
Graduate Theses, Dissertations, and Problem Reports

2001

Message sequence chart specifications with cross verification Message sequence chart specifications with cross verification

Timothy Shawn Boles
West Virginia University

Follow this and additional works at: https://researchrepository.wvu.edu/etd

Recommended Citation Recommended Citation
Boles, Timothy Shawn, "Message sequence chart specifications with cross verification" (2001). Graduate
Theses, Dissertations, and Problem Reports. 1104.
https://researchrepository.wvu.edu/etd/1104

This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research
Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is
permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license
in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses,
Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU.
For more information, please contact researchrepository@mail.wvu.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The Research Repository @ WVU (West Virginia University)

https://core.ac.uk/display/230483189?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F1104&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd/1104?utm_source=researchrepository.wvu.edu%2Fetd%2F1104&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu

MESSAGE SEQUENCE CHART SPECIFICATIONS WITH CROSS VERIFICATION

by

Timothy Shawn Boles

A thesis submitted to the College of Engineering and Mineral
Resources at West Virginia University in partial fulfillment of

the requirements for the degree of

Master of Science in Computer Science

Approved by : Dr. Bojan Cukic, Ph.D.
Chairperson of Supervisory Committee

Professor Ali Mili, Ph.D.

Dr. Vittorio Cortellessa, Ph. D.

Lane Department of Computer Science & Electrical Engineering

Morgantown, West Virginia

2000

Keywords: Message Sequence Charts, Message Flow Graphs, Formal Specification, Software
Engineering, Formal Verification, Software Verification

Abstract

MESSAGE SEQUENCE CHART SPECIFICATIONS
WITH CROSS VERIFICATION

by Timothy Shawn Boles

Chairperson of the Supervisory Committee: Dr. Bojan Cukic
Lane Department of Computer Science & Electrical Engineering at West Virginia University

Current software specification verification methods are usually performed within the context of
the specification method. There is little cross verification, pitting one type of specification
against another, taking place. The most common techniques involve syntax checks across
specifications or doing specification transformations and running verification within the new
context. Since viewpoints of a system are different even within programming teams we
concentrate on producing an efficient way to run cross verification on specifications, particularly
specifications written with Message Sequence Charts and State Transition Diagrams.

In this work an algorithm is proposed in which all conditional MSCs are transformed into an
algebraic representations, Message Flow Graphs and by stepwise refinement, a Global State
Transition Graph is created. This GSTG has all the properties of a State Transition Diagram and
therefore can be analyzed in conjunction with the original STD.

 iii

TABLE OF CONTENTS

1. Introduction... 1
1.1 Background .. 1

1.2 Message Sequence Charts... 4
1.3 State Transition Diagrams.. 5

1.4 Objectives... 6
1.5 Focus ... 6
2. Software Engineering... 7
2.1 Bridge Building vs. Software Development... 7
2.2 How Far Have We Come?.. 7
2.3 How Much Does This Cost?.. 8
2.4 This is Not Bridge Building. ... 8
2.5 The Evolving Software System. ... 9
2.6 The Three Phases of Software Engineering ..10
2.7 Models of Software Engineering ...10

2.7.1 Classical Process Models ..11
2.7.2 Evolutionary Process Models..12

2.8 Problem Analysis Techniques ..14
2.8.1 Functional Oriented Techniques ..15
2.8.2 Information Oriented Methods ..15
2.8.3 Object Oriented Methods..16

3. Introduction...17
3.1 Background ..17
3.2 The Basics of a STD...17
3.3 Beyond the Basics ...18

3.3.1 State Transition Tables ...18
4. Message Sequence Charts..22
4.1 Background ..22
4.2 Basics of Message Sequence Charts ..23

4.3 Beyond the Basics..24
4.3.1 Conditions...26
4.3.2 Standard Message Flow Diagram ...26
4.3.3 MSC-Composition/MSC-Decomposition ...27
4.4 Message Sequence Charts Vs. Message Flow Graphs29

5. Message Flow Graphs..30
5.1 Description..30
5.2 Simple Message Flow Graphs ...31
5.3 Message Flow Graph Definition ..33
5.4 The Translation of Message Sequence Chart to Message Flow Graph33
5.5 MFG to a pbMFG ..36
5.6 MFGs to Global State Transition Diagrams..36

6. Specifying Evolving Systems ..40

 iv

6.1 Consistency in Software Specifications ...41
6.2 The Methodology ..44
6.3 The Example ..45
6.4 The Corresponding Functional MSC...46
6.5 pbMFG to Global State Transition Graph...47
6.6 Abstraction of the GSTG ..47

7. Concluding Remarks ..49
Appendix A ..52
Appendix B ..54

Derived MSCs...54
Derived cMFGs..55
pbMFG ..57
Global System States ...57
State Transitions...58

Global State Transition Graph ...58

 v

LIST OF FIGURES

Number Page
Figure 1 : MSC of a withdraw from an Automatic Teller Machine...5
Figure 2 : State Transition Diagram for a Pop Machine..6
Figure 3: Prototype Life Cycle..12
Figure 4: Spiral Model ..14
Figure 5: STD of a CD player...18
Figure 6 : STD of CD player with attached transitions ...20
Figure 7 : STD of a CD player with rule expressions ..21
Figure 8 : Basic MSC ..24
Figure 9 : Messaging ...25
Figure 10 : Switching system from [ITU-T Z.120 pg 43-44] ..27
Figure 11 : MSC for Play CD..28
Figure 12 : MSC for Pause CD...28
Figure 13 : Combined MSC for Play CD and Pause CD ..28
Figure 14: Message Flow Graph...32
Figure 15 : Looping MSC ..35
Figure 16 : cMFG..36
Figure 17 : pbMFG...36
Figure 18 : MFG with node labels and messages..37
Figure 19 : Part of an MFG with Branching..38
Figure 20 : Set of Message Flow Graphs..43
Figure 21 : Global State Transition Graph...43
Figure 22 : Abstraction of Global State Transition Graph Figure 21 ...44
Figure 23 : Algorithm Pictured...45
Figure 24 : CD State Transition Diagram with Messages..46
Figure 25 : Abstraction Z’ of CD player GSTG ...48
Figure 26 : Singlar path collapsed...50
Figure 27 : Cycle collapsed ..50
Figure 28 : GSTG with Condition notation...51
Figure 29 : Global State Graph...53
Figure 30 : MSC Initialize ..54
Figure 31 : MSC for CD Found ...54
Figure 32 : MSC for No CD found ...55
Figure 33 : MFG derived from Figure 30 : MSC Initialize..55
Figure 34 : MFG derived from Figure 31 : MSC for CD Found...56
Figure 35 : MFG derived from Figure 32 : MSC for No CD found...56
Figure 36 : pbMFG...57
Figure 37 : CD player GSTG..58

 vi

ACKNOWLEDGMENTS

I wish to thank Dr. Steve Easterbrook for his input and encouragement through the original drafts and

research into cross verification of message sequence charts. I would also like to think Dr. Bojan Cukic

for taking up the mantel of guidance and chairperson of the supervisor committee after Dr.

Easterbrook moved on in his career.

Most of all I need to think my wife, Ginger Boles. Without her encouragement and understanding this

thesis might have never been completed. It is easy in life to get sidetracked and off course when

working on an extended project such as thesis research tends to be. Ginger has been the ruder that

has consistently guided me back to the course of research and completing this work. Thanks for

everything you do.

 1

C h a p t e r 1

INTRODUCTION

To be able to understand the need for cross verification methods, some background information is

needed. This chapter briefly describes the background, outlines the thesis objectives and gives a brief

description of message sequence charts and state transition diagrams .

1. Introduction

1.1 Background
The life cycle of software is a complex issue. The Year Two-Thousand (Y2K) problem emphasized

the attitudes and prejudices of previous as well as current programmers and system development

teams. One of the reasons that Y2K arose is the fact that the system programmers/designer did not

conceive that their application would live into the twenty first century. Their view of the life-cycle of

the system was one that lived and died within a set time frame. We now know that systems continue

to live and grow in a prolonged if not infinite life. Systems are not stagnant. They grow with time.

With growth, a system will be updated to incorporate new functions and some older ones to be

deleted or at least modified. In other words the requirements of a system change. One of the goals of

this thesis is to provide a method for comparing/verifying the specifications of the new functions

against the original specification.

System development goes through many phases. One possibility for the sequence of phases follows:

The first phase is a high-level analysis and requirement specification. This high-level specification

describes the required functionality of the system. The next phase is the design phase, which takes an

abstract specification of the design and refines it towards the implementation. Once the

implementation is complete the final phase before deployment is testing. In the early years of software

development deployment was thought of as the final phase of software development. Now the

systems live and grow beyond the initial deployment with patches, updates and new versions

 2

continuously being released. These large continuously evolving software projects often have a myriad

of people developing specifications for the project. These specifications are often written in different

forms. The methodology within this thesis will provide a means for verifying two of these different

forms of specifications against each other.

The requirements of a system often start as natural language description of a problem to be solved.

Writing these specifications in natural language leaves the system open to interpretation. Natural

language is ambiguous and has a tendency to give incomplete information. One way to better

understand and view a problem is by writing the specification in formal languages and/or create non-

ambiguous graphical notation of the requirements. There are many useful techniques for describing a

system and defining requirements. Formal description techniques (FDT), like State Transition

Diagrams (STD), Specification and Description Language (SDL), Structured Analysis and Design

Technique (SADT), Object-Oriented Analysis and Design (OOAD) and Message Sequence Charts

(MSC), have been developed to ensure unambiguous, concise, complete and consistent specifications.

