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ABSTRACT 

 

Coconut oil enhancement of conjugated linoleic acid-induced body fat loss and lipolysis in mice 

Siri Manasa Ippagunta 

Dietary conjugated linoleic acid (CLA) causes a body fat loss that is enhanced when mice are fed 
coconut oil (CO) compared to soy oil (SO). The objectives were to determine if CLA feeding 
altered proteins involved in lipolysis. Male mice (n=80; 3 wk old) were fed 7% SO or CO diets 
for 6 wk then 0 or 0.5% CLA for 12d. A body fat index was calculated:  (retroperitoneal (RP) 
+epididymal (EPI) fat pads)*100/body weight. Lipolysis was determined by non-esterified fatty 
acid (NEFA) and glycerol release from EPI & RP explants. The relative expression of perilipin, 
phosphorylated perilipin (P-perilipin), hormone sensitive lipase (HSL), phosphorylated HSL (P-
HSL),  adipocyte triglyceride lipase (ATGL), and adipocyte differentiation related protein 
(ADRP) were determined by western blotting. The body fat index was reduced by both CLA (P 
<0.05) and CO (P <0.001) but there was no interaction. NEFA release was increased by CLA in 
CO-fed mice (2.94 and 8.63 µmol/g; P<0.05) but not in SO-fed mice (1.76 vs 2.26 µmol/g 
tissue). Glycerol release was not affected by CO or CLA. Total perilipin had a main effect of oil 
source, where it was decreased by CO feeding (P < 0.05) but P-perilipin tended to be increased 
by CLA in SO-fed mice and decreased by CLA in CO-fed mice (P=0.08). HSL expression had a 
main effect of oil source where CO feeding decreased the expression (P < 0.05), but P-HSL 
expression wasn’t affected by diet. ATGL expression had a main effect of oil source, it was 
decreased by CO feeding (P < 0.01) but wasn’t altered by CLA. This may indicate that the CLA-
stimulated lipolysis in CO-fed mice is on the decline since P-perilipin, and P-HSL are associated 
with increased lipase activity. ADRP expression wasn’t affected by any diet, suggesting that 
there is no significant de-differentiation of adipocytes in vivo. In conclusion coconut oil enhances 
the anti-obesity effect of CLA and this effect is, at least in part, due to enhanced lipolysis. 
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INTRODUCTION: 

Conjugated linoleic acid (CLA) refers to a group of positional and geometric isomers of 

linoleic acid. The c9, t11 and t10, c12 isomers were found to be the two biologically active 

isomers known to date.  CLA was first discovered as an anti-carcinogen in grilled beef (1).  

Since their initial discovery, CLA was found to have several other health benefits including 

enhancing the immune response (2), reducing atherosclerosis (3-5), and reducing body fat gain 

(6, 7).  The main natural sources of CLAs are lipids in the meat and milk of ruminant animals.  

Dietary linoleic acid (18:2 c9, c12) and α-linolenic acid (18:3 c9, c12, c15) are biohydrogenated 

to stearic acid (18:0), by the fermentative bacteria in the rumen. The first isomerisation results in 

the formation of the c9, t11 isomer, also known as rumenic acid (8).  Further biohydrogenation 

yields vaccenic acid (18:1 t11), and finally stearic acid.   A mix of CLA, vaccenic acid and 

saturated products flow from the rumen and are absorbed from the small intestine.  Ruminants 

and non-ruminants can also synthesize CLA in most tissues from vaccenic acid (18:1 t11) by the 

action of the ∆-9 desaturase (9).  Chemically synthesized CLA has 40-41% of c9, t11 isomer, 43-

45% of t10,c12 isomer and 4-10% of t9,t11/t10,t12  isomers.  The isomer that is the most 

abundant in natural sources is c9,t11 (8).   

The different biological effects of CLA are likely due to the multiple isomers acting 

individually or synergistically. The t10,c12 isomer is the active form in altering the body 

composition while the c9,t11 isomer is more effective in causing an anti-carcinogenic effect (10, 

11).  Both isomers were found to have similar effects on immune responses (2).  The t10,c12 

isomer causes a loss in body fat.  Since CLA has been found to have such a multitude of 

beneficial effects, I am going to further discuss what these effects are and how CLA is able to 

elicit these effects.  Because obesity has been a growing problem in recent years, the emphasis of 
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this discussion will be on how CLA causes alterations in body composition.   
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EFFECTS OF CLA 

Body composition: 

The first study which identified the effect of CLA on body fat showed that, feeding mice 

0.5% CLA (by weight) for 4 wks lowered the percentage of body fat by nearly 60%  and 

increased lean mass without affecting body weight (6).  The water and ash content also increased 

with feeding of CLA.  Further studies indicated that CLA caused a decrease in fat content in 

mice (6, 7), rats (12, 13), hamsters (14) and pigs (15, 16) at doses of 0.5–2 % CLA.  Several 

studies indicated that there was also a decrease in the body weight of mice, along with the 

decrease in body fat (7, 10) while other studies found no effect on weight (12, 13).  Regardless of 

the dietary fat content, CLA caused a reduction in fat deposition in mice (7).  Mice fed either a 

mixture of CLA isomers or the t10,c12 isomer alone had a reduction in body fat and weight 

while those fed the c9, t11 isomer did not differ in their body composition compared to the 

controls (10, 17).  

Despite consistent results of CLA feeding in rodents, CLA consumption in pigs has 

resulted in variable changes in body composition.  Body fat was reduced in some studies (18, 19) 

and was not affected in others (20, 21).  This difference might be due to the duration of feeding 

CLA and also the fat content of the diets.  Pigs fed high fat diets were less responsive to CLA 

when compared to those fed low fat diets (18, 22).   It was also reported that CLA caused an 

increase in the saturated fatty acid, and decrease in unsaturated fatty acid, content of the 

longissmus muscle and belly fat (19, 20). This caused an improvement in meat firmness.  There 

was also an increase in intramuscular fat while there was a decrease in subcutaneous fat (23).  

Hence CLA caused an improvement in pork quality.  
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Conversely, CLA causes a decrease in adipose deposition in lean Zucker rats but an 

increase in obese Zucker rats (12).  These studies indicate that there are differential effects in 

different species and raises a question if CLA supplementation to humans has any adverse effect.   

Also, most of these studies were done in young growing animals so the effect in mature animals 

is not yet clear. 

