subgroup 

when compared to the obese group and in current smokers when compared to never and former 

smokers.  P-interaction values for cross-product terms between added urinary biomarkers of 

LMW PAHs and stratifying variables were above >0.10 except for BMI (P=0.002) and smoking 

(P=0.002). Urinary levels of 1-hydroxypyrene, the biomarker of the higher molecular weight 

PAH pyrene, showed positive association with self-reported CVD within subgroups of gender, 

race, BMI and smoking. Some odds ratio failed to reach the conventional levels of statistical 

significance. P-interaction values for cross-product terms between urinary levels of 1-

hydroxypyrene and stratifying variables were above >0.10 except for race (P=0.01). 

 

DISCUSSION 

Urinary levels of 1-hydroxynapthalene, 1-hydroxypyrene and added metabolites of LMW 

PAH showed positive association with self-reported CVD independent of serum cotinine and 

other potential confounders. The positive association was found to be stronger in the non-obese 

subgroup when compared to the obese subgroup and among the current smoker subgroup when 

compared with the never smoker and the former smoker subgroups. Our results are consistent 

with findings from previous occupational studies which reported positive associations between 

exposure to PAHs and ischemic heart diseases [33, 34] and cardiovascular mortality in 
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occupations that include likely exposure to PAHs such as aluminum smelting, motor vehicle 

operators, tar distillation, and asphalt workers.[35, 36] 

Polycyclic aromatic hydrocarbons are a group of chemicals formed by the incomplete 

combustion organic substances.[16, 21, 45] Exposure to PAHs in the environment is widespread. 

Human are usually exposed to mixtures of PAHs.[22] Due to the high cost of detecting parent 

PAH levels in humans, the most commonly used biomarkers of PAH exposure are urinary OH-

PAH metabolites. Urinary OH-PAH biomarkers were used in the current analyses and have been 

found to correlate well with levels of exposure to PAHs in the general populations. [24] 

Several animal studies have reported positive associations between exposure to PAHs, 

oxidative stress and subsequent development of atherosclerosis[28, 30, 50, 51], a major 

underlying risk factor for CVD.[81-83] Upon exposure to PAHs, detoxification occurs, leading 

to the formation of highly reactive intermediates that can interact with the DNA.[28] 

Accordingly, PAH exposure was found to be associated with high levels of PAH-DNA adducts 

in arteries in rats.[30] These effects of PAHs exposure on plaque buildup in animals were found 

to be dose dependent.[50] Moreover, animal studies have suggested that PAHs might also exert 

their atherogenic effect via stimulation of an inflammatory process involving an increased influx 

of proinflammatory cells into these plaques.[30] The role of inflammation as a risk factor for 

atherosclerosis and CVD development has become well established.[7] Several studies have 

shown a positive association between markers of inflammation such as total white blood cell 

count and serum C- reactive protein and CVD.[90, 91]  
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In the current study, we performed subgroup analysis by gender, race/ethnicity, BMI and 

smoking status categories with the intent to examine confounding. In the post-hoc analyses by 

BMI, the positive association between urinary OH-PAH and self-reported CVD was found to be 

stronger in the non-obese subgroup. PAHs are known to have high affinity for lipid-rich tissues 

such as mammary and adipose tissues. [92]  The suggested mechanism for the association 

between PAH exposure and CVD is through inflammatory PAH-DNA adducts buildup in the 

circulatory system. Persons with relatively higher levels of body fat are likely to exhibit 

relatively lower PAH activity in the circulation because of the rapid absorption of PAHs by fatty 

tissue. [92] Accordingly, higher levels of PAHs in the circulation may be related to higher 

inflammatory reaction and eventually the development of cardiovascular diseases. However, it is 

possible that the differences we observed are due to random variability and not true causal 

differences.  Larger studies are needed to confirm if these observed differences in our study are 

consistently observed. Similarly in subgroup analysis by smoking status, current smokers 

showed stronger association between urinary OH-PAH levels and CVD, when compared to 

never and former smokers. This stronger association may be explained by the fact that smoking 

is a major risk factor for cardiovascular morbidity and mortality. The population attributable risk 

of the smoking of tobacco products on CVD risk has been estimated at 26%.[93] 

The main strengths of our study include inclusion of a representative multiethnic sample, 

adequate sample size, and the ability to adjust for potential confounders. The high quality of 

NHANES data and the rigorous standardized methods used in the data collection add to the 

strengths of the study. The main limitation of our study is the cross sectional nature of NHANES 

which does not allow to draw temporal or causal inferences regarding the relationship between 
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PAHs and self-reported CVD. In addition, our study does not have the data to estimate the 

sources of exposure to PAHs. Urinary PAH measurements reflect recent exposure to PAHs if 

there are great differences between the current exposure sources and the past exposure sources 

for each subject. Finally, CVD was ascertained by self-report. Accordingly, some recollection 

bias may exist. However, these biases are likely to be non-differential biases, which would 

minimize any observed association. 

In summary, in a representative cross-sectional sample of the US population, we found 

that higher levels of urinary OH-PAH were positively associated with self-reported CVD. 