These formal description techniques (FDTs) often allow for some parts of analysis and synthesis

activities in the development life cycle to be automated. The automated processes can be anywhere

from the formal specification of the requirements to the implementation of the system. The validation

of the design specification against formal specification of requirements, the verification of the design

specification, stepwise refinement of formal specification towards implementation, and test case

generation from the formal specification are just a few activities that can be at least partially automated.

[ROBERT]

Structured analysis and design technique (SADT)1TM developed by Doug Ross at SofTech, Inc.

[DAVIS] uses a model to visualize the problem. The model is composed of hierarchy of diagrams.

Each sub-diagram represents some part of the problem space its parent represented. Each diagram is

composed of boxes, arrows and text. Each arrow has a specific role (input, control, output or

mechanism) that is defined by either a letter (I,C,O,M respectively) or its position on the box (left, top,

right, bottom respectively). The arrows represent data control flow between parts of a system.

1 SADT is a registered trademark of SofTech, Inc.

 3

Structured analysis and system specification (SASS) developed by Tom DeMarco [DAVIS], is a pure

top-down technique like SADT. The analyst starts by representing the system in a context diagram

showing all system inputs and outputs and repeatedly refining the system with more and more detailed

data flow diagrams (DFD). The notation finally decomposes into the physical and logical DFD.

Object-oriented problem analysis has its roots in the language Smalltalk. Object-oriented approaches

stress the definition and refinement of objects in the real world and classes of objects in the real world.

Objects are �an encapsulation of attributes and exclusive services, an abstraction of the something in

the problem space, with some number of occurrences in the problem space� [COA89a]. A class of

objects can be thought of as an abstraction that represents one or more objects or other classes of

objects. Each object possesses attributes and inherits the attributes of classes of which they are

members.

Message Sequence Charts are widely used in the telecommunications industry to capture requirements.

In comparison to the SASS and SADT, MSC can be comprised of a hierarchy of diagrams. As with

Object-Oriented analysis, the concentration is on individual entities. In contrast to SASS and SADT,

which are interested in general data flow, MSCs are used to capture explicitly the interactions and the

message exchange between processes. MSCs are being used in Object-Oriented analysis to describe

the communication between objects/processes.

Often many different formal description techniques are used to develop the specifications of a system.

Consistency among these specifications must be verified. One method to ensure the consistency of

FDTs is to develop one specification from another. Robert et. al. take this approach in [ROBERT]

where a basic message sequence chart (bMSC) is translated into an SDL specification. This translation

can be done by translating the MSCs into an intermediate representation as a state transition diagram

(a finite state machine) and applying a component based synthesis algorithm to complete the missing

transitions to the SDL [ITO]. The purpose is to ensure consistency between the requirement state,

represented by the MSC, and the design stage, represented by the SDL. This synthesis approach

ensures, by construction, consistency between the SDL specification and the MSC specification; and

no further validation is required [ROBERT].

 4

There are tools available that support development and formal verification of many formal description

techniques (FDTs) . Increasing the power of a verification system can be done by taking one verified

view (i.e. MSC), mapping it to the other view (i.e. SDL), and running verification on it. An example of

this can be found in the telecommunications industry, where tools have been developed that take MSC

and convert it to SDL and vice-versa.

This methodology is most applicable to new systems and produces a new view of the system to be

used in the development process. It tends to lend itself to the view that systems are stagnant and do

not evolve. In this thesis we are concerned with evolving systems that are either under development

or being re-engineered with new functions being added to the system. A development process

includes a complete system with a verified specification, like an STD, and a function to be added to the

system is written in another FDT, like a MSC. In this type of development situation, consistency

between the formal description techniques must be maintained by validating the system specifications

against each other.

The two Formal Description Techniques that we concentrate on in this thesis are Message Sequence

Charts and State Transition Diagrams. Much of the work in the area of comparing MSCs to other

specification languages arises from the telecommunication industry and concentrates on their relation

to the Specification and Description Language. The SDL covers the stimulus behavior/response of

state machines [LeBlanc]. We choose to use state transition diagrams for with the right transformation

algorithm they can be mapped to many other types of specifications including SDLs. This section

briefly explains Message Sequence Charts and State Transition Diagrams and gives some examples of

their use. A more through description is included in later chapters.

1.2 Message Sequence Charts
Message Sequence Charts are an easy and intuitive way of describing the behavior of a system by

viewing the interaction between the system and its environment [ANDERSSON]. A MSC essentially

consists of set of instance (i.e. Processes) that run in parallel and exchange messages in a one-to-one,

asynchronous fashion (see Figure 1). Instances can individually execute internal actions, use timers to

enforce timing constraints, create and terminate instances of processes. The messages are presented in

an easy way using message sequence charts (see Figure 1). In these charts, the arrows represent

 5

messages, the vertical lines are time axes and the boxes on top represents the instances (Processes) of

the system or the environment.

Figure 1 : MSC of a withdraw from an Automatic Teller Machine

There are three major ways in which MSCs are used [LEUE 1]:

1. To visualize actual system execution, during debugging and program understanding

2. As a Language to document early design decisions

3. Document test cases or functional-validation criteria that an implementation must satisfy

1.3 State Transition Diagrams
Many of the formal description techniques (FDTs) are really just extended finite state machines. Many

FDTs like the specification language SDL, already have algorithms developed to transform them into

finite-state machines which are in essence State Transition Diagrams (STDs). A STD consists of states

of a system and the events in the systems that cause transitions between those states. A simple STD

for a Pop Dispensing machine can be seen in the Figure 2. The states are represented by circles and

the labeled arcs between states represent potential transitions between states they span.

 6

Figure 2 : State Transition Diagram for a Pop Machine

1.4 Objectives
System development methodologies for incremental specifications, often involve trying to integrate the

specification for a new section with the previous specification. In order to assure the correctness of a

system there has to be a way of checking consistency between the new specification and the previous

ones. In addition often during system development more than one type of specification is used to

design the system. In the telecommunication industry many development processes involve using

MSCs and some other FDT (like SDLs), both which can be broken down into a finite-state machine.

The objectives of this paper are to describe situations where current techniques are inadequate.

Describe an algorithm that allows incremental specification of a system by ensuring the consistency

between message sequence charts and state transition diagrams.

1.5 Focus
This thesis does not attempt to propose a complete method for system specification. The thesis only

outlines a method to incremental specification of a system using Message Sequence Charts and State

Transition Diagrams.

 7

C h a p t e r 2

SOFTWARE ENGINEERING

In order to understand the need for cross verification of specifications some background information

on past and current engineering methods need to be presented. This chapter draws parallels and

contrasts between software engineering techniques and other engineering disciplines.

2. Software Engineering

2.1 Bridge Building vs. Software Development
Comparing bridge building and software development is the premise of a book written by Alfred

Spector in 1986 [STANDISH]. Normally bridges are built on-time, on-budget and do not fall down.

Software development usually is not on-time or on-budget and has a tendency to fail. Naively, one

could spot the nearly 3,000 years of experience in bridge design and only approximately 50 in software

design as the major difference. However there are many other reasons why bridge construction is able

to do so well and software development does not. The design for building a bridge is extremely

detailed and frozen, the contractor has little flexibility in changing the specifications. In software

development, design specifications have a tendency to change with the contractor adding new

functions or deciding to take advantage of new technology. Some bridges do fail and when this

happens, it is investigated and a report is written on the reasons for the collapse. People study this

report and try not to make the same mistakes. In software development the same mistakes are made

over and over again, because when software fails it is covered up, ignored, and/or rationalized.

2.2 How Far Have We Come?
How far have we come in about a half a decade of building up software engineering practices?

Clemetine was a lunar satellite set into orbit by NASA and DoD. In 1994, the United States of

America�s Department of Defense (DoD) used rigorous and state-of-the-art software engineering

 8

techniques to ensure the correctness of the Clementine project. In support of the space-based missile

defense system, a major part of the Clementine mission was to validate and test the systems target

software. Clementine was launched successfully and running in orbit, an instruction to fix the moon

focus in sight was executed. This command revealed a bug in the real-time software and the program

caused the spacecraft to fire off its maneuvering thrusters continuously for 11 minutes. The satellite

was then out of fuel and spun widely off into space [ANDERSSON].

It seems that even after about a half a decade we still need to improve our �state-of-the-art� software

engineering practices.

2.3 How Much Does This Cost?
Research by Standish Group in 1995 shows that 31.1% of projects started are canceled before they are

completed. The same study showed that 53% of projects will cost 189% of their original estimates.

This does not include loss of revenue or equipment from software failure. [STANDISH] One

example of the loss of revenue due to software failure is baggage handler at the new Denver airport.

Though there is a combination of many reasons for the delayed opening of the Denver Airport, the

baggage handler was seen to the public as the main cause of the delay and the $360 million dollars in

estimated lose of revenue. In addition to lose of revenue the problems with the baggage handler

system prompted the installation of an alternative baggage handler. Again it is impossible to state what

percentage of the baggage handler problem was pure mechanical vs. pure software but the

combination cost the company $89 million for the alternative baggage handling system. [GAO2]

The Standish Group estimated that in 1995 American companies and government agencies spent $81

billion for canceled software projects and an addition $59 billion for software projects that were late in

completion. Software projects that were completed on-time and on-budget made up only 16.2% of

the sample.

2.4 This is Not Bridge Building.
When building a bridge the design is frozen, the contractor has little flexibility in changing the

specifications. Software systems are complex, and complex systems are always changing. Dramatic

 9

decreases in cost and the increasingly powerful, smaller-size and more reliable computers have led to

larger and more complex software that only a decade ago would not have been possible. Early

developers of software systems saw their product eventually being debunked by new �better:�

software. But today there is growing recognition that software, like all complex systems, evolves over

a period of time. [PRESSMAN] The development of large and complex (evolving) systems requires

constant changes in the specification. The development of systems takes several years and as a result

some of the early requirements become obsolete, some change and many new requirements must be

added. [VAQUEZ]

In order to do better than developers of the past we must improve and automate the software

development process, while much has been done, analysis and specification of requirements (which is

the only �true� measurement of software success) remain a relatively untouched area. [DAVIS] No

matter what else a system does if it does not meet the customers requirements and expectations then it

is a failure.

