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Abstract

Nonlinear Dynamics Modulation in a Neon Glow Discharge Plasma

Paul M. Miller

In dynamics modulation, two modes in a driven neon glow discharge alternate as the dominant
mode as their response to the driving force alternates between spatiotemporal and temporal periodic
pulling. This phenomenon was first noted by Koepke, Weltmann, and Selcher (Bull. Am. Phys.
Soc. 40, 1716 (1995)), who saw two limited but representative cases and proposed a mechanism
(Phys. Rev. E 62, 2773 (2000)) by which it occurs. The intent of this dissertation is to document
experimentally and test the dynamics modulation mechanism they proposed. Using a new extension
of a previous mathematical treatment of periodic pulling, the resulting experimental data are used to
verify the predicted mechanism. A numerical model is also presented that reproduces the signature
of dynamics modulation and further supports the validity of the mechanism.

For two pairs of mode frequencies, three complete data series as driving frequency is increased
are presented. Each of these data series shows the progression of the system from pure spatiotem-
poral behavior, through dynamics modulation, and ending at entrainment in the upper mode.
Ionization wave modes are examined using time series recorded using a photodiode with a narrow
band filter that selectively passes the primary neon spectral line at 640 nm. The system was pe-
riodically driven using a narrow-band ring dye laser tuned to a wavelength near the metastable
neon transition at 588.35 nm. The amplitude of the driving force was decreased (increased) by
tuning the laser away from (nearer to) the center of the neon line, while the driving frequency
was controlled by an acousto-optic modulator chopping the laser beam at the desired frequency.
Arnol’d tongue boundaries identifying the edges of frequency entrainment regions in the driving
amplitude-driving frequency plane were established for four different discharge currents. The (up-
ward) dynamics modulation behavior seen by Koepke, Weltmann, and Selcher was reproduced and
additional data were acquired for two additional representative cases of downward modulations,
previously undocumented. The upward modulations are used to verify the mechanism, while the
downward modulations exhibit qualitatively different behavior. These differences are discussed.

Two coupled van der Pol equations were chosen to model the mechanism described by Koepke,
Weltmann, and Selcher, and the resulting time series was solved with a Runge-Kutta routine whose
parameters could be adjusted as the simulation proceeded. The model successfully reproduces the
qualitative behavior of dynamics modulation and reinforces the experimental verification of the
proposed mechanism, but lacks sufficient complexity for a complete quantitative comparison.
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5.1 A good example of temporal periodic pulling in the model. Here, ε1 = 0.1, β1 = 1,

and M = 0.03. The coupling parameters were set at γ1 = 0.025 and γ2 = 0.22.
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5.10 Simulated dynamics modulation as a function of fi, time series. The driving fre-
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6.5 Beat separation from the model. This figure shows that the model successfully

predicts a shift in beat frequencies between the two parts of the dynamics modulation
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Chapter I

Introduction

The spontaneous development of striation layers (or ionization waves) in a glow discharge plasma

was the earliest example of an instability in a laboratory plasma, with observations of the phe-

nomenon first published in 1848 [Abria (1848)] and clear evidence that Michael Faraday had made

his own notes on the phenomena even earlier [Kolobov (2006)]. Striations remain the most readily

observed instability in a laboratory plasma [Pekárek (1968)] and even appear in poorly function-

ing fluorescent lamps. Despite the familiarity of the glow discharge, it is still a rich experimental

environment. This chapter begins with a brief history of glow discharge physics followed by a brief

description of the behavior of ionization waves. A brief section on nonlinear dynamics follows, with

emphasis on the use of glow discharge tubes in this work. Finally, with the broad context in place,

an overview of this thesis is presented.

A. Glow discharge physics

1. A brief history of the plasma glow discharge

The key technological innovation that enabled glow discharge tube research to thrive was the ability

to seal platinum electrodes into glass tubes. This process, mastered by Heinrich Geissler in 1858,

allowed these Geissler tubes to become common sources of entertainment. Soon, however, they were

being studied scientifically as well. They were used as sources of light in an effort to understand

the origin of spectral lines and as the source of the newly discovered cathode rays.

One of the giants of this early work was Sir William Crookes, who began with the simple idea
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SECTION A. GLOW DISCHARGE PHYSICS

of developing the technology into practical lighting. This effort failed to produce results promising

enough to displace established chemical means of lighting, but research into cathode rays soon

replaced these efforts [Brown (1978)]. Crookes, whose consulting had made him wealthy, was able

to pursue his research using his own personal glassblower and his efforts did much to improve the

technology of discharge tubes. Because of his efforts, discharge tubes optimized to produce cathode

rays began to be referred to as Crookes Tubes.

A rich period of research followed the development of improved vacuum technology in 1880

[Brown (1978)]. For the half century that followed, the glow in glow discharge tubes was explored

in great detail. Spectral lines were catalogued for many gases. While actual advances in physics

were minimal and had to await the development of quantum physics and plasma physics, a variety

of visual behaviors were catalogued and named [Brown (1978)].

The cathode ray question remained unanswered until the end of the nineteenth century, when

J. J. Thomson correctly interpreted the rays as beams of electrons [Brown (1978)]. This discovery

in discharge tube physics led to the Nobel prize for Thomson in 1906 and usually appears in

introductory physics books.

In his 1927 letter to Nature, van der Pol used a “neon glow lamp” to study a peculiar relaxation-

oscillator circuit [van der Pol and van der Mark (1927)]. This use of a neon glow discharge began

van der Pol’s exploration of nonlinear oscillators, which led to his work with the now-famous van

der Pol equation [see van der Pol (1934)], which will be described in Chapter II.

2. Basic features of an undriven discharge tube

The glow discharge itself consists of current passed through a gas between two electrodes, usually

maintained at low pressure within a glass insulating tube [Ingold (1978)]. In Figure 1.1, a schematic

diagram depicts the nomenclature of the typical glow discharge. This diagram shows the relative

positions of the Aston dark space, the cathode glow, the cathode dark space, the negative glow, the

Faraday dark space, the positive column, the anode glow, and the anode dark space, in order from

cathode to anode. Typically, the details of the metastable species are important to the dynamics

of the discharge.

Depending on the physical dimensions of the discharge, the pressure of the enclosed gas, the

shape of the electrodes, and the variety of gas, these features vary somewhat in relative size and
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prominence. For example, in the present study, the Faraday dark space is very narrow, thus the

light is continuous between the negative glow and the positive column with only a small narrowing

of the glow at the Faraday dark space. For our purposes, these terms primarily label alternating

areas of glowing plasma and relative darkness. The detailed physics that leads to the development

of these recognizable features is reviewed in Ingold (1978).

A brief physical description distinguishing the positive column from the other features to the

cathode side is supplied by Franklin (1976). Electrons, emitted from the cathode, undergo axial

acceleration due to a strong local electric field and increase in energy to a value adequate to ionize

the neutral gas. In the regions of the discharge between the cathode and the positive column, these

electrons collide inelastically with increasing energy until an equilibrium is established between

energy added from the electric field and energy lost to collisions. When the equilibrium is reached,

it continues for most of the length of the discharge tube, in the region known as the positive

column. This is the region of the plasma where the waves studied in this thesis are observed, and

it has a relatively constant axial electric field aside from periodic perturbations with the striation

wavelength.

3. Ionization waves

In discharge plasmas in general, a wide variety of waves have been observed across a wide parameter

range. For example, waves have been associated with electron (108 Hz to 1010 Hz) and ion (105 Hz

to 107 Hz) oscillations, ion acoustic dispersion (103 Hz to 106 Hz in lower pressure discharges), and

standing (0 Hz in molecular gases) and moving (103 Hz to 105 Hz) striations [Garscadden (1978)].

Moving striations, also called ionization waves, are commonly the most readily identified and are

the waves that play the role of coupled, nonlinear oscillators in this study. They are a ubiquitous

phenomenon, even occurring in miniature in the tiny pixels of plasma television screens [Boeuf

(2003)]. In many plasma applications, striations are a nuisance and this is one reason why much

research has been done in this field [Rayment (1974)].

Typical ionization waves would occur in a discharge tube filled to around 200 Pa with monatomic

gas, if it were operated between a few milliamperes and the Pupp limit [Pupp (1932)], the critical

current above which the plasma is striation free. The Pupp limit is typically around 1 A or more,

depending on tube geometry. For these conditions, the positive column glows with an apparent
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uniform luminosity. This outwardly calm behavior disguises ionization waves traveling too fast

for the time resolution of the human eye [Ingold (1978)]. The observational range of existence

of ionization waves is quite broad. Waves have been shown to exist in a pressure range 10−1 to

10+4 Pa (10−3 to 10+2 Torr, the pressure unit commonly used in this field) and within a range of

discharge currents from 10−4 A to 10 A [Landa et al. (1980)].

The nature of these waves has been reviewed several times [Pekárek (1968), Oleson and Cooper

(1968), Landa et al. (1980), and Kolobov (2006)] and and has been described in books [Franklin

(1976) and Hirsch and Oskam (1978)]. The dispersion relation [see, for example, Pekárek (1968)

or Oleson and Cooper (1968)] for ionization waves has the form ω = b + a/k where a and b

represent constants that can be empirically matched to data from a specific discharge tube and k

is the wavenumber. Ionization wave propagation is peculiar because the group velocity is typically

directed oppositely to the phase velocity. Waves with this feature are called backward waves and

the waves in this study provide good examples. Phase velocities can range from 103 to 106 cm/s,

and group velocities are comparable in magnitude but generally larger for low current waves [Landa

et al. (1980) and Kolobov (2006)].

Ionization waves can be categorized into four basic varieties, labeled p, s′, s, and r. Each

wave category is distinguished by a characteristic value for the potential drop over the length of

a striation, known as the Novák constant Eλ, where E is the axial DC electric field and λ is the

preferred wavelength [Novák (1960)]. These values are tabulated by label and propagation in Table

1.1. The justification for using four categories can be seen in Figure 1.2 in which a neon discharge

with a specific pressure was operated at a variety of discharge currents. At low currents, the Novák

constant is independent of current whereas at high currents, Eλ is current dependent.

All four types are apparent when current and pressure are used to form a two-dimensional

parameter space, as shown in Figure 1.3. At very low pressures, below about 1 Torr (or 2.5 Torr

at currents < 1 mA), the faster r and s waves dominate. At higher pressures, the slower p and s′

waves dominate. Between, there is a crescent-shaped region where no waves occur.

Convenient in characterizing the luminosity’s spatial structure along the discharge tube is the

use of reduced parameters [Pfau et al. (1969), Landa et al. (1980)]. Reduced pressure (pR) and

reduced current (I/R) are obtained by combining each parameter with the radius (R) of the dis-

charge tube. This allows data from tubes of different radii to be plotted simultaneously. When this
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is done, it is clear from the overlap of data from different tube radii that the reduced parameters

have the proper normalization.

One example of this is seen in Figure 1.4, in which the wave existence plot for neon is plotted

on the reduced current–reduced pressure plane for differing tube radii ranging from R = 0.1 cm to

R = 7.0 cm. The data from the different tubes clearly follow the same pattern, and the crescent-

shaped wave-free region is shared by several data sets.

Convenient in characterizing the luminosity’s temporal modulation by ionization waves is the

reduced frequency (Rf), plotted against reduced current in Figure 1.5. The plot was made for a

discharge with a pressure of pR = 1 Torr cm, similar to the 1.5 Torr cm tube used in this thesis.

As in Figure 1.3, the ionization waves group neatly by type, but notice the periodic stair-step

appearance in the p waves. This stair-step feature indicates that p waves manifest themselves in a

discharge tube as a family of normal modes.

For the conditions of the neon discharge tube described in this thesis, P = 200 Pa (1.5 Torr) and

discharge current from 3 to 15 mA, it is clear from Figure 1.3 that the waves described in this work

are p waves. Since the radius of the tube is 1.0 cm, and mode frequency ranges from 0.5 to 2.5 kHz,

the reduced parameters of this tube are pR = 1.5 Torr cm, 3 mA/cm < I/R < 15 mA/cm, and

0.5 cm kHz < Rf < 2.5 cm kHz. With these ranges in mind, Figure 1.5 provides ample evidence

to confirm the identity of p waves in this study, even though the tube in Figure 1.5 and the tube

used in this thesis have slightly different reduced parameters.

A straightforward physical picture can be used to explain the formation of ionization waves

along the positive column. Within the axial electric field there, electrons gain energy until they

achieve an amount necessary to ionize the neutral gas. At that point, ionization occurs, leaving

low energy electrons to repeat the process [Landa et al. (1980)].

This simple picture has been supported with experimental studies of the electron energy dis-

tribution [Rayment (1974)]. While populations of electrons might be expected to get out of step

with one another as they progress through the tube, they actually undergo “electron EDF (energy

distribution function) bunching.” Different wave types occur because of different resonances with

the electron EDF. The p and s′ waves are slow waves and are metastable-guided, while the r and

s are relatively faster and are ion-guided waves [Pekárek et al. (1970), Franklin (1976)]. When the

pressure exceeds the Pupp limit, the electron EDF resonance is smeared and the waves are absent
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[Kolobov (2006)].

Theoretical models of the positive column assume cold ions and neutrals, and describe each

species using fluid equations. Electrons are usually analyzed using kinetic analysis of the EDF.

The characteristic energy scale is represented by the excitation threshold of atoms (ε1). The

characteristic length is represented by λε = ε1/ (eE), which is the length necessary for an electron

to achieve the excitation energy. A source term for ionization (and loss to the walls) must be

included, and transport is considered to keep track of metastables in multiple-step ionizations

[Kolobov (2006)].

When simulating ionization waves, partial differential equations modeling the plasma are com-

bined with ordinary differential equations modeling the external circuit. Successful one- [Greiner

et al. (1995), Jonas et al. (2000)] and two-dimensional [Arslanbekov and Kolobov (2003), Arslan-

bekov and Kolobov (2005)] simulations of striations have successfully reproduced experimental data.

B. Nonlinear dynamics

Nonlinear dynamics got its start in physics with the three-body problem of celestial mechanics,

which proved unsolvable using the methods of Newton. Poincaré made notable advances in the

late nineteenth century by taking a more geometric approach. He, it can be argued, was the

first to notice the possibility of chaos, or aperiodic long-term behavior in a deterministic system

that exhibits sensitive dependence on initial conditions. With the development of the computer,

numerical approaches allowed the study of problems too intractable to do any other way [Strogatz

(1994)].

Lorenz modeled atmospheric convection with a three-dimensional nonlinear computer simula-

tion and discovered complex dynamics that was both deterministic and sufficiently dependent on

initial conditions, even with unimaginable precision, to prevent long term prediction of behavior

[Lorenz (1963)]. In other words, he accidentally rediscovered chaos. This seminal paper launched a

tremendously productive period in nonlinear dynamics beginning in the 1970s, leading to numerous

advances [Strogatz (1994)]. These include the discovery of fractal dimension, correlation dimension,

and universal rules about the onset of chaos. These topics are beyond the scope of this thesis but

are described in the popular press (most famously Gleick (1987)) and in textbooks (for example,
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Strogatz (1994)).

In the late 1980s, the study of chaos occupied innumerable researchers across many subfields.

This research was quickly extended to gas discharges, with the first experimental observation of

chaotic behavior in a pulsed plasma discharge with a hot electron emitting filament [Cheung and

Wong (1987)]. The following week, it was reported in a DC helium discharge tube manufactured

for teaching spectral lines [Braun et al. (1987)]. In 1988, Cheung et al. (1988) documented the

transition to chaos through intermittency, which is a route to chaos different from the period-

doubling route of the two studies above. The following year, Ströhlein and Piel (1989) documented

the quasiperiodic transition to chaos in a driven plasma.

During the 1990s, experimental studies continued to proliferate. Weixing et al. (1993) docu-

mented the quasiperiodic transition to chaos in an undriven plasma. This study was documented

using the Lyapunov exponent [Strogatz (1994)], a quantitative measure of a system’s sensitivity to

initial conditions. A positive value marks the transition to chaos, and the behavior of the exponent

differentiates between fixed point, periodic, quasiperiodic, and chaotic behavior. A study of the

Lyapunov exponent was done in 1995 for the neon glow discharge tube used in this study [Brown

(1995)].

Using the method of Ott et al. (1990), Weltmann et al. (1995b) demonstrated that small, time-

dependent variations in the modulation amplitude could be used in an active feedback technique

to stabilize chaotic orbits in a driven glow discharge. This so-called control of chaos marks another

step in the understanding of the nonlinear behavior of glow discharge plasmas.

Despite its maturity as an experimental device, the discharge tube still contributes new science

in the field of nonlinear dynamics. Dynamical classes can be studied, and behavior can be periodic,

quasi-periodic, intermittent, or turbulent, depending on conditions [Kolobov (2006)]. The glow

discharge is inherently nonlinear, as it is characterized by negative differential resistivity (dV/dI <

0), and thus supports multiple modes that can influence each other if sufficiently large in amplitude

and close in frequency. Introducing driving forces further enriches the dynamics. As an excellent

example of a relaxation oscillator, both complete and incomplete (periodic pulling) entrainment by

a periodically modulated driving force are readily demonstrated as experimental parameters are

varied. Key concepts for interpreting the results in this thesis are spatial [Block (2001)], temporal

[Koepke and Hartley (1991)], and spatiotemporal [Koepke et al. (2001)] entrainment, whether the
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entrainment is complete or incomplete. (These italicized terms and those that follow in the next

section will be defined in Chapter II).

C. Overview of thesis

1. Presented work

This thesis summarizes an experiment in which a neon glow discharge tube operating in one of its

normal modes is subjected to a driving force that is applied by chopped, neon-resonant, narrow-

band laser light. The chopping frequency is selected to approximately match an adjacent mode

frequency (both the next-higher and next-lower mode frequencies were studied). The conclusion

is that, under certain conditions, the neon glow discharge exhibits a behavior termed dynamics

modulation, first seen by Koepke, Weltmann, and Selcher [Koepke et al. (1995)]. In dynamics

modulation, two modes in a driven neon glow discharge alternate as the dominant mode as their

response to the driving force alternates between spatiotemporal and temporal periodic pulling.

For two pairs of mode frequencies involved in the transition, three complete data series are

experimentally observed. Ionization wave modes are examined using time series recorded using a

photodiode with a narrow band filter that selectively passes the primary neon spectral line at 640

nm. The system was periodically driven using a narrow-band ring dye laser tuned to a wavelength

near the metastable neon transition at 588.35 nm. The amplitude of the driving force was decreased

(increased) by tuning the laser away from (nearer to) the center of the neon line, while the driving

frequency was controlled by an acousto-optic modulator chopping the laser beam at the desired

frequency.

Arnol’d tongue boundaries identifying the edges of frequency (or temporal) entrainment regions

in the driving force’s amplitude-frequency parameter space were established for four different dis-

charge currents. The (upward) dynamics modulation behavior seen by Koepke, Weltmann, and

Selcher was reproduced and additional data was acquired for two additional representative cases

of downward modulations, previously undocumented. The upward modulations are used to verify

the mechanism, while the downward modulations exhibit qualitatively different behavior.

Koepke, Weltmann, and Selcher proposed a mechanism by which dynamics modulation occurs

[Weltmann et al. (2000)]. The modulation of the dynamics occurs as the entrainment (complete
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or incomplete) alternates between temporal and spatiotemporal. For a pair of mode frequencies

involved in the transition, two limited but representative cases were previously experimentally

observed but the more exhaustive scrutiny contained in this thesis is used to establish the mechanism

on much firmer footing.

An extension of the analytical treatment of periodic pulling of Lashinsky [Lashinsky (1968),

Klinger et al. (1995)] is presented for the first time. This allows M , the normalized driving ampli-

tude central to the proposed mechanism, to be accurately and directly calculated for spatiotemporal

periodic pulling for the first time. In addition, the extension of the analytical treatment has impli-

cations for mode transitions in undriven discharge tubes, which will also be discussed.

In addition to the experiment, a numerical model is presented. Two square-wave driven, coupled

van der Pol equations are chosen to model the behavior. The resulting time series was calculated

with a Runge-Kutta routine whose parameters could be adjusted as the simulation proceeded

to accurately reproduce the experiment. A comparison between the numerical study and the

experimental results is presented.

2. Organization of text

In chapter II, the background and terminology necessary to understand this thesis are presented.

This begins with background about the van der Pol equation, with emphasis on its use as a model

for the nonlinear behavior of glow discharges (and other systems that support spontaneous oscil-

lations). The analytical treatment of Lashinsky [Lashinsky (1968)] is presented and then extended

to the case needed here, with driving frequency not approximately equal to the dominant mode

frequency. How this analytical treatment is used to quantify the strength of the spatiotemporal

and temporal periodic pulling is presented. Previous nonlinear dynamics work using a glow dis-

charge tube is summarized in order to provide the experimental context for this study. Finally,

dynamics modulation is defined and the motivating observation [Koepke et al. (1995)] and proposed

mechanism [Weltmann et al. (2000)] are presented.

In chapter III, the experimental approach is described. This includes the details of the neon

glow discharge tube, its external circuit, and how they are employed. The narrow-band laser is

described, along with the acousto-optic modulator used to select the driving frequency and the

method for calibrating laser wavelength using an iodine reference cell. The photodiode used for
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optical detection of the neon time series and the data acquisition method are also described. The

method for determining the boundaries of the Arnol’d tongues is described. Finally, the diagnostic

methods used to parameterize the nonlinear behavior of the plasma is presented, as well as how

these methods are used to recognize signatures of distinctly different nonlinear behaviors.

Chapter IV contains the results of the experimental study presented in this thesis. This be-

gins with the normal modes of the undriven discharge tube as each one first spontaneously arises

and subsequently dominates as the discharge current is adjusted from one end of its range to the

other end. Next, the Arnol’d tongue measurements of the driven discharge tube are presented, and

the resulting boundaries are plotted as a function of laser wavelength for four different discharge

currents. Regions where dynamics modulation was observed are documented, and dynamics mod-

ulation is demonstrated for upward modulation from each of two discharge currents, optimized to

favor different, adjacent modes and thus best illustrate the dynamics modulation. The technique

of quantifying periodic pulling strength, introduced in Chapter II, is extended to the more complex

dynamics modulation case. Next, the results of this technique are presented as a function of driv-

ing frequency for the three experimental cases. Small segments of the time series are presented to

emphasize the phase relationship between driver and oscillator during the two parts of a dynamics

modulation cycle. Finally, two examples of downward dynamics modulation are presented.

In chapter V, the coupled van der Pol equation model is presented. Starting with a successful

recreation of upward dynamics modulation, a systematic study of its behavior is presented over a

wide range of parameters. Results from the model as a function of driving frequency are compared to

the experimental data. Finally, the model is used to attempt to reproduce the downward dynamics

modulation seen in the experimental data.

A discussion of the experimental and modeling results appears in chapter VI, beginning with

an evaluation of the proposed mechanism. The mechanism is evaluated in an item-by-item manner

using experimental data, resulting in a quantitative and definitive verification of the mechanism.

The model is then compared to the experimental results, and the outcome of the modeling process

is evaluated. Last, the results of this study are placed in a broader context. Implications of

the extended analytical model on mode changes in undriven neon glow discharges are discussed.

Conclusions are presented in chapter VII. A derivation of the Lashinsky phase evolution formula

used in chapter II and key MATLAB computer code used in this thesis are presented in appendices.
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Chapter II

Background

In this chapter, the van der Pol equation is introduced, and its mathematical properties are explored.

As it is presented, relevant terms are defined and examples are given. Brief summaries of research

important to establishing those ideas as experimental realities are presented. In the second section,

experimental results establishing the usefulness of the van der Pol model in an electronic oscillator

and a neon glow discharge are presented. The remaining nonlinear physics experiments relevant to

this thesis are presented in the third section. These include the work of Koepke, Weltmann, and

Selcher [Weltmann et al. (2000)], in which the mechanism for dynamics modulation was proposed.

A. Characteristics of nonlinear oscillators

1. The van der Pol equation

In his 1934 review paper titled The Nonlinear Theory of Electric Oscillators [van der Pol (1934)],

Dutch physicist Balthasar van der Pol (1889-1959) presented a summary of his work with variations

of the nonlinear equation that now bears his name. The van der Pol equation is the analytical

starting point for studies of nonlinear behavior in systems such as the one in this thesis, and has

been successfully used to model a wide variety of plasma systems [see Koepke et al. (1996) and

references therein]. It is a nonlinear differential equation, here expressed with a driving force on

the right hand side:

d2x

dt2
− ε(1− βx2)ω0

dx

dt
+ ω2

0x = ω2
0E cos(ωit). (2.1)
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In this equation, x is the oscillating quantity, E is the absolute amplitude of the driving force,

ω0 is the normal mode frequency, ωi is the driving frequency (using the convention of Lashinsky

(1968), the subscript i labels the “injected” frequency), and t is time. The value of E is assumed

positive.

Here ε can be described as a parameter that determines the degree of nonlinearity. For ε < 1,

the equation is weakly nonlinear, and for ε > 1, it is strongly nonlinear (if β 6= 0, of course).

For ε � 1, a relaxation oscillation is modeled [van der Pol (1934) and Minorsky (1962)]. The β

parameter adjusts the degree of nonlinear saturation [Klinger et al. (1995)]. The values of ε and β

are assumed to be positive.

Simply put, the van der Pol equation represents a self-oscillator. Neglecting the driving term

for a moment, for x2 < 1/β, the damping is negative, causing the oscillator’s amplitude to increase.

