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Abstract 

Experimental and modeling investigation of the OH-initiated 

oxidation of semi-solid and aqueous saccharide aerosols 

Hanyu Fan 

My research focuses on investigating the impact of moisture-induced and oligomer-induced 

viscosity changes on OH-initiated oxidation of semi-solid aerosols, and the role of gas-liquid 

interfaces in regulating aqueous aerosol chemistry. Saccharides, which are a major constituent of 

aqueous atmospheric aerosols, are chosen as model molecules to form highly oxygenated organic 

aerosols. The experiments are performed using an atmospheric pressure flow-tube reactor with 

both online VUV-AMS (Vacuum-Ultraviolet Aerosol Mass Spectrometer) and offline GC-MS 

analysis techniques. The decay rates of saccharide are determined by measuring the loss signal of 

saccharide in the particle phase as a function of OH exposure (time-integrated total concentration 

of OH radical). A reaction-diffusion model is developed to interpret the observed kinetics behavior. 

These results highlight that the chemical transformation of semi-solid aerosols is kinetically 

limited by bulk diffusion and that of aqueous aerosol is dependent on surface-bulk partitioning.  

The kinetics of the OH-initiated oxidation of semi-solid monosaccharide particles are 

obtained over a range of relative humidity (RH) in order to investigate the impact of moisture-

induced viscosity changes on the mechanisms of oxidative aging of semi-solid aerosols. The 

reactive uptake coefficient of monosaccharide ( 𝛾𝑚𝑜𝑛𝑜)  increases by a factor of 2.4 as the 

surrounding RH is increased from 10% to 30%. A reaction-diffusion kinetic model with a constant 

diffusion coefficient is developed to investigate the impact of bulk molecule diffusion on kinetics 

behavior of semi-solid aerosols. This study suggests that the diffusion of the bulk reactant from 

the particle inner core to its surface is the rate-limiting step in oxidation of the semi-solid aerosols.  

In order to investigate the oligomer-induced viscosity changes on reactive properties of 

semi-solid aerosols, reactive uptake coefficients are measured over a range of 

monosaccharide:disaccharide molar ratio ranging between 1:1 and 4:1 at 30% RH. The 𝛾𝑚𝑜𝑛𝑜 is 

found to decrease by a factor of 5 as the molar ratio changing from 4:1 to 1:1. The observed decay 

behaviors can be reproduced by using a simple compositional Vignes relationship to predict the 

composition-dependent diffusion coefficients of the saccharides. Simulation results suggest that a 

gradient diffusivity arises due to concentration gradients across the particle through heterogeneous 
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oxidation of semi-solid particles. These findings illustrate the impact of bulk composition on 

reactant bulk diffusivity, which determines the rate-limiting step during the chemical reaction of 

semi-solid multi-component particles.  

For equimolar monosaccharide-disaccharide aqueous aerosols, the 𝛾𝑚𝑜𝑛𝑜 is 5.02±1.12 and 

the 𝛾𝑑𝑖 is 0.39±0.10. Molecular dynamics simulations of the mixed aqueous solutions reveal the 

formation of a ~10 Å disaccharide exclusion layer below the water surface. The monosaccharide 

concentration is predicted to be low at the surface and to increase rapidly within the first 10 Å of 

the air-water interface. The observed decays are consistent with a poor spatial overlap of the OH 

radical at the interface with the disaccharide in the particle bulk. These findings highlight the 

critical importance of partitioning of bulk reactant at the gas-liquid interface in determining the 

reaction rate of reactive species in aqueous aerosols.  
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Chapter 1. Introduction 

1.1 Atmospheric organic aerosols 

Atmospheric aerosols are defined as suspended fine solid or liquid particles in air, with a wide 

range of particle size (1nm to 10 µm in diameter). 1-4 The primary organic aerosols (POA) are 

directly emitted into the atmosphere from multiple sources: (1) natural source includes biomass 

burning, sea salt, volcanic eruptions, mineral dust; (2) anthropogenic source includes incomplete 

fossil fuel combustion, industrial and vehicle pollution. The secondary organic aerosols (SOAs) 

are the volatile organic compounds in the gas phase react with gas-phase oxidants such as OH, O3, 

NO3 radicals through homogeneous nucleation to form new particles, or condense to the existing 

particles reacting with gas-phase oxidants to form more highly oxygenated organic aerosols. 5, 6   

The presence of atmospheric aerosols could impact human being life. For example, 

atmospheric aerosols have ability to reduce visibility and impact climate directly by scattering and 

absorbing solar radiation. Atmospheric aerosols could also indirectly influence global climate by 

serving as cloud condensation nuclei (CCN) or ice nuclei (IN) to form cloud more readily. 7 

Atmospheric aerosols have been shown to cause adverse health effects, the smallest particles can 

be inhaled deeply into the respiratory system and cause lung disease. 2  

1.1.1 Chemical components of atmospheric aerosol particles 

The chemical components of atmospheric aerosol particles are generally divided into inorganic 

and organic subsets. Almost half of the atmospheric aerosol particles are organics. The inorganic 

salts include sulfate (32%), ammonium (13%), nitrate (11%), and chloride (1%). Carbonaceous 

matter includes 11% of hydrocarbon organic matter (i.e. aliphatics, polyaromatic hydrocarbons, 

unsaturated hydrocarbons) which are water insoluble, and 32% of oxygenated organic matter (i.e. 

alcohols, esters, carbonyls) which are water soluble. 8-10 A variety of configurations are shown 

schematically in Figure 1.1. 
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Figure 1. 1 Configurations of the average chemical composition of atmospheric aerosol particles. Specific molecule 

examples of hydrocarbon organic aerosol (HOA) particles and oxygenated organic aerosol (OOA) particles are 

identified in aerosol particles sampled in Berkeley, CA. 
8-10

  