Flexibility in the requirements analysis and design phases of the life cycle is a must. The user has to be

able to change requirements and this change is reflected in the analysis, design and coding. There are

several methods of requirements modeling, the choice of methods depends on the system to be

designed, the tools to be used, the system architecture and development method to be used. Each

method has its strengths and weaknesses.

2.5 The Evolving Software System.
The market place continually expands, making a need to constantly adapt existing systems. The

adaptation of current software to meet new needs is called re-engineering. Software systems normally

are re-engineered to incorporate performance improvements or to meet the changing needs of an

organization. A study done by G2 Research Incorporated projected that the computer system re-

engineering market was expected to double between 1995 to 1997. [MILLER] A larger and larger

percentage of information technology resources is being expended on maintaining software systems,

(40 to 80 percent) and less and less developing new systems. [MILLER] The maintenance of software

falls into the third phase of software engineering (see section 2.5) but also encompasses the first two

phases.

 10

2.6 The Three Phases of Software Engineering
It does not matter what you want to build. The project size, application area, or complexity do not

matter either. All work that is associated with software engineering can be categorized into three

generic phases. [PRESSMAN]

! Definition Phase- The key requirements of the system and software are identified. Three major

tasks will occur:

• Software Project Planning

• System or Information Engineering

• Requirements Analysis

! Development Phase � The key methods of building the software are defined. Three specific

technical tasks should occur:

• Software Design

• Code Generation

• Software Testing

! Maintenance Phase � Reapplies the steps of the definition and development phases but does so in

the context of existing software. Four types of change are encountered:

• Correction- Changes the software to correct defects

• Adaptation- Modifications to meet changes in the external environment

• Enhancement- Extending the software beyond its original functional requirements

• Prevention- Changing the computer program so that they can be more easily corrected,

adapted and enhanced.

2.7 Models of Software Engineering
The work can take on many different forms and is referred to as software engineering paradigms. The

choice of the paradigm depends on the nature of the project, the application, the methods and tools to

be used. It does not matter which of the paradigms you choose they all will encompass the three

above mention phases. Of these phases the definition is the most important. It does not matter how

well the code is written, or how much reuse you can get out of the components, or how wonderful the

 11

user interface is, none of this matters unless the software meets the customer expectation and needs

(the requirements).

2.7.1 Classical Process Models
Software engineering is relatively a young discipline at 50 years, if you take into account that things like

bridge engineering has been around for close to 3,000 years. Much of the early models have their root

in other engineering disciplines. These models worked in the previous generation of software

development for a number of reasons. Because of the limit in processor speed, memory available and

cost of the machines, software had a tendency to be small enough and its functionality limited enough

to be written quickly with out much change to the requirements.

The Linear Sequential Model – “waterfall model”

The linear sequential model for software engineering is the oldest and most widely used paradigm for

software engineering. [PRESSMAN] It is modeled after the conventional engineering cycle with six

activities.

1) System information engineering and modeling

2) Software requirements analysis

3) Design

4) Code Generation

5) Testing

6) Maintenance

Prototyping

As cited above, unless you meet the customers needs and expectations nothing else about the software

really matters. What if you have a customer that only has a general idea for the objectives of the

software? Then the prototyping paradigm may be the answer. With prototyping there are four steps,

with step three being cyclic (see Figure 3):

1. Developer and customer meet and define the overall objectives and define what requirements are

known.

2. A quick design of the input approaches and output formats that the customer sees is put together.

 12

3. The Cycle

a. The prototype of the software is quickly developed

b. The customer �drives� the prototype to refine the requirements for the software to be developed.

c. Iteration occurs as the prototype is tuned to the needs of the customer

4. The final product is built.

Figure 3: Prototype Life Cycle

As with any approach this has its problems. The major one with prototyping is that the customer sees

the design and thinks that it is the finished product, unknowing that the guts of the program are not in

place and how much time that it takes to finish. The customer needs to understand from the

forthright that this method is only to gather the requirements and nothing else.

The two classical software engineering models above (Prototype and Waterfall), like bridge engineering

do not take into account the evolutionary nature of complex systems.

2.7.2 Evolutionary Process Models
It is quite noticeable when you go shopping for a new computer to replace your �out-of-date�

computer that the amount of money you spent on the last system will buy you an amazingly more

 13

powerful machine. Dramatic decreases in cost of different computer parts such as memory and

processors, combine with increasingly smaller-size, more powerful and more reliable computers gives

rise to software which only a decade ago would not have been possible. The market place continually

expands, making a need to constantly adapt existing systems. The development of large and complex

(evolving) systems requires constant changes in the specification. The next two models take into

account the evolutionary nature of software. They are iterative and enable software engineers to

develop increasingly more complete versions of the software.

The Incremental Process Model

Rather than producing a product, the prototype model is a requirement elicitation tool. If you

combined the prototype model and the linear sequential model you get an approach commonly called

the incremental model. Every increment gives a deliverable piece of software to the customer.

Generally the increments are more complex and sophisticated as time progresses. Early increments

are the core product that provide capability that serves the user but also provide a platform for

evaluation by the user. The features for later increments may have already be known or developed

from the evaluation of previous increments. This model is particularly useful when staffing is

unavailable for a complete implementation. A smaller staff can produce the first few increments and if

they are well received then additional staff can be added to implement the later stages.

The incremental process model as well as the classical process models generally end with the

completion of the project. Similar to the incremental model is the spiral process model, which can be

used during the whole life of a piece of software.

The Spiral Process Model

The spiral model is divided into a number of section activities. The complexity and details of these

sections depend on the size of the project and those who have set it up. Typically they contain some if

not all the following sections (as can be seen in Figure 4: Spiral Model).

Requirements Development

Planning

Risk Analysis

Engineering

 14

Construction & Release

Customer Evaluation

As the evolutionary process begins, the software engineering team moves around the spiral in a

clockwise direction, beginning at the core. As the project progresses around and out the spiral, the

results are more and more complex. The first circuit may produce the initial specifications, the second

a prototype, each additional circuit may produce more sophisticated versions of the software. Each

pass through the planning sections results in adjustments to the project plan. Cost and schedule are

adjusted based on the feedback derived from the customer evaluation. [PRESSMAN]

Figure 4: Spiral Model

Unlike the classical process models that end when the software is delivered, the spiral model can be

adapted to the whole life of the software. The starting point of a project within the model depends on

the type of project. Where a concept of a project starts at the core and continues through multiple

iterations along the spiral pathway a piece of software that only needs enhancements will start further

out along the axis (see Figure 4: Spiral Model)

2.8 Problem Analysis Techniques
The first step in any of the above mentioned software engineering methods, is to understand the

�problem� to be solved.

Problem analysis involves learning about the problem to be solved, understanding the needs of

potential users, and knowing any constraints (hardware or otherwise) on the solution. There are many

 15

techniques for surveying a problem and gathering the system requirements, the use of which will be

based on the engineers, problem size and type of problem.

2.8.1 Functional Oriented Techniques
A functional model shows what the system is to do, without showing how or when it is done. A

technique that is often used is called Structured Analysis/Structured Design (SASD). Basically SASD

breaks down a system into a network of processes or functions. The processes are connected by data-

flow messages. Each process transforms its input data into output data. The output of one process

can be the input to another. Data flow diagrams (DFDs) are used as graphical representations of the

functional model. The structure of a DFD is a directed graph with three types of nodes (processes,

agents and datastores) and oriented arcs connecting pairs of nodes. As with all notations and

techniques, they are often changed to meet the projects needs giving more details where needed. More

recent versions have added state transitions diagrams (often referred to as control flow diagrams) and

bottom-up analysis driven by event identification.

2.8.2 Information Oriented Methods
Information Engineering (IE) encourages object modeling of data components of a system. A

common definition is ��an interlocking set of formal techniques in which enterprise models, data

models and process models are built up in a comprehensive knowledge base and are used to create and

maintain data-processing systems� [DAAE]. Often many methods are used collectively to develop a

system. Information Engineering can be used for the entire information systems development

process. Between stating the business goals and using the production system are steps that focus on

business processes, (technical) design, construction and transition to the new system. Many parts of

the design and construction stages can be automated by the use of CASE tools. Information

Engineering (IE) is an integrated method, with all aspects of planning, analysis, design and

construction of information systems interrelated. Once the business goals and processes are defined

in natural language, specifications are written in FDTs to be a precise, cohesive and complete. The

function specification uses process dependency and action diagrams. Cross-referencing of functions

to entities is provided for and state-transition diagrams explicitly associate event-creating operations

with entities, producing a data oriented specification.

 16

2.8.3 Object Oriented Methods
One description of Object-oriented systems analysis (OOSA) models is as an object relationship

network with subclasses. State-transition specifications are constructed for each object and functions

are modeled with data-flow diagrams. The method produces a composite activity-data model, but is

achieved by attachment of activity to the data model, essentially merging data-flow diagrams with state-

transition models with entities.

 17

C h a p t e r 3

STATE TRANISITION DIAGRAMS

Cross verification of specifications requires that there be at least two different types of
specifications available for reference. Many of the current formal description language techniques
have a finite state machine as their underlying architecture and therefore a state transition diagram
is a natural choice as one of the types of specifications to use. In this chapter we look at the
history of state transition diagrams as well give a detail description.