However, only 1-hydroxynapthalene, 1-hydroxypyrene and added biomarkers of LMW PAHs 

were statistically significant. The public health importance of our findings is that there is 

evidence, although limited, that background exposure to PAHs is positively associated with CVD 

in the US general population. If our findings are replicated in future larger prospective studies, 

the population-attributable risk of PAH exposure on CVD risk could potentially be high. 
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Table 1. Baseline characteristics of the study population 20-65 years of age with measured 

urinary levels of OH-PAH (n=2661) 

Characteristics 
Mean values ± (Std error of mean) or  

Sample size (weighted percentages)  

Female (%) 1354 (49.6) 

Age (years) 41.0 ± (0.32) 

Race/Ethnicity (%)  

  Non-Hispanic Whites 1332 (72.2) 

  Non-Hispanic Blacks 551 (10.6) 

  Others 778 (17.3) 

Education categories (%)  

  Less than high school 637 (14.4) 

  High school 619 (24.7) 

  Above high school 1405 (60.9) 

Below poverty level (%) 461 (12.6) 

Smoking categories (%)  

  Never  1395 (50.5) 

  Former smokers 559 (21.5) 

  Current  smokers 707 (26.0) 

Alcohol drinking (%)  

  No   742 (23.7) 

  Yes  1919 (76.3) 

Body mass index (%)  

  Normal weight (<25.0 kg/m
2
) 824 (34.3) 

  Overweight (25.0-29.9 kg/m
2
) 901 (31.8) 

  Obese (>30.0 kg/m
2
) 936 (33.9) 

Serum cotinine (ng/mL) 74.4 ± (3.84) 

Total cholesterol (mg/dL) 201.3 ± (1.33) 

Systolic blood pressure (mmHg) 119.3± (0.47) 

CVD (%) 138(4.9) 
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Table 2: Weighted percentiles of OH-PAH (ng/g creatinine) among participants included in the final analysis  

Chemicals Selected percentiles 

 Sample 

size 

Mean  Minimum  10
th
  25

th
  50

th
  75

th
  90

th
   Maximum 

                  

1- Hydroxynaphthalene 2785 41708  50.8  488.7  832.6  1996.3  7120.0  17952   39226536 

2-Hydroxynaphthalene 2794 6263.3  9.2  798.4  1356.5  2885.2  7952.5  16001   404573 

                  

2-Hydroxyfluorene 2767 651.3  2.2  102.8  144.0  245.6  752.1  1740.4   29914 

3-Hydroxyfluorene 2751 334.5  1.2  34.4  52.3  96.7  400.7  1004.8   19084 

                  

1-Hydroxyphenanthrene 2773 214.1  0.7  60.8  89.4  140.9  234.6  370.2   8341.9 

2-Hydroxyphenanthrene 2747 96.6  0.5  22.7  35.7  58.4  101.7  178.4   5069.4 

3-Hydroxyphenanthrene 2745 188.5  0.7  37.6  55.0  90.7  173.8  333.7   20248 

                  

1-Hydroxypyrene 2764 134.4  0.9  22.5  35.8  65.9  136.6  270.4   10014 

                  

Summed LMW PAH biomarkers 2661 50970  508.8  2131.3  3180.1  6207.5  18772  38592   39235478 
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Table 3: Logistic regression: Association of urinary levels of  OH-PAH (ng/g creatinine)  and self-reported cardiovascular disease 

     Chemicals  Sample size Quartile 1 Quartile 2 Quartile 3 Quartile 4 Log-PAH 

 Odds ratio (95% confidence interval)* 

1-Hydroxynaphthalene 2785 1 (Referent) 1.62(0.85, 3.12)  1.44(0.62, 3.35) 2.78(1.35, 5.72) 1.14(0.99, 1.32) 

2-Hydroxynaphthalene 2794 1 (Referent) 1.32(0.70, 2.48) 1.31(0.64, 2.67) 2.12(0.98, 4.58) 1.26(0.98, 1.63) 

       

2-Hydroxyfluorene 2767 1 (Referent) 1.22(0.62, 2.44)  1.17(0.60, 2.28) 2.04(0.99, 4.25) 1.22(0.99, 1.50) 

3-Hydroxyfluorene 2751 1 (Referent) 0.70(0.42, 1.18)  0.74(0.40, 1.38) 1.46(0.78, 2.76) 1.14(0.94, 1.38) 

       

1-Hydroxyphenanthrene 2773 1 (Referent) 0.46(0.25, 0.86)  0.73(0.41, 1.30) 1.25(0.71, 2.18) 1.07(0.86, 1.34) 

2-Hydroxyphenanthrene 2747 1 (Referent) 0.91(0.49, 1.66)  1.25(0.64, 2.42) 1.42(0.78, 2.60) 1.04(0.86, 1.28) 

3-Hydroxyphenanthrene 2745 1 (Referent) 0.68(0.31, 1.47)  1.27(0.63, 2.55) 1.38(0.74, 2.58) 1.10(0.86, 1.41) 

       