1.1.2 Physical phase state of atmospheric aerosol particles 

Atmospheric aerosol particles can be found in liquid phase state, semi-solid phase state, solid phase 

state or a mixture of both solid and liquid phase state. The particle phase is characterized according 

to its viscosity, ƞ. Liquid state is like water (10-3 Pa s), olive oil (~10-1 Pa s) and honey (~101 Pa 

s). Semisolid state is like peanut butter (~103 Pa s) and tar pitch (108 Pa s). Solid state is like glass 

marbles (>1012 Pa s). 11 For viscous materials, the particle viscosity ƞ and bulk molecule diffusion 

D can be related through the Stokes-Einstein equation:  

 
𝐷 =

𝑘𝐵𝑇

6𝜋𝑟𝜂
 

(1) 

where 𝑘𝐵 is the Boltzmann constant (1.38 × 10-23 J K-1), T is the temperature (K), 𝑟 is the radius 

of the diffusing molecule, and 𝜂 is the dynamic viscosity (Pa s). Figure 1.2 is a viscosity scale 

together with familiar substances having a corresponding viscosity at room temperature. 
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Figure 1. 2 Images of various substances as well as their approximate viscosity and diffusion coefficients at room 

temperature. The substances are classified into solid, semi-solid and liquid states based on their viscosity. The 

diffusion coefficients are calculated using Stokes-Einstein relationship equation. 
11

  All the substance images are from 

http://www.google.com.image.  

The S-E equation is able to predict the diffusion coefficient for large molecule species, 

such as sucrose (C12H22O11) in aqueous sucrose up to a viscosity of 0.1 Pa s. 12 But it has been 

shown to under-predict the diffusion coefficient for water molecules moving through viscous 

media matrix of large molecules. Such discrepancy is likely to be due to the propensity of water 

molecules to percolate through the network formed by the hydrogen-bonded molecules. 13, 14  

The viscosity of atmospheric particles is dependent on their chemical composition and 

ambient conditions. 15, 16 The controlling approach to gas-particle equilibrium are generally 

governed by three processes: gas-phase diffusion, interfacial transport and particle phase diffusion. 

For semi-solid atmospheric organic aerosols in the size range of 50 to 500 nm, the time scale to 

establish equilibrium between the surrounding gas phase and the particle bulk is limited by the 

particle-phase diffusion. The equilibrium partitioning time scale 𝜏𝑒𝑞 in this case is: 

 
𝜏𝑒𝑞 =

𝑅𝑝
2

𝜋2𝐷𝑏
 

(2) 

where 𝑅𝑝 is the particle radius, 𝐷𝑏 is molecular diffusion coefficient of the condensing species in 

the particle. 17 

http://www.google.com.image/
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1.2 Heterogeneous chemistry of atmospheric organic aerosol particles 

1.2.1 General mechanism of heterogeneous oxidation of organic particles process 

Figure 1.3 displays the generalized illustration of the processes during the heterogeneous oxidation 

of organic aerosol particles. The heterogeneous chemistry of aerosol particles involves several 

separate processes: (1) gas-phase diffusion: a gas molecule diffuses from the gas phase to the 

surface of the particle; (2) mass accommodation: the gas molecule strikes a given particle surface 

via collision, stick to the surface or bounce back to the gas phase; (3) surface chemical reaction: 

the gas-phase species react with surface-bounded particle molecules; (4) dissolution and bulk 

diffusion: the gas-phase species can either desorb back to the gas phase or dissolve in the bulk 

phase which depends on their solubility, the dissolved gas phase species then diffuse into the bulk 

phase; (5) bulk chemical reaction: the gas-phase molecule species react with bulk-phase molecule 

species. 18, 19  

 

Figure 1. 3 Generalized illustration of the processes involved in the heterogeneous oxidation of an organic aerosol 

particle. 
18, 19

  

1.2.2 OH radicals uptake on a saturated hydrocarbon particle 

The radical-initiated oxidation reactions of saturated hydrocarbon organic aerosol particles have 

long been studied. 18, 20, 21 The generalized illustration of processes that govern the kinetics of 

heterogeneous oxidation of organic aerosols by OH radicals are as following. First, OH radicals 

must diffuse from the gas phase to the surface of the particle, where the OH radicals adsorb onto 
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the surface site of the particle component. At the surface of the particle, the OH radicals ether 

desorb back into the gas phase or react with surface-bound molecules by abstracting a Hydrogen 

atom from an organic function group RH, leading to the formation of water and alkyl free radical. 

The water molecules quickly evaporate from the particle phase to the gas phase. In the presence 

of O2, the alkyl radical quickly react with O2 to form a peroxy (RO2) radical. The peroxy (RO2) 

radicals’ self-reaction lead to the formation of a ketone and an alcohol which stay in the bulk, or 

two alkoxy (RO) radicals which could further chain propagation and form volatile oxygenated 

organics. A general reaction mechanism for the OH oxidation of saturated hydrocarbon molecules 

is shown in the Figure 1.4.  

 

Figure 1. 4 A general chemical reaction mechanism for the OH oxidation of saturated hydrocarbon molecules. 
18, 

20, 21
 . 