However, for x2 > 1/β, the oscillator will have positive damping, which will tend to reduce the

oscillation’s amplitude [Baierlein (1983)]. The amplitude of the oscillator therefore will approach

a steady state value from either larger or smaller values, tending to a stable limit cycle near the

boundary in phase space where the damping changes sign [Strogatz (1994)].

Further intuition can be developed about the ε parameter. As ε becomes negligible, the effect

of β saturating the wave diminishes, damping diminishes, and a time-constant single frequency

results. In the case of slightly larger ε, specifically for ε � 1, the expected undriven behavior is

similar to that of a weakly dissipative harmonic oscillation. In this case, the wave would differ only

very slightly from the familiar sine wave form. As ε becomes more significant, the shape of the

wave can be expected to depart more and more significantly from a single-frequency sine wave.

In this thesis, the analysis of the van der Pol equation of Lashinsky (1968) and Adler (1946)

is followed. Their work was summarized and extended in papers by Koepke and Hartley (1991)

and Klinger et al. (1995), which are followed here for purposes of providing conveniently accessible

further background. At the end of the section, the results are generalized for the case ωi 6∼ ω0.

We start by assuming a solution to Eq. (2.1) of the form

x(t) = a(t) sin [ωit− φ(t)] , (2.2)

which explicitly suggests that both the amplitude (a) and phase (φ) are time dependent. Lashinsky
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used an analysis based on the variations of parameters and the method of averaging [Bogoliubov

and Mitropolsky (1961)] to derive expressions for a(t) and φ(t). It is necessary for this analysis

to assume ε � 1 and that a(t) and φ(t) vary slowly so that second order time derivatives can be

neglected.

If we further assume that ωi ∼ ω0, so that (ω2
i − ω2

0)/2ωi ≈ ωi − ω0, we can express the time

derivative of φ as:

dφ

dt
= (ωi − ω0)− Eω0

2a
sinφ (valid only if ωi ∼ ω0). (2.3)

The derivation of this equation is presented in Appendix A.

2. Entrainment and the Arnol’d tongue

If the driving frequency is sufficiently close to the natural frequency, for a given nonzero driving

amplitude, the oscillator can become entrained to the driver. Entrainment means that the oscil-

lation occurs at the frequency of the driving force, rather than at the natural frequency it would

tend to in the absence of the driving force. Some authors, for example Adler (1946), refer to this

phenomenon as frequency locking.

Since the phase of the driving frequency is assumed not to be time-dependent, entrainment

requires that dφ/dt goes to zero. Examining Eq. (2.3), it is clear that the driving frequency is

sufficiently close to entrain the oscillator when

|ωi − ω0| <
Eω0

2a
. (2.4)

Following the convention of previous studies, the time dependence of a is neglected and a is con-

sidered to be positive [Lashinsky (1968), Klinger et al. (1995), and Weltmann et al. (2000)]. This

neglect of the time dependence will be justified by the data later. The use of the absolute value

ensures that frequencies will remain positive without loss of generality. If we define the conventional

beat frequency as Ω0 = |ωi − ω0|, we can write this condition as

Ω0 <
Eω0

2a
. (2.5)
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Following Lashinsky (1968), we define an entrainment parameter α. If α is defined as

α ≡ E

2a
ω0

Ω0
=
E

2a

∣∣∣∣∣∣ 1(
ωi
ω0
− 1
)
∣∣∣∣∣∣ (valid only if ωi ∼ ω0), (2.6)

then entrainment will occur for α ≥ 1. (Note that Klinger et al. (1995) have a typographical error

in their definition of α, reversing ω0 and ωi.)

Furthermore, using this definition of α, Eq. (2.3) can be rewritten as

dφ

dt
= Ω0 [1− α sinφ] (valid only if ωi ∼ ω0). (2.7)

Figure 2.1 (from Klinger et al. (1995)) shows α graphically on the driving frequency-driving

amplitude plane. The figure results from plotting Eq. (2.6) with 2a = 15. The dark triangular

region is the area where α ≥ 1, and therefore the wave is entrained. This region is called the

Arnol’d tongue. Also shown are contours of α at 0.1, 0.5, 0.8, and 0.9 outside of the Arnol’d

tongue. The nearer α is to one, without actually reaching entrainment, the stronger the resulting

periodic pulling. This is demonstrated in the next section.

It is apparent from the definition of α that there are three important parameters that determine

proximity to the Arnol’d tongue. These are E (the absolute amplitude of the driving force), a (the

amplitude of the oscillation), and ωi/ω0, the ratio of the driving frequency to the natural frequency.

Figure 2.1 oversimplifies the picture by plotting the contours of α with a assumed constant. In real

Arnol’d tongues, these contours can be curved [see Figure 8 in Klinger et al. (1995) for example]

due to frequency- and/or driving-force-dependent response amplitudes. Koepke and Hartley (1991)

use an added term in their van der Pol model which can skew the response curve to the lower or

higher frequency side.

To clarify the factors that influence periodic pulling, Koepke et al. (1996) combine E/2a into

a new parameter M , which is referred to as the normalized driving amplitude. Again, within

this factor, the time dependence of a is no longer explicitly considered. Koepke, et al. define M

as “one-half the ratio of the [absolute] driving force amplitude to the undriven system-response

amplitude.” Because the undriven amplitude would be zero for the temporal part of the dynamics

modulation studied here, a will represent the maximum driven amplitude in each portion of the
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dynamics modulation cycle, producing the most conservative estimate of α.

The α parameter can then be described by:

α = M

∣∣∣∣ 1
f̃ − 1

∣∣∣∣ (valid only if ωi ∼ ω0), (2.8)

where M = E/2a, one-half the absolute driving force amplitude divided by the maximum system

response amplitude, and f̃ = ωi/ω0, the ratio of the driving frequency to the natural frequency.

3. Periodic pulling

Periodic pulling is an interaction in which a nonlinear system undergoes a periodically interrupted

attempt to become entrained when the system is just outside the Arnol’d tongue. Beginning when

the driving frequency and the (slightly mismatched) self-oscillator frequency are in phase, the

oscillator frequency is “pulled” toward the driving frequency. As each beat period progresses, the

pulling increases and eventually saturates with the two frequencies still mismatched and the relative

phase increasing. When the relative phase difference is too large (i.e., 180◦), the self oscillator’s

frequency is no longer pulled and returns to its starting frequency. This change in frequency is

accompanied by a change in amplitude. This simultaneous frequency and amplitude modulation

repeats during the next beat. The pulling effect is strongest near the entrainment boundary, and

falls off quickly as one moves away from the boundary. If the entrainment boundary is crossed

during the frequency modulation, the the system will become entrained to the driving force [Adler

(1946), Lashinsky (1968), and Koepke and Hartley (1991)].

Figure 2.2 shows the time series behavior for three cases of driving frequency. Using the van

der Pol equation (2.1) with ε = 0.4, β = 0.1, ω0/2π = 160 Hz and E = 1.5, ωi/ω0 was selected

to demonstrate weak periodic pulling (top panel, ωi/ω0 = 1.2157), strong periodic pulling (center

panel, ωi/ω0 = 1.1195), and entrainment (bottom panel, ωi/ω0 = 1.05). The strong periodic pulling

case has greater amplitude modulation than the weak periodic pulling case, and a more nonlinear

time evolution.

The power spectrum of the three time series from Figure 2.2 is shown in Figure 2.3. The

entrained case (right panel) has a single peak at the driving frequency (168 Hz), as expected. The

other two panels show beat-related sideband behavior that reflects periodic pulling. As the pulling
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becomes more non-sinusoidal, additional sidebands are required to describe the beat envelope.

These sidebands are the result of describing non-sinusoidal frequency modulation with a time-

averaged spectrum.

For the weak periodic pulling case, the highest peak occurs at 161.3 Hz, just above the natural

frequency, and the second highest occurs at 194.7 Hz, the driving frequency. The time-averaged

sidebands are asymmetric with greater power on the low frequency side, opposite to the driving

frequency. This would be reversed if the driving frequency were below the natural frequency. The

sideband separation is 33.4 Hz, and Ω0 = 34.7 Hz. For the strong periodic pulling case, the highest

peak occurs at 179.3 Hz, the driving frequency, and the second highest occurs at 171.3 Hz, about

7% above the natural frequency. Sideband separation is 8 Hz, and Ω0 = 19.3 Hz.

To explain this, we need to look closer at the idea of beat frequency. When periodic pulling

occurs, the conventional notion of beat frequency is no longer adequate. The pulled system fre-

quency departs from its undriven value and spends part of each cycle closer to the driving frequency.

Therefore, one would expect a reduction in time-averaged beat frequency. The decreasing sideband

spacing with growing periodic pulling strength represents the modified beat frequency, Ω.

Mathematically, this can be arrived at by integrating Eq. (2.7). This can be done analytically

[Adler (1946) and Lashinsky (1968)], and the result is:

tan
φ(t)

2
=
√

1− α2 tan
(

Ω0t

2

√
1− α2

)
+ α. (2.9)

The beat frequency Ω of φ(t) can be found from the period of tan(φ(t)/2), and is simply

Ω = Ω0

√
1− α2 (valid only if ωi ∼ ω0). (2.10)

Armand (1969) showed that if the output of the driven oscillator, Eq. (2.2), is expressed in

complex notation and expanded in a Fourier series, the separation between the sidebands is Ω.

Looking back at Figure 2.3, and using Eq. (2.10), this suggests that the weak pulling case (left) has

α = 0.27 and the strong pulling case (center) has α = 0.91. This is consistent with the statement

that α values closer to one exhibit stronger periodic pulling.

Figure 2.4 further supports this pattern. This figure, from Klinger et al. (1995), is a series of nu-
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merical predictions of sideband frequency (a) presented alongside the corresponding instantaneous

value of relative phase between the driver and the response signal (b). The top panels, in which the

entrainment parameter α is relatively far from one, resemble conventional amplitude modulation

[Koepke and Hartley (1991)]. In conventional amplitude modulation, a pair of sidebands appear

around the natural frequency at ±Ω0 [Cuccia (1952)]. In the rest of the panels, note that phase

development becomes more nonlinear as α approaches unity. Time-averaged sideband separation

narrows as Ω departs from Ω0, the conventional beat frequency. The spectrum becomes more and

more one-sided, with the extra sidebands on the side opposite the driver.

The relationship between beat frequency and α can also be seen in Figure 2.5. This figure

comes from the experimental data of Koepke and Hartley (1991), which is further described in

the next section. It depicts beat frequency while moving across an Arnol’d tongue at constant

driving amplitude. The entrainment boundaries are clear from the points where the time-averaged

beat frequency drops to zero when the Arnol’d tongue region’s center is approached from either

side. The conventional beat frequency, Ω0, is represented by the dashed line, which approaches the

entrainment boundaries linearly on either side. The observed beat frequency departs significantly

from the dashed line, especially near entrainment where α approaches one, but agrees well with

the solid line, which is calculated based on an equation similar to Eq. (2.10).

Figure 2.2 shows the amplitude modulation occurring during the periodic pulling cycle, but

simultaneous frequency modulation is less clear. In order to see the frequency modulation, it is

useful to introduce the idea of instantaneous frequency [Koepke and Hartley (1991) and Koepke

et al. (1996)]. Instantaneous frequency is used to temporally resolve the frequency modulation,

and can be calculated from the time series by inverting the time between zero crossings spaced

an oscillation period apart. This practical description is consistent with more formal definitions of

instantaneous frequency, such as that in Mallat (1999), but easier to use in practice.

Figure 2.6 shows the instantaneous frequency plot for the three series depicted in Figure 2.2.

The bottom panel, as expected for an entrained oscillator, has constant frequency over the entire

interval. The top panel, representing the weak pulling case, clearly exhibits a periodic frequency

oscillation that corresponds in time to the amplitude oscillation visible in Figure 2.2. This is also

true of the center, strong pulling case. In this case, however, the frequency modulation has long

periods in which it is relatively steady, followed by short periods of rapid change.
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4. Modified equations for α and M

The assumption ω0 ∼ ωi was used to get the equations above. However, this condition will not be

true for the case of dynamics modulation, in which the driving frequency is selected so that it is

not near the natural mode of the system, but near a neighboring subdominant mode. Since ωi will

differ from ω0 by as much as 20%, this requires that the equations presented above be generalized

to the case ω0 6∼ ωi.

We start with a more general version of Lashinsky’s phase equation. (See Appendix A.) If we

omit the assumption that ωi ∼ ω0, we end up with a new version of Equation 2.3:

dφ

dt
=
∣∣∣∣ω2

i − ω2
0

2ωi

∣∣∣∣− E

2a
ω2

0

ωi
sinφ (general form). (2.11)

Here again, the absolute value symbols have been added in anticipation of the upcoming inequalities

that will allow the entrainment boundary to be defined. This prevents the need for negative

frequencies without loss of generality.

Above, α came from rewriting the equation in the form:

dφ

dt
= Ω0 [1− α sinφ] (valid only if ωi ∼ ω0). (2.12)

If we work toward that form, again using Ω0 = |ωi − ω0|, we find:

dφ

dt
=
|ωi − ω0| (ωi + ω0)

2ωi
− E

2a
ω2

0

ωi
sinφ (2.13)

= Ω0

[
ωi + ω0

2ωi
− E

2a
ω2

0

ωi

1
|ωi − ω0|

sinφ
]

(2.14)

We see that dφ/dt can be zero when a new entrainment condition occurs. The new entrainment

condition is:

E

2a
ω2

0

ωi

1
Ω0

≥ ωi + ω0

2ωi
E

a

ω2
0

Ω0
≥ ωi + ω0

E

a

ω2
0

Ω0

1
(ωi + ω0)

≥ 1. (2.15)
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We identify the more general α as

α ≡ E

a

ω2
0

Ω0

1
(ωi + ω0)

=
E

a

∣∣∣∣∣∣ 1(
ω2

i

ω2
0
− 1
)
∣∣∣∣∣∣ (general form). (2.16)

so that this new α has the same behavior as the less general α of Eq. (2.6), that is, the boundary

for entrainment occurs at α = 1.

If ωi ∼ ω0, it is clear that the α of Eq. (2.16) reduces to the previously defined α, as it should:

α ≡ E

a

ω2
0

Ω0

1
(ωi + ω0)

≈ E

a

ω2
0

Ω0

1
2ω0

≈ E

2a
ω0

Ω0
(2.17)

Using M = E/2a and f̃ = ωi/ω0, a replacement for Eq. (2.8) is simple:

α = 2M
∣∣∣∣ 1
f̃2 − 1

∣∣∣∣ (general form). (2.18)

Now, if we turn our attention to the modified beat frequency Ω, Eq. (2.10) will also need to be

replaced. This can be done by factoring the more general α of Eq. (2.16) out of Eq. (2.14):

dφ

dt
= Ω0

[
(ωi + ω0)

2ωi
−
(
E

a

ω2
0

Ω0

1
(ωi + ω0)

)
(ωi + ω0)

2ωi
sinφ

]
= Ω0

(ωi + ω0)
2ωi

[1− α sinφ] . (2.19)

The expression in the parentheses is the new α. If we then define the reference beat frequency Ω′

as

Ω′ ≡ Ω0
(ωi + ω0)

2ωi
=
|ω2
i − ω2

0|
2ωi

, (2.20)
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we can write

dφ

dt
= Ω′ [1− α sinφ] (general form). (2.21)

Since Eq. (2.21) has the same form exactly as Eq. (2.7), it will have the same integral and it

is clear that the beat frequency is

Ω = Ω′
√

1− α2 (general form), (2.22)

which is identical to Eq. (2.10) with Ω′ substituted for Ω0.

As long as the other assumptions used to derive the expression for dφ/dt are reliable, this

gives a way to calculate α, the generalized entrainment parameter, and M , the normalized driving

amplitude, directly from the modified beat frequency Ω observed in the experiment. This general

form of α and the other general equations of this section are used in the rest of this work.

B. Experimental context

In this section, previous research that provides context to the present study is presented.

1. Nonlinear electronic oscillator

Koepke and Hartley (1991) published a comprehensive study of periodic pulling in a nonlinear

electronic oscillator built around a unijunction transistor (UJT). Although periodic pulling has

been known since at least 1946 [Adler (1946)], this important phenomenon has received relatively

little attention since, and was overshadowed by other work during the research boom on nonlinear

science that began in the 1970s. Koepke and Hartley (1991) gave prominent placement to periodic

pulling. In this paper, the authors document periodic pulling in a driven, nonlinear electronic

oscillator and show that this behavior matches a theoretical treatment with the driven van der Pol

equation.

The version of the van der Pol equation used in their model has an additional term when

compared to Eq. (2.1). The extra term represents a nonlinear restoring force. The development of

the theory follows that of Tsuru (1976), which is qualitatively similar to the development above,
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though quite different in notation. The effect of the additional term is to add an asymmetry in

frequency to the response curves and therefore also to the Arnol’d tongues. This feature helped

the authors fit their model to the data.

A figure from Koepke and Hartley (1991) reinforces the periodic pulling description above, and

is reproduced in Figure 2.7. The figure shows a progression of driving frequencies from below the

natural frequency and far from the Arnol’d tongue (a), through periodic pulling driven from the

low frequency end (b through f), through entrainment (g and h), then through periodic pulling

from the high frequency end (i though m) and finally from far above (n). The time series and

the FFT magnitude are shown for each step in driving frequency. The qualitative behavior is

clear. Asymmetric sidebands appear on the opposite side of the natural frequency from the driving

frequency. The separation between the sidebands is reduced as entrainment is approached. The

amplitude modulation gets more pronounced and more nonlinear as entrainment is approached.

All of these behaviors are predicted by theory.

2. Temporal vs. spatiotemporal periodic pulling

The periodic pulling modeled above can be termed temporal periodic pulling. It results from

interaction with a driving force that oscillates in time (e−iωt). If the nonlinear system can support

multiple modes, it has been shown [Koepke et al. (1996)] that a significantly stronger form of

periodic pulling, spatiotemporal periodic pulling, can occur. Koepke, et al. interpret this as being

due to a second, subdominant mode pulling the dominant mode not only in time, but also along

the length of the oscillation in space (eikz−iωt) for a stronger effect.

The stronger effect is shown in Figure 2.8, from their study of ionization-wave-mode transitions

in a gas discharge. In this figure, temporal pulling is shown along a curve similar to the right half

of Figure 2.5. Close agreement is apparent between the theory, shown as a solid line, and the data,

shown as individual points. (Different shapes represent beat frequencies calculated from different

harmonics.)

The spatiotemporal case in their gas discharge study was not due to an external driving force,

but rather due to a subdominant wave mode pulling the dominant wave mode while in the process

of itself becoming dominant. Subplots (a1) and (a2) indicate the power spectra of two of these

temporal pulling examples, while subplot (b) shows the power spectrum of the spatiotemporal
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case. The authors estimate that the spatiotemporal case has a comparable α to the temporal cases,

but it does so from a greater frequency separation. Therefore, according to Eq. (2.8), it has a much

larger M , and therefore is significantly stronger.

This result was the first identification of spatiotemporal periodic pulling. In later studies [Din-

klage et al. (1998) and Koepke et al. (2001)], spatiotemporal dynamics in neon glow discharge tubes

was further characterized. Dinklage et al. characterized p-wave mode transitions in time and space

and related them to the instability theory of Eckhaus [Eckhaus (1965)]. Koepke, et al. character-

ized instantaneous frequency and instantaneous wavenumber in both space and time and identified

signatures of the process.

3. Optically driven waves

Sheridan et al. (1993) used a chopped, narrow-band, neon-resonant laser to drive a neon-bulb

relaxation oscillator. Dunham et al. (1991) were the first to study frequency entrainment in a

laser-driven system. Their work followed that of Yan et al. (1990), who used the oscillator as an

inexpensive but sensitive detector for spectral calibration. The work of Sheridan, et al. extended

the work of Dunham, et al. by driving the oscillator near but outside the entrainment region. It

showed unambiguous periodic pulling behavior.

The system was successfully modeled with a square-wave-driven van der Pol equation. Time

series show relative phase between driver and response changing in a periodic fasion. Power spectra

indicate the asymmetric character described above, with extra sidebands opposite the natural

frequency from the driver. The work of Sheridan, et al. is directly relevant to the present study,

which uses the same method of driving the oscillation.

Weltmann et al. (2000) used this same technique to drive a neon-glow discharge. They found

the driving technique to work well and used it to confirm the spatiotemporal wave-wave interaction

first documented by Koepke et al. (1996). They also presented characteristic power spectra and

instantaneous frequency series that can be used to distinguish between temporal and spatiotemporal

periodic pulling. (These signatures are discussed in Chapter III.)

In addition, they documented several other behaviors of the system. They showed that neon-

resonant, DC, laser light can cause mode transitions in the discharge as the position of the laser

is moved along the plasma column. They showed that chopped, neon-resonant laser light can
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cause periodic pulling when the frequency is set just outside the entrainment boundary, and they

showed that the entrainment boundaries themselves will appear different if approached from inside

entrainment moving out, rather than outside moving in. Finally, and central to this work, they

presented a published record of the phenomenon they named dynamics modulation, first seen by

Koepke et al. (1995).

4. Dynamics modulation

While conducting investigations using chopped, neon-resonant laser light to systematically control

spatiotemporal periodic pulling in a neon glow discharge, Koepke et al. (1995) noticed a peculiar

phenomenon. They reported this discovery in Weltmann et al. (2000), along with a proposed

mechanism. In this section, the phenomenon is first described, then the mechanism of Koepke,

Weltmann, and Selcher is presented and then summarized as itemized elements to be verified.

While the discharge was optimized at one mode, they were able to entrain, using chopped,

neon-resonant laser light, a subdominant mode at a frequency near but just below the next higher

normal mode frequency and have that mode spatiotemporally pull on the dominant mode. As they

increased the driving frequency toward the spontaneous frequency of that higher mode, the pulling

became stronger. Eventually, it reached a strength capable of triggering an upward mode transition

in the system, but this upward mode transition was short-lived. Despite the laser light’s ability to

force an upward mode transition, it was unable to entrain the now-dominant higher mode. Soon

afterward, the lower mode regained its original dominant status. The process then repeated.

This is shown in Figure 2.9, from Weltmann, et al., which shows the instantaneous frequency

signature of the phenomenon. This signature is a clear change in the median frequency about which

the frequency oscillation occurs, repeating periodically. The lower mode, dominant throughout most

of the time series, is at 1.5 kHz and is referred to as f7. The higher mode (f8) is at 1.75 kHz, and

the driver in this case (which entrains the subdominant mode when the lower mode dominates)

is at 1684 Hz. Also shown in this figure is the characteristic “hairy” power spectrum. The term

dynamics modulation refers to this incomplete transition between two ionization wave modes, which

occurs, reverses, and repeats periodically.

The reason for the modulation was formulated as a result of the two representative cases that

were observed. The first part of the explanation is that the amplitude of the higher mode increases
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immediately after the mode flips up. With this increase in amplitude, a decrease in M results from

Eq. (2.8). This reduction in the normalized driving strength brings α below one and therefore

interrupts the entrainment of the higher mode. The higher mode reverts to its natural frequency,

which is briefly temporally pulled by the nearby laser chopping frequency but is not very stable

as a limit cycle. Since the lower mode can be expected to survive for times on the order of 10

ms [Koepke et al. (1996)], it does not decay immediately after the mode transition. It regains its

original dominant status, causing a reversal of the change in M . Then the process repeats.

As the driving frequency gets even nearer to the higher mode from the low frequency side, the

relative time spent in each phase of the modulation changes. In a second figure (not reproduced

here), Weltmann, et al. show that for a driving frequency of 1688 Hz, the dynamics modulation

up to a higher mode occurs earlier and remains a little longer. They attribute the difference to the

faster relative phase evolution of the driver and the dominant lower mode, leading to a faster mode

transition up, and to the slower phase evolution between the driver and the natural frequency of

the higher mode, leading to a longer stay in the higher mode before returning to the lower mode.

These arguments are explored in Chapter VI, where the proposed mechanism is evaluated.

Figure 2.10 from Weltmann et al. (2000) summarizes the dynamics modulation phenomenon.

This diagram represents a schematic Arnol’d tongue situation, with the vertical axis representing

the parameter M . The lower and upper modes are identified by their labels f7 and f8, respectively.

The lines represent Arnol’d tongue boundaries for the two modes. All points on the figure can be

imagined as resulting from the same absolute driving force, with the differences in their vertical

position being due to differences in the amplitude of the oscillations involved. That is, E is constant,

but a is changing in Eq. (2.8) so the position on the vertical axis (i.e., M) is changing. This figure

is central to the proposed mechanism of dynamics modulation presented by Weltmann, et al.

The 4 represents a case of temporal periodic pulling near the dominant mode. Since the

amplitude (a) of the dominant mode would be large, M is proportionally smaller. As the driving

frequency is increased to near but below the subdominant mode, it can entrain that mode, but at

a much lower amplitude than the dominant mode. The H represents this location, which appears

at a correspondingly higher M . In this location, strong spatiotemporal periodic pulling occurs, but

the pulling is inadequate for triggering a mode transition upward.