3. Introduction

3.1 Background
State Transition Diagrams (STD) have been used in the computer industry for many years. They have

gone under various names and are applicable to many tasks. State Transition Diagrams, Harel

Diagrams, State Charts, Transition Networks, State Diagrams, Finite State Machines, and Transition

Diagrams are variants with slightly different semantics. They are used in fields such as natural

language processing, finite automata, compiler construction, lexical analyzer construction and

requirements engineering. The state-transition diagram (STD) indicates how the system behaves in

response to events. To accomplish this, the STD represents the various modes of behavior (called

states) of the system and the manner in which transitions are made from state to state. [PRESSMAN

97]

3.2 The Basics of a STD
A basic STD consists of a finite set of circles connected by arrows (arcs) (see Figure 5). The circles

represent possible states and the arrows the events that cause transitions. To understand what a state-

transition diagram represents we need to define some basic terms and underlining principles. A state is

an observable mode of behavior. A STD indicates how the system moves from state to state. The

movement from state to state is based on events. An event may or may not change the state of the

 18

system. On this CD player (Figure 5) when the door is open, the event of pressing the �Play Button�

has no effect on the system. Therefore it is not shown in Figure 5.

Figure 5: STD of a CD player

3.3 Beyond the Basics
State transition diagrams are used in many object oriented analysis, design and coding methods.

Transition tables are another way to view the same information that is contained within a state

transition diagram and is often used to generate code.

3.3.1 State Transition Tables
A transition table is a two-dimensional array with a row for each state in the transition diagram and a

column for each message (event). The entry found in the mth row & nth column of the table is the

 19

state that would be reach in the transition diagram by leaving state m via arc n. The transition table for

Figure 5 is given in Table 1.

 MESSAGE/EVENT Door Button Power Button Play Button Stop Button

No Power No Power Door Open No Power No Power

Door Closed no CD Door Open No Power No CD No CD

Door Closed with CD Door Open No Power Playing With CD

STA
TE

Door Open No CD : With CD No Power Door Open Door Open

 Playing With CD No Power Playing With CD

Table 1 : Transition Table

This example of a CD Player is non-deterministic, e.g. if in the �No Power� state, the event �power

button� is received, the diagram offers 2 choices (No CD; With CD) for the next state. This non-

determinacy indicates a flaw in the model. The system will need a way of detecting whether a CD is

present. The notation doesn�t help with this issue. This type of problem often occurs when using any

diagramming technique. Situations arise that the technique was not developed to handle. One

possible solution is to expand the diagramming technique to include syntax to overcome the non-

determinacy. One variant of state transition diagrams has conditions attached to the transitions. The

STD of a CD player, Figure 5 is re-diagrammed with this type of notation in Figure 6.

 20

Figure 6 : STD of CD player with attached transitions

As with any modeling technique there are variations, many of which add more information through

symbols or syntax. Some variations display every possible event even if it just returns the system back

to the same state. Although that would explicitly show all possible scenarios it would add visual clutter

and make it harder to see the �important� events. The State Transition Diagramming style

recommended by Roger S. Pressman [PRESSMAN 97], involves having each arrow labeled with a

ruled expression. The top value indicates the event(s) that cause the transition to occur. The bottom

value indicates the action that occurs as a consequence of the event. The non-determinacy found in

the CD player in Figure 5 is over come by adding a new state �Checking for CD� as can be seen in

Figure 7.

 21

Figure 7 : STD of a CD player with rule expressions

There are many diagramming techniques for requirements modeling. Unlike Message Sequence

Charts, there has been no standardization of State Transition Diagrams. It is a necessary part of

requirements modeling to decide what information to display and be consistent through out the

project.

 22

C h a p t e r 4

MESSAGE SEQUENCE CHARTS

The prevalence of the World Wide Web in our culture shows the importance of the

telecommunications industry and its software. One of the most widely used types of specification

within the telecommunications industry is a message sequence chart. This lends it to naturally be one

of the specifications we use in our cross verification. This chapter focuses on the history, description

and a summary of the standardization of Message Sequence Charts as found in ITU-T

Recommendation Z.120 [ITU-T Z.120].

4. Message Sequence Charts

4.1 Background
Specification languages vary in what they describe about a system. Some FDTs describe the process

behavior explicitly, leaving message flows to be inferred. On the other hand MSCs specify explicit

message flow while other process behaviors must be inferred from the specification. MSCs are being

used in many software engineering methodologies and tool-sets, object-oriented methodologies, design

pattern methods, and early life-cycle design analysis of message exchanges. Some tool-sets that use

MSCs are ObjecTime, Cinderallla, ObjectGeode, Ubet and Rhapsody.

Message Sequence Charts have been used for a long time by industry and academia under various

names such as Signal Sequence Chart, Information Flow Diagram, Message Flow and Arrow Diagram.

Message Sequence Charts (MSC) have been standardized by the ITU-T (International

Telecommunication Union Telecommunication Standardization Sector) in recommendation Z.120

[ITU-T Z.120]. This standardization of MSCs makes recommendation Z.120 the authority on the

Message Sequence Charts and their representation. An MSC essentially consists of a set of instance

(i.e. Processes) that run in parallel and exchange messages in a one-to-one, asynchronous fashion.

Instances can individually execute internal actions, use timers to enforce timing constraints, create and

 23

terminate instances of processes. MSCs are used to document system requirements that guide the

system design, describe test cases and scenarios, to express system properties that are verified against

other FDT specifications, visualize sample behavior of simulated system specification and to express

legacy specifications in an intermediate representation that helps in software maintenance and re-

engineering. [ABDALLA 96]

4.2 Basics of Message Sequence Charts
This section summarizes the basics of Message Sequence Charts (MSCs) as found in [ITU-T 120].

Message sequence charts are used for the visualization of the communications between system

components. They are mainly used in specification, simulation and validation of real-time systems, in

particular telecommunication systems. MSCs can be used in connection with other specification

languages, in particular Specification and Description Language (SDL). Often the purpose of using

MSC is to provide a trace language for the specification and description of the communication

behavior of system components and their environment by means of message interchange. Since in the

message sequence chart the communication behavior is presented in a very intuitive and transparent

manner, particularly in the graphical representation, the MSC-language is easy to learn, use and

interpret. In connection with other languages, it can be used to support methodologies for system

specification, design, simulation, testing and documentation.

Due to standardization MSCs may serve as:

1. An overview of a service as offered by several entities;

2. A statement for requirements specification;

3. A basis for elaboration of SDL specifications;

4. A basis for system simulation and validation;

5. A basis for selection and specification of test cases;

6. A specification of communication;

7. An interface specification;

8. A formalization of use cases within object-oriented design and analysis;

A message sequence chart usually only covers a partial behavior. Further cases are generally built on

them and cover exceptional behaviors.

 24

A basic MSC diagram consists of four parts as seen in Figure 8.

1. Instance � The parts of a message sequence chart that interact are instances of entities. An object

with the properties of an entity is an instance of that entity. The instance heading must contain the

entity name, e.g. process name, and may specify the instance name as well. The instance body

contains the ordering of events.

2. Message � The relation between an output and input is called a message. Outputs and inputs

come from either the environment or an instance. A message passed between instances consists

of two events:

A. Message Input

B. Message Output

3. Environment/Gates � Gates represent the interface between the MSC and its environment. Any

message or order relation attached to the MSC frame constitutes a gate.

4. Timer � In MSC�s, you can specify the setting of a timer and the subsequent time-out due to timer

expiration or the subsequent timer reset.

Figure 8 : Basic MSC

4.3 Beyond the Basics
Communication between system components can be described using a Message Sequence Chart. The

Basic Message Sequence Chart in Figure 9 : Messaging defines communication behavior between

 25

instances process_a, process_b, process_c and the environment. An instance has the properties of

being abstract and has observable interactions with other instances or the environment. The MSC has

an instance axis (vertical) for each system component covered. The time along each instance axis runs

from top to bottom, but there is no time correlation between instances. With no global time axis

being assumed, message events with the environment do not have an ordering.

Figure 9 : Messaging

Messaging is represented by an arrow starting with the sending instance and end at the consuming

instance. A very intuitive rule that a message must be sent before it is consumed leads to a generalized

ordering mechanism between instances. In Figure 9 this implies for example MSG_4 can only be

received by Process_a after it has been sent by Process_b and consequently after the reception of

MSG_2 by Process_b. Therefore MSG_1 and MSG_4 are ordered in time, but for MSG_3 and

MSG_4 no order exists. Sine we have asynchronous communication [ITU-T Z.120], it is possible for

MSG_3 to be sent, then send and consume (receive) MSG_4, and finally receive MSG_3. Even with

asynchronous communication there is an imposed ordering upon the system:

Using message inputs [labeled by in(mi)] and output [labeled by out(mi)] together with the transitive closure:

 26

out(MSG_2)<in(MSG_2)

out(MSG_4)<in(MSG_4)

in(MSG_1)<out(MSG_2)<out(MSG_3)<in(MSG_4)

in(MSG_2)<out(MSG_4)

4.3.1 Conditions
A condition describes either a global system state (global condition) referring to all instances contained

in the MSC or a state referring to a subset of instances (non-global condition). The keyword

condition together with the condition name has to be used for each instance to which it is attached.

The keyword shared together with the instance list denotes the set of instances by which the

condition is shared. A global condition is defined by means of the keyword shared all.

The semantics of global conditions, representing global systems states, refer to all instances involved in

the MSC. For each Message Sequence Chart: a) An initial global condition (global initial state), b) A

final global condition (global final state), c) Intermediate global conditions (global intermediate states),

may be specified using the keyword shared all in the textual representation. Graphically global

conditions are global labels on processes axes as can be seen in Figure 10 as the Seizure, Idle and

Talking.