Results from studies in humans are, like the above animal studies, highly variable.  Some 

studies indicate a reduction in body fat (24, 25) while others show no effect (26, 27).  The studies 

in which there was a decrease in fat mass were those studies in which subjects were 

supplemented with a higher percentage of CLA relative to those studies in which no effects were 

detected.  Whigham et al. (28) performed a meta analysis to analyze the efficacy of CLA as a 

treatment for altering body composition.  They included 20 studies and concluded that CLA does 

cause a reduction in body fat; however, the reduction at a dose of 3.2 g/day of CLA was small.  

Hence, further studies should be conducted to determine if CLA can reduce body fat in humans 

and identify active isomers and doses.  

The fat lowering effect of CLA is enhanced by feeding coconut oil (CO) or fat-free diets 

(29, 30).  Mice fed a 7% CO diet for 6 wks and then supplemented with CLA had a greater 

reduction in body fat compared with mice fed soybean oil (SO) and then supplemented with 

CLA (29).  In addition to being deficient in essential fatty acids, CO is composed of higher 

concentration of short and medium chain saturated fatty acids (12 to 16 carbons) compared to 

SO, which has mostly saturated and unsaturated 18 carbon fatty acids.  Similar results have been 

obtained with fat-free diets (30), indicating that something in SO is counteracting the effect of 

CLA .  The reason for the enhanced effect with CO is not completely known yet, but many 

involve enhanced lipolysis (31). 
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Insulin sensitivity: 

It is well recognized that obesity impairs insulin sensitivity and promotes the risk of Type 

2 diabetes.  However, an initial study with 6 wks old male Zucker (fa/fa) rats showed that a 1.5 

% CLA diet fed for 14 d normalized glucose tolerance in obese rats thus, preventing or delaying 

hyperglycemia (32).  It was thought that CLA acted similar to thiazolidinediones (TZD) by 

binding to peroxisome proliferator activated receptor-γ (PPAR-γ) as it has been reported that 

CLA can induce activation of PPAR-γ to an extent similar to that of TZD and thus, causing a 

reduction in circulating lipids.  CLA was found to have the same effect when supplemented with 

high fat (45% Kcal from fat) diets (33).  Feeding 1% CLA to high-fat fed Sprague Dawley rats 

for 8 wks showed that CLA enhanced glucose tolerance.  There was no difference due to the type 

of isomer.  This decreased insulin resistance may be due to increased fat oxidation as a result of 

increased mRNA levels of acyl coenzyme A, which is a key enzyme in the peroxisomal β-

oxidation pathway (33).   

As opposed to the above studies with rats, mice fed 1% CLA demonstrated no 

improvement of insulin sensitivity (34).  Furthermore, high metabolic rate mice fed CLA had an 

increase in insulin resistance.   Obese mice fed t10, c12 CLA also had an increase in insulin 

resistance and serum glucose levels, while the c9, t11 isomer reduced serum lipids (TAGs, 

NEFA) without causing impairment in the insulin action (35).  The differential response of mice 

fed t10,c12 compared to those fed c9,t11 may be due to their differential effects on steroyl 

element binding protein (SREBP-1), a key transcription factor regulating hepatic lipogenesis.  

The c9,t11 isomer caused a reduction in SREBP-1 mRNA expression while the t10,c12 isomer 

had no effect on SREBP-1 expression.  It was suggested that c9, t11 improved glucose 

metabolism.  However, in a human study, Riserus et al. (36) reported that feeding 3g/day of c9, 
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t11 CLA to obese men (35-60 y old) caused an increase in insulin resistance and lipid 

peroxidation.  This increased insulin resistance was thought to be the result of impaired cell 

signaling due to an increase in free radicals.  These differences might be due to differences 

between species or differences in metabolic state. 

Blood lipid profile: 

Obesity increases the risk of coronary heart disease, hence alterations in the body fat may 

change the risk of artherosclerosis.  Atherosclerosis is a disease characterized by high levels of 

blood cholesterol, triacylglycerides (TAG), and lipoproteins.  Dietary CLA was found to alter 

the serum lipid profile in several models (3-5). Rabbits fed 0.5 g CLA/day showed a marked 

reduction in total cholesterol (TC), low density lipoprotein (LDL) cholesterol, and serum TAG 

concentration (3).  Also, there was a decrease in the ratio of LDL to HDL (high density 

lipoprotein) and TC, which would lower the risk of cardiovascular disease.  This effect was later 

confirmed to occur in hamsters (5) and mice (4).  A mouse study reported an increase in HDL 

without effecting TC in CLA-fed animals (4).  Studying the individual isomers, it was found that 

the t10,c12 isomer and not the c9,t11 isomer caused a decrease in LDL and TC content (14).  It 

was also found that CLA had an enhanced positive effect on blood lipids when supplemented to 

a saturated fat diet (coconut oil) rather than a diet high in unsaturated fat (corn oil) (37).   

In contrast to the above results, a pig study reported that feeding a 1% CLA caused an 

increase in serum very low density lipoprotein (VLDL) and LDL with no effect on HDL 

concentration (38).  Another study showed no change in blood lipid measurements when pigs 

were supplemented with 2% CLA (39).  Also, it was found that there was an increase in TAGs 

and decrease in HDL concentration with 0.66% of either a CLA mix or with the t10,c12 isomer 



8 
 

alone (14).  This increase in TAG was thought to be a function of an increase in the liver size 

found in this study.  Hence, the differential effects observed might be due to the different 

species. 

Above we have discussed several biological effects of CLA supplementation. The 

different effects are likely due to the different isomers acting individually or synergistically. 

CLA is found to alter the fate of lipids in the body.  Thus, reducing the body fat content, the risk 

of artherosclerosis, and altering glucose tolerance.  By understanding the mechanisms of action 

of CLA we may explain some of the discrepencies noted above regarding the effects of dietary 

CLA.    

 

MECHANISMS OF CLA ACTION 

Although many studies have shown that CLA supplementation reduces fat deposition or 

body fat content, and in some cases even body weight, the mechanisms of action of CLA are 

unclear. Several possible mechanisms have been proposed and investigated.  It is thought that 

CLA acts by altering energy expenditure, lipolysis, adipocyte apoptosis, and/or the expression of 

various proteins.  In this section I shall discuss more about the possible mechanisms.  

Feed efficiency and energy expenditure: 

Several studies have reported that CLA can cause a reduction in weight gain, fat 

deposition, and overall body fat content, but the mechanisms are unclear.  Some studies have 

shown that CLA causes a reduction in feed intake (7, 10).  This reduction of feed intake 

however, is not likely to be the cause of the reduction in body fat since, mice pair-fed a control 



9 
 

diet to the intake level of the CLA-fed mice did not differ in body fat compared to ad-libitum fed 

controls, while the CLA fed mice were leaner (17).  Also, a decrease in body fat mass has been 

observed even when there was no reduction in feed intake (13, 40), suggesting other mechanisms 

involved in the decline of lipid deposition in adipocytes. 