The • and � cases represent two cases of dynamics modulation. Both are further from the
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dominant mode, and so would have even smaller a values due to the diminishing response of the f7

mode at that distance. Therefore, they would have even larger M positions than the H, and the �

appears slightly above the • since it is farther away. For these cases, the spatiotemporal periodic

pulling is stronger than for the H, and is in fact strong enough to cause the higher mode to become

dominant briefly. However, this change in dominance changes the amplitude a, which changes the

effective amplitude of the driving force M on Figure 2.10. The change in M that occurs when the

mode shifts to the higher, normally subdominant mode is indicated by the ◦ and the �. These

appear outside the entrainment boundary, leading to a return to dominance for the f7 mode. The

whole process then repeats. Within the dynamics modulation region, the amount of time spent at

the higher mode increases as the driving frequency approaches the upper entrainment boundary.

The two circles (• and ◦) correspond to the case shown in Figure 2.9, and the squares to a nearby

case with a different driving frequency and modulation period.

As the driving frequency is further increased, the modulation ceases and the higher mode

becomes permanently entrained by the driver. The � represents this case. The subdominant

mode becomes the dominant mode which, in this case, does become entrained, and no dynamics

modulation occurs.

Weltmann, et al. provide additional detail in their explanation of the process. In addition

to the description above, there are predictions about the timing of upward mode change and the

downward mode return. Specifically, they propose that the upward mode transition occurs when

the higher mode, and the laser light to which it is synchronized, is “sufficiently out of phase the

the [lower] mode.” They also attribute the cycle’s end to the temporal pulling cycle of between the

laser and the upper mode, stating that “the laser’s temporal pulling of the [higher] mode is strong

enough to interrupt the consummation of the upward mode transition before the [lower] mode

decays completely” at which point the system returns to the lower frequency. Third, they propose

that, during the time spent in the upper mode, the temporal periodic pulling process occurs in

reverse from the normal case described in the first section of this chapter, namely, the cycle begins

with the driver and the mode in-phase and evolves to the out-of-phase point.

This proposed mechanism for dynamics modulation has not been experimentally tested until

now. An experiment was conducted in which the dynamics modulation of Koepke et al. (1995) was

reproduced and studied in detail. This allowed a series of specific predictions to be tested as a
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verification test for the proposed mechanism. These predictions can be summarized as follows.

1. The system’s M during the upper temporal part of the dynamics modulation cycle is reduced

compared to the M during the lower spatiotemporal part of the cycle.

2. The system alternates between laser entrainment of the subdominant upper mode during

the lower frequency part of the cycle and temporally pulling but not entraining the (now

dominant) upper mode during the upper part of the cycle.

3. The occurrence of dynamics modulation, relative to the Arnol’d tongue, is represented accu-

rately by their “dynamics phase diagram,” shown in Figure 2.10.

4. The change in M is consistent with a change in amplitude in the laser-light-driven upper

mode.

5. The upward modulation occurs when the instantaneous frequency of the lower mode is pulled

sufficiently close to the upper mode.

6. The upward modulation is related to the relative phase evolution between the lower mode

and the laser-entrained upper mode, occurring when they are out of phase.

7. The downward, return modulation occurs when the chopped laser light and the temporally

pulled upper mode are back in phase.

8. The temporal pulling of the upper mode during the higher frequency portion of the dynamics

modulation is associated with a relative phase between the system and the driving force that

evolves in reverse.

The first four items listed result from the dynamics modulation mechanism itself. The remaining

items describe the timing and phase relationships that occur during dynamics modulation. All items

are discussed in the chapters that follow, and the proposed mechanism is evaluated.

Additional novel cases of downward dynamics modulation, in which the laser chopping frequency

is placed near the next lower mode, were observed for the first time during this study. These cases

did not exhibit the same qualitative behavior as the upward cases described by Koepke, et al., and

therefore are presented and discussed separately.
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Chapter III

Experimental Approach

In this chapter, the experimental apparatus is described in detail in the first section. Following

that, the diagnostic methods used to perform the experiment are explained and the signatures of

the pertinent dynamics are presented.

A. Experimental arrangement

1. Neon glow discharge tube and circuit

The centerpiece of this experimental study is a neon glow discharge tube. The discharge tube is

powered by a Series ER 6 kV High Voltage Power Supply manufactured by Glassman High Voltage,

Inc., arranged to have negative voltage output, and operated through a load resistance of 100 kΩ.

Although the exact load resistance is not crucial, such external circuit elements do have an effect

on the Arnol’d tongue boundaries [Weltmann et al. (1995a)], and therefore the load resistance was

selected to match that of Weltmann et al. (2000), whose observations we sought to reproduce as a

starting point.

The discharge tube contained pure neon. The parameters of the discharge tube itself were

taken from markings on the outside of the tube. The radius (R) was 1.0 cm, and the pressure (P )

was listed as 1.5 Torr (200 Pa) at room temperature. The length of the tube between anode and

cathode was 70.0 cm. The Glassman power supply was operated in current control. The current

delivered by the power supply was measured by monitoring the “TB7” contact on the back of the

power supply, which outputs a voltage proportional to the current delivered. The waves typically
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appeared beginning at 3 mA and were observed up to the top of the range (18 mA) selected to

prevent high-voltage breakdown of the RG-58 cable used. There were nine normal modes of p-waves

possible within this range, with frequencies between 640 Hz and 2 kHz. (These will be documented

in Chapter IV.) Two internal discharge-encircling rings near the cathode end were not used in this

application.

The complete discharge tube circuit, along with the chopped-light driving force and data ac-

quisition systems, are schematically presented in Figure 3.1. Each component of the experimental

arrangement is further described in the subsections that follow.

2. Narrowband dye laser

The optical forcing was accomplished using a Coherent 899 ring dye laser, operated with Rhodamine

6G fluorescent dye, pumped with an Innova 90 Plus Argon-Ion laser, and tuned to wavelengths

near the metastable neon transition at 588.35 nm [Meggers and Humpreys (1934)]. (The precise

value is 588.35252 nm, according to Ralchenko et al. (2008).) This vacuum wavelength corresponds

to 588.19 nm in air and represents the 2s22p5(2P ◦3/2)3s to 2s22p5(2P ◦1/2)3p transition [Wiese et al.

(1966)]. In the older Paschen notation commonly used in discharge physics, this is represented

as 1s5 − 2p5 [Moore (1971)]. This neon transition is different than that used by Weltmann et al.

(2000), but serves the same purpose, neon-resonant driving, in a similar way.

The laser was capable of delivering the necessary driving force when operated at a power between

100-150 mW (as measured just outside the laser cavity’s output coupler), well below the maximum

available power at this wavelength. Laser power was monitored and the position of the laser and

optics relative to the discharge tube was not adjusted during the experiments in order to ensure a

constant absolute driving amplitude.

A commercial wave meter (Bristol Instruments series 621) was used to guide the tuning of

the laser to the approximate location of the resonant neon line. Fine calibration of the laser

wavelength was accomplished using an iodine reference cell. As the wavelength of the laser was

scanned, a diverted portion of the light beam passed through the iodine cell and the resonant

absorption of the iodine gas was recorded using the output of a dedicated photodiode. Two iodine

lines, identified as numbers 372 (at 16996.6245 cm−1) and 373 (at 16996.6242 cm−1) in the iodine

atlas [Gerstenkorn and Luc (1977)] were used to establish an absolute wavelength scale in the
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neighborhood of the neon-resonant bandwidth.

Note that Keesee (2006) and Scime et al. (2007) recently brought attention to a previously doc-

umented [Gerstenkorn and Luc (1985)] systematic error in the iodine atlas that must be considered

when the iodine cell is used for wavelength calibration in laser induced fluorescence (LIF) studies.

As detailed in Gerstenkorn and Luc’s Figure 9, this error would be expected to alter wavenumbers

near 17000 cm−1 by no more than 0.002 cm−1. An error of this size would be expected to cause

a wavelength calibration error of ≈ 7× 10−5 nm. While a miscalibration of this magnitude would

introduce a detrimental error level into LIF velocity measurements, the wavelength calibration here

is used only to provide a reproducible reference for driving-force amplitude. A systematic error,

particularly one this small, does not affect this purpose and therefore was not eliminated.

Sample output from the iodine cell, fit to data from the iodine atlas, is shown in Figure 3.2. In

this figure, the circles represent the output from the iodine cell. The dashed line is the fit based on

the lines from the iodine atlas, and establishes the operation range of the calibration. This figure

will also be discussed below in the diagnostic methods section.

3. Controlling driving frequency

The driving frequency was controlled with an Isomet 1205C-2 acousto-optic modulator (AOM)

driven by an Isomet 222A-1 AOM driver. This device effectively chopped the laser light between

off (0%) and on (100%) states at a frequency selected using a manually adjusted Agilent 33220A

function generator in square-wave mode.

The laser beam was reflected upward, passed vertically through the AOM, and then was directed

toward the discharge tube so that the first-order AOM output line was directed at a point on the

discharge tube 2.5 cm from the cathode. This point was selected because it has excellent coupling

to the plasma. (See Figure 8 in Weltmann et al. (2000).) Physically, this target point appears to

be the center of the “negative glow” feature of the discharge.

4. Data acquisition

A photodiode detector was constructed by placing an optical assembly in front of a simple negatively-

biased photodiode circuit. This design of this detector is displayed in Figure 3.3. The detector

was placed at a position 57.5 cm from the cathode and aimed at the center of the discharge. The
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photodiode detector was elevated so that its axis was at a height matching the axis of the tube.

The distance between the detector and the tube was adjusted so that the center of the tube was

one 50 mm focal length from the first lens in the detector (25 mm diameter, Edmund Optics part

number NT32-624). The light then passed through a 640.1 nm, 4 nm bandwidth filter before being

focused by a second identical lens onto a photodiode.

The lenses and filter were properly oriented by an optical assembly (Figure 3.3a) made from

common household PVC “Schedule 40” plumbing parts of appropriate diameter to hold the op-

tics in position. Light entered an aperture created by a 1-inch-to-3
4 -inch reducing adapter with

unthreaded fittings, which held one lens and the filter. The second lens was held in place with

a 3
4 -inch unthreaded-to-threaded adapter. Finally, the photodiode was held by a 3

4 -inch threaded

cap. Spacers were made from small sections of 3
4 -inch pipe cut square on the lathe, a longer section

of pipe, and (as a pad between lens and filter) a 1-inch OD, 3
4 -inch ID O-ring. The threaded con-

nection allowed the distance between the photodiode and the second focusing lens to be optimized

for the best-quality signal. The pieces were held in place by friction, and shielded from outside

light in an aluminum enclosure.

The photodiode circuit (Figure 3.3b) was powered by a 9V battery using a 7805 voltage regula-

tor, wired to produce a −5 V output. Light incident on the photodiode generated a current which

traveled to ground through a 220 Ω resistor. The voltage across this resistor gave a signal which

was passed to a Stanford Research Systems model SR560 preamplifier before being recorded in a

LeCroy Waverunner 6100A digital oscilloscope. Typically, the gain on the amplifier was set at 200,

and no filtering was used.

B. Diagnostic methods

1. Time series analysis

The primary data source for this study of dynamics modulation consists of time series recorded

from the photodiode, which records the oscillations of the luminous ionized gas in the discharge

tube. These time series were recorded so that they had excellent time resolution (typically 100

kS/s for 1 s) and multiple realizations were typically recorded for each driving frequency.

It is well known that a periodic time series can be decomposed using a Fourier transform
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into the frequency domain. Two methods of doing this were employed in this study. First, the

digital oscilloscope used could directly record spectral information based on its internal fast Fourier

transform (FFT) routine. This method was used for the mode frequency/discharge current map

(Figure 4.1) and for purposes of identifying interesting regions during data collection (such as

identifying Arnol’d tongue boundaries, described below.) The other method was to process the time

series later, and used the standard FFT routine built into the MATLAB programming language to

create auto-correlation power spectra.

In addition, a routine was created [Koepke and Hartley (1991), Weltmann et al. (2000)] to

calculate the instantaneous frequency time series, in order to recognize signatures of temporal

periodic pulling, spatiotemporal periodic pulling, and dynamics modulation. These signatures

will be described below. These plots were also used to identify the precise moments when the

dominant frequency was modulated upward or downward, so that the time spent in each part of

the modulation could be known and phase evolution between two known frequencies during these

times compared to the proposed mechanism of the Weltmann, et al. paper.

2. Establishing the boundaries of the Arnol’d tongue

Central to the mechanism proposed by Weltmann et al. (2000) is the occurrence of dynamics mod-

ulation relative to the Arnol’d tongue boundaries of the involved modes, shown in their dynamics

modulation phase diagram (reproduced in Figure 2.10). This requires an experiment designed to

test the mechanism, such as this one, to gather data that definitively establish the Arnol’d tongue

boundaries. Although such a figure has not been created previous to this study, the process is

straightforward.

One requirement is to have some method for measuring the absolute amplitude of the driving

force. This method, described above, is to measure wavelength of the narrowband incident light.

Due to the non-negligible temperature of the neon ions, the population of ions is spread around

the center of the spectral line at 585.35 nm. More of the particles will resonate to laser light tuned

near the center of the line. As the laser is tuned away from the line, fewer metastable neon atoms

will resonate.

This effect is clear in Figure 3.2. The outer triangles on the axis represent the approximate

wavelength extremes at which the laser just begins to affect the discharge. The interaction between
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the laser and the discharge becomes more pronounced as the laser is tuned inward from the triangles

on either outer edge. Between the inner pair of triangles, the laser is resonant enough to entrain

any frequency despite the preferred natural modes of the plasma. The center of the resonant line,

though not precisely measured here, is between the two inner triangles. Note that the actual line

is slightly offset from the vacuum value of 585.35252 nm because the inside of the neon discharge

tube is not a vacuum.

The two five-pointed stars have been placed at representative wavelengths where dynamics

modulation has been observed. (A similar dynamics modulation regime would be expected on the

opposite side of the peak resonance.) From Figure 3.2, it is clear that a progression of absolute

driving amplitude can be experimentally produced by controlling the wavelength of the narrow-band

laser, and that this will serve as the y-axis on an Arnol’d tongue plot.

The second requirement for producing an Arnol’d tongue map is to have a way of establishing

the boundaries of the Arnol’d tongue itself. This can be done by examining the real-time FFT

output of the photodiode cell as the driving frequency is controlled at a given laser wavelength.

Once the wavelength of the laser has been established, the driving frequency in the vicinity of the

boundary has a distinct effect, which is shown in the sample data of Figure 3.4.

During this series, the discharge current was set at 9.51 mA, which places the discharge so

that its mode frequency is around 1440 Hz (see Chapter IV). The driving frequency is shown on

the left side of each of the power spectra, and it is driving the mode from below. Consequently,

extra sidebands indicating periodic pulling appear on the right. As one views the panels from top

to bottom, the driving frequency increases, and the periodic pulling gets stronger as indicated by

the reduced separation between the sidebands. Finally, in the bottom panel here, the oscillation is

entrained to the driving frequency.

Although the sideband separation can get smaller and smaller and may go below the spectral

resolution of the data, the effect of becoming entrained is unmistakable on the oscilloscope, par-

ticularly at lower amplitude. The spectral feature visually changes from asymmetric to symmetric

and from subtly variable with each update to smooth and still. At this point, the driving frequency

was recorded to define the entrainment boundary.

All available entrainment boundaries for a given driving amplitude were recorded at each step.

Then, the first recorded entrainment boundary was checked again to ensure that it remained the
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same. If it had changed, a mode hop in the laser during data collection would be indicated and the

data point would have to be repeated.

Because an already-entrained oscillation will tend to stay entrained, entrainment boundaries will

appear wider if they are located by going from inside entrainment out [Weltmann et al. (2000)].

For this study, entrainment boundaries were always located by starting outside entrainment and

moving toward entrainment.

C. Signatures of distinct behaviors

1. Temporal periodic pulling and entrainment

Periodic pulling, as described in Chapter II, consists of a time signal that is undergoing a period-

ically repeating oscillation in its frequency due to the presence of a nearby driving frequency. A

simultaneous amplitude modulation is also present. In this subsection, we review the signatures of

periodic pulling and entrainment.

The power spectrum signature is the clearest sign available during real-time data collection. An

example of this is shown in Figure 3.5. Here, a corresponding view of the time series is also shown,

with the time axis enlarged to show the individual oscillations. A quick glance at the time series

suggests a very uniform oscillation, with no hint of periodic pulling aside from some amplitude

modulation. There is certainly no obvious feature to suggest that the driving frequency (here at

1522 Hz) is above the undriven oscillation frequency (1466 Hz) rather than below. So the power

spectrum is the first diagnostic needed to see temporal periodic pulling.

In Figure 3.6, the instantaneous frequency signature of temporal periodic pulling is shown

(bottom). This figure displays the same data as Figure 3.5, so the driving frequency is above the

dominant mode frequency. The instantaneous frequency has a clear beat, with the beat frequency

being the Ω factor discussed in Chapter II. Here, that beat frequency is about 42 Hz, since here

there are about 10.5 beats in 0.25 seconds. Using Eq. (2.10), it is simple to calculate α for this

case: Ω0 = |1522 − 1466| = 56 Hz and Ω = 42 Hz, so α ≈ 0.66. Using the frequencies and Eq.

(2.8), M ≈ 0.025, comparable to the values reported by Koepke et al. (1996) for temporal periodic

pulling.

In the top half of Figure 3.6, the corresponding time series is shown. While the oscillations occur
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so fast that they darken the entire region, it is clear that their overall amplitude is modulated along

with the frequency modulation. This amplitude modulation was also seen in Figure 2.7, but here,

with the use of the instantaneous frequency series, it is seen to be exactly out of phase with the

frequency modulation, with frequency peaks corresponding to amplitude minima.

The degree of amplitude modulation apparent for the relatively strong (α = 0.66) temporal

pulling in Figure 3.6 is modest, with variation comprising 5% of the maximum amplitude. This

shows that the neglect of the time variation of a in Chapter II during the derivation of α and M

is an acceptable assumption.

The shape of the instantaneous frequency series during a beat in Figure 3.6 is an arc in a concave-

downward orientation. This shape reflects the behavior of the frequency modulation. The driving

frequency is pulling the oscillator frequency up. This shape shows that more time in the cycle is

being spent at high frequencies, with the return to low frequencies during each cycle representing

a quick reset.

In Figure 3.7, this case (bottom) is shown alongside another case (top), where the driving

frequency is below (at 1430 Hz) for the same spontaneous mode frequency. Here, more time is

spent at lower frequencies, so the instantaneous frequency beat period arc appears concave up.

Also clear from this figure is that the sidebands appear on the opposite side of the oscillation from

the driving frequency.

While the beat frequency Ω can be transparently obtained from the instantaneous frequency

time series, it can also be obtained from the separation of the sidebands in the power spectrum.

Using this method on the top (bottom) half of Figure 3.7, one obtains a value of 35.8 Hz (41.6 Hz)

for Ω.

2. Spatiotemporal periodic pulling

Despite some similarities between the signatures of temporal and spatiotemporal periodic pulling,

it is misleading to think of the two as different extremes of the same single phenomenon. The

main difference between the two kinds of pulling is their strength. In order to have a strong

effect, temporal periodic pulling must occur at frequencies near entrainment of the mode frequency.

Spatiotemporal periodic pulling can have these same strong effects, but can do so from frequencies

relatively far away from the main mode frequency [Koepke et al. (1996)]. The reason for this, to
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repeat a point from Chapter II, goes to the heart of the difference between the two. Spatiotemporal

periodic pulling occurs when one wave mode drives another along its length in space as well as in

time; temporal periodic pulling occurs in time only.

Even though this fundamental difference exists, some comparisons can be drawn between the

signatures of the two phenomena. A case of spatiotemporal periodic pulling is shown in Figure 3.8.

Here, the discharge current was set at 14.0 mA, which makes the undriven mode frequency ∼1714

Hz (see Figure 4.3). The driving frequency in this case was 1455 Hz, which is near the mode below.

(This mode would be dominant at lower discharge currents.)

In the top half of the figure, the power spectrum is shown. Because of the asymmetric sidebands

on the higher frequency side, it clearly shows periodic pulling with the driving frequency below the

dominant frequency of oscillation. But when the instantaneous frequency is examined, in this case,

it is clear that the periodic pulling is much stronger than it was in the case of Figures 3.5 to 3.7.

Note that the concave-up appearance is still present, indicating more time spent at lower frequencies

in the oscillation, as expected for downward pulling. But the range of oscillation is much wider. In

this spatiotemporal case, the instantaneous frequency oscillates through a range of about 750 Hz.

Compare this to the temporal case shown in Figure 3.6, where the oscillation range is around 100

Hz.

Meanwhile, unlike in the temporal case, an estimate of α cannot be found directly from Eq.

(2.10). Here, the separation between the sidebands (Ω) is 282 Hz, while the conventional beat

frequency (Ω0) is 259 Hz. With Ω > Ω0, Eq. (2.10), which assumes the driving frequency is near

the spontaneous mode frequency, fails.

The alternate form of α in Eq. (2.22) can be used to get a value of α. Estimating the spontaneous

mode frequency as 1714 Hz (see Figure 4.3) for 14.00 mA, Ω′ (from Eq. (2.20)) is 282.05. Since

Ω < Ω′, it is possible to get a value for α, giving α = 0.02.

A close up of the time series (top) and the instantaneous frequency series (bottom) is shown in

Figure 3.9. Again it is clear that the amplitude modulation tracks with the frequency modulation,

with frequency peaks occurring simultaneously with amplitude minima. The frequency oscillation

is also visible in the time series itself, lending a visual connection to the instantaneous frequency

plot below.
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3. Dynamics modulation

The two signatures of dynamics modulation are shown in Figure 3.10. For these data, the discharge

current was set at 9.10 mA, so that the undriven mode would occur at about 1450 Hz. The driving

frequency was set to 1704 Hz. The top half of the figure shows the distinct “hairy” spectrum which

results from the modulation time series. The two largest features are centered around the driving

frequency and the undriven mode frequency. This new example of dynamics modulation compares

well with the earlier published result of Weltmann et al. (2000), seen in Figure 2.9, differing only

in frequency of modulation.

The bottom half of the figure shows the instantaneous frequency time series. It is clearly switch-

ing between frequency oscillations centered around the lower frequency favored by the discharge in

its undriven state, and oscillations around the higher mode, close to the driving frequency. This

clear mode switching, combined with the characteristic look of the spectrum, signals dynamics

modulation.

The behavior of the instantaneous frequency before and after transitions is typical of more

conventional mode transitions. The amplitude of the frequency oscillation grows just prior to

the transition, and, at least in the upward transition cases, decays over a period of time after

the transition. These frequency beats are due to periodic pulling. Compare this behavior to the

instantaneous frequency behavior of mode transitions caused by changes in the discharge current,

shown in Figure 3.11. The frequency oscillations shown in this figure, from Weltmann et al. (2000),

show similar qualitative behavior. These undriven mode transitions reflect periodic pulling of the

two modes (the subdominant mode and the dominant mode, as they trade roles) on each other.

The easiest way to recognize dynamics modulation as it happens in the laboratory is to identify

the peculiar spectral signature. As a confirmation, the amplitude of the oscillation usually differs

between the two modes, and this can be seen on the oscilloscope as well.
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Experimental Results

In this chapter, experimental data collected during the dynamics modulation study is presented.

The first section includes basic behavior of the discharge modes as a function of discharge current.

The second section describes Arnol’d tongue boundaries for four separate discharge currents. Two

of these, for adjacent modes, were chosen to be centered between currents where upward and

downward mode transitions would occur. The other two are positioned near, but just inside,

upward and downward mode transitions. Finally, the occurrence of dynamics modulation is shown

on the relevant Arnol’d tongue plot. These two sections allow a direct comparison to Figure 2.10,

the dynamics phase diagram of Weltmann et al. (2000).

The third section presents, in detail, data from the dynamics modulation observed in this study.

This section focuses on dynamics modulation due to a driving force near the next higher mode or

“upward modulation.” Dynamics modulation between the same modes of Weltmann, et al. is shown

as a function of driving frequency with example time series, instantaneous frequency series, and

power spectra.

Next, methods for extracting the entrainment parameter α and the normalized driving am-

plitude M from the time series data are extended to the dynamics modulation case for both the

temporal and the spatiotemporal parts of the modulation. These methods are equivalent to the

method of Chapter III in which the beat frequency Ω was measured directly from the instantaneous

frequency series or as sideband spacing on the FFT. These are used to show the behavior of α and

M versus driving frequency for the two parts of the modulation. A close look at the relative phase

between the time series and the driver comes at the end of the third section.
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Downward dynamics modulation, which occurs when the driving force is near the next lower-

frequency mode, has not been previously documented, but is presented here. This behavior was not

observed to occur in the periodic manner that upward case did, and seemed to have two varieties,

which are presented in the last section of this chapter.

A. Modes in the discharge

The modes observed in the neon glow discharge tube are presented in Figure 4.1 as a function of

discharge current. Individual modes appear as a band of triangles stretched relatively horizontally

across a range of discharge currents. Each individual mode is identified by a number, written with

a preceding f, in order of increasing frequency. Modes are identified by these labels throughout

the rest of this thesis. On the figure, the modes involved in the dynamics modulation studied, f6

through f9, are identified by labels.

As is true of any series of p-type ionization waves, these exhibit hysteresis as a function of

current. At any given current, one mode will dominate. Which mode that is depends on the

way the current is approached. On the figure, mode frequencies measured following an increase in

current are indicated with triangles pointing up. Those measured following a decrease in current are

shown with triangles pointing down. The mode transition currents are shown with solid lines. For

each pair of lines, the right line indicates the mode transition current while increasing the current

and the left line indicates the mode transition current while decreasing the current. Transition

current values are very reproducible.