1.2.3 The reactive uptake coefficient (γ) of heterogeneous chemical reactions 

A heterogeneous reaction is initiated by diffusion of a gas-phase reactant to the surface of a 

particle, followed by a collision leading to a reaction at the interface. It depends on many factors 

including solubility of gas-phase oxidant, reactivity of reactive species, bulk diffusion in the 

condensed phase, surface activity (surface tension, pH, etc.). 19 There are generally two 

mechanisms describing the reactive uptake at interface of particle. They are the Eley-Rideal 

reaction mechanism (one-step reaction) and the Langmuir-Hinshelwood reaction mechanism (two-

step reaction). In the E-R, the gas-phase reactants do not adsorb onto the surface of the particle 
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before reacting with reactive species in the condensed phase. In the L-H, the gas-phase reactants 

need to adsorb onto the surface first, then followed by a reaction with a bulk molecule. 22 The 

diagrams of E-R and L-H are displayed in the Figure 1.5. 

 

Figure 1. 5 (1) Diagram of the Langmuir-Hinshelwood (L-H) reaction G (gas-phase reactants) + B (bulk molecule) 

→ P (products). The G need to adsorb on the surface (a) before reacting to form P (b), which may remain on the surface 

(c) or desorb (d). (2) Diagram of the Eley-Rideal (E-R) reaction, the G does not adsorb onto the surface prior to 

reaction (a, b). The P may remain on the surface (c) or desorb (d). 22 

The overall chemistry of heterogeneous reaction processes involves several elemental steps 

(summarized in the Figure 1.3). The relative influence of each step can be related to a net uptake 

coefficient (γ) as a resistance model: 

 1

𝛾
=
1

𝛤𝑔
+
1

𝛼
+

1

𝛤𝑟𝑥𝑛 + 𝛤𝑠𝑜𝑙
 

(3) 

Where 𝛤𝑔 is the gas-phase diffusion, α is the mass accommodation, 𝛤𝑟𝑥𝑛 accounts for the reaction 

term and 𝛤𝑠𝑜𝑙 accounts for the solubility (dissolution). 23 

The γ reflects a combination of all the elementary steps involved in the heterogeneous 

chemistry reaction. It is the ratio of gas-particle collisions that leads to chemical reactions occur. 

24, 25 It is determined in the following equation: 

 
γ = 

2𝑘𝑂𝑟𝑔𝑑𝑝𝜌0𝑁𝐴
3𝑐𝑀

 
(4) 
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where 𝑘𝑂𝑟𝑔 is the observed apparent decay rate constant of the particle species (the second order 

of heterogeneous reaction rate coefficient). 𝜌0, M, and 𝑁𝐴 are the density of particle, the molecular 

weight of particle species and the Avogadro’s number. 𝑑𝑝 is the mean surface-weighted particle 

diameter and c is the mean speed of gas-phase reactant. If the value of γ is larger than 1, it indicates 

that one gas-particle collision yields more than one particle-phase reactant molecule reacted loss, 

and there is a secondary chain reaction occurring in the particle phase. 24, 25  

1.3 Laboratory techniques for measuring kinetics of heterogeneous reactions 

The kinetics for heterogeneous reactions between gas-phase oxidant and the organic aerosol can 

be determined from the decay of gas-phase reactants or bulk-phase reactants. However, the gas-

phase reactants loss could be due to gas phase reactions, loss on reactor walls etc. It is challenging 

to quantitatively analyze every single loss process described above. Therefore, it is relatively more 

convenient to measure the kinetics of heterogeneous reactions using the decay loss of reactants in 

the condensed phase and the equation describing the loss of organic particle species is as following: 

24  

 𝑑[𝑜𝑟𝑔]

𝑑𝑡
= −𝑘𝑂𝑟𝑔[𝑋𝑔][𝑜𝑟𝑔] 

(5) 

where 𝑘𝑂𝑟𝑔 is the second order rate coefficient of heterogeneous reaction between the gas-phase 

oxidant and the organic aerosol. [𝑋𝑔] and [𝑜𝑟𝑔] are the concentration of gas-phase oxidant and 

bulk-phase reactant, respectively.  

There are generally two parts involved to measure the kinetics of heterogeneous reactions: 

(1) a flow reactor or a chamber that allows aerosol particles to be exposed to gas-phase reactants 

under a controlled condition; (2) then an analytical method applied to measure changes in particle-

phase composition or gas-phase reactant. 19 The following is a brief summary of both online and 

offline techniques used to measure rates of heterogeneous reactions. 

1.3.1 Offline kinetics measurement method 

So far there are only few studies of heterogeneous reaction kinetics measured by offline 

techniques. Offline kinetics measurement is typically achieved through chemical analysis of 

aerosol particles sample collected onto particle filters then extracted by sample extraction and 
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analyzed by gas chromatography-mass spectrometer (GC-MS) and high-performance liquid 

chromatography (HPLC). 26, 27 

 Mendez et al. 26 investigated the reactivity of chlorine radical with submicron palmitic acid 

(PA) in a flow tube using an offline kinetic method. The kinetic has been determined from the 

analysis of the loss of PA in the reacted particles measured by GC-MS as a function of the chlorine 

exposure. Kwamena et al. 27 measured the kinetics of surface-bound anthracene onto 

phenysiloxane and azelaic acid aerosols with gas-phase ozone using offline analysis of anthracene 

loss by HPLC with ultraviolet detector.  

 The disadvantages of offline kinetics measurement are: (1) possible positive and negative 

sampling artifacts due to volatile gas compound adsorbed onto the collection filter and release of 

particulate-phase organics from the sample during the filter sampling; 28 (2) gas phase reactants 

may react with aerosol particles sample trapped onto the filter; (3) depending on the detection 

technique, it may require long time of sample collection; (4) sample loss during the sample 

preservation and sample extraction process.  