West et al. (7) supplemented 1% CLA to high- and low-fat fed mice and reported that 

there was increased energy expenditure (EE) in mice supplemented with CLA with a 

simultaneous reduction in food intake.  This increased EE may account for the decrease in body 

fat.  Later, West et al. compared the increase in EE and the loss in adipose deposition and found 

that the increased EE is sufficient to account for the decreased adipose content in CLA fed mice 

(41).  Another study showed that the percentage of energy utilized or stored in the body 

(calculated as: energy intake-[energy expended as heat + energy lost in excreta]) decreased from 

1.9% to – 2.3% in mice fed CLA (40).  The negative value indicates that in the CLA group there 

is no storage but loss of body energy occurring.  All these studies showed that increased EE 

contributes to the body fat loss. 

Uncoupling proteins (UCPs) play a role in energy expenditure and thermogenesis.  UCPs 

are found in the inner mitochondrial membrane and allow protons to flow from the mitochondrial 

inter-membrane space to the matrix, thereby "uncoupling" electron transport from the production 

of ATP.  The energy of the electrochemical gradient is dissipated as heat.  The different 

homologs are: UCP1, expressed primarily in the brown adipose tissue; UCP2, expressed 

ubiquitously in multiple tissues; UCP3, expressed in skeletal muscle and brown adipose tissue; 

and UCP4 and UCP5, about which not much is known (42, 43).  It is possible that these UCPs 

are involved in the enhanced energy expenditure in CLA-supplemented animals.  West et al. 

didn’t detect any effect of CLA on UCP1 expression (41).  However, studies have indicated that 
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increases in UCP1 and UCP3 gene expression don’t relate to changes in energy expenditure (7, 

44).  Additionally a study has shown that feeding male mice 1.5% CLA caused a decrease in 

UCP1 and UCP3 in brown adipose tissue (45).  Hence, UCP1 and UCP3 don’t seem to be related 

to the increased energy expenditure in CLA-fed animals.  It was found that CLA 

supplementation caused an increase in UCP2 expression in brown and white adipose tissue and 

in skeletal muscle.  This increase in UCP2 mRNA was accompanied by a simultaneous decrease 

in adipose deposition (45, 46).  As UCP2 is the predominant UCP in adipose tissue, an increase 

in UCP2 expression may be a mechanism of increased energy expenditure in animals fed CLA 

and thus, a mechanism of reduction in adipose deposition.   

Lipolysis: 

Lipolysis is the process by which TAGs in the fat cells are broken down and non-

esterified fatty acids and glycerol are released.  This process is a potential target for several 

therapeutics for obesity and inborn errors (i.e. conditions with errors in lipid energy metabolism).  

Lipolysis is stimulated by low circulating levels of glucagon and catecholamines and increased 

expression of tumor necrosis factor α (TNF-α).  Mature adipocytes have unilocular lipid droplets 

(LDs) surrounded by the protein perilipin (Plin).  Plin is the main effector of protein kinase A 

(PKA) stimulated lipolysis.  When stimulated, Plin is phosphorylated by PKA and allows lipases 

to act on the TAGs.  Hormone sensitive lipase (HSL) and adipocyte triglyceride lipase (ATGL) 

are the important adipocyte lipases; collectively they account for about 94% of lipolysis 

(characterized by the release of free fatty acids) (47).  HSL has greater affinity towards 

diacylglycerides than towards TGs.  It is activated by phosphorylation in any of four possible 

sites (48); upon activation it translocates to the LD surface (49).  HSL is also required for normal 

adipose tissue function and structure, as HSL-deficient mice have adipocyte hypertrophy and an 
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increase in inflammatory infiltrate in white adipose tissue (50).  ATGL was recently discovered 

to catalyze the first step of TAG hydrolysis; inhibition of ATGL caused a significant decrease in 

acyl-hydrolases activity (51).  ATGL is associated with both basal and stimulated lipolysis (47).  

Comparative gene identification (CGI-58) is a protein associated with the LD and Plin in the 

basal state and acts as a co-activator of ATGL (49).  In the basal state of lipolysis, CGI-58 is 

bound to Plin, when lipolysis is stimulated CGI-58 dissociates from Plin and binds to ATGL thus 

activating it.   

 Chung et al. reported that t10,c12 CLA supplementation increased lipolysis in human 

adipocyte cultures (52).  They also reported that there was an increase in cytosolic perilipin 

accumulation, followed by a decrease in the expression of perilipin and HSL.  It was also 

reported that along with the decreased expression of Plin there was an increase in adipocyte 

differentiation related protein (ADRP) expression when cells where treated with CLA (53).  

Similar to Plin, ADRP surrounds the LDs in immature adipocytes which are multilocular, rather 

than unilocular as in case of mature adipocytes.  Thus, an increase in ADRP expression indicates 

an increase in the number of immature adipocytes.  Increased immature adipocytes in a culture 

system are likely the result of de-differentiation of mature adipocytes.  The activation of lipolysis 

was found to be induced by the activation of the ERK/MAPK pathway (53), indicating that CLA 

may stimulate lipolysis by a cAMP-independent pathway.   This could contribute to the decrease 

in lipid accumulation in adipose tissue. 

In contrast to the above studies, there are also some studies which showed that CLA 

didn’t alter lipolysis.  Brown et al. found that lipolysis in cultures of human adipose tissue was 

unaltered by either of the CLA isomers after a 3-day supplementation (54).  This finding was 

later supported by others where they observed an inhibition in lipogenesis, but no effect on 
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lipolysis (55-57).  This discrepancy may be because the studies in which an effect on lipolysis 

was observed, the cultures were serum-starved for 12-24 h prior to supplementation of CLA 

which causes a deficiency of fatty acids in the culture.     

Apoptosis and cell signaling: 

In a study by Evans et al., 3T3-L1 preadipocytes cultured with t10, c12 CLA underwent 

apoptosis, reduced preadipocyte differentiation, and thus, decreased adipocyte cellularity (58).  It 

was found that CLA caused apoptosis and decreased cell viability of 3T3-L1 cells in a dose 

dependent manner (59).  These effects on preadipocytes were thought to contribute to the anti-

obesity effect of CLA.  Confirming this, a study feeding mice with either a CLA mix, or the 

isomers alone, found that the CLA mix and the t10, c12 isomer caused an increase in DNA 

fragmentation indicating increased apoptosis (17).  CLA-induced apoptosis was also confirmed 

by increased amounts of cleaved caspase-3 (active form) (60).  However, the degree of caspase-3 

activation did not correlate with the degree of fat loss.  Also, the increased DNA fragmentation 

in 3T3-L1 cells was observed only in proliferating cells indicating that preadipocytes are more 

sensitive to CLA-induced apoptosis than adipocytes (60). 