1-Hydroxypyrene 2764 1 (Referent) 1.06(0.53, 2.15)  1.21(0.57, 2.57) 1.87(0.89, 3.94) 1.26(1.04, 1.53) 

       

Summed LMW PAH 

biomarkers 

2661 1 (Referent) 1.24(0.66, 2.34)  1.23(0.57, 2.65) 2.27(1.03, 5.02) 1.17(0.96, 1.42) 

*Adjusted for age (years), sex (male/female), race/ethnicity (non-Hispanic White, non-Hispanic Black, others), alcohol (yes, no), BMI (normal 

weight, overweight, obese), income-poverty ratio, serum cotinine (ng/mL), cholesterol (mg/dL), diabetes (present, absent) and systolic blood 

pressure (mmHg). 
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Table 4: Logistic regression: Association of urinary OH-PAH (ng/g creatinine) and self-reported cardiovascular diseases by sociodemographic 

characteristics 

Subgroups  Summed urinary levels LMW PAH biomarkers 1-hydroxypyrene 

 Multivariable odds ratio of CVD p-interaction  Multivariable odds ratio of CVD p-interaction 

Gender*  0.64  0.27 

 Male  1.24(0.88, 1.75)  1.28(1.01, 1.64)  

 Females  1.11(0.92, 1.34)  1.25(0.89, 1.73)  

     

Race-ethnicity*  0.41  0.01 

 Non-Hispanic whites 1.18(0.94, 1.49)  1.35(1.08, 1.69)  

 All others 1.14(0.81, 1.60)  1.03(0.76, 1.41)  

     

Body mass index
+
  0.002  0.26 

Non obese 1.43(1.13, 1.82)  1.39(1.05, 1.82)  

Obese  1.05(0.83, 1.33)  1.15(0.90, 1.47)  

     

Smoking*  0.002  0.15 

Never smokers 1.21(0.93, 1.56)  1.06(0.72, 1.57)  

Former smokers 0.77(0.43, 1.38)  1.14(0.80, 1.63)  

Current smokers 2.59(1.29, 5.19)  1.79(1.06, 3.02)  

* Adjusted for age (years), gender (male/female), race/ethnicity (non-Hispanic White, non-Hispanic Black, others), alcohol intake (yes, no), BMI 

(normal weight, overweight, obese), income-poverty ratio, serum cotinine (ng/mL), cholesterol (mg/dL), diabetes (present, absent) and systolic 

blood pressure (mmHg) except stratified variables 

+ Adjusted for age (years), gender (male/female), race/ethnicity (non-Hispanic White, non-Hispanic Black, others), alcohol intake (yes, no), BMI 

(Kg/m
2
), income-poverty ratio, serum cotinine (ng/mL), cholesterol (mg/dL), diabetes (present, absent) and systolic blood pressure (mmHg). 
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Conclusion  

Cardiovascular disease is the number one cause death and diabetes mellitus is the seventh 

leading cause of death in the US adults. [72] The burden of cardiovascular disease and diabetes 

mellitus is continuing to grow. It has been shown that the traditional risk factors for CVD and 

diabetes may not explain all of the observed risk of these diseases. Environmental pollutants 

have been recently proposed as a novel CVD and diabetes mellitus risk factor in the general 

population. In the current study, urinary biomarkers of the low molecular weight polycyclic 

aromatic hydrocarbons (Naphthalene, Fluorene and Phenanthrene) and to lesser extent the higher 

molecular weight Pyrene  were significantly associated with high serum C-reactive protein, high 

total white blood cell count, and diabetes mellitus independent of serum cotinine, self-reported 

smoking status and other potential confounders. The previous evidence on the association of 

urinary biomarker of polycyclic aromatic hydrocarbons and self-reported cardiovascular disease 

is limited. 

These new results, consistent with previous animal and occupational studies[27], suggest that 

the low background exposure to polycyclic aromatic hydrocarbons may be related to low grade 

inflammation, evident by baseline elevations in serum CRP and total WBC count. The study also 

provides evidence on the associations between low background exposure to polycyclic aromatic 

hydrocarbons and diabetes mellitus and CVD. The mechanism underlying these associations may 

be through chronic low grade inflammation. Low grade inflammation has been implicated in the 

development of atherosclerosis and subsequent development of CVD.[7] Inflammation has been 

also suggested as a risk factor for insulin resistance[6] and subsequent development of diabetes 

mellitus.[8]  
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 Despite the consistency and biological plausibility, the clinical significance of our findings is 

still unknown. Prospective studies are necessary to confirm or refute our findings. Because 

exposure to polycyclic aromatic is widespread in the environment, and due to the high 

prevalence of diabetes and CVD, the population attributable risk due to polycyclic aromatic 

hydrocarbons exposure could be high. Polycyclic aromatic hydrocarbons occur from both natural 

as well as anthropogenic sources. Efforts to decrease the concentration of PAHs in the ambient 

air can be rewarding. Similar policies, such as anti-smoking bans were associated with a 

significant decrease in the incidence of cardiovascular disease.
95, 96
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