1.3.2 Online kinetics measurement method 

Analytical techniques such as IR, Raman and X-ray spectroscopy have limits in their applicability 

to resolve different chemical species. For a general purpose of detection technique, mass 

spectrometry is the most common technique allowed for real-time analysis of the chemical 

composition of organic aerosol particles. Aerosol mass spectrometry (AMS) is a powerful analysis 

tool applied in online heterogeneous reaction kinetics measurement with high resolution and high 

sensitivity. Aerosol mass spectrometer technique first vaporize aerosol sample either by thermal 

vaporization with hot copper tip or laser ionization. And then the vaporized particle-phase species 

are ionized by either a softer ionization source (e.g., vacuum ultraviolet (VUV) photoionization, 

24, 29 electrospray ionization (ESI), 30 proton-transfer reaction (PTR), 31 Direct Analysis in Real 

Time (DART) ion source 32) or a hard ionization source (e.g., laser, 33 Electron impact (EI) ion 

source 29). The resulted ions with different mass-to-charge ratios are spatially separated through a 

time-of-flight tube or a quadrupole prior to detection.  
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1.4 Laboratory study on heterogeneous oxidation of semi-solid organic 

particles 

1.4.1 Evidence that bulk diffusion is the rate-determining step in the heterogeneous 

oxidation of semi-solid organic particles 

A flow tube study on the OH-initiated oxidation of squalane (C30H62) particles (well mixed 

particles) shows that decay behavior of particle species is in an exponential shape over the entire 

reaction. Figure 1.6 shows the decay of squalane as a function of OH exposure. The observed 

squalene decay behavior agrees well with an exponential fit. 24 Several other recent flow tube 

studies on small gas-phase oxidant species (OH, O3, NO3) reacting with semi-solid organic 

particles share a common kinetic behavior, which is an initial fast decay of particle-phase reactant 

followed by a slower decay. 31, 34-38. Figure 1.7 displays a typical example of observed kinetic 

behavior in the OH oxidation of semi-solid levoglucosan particles. There is an apparent offset 

between the exponential fit and experimental data. The relative abundance of levoglucosan 

remaining in the semi-solid particles does not decay to zero due to the unreacted levogluosan in 

the core of the particles (with a slow mass transfer rate). 38 The discrepancy of the observed kinetics 

behavior between the semi-solid particles and well mixed particles is associated with the particle 

viscosity. For semi-solid particles, the decay of the particle-phase reactant is severely slowed or 

quenched due to the slow bulk diffusion. For well-mixed particles, the bulk diffusion is fast enough 

to allow the bulk molecule reactant in the core of the particle to diffuse to the particle surface to 

react with OH radicals. Here the kinetics are governed by surface reaction rate rather than bulk 

diffusion rate. 
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Figure 1. 6 The decay of squalane (black open circles) as a function of OH exposure is obtained for mass fragments 

at m/z=238, 422, and 113.13 by averaging the ion signal at three different masses. The decay is fit to exponential 

equation (red solid line) in order to determine the rate constant for the reaction of squalane with OH (ksq), which is 

1.3210-12 cm3 s-1. 24 

 

Figure 1. 7 Relative signal of unreacted levglucosan left in the particle phase as a function of OH exposure obtained 

for selected ions C6H8O4
+ (black open circles). The red line is obtained by fitting the experimental data up to first e-

fold of the decay. The obtained klev is 3.0910-13 cm3 s-1. 38 
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No viscosity measurements are available in the above kinetics measurement. There is a 

significant number of studies on investigating the variations in the diffusion coefficients of organic 

species either in solutions or in aerosols. 38-42 The diffusion coefficients in these matrix media are 

known to vary exponentially over a range of water content or organic component. 42-44 These 

variations are attributed to the formation of a hydrogen bond matrix among the organic molecules 

that eventually leads to glass transition. Surface glassy crusts have been identified during rapid 

drying of sucrose aerosols. This phenomenon restricts the diffusion of water into and out of the 

particle, ultimately leading to an extremely slow equilibrium of the water content in the particles 

with the surrounding relative humidity. 38 Changes in the composition of a particle, in terms of 

either oxygen-to-carbon (O:C) ratio or molar mass, can also lead to significant variation in the 

glass temperature and therefore mass transfer processes. 45 Because of the sensitive dependence of 

the viscosity on chemical and physical structure, small changes in solid phase composition can 

change the reactant diffusion coefficients by order of magnitudes, leading to complex kinetic 

behaviors. While studies have explicitly simulated changes in diffusivity during wetting and drying 

of particles, relative few of them have attempted to simulate the impact of changes in diffusivity 

on oxidative aging. 20, 43, 44, 46-48 

1.4.2 The effect of particle components on heterogeneous oxidation of semi-solid particles 

To date studies about gas-phase oxidant species reacting with semi-solid multi-component organic 

particles are mainly focused on ozone oxidation of one reactive molecule species in the mixture 

particles. The reactive uptake coefficients of heterogeneous oxidation of semi-solid mixture 

particles are bulk composition dependent. Changes in particle viscosity or physical phase due to 

the particle composition are suggested to affect the semi-solid particle reactivity. 49-53 For example, 

the 𝛾𝑀𝐴  on sucrose/MA (maleic acid, C2H4O4) mass ratio 5:1 at 35% RH is two orders of 

magnitude smaller than that of sucrose/MA mass ratio 10:1 at a 40% RH due to a significant 

decrease in the viscosity by an addition of minor fraction of sucrose. 49 A study of the ozonolysis 

of highly viscous droplets of OL/SA (oleic-acid, C18H34O2/stearic-acid, C18H36O2) by transmission 

electron microscopy reported that the 𝛾𝑂𝐿 decreased by a factor of 8 when changing from OL/SA 

mass ratio 1:0 to 1:1. No further changes in 𝛾𝑂𝐿 are observed for higher SA content due to particle 

solidification. 50 Another study of ozonolysis of OL/n-docosane (C22H46) by CIMS (Chemical 