 TNF-α is a cytokine that is known to induce apoptosis.  The possible mechanism for 

CLA induced apoptosis was investigated and it was found that feeding 1% CLA to mice led to a 

12-fold increase in TNF-α expression in adipocytes, which corresponded with increased 

apoptosis of adipocyte cells (46).  TNF-α has also been found to inhibit synthesis of lipoprotein 

lipase (LPL), acetyl CoA carboxylase (ACC), and fatty acid synthase (FAS), enzymes involved 

in lipid uptake and de novo fatty acid synthesis (61, 62).   
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Prolonged endoplasmic reticulum (ER) stress can also lead to apoptosis. The ER stress 

pathway is regulated by 3 transmembrane proteins – protein kinase-like endoplasmic reticulum-

resident kinase (PERK), activating transcription factor 6 (ATF6) and inositol-requiring enzyme 

1 (IRE1). On sensing stress these proteins are activated. The mechanism of stress related 

apoptosis is not clear but caspase-12 and CHOP (a proapoptotic protein) are found to play an 

important role. CLA was found to induce CHOP and thus activate the IRE1 arm of the stress 

pathway (63).  This could lead to a decrease in cell number and may be one mechanism of 

reduction in fat content due to CLA.   

While the above studies show an increase in apoptosis with CLA, a study feeding rats 

either 0.25% or 0.5% CLA found that there was a decrease in adipocyte cell size but there was 

no difference in cell number between the control and CLA supplemented diets (64).  The 

difference observed in this study might be due to the fact that they counted the total number of 

cells per fat pad and not per unit area, and also, they didn’t assess cell viability. 

Peroxisome proliferator activated receptors:  

The ligand-activated peroxisome proliferator activated receptors (PPARs) are a family of 

transcription factors that modulate lipid metabolism, belonging to the steroid receptor 

superfamily.  Three types of PPAR have been found, in amphibians, rodents, fish, and humans, 

which are PPAR-α, PPAR-β/δ and PPAR-γ.   PPAR-α responsive elements have been identified 

in regulating regions of various genes like acyl-CoA oxidase (ACO), enoyl-CoA hydratase, 

cytochrome P450 4A family (CYP4A1), liver fatty acid binding protein (L-FABP), acyl CoA 

synthase, and LPL and are mainly expressed in liver, kidney, and heart.  PPAR-β/δ is expressed 

in almost every tissue.  PPAR-γ is expressed only in adipose tissue and is required for adipocyte 
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differentiation (65).  PPAR-γ is also essential for glucose uptake and TAG accumulation in 

adipose tissue and regulates the expression of genes like sterol regulatory element binding 

protein (SREBP), stearoyl-CoA desaturase (SCD), ACC, LPL, and glucose transporter 4 

(GLUT4) (66).  PPAR-α is activated by hypolipidemic agents of the fibrate family and by 

leukotrienes.  PPAR-β/δ is activated by fatty acids.  PPAR-γ is activated by prostaglandins and 

thioazolidinediones.   

CLA is structurally similar to the ligands of PPARs and has been shown to activate the 

PPARs (32, 65, 67).  CLA activation of PPAR-α led to the activation of the PPAR responsive 

genes ACO, FABP, and CYP4A1 in vivo (65).  This indicates that at least part of the effects of 

CLA on cancer, obesity, and atherosclerosis may be mediated by PPAR-α  activation.  CLA 

effects on PPAR-γ are variable.  Some recent studies have shown that CLA decreases PPAR-γ 

activity (68) while others have reported that PPAR-γ is activated by CLA (32).  t10,c12 CLA 

was found to decrease ligand-induced activation of PPAR-γ and also decrease its protein levels 

(68).  Further, it caused a reduction in mRNA and protein levels of GLUT4 and LPL.  Many 

studies have also demonstrated that CLA has the capacity to inhibit the expression and activity of 

SCD, a PPAR-γ responsive gene (69, 70).  As SCD is required for monounsaturated fatty acid 

synthesis in mature adipocytes, a reduction in SCD activity may indicate reduced fatty acid 

synthesis and hence indicate a reduction in adipocyte differentiation.  CLA was found to repress 

the differentiation of pre-adipocytes into adipocytes in vitro in mouse 3T3-L1 cultures (71).  As 

differentiation is required to get mature adipocytes which have the capability to synthesize and 

store lipids, a decrease in differentiation might attribute to the lowering in TAG content and body 

fat caused by CLA.  In contrast to the above studies, some studies have shown that CLA causes 

activation of PPAR-γ and improves hyperinsulinemia and increases glucose sensitivity (32, 72).  
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Most of these studies were done with obese animals.  The reason for this discrepancy is not 

known but it may be that prolonged treatment in genetically obese animals causes an activation 

of PPAR-γ while in normal mice its activity is decreased. 

 

METABOLISM OF CLA 

Even though the effects of CLA and a few of its mechanisms are known, the fate of CLA 

in a biological system is not clear.  It is not known if CLA is eliciting its effects directly or 

through its metabolites.  CLA has a backbone structure similar to oleic acid (18:1) owing to its 

conjugated diene double bond system.  Hence, it is incorporated into tissues similar to oleic acid, 

primarily into neutral lipids in adipose and mammary tissues (73).  Despite an incorporation 

pattern similar to oleic acid, CLA is metabolized like linoleic acid (LA) (18:2).  It has been 

shown that CLA can undergo ∆6 desaturation, elongation, and ∆5 desaturation and produces 

metabolites with a conjugated diene structure in animal and human tissues (74, 75).  It has been 

reported to form conjugated 18:3, 19:2, 20:2, 21:2, 20:3 and 20:4 fatty acids (75, 76).  Rats fed 

either a CLA mixture or pure isomers had 18:3 and 20:3 conjugated isomers in liver tissues (75).  

The further conversion into 20:4 has been found to occur to a greater extent in animals that were 

fed diets low in LA and hence might be dependent on LA/CLA ratio in the diets (11, 73, 75).   