An example of an undriven striation wave mode frequency is shown in Figure 4.2. There is little

uncertainty about the dominant frequency for this data, as the spectrum is very narrowly peaked.

A different perspective is gained from the close-ups of Figure 4.3. These four plots show the same

data as Figure 4.1, but emphasize the variation in mode frequency for each of the four highest

modes. Note that each mode follows a concave-up curve, with the minimum frequency representing

a central current value, relatively far from mode transitions.

In addition to the overall curve, there is an apparent offset between the left and right halves of

several of the curves. These differences are the result of the discharge’s history. When two values

appear for one current, the lower one was obtained while the current was increasing, while the
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higher was achieved while the current was decreasing. In addition to system history, the presence

of a resonant laser beam can alter where the narrow peak occurs by several Hz [Weltmann et al.

(2000)].

If used with these limitations in mind, Figure 4.1 can serve as a tool for estimating the mode

frequency as a function of discharge current. Minimum and maximum frequencies derived from

the plot are summarized in Table 4.1, along with frequency ranges for each mode and frequency

separation between modes.

B. Arnol’d tongue boundaries

The method for determining Arnol’d tongue boundaries was presented in Chapter III. Here, the

results of this process are presented.

1. Arnol’d tongue diagrams where one mode dominates

Using Figure 4.1, the value of discharge currents optimal for modes f7 and f8 were empirically

determined by identifying the midpoint of the f7 stair step and the f8 stair step, i.e., as far as

possible from the mode transitions on either side. These currents were 9.10 mA and 11.37 mA.

The Arnol’d tongues for these currents are presented in Figures 4.4 and 4.5. To show how these

two Arnol’d tongues overlap, they are presented together in Figure 4.6.

The dominant mode is immediately clear in each case as the one whose Arnol’d tongue extends

downward to a very narrow tip. This Arnol’d tongue tip can be imagined to extend down to the

axis from this narrow tip to the natural frequency, which can be thought of as the frequency that

results from the limiting case of a zero-amplitude driving force. At this current, the lowermost tip

of the the Arnol’d tongue diagram would intersect the frequency axis at 1450 Hz in Figure 4.4 and

at 1721 Hz in Figure 4.5, the measured natural frequencies.

The modes to the left and right of the dominant modes are clearly visible in these Arnol’d

tongue diagrams. These neighbor modes, however, do not achieve non-negligible amplitude at

these currents without being driven by the laser. Again, these currents were selected so that one

mode would dominate the undriven discharge tube.
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2. Arnol’d tongue boundaries near mode transitions

Figure 4.7 shows two more Arnol’d tongue boundaries, this time at currents within the range of

f7, but near the transition currents to lower and upper modes. The currents were arrived at by

starting in mode f7, and then adjusting away from the center of that mode toward the transition

current, stopping before the transition occurs. These currents, therefore, are currents at which two

modes are possible depending on the hysteresis. The currents selected were 8.23 mA and 10.45

mA, near the transitions from f7 to f6 and f8, respectively.

While locating Arnol’d tongue boundaries, the laser chopping frequency could be used to select

which of the two modes would dominate in each case. In Figure 4.7, the f7 mode (at 1462 Hz for

the lower current and at 1447 Hz for the higher current, both values consistent with Figure 4.3)

remains the longest because the currents were slightly on the f7 side of the transition. But the

f6 mode (at 1212 Hz for the lower current value) and the f8 mode (at 1726 Hz for the higher

current value) extend down to sharp points as well, different from their behavior in Figures 4.4 and

4.5. This is because these two modes can occur as natural undriven modes at these currents, even

though f7 is slightly favored.

3. Occurrence of dynamics modulation

Testing the mechanism published by Weltmann et al. (2000) requires identification of the locations

on the Arnol’d tongue diagram at which dynamics modulation occurs. In order to do this, dynamics

modulation was studied for the two values of discharge current depicted in Figures 4.4 and 4.5.

These currents were chosen to be in the heart of their respective modes (f7 and f8), equidistant

from the upward and downward transition currents.

Dynamics modulation similar to that documented by Weltmann, et al. was seen in both cases.

From now on, this type of dynamics modulation is referred to as “upward dynamics modulation.”

This refers to the relative frequencies of the driver and the natural mode. The driving frequency

is above the natural mode so that dynamics modulation occurs as temporary excursions upward

from the normally dominant mode. Downward dynamics modulation was also seen, but differed in

important ways from a mirror-symmetric version of the upward case. These cases are described in

the last section of this chapter.
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Figures 4.8 and 4.9 show where dynamics modulation was observed relative to the Arnol’d

tongues already presented for these two discharge currents. Each triangle represents an instance of

observed dynamics modulation. The triangles appear in two clusters on each figure. The right clus-

ter represents cases of the upward dynamics modulation, while the left cluster represents downward

dynamics modulation.

These black triangles in the experimental data (Figures 4.8 and 4.9) can be compared directly

to the conceptual analog of Weltmann et al. (2000) (Figure 2.10). The right-hand cluster of black

triangles in the data represent the open circle and open square on the hypothetical map. While there

are some differences between the oversimplified conceptual map and the experimentally documented

map, e.g., the shape of the boundary, qualitative similarity is clear. This comparison and its

implications for evaluating the proposed mechanism are explored further in Chapter VI.

C. Upward dynamics modulation

1. Time series data versus driving frequency

Once the characteristic signatures of the dynamics modulation phenomenon were reproducibly

observed, more convincing evidence was collected from high-time resolution time series for a series

of driving frequency values. Representative highlights from one of these data sets is shown in

Figures 4.10 through 4.12. This data was collected at a discharge current of 9.10 mA. The driving

frequency, from top to bottom, was 1681 (a), 1688 (b), 1696 (c), 1704 (d), 1710 (e) and 1713 (f)

Hz. Entrainment occurred at 1712 Hz.

In Figure 4.10, six examples of the unprocessed time series are presented. In Figures 4.11 and

4.12, the corresponding instantaneous frequency series and power spectra, respectively, are shown.

The individual oscillations are obscured in the time series view, but dynamics modulation appears

as non-periodic (b and e) and periodic (c and d) variations in the amplitude. This identification of

the dynamics modulation is confirmed by comparing the instantaneous frequency series and power

spectra to the signature of dynamics modulation presented in Figure 3.10.

The top example, (a), shows spatiotemporal pulling, which can be identified by comparing its

signature to that shown in Figure 3.8 and the bottom example, (f), shows entrainment, which

indicated by its lack of frequency and amplitude modulation and its single-frequency spectral peak.
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Upon closer examination of the instantaneous frequency series shown in Figure 4.11, the behav-

ior seen in the dynamics modulation can be split into three distinct categories. This was true of

all of the upward dynamics modulation seen in this study. The first category is periodic dynamics

modulation (PDM), already mentioned as being present in (c) and (d). The aperiodic dynamics

modulation of (e), however, appears different from that of (b) in that it seems to spend irregular

amounts of time entrained to the higher mode before modulating back to the lower mode. This

behavior was categorized as dynamics modulation with entrainment (DM/E), while behavior such

as (b) was categorized as aperiodic dynamics modulation (ADM). These three dynamics categories,

along with spatiotemporal periodic pulling (ST) and entrainment (E), constitute five categories of

behavior that were observed in these data sets.

This representative sequence of dynamics modulation data versus driving frequency was selected

from a data set of 68 files. The conditions under which this data was collected, as well as the

conditions for the other two major data sets used in this study, are summarized in Table 4.2.

2. Extracting α and M from time series data

The usual method for extracting α and M is to identify the beat frequency Ω from the experimental

data, use Ω to determine α from Eq. (2.22) and the reference beat frequency Ω′, then use α to

find the normalized driving amplitude M using Eq. (2.18). In the temporal pulling case, Ω could

be found from the period of the frequency oscillations in the instantaneous frequency series, or,

equivalently, by identifying the sideband separation in the power spectrum. For the spatiotemporal

pulling case, using sideband separation is particularly straightforward because the sidebands are

prominent and widely spaced.

In the case of dynamics modulation, this is more difficult due to the combination of temporal

and spatiotemporal pulling that happen alternately, creating a hybrid power spectrum. Also, the

sideband separation is expected to be very small in the temporal case because significant pulling

exists and is limited to a very small frequency range.

To determine the beat frequency, the fact is exploited that the frequency separation between

spectral features in the FFT is approximately equal to the beat period. This is demonstrated in

Figure 4.13. For the two temporal cases shown, the sideband separation was given in the discussion

of Figure 3.7 as 35.8 Hz (top) and 41.6 Hz (bottom). In the expanded view of Figure 4.13, it is
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clear that an alternate method of identifying this separation is to look for a separate peak in the

power spectra located at the separation frequency value. These peaks are seen at 36 Hz (top) and

41 Hz (bottom). Some precision is lost, due to the 1 Hz resolution of the power spectrum, but the

associated uncertainty is comparable to the systematic, α-dependent error corresponding to treating

the time-averaged spectrum as a surrogate for the instantaneous dynamics. A simple estimate of the

error bar for ΩT can be derived from the width of the peak corresponding to sideband separation.

And, in cases of aperiodic dynamics modulation, this method yields an average temporal pulling

value that would be difficult to ascertain otherwise.

A careful glance at Figure 3.10 makes clear that this algorithm is valid in dynamics modulation

cases. There is a clear peak at 21 Hz, a value that can be seen to match the separation of the closely-

spaced sidebands. This method makes obvious the interpretation of the “hair” on the signature

dynamics modulation spectrum. These narrowly spaced features result from temporal periodic

pulling during the upper part of the dynamics modulation cycle. As the driving frequency gets

closer to the higher mode frequency, the spacing between these features diminishes, as can be seen

in Figure 4.12.

In the spatiotemporal case, the modified beat frequency ΩST is calculated as the instantaneous

beat frequency of the time series similar to the way Ω was calculated from the instantaneous fre-

quency series during the discussion of Figure 3.6. This is done by placing a horizontal line through

the instantaneous frequency series so that the frequency oscillations in the lower (and, for a second

line, upper) part of the modulation cross it periodically (Figure 4.14). The value of this line is

subtracted from the instantaneous frequency series, so that “zero crossings” can then be tabulated

and used as is input into the usual instantaneous frequency routine. The result is filtered to exclude

false high frequencies resulting from data noise and false low frequencies resulting from data gaps

during time spent in the opposite mode. The process produces a filtered array. The median value

of the lower array can be identified as ΩST for this pulling.

An example of this process is shown in Figure 4.14. The top panel shows the instantaneous

frequency series with two lines placed at the values subtracted to identify the “zero” crossings. The

bottom panel shows the resulting beat frequencies. These beat frequencies are clearly bunched in

two groups, coinciding with the two parts of the dynamics modulation cycle. The dashed lines

represent the median values of the two measured beats. The lower values (•) can be identified as
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ΩST for the spatiotemporal pulling of the lower mode by the entrained, subdominant upper mode

as described in the proposed mechanism. The meaning of the upper values is described in Chapter

VI.

When these methods are applied to the data, reproducible values for ΩST and ΩT are produced.

This is demonstrated in Figure 4.15. These data come from two data sets taken on two different

days, including the data highlighted in Figures 4.10 through 4.12. This upward dynamics modu-

lation occurred between modes f7 and f8. In the top panel, the spatiotemporal beat frequencies

are displayed as a function of offset from entrainment (entrainment frequency minus driving fre-

quency). It should be emphasized that these measured values represent the same case of dynamics

modulation, with the spatiotemporal (temporal) value representing the time spent in the lower

(higher) frequency part of the cycle. The dotted line shows the conventional beat frequency (Ω0)

and the dashed line shows the reference beat frequency (Ω′). Values from the two days overlap quite

well. Near the entrainment end, three data points exceed the reference beat frequency, causing the

calculation of α to fail in these cases.

In the lower half of Figure 4.15, reproducible values of ΩT for the same data are displayed.

Again, the dotted line shows the conventional beat frequency (Ω0) and the dashed line shows the

reference beat frequency (Ω′). However, in this presentation, since the driving frequency is near

the spontaneous mode frequency, the two lines overlap. Representative error bars are indicated for

both halves of the figure.

3. Results of the α and M calculations

The resulting calculations of α and M from the Ω values displayed in Figure 4.15 are shown in

Figure 4.16 for the two portions of the dynamics modulation cycle. Again, the x-axis displays the

offset from entrainment. The solid lines to the right (and near the top of the temporal α subplot)

indicate entrainment to the f8 mode. Note that just as the system reaches the point where it

permanently entrains to the upper mode, αT climbs to one. The value of αST remains relatively

constant throughout the range of dynamics modulation, while MST climbs slowly and MT declines

slowly as entrainment is approached.

The corresponding plot for dynamics modulation between the next higher pair of modes (f8

and f9) appears in Figure 4.17. The axes and other formatting of this figure is otherwise identical
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to Figure 4.16. It is immediately clear that the trends of the data reproduce the earlier case, though

the values themselves differ somewhat.

The M values of Figure 4.16 are displayed as a ratio of MST /MT in Figure 4.18. Again, it

is clear that the data from the two days are consistent. The ratio of the two normalized driving

amplitude values increases from around one to around three as entrainment is approached. The

corresponding plot for the M values of Figure 4.17 is shown in Figure 4.19. These results will be

useful in evaluating the proposed dynamics modulation mechanism of Weltmann et al. (2000) and

will be revisited in Chapter VI.

4. Detailed examination of mode behavior

In order to check some of the predictions of the dynamics modulation model, it is necessary to

look closely at the phase evolution between the glow discharge and the driver during the two parts

of the dynamics modulation cycle. That is done in four figures in this section. In each, a short

segment of time series is expanded and displayed alongside the square-wave signal that was used

to control the acousto-optic modulation that chopped the laser light on and off. Each of the four

figures also contains a close-up view of the instantaneous frequency corresponding to the segment

of time series shown. The four figures are representative cases of the two parts of the dynamics

modulation cycle for two separate driving frequency cases.

Figure 4.20 is the first of these close-ups. It represents the lower frequency portion of periodic

dynamics modulation with a driving frequency (fi) of 1690 Hz. This segment of the modulation

begins with a discontinuity in the time series at t =0.2270 s, and ends at t = 0.2507 s, as indicated.

(Error bars are estimated to be ±0.0004 s, which is approximately a half-period of the lower

frequency oscillation.) During the time spent in the lower mode, the amplitude beats with a period

of 0.00457 s.

Figure 4.21 shows a representative example of the corresponding higher frequency portion of

the same dynamics modulation time series. This segment of the modulation begins when the time

series and driver quickly change from out-of-phase to in-phase at t =0.0124 s, and ends with the

opposite change at t = 0.0329 s. During the time spent in the higher mode, the amplitude beats

with a period of 0.00430 s.

Figures 4.22 and 4.23 show representative portions of the periodic dynamics modulation cycle
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for a higher driving frequency of 1700 Hz. In Figure 4.22, the beginning of the lower frequency

part of the cycle begins when the phase of the luminosity signal changes quickly at t =0.2842 s,

and ends at t = 0.3071 s. (The signal almost snaps out of its lower mode at t = 0.3031 s, but

appears to remain for one more beat. That it remains in the lower mode is more clear when this

figure is compared to the higher frequency part of the cycle in Figure 4.23, which shows much less

relative amplitude modulation.) During the time spent in the lower mode, the amplitude beats

with a period of 0.00483 s.

Figure 4.23 completes the series. Here, the higher frequency part of the cycle begins at t =0.0108

s, and ends at t = 0.0400 s. During the time spent in the higher mode, the amplitude does not

beat in as obvious a manner as the example shown in Figure 4.21 for a lower driving frequency,

but the instantaneous frequency shows seven beat periods.

These four figures are discussed during the evaluation of the mechanism in Chapter VI.

D. Downward dynamics modulation

Weltmann et al. (2000) published two representative cases of what has been referred to here as

upward dynamics modulation. This means that the undriven state of the glow discharge system

is a lower frequency mode, while the driving frequency and the mode visited during the dynamics

modulation process are relatively higher.

During the experimental investigation, examples of dynamics modulation were observed that

had the opposite relative frequency positions. In these cases, the driving frequency was set near the

next lower mode frequency, and the system appeared to undergo downward dynamics modulation.

One representative example of this is shown in Figure 4.24. The time series (top), instantaneous

frequency (center) and power spectrum (bottom) of downward dynamics modulation are shown.

The driving frequency (fi) was 1200 Hz. The modulation is taking place between the f7 and f6

modes. The discharge current was set to 9.10 mA.

The experimental parameters associated with downward examples of dynamics modulation were

recorded so that this variety could be explored further. However, despite a thorough search, no

case of periodic dynamics modulation as clear as the examples of upward dynamics modulation

presented was found. This is likely due to the difference in the relative location of the two types
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of dynamics modulation on the Arnol’d tongue diagrams (Figures 4.8 and 4.9). The upward dy-

namics modulation occurs on the side of the Arnol’d tongue of the neighboring mode nearest to

the spontaneous mode frequency of the discharge, while the downward dynamics modulation cases

were only observed on the far side of the Arnol’d tongue of the neighboring mode. Recall that all

locations outside the Arnol’d tongue had to be visited to make the Arnol’d tongue diagram, so the

absence of dynamics modulation can be stated with confidence.

The cases of downward dynamics modulation seemed to have two general categories. These

are shown in the instantaneous frequency and power spectra plots of Figures 4.25 to 4.28. As was

done in the upward dynamics modulation case, the various series are shown as a function of driving

frequency.

A representative sequence of instantaneous frequency series and power spectra are presented in

Figures 4.25 and 4.26, respectively. Beginning at the top, the driving frequency (fi) is 1385 (a),

1395 (b), 1403 (c), 1405 (d), 1406 (e) and 1409 (f) Hz. The modulation took place between the f7

and f6 modes, and the discharge current was set to 9.10 mA. Entrainment occurred at 1409 Hz for

this series, for which the laser wavelength was set to 588.351247 nm.

None of the instantaneous frequency series shown in Figure 4.25 display the periodic mode

switching commonly found in the upward cases. (See Figure 4.11 ). Figure 4.25a appears roughly

periodic, but rather than alternating between spatiotemporal and temporal pulling, it appears

to simultaneously undergo both processes. Occasional dynamics modulation to the lower mode

appears in Figure 4.25b-e, but not periodically. Throughout Figure 4.25f, entrainment is complete.

The corresponding power spectra, shown in Figure 4.26, do not resemble the signature dynamics

modulation spectra of the upward cases. The first case, Figure 4.26a, is most notable because it

also seems to represent simultaneous temporal and spatiotemporal pulling signatures.

The second category of downward dynamics modulation is shown in Figures 4.27 and 4.28. As

before, a sequence of instantaneous frequency series and power spectra are shown as a function

of driving frequency. Beginning at the top, the driving frequency (fi) is 1420 (a), 1423 (b), 1426

(c), 1429 (d), 1432 (e) and 1435 (f) Hz. The modulation also took place between the f7 and f6

modes. The discharge current was again set to 9.10 mA. Entrainment occurred at a higher driving

frequency, at 1435 Hz, for this series, because a longer wavelength (i.e., lower driving amplitude,

see Figure 3.2) of 588.351547 nm was used.
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The first three series shown (Figures 4.27a-c and 4.28a-c) resemble Figure 4.25a somewhat,

and even seem to undergo brief dynamics modulation excursions to the lower (f6) mode. But as

the driving frequency is increased, the system undergoes a mode transition that does not reverse.

Consequently, the behavior of 4.27d-e and 4.28d-e is simple temporal periodic pulling. The power

spectra in Figure 4.28 confirm this.

The case of downward dynamics modulation, with its qualitatively different behavior both in

the time series analysis and in its occurrence on the Arnol’d tongue, is discussed in Chapter VI.
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Chapter V

Modeling

In this chapter, a model is described and used to reproduce some of the behavior seen the in

the dynamics modulation experiment. Two coupled van der Pol equations are used to model the

mechanism described by Koepke, Weltmann, and Selcher, and the resulting time series is solved with

a Runge-Kutta routine whose parameters can be adjusted as the simulation proceeds. Quantitative

comparison between experimental observations and the numerical model further establishes the

validity of the mechanism.

A. Description of the model

1. Requirements

A useful model of dynamics modulation must accomplish several basic tasks. First, the model

must be able to reproduce more fundamental behaviors that have already been published. These

behaviors include periodic pulling, both weak and strong, and entrainment. Second, the model

should be able to handle two normal modes at once as well as a driving frequency that represents

the laser. Third, the model should allow a systematic exploration of parameter space to look for

prime locations for dynamics modulation and to ensure that the model’s behavior, as implemented,

remains consistent with the experiment. To accurately characterize behavior for this use, the model

should be allowed to run with constant parameters until a final steady state behavior is recorded.

In addition, a fourth requirement is necessary. To contribute to the evaluation of the mechanism

of Koepke, Weltmann, and Selcher, i.e., the purpose of this thesis, the model must be able to adjust

49



SECTION A. DESCRIPTION OF THE MODEL

its input parameters in response to its output parameters. This is implemented in a slightly modified

version of the steady state model which periodically measures the average of recently acquired

instantaneous frequency values to detect a mode transition. When a mode change is detected, the

input representing the normalized driving amplitude is adjusted in a manner consistent with the

experimental results of Chapter IV.

2. Coupled van der Pol equations

There is no a priori reason to use one particular model over any other model. Since the 1D van

der Pol equation (Eq. (2.1)) has been used successfully to model both weak and strong periodic

pulling and entrainment [e.g. Koepke and Hartley (1991) and Klinger et al. (1995)], the van der

Pol equation will be used as the starting point for this model.

To accommodate two competing normal modes in the discharge, two coupled van der Pol equa-

tions were chosen. However, many published studies of the nonlinear behavior of coupled van der

Pol equation [for example Pastor et al. (1993) and Pastor-Dı́az and López-Fraguas (1995)] do not

include driving terms, a requirement for this thesis.

This is also true of van der Pol’s own coupled example, which was the first multifrequency

oscillator described [Lamb Jr (1964)]. Van der Pol described his oscillator as a “triode oscillator with

two degrees of freedom,” but showed it had a property that fits our application of the multimode

discharge tube [van der Pol (1934)]. This property is that the solution in which “both oscillations

would be present simultaneously [...] is shown to be unstable.” This property matches the behavior

of the undriven discharge tube well, which strongly favors one mode at a time.

His model, in his original notation, is:


d2v1
dt2
− α1

(
1− v2

1

) dv1
dt

+ ω2
1v1 + k1ω

2
1v2 = 0

d2v2
dt2

+ α2
dv2
dt

+ ω2
2v2 + k2ω

2
2v1 = 0 (5.1)

Here, v1 and v2 represent the time-dependent outputs of the two oscillators and ω1 and ω2 the two

mode frequencies. His α1 takes the place of ε in Eq. (2.1), and k1 and k2 represent the coupling

terms. Notice that the first equation effectively sets β, the coefficient of v2
1, equal to one while

second equation lacks β altogether and differs in sign before α2, making it a conventional damped,
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harmonic oscillator.

To adapt this set of equations to the present purpose, several changes are made. First, forcing

terms must be added so that it can describe two discharge modes competing in a driven environ-

ment. Next, the two normal modes that compete in the driven discharge tube can be expected to

have similar behavior in most parameters except mode frequency, so the sign is changed on ε (α

in van der Pol’s notation) and β is added to the second equation, making the forms symmetric.

(Recall that van der Pol did not have our access to numerical methods or he might have done this

himself.) The notation is modeled after Lashinsky (1968), with the addition of γ1 and γ2 in the

place of the coupling constants k1 and k2. Finally, substitutions are made to create a system of

four, first-order differential equations suitable for numerical analysis. The result is



dx

dt
= y,

dy

dt
=

1
2
ω2

1M1 [1 + sign (cosωit)] + ε1
(
1− β1x

2
)
ω1y − ω2

1x− γ1ω
2
1z,

dz

dt
= v,

dv

dt
=

1
2
ω2

2M2 [1 + sign (cosωit)] + ε2
(
1− β2z

2
)
ω2v − ω2

2z − γ2ω
2
2x. (5.2)

Here, x and z take the place of van der Pol’s v1 and v2 as the time-dependent values of the two

oscillators. The sum of x and z was taken to represent the combined behavior of the system,

equivalent to the output of the photodiode detector in the experiment. The sign-function form of

the driving term creates a square-wave force that alternates between 100% and 0% to model the

driving force of the chopped laser light.

3. Step-by-time-step solution

Once the coupled equations are expressed in the form of a system of first-order ordinary differential

equations, the problem is reduced to solving them. To do this, the common fourth-order Runge-

Kutta routine [Boyce and DiPrima (1986)] is used. The basic routine (see Appendix B. for the

code) required as inputs the beginning and ending of the time interval, the number of steps, the

initial conditions, and the equation parameters. The model outputs an array of time steps and a

matrix that included values for x, y = dx/dt, z, and v = dz/dt for each time step.
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A separate function routine was used to provide the inputs to the model, periodically exam-

ine the output, change the inputs if necessary while keeping the time steps even and the output

continuous (i.e., it used the output of the last time step as the initial conditions for the next time

step when changes needed to be made). These routines were used to create the various trend plots

and plots of dynamics modulation displayed in this chapter. An example of one of these control

functions is shown in Appendix B..