Ionization Mass Spectrometers) reported that the reaction-induced formation of a metastable solid 
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rotator phase of the n-docosane at the surface completely inhibits further reactions. 51 More 

recently, a study of the ozonolysis of OL using HR-ToF-AMS (High Resolution Time of Flight 

Aerosol Mass Spectrometry) found that the 𝛾𝑂3 is decreased by two orders of magnitude as the 

ozone concentration is increased from 25 ppb to 1100 ppb. The authors interpret this drastic change 

to the formation of high-molecular-weight oligomer products at the outer layer of the particle 

which induce a “hard skin” (a decrease in the viscosity of particle surface) close to the particle 

surface limiting the diffusion of OL and O3. 
52, 53  

There is only a limited number of studies on the OH-initiated oxidation of semi-solid multi-

component particles. 54, 55 Isaacman et al. 54 used GC-VUV-MS to measure the OH uptake by 

hydrocarbons in motor oil particles. Their results indicate that the reactive uptake coefficients of 

hydrocarbons are structure dependent: the values of 𝛾𝑂𝑟𝑔 for branching hydrocarbons are bigger 

than these of normal alkanes and those of nonaromatic ring species are the smallest ones. The 

𝛾𝑠𝑞𝑢𝑎𝑙𝑎𝑛𝑒 increases by a factor of ~2 for a 42 nm thickness of the secondary organic aerosol (SOA, 

α-pinene+O3) coating onto squalane particles compared to pure squalene particles using VUV-

AMS. The possible explanations are that the loss of squalene buried below SOA coating are due 

to both direct oxidation by OH radicals and indirect secondary oxidation by SOA-derived radicals 

in particle phase. 55 More research is needed to give a clear trend result for an improved 

understanding of chemical transformation of semi-solid multi-component organic particles in the 

atmosphere. 

1. 5 Laboratory study on heterogeneous oxidation of organic aqueous droplets 

1.5.1 A kinetic framework for heterogenous oxidation of aqueous droplets 

Aqueous aerosol droplets may dissolve inorganic salt ions and organic molecules. Some of the 

dissolved species are surface-active molecules with higher concentrations at the interface than in 

the bulk, which form a distinct thin water film at the air-water interface. Non-surface-active 

molecules predominantly be found in the bulk. 56 The pseudo-first odder reaction rate of 

heterogeneous oxidation of aqueous droplets depends on the surface water film thickness since it 

involves heterogeneous surface reaction and homogeneous bulk reaction. 57 The overall reaction 

rate is given by the following equation:  
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 𝑘1 = 𝑘𝑏𝑢𝑙𝑘 + (𝑘1,𝜎 𝛿)⁄  (6) 

Where 𝑘𝑏𝑢𝑙𝑘  and 𝑘1,𝜎  are respectively the homogenous bulk aqueous phase and heterogeneous 

surface reaction rate constants, and 𝛿 is surface water film thickness. 57 Experimental observation 

of the UV photooxidation of two PAHs (phenanthrene and naphthalene) shows that the oxidation 

rate of all three major products increases as the surface water film thickness decreases, which are 

due to the fact that the surface water film thickness decreases, the surface heterogeneous reaction 

rate contributes more to the overall reaction rate. 57, 58 The generalized kinetics framework for gas-

phase oxidants reacting with reactive organic species in an aqueous droplet is shown in Figure 1.8. 

 

Figure 1. 8 A schematic of two reaction channels (surface heterogeneous reaction and bulk homogeneous reaction) 

for gas-phase oxidants reacting with organic reactive reactants in the aqueous droplet. As and Ab are the reactive 

organic species at the surface of aqueous droplet and in the bulk of droplet. Oxs and Oxb are the gas-phase oxidants at 

the surface of aqueous droplet and in the bulk of droplet. P is the product. 57 

1.5.2 Thermodynamics of the air-water interface 

Pegran et al. 59 applied the thermodynamic criteria to describe a molecular species 𝑀𝑖 in aqueous 

droplet to migrate from the bulk solution (B) to the air-water interface (Σ) with the corresponding 

partitioning equilibrium constant Kp,i :  

 
𝐾𝑝,𝑖 =

[𝑀𝑖]Σ
[𝑀𝑖]𝐵

 
(7) 

and the corresponding partitioning Gibbs free energy is:  

 ∆𝑝𝐺° = −𝑅𝑇𝑙𝑛𝐾𝑝,𝑖 (8) 
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where [Mi]B and [Mi]Σ  are the bulk and interface concentrations, R the ideal gas constant, and T 

the temperature. Surface-active molecule has a negative value of ΔpG
o and the non-surface-active 

molecules have a positive partitioning Gibbs free energy. For example, sucrose is a non-surface-

active organic molecule with a ΔpG
o close to 3 kcal mol-1, which indicates that its concentration in 

bulk is 2 orders of magnitude larger than its concentration at the interface. 59 Molecules with 

intermediate values of ΔpG
o
 could be both in the bulk and at the interface depending on its 

partitioning ratio.  

1.5.3 Chemical Reactions at the air-water interface 

The ubiquitous air-water interface plays a significant role in determining the reaction rate of 

surface-active molecule species. Recent Huang et al. 57  used field-induced droplet ionization mass 

spectrometry (FIDI-MS) to investigate the OH oxidation of pinonic acid at the air-water interface. 