CLA has also been found to undergo β-oxidation to yield 12:2, 16:2, 16:3 isomers (76, 77).  CLA 

isomers may compete with LA for the metabolizing enzymes.  This has been supported in a 

study where supplementing t10,c12 isomer was found to inhibit the ∆9 desaturation of stearic 

acid into oleic acid and also the ∆6 desaturation of linoleic acid but only at a high non-

physiological concentration (74).  The c9,t11 isomer also inhibited the ∆6 desaturation of linoleic 
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acid.  Also, another study showed that feeding rats with increasing levels of CLA caused a 

significant dose-dependent decrease in the content of  LA metabolites in adipose and mammary 

tissues (78).  However, this decrease in LA metabolites was not observed in liver and plasma 

and, above 1% CLA there were no further decreases.  This indicates that CLA may compete with 

LA, especially in tissues where it is maximally incorporated.    

The metabolism the c9,t11 and the t10,c12 isomers of CLA appears to be different.  

Feeding t10,c12 CLA produces large amounts of 18:3 fatty acid and little 20:3, while c9,t11 

CLA is converted to both 18:3 and 20:3 isomers in similar amounts (79).  This difference in 

metabolism might account for the differential biological effects exerted by the two isomers.   

Recently, it has been found that CLA metabolites and other conjugated fatty acids can 

also exert potent biological effects.  Conjugated eicosadienoic acid (CEA) a 20:2 fatty acid 

formed possibly by the elongation of CLA, was found to cause changes in body composition 

similar to CLA.  CEA caused a significant decrease in body fat content and tended to increase 

water and protein content (76).  In cultures of 3T3-L1 adipocytes CEA caused an inhibition in 

LPL activity, increased glycerol release (indicating increased lipolysis), and reduced total TAG 

content.   Of the two conjugated isomers of CEA, the t12,c14 isomer was found to be the active 

form.  However, CEA requires longer incubation periods and/or higher concentrations to give 

similar effects to CLA.  Conjugated 20:3 ∆c8,t12,c14 (CETA), the ∆6 desaturation and 

elongation product of t10,c12 CLA also inhibited LPL activity and enhanced glycerol release but 

to a lesser extent than CLA.  Conjugated nonadecadienoic acid (CNA), a 19:2 fatty acid was also 

found to cause a reduction in body fat content and LPL activity similar to CLA (80).     
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The observed effects of CLA may be direct or due to one or more of its metabolites.  It is 

also possible that the CEA and CETA may be converted back to CLA to cause the effect, since 

in cultures supplemented with CEA or CETA there was CLA detected.  However, we cannot be 

sure if this would occur in animals as conversion of CEA to CLA requires peroxisomal β-

oxidation and therefore, has to escape from the mitochondrion to elicit its effects.   

 

SUMMARY 

CLA has been found to cause multiple biological effects including anti-inflammatory, 

anti-obesity and anti-carcinogenic effects.  The complete mechanisms are not yet clear but, 

several possible mechanisms explaining the effect of CLA on body composition have been 

reported (Figure 1).  CLA has been found to cause alterations in both adipose tissue and liver.  In 

the adipose tissue CLA has been found to increase lipolysis, and decrease adipocyte cell number, 

accumulation of TAG, and glucose uptake.  There was also an increase in body energy 

expenditure.  These effects are largely due to alterations in the expression of different proteins.  

Dietary CLA may cause an increase in lipolysis by inducing signaling through the MAPK/ERK 

pathway, and in a few studies have also been found to lower perilipin expression.  CLA causes 

an increase in UCP2 expression, causing an increase in energy expenditure.  It has also been 

found that consumption of CLA lowers the expression of PPAR-γ, which in turn causes a 

decrease in differentiation of adipocytes and also effects the expression of several proteins that 

lower TAG accumulation and hence adipocyte size.   

In the liver, CLA has decreased FAS and increased CPT1 expression, which cause a 

decrease in fatty acid synthesis and an increase in β-oxidation.  It has also been found to alter the 
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expression of PPAR-α, increasing its expression which in turn causes an increase in fatty acid 

oxidation by causing an increase in ACO and CYP4A1 expression. 

The isomers of CLA are metabolized differentially and hence may be the basis for the 

different effects of the isomers.  Some of the conjugated metabolites of CLA have been found to 

lower body fat and to effect lipolysis.  Consequently, more research is needed on the mechanism 

of action of CLA to fully understand its beneficial and any potential detrimental effects.   
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Fig 1. Possible mechanisms by which CLA causes body fat loss.        Represents mechanism 
reported by several studies,          represents mechanism reported by just one study. FAS, fatty 
acid synthase; SREBP, sterol regulatory element binding protein; CPT, carinitine palmatoyl 
transferase; LPL, lipoprotein lipase; PPAR, peroxisome proliferator-activated receptor; ACO, 
acyl-CoA oxidase; CYP4A1, cytochrome P450IV A1; FABP, fatty acid binding protein; UCP, 
uncoupling protein; Plin, perilipin; TNF, tumor necrosis factor; SCD, stearoyl CoA desaturase; 
ACC, acetyl CoA carboxylase; GLUT, glucose transporter; C/EBP, CCAT enhancer binding 
protein; FA, fatty acid; TG, triacylglycerides.  
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CHAPTER 2: COCONUT OIL ENHANCEMENT OF CONJUGATED LINOLEIC ACID 

INDUCED BODY FAT LOSS AND LIPOLYSIS IN MICE  
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INTRODUCTION:  

 Conjugated linoleic acid (CLA) refers to a group of positional and geometric isomers of 

linoleic acid.  CLA was first discovered in grilled beef and was found to have anti-carcinogenic 

properties (1).  Since then, dietary CLA has been found to have anti-inflammatory (2), anti-

atherogenic (3-5), anti-carcinogenic (1, 10, 11), and anti-obesity effects (6, 7).  The 18:2 c9, t11 

and t10, c12 isomers are the two biologically active isomers known to date.  The t10, c12 isomer 

is solely responsible for the induction of body fat loss (10, 17). 

 The loss of body fat induced by dietary CLA can be enhanced when mice are fed a 

coconut oil (CO) containing diet compared to mice fed a soybean oil (SO) containing diet (29).  

CO is composed of a higher concentration of short and medium chain saturated fatty acids (12 to 

16 carbons) and is deficient in the essential fatty acids linoleic acid and α-linolenic acid, 

compared to SO which has mostly saturated and unsaturated 18 carbon fatty acids and an 

abundant supply of linoleic acid.  We have also reported increased sensitivity to CLA-induced 

body fat loss in mice consuming fat free diets (30), indicating that something in SO, and not in 

CO, interferes with the full effect of CLA.  The mechanism behind the enhanced response with 

CO feeding is not yet completely known. 