4. Handling mode transitions

The model was designed to pause frequently and perform calculations on the output designed to

detect a change in the dominant mode. The pauses occurred after each period of only 0.1 ms of

simulated time, the routine calculated the instantaneous frequencies of the time series up to that

point. If the median value of the most recent 25 instantaneous frequency results was above (below)

a set threshold, the high (low) frequency mode was detected. Since the high mode frequency was

set to be 1740 Hz, 25 instantaneous frequencies would occur in a minimum time of approximately

14 ms. The median instantaneous frequency over at least that amount of time would have to pass

the threshold to claim the occurrence of a mode transition. This prevented outlying instantaneous

frequency values from being identified as a mode transition.

The threshold above or below which the median instantaneous frequency value had to fall to

detect a mode transition was set to be be unambiguous. To detect the high (low) mode as dominant,

the median instantaneous frequency had to be above (below) the mean frequency between high and

low plus (minus) 35% of the frequency separation between them.

Two values of the absolute driving amplitude M were used in the model. The specific M -value

used depended on which mode was detected. In the mechanism, a switch to the higher mode is

accompanied by a reduction in M . Accordingly, ML and MH were used, with the subscripts L and

H representing the alternating dominant modes, low or high frequency, and with ML > MH . They

were selected to differ by a factor of two, a number that is consistent with the experimental results

of Chapter IV (see Figure 4.18).

When a mode transition was detected, the absolute driving amplitude M was toggled to the

opposite value in a linear progression over a period of 0.010 s. This time interval is consistent with

the time required for a discharge to “settle” into a new mode after a mode transition. [See, for
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example, Figure 3 in Koepke et al. (1996).] During the changing of M , mode-transition detection

is suspended, but the model otherwise is running in a manner completely consistent with its steady

M operation.

B. Identifying experimental parameters

It is somewhat daunting to search for parameter values associated with a specific behavior amid the

many independent parameters of Eq. (5.2). This problem was simplified by restricting the model’s

use to cases in which ε1 = ε2 = ε, β1 = β2 = β, and, aside from the toggling with mode changes,

M1 = M2 = M . With this starting point, the model was used first in a trial and error manner.

This served the simultaneous purpose of lending some intuition about the behavior and limits of

the model while the code could be optimized for its intended use.

Promising behavior was quickly seen. For a case in which M was not toggled and for zero initial

conditions, the instantaneous frequency was seen to start in a high frequency mode, oscillate with

increasing amplitude, rapidly switch to the lower frequency mode, and then settle into that mode

with the instantaneous frequency oscillations quickly decaying to zero.

This behavior qualitatively resembled the behavior shown in the bottom half of Figure 3.11

[from Weltmann et al. (2000)], suggesting that the parameters used were relevant to the discharge

tube used in this study. Those parameters were ε = .02, β = 1, M = .001, and the driving frequency

(fi = ωi/2π) set to 1.17×ω1, equivalent to fi = 1700 Hz in a system with ω1/2π ≈ 1450 Hz. The

coupling parameters were set at γ1 = 0.1 and γ2 = 0.3. Though there were some differences between

the model at this early stage and the final version, the parameters served as a starting point in the

search.

1. Successful examples

First, as stated above, the new model must be able to handle temporal periodic pulling behavior.

This is shown in Figure 5.1. Here, ε1 = 0.1, β1 = 1, and M = 0.03. The coupling parameters were

set at γ1 = 0.025 and γ2 = 0.22. ω1 = 2π × 1450 Hz and ω2 = 2π × 1740 Hz, the values from the

experimental data. For this one case, ε2 = β2 = M2 = 0, to supress the second mode. fi was 1500

(a), 1486 (b), 1472 (c), 1458 (d) 1444 (e), and 1430 (f) Hz. The qualitative behavior of the model
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(Figure 5.1) is very similar to that of the experiment seen in Figure 3.4. Note that the sidebands

appear on opposite sides in the manner of Figure 3.7 because the experimental case is being driven

at a frequency below its undriven mode frequency while the model case is being driven from above.

The typical experimental case of periodic dynamics modulation was shown in Figure 3.10. This

served as a guide as the input parameters to the model were systematically adjusted. This figure

shows modulation in which approximately half of the time is spent in each of the two modes. There

is a sharp change in the median frequency between the two modes, indicating that the two states

are separate.

With the restriction that ML = 2MH = 0.04 and with ω1 = 2π×1450 Hz and ω2 = 2π×1740 Hz,

consistent with the experiment, a search was conducted for the best modulation example resulting

from fi = 1705 Hz. Success was judged by direct comparison to Figure 3.10. Although a discharge-

tube-like mode transition was quickly found in the early stages of modeling, it was significantly

more difficult to locate examples of dynamics modulation behavior that were good matches to the

experimental data in all ways. Some compromise proved necessary. The ways in which the modeled

dynamics modulation compares favorably and unfavorably with the experimental results will be

discussed as the modeling results are presented, and in Chapter VI.

One result of the search for dynamics modulation in the model is shown in Figure 5.2. For this

example ε = 0.1 and β = 1. The coupling parameters were set at γ1 = 0.025 and γ2 = 0.22 and the

mode frequencies were set at ω1 = 2π × 1450 Hz and ω2 = 2π × 1740 Hz. These values were used

throughout the rest of the figures in this chapter, with exceptions for the specific parameter varied

in each case. These exceptions are described when each figure is discussed.

While Figure 5.2 is not a perfect match for Figure 3.10, it unmistakably undergoes dynamics

modulation. The top panel depicts the resulting time series of the model, or x+ z in Eq. (5.2). In

the center panel, the instantaneous frequency calculated from the time series is shown, while in the

bottom panel, the corresponding power spectrum is shown. The modulation in the frequency in

the center panel corresponds exactly to the amplitude modulation in the power series, as we expect

for dynamics modulation (see Figures 4.10 and 4.11.) The power spectrum shows a combination

of the widely separated sidebands (associated with spatiotemporal periodic pulling) and narrowly

separated sidebands (associated with temporal periodic pulling), providing the distinct look of the

dynamics modulation spectra.
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If the driving frequency is lowered sufficiently from the dynamics modulation case, the ex-

perimental result is that the system undergoes spatiotemporal pulling. If the model accurately

reflects experimental behavior, the same result should happen here, and it does. In Figure 5.3,

the model was run for fi = 1675 Hz, but with the same inputs as before otherwise. The result

is a good example of spatiotemporal periodic pulling from above. This is shown by the concave-

downward instantaneous frequency plot (bottom) which corresponds to the time series presented

above it. Compare to the opposite case (concave-upward, spatiotemporal periodic pulling from

below) shown for experimental data in Figures 3.8 and 3.9.

C. Characterizing parameters of the model

In order to demonstrate that the parameters used in the model are sufficiently representative

of the experimental data, several power spectra series are presented. In each series, one of the

parameters is systematically varied to show how it affects the output of the model. The remaining

parameters remain unchanged. For this series of figures, mode transitions were not detected and

M was held constant to a central value of 0.03 between the MH =0.02 and ML =0.04 used in the

dynamics modulation simulation. The remaining parameters once again, when not varied, were set

to ε = 0.1, β = 1, and coupling parameters γ1 = 0.025 and γ2 = 0.22. The mode frequencies were

set at ω1 = 2π × 1450 Hz and ω2 = 2π × 1740 Hz. The driving frequency was set to fi =1700 Hz.

1. Varying M

The whole range of M values was scanned in Figures 5.4 and 5.5. In the series of six power spectra

presented in Figure 5.4, M was set to 0.0028 (a), 0.0091 (b), 0.0295 (c), 0.0955 (d), 0.3090 (e),

and 1.000 (f). Panels (a) and (b) show the type of spectrum that would be expected when the

low mode spatiotemporally pulls the high mode down and the driver (in these top two panels, the

narrow peak just below the high mode) temporally pulls the high mode, also down. This is the

kind of behavior that the mechanism predicts would happen during the higher frequency portion

of the dynamics modulation cycle.

In panels (c), (d), and (e), the spectrum shows the higher mode entrained to the driver and

in a position to pull upward on the lower mode. In (c), the entrained higher mode is just slightly
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subdominant to the lower mode, the situation that would be expected during the lower frequency

portion of the dynamics modulation cycle although the relative power is more even than it would

be in the experimental case where the lower mode clearly dominates in power. In (d) and (e),

the higher mode is dominant, showing that these values of M are too high for the experimental

case. Finally, in (f) the M value is so high that it entrains everything, as would be expected in the

experiment for laser wavelengths between the central two triangles of Figure 3.2. The simulated M

values used to model dynamics modulation in Figure 5.2 (and other figures later in this chapter)

were located at 0.02 and 0.04, which would occur above and below panel (c) on Figure 5.4.

Figure 5.5 represents the instantaneous frequency as a function of M for the same parameters.

The simulation was allowed to run until it reached a steady state for each M before instantaneous

frequencies were calculated. Instantaneous frequencies were filtered to exclude values above 3000

Hz, to eliminate false high values from rapid zero crossings at very small amplitude. Therefore,

the graph expresses the trend rather than the precise instantaneous frequency behavior. The thick,

solid line represents the median value of instantaneous frequency at each M value, while the dotted

lines above and below it represent the maximum and minimum instantaneous frequency values for

each series. The two vertical, dashed lines represent the M values toggled between during the

dynamics modulation simulation. The dashed line on the right (left) represents ML (MH), which

was switched to when the low (high) frequency mode was detected. These two values differed by a

factor of two, and reproduced dynamics modulation behavior.

2. Varying ε

The result of varying ε is displayed in Figure 5.6. Here, M was set to 0.03 and ε was set to 0.0100

(a), 0.0251 (b), 0.0631 (c), 0.1585 (d), 0.3981 (e) and 1.000 (f). As ε increases from panels (a)

through (d), the nonlinear behavior becomes more obvious. In (a), the only clearly visible features

are the two normal modes and the driving frequency between them. As ε is increased sequentially

in (b), (c), and (d), the driving frequency gradually entrains the higher mode and more and more

sidebands appear. These effects represent nonlinear behavior that is seen in both the theoretical

treatment summarized in Chapter II and in the experimental data. Since these values reflect

experimental results, ε is chosen in this region as 0.1.

Since the theoretical treatment requires that ε be much less than one, it is instructive to look
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at the resulting spectra as ε is set to values approaching one in panels (e) and (f). In these two

panels, the low frequency mode drifts downward in frequency, as does the higher mode. Sideband

behavior also gets increasingly active to a point well beyond the experimental reality. For these

two reasons, these values are avoided.

3. Varying β

The theoretical treatment requires no limit on β to be accurate, so any value may be used. However,

in both van der Pol’s relevant result that the case of both modes together is not a stable solution of

the (undriven) system and the early simulation result in which a spontaneous mode change looked

similar to previous experimental results (both described above), β was set to one. In Figure 5.7,

the spectra are examined as a function of β to make sure that this choice is appropriate.

β was set to 0.0100 (a), 0.0251 (b), 0.0631 (c), 0.1585 (d), 0.3981 (e) and 1.000 (f) in Figure 5.7.

From top to bottom, there is a similar progression to that seen for the lower values of ε, namely

increasing nonlinear behavior as β is increased. As with ε, this is shown by the driving frequency

entraining the higher mode more efficiently and by more prominent sidebands at higher β. The

over-active sidebands of high ε are absent however, so there is no problem selecting a β value of

one.

4. Varying the coupling parameters, γ1 and γ2

The behavior of the simulated dynamics modulation was most sensitive to changes in the coupling

parameters. These parameters are also the least constrained by previous numerical modeling and

least informed by the known behavior of the experimental system. The parameters that were used,

γ1 = 0.025 and γ2 = 0.22, were chosen because they resulted in the best simulated dynamics

modulation behavior when used with the other parameters. Here, the power spectra are displayed

as the coupling parameters are changed so that their effect on the simulation can be seen.

In Figure 5.8, a series of six power spectra are shown in which the value of γ1 = γ2 = γ is

increased. This figure shows the effect of increasing the overall coupling from lower values to higher

values, representing a progression from weak coupling to strong coupling. The values used for γ in

this case are 0.001 (a), 0.0608 (b), 0.1206 (c), 0.1804 (d), 0.2402 (e), and 0.3000 (f).

Again, as was seen with ε, as coupling is increased, the lower frequency mode’s spectral feature
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shifts to lower frequencies. This is most clear in panels (e) and (f). In this case, however, unlike that

of ε, the higher mode frequency can be seen to shift to higher frequencies as coupling is increased.

This is seen in panels (a) through (d). In panels (e) and (f), the two mode frequencies merge into

one feature. (Note that the driver frequency stays at 1700 Hz throughout.)

To show the effect of the relative difference between γ1 and γ2, Figure 5.9 plots increasing γ2

with γ1 held constant. The value for γ1 was chosen to be 0.025, the value that produced the most

promising simulated dynamics modulation. γ2 was set to 0.0003 (a), 0.0602 (b), 0.1202 (c), 0.1801

(d), 0.2401 (e), and 0.3000 (f). This corresponds to γ2/γ1 ranging from 0.01 to 12.0.

The interesting sideband structure of (c) and especially (d) suggests dynamics modulation. This

is an illusion. In the generation of this figure, recall that M is not being toggled, but rather held

constant at a value midway between the two used to model dynamics modulation. The instan-

taneous frequency plots that correspond to these power spectra reveal that dynamics modulation

signature is not occurring for these plots.

The difference between γ1 and γ2 is the method used in the model to make one mode favored

over the other. In other words, in an undriven system, both modes should not be present. Since the

behavior that was modeled represented a case in which the lower frequency mode was dominant,

γ2 was made greater than γ1. This made the model prefer the lower frequency for low values of M

(see Figure 5.4). The γ2/γ1 that was used in the simulation was 8.8, placing it between (d) and (e)

in this figure but looking more like (e). (A power spectrum representative of this ratio with other

parameters the same is shown in Figure 5.7f.)

D. Dynamics modulation modeling summary

1. Upward dynamics modulation

One requirement of any successful simulation of dynamics modulation is that it is dependent on

driving frequency. Using the modeling parameters described above, a series of simulated cases

of dynamics modulation were produced as a function of driving frequency. A subset of these

simulations are shown in Figures 5.10 through 5.12. The simulated time series are shown in Figure

5.10 and the corresponding instantaneous frequency series and power spectra are shown in Figure

5.11 and 5.12 respectively.
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For these three figures, the driving frequency fi was 1685 (a), 1690 (b), 1700 (c), 1705 (d), 1715

(e), and 1725 (f). M was applied to both oscillators all the time, and set to toggle between 0.02

(when high mode detected) and 0.04 (when low mode detected), ε = 0.1, and β = 1. The coupling

parameters were γ1 = 0.025 and γ2 = 0.22. The mode frequencies were set at ω1 = 2π × 1450 Hz

and ω2 = 2π × 1740 Hz.

In (a) of each figure, the system spends most of its time in a state of spatiotemporal pulling,

but on three occasions the system modulates briefly between the modes. This aperiodic dynamics

modulation was also seen in the experiment for driving frequencies on the lower edge of the dynamics

modulation regime.

As the driving frequency is increased in (b) through (e), periodic dynamics modulation is

simulated. As in the experimental case, the period of the dynamics modulation increases as the

driving frequency approaches the upper mode frequency. Similarly, a larger proportion of the time is

spent in the higher mode with each increase in driving frequency. Finally, in (f), the system remains

permanently in the higher mode. Rather than being entrained there, as in the experimental case,

the model arrives at a state in which the upper mode is being spatiotemporally periodically pulled

downward. This is due to the model being oversimplified. Although M was toggled down with

the change in mode frequency, the forcing was still being applied to both oscillators, and thus the

lower mode remains influential, unlike in the experimental case. In order for this behavior to better

model the experiment, and undergo entrainment, more assumptions would have to be made than

are specifically required by the proposed mechanism of Koepke, Weltmann, and Selcher, which

focused on changes in the M parameter. Changes in coupling or differences in M for each of the

two coupled oscillators (i.e., M1 6= M2) in Eq. (5.2) may make the result more realistic. However,

attempts to make these adjustments did not improve the overall match to experimental dynamics

modulation.

The simulated time series shown in Figure 5.10 shows three main differences when compared

to the experimental case in Figure 4.10. The most serious difference is that the frequency of

modulation, given by the number of excursions into the upper mode over equal time intervals, is

much higher in the simulated case. Two other differences are that the mode transitions are more

gradual in the simulated case and that the higher overall amplitude occurs during the upper mode

in the simulated case but not in the experimental case. This difference is likely the result of the

59



SECTION D. DYNAMICS MODULATION MODELING SUMMARY

simulation not showing entrainment at the higher mode.

When Figures 5.11 and 4.11, the simulated and experimental instantaneous frequency plots,

are compared, more qualitative differences are apparent. There is a difference in the relative size

of the oscillation amplitude in the lower versus the higher mode, and in the qualitative behavior

of the instantaneous frequency oscillation while in the lower mode. These qualitative differences

detract from the usefulness of the the coupled van der Pol system as used in this simple manner as

a model for the experimental system. It is encouraging, however, to note that the overall behavior

is similar, which suggests that the model captures the essence of the physics of the situation.

The power spectra comparison between Figures 4.12 and 5.12 is also encouraging. Again,

the final panel (f) of the simulated modulation is not entrained, but rather shows an example of

spatiotemporal pulling signature as mentioned above. The rest of the spectra, however, display

the narrowing of the separation of the small spectral features as the driving frequency is increased,

similar to the experimental case. Again, this suggests that the fundamental physics is captured

approximately in this simple model.

2. The downward case

The downward case of dynamics modulation, which was shown in Chapter IV to be qualitatively

different in the experimental case, would not be expected to differ in this model. The two coupled

equations are handled the same way. If the coupling coefficients were flipped, and the two M values

toggled in the opposite manner, the downward dynamics modulation case should result.

This is shown to occur in Figure 5.13. This behavior was produced with the same ε (= 0.1),

β (= 1), and coupling parameters (γ1 = 0.025 and γ2 = 0.22) as the upward case. The frequency

offset was smaller (5 Hz compared to 40 Hz) and the M values were larger (M was toggled between

0.28 when the low mode was present and 0.56 when the high mode was present compared to 0.02

and 0.04) than were used in the upward case. The mode frequencies were set at ω1 = 2π× 1703 Hz

and ω2 = 2π × 1455 Hz. The driving frequency, fi, was set to 1460 Hz.

This driving frequency is above the mode frequency, which represents the symmetric downward

dynamics modulation case not observed to occur in the experiment, so realistic experimental values

cannot be used to guide the inputs. Still, this result shows that basic dynamics modulation occurs

under the circumstances suggested by the proposed mechanism. A reason why modulation can be
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modeled in this simple manner, but does not occur in the experiment, is suggested in Chapter VI.

3. Summary of modeling results

In this chapter, a simple model of dynamics modulation was presented, consisting of two coupled

van der Pol oscillators. After some trial and error, a starting point for useful parameter inputs

was located, which allowed a systematic exploration of parameter space to locate the most realistic

combination of parameters.

Simplifying assumptions were made that two oscillators would adequately model the dynamics

and that they would share the same ε and β parameters. It was assumed that the normalized

driving force amplitude M would act on both oscillators equally. Mode detection was used to

model the mechanism of Koepke, Weltmann, and Selcher, [Weltmann et al. (2000)], so that the

magnitude of M could be adjusted downward (upward) when the higher (lower) frequency mode

was detected.

This model, though simple, captured the essence of the physical situation and led to simulated

dynamics modulation that was qualitatively comparable to the experimental case.
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Chapter VI

Discussion

In this chapter, the results of the experiment are used to evaluate the proposed dynamics modulation

mechanism of Koepke, Weltmann, and Selcher [Koepke et al. (1995) and Weltmann et al. (2000)].

This is done point-by-point using the characteristics of the model itemized in Chapter II. The

results of the α and M measurements from Chapter IV are central to this process. Using these

results, the mechanism is verified.

After this is done, the “extra” beat frequency seen in the data and described in Chapter IV is

explained. This additional interpretation is possible because of the new extension of the Lashinsky

(1968) periodic pulling treatment described in Chapter II. This result also has implications for

mode transitions in undriven discharge tubes, and these implications are discussed.

The model from Chapter V is discussed next. Although quantitative comparison to the experi-

mental data was not possible with the model, it did reproduce the qualitative behavior of dynamics

modulation. Since the model was constructed using assumptions based in part upon the proposed

mechanism, its qualitative success can be used to further support the validity of the mechanism.

Finally, the downward modulation case is discussed. An explanation is proposed to explain why

it differed qualitatively from the upward modulation case in the experiment. This same explana-

tion also suggests a reason why the model did not fully recreate the richness of the experimental

spectrum.
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A. Evaluation of the mechanism

In Chapter II, an itemized list of predictions derived from the proposed mechanism of Koepke,

Weltmann, and Selcher was presented. (See page 26.) At this point, each of these predictions is

evaluated in turn using the data from Chapter IV.

1. Relative reduction in M during the higher-frequency, temporal portion of

the modulation

When MT , the M value during the higher frequency, temporal part of the dynamics modulation

cycle is compared with the spatiotemporal MST during the lower frequency part, the result is

unambiguous. In Figures 4.16 through 4.19, the two values of M are shown side-by-side, and

MT < MST for nearly every case. The only cases where the data suggest MT 6< MST are the lowest

driving frequency values on Figures 4.16 and 4.18. For these two cases, the dynamics modulation

was not yet periodic and the error bars still extend sufficiently to be consistent with the prediction.

Therefore, this item of the predicted mechanism is verified.

2. Subdominant mode alternation between laser entrainment and temporal pe-

riodic pulling

Neon-resonant chopped laser light outside the dominant mode’s Arnol’d tongue resulted in a sub-

dominant spectral feature at the chopping frequency along with the appropriate beat-related side-

bands. If the driving frequency was changed, the small spectral feature associated with it would

also change. This behavior is evidence that the laser entrains subdominant modes easily or, in

other words, that the Arnol’d tongues for subdominant modes are much wider than the Arnol’d

tongues for dominant modes, such as those shown in Figures 4.4 through 4.7.

This interpretation is further supported by evidence for entrainment during the spatiotemporal

part which can be seen in Figure 4.12a. This shows the power spectrum of the system prior to

the onset of dynamics modulation. Here, in the vicinity of the expected higher frequency, there

is only one feature present. This means that during the lower frequency portion of the dynamics

modulation cycle, the subdominant higher mode is entrained.

It remains to show that the system falls out of entrainment during the higher frequency part of
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the cycle. This is shown by parts (b) through (e) of Figure 4.12, in which the driving frequency ap-

proaches the higher mode frequency. Narrowly-spaced sidebands appear in these panels, suggesting

temporal periodic pulling from a nearby frequency.

Finally, when this narrowly-spaced interval was used to calculate MT , with the a priori assump-

tion that it was temporal periodic pulling, it behaved exactly as would be expected. In the top right

plot of Figures 4.16 and 4.17, the resulting αT approached one as the entrainment boundary was

approached in frequency space. The last value before entrainment (particularly in Figure 4.16) was

very close to one, as would be expected for temporal periodic pulling. Therefore, the interaction

between the laser light and the higher frequency mode alternates between spatiotemporal (during

the low frequency portion of the modulation) and temporal (during the high frequency portion)

and this item is also confirmed.

3. The dynamics phase diagram

Figure 2.10, from Weltmann et al. (2000), was a prominent part of the explanation of the proposed

mechanism. If the proposed mechanism is to be verified, this figure must be compared with the

experimentally obtained Arnol’d tongues shown in Figures 4.8 and 4.9.

Figures 4.8 and 4.9 are not exactly comparable to the earlier schematic diagram because they

show only the Arnol’d tongue boundaries of the dominant mode. In other words, portions of the

Arnol’d tongue that are above the lowest-amplitude boundary can not be mapped using the method

described in Chapter II. Another important difference is that the y-axis of Figure 2.10 represents

M (the normalized driving amplitude) according to the authors, while the y-axis of Figures 4.8 and

4.9 is effectively E, the absolute driving amplitude.

With these differences in mind, we expect to be able to see points representing Figure 2.10’s open

circle (◦) and open square (�) representing two cases of dynamics modulation at the comparable

location on Figures 4.8 and 4.9. Points do appear as expected, represented as filled triangles (N)

in several locations. Therefore, this item is also confirmed.

4. M variation is consistent with upper-mode amplitude change

M is defined (see Eq. (2.8)) as E/2a. Therefore, the ratio of MST /MT should be consistent with

the ratio of amplitudes aT /aST , where in this case, a refers to the amplitude of the laser-driven
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upper mode during the two parts of the dynamics modulation. This can be checked using the same

time-series data used to characterize the dynamics modulation.

To obtain an estimate for aT , we need to examine Figure 4.10. In parts (c) and (d) of this

figure, the amplitude of the time series changes quite clearly between the two parts of the dynamics

modulation. The part needed for aT is the smaller amplitude section (which occurs during the high

frequency portion of the modulation as can be seen from Figure 4.11). The amplitude of these

parts of the modulation (determined from a magnified view of the data in Figure 4.10) is 0.11 V.

The aST case is more subtly obtained. To estimate the higher mode’s response to the laser

light driving during a time when the lower mode is dominant, we can look at the spatiotemporal

time series (Figure 4.10a) that occurred at a driving frequency just one frequency step too low to

undergo dynamics modulation. Therefore, it has a spectrum uncomplicated by the mode changes of

dynamics modulation, but still has a feature that represents the chopped laser light (Figure 4.12a,

narrow feature at 1681 Hz represents the upper, subdominant mode responding to the laser).