4.3.2 Standard Message Flow Diagram
This example shows a simplified connection setup within a switching system. The example below

shows the graphical representation (Figure 10), of the most basic MSC-constructs:

 27

Figure 10 : Switching system from [ITU-T Z.120 pg 43-44]

4.3.3 MSC-Composition/MSC-Decomposition
Message Sequence Charts enable a system to be defined by looking different scenarios In the following

example the composition of MSCs by means of global conditions is demonstrated. The final global

condition �CD_Playing� of MSC Play CD (Figure 11) is identical to the initial global condition of MSC

Pause CD(Figure 12). This condition allows composition of two MSC charts into a larger more

complete system description (Figure 13).

 28

Figure 11 : MSC for Play CD

Figure 12 : MSC for Pause CD

Figure 13 : Combined MSC for Play CD and Pause CD

As can be seen from the brief synopsis above MSCs are graphical devices used to represent the

sending and receiving of messages between processes within a system. They may serve as:

a) An overview of a service as offered by several entities;

b) A Statement for requirements specification;

c) A basis for elaboration of SDAL specifications;

d) A basis for system simulation and validation;

e) A basis for selection and specification of test cases;

f) A specification of communication;

g) An interface specification;

h) A formalization of use cases within object-oriented design and analysis;

 29

Even with all they have going for them they are of little use for mathematical reasoning. It is necessary

to map these MSCs to an algebraic representation of process control and message flow. The algebraic

representation we are going to use are Message Flow Graphs base on [LEUE 1].

4.4 Message Sequence Charts Vs. Message Flow Graphs

MSCs are graphical devices used to represent the sending and receiving of messages between processes

within a system. They are used for individuals to gain a better understanding of a system�s

specifications, but they are of little use for mathematical reasoning. In order for us to be able to

validate a message sequence chart against a state transition diagram we will have to have an

mathematical expression of the MSC. We can do this by mapping the MSCs to an algebraic

representation of process control and message flow called a Message Flow Graph. The Message Flow

Graphs (MFGs) that we use in this thesis are from [LEUE 4] and will be covered in more detail in

Chapter 5.

 30

C h a p t e r 5

DEVELOPING MESSAGE FLOW GRAPHS

The previous chapter went into detail about message sequence charts and their usefulness in

understanding a system�s specification. The very nature of a message sequence chart does not allow

cross verification against another type of specification. In this chapter we will outline the development

of a message flow graph that is a mathematical representations of a message sequence chart. Message

flow graphs can be manipulated and transformed into other types of expressions and therefore are

useful for cross verification.

5. Message Flow Graphs
In order for us to do any mathematical reasoning on a specification there needs to be an algebraic

representation of the system. MSCs are graphical devices used to represent the sending and receiving

of messages between processes within a system, but they are not mathematical objects. In order to

meet this need of an algebraic notation a Message Flow Graph (MFG) was developed. Message Flow

Graphs (Figure 14) are used as an alternate (mathematical) description of high-level message flow

diagrams like MSCs. The Message Flow Graphs (MFGs) that we use in this thesis are from [LEUE 4]

and are an algebraic representation of process control and message flow for communicating processes.

5.1 Description
A Message Flow Graph (MFG) is a graph representing concurrent processes exchanging messages.

The graph has two types of nodes:

1. send nodes which represent a process sending a message

2. receive nodes which represent a process receiving a message

The graph has two types of edges:

 31

1. next-event edges connect nodes to their successors within a process

2. signal edges connect nodes to nodes in other processes with which they communicate

The essential property of an MFG is that each node is connected by precisely one signal edge to a

unique node in another process. This is not the case with event edges. If a node has more than one

event edge leaving it branching has occurred and the program had to make a choice during code

execution as to which path it is going to take. If a node is on the receiving end of more than one

event edge this means that code execution from different nodes bring the system to the same code

execution, in this manner conditional statements and loops can be represented (see 5.4.2 simple

Message Flow Graphs vs. Conditional Message Flow Graphs). Two requirements set forth in

[LEUE 4] to make an unambiguous formal interpretation are as follows:

Traces are Interleavings. The semantics are a precise determination of which execution traces a

description allows. The interleaving model, in which a trace is an interleaving of all observable

atomic events of the system which is consistent with the linear ordering of events within each

process, from the point of view of a global observer. What this means in essence is that each

process has its own ordering of events that are based upon where they occur on its axis, the

further down the axis the later in time they occur (see 4.3 Beyond the Basics). The global

observer can see all events of a process and all possible combination of events between all

processes. A trace is a possible path through these combinations.

Finite-State Semantics. Finite-state interpretations define the set of global system states, and

alternatively an automaton, whose accepted language is identical with the set of system traces

allowed by the specification. Only finitely many global system control states can be identified

because of the explicit information available in a MFG. The limit on the number of these

states is the size of the cartesian product of the state spaces of the individual processes. The

reader whom is interested in more information on this can review [LEUE 4].

5.2 Simple Message Flow Graphs
Since the sending and receiving of messages are asynchronous the system state is derived by parallel

composition of all the process states. Message sequence charts are representative of the passing of

messages between processes and not the computations done within the processes. The MFG in this

 32

example does not contain conditions (a notion introduced later), we therefore call it a simple MFG.

We define the state of a process as either in a state of receiving a message or sending a message.

A Process State will have the following notation (Pκ,µ, λ):
1. Each process will have a name Pκ where κ is a positive integer.

2. Each process will be in a state of sending (!) or receiving (?) represented by µ.

3. A message λ will be represented by a lower case alpha character.

For example (P1,!,u) represents process P1 in a state of waiting to send a message u. Process P2 in a

state of ready to receive message x can be represented by (P2,?,x). The receiving of a message is

dependent on a message of the same type previously sent but the origin of the received message is not

known.

A System State will be represented by a composition of parallel process states. The initial system
state for Figure 14 is: S0={(P1,!,a)(P2,?,a)(P3,?,b)(P4,?,c)}.

A State Transition Function is represented by <Si,p,Sj> where Si,j are system states and p is the

process state completed.

Figure 14: Message Flow Graph

 33

The representation of a MFG is a graph structure whose nodes are representations of message send

and receive events. The two possible edges in a MFG are next event edges (ne) and signal (sig) edges,

representing explicit relations on the nodes. The solid edge arrows represent the next-event relation,

indicating the next node in the same process and dashed arrows correspond to the signal relation,

indicating from which node and to which node a message is passed.

5.3 Message Flow Graph Definition

Let S,C and X denote arbitrary pairwise disjoint sets, the elements of which we call sending

events, receiving events and extra nodes. Furthermore, let ST and ET denote arbitrary disjoints

sets (also disjoint for S, C and X), whose elements we call signal and event types. We define a

Message Flow Graph as a tuple

),,,,,,,,,,(BottomTopetypeETstypeSTsigneXCS=ℑ

Where),,,(ETetypeneXCS UU is a digraph with node labels and),,,(STstypesigCS U is a
digraph with edge labels satisfying the following conditions.

1. CSsig ×⊆ is a (necessarily bipartitie) bijective relation where)(sigdomainS = and

)(sigrangeC =

2. The set },{)?},({! BottomTopSTET U×= contains the event types (we write !t for (!,t) and ?t for

(?,t)).

3. If the type of a signal is t, then the corresponding send and receive events are of type !t and ?t

respectively: sigba ∈),(then)?)(!)()),(()((tbetypetaetypetbastypeSTt =∧=∧=∈∃

4. Every component of the ne relation graph contains at most one start event:

)'(*))',()(',(eeneeenerangeee =→∈∧∉

This definition comes from [LEUE 4].

5.4 The Translation of Message Sequence Chart to Message Flow Graph

For a simple MSC in graphical form, the mapping is straight forward and the corresponding simple

MFG structure could be regarded as just syntactic sugar. The MSC standard Z.120 defines notions

like instances (the processes� control flows), message output and message input symbols.

 34

• Instances are graphically represented by a vertical line, called instance axis. The intersection of

a departing arrow to an instance axis is an output symbol, and the intersection of an incoming

arrow and an instance axis an input symbol.

Given a MSC in graphical form we define a set of sending events S each element of which

corresponds to a message output symbol and a set of consuming events C each element of which

corresponds to a message input symbol. We call the arrow connecting a message input and a message

output symbol a message symbol. For a simple MSC (sMSC), we identify it with its MFG by

identifying elements of S and C with their graphical MSC representation if they correspond in the

above sense.

5.4.1 Mapping Message Sequence Chart to a Simple Message Flow Graph

Let)()(CSCSne UU ×⊆ denote a next-event relation and let CSsig ×⊆ denote a signal relation

such that neyx ∈),(iff y is a direct successor of x on some instance axis and sigqv ∈),(iff v and q

are connected by a message symbol.

5.4.2 simple Message Flow Graphs vs. Conditional Message Flow Graphs

Simple MFG

An MFG is simple (SMFG) if the following conditions are satisfied:

• There is no branching in the ne relation

• There are no cycles in the ne relation

• There is no self-sending

• All elements in some component are reachable from the start node

• For any signal type, there is a unique sender and a unique receiver process

Conditional MGF
In section 4.3.1 we described MSC conditions as stated in [ITU-T Z.120]. There is a syntactic

composition operation defined in [LEUE 1] which allows MFGs to be �joined� at these conditions.

 35

This composition operation will enable more than one possible joining, which produces the effect of

non-deterministic choice in MFGs. A non-terminating-loop-like behavior can be obtained by writing

the same condition at the beginning of a loop and the end of a loop as can be seen in Figure 15.

Figure 15 : Looping MSC

A loop in an MFG is simply a cycle in the next-event (solid-arrow) relation. This representation

precludes the nodes as representing events, since in a trace of the MFG they may be transverse

multiple times. MFG nodes should be thought of in the manner of statements of a programming

language, which may be executed multiple times, each execution of which is a message-passing event.