Preliminary data from our laboratory indicated that dietary CLA caused an increase in 

basal lipolysis, in CO- and fat free-fed mice, but not in SO-fed mice (31).  This is in agreement 

with several cell culture studies that have shown that CLA supplementation causes an increase in 

lipolysis (52, 53).  Lipolysis can be stimulated by low circulating levels of glucagon and 

catecholamines and increased expression of tumor necrosis factor α (TNF-α) (81).  Mature 

adipocytes have unilocular lipid droplets (LDs) surrounded by the protein perilipin (Plin).  In the 
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basal state of lipolysis, perilipin and comparative gene identification-58 (CGI-58) form a 

complex on the LD, adipose triglyceride lipase (ATGL) is localized partially to the LD, and 

hormone sensitive lipase (HSL) is localized to the cytoplasm (49).  When lipolysis is stimulated, 

cAMP-dependent protein kinase (PKA) activation results in phosphorylation of HSL and 

perilipin.  Phosphorylation of perilipin causes the release of CGI-58, which binds ATGL, 

activating ATGL, and initiating lipolysis.  Phosphorylated HSL translocates to the LD, associates 

with phosphorylated perilipin, and degrades diacylglycerol (DAG).  CLA has been found to 

cause an increase in cytosolic perilipin (activated form of perilipin), while causing a decrease in 

HSL and total perilipin expression (52). 

Adipose tissue is composed of multiple cell types including preadipocytes, immature 

adipocytes, and mature adipocytes.  Immature adipocytes are multilocular with adipocyte 

differentiation related protein (ADRP) surrounding the LDs instead of perilipin.  It has also been 

reported that there is an increase in ADRP expression with a simultaneous decrease in perilipin 

expression in CLA-treated adipocytes, indicating that cells are undergoing de-differentiation 

(52).  It is unclear if this also occurs in vivo.  In the current study, we determined the effect of 

base oil and CLA on lipolysis, the expression and activation of perilipin and associated lipases, 

and if CLA caused any de-differentiation of adipocytes in vivo.  

 

METHODS AND PROCEDURES: 

Animal protocol 

 All animal procedures were approved by the West Virginia University Animal Care and 

Use Committee.  Weanling male mice (n = 80; 3 wks old; ICR) were obtained from Harlan Inc. 
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Madison, WI and housed in a temperature-controlled animal room with a 12 h light:dark cycle.  

Mice were fed a purified base diet containing (g/kg): isolated soy protein (200), L-cystine (2.54), 

L-methionine (2.54), cornstarch (395.406), maltodextrin (132), cellulose (100), soybean oil (70), 

AIN-93G mineral mix (35), AIN-93G vitamin mix (10), choline bitartrate (2.5) (Harlan Teklad, 

Madison, WI).  A modification of the purified AIN-93G diet with soy protein instead of casein 

was used so as to avoid possible intake of CLA from the casein.  For the coconut oil (CO) diet, 

soybean oil was replaced by fully hydrogenated coconut oil (wt/wt).  CLA replaced the base oil 

(wt/wt) and was added in the diets to provide 0.5% CLA isomers in the diet.  The CLA mixture 

contained an equal amount of c9,t11 and t10,c12 (Nu-Check-Prep, Elysian, MN).    

Mice were housed four per cage for weeks 1 - 5 and then were individually caged during 

weeks 6 - 8.  Animals were randomly assigned to base diets: SO (soy oil) or CO (coconut oil).  

After 6 wks, half of each of these two groups was given a 0.5% CLA diet for a period of 12 days.  

Body weight and feed intake were measured weekly. At the end of 54 days, the mice were killed 

by carbon dioxide asphyxiation.  Epididymal and retroperitoneal fat pads, livers, and blood were 

collected and tissues were weighed.  One fat pad pool, consisting of one epididymal and one 

retroperitoneal fat pad, for eight mice from each diet was utilized for lipolysis analysis and the 

remaining tissues were flash frozen in liquid nitrogen.  A body fat index was calculated as: 

[(epididymal + retroperitoneal fat pad weights)/ total body weight] * 100. 

Lipolysis  

One each of retroperitoneal and epididymal fat pads per mouse (n = 8/diet) were pooled, 

minced, and incubated in 0.8 ml of DMEM (containing 1 Kunits/ml adenosine deaminase) for 3 h 

at 37ᵒ C in a shaking water bath.  This was done in triplicate for both baseline and stimulated 

lipolysis (10 µM isoproterenol).  Media samples were collected and analyzed for non-esterified 
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fatty acids (NEFA- HR kit, Wako Chemicals, Richmond, VA) and glycerol (free glycerol 

reagent, Sigma-Aldrich Inc., St Louis, MO) by colorimetry.  NEFA and glycerol concentrations 

were corrected for tissue weight and reported as µmol released per gram tissue.  

Blood was centrifuged at 2,000 × g for 20 min at 4ᵒ C. The serum was collected and the 

concentration of NEFA was analyzed similar to the method above. 

Western blotting 

One fat pad pool per mouse (n = 12/diet) was homogenized in 1 ml of lysis buffer (25 

mM HEPES, 5 mM EDTA, 5 mM MgCl2,  10 μl/ml of protease and phosphotase inhibitor mix 

(Thermo Scientific, Rockford, IL)) and centrifuged at 14,000 × g for 20 min at 4ᵒ C. Protein 

content was analyzed by the BCA method (BCA kit, Thermo Scientific, Rockford, IL).  Equal 

amounts of protein (5µg) were resolved on a 12.5% polyacrylamide gel and transferred to a 

nitrocellulose membrane.  The membranes were probed with antibodies for perilipin, ATGL, 

ADRP (Santa Cruz Biotechnology, Santa Cruz, CA), phospho-PKA substrate (for phosphor-

perilipin), HSL, and phospho-HSL (Cell Signaling Technology, Danvers, MA).  Then the 

membranes were probed with a HRP-conjugated secondary antibody.  Membranes probed with 

β-actin (Santa Cruz Biotechnology, Santa Cruz, CA) were used for normalization. 

Chemiluminescence was produced using SuperSignal West Pico chemiluminescent substrate 

(Thermo Scientific, Rockford, IL).  The density of the bands obtained was analyzed by 

densitometry. 

Statistical analysis 

All data were analyzed by a two-way analysis of variance (ANOVA) using a fixed model 

testing the main effects of oil source (SO vs. CO), CLA, and the interaction of oil source × CLA.  
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F tests, least-squares means, and standard errors of means (SEMs) were calculated using the 

mixed procedure of SAS (SAS Institute Inc., Cary, NC).  For all tests p < 0.05 was considered 

significant.  