To extract the amplitude aST corresponding to this feature and in units useful for comparison

to aT above, a straightforward (if inelegant) method was used. The spectrum of Figure 4.12a was

multiplied by a Gaussian centered at 1681 Hz and with a width of 50 Hz. The resulting spectrum

was passed through an inverse Fourier transform routine to produce a time series that consisted

of the contribution of this one feature. As a check, the inverse transform of the narrow feature’s

spectrum, added to the remaining spectral contribution, was also computed, to be sure that it

compared favorably with the original data; it did. The resulting estimate of aST , made using the

average of data obtained from five spatiotemporal time series was 0.0651 V.

Therefore, the ratio aT /aST is estimated to be ∼0.11/0.0651=1.7. This is consistent with

MST /MT as seen in Figure 4.18, derived from the same data as explained in Chapter IV, in which

the ratio spans the range 0.5 through 3.5 depending on driving frequency. This aspect of the

proposed mechanism is also confirmed.

5. The upward mode transition occurs when sufficiently close

Weltmann et al. (2000) state (pp. 2778-2779) that the upward transition occurs as the instantaneous

frequency of the lower mode is pulled sufficiently near the frequency of the higher mode. To

address this point, we examine Figures 4.20 through 4.23, which are temporal close-ups of dynamics
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modulation time series along with the driving frequency function, scaled for comparison. We also

look at data from the complete 1 s time series similar to that shown in Figure 4.10.

In Figure 4.20, the system is in the lower mode for most of the frame. Just before the time

marked 0.2507 s, the instantaneous frequency climbs very near the higher frequency mode (∼1740

Hz). In a second case, at a different driving frequency and seen in Figure 4.22, the same behavior

occurs just before the time labeled 0.3071 s. So the point that the upward transition occurs when

the instantaneous frequency pulls sufficiently near the frequency of the upper mode is verified by

the data.

6. The upward mode transition occurs when the lower mode is out of phase

with the driver

Weltmann et al. (2000) also state (p. 2779) that “The upward mode transition takes place when

the [higher-frequency] mode, and the chopped light to which it is synchronized, is sufficiently out of

phase with the [lower-frequency] mode.” For this point, if the upward transition takes place due to

the phase relationship of the laser light and the low-frequency mode, that should be discernible from

the overall dynamics modulation frequency. If the upward transition only occurs at a certain point

in the phase evolution between the chopped laser light and the lower mode, then the periodicity of

upward mode transitions should equal the beat frequency between the two modes or a multiple of

this beat.

For the cases in Figures 4.20 through 4.23, the upward mode transitions occurred, on average,

every 0.0390 s (fi=1690 Hz) and 0.0414 s (fi=1700 Hz). This reflects upwards transitions with

frequencies of 25.7 Hz and 24.1 Hz respectively. The corresponding measured, time-averaged beat

frequencies (Ω) between the chopped-light driver and the lower mode were 219.88 Hz and 223.36

Hz respectively. Each reflects an average over all the periods in five 1 s time series. Therefore,

the upward mode transition is occurring, on average, once every 8.56 beat periods, and once every

9.27 beat periods respectively. Since these results are not integer, this analysis is not conclusive

regarding the prediction that upward mode transitions involve the relative phase evolution of the

chopped laser driver and the lower mode.

The other possible route to evaluating the prediction that the upward mode transition occur at

the moment when the laser-entrained upper mode is suitably out of phase with the lower mode is
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by examining the time series close-ups of Figures 4.20 through 4.23. Keep in mind that the driving

frequency series and the photodiode signal may contain a constant arbitrary phase offset in these

figures. This is due to the fact that the light signal was collected 57.5 cm from the cathode, while

the laser chopping signal was collected from the signal generator prior to being amplified and sent

to the discharge tube, via the AOM at a position 2.5 cm from the cathode.

Near the beginning of the time series shown in Figure 4.21, the photodiode signal goes from

almost exactly out of phase to very nearly in phase in one-half an oscillation cycle. Regardless of

the phase offset, somewhere in this interval the two signals would be exactly out of phase. This

corresponds precisely to the moment (seen in the bottom panel’s plot of instantaneous frequency)

that the system transitions to the higher mode. A similar, though less convincing, pattern is clear

near the t =0.0108 s point in Figure 4.23. Looking at the upward transition at the ends of the low

frequency mode close-ups (Figure 4.20 near t =0.02507 s and Figure 4.22 near t = 0.3071 s) should

give similar evidence about the phase condition at the upward transition, but the the evidence is

ambiguous.

Therefore, the mechanism item that describes the upward mode transition as taking place

when the chopped-light-synchronized high frequency mode is sufficiently out of phase with the low

frequency mode has not been conclusively evaluated. The point is plausible but not demonstrated.

7. The downward mode transition

The authors further state (p. 2779) that “As the temporal periodic pulling evolves, the phase

modulation serves to put back into phase the chopped light and the [higher-frequency mode].

When the chopped light and the [higher-frequency] mode are sufficiently in phase, at which point

the laser couples better to the [higher-frequency] mode, the reverse mode transition is induced.”

This point suggests that downward mode transitions should occur at periodic intervals equal

to (or, possibly, multiples of) the temporal pulling beat frequency (ΩT ). This can be evaluated by

comparing ΩT as identified from the low-frequency feature of the spectrum (the method described

in Chapter IV) to the period of the dynamics modulation, calculated by measuring the period

directly from the instantaneous frequency series. The results of this examination are shown in

Table 6.1 and Figure 6.1. Since the agreement is excellent, this point is verified. Periodic dynamics

modulation occurs at the temporal pulling beat frequency. The two frequencies are identical.
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8. Reverse evolution of temporal periodic pulling

The final item of the proposed mechanism that must be evaluated is the authors’ statement that

the temporal periodic pulling proceeds in the reverse of the usual manner. Typically, temporal

periodic pulling starts with the driver and mode in phase, and proceeds to a point where they are

sufficiently out of phase that the mode’s frequency is no longer effectively pulled and resets to start

the cycle again. Here, the authors argue, the opposite is true. They argue that the upper mode is

out of phase with the laser chopping frequency at the moment it becomes dominant, and that the

modulation returns at the point when the upper mode becomes in phase with the driver again.

It was demonstrated above that the overall dynamics modulation frequency matches the tem-

poral beat frequency. That supports the case that the modulation cycle is connected to the phase

evolution of the temporal beat. It is more difficult to establish the direction of phase evolution. The

close-up Figures 4.20 through 4.23 can be used to reveal the phase evolution between the signal and

the driver at frequencies near the signal frequencies, but are not as useful for illuminating the much

slower temporal pulling beat. Therefore, this point remains plausible, but not directly supported.

9. Verdict on the mechanism

The mechanism of Weltmann et al. (2000) has been verified in six out of eight itemized points

(as described in Chapter II). For the points not fully verified, no data was obtained that was

inconsistent with them, leaving them plausible.

It is important to note that the itemized points were not part of the original Weltmann et al.

(2000) proposed mechanism but were constructed to guide the testing of the mechanism for this

thesis. The points involving the modulation of M (points #1-4) are the most important parts of the

mechanism. These ideas support the alternation between temporal and spatiotemporal behavior,

the heart of dynamics modulation. These ideas were all verified in the experimental data.

The remaining points (points #5-8) involve the phase evolution and the timing of the modu-

lation. Of these, two were verified and two were plausible, but not directly supported. Point #6

was plausible, but the least likely, with the dynamics modulation frequency matching the temporal

pulling frequency and not connected by examination of the data to the phase interaction of the

lower mode and the laser-entrained upper mode. The data were consistent with point #8 being
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true, though this point was not demonstrated in the data.

Since six of the eight points were verified including all of points 1-4 that are most central to the

mechanism, the mechanism is verified.

B. Interpretation of the “extra” beat frequency

1. The driven case of Chapter IV

In Chapter IV, a second beat frequency was calculated that differed from the beat between the

driver and the low mode (see Figure 4.14). This beat frequency is neatly explained by the extension

of the Lashinsky (1968) periodic pulling treatment to cases in which ω0 6∼ ωi.

For ω0 ∼ ωi, the conventional beat frequencies between two modes are identical no matter which

mode acts as the pulling mode. But for the ω0 6∼ ωi case, this is not true of the analogous reference

beat frequencies. This is shown in Figure 6.2. Here, the dotted lines represent the conventional

beat frequency, Ω0 = |ωi − ω0|. The reference beat frequency, Ω′ (see Eq. (2.20)) is shown with

the solid line. For two modes separated significantly, this figure predicts that the reference beat

frequency will be higher when the lower-frequency mode pulls the higher-frequency mode than

when the roles are reversed. A similar relationship would be expected to be seen for the measured

beat frequencies.

It is seen. In the data shown in Figure 4.14, the measured beat frequency for the driver-pulling-

low case is at 224.3 Hz while the low-pulling-high case is measured to be 273.1 Hz. These are

compared to reference beat frequencies of 231.6 Hz and 319.0 Hz respectively. The theoretical

periodic pulling treatment, when extended to the case ω0 6∼ ωi as it was in this study for the first

time, predicts this difference in beat frequencies.

Using the reference beat frequency calculated for the low mode pulling the high mode, plots

complementary to Figures 4.15 (top panel) and 4.16 (left half) can be created. These plots are

shown in Figures 6.3 and 6.4. Figure 6.3 shows that the modified beat frequencies measured during

the portion of the dynamics modulation in which the upper mode is dominant and pulled downward

by the subdominant lower mode (i.e., the low-pulling-high case) are higher for all driving frequencies

than the high-pulling-low case (Figure 4.15 top).

Figure 6.4 shows the calculated α and M values for this portion of the dynamics modulation
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cycle. Note that the values of both α and M are significantly higher than those shown in Figure

4.16 (left half), reflecting the system’s strong preference for the f7 mode. Still, as entrainment is

approached, the values of both α and M trend downward.

2. General implications

It was shown in Chapter III that determining α from Eq. (2.10), prior to the extension of the

theory to the general case, can be a problem when Ω > Ω0. (A second glance at Figure 6.2 shows

that this is a problem for downward spatiotemporal periodic pulling, as was the case in Chapter III,

because on this side Ω0 < Ω′.) With the added successful prediction of asymmetric beat frequencies,

demonstrated by Figure 4.14, the extended treatment presented in this thesis is established as a

useful tool for understanding periodic pulling between widely separated competing modes.

When an undriven glow discharge tube undergoes a mode transition, there is not only a change

in mode frequency (and, consequently, instantaneous frequency), there is also a change in instanta-

neous beat frequency. This is clear from Figure 3.11, from Weltmann et al. (2000). In this figure,

the discharge current is constant. [It has also been explicitly depicted, such as in Figure 3 in Koepke

et al. (1996).] In the top panel, the mode frequency is increasing, and the beat frequency, seen as

the period of the instantaneous frequency oscillations, undergoes an unambiguous increase. In the

bottom panel, the opposite occurs. The extended periodic pulling treatment predicts this relative

change in beat frequency. Before the mode transition in the top panel, high is pulling low, which

has a relatively lower reference beat frequency and therefore a lower observed beat frequency is

expected. A future study, in which this possible connection is quantitatively investigated, might

prove fruitful.

Another possible application that is worth investigating is the hysteresis shown in Figure 4.1.

If mode transitions are indeed caused by spatiotemporal periodic pulling between wave modes,

as has been suggested [Koepke et al. (1996)], the extended theoretical treatment and its inherent

asymmetry between low and high drivers may help explain hysteresis in mode transitions. In

this case, unlike the case described in the paragraph above, the discharge currents are different

at the two hysteresis points. Therefore, the mode frequencies themselves may also change (see

Figure 4.3). However, as a quick qualitative exploration of this, note that the low-pulling-high

reference beat frequency would be larger at any given point than the high-pulling-low reference
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beat frequency. Therefore, when a point is reached where adequate upward pulling is achieved for

an upward mode transition, an immediate attempt to reverse the transition would come up short.

One would have to adjust the current from that point to a point where the lower mode is more

favored, i.e. downward, in order to achieve adequate pulling compared to the higher reference beat

frequency. This qualitatively agrees with the extended treatment, and might also prove interesting

upon further study.

C. Discussion of the model

The model, while not useful for direct quantitative comparison with the experiment, did manage

to reproduce the general behavior of dynamics modulation using only an experimentally accurate

variation in the M parameter. Since this M variation was a key part of the proposed mechanism,

the model results reinforce the experimental verification of the proposed mechanism.

1. Shortcomings of the model

The model was only capable of representing two modes, while the experiment had at least nine

that may have played some role in the process. It was implemented in a symmetric way (ε1 = ε2

and β1 = β2 = 1) that was meant to approximate the real situation but may have had significant

shortcomings. The normalized driving amplitude M was applied to both oscillators equally, despite

this almost certainly not being true in the experimental case. The mode transition detection

algorithm, in order to accurately detect mode transitions, required time that did not accurately

reflect the rapid mode transitions of the experiment. These approximations were used due to an

absence of direct evidence of better parameters and methods to use, with the benefit of simplifying

the model to its essential components.

A direct comparison of Figures 5.10 through 5.12 with their experimental counterparts, Figures

4.10 through 4.12 reveals further shortcomings. As mentioned in Chapter V, dynamics modulation

ends not with the upper mode entrained, but with spatiotemporal periodic pulling down occurring

constantly. (This was the result of continuously driving both oscillators despite changes in the

dominant one.) The amplitude of the time series is larger in the upper mode in the model, where

the opposite is true in the experiment. The amplitude change at the mode transition is also
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much more abrupt in the experimental case. The dynamics modulation frequency does not match

the experimental case, though the trend is correct. The instantaneous frequency oscillations are

different in overall amplitude from the experimental case, and the manner in which their amplitude

evolves is qualitatively different as well. The power spectra compare somewhat favorably, but

the sidebands appear to be enhanced on the opposite side in the model case compared to the

experimental case.

2. Successful aspects of the model

Even with these limitations, the model was successful in several ways. First of all, the model exhibits

credible dynamics modulation behavior. As driving frequency is increased, dynamics modulation

frequency decreases and a larger portion of each cycle is spent in the upper mode. This behavior

resulted from just the essential pieces of the mechanism’s description, two oscillators, M reduction

upon transition to the upper mode, and M increase upon return. The fact that the model captures

the essence of dynamics modulation when implemented in this simple manner suggests that the

mechanism is correct.

More qualitative agreement can be seen in Figure 6.5. This is the modeled version of Figure

4.14, the experimental case. The driving frequency in this case was set to 1700 Hz. The beat

frequency in the low mode (circles) has a median value (258.6 Hz) that is below that of the high

mode’s (squares) median (278.4 Hz). Though the separation is observed to be smaller than in the

experimental case, the cycle is similar which further suggests that the model contains true dynamics

modulation.

D. The downward modulation case

One of the surprises of this thesis was the inability to achieve the symmetric, downward modulation

case that would complement the upward modulation first observed by Koepke et al. (1995) and

repeated here. As depicted in Figures 4.8 and 4.9, the downward dynamics modulation that was

observed occurred on the outside edge of the lower mode’s Arnol’d tongue, unlike the upward

modulation, which occurred on the inside edge. The model did not explain this difference, and had

as much success in the downward symmetric case as it did in the upward case, as was illustrated
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in Figure 5.13.

In order to explain why the symmetric downward case did not occur, and the non-symmetric

case did occur, Figure 6.6 was prepared. The bottom panel shows an observed downward dynamics

modulation spectrum. For reference, light gray bars are placed at the observed mode frequencies for

this discharge tube, and extended into the top panel. Medium gray rectangles are placed at driving

frequencies used for dynamics modulation attempts, as labeled. The black rectangles represent

the first two expected sidebands opposite the driven mode. In the two successful cases, the first

sideband overlaps an existing mode. For the symmetric downward modulation case, for which no

dynamics modulation was observed, there is no overlap. A circle is placed over this part of the

figure for emphasis.

This suggests that modes beyond the two immediately involved in the dynamics modulation

play a role in whether or not dynamics modulation occurs. Obviously this multimode effect would

not be reflected in the two-mode model presented in Chapter V. For the downward modulation that

does occur, the driving-force frequency must be on the outside of the target mode. That difference

from the upward case tends to cause the downward case to, in straightforward manner, force a

permanent downward mode transition (see Figures 4.27d-f and 4.28d-f) under some circumstances

and irregular modulation (see Figures 4.25b-e and 4.26b-e) in others.
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Conclusions

In this thesis, dynamics modulation was experimentally studied and simulated using a coupled

oscillator van der Pol model. In dynamics modulation, two modes in a driven neon glow discharge

alternate as the dominant mode as their response to the driving force alternates between spatiotem-

poral and temporal periodic pulling. This phenomenon was first noted by Koepke, Weltmann, and

Selcher [Koepke et al. (1995)], who saw two limited but representative cases and proposed a mech-

anism [Weltmann et al. (2000)] by which it occurs. The intent of this dissertation, to document

and test the mechanism, has been achieved.

Three sequences of time series data, as a function of increasing driving frequency, were presented.

Two of these series were taken for one pair of mode frequencies on different days to show that the

data is reproducible. The third was taken for the next higher pair of mode frequencies to show that

the phenomenon is not limited to one pair of modes. Each of these data series shows the progression

of the system from pure spatiotemporal behavior, through dynamics modulation, and ending at

entrainment in the upper mode. Wave modes were examined by recording discharge luminosity

time series using a photodiode. The system was periodically driven using a narrow-band ring dye

laser tuned to resonance with the 588.35 nm metastable neon transition. The amplitude of the

driving force was decreased (increased) by tuning the laser away from (nearer to) the center of the

neon line, while the driving frequency was controlled by an acousto-optic modulator chopping the

laser beam at the desired frequency.

Using a new extension of a mathematical treatment of periodic pulling presented in this thesis,

the resulting experimental data were used to verify the predicted mechanism. This new extension
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included the definition of a reference beat frequency (Ω′) which, along with the modified beat

frequency (Ω) identified from the data for the spatiotemporal and temporal cases, allowed the

entrainment parameter (α) and the normalized driving amplitude (M) to be presented as a function

of driving frequency for both portions of the dynamics modulation cycle. This was done here for

the first time, and showed that the temporal entrainment parameter (αT ) goes to one as expected

when the sequence of dynamics modulation ends in entrainment at the upper mode. The new

extension also predicts an asymmetry between two modes pulling each other, depending on which

one is pulling and which one is pulled, which is seen in the dynamics modulation data.

Arnol’d tongue boundaries identifying the edges of frequency entrainment regions in the driving

amplitude-driving frequency plane were established for four different discharge currents. Differences

were noted between modes that can occur naturally at a given discharge current, and thus appear

as elongated on the driving amplitude axis, and those that occur only under driving, and are much

shorter. Dynamics modulation was plotted in relation to the boundaries and used to verify the

mechanism presented by Weltmann et al. (2000) in their dynamics phase diagram plot (Figure

2.10). These boundary plots are the first of their kind, showing Arnol’d tongue boundaries for

optically-driven modes.

In addition to reproducing and studying the upward dynamics modulation, additional data were

acquired for downward modulation, which had not been previously documented. This downward

modulation exhibited qualitatively different behavior from the upward modulation described by

Weltmann et al. (2000). Two representative cases were presented, and their characteristics de-

scribed. The location of downward dynamics modulation on the Arnol’d tongue boundary plot was

presented and shown not to be a mirror-symmetric version of the upward modulation case. The

participation of multiple resonant modes in the dynamics modulation process was presented as a

reason for this asymmetry.

Finally, a numerical model was presented that reproduced the signature of dynamics modulation.

Two coupled van der Pol equations were chosen to model the mechanism described by Koepke,

Weltmann, and Selcher, and the resulting time series was solved with a Runge-Kutta routine whose

parameters could be adjusted as the simulation proceeded. The model successfully reproduced the

qualitative behavior of dynamics modulation and reinforced the experimental verification of the

proposed mechanism, but lacked sufficient complexity for a complete quantitative comparison.
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Appendix A.

Derivation of the phase evolution

equation

In this appendix, the equation for phase evolution is derived. This derivation follows that of

Lashinsky (1968), departing only to remove the assumption that ωi ∼ ω0 that he made.

We start, as he did, with a general form of the van der Pol equation with a non-specific damping

term:

d2x

dt2
− εf(x, ẋ)

dx

dt
+ ω2

0x = ω2
0E cosωit. (A.1)

Now let the solution take the form

x(t) = a(t) sin [ωit− φ(t)] ≡ a(t) sinψ, (A.2)

which explicitly suggests that both the amplitude (a) and phase (φ) are time dependent.

The time derivative of φ(t) is the piece that will allow a quantitative measure of periodic pulling.

To get it, take time derivatives of x(t) and put them into Eq. (A.1). We find that

dx

dt
=
da

dt
sinψ + a

(
ωi −

dφ

dt

)
cosψ. (A.3)

In computing the second derivative, we require that a(t) and φ(t) be slowly varying, so that second

79



order derivatives may be neglected. The result is

d2x

dt2
∼= 2ωi

da

dt
cosψ − ω2

i a sinψ + 2ωia
dφ

dt
sinψ. (A.4)

Now, insert Eqs. (A.3) and (A.4) into Eq. (A.1):

2ωi
da

dt
cosψ − ω2

i a sinψ + 2ωia
dφ

dt
sinψ

−εf(x, ẋ)
[
da

dt
sinψ +

(
ωi −

dφ

dt

)
a cosψ

]
+ ω2

0a sinψ = ω2
0E cosωit. (A.5)

This can be simplified by expressing ωit in terms of ψ and φ using Eq. (A.2) and by requiring

ε to be small enough that terms like εdadt and εdφdt can be neglected. The result is:

2ωi
da

dt
cosψ − ω2

i a sinψ + 2ωia
dφ

dt
sinψ

−εf(x, ẋ)ωia cosψ + ω2
0a sinψ = ω2

0E (cosψ cosφ− sinψ sinφ) . (A.6)

A set of coupled, first-order equations that describe the time variation of the amplitude and

phase variation of the mode result if we set the coefficients of cosψ and sinψ to zero separately in

Eq. (A.6):

da

dt
=

ε

2
f(x, ẋ)a+

E

2
ω2

0

ωi
cosφ (general form) (A.7)

dφ

dt
=

(
ω2
i − ω2

0

2ωi

)
− E

2a
ω2

0

ωi
sinφ (general form). (A.8)

Lashinsky requires ωi ∼ ω0, in which case

ω2
i − ω2

0

2ωi
∼ (ωi − ω0). (A.9)

This requirement simplifies the above equations to the form:

da

dt
=

ε

2
f(x, ẋ)a+

Eω0

2
cosφ (valid only if ωi ∼ ω0) (A.10)

dφ

dt
= (ωi − ω0)− Eω0

2a
sinφ (valid only if ωi ∼ ω0). (A.11)
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Appendix B.

Computer code

In this appendix, examples of MATLAB code used in Chapter V are reproduced.

1. Main simulation routine

function [t,x,EndCond]=DynModSimulation(InitCond);

% This program models dynamics modulation using an RK4 ODE solver to

% reproduce real experimental data.

% It uses any model of coupled van der Pol equations, depending on the

% selection of the function used in the TwovdPModelD routine. A typical model is

% a coupled, square−wave driven, symmetric van der Pol model. (#4)

% The resulting series of variables x and z (y(1)and y(3) here) are added to give

% the modeled time signal, but also handled separately in case one or the

% other signals seems to produce a more realistic result.

% Here is the order of arguments:

% [tvals,wvals,fvals,FFTvals,tinst,instvals]=

% TwovdPModelD(a, b, N, InitCond, w0, ep, bet, M, nu, gam, mod);

% Inputs are:

% a Starting time (seconds, scalar)
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SECTION 1. MAIN SIMULATION ROUTINE

% b Ending time (seconds, scalar)

% N Total number of steps to take between a and b (integer)

% InitCond Initial conditions of x,dx/dt,z,dz/dt

% (Form: four row vectors per time step [0; 0; 0; 0])

% w0 Natural frequencies of the two modes

% (Form: row vector [1449 1720.5])

% ep epsilon parameters (Form: row vector [0.1 0.1])

% bet beta parameters (Form row vector: [1 1])

% M Driving force (Form row vector: [.02 .02])

% nu Normalized driving frequency

% (scalar normalized to w0 1 (1.1732 = 1700/1449))

% gam Coupling parameters (Form row vector: [0.01 1e−6])

% mod Model number (Models described in TwovdPModelD.m)

%

% Outputs are:

% t array of time values (row vector)

% x corresponding time series (row vector)

% EndCond Final conditions of x,dx/dt,z,dz/dt

% (Form: four row vectors per time step [0; 0; 0; 0])

% Written by Paul M. Miller, WVU

% December 2008−−March 2009.

% Uses crossing.m from http://www.mathworks.com/matlabcentral/ by

% by Steffen Brueckner.

% Clear variables and figures before solving.

clear x w t wnew tnew ;

close all;

% Initialize variables

a= 0; % Starting time

b= .5; % Ending time

Nt= 10000; % Total number of steps to take between a and b

% Use zero initial conditions if none are supplied
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if nargin==0

% Initial conditions of x,dx/dt,z,dz/dt

InitCond= [0; 0; 0; 0;];

end

w0= 2*pi*[1448 1740]; % Natural frequencies of the two modes

ep= [0.1 0.1]; % epsilon parameters

bet= [1 1]; % beta parameters

M1= .02*[1 1]; % Driving force magnitude in high mode

M0= 2*M1; % Driving force magnitude in low mode

MNow=M1; % Initial magnitude of driving force

nu=1705/1448; % Normalized driving frequency for central periodic case

gam=[0.025 0.22]; % Coupling parameters

mod=4; % Model to use

% Calculate the step size. (Should stay the same throughout for FFT)

h = (b−a)/Nt;

% Decide amount to step forward between checks and amount to look back for

% mode switch detection

advanceby=10; % No restrictions

Lookback=70; % First lookback; try at least 2*pi*5./w0./h.