Their result suggest that the influence of interface chemistry significantly depends on the relative 

presence of reactants near the surface. X-ray photoelectron spectroscopy investigated by Prisle et 

al. 60 on the surface partitioning of aqueous decanoate salts and the acid speciation. They reported 

that there is a pronounced enhancement of the acid formed at the surface by the addition of NH4
+ 

cations to the bulk due to a different acid-base chemistry at the interface. In marine aqueous NaCl 

droplets, gaseous molecule chlorine product was observed due to the Cl- anion at the interface 

strongly attracts OH radicals in the gas phase and the reaction of OH and Cl- at the air-water 

interface are dominant. 61 Kumar et al. 62 studied the reactivity of the atmospherically relevant 

Criegee intermediate with nitric acid at the air-water interface. Their MD simulations suggested 

that surface reactions led to the formation of hydroxyethyl hydroperoxide, in stark contrast to 

nitroxyethyl hydroperoxide, which is formed by direct bulk reaction of the Criegee intermediate 

with nitric acid. These above results underscore the need to more extensively characterize 

interfacial competitive oxidation of aqueous species under a wide variety of different surface 

activity (surface tension, pH, etc.) conditions. 

1.6 The motivation and object 

Atmospheric aerosols (solid or liquid) react with gas-phase species involving numerous 

heterogeneous reactions. These multiphase reactions change the chemical and physical properties 

of aerosols, thereby affecting their reactive, hygroscopic, and optical properties. The chemical 
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transformation in the organic particles are essential for understanding, evaluating, and predicting 

of the global climate, air quality, and public health. 63, 64 Therefore, there is an urgent need to 

increase our knowledge of reactions occurring at or near the gas-particle interface and in the bulk 

phase. 56, 65 

 The heterogeneous oxidation of aerosols is governed by chemical and physical processes 

occurring both in the particle bulk and at interfaces. The relative importance of these phenomena 

is then greatly dependent on the physical and chemical properties of the particle. 66 The chemical 

transformation of semi-solid particles (a viscosity range from 102 to 1012 pa s) is more likely 

limited by bulk diffusion from the inner core of particle to the particle surface. 31, 34-38As the particle 

viscosity decreases, the diffusion coefficients of the reactive species increase by several orders of 

magnitude, and bulk diffusion is no longer rate-limiting. There is increasing evidence suggests that 

the oxidation reactions occurring at or close to the gas-liquid interface may be controlled by surface 

partitioning of the reactive species. 57, 60  

This thesis mainly focuses on trying to answer 4 key research questions regarding the 

heterogeneous oxidation of organic aerosols: 

• What is the impact of moisture-induced viscosity changes on the mechanisms of 

oxidative aging of semi-solid single-component particles? 

• What is the effect of oligomer-induced viscosity changes in the bulk phase on the 

reaction rates of reactive species in the semi-solid multi-component particles? 

• What is the rate-limiting step in the heterogeneous oxidation of aqueous droplets?  

• What is the role of gas-liquid interfaces in the oxidation of aqueous aerosols 

chemistry? 

           In Chapter 3 the kinetic of the OH-initiated heterogeneous oxidation of semi-solid particles 

was investigated for relative humidity ranging from 10% to 30% in Chapter 3. The kinetics 

measured by monitoring the loss of particle-phase reactants using Vacuum-Ultraviolet 

Photoionization Aerosol Mass Spectrometer (VUV-AMS). A reaction-diffusion kinetic model 

with constant bulk diffusion was also developed in order to evaluate the role of bulk diffusion in 

the heterogeneous oxidation. Chapter 4 presents the study on the kinetics of OH oxidation of semi-

solid mixture particles for different monosaccharide:disaccharide molar ratio at 30% relative 
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humidity. A reaction-diffusion kinetic model with a composition-dependent bulk diffusion was 

developed in order to further investigate the impact of oligomer-induced viscosity changes on 

heterogeneous oxidation of semi-solid multi-component particles. In this model, the bulk diffusion 

was corrected to account for changes in the chemical composition. Chapter 5 presents the kinetics 

result from the OH-oxidation of aqueous equimolar monosaccharide-disaccharide droplets and 

pure disaccharide aqueous droplets. The role of surface-bulk partitioning in the aqueous aerosol 

chemistry is discussed.  
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Chapter 2. Experimental section 

2.1 Experimental setup 

The study on the OH-initiated heterogeneous oxidation of saccharide aerosol particles are 

performed in an atmospheric pressure aerosol flow tube with online aerosol mass spectrometric 

technique and offline Teflon filter collection then analyzed using gas chromatography-mass 

spectrometry (GC-MS). 

2.1.1 VUV-AMS analysis experimental setup 

The study on the effect of relative humidity on OH-initiated heterogeneous oxidation of semi-solid 

monosaccharide aerosol particles (Chapter 3) is investigated using an atmospheric pressure slow 

flow reactor coupled to an aerosol mass spectrometer at the Chemical Dynamics Beamline at the 

Advanced Light Source synchrotron. Figure 2.1 displays a schematic of the experimental set up. 1, 

2 

 

Figure 2. 1 Schematic of the atmospheric pressure flow tube reactor used in the heterogeneous oxidation of semi-

solid MGP (C7H14O6) aerosol particles. MGP (C7H14O6) particles are generated by Aerosol Atomizer. The aerosol 

stream is then mixed with humidified N2, O2, O3, and dry N2. A total of 1 L min-1 aerosol stream enters an atmospheric 

pressure flow tube to react with OH radicals generated by 254 nm photolysis of O3 in the presence of water vapor.  