 

RESULTS 

Body weight, feed intake, and body composition 

Body weight was not affected by diet except on the last week where there was an oil 

source × CLA interaction (P < 0.05), where CLA caused a 6% increase in weight in SO fed mice 

while causing a 5% decrease in CO fed mice (Table 1).  Feed intake was not affected by oil 

source until week 6, but during the last 2 wks there was a main effect of oil source (P < 0.05) 

where CO fed mice had a 5% higher feed intake compared to SO fed mice.  Also, on the final 

measurement there was oil source × CLA interaction (P < 0.05) where CLA caused a decrease in 

feed intake, but only in CO-fed mice.   

There was no significant interaction on the body fat index, but both CO (P < 0.001) and 

CLA (P < 0.05) caused decreases in the body fat index (Fig 2).  CO caused a 32% decrease in the 

body fat index while CLA caused a 20% decrease in body fat index. 

Lipolysis 

 The effect of treatments on lipolysis were determined by the release of NEFA and 

glycerol during a 3-h period of baseline and isoproterenol incubation of the fat pads.  There was 

an interaction of oil source × CLA (P < 0.05) on the amount of NEFA released under basal 

conditions.  CLA caused a 3-fold increase in NEFA release in CO-fed mice, while the increase in 

SO-fed mice due to CLA was not significant (Fig 3a).  There was no significant effect on the 
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amount of glycerol released, although it followed the same trend as NEFA release (Fig 3b).  

There were no differences in either NEFA or glycerol release under stimulated conditions. 

The NEFA concentration in serum was not affected significantly by any dietary 

treatment, though CO fed mice tended (P = 0.07) to have higher serum NEFA levels compared to 

the SO fed mice (Fig 3c). 

Protein expression 

Since the lipolysis data indicated an effect of diet on NEFA release we also determined 

the effect of diets on the expression of proteins involved in lipolysis.  The western blots showed 

that the total protein concentration of perilipin was affected by oil source (P < 0.05) alone where 

CO-fed mice had a decreased expression of perilipin (Fig 4a). The activation of perilipin 

(concentration of p-perilipin) had a tendency toward an interaction of CLA × oil source (P = 

0.08), as CLA tended to increase the amount of p-perilipin but only in SO-fed mice (Fig 4b).  

SO+CLA-fed mice had a 255% of the p-perilipin expression found in SO-fed mice, while 

CO+CLA-fed mice had only 76% of the p-perilipin expression found in CO-fed mice (Fig 4b).  

HSL expression and activation weren’t altered by CLA, but there was a decrease in total HSL 

expression in CO fed mice (P < 0.05) (Fig 4c,d).  ATGL expression was decreased in CO-fed 

mice (P < 0.01) but there was no effect of CLA (Fig 4e).  ADRP expression was not altered 

significantly by any of the four diets (Fig 4f). 
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DISCUSSION 

It has previously been reported that feeding coconut oil enhanced the CLA-induced body 

fat loss in mice (29, 30).  In support of this, mice in this study fed coconut oil and supplemented 

with CLA had the lowest body fat index (Fig 2).  The enhanced body fat loss appears to involve 

CLA-induced lipolysis in CO-fed mice.  Some studies have reported that CLA enhances lipolysis 

in adipocyte cultures (52).  In our study we observed an enhanced lipolysis in CO+CLA-fed mice 

compared to SO+CLA-fed mice. 

In this study we saw that CO diets caused a decrease in body fat even without CLA 

supplementation, which is in contrast to the previous reports (29, 30).  Therefore, we did not 

detect a significant interaction of oil source × CLA, as was seen in previous studies.  The reason 

for this is not known but possible explanations could be that these where a different strain of 

mice compared to those used in previous studies (ICR vs a four strain composite of ICR, 

C57BL/6, NIH Swiss, CF-1).  Also, in this study the mice didn’t consume as much food or gain 

as much as weight as previous experiments.  In contrast to previous coconut oil-CLA studies, a 

study in which mice were fed different fat sources after a period of energy restriction, reported 

that the coconut oil-fed group had a lower body fat compared to groups fed other high fat diets 

(82).  In fact, the level of body fat, and serum cholesterol were similar to mice fed low fat diets.  

Later another study showed that there was an increase in UCP1 expression in energy restricted 

and coconut oil fed mice, which may be a possible mechanism for the cause of lower body fat 

with coconut oil feeding (83).  Coconut oil is deficient in essential fatty acids and this has been 

hypothesized to be the reason for the enhanced response to CLA, but a previous study showed 

that adding essential fatty acids at the level of their requirement to CO diets didn’t affect the 

enhanced response to CLA (30).  Hence the enhanced effect of CO is not dependent on a true 
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deficiency of essential fatty acids.  SO, however, contains large amounts of linoleic acid, well in 

excess of the dietary requirement, that could still interefere with the actions of CLA.   

In support of our preliminary data (31), we observed a CLA-induced increase in basal 

lipolysis in CO-fed mice, but not SO-fed mice.  This differential effect of CLA likely contributes 

to the overall enhanced body fat loss.  The CLA supplemented CO diets caused a tremendous 

increase in NEFA release but a significant effect was not detected on the amount of glycerol 

released.  This might be because the overall amount of lipolysis occurring was relatively low and 

differences between diets are more pronounced in NEFA release than glycerol as their 

concentration would be at a 3:1 ratio.  We detected no differences in stimulated lipolysis, 

indicating no differences in the total amount of lipases present in the cell, because under these 

conditions all available protein should be activated.  Several studies have shown that CLA causes 

an increase in lipolysis (52, 53), while others have reported no effect of CLA on lipolysis (55-

57).  The difference between these studies may be that, those studies in which there was an effect 

of CLA, the cells were serum starved prior to supplementation of CLA.  This is similar to our 

treatment with CO, as serum starving makes the cultures devoid of fatty acids.  Explants cultures 

of CLA-fed pigs didn’t have any CLA induced increase in lipolysis (55), similar to our 

SO+CLA-fed mice. 

Based on the lipolysis data we expected an increase in the activation of the lipases and 

perilipin.  However, we found that CLA did not increase lipolysis associated protein expression 

in CO-fed mice.  We found that CLA caused an increase in expression of p-perilipin but only in 

SO-fed mice. There was no effect of CLA on any of the other proteins.  We hypothesize that the 

effect of CLA is time-dependent and feeding CLA first causes an increase in lipase activation, 

followed by decrease in the expression or activation, as this has been reported in a cell culture 
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study (52).  CLA was supplemented to human adipocytes, causing an increase in lipolysis and in 

cytosolic perilipin, indicating activation, following 12 hr.  This was followed by a decrease in the 

expression of perilipin and HSL by 24 hrs.  It is possible that after 12 days of CLA consumption 

our mice were beginning to experience a decline in perilipin and lipase expression.  Similar to 

the body fat index, there was an effect of CO itself on the expression of perilipin, HSL, and 

ATGL.      