% Set threshold for mode detection

Highthresh=(mean(w0)+.35*(w0(1,2)−w0(1,1)))/2/pi;

Lowthresh=(mean(w0)−.35*(w0(1,2)−w0(1,1)))/2/pi;

w(:,1)=InitCond; % Initialize variables

t(1,1)=0;

tM=.010 ; % Time over which to ramp up (down) M (s) when mode flip is detected.

tMstep=0;

% Keep a record of the frequencies measured at each adjustment step.
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FreqRecord=zeros(1,round(Nt/advanceby/4)); % Initialize to zero.

MRecord=zeros(1,round(Nt/advanceby/4));

Timecount=zeros(1,round(Nt/advanceby/4));

% Begin loop

atemp=t(1,1);

btemp=atemp+advanceby*h;

loopcount=1;

while t(1,end)<b

% Advance the coupled equations with the new driving amplitude

[tnew,wnew]=TwovdPModelD...

(atemp, btemp, advanceby, InitCond, w0, ep, bet, MNow, nu, gam, mod);

% Splice result to running time series

t=[t(1,1:end−1),tnew];

w=[w(:,1:end−1),wnew];

% Measure mode of signal

[timecent,instfreq]=instantfreqsB(t,w(1,:)+w(3,:));

if length(t) > Lookback & length(instfreq)>26

loopcount

instfreq(end)

FreqRecord(1,loopcount)=mean(instfreq(end−25:end));

else

FreqRecord(1,loopcount)=NaN;

end

% Decide whether to adjust M

if FreqRecord(1,loopcount) > Highthresh; % High mode detected

disp('High mode found');

while MNow > M1; % Gradually adjust M in response

InitCond=w(:,end);

atemp=t(1,end);

btemp=atemp+1*h;
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MNow=(M1−M0)/tM*tMstep+M0;

[tnew,wnew]=TwovdPModelD...

(atemp, btemp, 1, InitCond, w0, ep, bet, MNow, nu, gam, mod);

% Splice result to running time series

t=[t(1,1:end−1),tnew];

w=[w(:,1:end−1),wnew];

% Increment tMstep

tMstep=tMstep+h;

end

elseif FreqRecord(1,loopcount) < Lowthresh; % Low mode detected

disp('Low mode found');

while MNow < M0; % Gradually adjust M in response

InitCond=w(:,end);

atemp=t(1,end);

btemp=atemp+h;

MNow=(M0−M1)/tM*tMstep+M1;

[tnew,wnew]=TwovdPModelD...

(atemp, btemp, 1, InitCond, w0, ep, bet, MNow, nu, gam, mod);

% Splice result to running time series

t=[t(1,1:end−1),tnew];

w=[w(:,1:end−1),wnew];

% Increment tMstep

tMstep=tMstep+h;

end

end

% Record M used throughout

MRecord(1,loopcount)=MNow(1,1);

Timecount(1,loopcount)=t(1,end);

% Create initial conditions for next big loop pass

InitCond=w(:,end);

atemp=t(1,end);

btemp=atemp+advanceby*h;
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tMstep=0;

% Increment loop

loopcount=loopcount+1;

end

% Combine two signals to get one time series

x=w(1,:)+w(3,:);

% Output the final values for better initial conditions next time.

EndCond=w(:,end);

% Diagnostic plots

% Plot the two oscillators separately along with their sum, as time series.

figure(2000);

subplot(3,1,1);plot(t,w(1,:),'k');

xlabel('Time(s)');ylabel('Amp (arb.)');axis tight;

subplot(3,1,2);plot(t,w(3,:),'k');

xlabel('Time (s)');ylabel('Amp(arb.)');axis tight;

subplot(3,1,3);plot(t,x,'k');

xlabel('Time(s)');ylabel('Amp (arb.)');axis tight;

% Also plot the FFTs

figure(2001);

fNy=1./(2*h); % Nyquist frequency

Nactual=round(t(1,end)/h)+1;

freqax=linspace(0,fNy,round(Nactual./2));

pow1=fft(w(1,:)).*conj(fft(w(1,:)));

pow2=fft(w(3,:)).*conj(fft(w(3,:)));

pow=fft(x).*conj(fft(x));

subplot(3,1,1);semilogy(freqax,pow1(1,1:round(Nactual./2)),'k');

xlabel('Frequency (Hz)');ylabel('Log Power (arb.)');axis([0 4500 1e−4 1e10]);

subplot(3,1,2);semilogy(freqax,pow2(1,1:round(Nactual./2)),'k');

86



APPENDIX B.. COMPUTER CODE

xlabel('Frequency (Hz)');ylabel('Log Power (arb.)');axis([0 4500 1e−4 1e10]);

subplot(3,1,3);semilogy(freqax,pow(1,1:round(Nactual./2)),'k');

xlabel('Frequency (Hz)');ylabel('Log Power (arb.)');axis([0 4500 1e−4 1e10]);

% And the Inst. Freq. using zero "crossing" subroutine by Steffen Brueckner

% (available at http://www.mathworks.com/matlabcentral/)

figure(2002);

[ind,timecross1,s0]=crossing(w(1,:),t);

[ind,timecross2,s0]=crossing(w(3,:),t);

[ind,timecross,s0]=crossing(x,t);

periods1=timecross1(3:end)−timecross1(1:end−2);

periods2=timecross2(3:end)−timecross2(1:end−2);

periods=timecross(3:end)−timecross(1:end−2);

t01=timecross1(2:end−1);instfreq1=1./periods1;

t02=timecross2(2:end−1);instfreq2=1./periods2;

t0=timecross(2:end−1);instfreq=1./periods;

subplot(3,1,1);plot(t01,instfreq1,'−k');

xlabel('Time (s)');ylabel('Inst. Freq (Hz)');

subplot(3,1,2);plot(t02,instfreq2,'−k');

xlabel('Time (s)');ylabel('Inst. Freq (Hz)');

subplot(3,1,3);plot(t0,instfreq,'−k');

xlabel('Time (s)');ylabel('Inst. Freq (Hz)');

figure(2003);

subplot(2,1,1);

plot(Timecount,FreqRecord,'k');axis tight

subplot(2,1,2);

plot(Timecount,MRecord,'k');axis([0 .5 0 .2]);

% Plot time series, inst freq, power together.

h100=figure(100);

subplot(4,1,1);
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plot(t,x,'k');

set(gca,'fontname','times','fontsize',14);

xlabel('Time (s)','fontname','times','fontsize',14);

ylabel('Amp (arb.)','fontname','times','fontsize',14);

axis([0 .5 −2 2]);

subplot(4,1,2);

plot(t0,instfreq,'k−');

set(gca,'fontname','times','fontsize',14);

xlabel('Time (s)','fontname','times','fontsize',14);

ylabel('Inst. Freq (Hz)','fontname','times','fontsize',14);

axis([0 .5 500 3000]);

subplot(4,1,3);

plot(Timecount,MRecord,'k');

set(gca,'fontname','times','fontsize',14);

axis([0 .5 0 .08]);

xlabel('Time (s)','fontname','times','fontsize',14);

ylabel('M','fontname','times','fontsize',14);

subplot(4,1,4);

semilogy(freqax,pow(1,1:round(Nactual./2)),'k');

set(gca,'fontname','times','fontsize',14);

xlabel('Frequency (Hz)','fontname','times','fontsize',14);

ylabel('Log Power (arb.)','fontname','times','fontsize',14);

axis([0 3500 1e−4 1e10]);

2. Runge-Kutta subroutine

function [tvals,wvals]=TwovdPModelD(a, b, N, InitCond, w0, ep, bet, M, nu, gam, mod);

% This program models dynamics modulation using an RK4 ODE solver to

% reproduce real experimental data.

%

% It allows the choice of the model of coupled van der Pol equations.

% The result of variables x and z (y(1)and y(3) here) representing the two

% oscillators are added to give
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% the modeled time signal, but also handled separately in case one or the

% other signals seems to produce a more realistic result.

%

% Inputs are:

% a Starting time (seconds, scalar)

% b Ending time (seconds, scalar)

% N Total number of steps to take between a and b (integer)

% InitCond Initial conditions of x,dx/dt,z,dz/dt

% (Form: four row vectors per time step [0; 0; 0; 0])

% w0 Natural frequencies of the two modes

% (Form: row vector [1449 1720.5])

% ep epsilon parameters (Form: row vector [0.1 0.1])

% bet beta parameters (Form row vector: [1 1])

% E0 Driving force (Form row vector: [.02 .02])

% nu Normalized driving frequency

% (scalar normalized to w0 1 (1.1732 = 1700/1449))

% gam Coupling parameters (Form row vector: [0.01 1e−6])

% mod Model number (Models described below)

%

% Outputs are:

% tvals array of time values (row vector)

% wvals corresponding time series (four row vectors

% per time step)

%

% Written by Paul M. Miller, WVU

% January 2009.

% Calculate number of steps to take each loop

h = (b−a)/N; %the step size

t(1,1)=a;

w(:,1)=InitCond; % insert initial conditions

% Runge−Kutta loop to solve

for i = 1:N

k1 = h*f(t(i), w(:,i), w0, ep, bet, M, nu, gam, mod);

k2 = h*f(t(i)+h/2, w(:,i)+0.5*k1, w0, ep, bet, M, nu, gam, mod);
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k3 = h*f(t(i)+h/2, w(:,i)+0.5*k2, w0, ep, bet, M, nu, gam, mod);

k4 = h*f(t(i)+h, w(:,i)+k3, w0, ep, bet, M, nu, gam, mod);

w(:,i+1) = w(:,i) + (k1 + 2*k2 + 2*k3 + k4)/6;

t(i+1) = a + i*h;

end

% Combine two signals to get one time series

wvals=w;

tvals=t;

x=w(1,:)+w(3,:);

function dy = f(t, y, w0, ep, bet, E, nu, gam, mod);

if mod==1;

% This model uses 1993 Pastor−Diaz equations with added cosine forcing.

dy = [y(2);

w0(1).ˆ2.*E(1).*cos(nu.*w0(1).*t)...

+ep(1).*(1−bet(1).*(y(1)+gam(1)*y(3)).ˆ2).*w0(1).*y(2)...

−w0(1).ˆ2.*(y(1)+gam(1)*y(3));

y(4);

w0(2).ˆ2.*E(2).*cos(nu.*w0(1).*t)...

+ep(2).*(1−bet(2).*(y(3)+gam(2)*y(1)).ˆ2).*w0(2).*y(4)...

−w0(2).ˆ2.*(y(3)+gam(2)*y(1))];

elseif mod==2;

% This model uses the original coupled vdP equations with added cosine

% forcing.

dy = [y(2);

w0(1).ˆ2.*E(1).*cos(nu.*w0(1).*t)+ep(1).*(1−bet(1).*y(1).ˆ2).*w0(1).*y(2)...

−w0(1).ˆ2.*y(1)−gam(1).*w0(1).ˆ2.*y(3);

y(4);

w0(2).ˆ2.*E(2).*cos(nu.*w0(1).*t)−ep(2).* w0(2).*y(4)...

−w0(2).ˆ2.*y(3)−gam(2).*w0(2).ˆ2.*y(1)];

elseif mod==3

% This model uses symmetric coupled vdP equations with added cosine
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% forcing.

dy = [y(2);

w0(1).ˆ2.*E(1).*cos(nu.*w0(1).*t)+ep(1).*(1−bet(1).*y(1).ˆ2).*w0(1).*y(2)...

−w0(1).ˆ2.*y(1)−gam(1).*w0(1).ˆ2.*y(3);

y(4);

w0(2).ˆ2.*E(2).*cos(nu.*w0(1).*t)+ep(2).*(1−bet(2).*y(3).ˆ2).*w0(2).*y(4)...

−w0(2).ˆ2.*y(3)−gam(2).*w0(2).ˆ2.*y(1)];

elseif mod==4;

% This model uses symmetric coupled vdP equations with square−wave forcing.

dy = [y(2);

w0(1).ˆ2.*(.5).*E(1).*(1+sign(cos(nu.*w0(1).*t)))+ep(1).*(1−bet(1).*y(1).ˆ2)...

.*w0(1).*y(2)−w0(1).ˆ2.*y(1)−gam(1).*w0(1).ˆ2.*y(3);

y(4);

w0(2).ˆ2.*(.5).*E(2).*(1+sign(cos(nu.*w0(1).*t)))+ep(2).*(1−bet(2).*y(3).ˆ2)...

.*w0(2).*y(4)−w0(2).ˆ2.*y(3)−gam(2).*w0(2).ˆ2.*y(1)];

elseif mod==5;

% This model uses the original coupled vdP equations with added square−wave

% forcing.

dy = [y(2);

w0(1).ˆ2.*(.5).*E(1).*(1+sign(cos(nu.*w0(1).*t)))+ep(1).*(1−bet(1).*y(1).ˆ2)...

.*w0(1).*y(2)−w0(1).ˆ2.*y(1)−gam(1).*w0(1).ˆ2.*y(3);

y(4);

w0(2).ˆ2.*(.5).*E(2).*(1+sign(cos(nu.*w0(1).*t)))−ep(2)...

.*w0(2).*y(4)−w0(2).ˆ2.*y(3)−gam(2).*w0(2).ˆ2.*y(1)];

else

error('Model not adequately specified.');

end

91



92



References

Abria, M. (1848), Sur les lois de l’induction des courants par les courants, Ann. Chim., 7, 477.

Adler, R. (1946), A study of locking phenomena in oscillators, Proceedings of the IRE, 34 (6), 351.

Armand, M. (1969), On the output spectrum of unlocked driven oscillators, Proceedings of the

IEEE, 57, 798.

Arslanbekov, R., and V. Kolobov (2003), Two-dimensional simulations of the transition from

Townsend to glow discharge and subnormal oscillations, J. Phys. D: Appl. Phys., 36 (2), 2986.

Arslanbekov, R., and V. Kolobov (2005), 2-D simulations of striations in direct current glow dis-

charges in argon, IEEE Transactions on Plasma Science, 33 (2), 354.

Baierlein, R. (1983), Newtonian Dynamics, 1st ed., McGraw-Hill Companies, New York.

Block, D. (2001), Synchronization of drift waves and its effect on fluctuation-induced transport,

Ph.D. thesis, University of Kiel, Kiel, Germany.

Boeuf, J. (2003), Plasma display panels: physics, recent developments and key issues, J. Phys. D:

Appl. Phys., 36, R53.

Bogoliubov, N. N., and Y. A. Mitropolsky (1961), Asymptotic Methods in the Theory of Non-linear

Oscillations, Gordon and Breach, New York.

Boyce, W. E., and R. C. DiPrima (1986), Elementary Differential Equations and Boundary Value

Problems, fourth ed., John Wiley and Sons, New York.

Braun, T., J. Lisboa, R. Francke, and J. Gallas (1987), Observation of deterministic chaos in

electrical discharges in gases, Phys. Rev. Lett., 59 (6), 613.

93



REFERENCES

Brown, A. C. (1995), An estimate of the largest Lyapunov exponent in a driven neon glow discharge

plasma, Master’s thesis, West Virginia University, Morgantown, WV.

Brown, S. C. (1978), A short history of gaseous electronics, in Gaseous Electronics: Electrical

Discharges, vol. 1, edited by M. N. Hirsch and H. J. Oskam, chap. 1, pp. 1–18, Academic, New

York.

Cheung, P., and A. Wong (1987), Chaotic behavior and period doubling in plasmas, Phys. Rev.

Lett., 59 (5), 551.

Cheung, P., S. Donovan, and A. Wong (1988), Observations of intermittent chaos in plasmas, Phys.

Rev. Lett., 61 (12), 1360.

Cuccia, C. L. (1952), Harmonics, Sidebands, and Transients in Communication Engineering,

McGraw-Hill, New York.

Dinklage, A., B. Bruhn, H. Deutsch, P. Jonas, and B.-P. Koch (1998), Observation of the spa-

tiotemporal dynamics of ionization wave mode transitions, Phys. Plasmas, 5 (4), 833.

Dunham, J., S. Bennett, and C. Butler (1991), Frequency entrainment in the relaxation oscillator

method of optogalvanic spectroscopy, Inst. Phys. Conf. Ser., 113 (6), 191.

Eckhaus, W. (1965), Studies in Nonlinear Stability Theory, Springer, New York.

Franklin, R. N. (1976), Plasma Phenomena in Gas Discharges, Clarendon Press, Oxford.

Garscadden, A. (1978), Ionization waves in glow discharges, in Gaseous Electronics: Electrical

Discharges, vol. 1, edited by M. N. Hirsch and H. J. Oskam, chap. 2.2, pp. 65–107, Academic,

New York.

Gerstenkorn, S., and P. Luc (1977), Atlas du spectre d’absorption de la molécule de’iode, vol. II,
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Pekárek, L. (1968), Ionization waves (striations) in a discharge plasma, Physics-Uspekhi, 11 (2),

188.
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Ionization Relative Eλ (Novák) Eλ (2006)
Wave Type Speed (V) (V)

p slow 9.2 9.8
s′ slow 19.5 20
r fast 12.7 13.5
s fast 19.5 20

Table 1.1: The Novák constants for ionization waves in low temperature plasmas. The first list
comes from Novák (1960) and reflects the original empirical values. The second list comes from a
recent review [Kolobov (2006)], and includes theoretical considerations.

Mode Low Frequency High Frequency Range Separation
(Hz) (Hz) (Hz) (Hz)

f1 590 602 12 N/A
f2 649 691 42 59
f3 724 795 71 75
f4 845 912 67 121
f5 1005 1043 38 160
f6 1202 1242 40 197
f7 1436 1471 35 234
f8 1698 1742 44 262
f9 1980 2029 49 282

Table 4.1: Approximate frequency ranges of the glow discharge modes. Frequency range is the
difference between the high and low extremes of each mode. Mode frequency separation is measured
from the low extreme of each mode to the low extreme of the mode below.

Data Modes # of # of Driving Laser
Set Involved Files Frequencies Used Wavelength (nm)

1 f7 to f8 68 12 588.351268
2 f7 to f8 53 11 588.351320
3 f8 to f9 44 11 588.351147
4 f8 to f7 52 12 588.351247
5 f8 to f7 96 19 588.351547

Table 4.2: Summary of the main dynamics modulation time series data sets reported in Chapter
IV.
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Data fi Offset from entrainment Average ΩT /2π fDM
Set (Hz) (Hz) (Hz) (Hz)
1 1693 -19 22.3±0.5 22.2±0.1
1 1696 -16 22.0±0.4 21.4±0.1
1 1700 -12 20.2±0.4 20.2±0.1
1 1704 -8 17.5±0.6 17.5±0.1
1 1708 -4 12.5±0.5 12.7±0.1
2 1690 -23 25.6±0.6 25.7±0.1
2 1695 -18 24.0±0.4 24.1±0.1
2 1700 -13 21.0±0.4 21.2±0.1
2 1705 -8 17.0±0.4 16.5±0.1
3 1985 -28 30.4±1.5 30.5±0.1
3 1990 -23 30.3±0.4 29.3±0.1
3 1995 -18 28.0±0.4 28.2±0.1
3 2000 -13 25.0±0.4 25.0±0.1

Table 6.1: Comparison of temporal beat frequency ΩT /2π, taken from the power spectrum, to
the direct measurement of periodic dynamics modulation frequency fDM taken from periods on
instantaneous frequency series. Agreement is excellent.
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Figure 1.1: A schematic diagram of the named parts of a glow discharge column. Depending on the
experimental parameters of the discharge tube and its circuit elements, some of the parts may not
be visible and their relative sizes may vary. [Figure created by Ian Tresman. Used under Creative
Commons Attribution 2.5.]
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Figure 1.2: Eλ versus discharge current. Different ionization wave types can be unambiguously
distinguished using their Novák constants. Note that all four types do not occur at all pressures,
which is why no r waves appear in this plot, and that striations at higher currents do not follow
the Novák rule. [From Garscadden (1978).]
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Figure 1.3: Ionization wave map. The regions in which the four kinds of ionization waves exist
can be mapped against discharge current and pressure. Note the homogenous column in which no
ionization waves occur. [From Garscadden (1978).]
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Figure 1.4: Possible wave states in the positive column of a neon discharge tube. Note the region
labeled striated. Work in this thesis takes place at pR ∼ 1.5 Torr cm and I/r ∼ 10−2 A/cm, near
the I on the figure. The Pupp limit is indicated by curve labeled 1. [From Kolobov (2006).]
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Figure 1.5: Striation frequency versus current in Ne at pR = 1 Torr cm. The work in this thesis
was done at pR = 1.5 Torr cm, so this figure is representative of ionization wave behavior in the
experiment. The different shapes represent different discharge tube radii, with • (N) representing
R = 1.5 (2.9) cm. The hollow shapes represent artificially driven waves. [From Kolobov (2006).]
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Figure 2.1: Schematic diagram of an Arnol’d tongue. This figure can be reproduced by calculating
α using Eq. 2.6 and setting 2a = 15. The dark inverted triangle (arrow) is the region where α > 1,
the Arnol’d tongue. Periodic pulling is strongest very near the Arnol’d tongue, as indicated. [From
Klinger et al. (1995).]
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Figure 2.2: The time series behavior for three cases of driving frequency. Using the van der Pol
equation (2.1) with ε = 0.4, β = 0.1, ω0/2π = 160 Hz and E = 1.5, ωi/ω0 was selected to
demonstrate weak periodic pulling (top, ωi/ω0 = 1.2157), strong periodic pulling (center, ωi/ω0 =
1.1195), and entrainment (bottom, ωi/ω0 = 1.05). Parameters were chosen to approximately
reproduce Figures 3-5 in Klinger et al. (1995).
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Figure 2.3: FFT amplitude of the time series shown in Figure 2.2. Using the van der Pol equation
(2.1) with ε = 0.4, β = 0.1, ω0/2π = 160 Hz and E = 1.5, ωi/ω0 was selected to demonstrate weak
periodic pulling (left panel, ωi/ω0 = 1.2157), strong periodic pulling (center panel, ωi/ω0 = 1.1195),
and entrainment (right panel, ωi/ω0 = 1.05). Parameters were chosen to approximately reproduce
Figures 3-5 in Klinger et al. (1995).
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Figure 2.4: Four cases of α, showing power spectra sideband structure (a) and phase development
(b) as a function of time. [From Klinger et al. (1995).]
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Figure 2.5: Arnol’d tongue cross section. Figure from Koepke and Hartley (1991), using data from
a UJT circuit.
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Figure 2.6: Instantaneous frequency of the time series shown in Figure 2.2. Using the van der
Pol equation (2.1) with ε = 0.4, β = 0.1, ω0/2π = 160 Hz and E = 1.5, ωi/ω0 was selected to
demonstrate weak periodic pulling (top, ωi/ω0 = 1.2157), strong periodic pulling (center, ωi/ω0 =
1.1195), and entrainment (bottom, ωi/ω0 = 1.05).
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Figure 2.7: Time series and FFT as driving frequency is adjusted from below the natural frequency
(a through f) to above the natural frequency (i through n). Periodic pulling is evident on both
sides of entrainment (g and h). Data from a UJT circuit. Figure from Koepke and Hartley (1991).
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Figure 2.8: Temporal periodic pulling versus spatio-temporal periodic pulling. Many examples of
temporal periodic pulling (a1 and a2, and points on the curve) fit nicely on a predicted curve of
beat frequency versus driving frequency. Koepke et al. (1996) estimate that the spatio-temporal
case (b) has a similar driving strength to the temporal cases, but does so from a greater frequency
separation. Therefore, it has a much larger effective driving amplitude M based on Eq. (2.8).
Figure from Koepke et al. (1996), using data from a neon glow discharge.
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Figure 2.9: Dynamics modulation. The instantaneous frequency clearly and periodically hops up
to the 1.75 kHz mode and back down to the 1.5 kHz mode. Figure from Weltmann et al. (2000),
using data from a neon glow discharge.
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Figure 2.10: Dynamics phase diagram for a multimode oscillator. The 4 represents a case of
temporal periodic pulling. The H represents spatiotemporal periodic pulling with no dynamics
modulation. The � represents entrainment of the higher mode, with no dynamics modulation. The
• and � cases represent two cases of dynamics modulation when combined with their counterparts,
◦ and the �. See text for a complete explanation. From Weltmann et al. (2000).
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Figure 3.1: The experimental arrangement. The cathode of the discharge tube is on the left, and
the anode is on the right. A 10 Ω resistor (not pictured) was placed between the anode and ground,
and the voltage across this resistor was used to measure the undriven modes for Figures 4.1 and
4.3. More description of the experimental arrangement can be found in the text.
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Figure 3.2: Iodine cell calibration. Output of iodine cell (◦) with fit (dashed line) to nearby lines
from iodine atlas, which establishes the wavelength range. The outer triangles on the axis represent
the approximate wavelength extremes at which the laser just begins to affect the discharge. Between
the inner pair of triangles, the laser can entrain any driving frequency in the discharge. The two
five-pointed stars have been placed at representative wavelengths where dynamics modulation has
been observed.
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Figure 3.3: Optics (a) and electronics (b) of the photodiode circuit. Light would enter from left to
right, and pass through two 50 mm focal length lenses. Between the lenses, there is a 640.1 nm (4
nm bandwidth) filter. More details about the design appear in the text.
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Figure 3.4: Identifying the edge of an Arnol’d tongue from the power spectra. The y-axis shows the
logarithm of the magnitude of the FFT. Mode frequency is around 1440 Hz. The driving frequency
is shown on the left side of each of the power spectra, and it is driving the mode from below. Peaks
are visible at the driving frequency in each panel. Periodic pulling increases going down the figure
until, finally, in the bottom panel, the oscillation is entrained to the driving frequency.
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Figure 3.5: Spectrum of temporal periodic pulling. The discharge current was set to 7.87 mA. The
driving frequency (here at 1522 Hz) is above the undriven oscillation frequency (1466 Hz).
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Figure 3.6: Instantaneous frequency series for temporal periodic pulling. The instantaneous fre-
quency (bottom) and the corresponding time series is shown (top) is shown. The instantaneous
frequency has a clear beat shown by arcs in a concave-downward orientation. While the oscillations
occur so fast that they darken the entire region, it is clear that their overall amplitude is modulated
along with the frequency. This figure displays the same data as Figure 3.5, so the driving frequency
is aobve the dominant mode frequency.