Using the MSC specification in Figure 15, the corresponding MFGs with conditions, represented by

the diamond-shaped nodes, is derived in Figure 16. The idea is that control arriving at the condition

may continue in another MFG from a condition node with an identical label, as if the MFGs were

�joined� at these condition nodes. The �unfolding� of the MFGs with conditions into a single structure

(pbMFG), can be seen in figure Figure 17. The composition of cMFGs according to a composition

graph yields a single graph called a pbMFG. Any paths through this pbMFG correspond to system

traces.

 36

Figure 16 : cMFG

Figure 17 : pbMFG

5.5 MFG to a pbMFG

Composition is defined by two cMFGs only. We obtain a pbMFG such as can be found in Figure 17

from making all compositions possible from the cMFGs. The unfolding operation on a set of MFGs

which composes a cMSC with all possible successors, as defined in [LEUE 1], intuitively done by

taking the composition graph and �pluggin in� each actual cMFG (without its initial and terminal

condition nodes) in the appropriate place. The result of this operation is a pbMFG with branching

and cycles, and provides us with a singe finite structure, a pbMFG, corresponding to the original set of

cMFGs.

5.6 MFGs to Global State Transition Diagrams

Sets of Message Sequence Charts and analyses of parallel code yield sets of cMFGs. Using unfolding,

we may represent the set of cMFGs by a single pbMFG. In order to obtain a finite-state automaton

from such a pbMFG, we have to define the global states, the start state and the state transition

 37

function. This triple define the global state transition graph (GSTG). A requirement for this process

is that there must be a finite number of global states [LEUE 1].

5.6.1 Obtaining the Global States, the Start State, and the Transition Relation

The global state of an MFG is determined by the local state of each of the processes, and by the

�state� of each of the messages. Graphically, global states are certain sets of edges of the MFG, and

the transition relation between states is obtained by deleting particular edges from the state and adding

others. As noted before, the next event edges (ne) occurring in a state may be thought of as the set of

positions where control lies in each process, and the signal edges (sig) may be thought of as signals sent

by not yet received. The start state S0={(j,m),(i,n),(k,p),(h,r)} is simply the set of edges leading from TOP

nodes in the graph. In Figure 18, additional syntax has been added to Figure 14 to help clarify the

methodology of obtaining the global states and transition relations.

Figure 18 : MFG with node labels and messages

In this state the event of type !a at node m is enabled, because node m represents a send node. Node

n is not enabled, because the send corresponding to it has not been taken. Since m is enabled, the

 38

event corresponding to it may be taken, i.e. Executed, next to give a new state S1. The triple < S0,m,

S1> will thus be a member of the transition relation. The new state S1 is obtained by omiting the ne-

edge (j,m) and adding the ne-edge (m,e) to the state (to represent the change in location of the �program

counter� of the first process), and adding the sig-edge <m,n> to represent the a signal sent but not

received. In new state S1 ={(m,e),(i,n),(k,p),(h,r),<m,n>} the node n is now enabled. Node n, is a

receive node and as such it requires not only that its �program counter� be at the right position (i.e. a ne-

edge (i,n) with n as second coordinate is in the state), but also the signal has be sent (i.e. a sig-edge

<m,n> with n as second coordinate is also in the state). When the action corresponding to node n is

taken, the edges <m,n> and (i,n) are removed from the state S1, and (n,o) is added to represent the

advancement of the program counter. The resulting state is S2 ={(m,e),(n,o),(k,p),(h,r) }, with transition

relation <S1,n, S2 >. Node o is enabled in S1. To see the complete graph and transition states see

Appendix A.

5.6.2 Enabling and State Transitions for Branching MFGs

Unlike Figure 18 many systems will involve branching MFGs (Figure 19). To accommodate branching

one has to do a little more than in the above example.

Figure 19 : Part of an MFG with Branching

Assume that the graph is a small part of a larger pbMFG, and that a is a send event. All arrows in the

chart belong to the ne relation except for the pair <c,f> which belongs to the sig relation. Consider the

global system state G={(b,a),(b,c)(e,f)}. Send events a & c are enabled. If event c occurs, then the

 39

system will advance the �program counter� by omitting the edge (b,c) from G and adding all outgoing

ne edges of node b, in this case (c,d), to the successor state G�. In addition you must also remove the

possibility of choosing the enabled action represented by a, which represents a choice alternative to the

occurrence of the c event. Hence the edge (b,a) is removed from G as we transit via c to G�. You also

have to represent the sending event x leaves a message in transit, and thus the sig edge <c,f> is added

to G to from the successor state G�.

 40

C h a p t e r 6

CROSS VERIFICATION OF SPECIFICATIONS

The proceeding chapters have described in detail state transition diagrams and message sequence

charts. To be able to do cross verification of these specifications there must be some relationship that

connects them. In this chapter we explore the need for this connecting relationship and what

correlations exist between the two specifications. An algorithm for cross verification is presented for

the development of evolving systems. The algorithm is developed directly from the work of Stephan

Leue [LEUE 1, LEUE 2, LEUE 3, LEUE4] but instead of creating the automaton we take the

abstraction of the GSTG and search for it as a sub-graph of the original State Transition Diagram.

6. Specifying Evolving Systems
The success of a piece of software is not based on its complexity or simplicity. Speed and accuracy of

algorithms within a program do not necessarily determine its success. What truly determines the

success of software is its ability to meet the needs of a customer. The first step in producing software

is to gather its requirements. Once these requirements are gathered they are put together in the form

of a specification. Usually these specifications start as natural language descriptions of a system.

However, there are several methods of writing out the specifications of software in formal language to

lessen ambiguous, inconsistent and incomplete specifications. Formal description techniques (FDT),

like State Transition Diagrams (STD), Specification and Description Language (SDL), Structured

Analysis and Design Technique (SADT), Object-Oriented Analysis and Design (OOAD) and Message

Sequence Charts (MSC) are used daily in the software industry. There are tools available that support

development and formal verification of many of these FDTs . Increasing the power of a verification

system can be done by taking one verified view, mapping it to the other view and running verification

on it. An example of this can be found in the telecommunications industry, where tools have been

developed that will take MSC and convert it to a SDL and vice-versa.

 41

This approach produces a new view of the system to be used in the development process. It tends to

lend itself to the view that systems are stagnant and do not evolve. In this thesis we are concerned

with evolving systems that are either under development or being re-engineered with new functions

being added to the system. This thesis concentrates on a development process where a complete

system has a verified State Transition Diagram and a function is to be added to the system and is

written as a Message Sequence Chart. In this type of development, consistency between the formal

description techniques must be maintained by validating the system specifications against each other.

6.1 Consistency in Software Specifications
In the beginning of computer programming, most software could be developed by a single individual.

With the development of bigger more powerful computers, software has become larger and more

complex. Software development now generally consists of many teams working on individual

modules that are brought together to form the complete software package. With Object Oriented

Analysis and Design teams can work on objects that have a myriad of types of messaging going on

within, but they only need to pass on to the other teams the types of messages the object itself can

receive and send. If this type of information is not consistent across the specification then the

approach will fail. It is obvious to see that if Object A can only receive messages of type {a,b,c} but

Object B is trying to send messages of {x,y,z} to it then the development process is flawed and the

program will not work. The specification and development of objects could be excellent but if TEAM

1�s objects and TEAM 2�s objects do not have the some common grammar there would be no means

of coalescing or verifying them with each other.

6.1.2 Specification Breakdown

When discussing about Message Sequence Charts it is natural to take a look at Object Oriented

Analysis and Design. OOAD deals with the messaging between objects and is often represented by

some type of Message Sequence Chart. In OOAD objects are in essence �Black Boxes� that have the

interfaces to send and receive messages, but hide the inner workings of the object. When designing

the system you are not interested in �how� the object does its work (or the messaging going on inside

the object), where the only the messages it can receive and send. Objects themselves can be made up

of other objects that communicate with each other. Object A could be made up of Object A1 and

Object A2 that communicate with each other.

 42

6.1.3 Message Sequence Charts vs. State Transition Diagrams

Message Sequence Charts depict quite well the communication between processes. They do not show

with what is happening within the processes but only the outside communication. In like manner,

State Transition Diagrams do not show what is occurring within a state but indicates how the system

behaves in response to external events. In order to be able to validate one against the other a

transformation must occur so that they are depicting the same type of behavior. In [LEUE 4] the

process of transforming a MSC into a global state transition graph is described

in fine detail.

6.1.4 Abstraction of Global State Transition Graphs

The derivation method described in [LEUE 4] can produce a very complex GSTG with a conservative

upper bound on the number of states being the size of the cartesian product of the state spaces of the

individual processes. It will be a very special case when there is a one-to-one correspondence

between the GSTG and the STD. A mechanism is needed to be able to relate the GSTG to a STD.

In general what is needed is a less complex version of the GSTG, in a sense a summary. What is

needed is an abstraction of GSTG that has just as much computational power as the GSTG but is less

complex. An abstraction of GSTG A is an GSTG A’ such that the states of A’ are a subset of the

states of A and alphabet of A � is based on sequences of letters, (i.e. Words) from A. What we

propose is a correlation between MSC and STD where the MSC global conditions are a subset of the

states of the STD.

Example of an Abstraction:

The Global State Transition Graph for the Message Flow Graph specifications in Figure 20 is shown

in Figure 21. We can form an abstraction, Figure 22, of the of the GSTG by only showing

information of state sets {S0,S6},{S2},{S11} which are dependent upon conditions

C1={C11,C12},C2={C21,C22} and C3={C31,C32}.