Some previous studies have shown that CLA caused a de-differentiation of mature 

adipocytes, as they observed a simultaneous increase in ADRP expression with a decrease in the 

expression of perilipin (52, 53).  Immature adipocytes are characterized by having multilocular 

lipid droplets surrounded by ADRP.  In this study we didn’t observe any effect of CLA on 

ADRP expression.  This might be because unlike cell cultures, there are an abundance of 

immature adipocytes in vivo and any slight alterations in their number due to CLA might not be 

detectable. 

In conclusion, coconut oil enhances the anti-obesity effect of CLA and this effect is, at 

least in part, due to enhanced lipolysis.  The effects of CLA on the expression and activation of 

lipases and other lipolysis-related proteins may be time-dependent and therefore, were not clear 

in the current experiment.  Further studies evaluating the effect of different feeding durations of 

CLA might be helpful in determining the mechanism of CLA action on lipolysis. 
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Table 1. Effect of oil source and/ or CLA on feed intake, and body weight  

 Diets1 P-values 
 

SO SO+CLA CO CO+CLA SEM Oil CLA Oil × CLA
 
Body weight (g) 
 
Initial2 

Before CLA2 

Final2 

 
Feed intake (g/day) 
 
Intial3 

Before CLA2 

Final2 

 

 
 
    
9.62 
31.73 
33.60ab 

 
 
 
2.85 
4.05 
 2.88b 

 
 
     
9.42 
32.8 
 35.88a 

 
 
 
2.82 
4.21 
3.04ab 

 
 
    
9.58 
32.75 
35.05ab 

 
 
 
2.83 
4.33 
3.25a 

 
 
      
9.53 
31.65 
33.31b 

 
 
 
2.87 
4.41 
2.99b 

 
 
 
0.07 
0.76 
0.86 
 
 
 
0.02 
0.11 
0.09 

 
 
 
0.64 
0.76 
0.51 
 
 
 
0.59 
0.03 
0.09 

 
 
 
 
 
0.75 
 
 
 
 
 
0.61 

 
 
 
 
 
0.02 
 
 
 
 
 
0.04 

1 Diets:SO- (7% Soy oil); SO+CLA (6.5% soy oil+0.5% CLA); CO (7% coconut oil); CO+CLA (6.5% coconut 
oil+0.5% CLA) 
2 Initial = Day 0; Before CLA = Day 42; Final = Day 57. 
3 Intial is feed intake measured from day 0 to day 7. 
ab Different letters within a row indicate significant differences, P < 0.05 
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a 

 

 

Fig 2. Effect of dietary CLA and oil source on body composition.  Body fat index = ((Retrperitoneal + 
Epididymal fat pad weights)/body weight) x 100; n = 20/diet. Data is shown as mean ± SEM.  Different 
letters indicate significant differences between treatments.  Oil source, P < 0.001; CLA, P < 0.05. Diets: 
SO (7% soy oil); SO+CLA (6.5% soy oil+0.5% CLA); CO (7% coconut oil); CO+CLA (6.5% coconut 
oil+0.5% CLA). 
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Fig 3. Effect of dietary CLA and oil source on lipolysis. Fat pads were cultured for 3 hrs ex vivo. Basal = 
0 and Stimulated = 10 μM Isoproterinol; n = 8/diet. (A) NEFA release, expressed as µmol/g tissue.  
Oil*CLA, P < 0.05. (B) Glycerol release, expressed as µmol/g tissue. (C) Serum NEFA, expressed as 
mmol/l. Data is shown as mean ± SEM.  Different letters indicate significant differences between 
treatments. Diets: SO (7% soy oil); SO+CLA (6.5% soy oil+0.5% CLA); CO (7% coconut oil); CO+CLA 
(6.5% coconut oil+0.5% CLA).
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Fig 4.  Effect of dietary CLA and oil source on adipose tissue protein expression. Densitometry analysis 
of each protein, relative to β-actin was performed; n = 12 /diet. (A) Perilipin expression, Oil source, P < 
0.05. (B) P-Perilipin expression, Oil source*CLA, P = 0.08. (C) HSL expression, Oil source, P < 0.05; 
CLA P = 0.05. (D) P-HSL expression. (E) ATGL expression, Oil source, P < 0.01. (F) ADRP expression. 
Data is shown as mean ± SEM.  Different letters indicate significant differences between treatments. 
Diets: SO (7% soy oil); SO+CLA (6.5% soy oil+0.5% CLA); CO (7% coconut oil); CO+CLA (6.5% 
coconut oil+0.5% CLA). 
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CHAPTER 3: FUTURE DIRECTIONS  
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FUTURE RESEARCH 

We have established, with the current work, that coconut oil enhances the body fat 

lowering effects of CLA, also that this involves an enhanced lipolysis.  In a future study, we 

would like to determine the effect of CLA on the expression and activation of proteins involved 

in lipolysis by feeding CLA for different periods of time.  This would let us determine the 

effective time period of feeding CLA to elicit the required response on lipolysis and also if 

feeding longer than this time period causes any harmful effects.  We hypothesize that there 

would be a time-dependent effect based on a cell culture study, which reported that 

supplementation with CLA to the adipocyte cultures caused an increase, followed by a decrease, 

in expression of perilipin (52). 

The reason for the effect of CO enhancement is not known clearly; hence another future 

study would concentrate on validating the effect of coconut oil on the metabolism of CLA.  We 

would like to determine if there are differential effects of the base oil on the amount of CLA 

being metabolized.  This was thought to be possible based on a study where inhibiting ∆6-

desaturase prevented the CLA-induced reduction of body fat, implying that a metabolite of CLA 

causes this anti-obesity effect (84).  If there is any difference in metabolism of CLA between the 

two base oils, then further studies feeding mice the metabolites and assessing their effects on 

body fat and lipolysis would give us a better picture of how CO is able to enhance the effect of 

CLA.  Some previous studies have shown that CLA can be metabolized similar to linoleic acid.  

These conjugated metabolites when supplemented have also been shown to cause a significant 

decrease in body fat content.  Hence it might be possible that the different base oils are affecting 

metabolism of CLA. 
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These studies would give a better understanding of the effective time of supplementation 

of CLA to elicit a good effect on the loss of body fat and an understanding of how CO enhances 

the CLA induced fat loss.  This would add to the knowledge of the possible mechanisms of 

action of CLA.  It might be helpful in devising a possible treatment of obesity with CLA or 

another compound in the future. 
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