Hexane is injected from bottom 1/6 of the flow tube. Upon exiting the flow tube, OH concentration is measured by 
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quantifying the loss of hexane tracer using GC-FID. Aerosol stream is analyzed by an Aerosol Mass Spectrometer and 

by a Scanning Mobility Particle Size (SMPS). The reaction time is 37 s. 1, 2 

Methyl β-D-glucopyranoside (MGP) (C7H14O6) organic aerosol is formed by nebulizing a 

1 mg/ml MGP-aqueous solution using a constant-output atomizer (TSI, Model 3076). The droplets 

then pass through a room-temperature diffusion dryer (1 meter-length) to remove the water vapor 

and dry the particles. In the diffusion dryer, the wet aerosol passes through an inner tube, made of 

wire screen. The silica gel is filled in the annular space between the inner tube and outer wall. The 

silica gel absorbs the water vapor as the wet aerosol passes through. The resident time in the dryer 

is about 15 s. The relative humidity in the flow tube is set by flowing a known amount of nitrogen 

gas through a water bubbler. Ozone is generated by a mercury pen-ray lamp (UVP, LLC) or a 

commercial corona discharge ozone generator (Ozone Lab Instruments). The amount of ozone is 

adjusted by the flow rate of molecular oxygen through the ozone generator or by the intensity of 

the corona discharge. OH radicals are generated along the flow tube by photolysis of ozone in the 

presence of water by four mercury lamps (λ=254 nm, UVP. LLC). The concentration of OH radical 

formed is controlled by the amount of ozone. A small amount of hexane gas (5 ppm) is injected to 

the flow tube in order to measure the OH exposure (the integral of the OH number density over 

the total reaction time). The wet nitrogen is then mixed with dry nitrogen, ozone, molecular oxygen 

(5%), trace hexane and the aerosol stream into a type-219 quartz flow tube reactor with an inner 

diameter of 2.5 cm and a length of 130 cm. The maximum of ozone in the flow tube is 10 ppm. 

The total sample flow rate entering the flow tube reactor is set to 1 slm (standard litter per minute) 

corresponding to a total reaction time of 37s.  

Upon exciting the reaction flow tube, the aerosol passes through an ozone denuder to 

remove the gas phase ozone. A fraction of the flow is sent to a Scanning Mobility Particle Sizer 

(SMPS, TSI, Model 3936) to measure particle size distribution and number concentration. A 

portion of aerosol flow is sampled into a custom-built time-of-flight aerosol mass spectrometer for 

particle chemical composition determination by thermally vaporizing the aerosol followed by 

tunable vacuum-ultraviolet VUV photoionization. The remainder of sample flow is sent to a gas 

chromatograph (GC) equipped with a flame ionization detector (FID) (SRI model 8610C) for 

monitoring the loss of hexane. Ozone and particles are removed prior to entering the GC by a 

potassium iodide (KI) trap and particle filter. The initial hexane concentration entering the flow 

tube is about 250 ppb. The hexane tracer is injected from the bottom 1/6 of the flow tube through 
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a 1/8-inch I.D. Teflon tube. The OH exposure for the whole flow tube is obtained by injecting 

hexane first into the top of the flow tube and then separately through the bottom 1/6 of the flow 

tube at a relatively low O3 concentration. The correction factor is then applied to all OH exposure 

measurements. 1, 2  

2.1.1.1 Scanning Mobility Particle Sizer 

Scanning Mobility Particle Sizer (SMPS) (TSI Model 3936) system is used in this project. It 

includes Electrostatic Classifier (TSI Model 3080), which consists of a diffusion charger (Kr-85, 

Bipolar) and a long Differential Mobility Analyzer (TSI 3081 long-DMA), and Condensation 

Particle Counter (TSI Model 3775) with butanol as working fluid. The sample inlet flow rate is 

0.3 L/min. It takes 120 s to scan one particle size spectrum. This SMPS system achieves efficiency 

in measuring particle size in the range from 10 to 1000 nanometer in diameter. 

2.1.1.1.1 Electrostatic Classifier 

When aerosol flows into Electrostatic Classifier, the particles larger than 1000 nm are first 

removed by the impactor (0.071 cm nozzle). The diffusion charger provides a known charge 

distribution on the aerosols when they enter the long DMA. Figure 2.2 displays the schematic of 

the long DMA. The polydisperse aerosol enters the DMA through a 17.468-inch length of tube 

from the top. The extra aerosol sample exits the DMA through the bypass outlet. The sheath air 

flows from the bottom to the top of DMA between the central rods. The sheath air flow rate is 

about 10 time of aerosol sample flow rate. The filter in the top is to remove the particles in the air. 

Then the particle-free air flows downward the center rods. The two high-voltage rods in the center 

are positively charged. The positively charged particles are stick to the outer electrodes and neutral 

particles are removed through the excess air outlet. Only negatively charged particles with a 

narrow range of electrical mobility exit the DMA through the monodisperse aerosol outlet. 

Electrical mobility, 𝑍𝑝, is a ratio between particle charge and particle diameter as defined in the 

following equation: 3  

 
𝑍𝑝 =

𝑛𝑒𝐶

3𝜋𝜇𝐷𝑝
 

(1) 
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Where: 𝑛 is the number of elementary charges on the particle, 𝑒 is the elementary charge (1.6 × 

10-19 Colomb), C is the Cunningham slip correction (C = 1 + Kn[α + β exp (−
γ

Kn
)], α=1.142, 

β=0.558, γ=0.999, Kn = 2𝜆 𝐷𝑝
⁄ , λ is the gas mean free path, λ = 𝜆𝑟(

𝑃𝑟

𝑃
)(
𝑇

𝑇𝑟
)(
1+𝑆 𝑇𝑅⁄

1+𝑆 𝑇⁄
) , 𝜇 is gas 

viscosity (dyne ∙ s/cm2) poise (μ = 𝜇𝑟(
𝑇𝑟+𝑠

𝑇+𝑆
)
𝑇

𝑇𝑟

3

2
 , s is the Sutherland constant (K), T is temperature 

(K), 𝑇𝑟 is reference temperature), and 𝐷𝑝 is the particle diameter (cm).  