 43

Figure 20 : Set of Message Flow Graphs

Figure 21 : Global State Transition Graph

Definition of Abstraction:

(A’,M,f) is an abstraction of A iff

• M is a mapping of the state set of A into the set of states of A’. (i.e. M picks out a subset of

the states of A which correspond with a particular state of A’)

 44

• f maps the alphabet of A into words representing the alphabet of A’. (i.e. sequence of

transitions among states in A are translated into a transition of A’)

• m(n) is a path from some state in I(s) to some state in I(s’) in A’ iff there is a transition from s

to s’ on n in A.

Figure 22 : Abstraction of Global State Transition Graph Figure 21

In order for specifications to be verified against each other they must have some common

connections. We theorize is that if a correlation is drawn between the global conditions of the MSC

and the states of the STD then the abstraction G’ of the derived GSTG could be verified against the

STD. The most obvious correlation is to have the Global Conditions in the MSC be a subset of the

States in the State Transition Diagram.

6.2 The Methodology
With evolving specifications or even software projects that have several types of specifications there is

a need to validate the specifications against each other. We have been concentrating on message

sequence charts and state transition diagrams because MSCs are widely used within the

telecommunications industry and many formal language descriptions can be transposed into STDs.

 45

Figure 23 : Algorithm Pictured

We assume that a State Transition Diagram (S) exists for a system and that it has been verified. A new

function is to be added to the system and has been specified with Message Sequence Charts. The

MSCs are transformed into Conditional Message Flow Graphs. We then unfold these cMFGs to

create a pbMFG. The pbMFG is the basis for the needed Global State Transition Graph. Taking

into account the Global Conditions as seen in the MSCs and related to the Global State Transition

Graph an abstraction of the GSTG C’ is derived by collapsing paths through the GSTG. Verification

that the function will fit into the original STD is accomplished by searching T for a subgraph C.

6.3 The Example
As an example of this method let us return to the description of a CD Player as outlined in 3.3.1 State
Transition Tables. In Figure 24 the events have been changed to messages so that they can be

related to the message sequence charts that describe the new function is to be added to the system.

 46

Figure 24 : CD State Transition Diagram with Messages

As a natural language description when the Power is turned the following will happen:

A power on automatic play function is to be added to the CD player. When the CD player receives

power it will close the CD player door if it is open and if a CD is present display its stats on the LCD

screen and play the CD. If no CD is present then the CD player will display �No CD� on the LCD

screen.

6.4 The Corresponding Functional MSC
To make the above natural language description clearer and more precise we will use Message

Sequence Charts to show communication between processes. The simple MSCs and their derived

cMFGs that correspond to the above function specification can be seen in Appendix B. Only the

processes that have some type of messaging occurring are included. It is obvious that the entire set of

processes could be added to the graph but this would clutter the graph and make it less readable.

There are two different types of conditions that a process can go through either a global system state

 47

(global condition) referring to all instances contained in the MSC or a state referring to a subset of

instances (non-global condition). Since we are only concerned with the global conditions and their

relation to the states of the STD they are the only ones depicted on the MSCs.

6.5 pbMFG to Global State Transition Graph
Unfolding the cMFG we get the pbMFG as depicted in Appendix B Figure 36. The next step is to

create the state chart depicted by this pbMFG. This process was explained in 5.5 MFG to a pbMFG

and in the example there are branching alternatives that must be taken into account when resolving the

states. We will concentrate on the occurrence of the (No_Power,F). In Appendix B there is a table of

Global System States that can be used in reference to the following dialog. When the program code

represented by F occurs then a choice is made within F as to which program path it takes (i.e. what

message it sends/receives and to/from whom). We are not concerned with how F makes it decision

only that a branching occurs. To indicate that the enabled event (No_Power,F) is taken in S14 we

must eliminate <D,F> and (No_Power,F) as well as add all the out going edges (F,G) and (F,J) giving

us S5. The state transition function therefore looks like < S14,F, S5>. If in S5 the enabled event (F,G)

is taken we must do more than only add the events (G,DoorClose_NoCD) and <G,H>, we must

eliminate the possibility of taking the other enabled events. The edges (A,I), (F,J) and (No_Power,L)

must be eliminated as we move from S5 to S7, < S5, H,S7>. Once the transition function is defined

and the global states are defined we can now create the GSTG as depicted in Figure 25 : Abstraction
Z’ of CD player GSTG.

6.6 Abstraction of the GSTG
The structure of the abstraction depends on global states represented by the global conditions

(No_Power, Checking_For_CD,Door_Close_W_CD, DoorClose_NoCD, Playing_CD) of the MFG.

We are able to collapse pathways through sets of sates and create state sets {S0 }, { S5},{ S6, S10, S11, S9,

S12},{S8},{ S13} respective to the global conditions.

 48

Figure 25 : Abstraction Z’ of CD player GSTG

Alphabet Abstraction of CD player GSTG based on words from the alphabet of GSTG.

A=(!Power_Button,?Power_Button,!Close_Door,?Close_Door,!Hello,?Hello)

B=(!Display(No_CD),?Display(No_CD))

C=(!Display(Stats),!Play_CD,?Play_CD^?Display(Stats))

D=(?Play_CD^?Display(Stats))

In so much that we defined the alphabet for Z’ to be {A,B,C,D} we could have just as easily have

defined it to be {Power_On, CD_Not_Found, CD_Found, Play}. This type of user definition of the

alphabet allows us to make a correspondence between Z’ and the STD. Verification of the system can

now take place by using any practical algorithm (i.e. breadth first search) to search the state transition

diagram for a sub-graph that corresponds to the abstraction graph. If the sub-graph is found then the

verification is complete, otherwise verification has failed.

 49

7. Concluding Remarks
Software systems have become larger and more complex with time. Software engineering methods are

constantly being improved to handle the large and evolving specifications for these types of systems.

There are many different types of specifications that represent varying system attributes.

Telecommunications has become a large part of the software field and often uses Message Sequence

Charts as a specification, along with Specification Description Language. We proposed a method of

verifying MSCs against an arbitrary STD (which a SDL can be transformed into). This method had

much of its basis on the works of Peter Ladkin and Stefan Leue [LEUE 3,LEUE 4]. This method has

several drawbacks and areas where more research needs to be done:

• Global State Transition Graph can quickly become complex (with an upper bound on the

number of states being the cartesian product of the process states).

• Branching in Message Flow Graphs can cause the pbMFG to become complex

• The defining of states for the abstract GSTG which depend on corresponding sets of

states from the GSTG depends on the individual and is not automatic

The algorithm for defining the message flow graphs and global state transition graph are straight

forward and the complexity of them probably can be overcome with brut force (i.e. make a program

that will handle the details.)

The last drawback of defining the states for the abstract GSTG which are dependent upon

corresponding sets of states from the GSTG at this time must have user interaction. There does not

seem to be concrete logic as to how to develop the abstract set of states. Logic can define some of the

states easily. For example when the states only have one path way from C.s to C.s� (see Figure 26 :

Singlar path collapsed), this will easily map to just one set state {{s},{s�}} which can be done

recursively. Where more research is needed is in the case of cycles. If there are cycles within the

GSTG then the user must determine what states make up the set (see Figure 27 : Cycle collapsed).

This might be able to be made automatic but more information would have to be saved within the

GSTG, i.e. where the global conditions lie within relation to the states (see Figure 28 : GSTG with

Condition notation).

 50

In the end user interaction is need. The user must determine which states are end-states, and the

mapping of the alphabet from the abstraction to the messages in the STD. It is noted that this

mapping is not a logical necessity but rather a cognitive one. It makes it easier for the reader to

understand how the specifications are related and verified against each other. It is our opinion that

some user interaction is will always be preferred in order that the cognitive understanding of the cross

verification is solidified.

Figure 26 : Singlar path collapsed

Figure 27 : Cycle collapsed

 51

Figure 28 : GSTG with Condition notation

As with must research it only points you into directions were more research is needed. Some open

questions that our research on cross verification pointed to are the following:

• How much information is retained about conditions within the GSTG?

• How much more information is need to be able to logically choose the set of states for cycles?

• How does the type of communication (synchronous vs asynchronous) effect the GSTG and

the abstraction?

 52

Appendix A
Appendix A shows the derived Gobal System States and transition relations based on MFG in Figure 18. The
Global State Transition graph is then derived from Table 2.

GOBAL STATES By Node Label By event Label

S0={(j,m),(i,n),(k,p),(h,r)} <S0,m,S1> <S0,!a,S1>

S1={(m,e),<m,n>,(i,n),(k,p),(h,r)} <S1,n,S2> <S1,?a,S2>

S2={(m,e),(n,o),(k,p),(h,r)} <S2,o,S3> <S2,!b,S3>

S3={(m,e),(o,q),<o,p>(k,p),(h,r)} <S3,p,S4><S3,q,S5> <S3,?b,S4><S3,!c,S5>

S4={(m,e),(o,q),(p,t),(h,r)} <S4,t,S6><S4,q,S7> <S4,!a,S6><S4,!c,S7>

S5={(m,e),(q,s),<q,r>,<o,p>,(k,p),(h,r)} <S5,p,S7><S5,r,S9> <S5,?b,S7><S5,?c,S9>

S6={(m,e),(o,q),(t,g),<t,s>,(h,r)} <S6,q,S8> <S6,!c,S8>

S7={(m,e),(q,s),<q,r>,(p,t),(h,r)} <S7,t,S8><S7,r,S10> <S7,!a,S8><S7,?c,S10>

S8={(m,e),(q,s),<q,r>,(t,g),<t,s>,(h,r)} <S8,r,S11><S8,s,S12> <S8,?c,S11><S8,?a,S12>

S9={(m,e),(q,s),<o,p>,(k,p),(r,z)} <S9,p,S10> <S9,?b,S10>

S10={(m,e),(q,s),(p,t),(r,z)} <S10,t,S11> <S10,!a,S11>

S11={(m,e),(q,s),(t,g),<t,s>,(r,z)} <S11,s,S13> <S11,?a,S13>

S12={(m,e),(s,f),<q,r>,(t,g),(h,r)} <S12,r,S13> <S12,?c,S13>

S13={(m,e),(s,f),(t,g),(r,z)}

Table 2

 53

Figure 29 : Global State Graph

 54

Appendix B
Appendix B shows the derived MSCs and cMFGs that correspond to the function specified in Section

6.4.