124



1000 1500 2000
Frequency (Hz)

P
o

w
er

 (
A

rb
.)

0 0.05 0.1 0.15 0.2
800

1000

1200

1400

1600

1800

2000

Time (s)

F
re

q
. 

(H
z)

1000 1500 2000
Frequency (Hz)

P
o

w
er

 (
A

rb
.)

0 0.05 0.1 0.15 0.2
800

1000

1200

1400

1600

1800

2000

Time (s)

F
re

q
. 

(H
z)

Figure 3.7: Temporal periodic pulling from each side. The case of Figures 3.5 and 3.6 (bottom),
which had driving frequency (1522 Hz) above the mode frequency (1466 Hz), is shown alongside
another case (top), with the driving frequency (1430 Hz) below the mode frequency (1470 Hz).
Here the instantaneous frequency beat period arc appears concave up. Also clear from this figure
is that the sidebands appear on the opposite side of the oscillation from the driving frequency. Ω,
determined from sideband separation, is 35.8 Hz (top) and 41.6 Hz (bottom).
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Figure 3.8: Signature of spatiotemporal periodic pulling. In the top half of the figure, the power
spectrum is shown. The instantaneous frequency is shown on the bottom. The periodic pulling,
evident by the range of the frequency oscillation, is much stronger than it was in the case of Figures
3.5 to 3.7.
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Figure 3.9: Close up of spatiotemporal time series and instantaneous frequency series.
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Figure 3.10: Signature of dynamics modulation. The distinct “hairy” spectrum (top) and the
visible mode changes in the instantaneous frequency series (bottom). The undriven frequency is
1450 Hz, and the driving frequency was set to 1704 Hz.
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Figure 3.11: Instantaneous frequency of undriven mode transitions. [From Weltmann et al. (2000)].
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Figure 4.1: Ionization wave modes as a function of discharge current. Vertical lines indicate hys-
teresis. The right-hand (left-hand) line of each pair represents the discharge current for which the
mode changes as the current is increasing (decreasing). The triangles indicate mode frequencies
measured between increasing (N) or decreasing (H) the current.
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Figure 4.2: An example of the wave spectrum with no driving force. The y-axis shows the logarithm
of the power spectrum.

131



6 6.5 7 7.5 8 8.5 9
1200

1210

1220

1230

1240

1250

f6

Discharge Current (mA)

F
re

q
u
en

ci
es

 (
H

z)

7 8 9 10 11 12
1430

1440

1450

1460

1470

1480

f7

Discharge Current (mA)

F
re

q
u
en

ci
es

 (
H

z)

8 10 12 14 16
1690

1700

1710

1720

1730

1740

1750

f8

Discharge Current (mA)

F
re

q
u
en

ci
es

 (
H

z)

10 12 14 16 18 20
1970

1980

1990

2000

2010

2020

2030

f9

Discharge Current (mA)

F
re

q
u
en

ci
es

 (
H

z)

Figure 4.3: Close-up views of four of the wave modes shown in Figure 4.1. Mode frequencies are
not constant as discharge current changes.
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Figure 4.4: Arnold tongue for ID = 9.10 mA. The long feature in the center is the f7 mode. f6 and
f8 appear to the left and right, respectively. Since they are not natural modes at this discharge
current, f6 and f8 are shorter in the y-axis direction. With the laser off, the natural frequency is
∼1450 Hz.
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Figure 4.5: Arnold tongue for ID = 11.37 mA. The long feature in the center is the f8 mode. f7
and f9 appear to the left and right, respectively. With the laser off, the natural frequency is ∼1721
Hz.
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Figure 4.6: Combined view of data from Figures 4.4 and 4.5 showing how the two data sets overlap
one another. The currents were 9.10 mA (•) and 11.37 mA (�).
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Figure 4.7: Arnol’d tongue boundaries from ID = 8.23 mA and ID = 10.45 mA, near the mode
transition boundaries on either side of the f7 mode. These two boundary maps result from adjusting
the discharge current downward (N) or upward (•) from that shown in Figure 4.4. The downward
points of the Arnol’d tongue occur at 1212 Hz, at 1462 Hz (lower current) and at 1447 Hz (higher
current), and 1726 Hz. These values are consistent with Figure 4.3.
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Figure 4.8: The occurrence of dynamics modulation (N) relative to the Arnol’d tongue of the
f7 mode. The cluster of points on the right (left) side result in upward (downward) dynamics
modulation. On the right, where two triangles appear side-by-side at the same y-axis location,
dynamics modulation occurs throughout the interval. Note that all cases of dynamics modulation
ended in entrainment, so the small offset between the tip of the f8 mode and the series of triangles
is not significant.
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Figure 4.9: The occurrence of dynamics modulation (N) relative to the Arnol’d tongue of the
f8 mode. The cluster of points on the right (left) side result in upward (downward) dynamics
modulation. On the right, where two triangles appear side-by-side at the same y-axis location,
dynamics modulation occurs throughout the interval.

138



−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5

−0.2

0

0.2

a

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5

−0.2

0

0.2

b

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5

−0.2

0

0.2

c

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5

−0.2

0

0.2

d

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5

−0.2

0

0.2

e

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5

−0.2

0

0.2

f

Time (s)

Figure 4.10: A sequence of time series for upward dynamics modulation as a function of driving
frequency. The y-axis of each plot shows the signal amplitude from the photodiode. Beginning at
the top, the driving frequency (fi) is 1681 (a), 1688 (b), 1696 (c), 1704 (d), 1710 (e) and 1713 (f)
Hz. The discharge current was set to 9.10 mA. Entrainment occurred at 1712 Hz.
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Figure 4.11: A sequence of instantaneous frequency series for upward dynamics modulation as a
function of driving frequency. The y-axis of each plot shows the instantaneous frequency in Hz for
the time series shown in Figure 4.10. Beginning at the top, the driving frequency (fi) is 1681 (a),
1688 (b), 1696 (c), 1704 (d), 1710 (e) and 1713 (f) Hz. The modulation is taking place between the
f7 and f8 modes. The discharge current was set to 9.10 mA. Entrainment occurred at 1712 Hz.
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Figure 4.12: A sequence of power spectra for upward dynamics modulation as a function of driving
frequency. The power spectra corresponding to the time series shown in Figure 4.10. Beginning at
the top, the driving frequency (fi) is 1681 (a), 1688 (b), 1696 (c), 1704 (d), 1710 (e) and 1713 (f)
Hz. The discharge current was set to 9.10 mA. Entrainment occurred at 1712 Hz.
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Figure 4.13: A wider view, including low frequencies, of the two spectra shown in Figure 3.7. There
is a dominant low frequency peak that corresponds to the spacing between the sidebands on the
main feature. This feature can be used to identify the modified beat frequency Ω, which is then
used to find the entrainment parameter α for temporal periodic pulling when the method described
in Chapter III is obscured by the activity of dynamics modulation.
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Figure 4.14: An example that shows how to calculate the Ω frequency for the two states of dynamics
modulation. The top panel shows an instantaneous frequency series, with horizontal lines drawn
at 1350 and 1700 Hz (= fi). The beat frequency was calculated using the instantaneous frequency
routine on this series. Instead of examining zero crossings, crossings of the two lines were used.
The beat frequency modulated between two values, as can be seen in the lower panel. The dashed
lines represent the median values of the lower (•, 224.3 Hz) and higher (�, 273.1 Hz) measured
beats. The discharge current was set to 9.10 mA. Entrainment occurred at 1713 Hz.
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Figure 4.15: Reproducible values for ΩST and ΩT obtained from dynamics modulation data sets.
These come from the sequence of time series highlighted in Figures 4.10 through 4.12, as well as a
second series taken on a different day, depicting upward modulation between f7 and f8. In the top
(bottom) panel, the spatiotemporal (temporal) beat frequencies are calculated for two data sets on
two different days, as a function of entrainment frequency minus driving frequency. The dotted line
shows the conventional beat frequency (Ω0) and the dashed line shows the reference beat frequency
(Ω′).
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Figure 4.16: The results of α and M calculations from the sequence of time series highlighted in
Figures 4.10 through 4.12, as well as a second series taken on a different day, depicting upward
modulation between f7 and f8. On the left is the spatiotemporal case in which the entrained
upper mode drives the lower mode. On the right, the temporal case in which the driver drives the
upper mode. The x-axis displays entrainment frequency minus driving frequency. The solid lines
to the right (and near the top of the temporal α subplot) indicate the entrainment boundary for
the f8 mode. The dotted line in the top-left panel indicates the entrainment boundary for the f7
mode, which is never approached. Note that αT approaches one just as the upper mode becomes
entrained. The discharge current was set to 9.10 mA.
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Figure 4.17: The results of α and M calculations from another sequence of time series taken on a
different day and at a different discharge current. In this case the data depicts upward modulation
between f8 and f9. Again, on the left is the spatiotemporal case in which the entrained upper mode
drives the lower mode. On the right, the temporal case in which the driver drives the upper mode.
The solid lines to the right (and near the top of the temporal α subplot) indicate the entrainment
boundary for the f9 mode. The dotted line in the top-left panel indicates the entrainment boundary
for the f8 mode, which is never approached. Again, αT approaches one just as the upper mode
becomes entrained, though not quite as convincingly. The discharge current was set to 11.37 mA.
Entrainment occurred at 2013 Hz.
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Figure 4.18: The ratio of MST to MT for the two data sets of Figure 4.16. The ratio steadily
increases as the entrainment boundary for the f8 mode is approached. The discharge current was
set to 9.10 mA. Entrainment occurred at 1712 (•) and 1713 (�) Hz on the two days, with the
difference being due to slight variation in laser power and/or position.
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Figure 4.19: The ratio of MST to MT for the data of Figure 4.17. Again, the ratio steadily increases
as entrainment boundary for the f9 mode is approached. The discharge current was set to 11.37
mA. Entrainment occurred at 2013 Hz.
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Figure 4.20: Time series close-up of lower mode during periodic dynamics modulation. Along with
the upper, time series trace, the square-wave driving frequency is shown scaled and offset. This
segment of the modulation begins with a discontinuity in the time series at t =0.2270 s, and ends
at t = 0.2507 s. During the time spent in the lower mode, the amplitude beats with a period of
0.00457 s. The driving frequency, fi, was set to 1690 Hz.
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Figure 4.21: Time series close-up of higher mode during periodic dynamics modulation. This
segment of the modulation begins when the time series and driver quickly change from out-of-
phase to in-phase at t = 0.0124 s, and ends with the opposite change at t = 0.0329 s. During
the time spent in the higher mode, the amplitude beats with a period of 0.00430 s. The driving
frequency, fi, was set to 1690 Hz.

150



0.285 0.29 0.295 0.3 0.305 0.31 0.315

−0.2

−0.1

0

0.1

0.2

A
m

p
li

tu
d

e 
(a

rb
.)

0.285 0.29 0.295 0.3 0.305 0.31 0.315

1000

1200

1400

1600

1800

2000

Time (s)

F
re

q
u

en
cy

 (
H

z)

.2842 
.3071 

Figure 4.22: Time series close-up of lower mode during periodic dynamics modulation. The begin-
ning of the lower frequency part of the cycle begins when the phase of the luminosity signal changes
quickly at t = 0.2842 s, and ends at t = 0.3071 s. The signal almost snaps out of its lower mode at
t = 0.3031 s, but appears to remain for one more beat. During the time spent in the lower mode,
the amplitude beats with a period of 0.00483 s. The driving frequency, fi, was set to 1700 Hz.
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Figure 4.23: Time series close-up of higher mode during periodic dynamics modulation. The
beginning of the higher frequency part of the cycle begins when the phase of the luminosity signal
changes quickly at t = 0.0108 s, and ends at t = 0.0400 s. During the time spent in the higher
mode, the amplitude does not beat in as obvious a manner as the example shown in Figure 4.21 for
a lower driving frequency, but the instantaneous frequency shows seven beat periods. The driving
frequency, fi, was set to 1700 Hz.
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Figure 4.24: A representative example of downward dynamics modulation. The time series (top),
instantaneous frequency (center) and power spectrum (bottom) of downward dynamics modulation
are shown here. The driving frequency (fi) was 1200 Hz. The modulation is taking place between
the f7 and f6 modes. The discharge current was set to 9.10 mA.
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Figure 4.25: A sequence of instantaneous frequency series for downward dynamics modulation as
a function of driving frequency. The y-axis of each plot shows the instantaneous frequency in Hz.
Beginning at the top, the driving frequency (fi) is 1385 (a), 1395 (b), 1403 (c), 1405 (d), 1406 (e)
and 1409 (f) Hz. The modulation is taking place between the f7 and f6 modes. Panels (a) through
(e) represent aperiodic downward dynamics modulation, and panel (f) represents entrainment of
the f6 mode. The discharge current was set to 9.10 mA. Entrainment occurred at 1409 Hz.
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Figure 4.26: A sequence of power spectra for downward dynamics modulation as a function of
driving frequency. The y-axis of each plot shows the instantaneous frequency in Hz. Beginning at
the top, the driving frequency (fi) is 1385 (a), 1395 (b), 1403 (c), 1405 (d), 1406 (e) and 1409 (f)
Hz. The modulation is taking place between the f7 and f6 modes. Panels (a) through (e) represent
aperiodic downward dynamics modulation, and panel (f) represents entrainment of the f6 mode.
The discharge current was set to 9.10 mA. Entrainment occurred at 1409 Hz.
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Figure 4.27: A sequence of instantaneous frequency series for downward dynamics modulation as
a function of driving frequency. The y-axis of each plot shows the instantaneous frequency in
Hz. Beginning at the top, the driving frequency (fi) is 1420 (a), 1423 (b), 1426 (c), 1429 (d),
1432 (e) and 1435 (f) Hz. The modulation is taking place between the f7 and f6 modes. Panels
(a) through (c) represent downward dynamics modulation. Panels (d) and (e) represent temporal
periodic pulling of the f6 mode only and panel (f) represents entrainment. The discharge current
was set to 9.10 mA. Entrainment occurred at 1435 Hz.
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Figure 4.28: A sequence of power spectra for downward dynamics modulation as a function of
driving frequency. The y-axis of each plot shows the instantaneous frequency in Hz. Beginning
at the top, the driving frequency (fi) is 1420 (a), 1423 (b), 1426 (c), 1429 (d), 1432 (e) and 1435
(f) Hz. The modulation is taking place between the f7 and f6 modes. Panels (a) through (c)
represent downward dynamics modulation. Panels (d) and (e) represent temporal periodic pulling
of the f6 mode only and panel (f) represents entrainment. The discharge current was set to 9.10
mA. Entrainment occurred at 1435 Hz.
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Figure 5.1: A good example of temporal periodic pulling in the model. Here, ε1 = 0.1, β1 = 1, and
M = 0.03. The coupling parameters were set at γ1 = 0.025 and γ2 = 0.22. ω1 = 2π × 1450 and
ω2 = 2π × 1740, the values from the experimental data. For this one case, ε2 = β2 = M2 = 0, to
keep the second mode separate. fi was 1500 (a), 1486 (b), 1472 (c), 1458 (d) 1444 (e), and 1430
(f) Hz. Panel (f) represents entrainment rather than periodic pulling. The qualitative behavior of
the model (Figure 5.1) is very similar to that of the experiment seen in Figure 3.4.
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Figure 5.2: Simulated dynamics modulation. Here, ε = 0.1 and β = 1. The coupling parameters
were set at γ1 = 0.025 and γ2 = 0.22 and the mode frequencies were set at ω1 = 2π × 1450 and
ω2 = 2π× 1740. The driving frequency, fi, was 1705 Hz. The panels, in order from top to bottom,
show the time series, the instantaneous frequency, the value of M used in the simulation in response
to the detected mode, and the power spectrum.
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Figure 5.3: Simulated spatiotemporal periodic pulling. fi was set to 1675 Hz. Other inputs were
the same as Figure 5.2. The result is an excellent example of spatiotemporal periodic pulling
from above. This is shown by the concave-downward instantaneous frequency plot (bottom) which
corresponds to the time series presented above it.
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Figure 5.4: Power spectra as a function of M . M was set to 0.0028 (a), 0.0091 (b), 0.0295 (c),
0.0955 (d), 0.3090 (e), and 1.000 (f). The remaining parameters were ε = 0.1, β = 1, and coupling
parameters γ1 = 0.025 and γ2 = 0.22. The mode frequencies were set at ω1 = 2π × 1450 Hz and
ω2 = 2π × 1740 Hz. The driving frequency was set to fi =1700 Hz.
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Figure 5.5: Instantaneous frequency trend as a function of M . The solid line traces the median
instantaneous frequency value as a function of normalized driving amplitude M . Dotted lines above
and below represent extreme values. The mode frequencies were set at ω1 = 2π × 1450 Hz and
ω2 = 2π × 1740 Hz. The driving frequency was set to fi =1700 Hz. In the limit of low driving
amplitudes, the median instantaneous frequency stays near 1450 Hz. In the limit of high driving
amplitudes, the median instantaneous frequency equals the driving frequency. The dashed lines
represent MH (left) and ML = 2MH (right) used in the model. Parameters were ε = 0.1, β = 1,
and coupling parameters γ1 = 0.025 and γ2 = 0.22.
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Figure 5.6: Power spectra as a function of ε. ε was set to 0.0100 (a), 0.0251 (b), 0.0631 (c), 0.1585
(d), 0.3981 (e) and 1.000 (f). Parameters wereM = 0.03, β = 1, and coupling parameters γ1 = 0.025
and γ2 = 0.22. The mode frequencies were set at ω1 = 2π × 1450 Hz and ω2 = 2π × 1740 Hz. The
driving frequency was set to fi =1700 Hz.
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Figure 5.7: Power spectra as a function of β. β was set to 0.0100 (a), 0.0251 (b), 0.0631 (c), 0.1585
(d), 0.3981 (e) and 1.000 (f). Parameters were M = 0.03, ε = 0.1, and coupling parameters γ1 =
0.025 and γ2 = 0.22. The mode frequencies were set at ω1 = 2π× 1450 Hz and ω2 = 2π× 1740 Hz.
The driving frequency was set to fi =1700 Hz.
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Figure 5.8: Dependence on coupling γ, with γ1 = γ2 = γ. The values used for γ in this case are
0.001 (a), 0.0608 (b), 0.1206 (c), 0.1804 (d), 0.2402 (e), and 0.3000 (f). Parameters were M = 0.03,
ε = 0.1, and β = 1. The mode frequencies were set at ω1 = 2π × 1450 Hz and ω2 = 2π × 1740 Hz.
The driving frequency was set to fi =1700 Hz.
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Figure 5.9: Dependence on coupling γ2, with γ1 = 0.025. γ2 was set to 0.0003 (a), 0.0602 (b),
0.1202 (c), 0.1801 (d), 0.2401 (e), and 0.3000 (f). This corresponds to γ2/γ1 ranging from 0.01
to 12.0. Parameters were M = 0.03, ε = 0.1, and β = 1. The mode frequencies were set at
ω1 = 2π × 1450 Hz and ω2 = 2π × 1740 Hz. The driving frequency was set to fi =1700 Hz
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Figure 5.10: Simulated dynamics modulation as a function of fi, time series. The driving frequency,
fi, was 1685 (a), 1690 (b), 1700 (c), 1705 (d), 1715 (e), and 1725 (f). Other parameters were M
toggling between 0.02 (when high mode detected) and 0.04 (when low mode detected), ε = 0.1, and
β = 1. The coupling parameters were γ1 = 0.025 and γ2 = 0.22. The mode frequencies were set at
ω1 = 2π × 1450 Hz and ω2 = 2π × 1740 Hz.
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Figure 5.11: Simulated dynamics modulation as a function of fi, instantaneous frequency. The
driving frequency, fi, was 1685 (a), 1690 (b), 1700 (c), 1705 (d), 1715 (e), and 1725 (f). Other
parameters were M toggling between 0.02 (when high mode detected) and 0.04 (when low mode
detected), ε = 0.1, and β = 1. The coupling parameters were γ1 = 0.025 and γ2 = 0.22. The mode
frequencies were set at ω1 = 2π × 1450 Hz and ω2 = 2π × 1740 Hz.
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Figure 5.12: Simulated dynamics modulation as a function of fi, power spectra. The driving
frequency, fi, was 1685 (a), 1690 (b), 1700 (c), 1705 (d), 1715 (e), and 1725 (f). Other parameters
were M toggling between 0.02 (when high mode detected) and 0.04 (when low mode detected),
ε = 0.1, and β = 1. The coupling parameters were γ1 = 0.025 and γ2 = 0.22. The mode frequencies
were set at ω1 = 2π × 1450 Hz and ω2 = 2π × 1740 Hz.
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Figure 5.13: Symmetric Downward Modulation. This behavior was produced with the same ε (0.1),
β (1), and coupling parameters (γ1 = 0.025 and γ2 = 0.22) as the upward case. M was toggled
between 0.28 (when the low mode was detected) and 0.56 (when the high mode was detected). The
mode frequencies were set at ω1 = 2π × 1703 Hz and ω2 = 2π × 1455 Hz. The driving frequency
was set at fi =1460 Hz. A similar symmetric case of downward modulation was not seen in the
experiment. The panels, in order from top to bottom, show the time series, the instantaneous
frequency, the value of M used in the simulation in response to the detected mode, and the power
spectrum.
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Figure 6.1: Dynamics modulation occurs at the temporal pulling beat frequency. This figure
compares data from the temporal periodic pulling beat frequency (open), obtained from the low
frequency peak on the power spectrum in the manner of Figure 4.14 with the periodic dynamics
modulation frequency (filled), measured from the time series. This figure shows that the two fre-
quencies are identical. Circles and squares represent data sets one and two respectively, modulating
from f7 to f8. Triangles represent data set 3, modulating from f8 to f9.
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Figure 6.2: Asymmetry in reference beat frequency between two separated modes. The dotted
lines represent the conventional beat frequency, Ω0 = |ωi − ω0|. The reference beat frequency, Ω′

(calculated from Eq. (2.20)) is shown with the solid lines. For two modes separated significantly,
this figure predicts that the beat frequency will be higher when the lower frequency pulls the higher
frequency than when the opposite is true.
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Figure 6.3: Upper beat frequency for low mode pulling high mode. This figure is the complementary
figure to Figure 4.15 (top) for the high mode pulling the low mode. Measured beat frequencies are
higher in this case. The dotted line is the conventional beat frequency Ω0 and dashed line is the
reference beat frequency Ω′. In this case, since Ω′ is calculated based on the two mode frequencies
only, it is not dependent on driving frequency.
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Figure 6.4: α and M for the low mode pulling down on the high mode. This figure is the com-
plementary figure to Figure 4.16 (left half) for the high mode pulling the low mode. Measured α
and M values are significantly higher in this case, reflecting the system’s strong preference for the
f7 mode. The solid lines to the right indicate the entrainment boundary for the f8 mode. The
dotted line in the top panel indicates the entrainment boundary for the f7 mode, which is never
approached.

174



0.1 0.15 0.2 0.25 0.3 0.35

1000

1200

1400

1600

1800

2000

Time (s)

In
st

. 
F

re
q

. 
(H

z)

0.1 0.15 0.2 0.25 0.3 0.35
100

200

300

400

500

Time (s)

B
ea

t 
F

re
q

. 
(H

z)

Figure 6.5: Beat separation from the model. This figure shows that the model successfully predicts
a shift in beat frequencies between the two parts of the dynamics modulation cycle. The driving
frequency in this case was set to 1700 Hz. The dashed lines in the bottom panel occur at the
median frequencies of the lower (•, 258.6 Hz) and higher (�, 278.4 Hz) beat frequencies. Compare
this figure to the experimental case shown in Figure 4.14.
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Figure 6.6: Multimode interaction may assist upward dynamics modulation but not the symmetric
downward case. The bottom panel shows an observed downward dynamics modulation spectrum.
For reference, light gray bars are placed at the observed mode frequencies for this discharge tube,
and extended into the top panel. Medium gray rectangles are placed at driving frequencies used for
dynamics modulation attempts as labeled. The black rectangles represent the first two expected
sidebands opposite the driven mode. In the two successful cases, the first sideband overlaps an
existing mode. For the symmetric downward modulation case, for which no dynamics modulation
was observed, there is no overlap (circle).
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