Derived MSCs

Figure 30 : MSC Initialize

Figure 31 : MSC for CD Found

 55

Figure 32 : MSC for No CD found

Derived cMFGs

Figure 33 : MFG derived from Figure 30 : MSC Initialize

 56

Figure 34 : MFG derived from Figure 31 : MSC for CD Found

Figure 35 : MFG derived from Figure 32 : MSC for No CD found

 57

pbMFG

Figure 36 : pbMFG

Global System States
S0={(No_Power,A),(No_Power,F),(No_Power,B),(No_Power,E),(No_Power,L)}

S1={(A,H),(A,I),<A,B>,(No_Power,F),(Power_Up,B),(No_Power,E),(No_Power,L)}

S2={(A,I),(A,H),(No_Power,F),(B,C),(No_Power,E),(No_Power,L)}

S3={(A,I),(A,H),(No_Power,F),(C,Checking_for_CD),<C,E>,(No_Power,E),(No_Power,L)}

S4={(A,I),(A,H),(No_Power,F), (C,Checking_for_CD), (E,D),(No_Power,L)}

S5={(A,I),(A,H),(F,J),(F,G),(C,Checking_for_CD),(D,Checking_for_CD),(No_Power,L)}

S6={(A,I),(J,K),<J,I>,(C,Checking_for_CD),(D,Checking_for_CD),(No_Power,L)}

S7={(A,H),<G,H>,(G,DoorClose_NoCD),(C,Checking_for_CD),(D,Checking_for_CD)}

S8={(H,DoorClose_NoCD),(G,DoorClose_NoCD),(C,Checking_for_CD),(D,Checking_for_CD)}

S9={(A,I),(K,Playing_CD),<K,L>,<J,I>,(C,Checking_for_CD),(D,Checking_for_CD),(No_Power,L)}

S10={(I,Playing_CD),(J,K),(C,Checking_for_CD),(D,Checking_for_CD),(No_Power,L)}

 58

S11={(I,Playing_CD),(K,Playing_CD),<K,L>,(C,Checking_for_CD),(D,Checking_for_CD),(No_Power,L)}

S12={(A,I),(K,Playing_CD),<J,I>,(C,Checking_for_CD),(D,Checking_for_CD),(L,Playing_CD)}

S13={(I,Playing_CD),(K,Playing_CD),(C,Checking_for_CD),(D,Checking_for_CD),(L,Playing_CD)}

S14={(A,I),(A,H),(No_Power,F), (C,Checking_for_CD), <D,F>,(D,Checking_for_CD),(No_Power,L)}

State Transitions

<S0,!Power_Button, S1>,<S1,?Power_Button, S2>,<S2,!Close_Door, S3>,<S3,?Close_Door, S4>

<S4,!Hello, S14>,<S5,!Display(Stats), S6>,<S5,!Display(No_CD), S7>,<S7,?Display(No_CD), S8>

<S6,!Play_CD, S9>,<S6,?Display(Stats), S10>,<S9,?Play_CD, S12>,<S9,?Display(Stats), S11>

<S10,!Play_CD, S11>,<S11,?Play_CD, S13>,<S12,?Display(Stats), S13>,<S14,?Hello, S5>

Global State Transition Graph

Figure 37 : CD player GSTG

59

BIBLIOGRAPHY

[ABDALLA99] M.M. Abdalla, F. Khendek and G. Butler, �New Results on Deriving SDL
Specifications from MSCs�, Proceedings of SDL Forum �99, Elseview Science B. V., R. Dssouli, G.V.
Bochmann and Y. Lahav (eds.), Montreal, Canada, June 21-25, 1999

[ABDALLA96] H. Ben-Abdallah, S. Leue, �Syntactic Analysis of Message Sequence Chart
Specifications�, Electrical and Computer Engineering, University of Waterloo, Technical Report 96-
12, copyright Hanene Ben-Abdallah and Stefan Leue, November 1996

[ANDERSSON] M. Andersson, J. Bergstrand, �Formalizing User Cases with Message Sequence
Charts�, Master Thesis, Department of Communication Systems, Lund Institute of Technology, May
1995

[DAAE] L. Daae, J. Castelein, K.H. Lam, http://panoramix.univ-
paris1.fr/CRINFO/dmrg/MEE98/misop033/#12, viewed: April 9, 2001

[DAVIS] A.M. Davis, �Software Requirements Analysis and Specification�, Prentice-Hall International
Editions, 1990

[GAO] U.S. Government Accounting Office, �Contracting for Computer Software Development �
Serious Problems Require Management Attention to Avoid Wasting Additional Millions�, Report
FGMSD-80-4 November 1979.

[GAO2]U.S. Government Accounting Office, �New Denver Airport: Impact of the Delayed Baggage
System�, RCED-95-35BR October 1994

[ITU-T Z. 100] ITU-T Specification and Description Language (SDL). Recommendation Z. 100, 1992
Geneva

[ITU-T Z. 106] ITU-T Common Interchange Format for SDL. Recommendation Z.106, 2000,
Geneva

[ITU-T Z.120] ITU-T Message Sequence Chart (MSC). Recommendation Z.120, 1996, Geneva

[LEBLANC] Simulation, Verification, and Validation of Models, Verilog White Paper, 1998

[LEUE 1] S. Leue and P.B. Ladkin. Implementing and Verifying MSC Specifications Using
Promela/XSpin. In: J.-C. Grégoire, G. Holzmann and D. Peled (eds.), Proceedings of the DIMACS
Workshop SPIN96, the 2nd International Workshop on the SPIN Verification System. DIMACS
Series Volume 32, American Mathematical Society, Providence, R.I., 1997

http://panoramix.univ-paris1.fr/CRINFO/dmrg/MEE98/misop033/#12
http://panoramix.univ-paris1.fr/CRINFO/dmrg/MEE98/misop033/#12

60

[LEUE 2] S. Leue, �Methods and Semantics for Telecommunications Systems Engineering�, PHD
Thesis, Universitat Bern, January 19, 1995

[LEUE 3] S. Leue, P. Ladkin, �What do Message Sequence Charts Mean?�, Proceedings of the Sixth
International Conference on Formal Description Techniques, North-Holland, 1994

[LEUE 4] S. Leue, P. Ladkin, �Interpreting Message Flow Graphs�, Formal Aspects of Computing,
37(9), January 1995

[MILLER] H. W. Miller, �Reengineering Legacy Software Systems�, Digital Press, 1998

[PRESSMAN] R. S. Pressman, �Software Engineering -A Practitioner�s Approach�, McGraw-Hill
1997.

[ROBERT] G. Robert, F. Khendek, P. Grogono, �Deriving an SDL Specification with a Given
Architecture from a Set of MSCs�, SDL �97: TIME FOR TESTING �SDL, MSC and Trends,
Elsevier Science B.V., 1997

[VAQUEZ] F. Vazquex, �Using Object Oriented Structured Development to Implement a Hybrid
System�, Software Engineering Notes, Vol 18, No. 4, pp 44-53

	Message sequence chart specifications with cross verification
	Recommended Citation

	Introduction
	Background
	Message Sequence Charts
	State Transition Diagrams

	Objectives
	Focus
	Software Engineering
	Bridge Building vs. Software Development
	How Far Have We Come?
	How Much Does This Cost?
	This is Not Bridge Building.
	The Evolving Software System.
	The Three Phases of Software Engineering
	Models of Software Engineering
	Classical Process Models
	The Linear Sequential Model – “waterfall model”
	Prototyping

	Evolutionary Process Models
	The Incremental Process Model
	The Spiral Process Model

	Problem Analysis Techniques
	Functional Oriented Techniques
	Information Oriented Methods
	Object Oriented Methods

	Introduction
	Background
	The Basics of a STD
	Beyond the Basics
	State Transition Tables

	Message Sequence Charts
	Background
	Basics of Message Sequence Charts
	Beyond the Basics
	Conditions
	Standard Message Flow Diagram
	MSC-Composition/MSC-Decomposition
	Message Sequence Charts Vs. Message Flow Graphs

	Message Flow Graphs
	Description
	Simple Message Flow Graphs
	Message Flow Graph Definition
	The Translation of Message Sequence Chart to Message Flow Graph
	Mapping Message Sequence Chart to a Simple Message Flow Graph
	simple Message Flow Graphs vs. Conditional Message Flow Graphs
	Simple MFG
	Conditional MGF

	5.5 MFG to a pbMFG
	5.6 MFGs to Global State Transition Diagrams
	5.6.1 Obtaining the Global States, the Start State, and the Transition Relation
	5.6.2 Enabling and State Transitions for Branching MFGs

	Specifying Evolving Systems
	Consistency in Software Specifications
	Specification Breakdown
	Message Sequence Charts vs. State Transition Diagrams
	Abstraction of Global State Transition Graphs
	Example of an Abstraction:
	Definition of Abstraction:

	The Methodology
	The Example
	The Corresponding Functional MSC
	pbMFG to Global State Transition Graph
	Abstraction of the GSTG

	Concluding Remarks
	Appendix A
	Appendix B
	Derived MSCs
	Derived cMFGs
	pbMFG
	Global System States
	State Transitions

	Global State Transition Graph