 

Figure 2. 2 Schematic Diagram of Long DMA. 3 

2.1.1.1.2 Condensation Particle Counter 

Condensation Particle Counter (CPC) provides highly accurate measurements of particles 

concentration. In the CPC, first the particles enter the heated saturator (T=39℃) containing vapors 

of butanol. The butanol vapors diffuse into the particles stream. Then particles and butanol vapors 
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together come to the cooled condenser (T=14℃) where the particles serve as condensation nuclei 

and butanol vapors start to condense on particles. Once the droplets grow to a size between 1 and 

10 µm, they can be detected by light scattering. The scattered-light pulses are collected by a 

photodetector. 3  

2.1.1.1.3 Typical Number distribution of MGP aerosol atomized from 1mg/ml solution 

Figure 2.3 shows the SMPS number density distributions as a function of mobility diameter for 

unreacted MGP (C7H14O6) particles normalized to the same particle number concentration. The 

typical surface-weighted mean diameter of the particles is 228±14 nm.  

 

Figure 2. 3 Size distributions for unreacted MGP (C7H14O6) particles normalized to the same particle concentrations: 

particle number density concentration as a function of mobility diameter. 

2.1.1.2 Aerosol Mass Spectrometer 

Aerosol TOF-MS instrument designed and constructed at the Chemical Dynamics Beamline at the 

Advanced Light Source is used in this project. Figure 2.4 displays schematic of aerosol TOF-MS. 

The main components of aerosol TOF-MS are: (1) a flow-limiting aerosol inlet which allows 

particles pass to enter the aerodynamic lens, where particles form a particle beam; (2) vaporization 

and ionization chamber, where a cartridge heater vaporizes the particles, then the vapors are 
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ionized by the VUV light produced with synchrotron source; (3) a time-of-flight tube and 

microchannel plate detector. 4 

 

Figure 2. 4 Schematic of aerosol TOF-MS. 4 

2.1.1.2.1 Aerodynamic lens system 

Figure 2.5 displays the schematic of aerodynamic lens system. The particles are sampled into the 

aerosol mass spectrometer through a 200 μm i.d. flow-limiting orifice located at the inlet of a 10-

inch-long (1/2 in. o. d., 0.4 in i.d.) stainless steel tube. The aerosol sample flow rate through this 

inlet orifice is 0.25 L/min and the inlet pressure is 7.50 Torr. As the aerosol particles pass through 

the aerodynamic lens system, they are focused into a particle beam through the final 3.00 mm 

nozzle. 4, 5 
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Figure 2. 5 Schematic of the aerodynamic lens system. 4, 5 

2.1.1.2.2 Vaporization and ionization chamber 

Figure 2.6 displays the expanded view of vaporization and ionization chamber. When the particle 

beam exits the aerodynamic lens into vacuum and is accelerated by the gas expansion. Then the 

particle beam passes through two stages of differential pumping chamber to the ionization region 

of the main chamber. The pressure in the main chamber is 1.7×10-7 Torr. As the particle beam 

enters the ionization region of the main chamber, it impinges on a cartridge heater with a copper 

tip. The heater’s position is designed with an XYZ translation stage where the copper tip is about 

1.5 cm distance away from the center of the ionization region. This distance provides the maximum 

of vapor density reaching the ionization beam light and minimum interference of electrical filed 

caused by the copper between the extraction plates. The temperature of the copper tip is set at 423 

K and the optical energy of beam light is determined to be 10.5 eV. The resulting ions are spatially 

separated by time of flight analyzer and detected by the microchannel plate detector. 4 

 

Figure 2. 6 Expanded view of vaporization/ionization chamber. 4 
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2.1.1.2.3 Aerosol mass spectra of MGP particles 

Figure 2.7 shows a typical mass spectrum obtained upon vaporization of unreacted MGP 

(C7H14O6) nanoparticles at 10.5 eV using VUV-AMS. The photon energy was selected in order to 

maximize the ion signal while minimizing the dissociative ionization of the parent molecule. The 

parent fragment observed in Figure 2.7 is m/z=176, which is corresponding to dissociative 

ionization by loss of a water molecule. The other fragments indicated in Figure 2.7 are used as 

tracer of the relative abundance of MGP (C7H14O6) left in the particle for the online kinetic 

measurements. 2 

 

Figure 2. 7 Mass spectrum of unreacted methyl-β-D-glucopyranoside (C7H14O6) nanoparticles obtained at 10.5 eV. 

2 

2.1.1.3 Gas-Phase relative rate measurement  

The rate constant for the OH oxidation of MGP (C7H14O6) semi-solid particles is measured using 

a mixed-phase relative rate approach. In this case, it is not necessary to measure absolute reaction 

times or the concentration of OH radicals. 6 Hexane is chosen as the gas-phase reference compound. 

It is found that more than 99% loss of hexane is due to the reaction with OH radicals. 7 The time 

dependent decay of hexane due to the reaction with OH radicals is determined using the following 

equation: 

 𝑑[𝐻𝑒𝑥]

𝑑𝑡
= −𝑘ℎ𝑒𝑥. [𝑂𝐻]. [𝐻𝑒𝑥] 

(2) 
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Where [hex] and [OH] are the concentration of hexane and OH (molecules cm-3) in the flow tube, 

respectively. t is the reaction time (s) and 𝑘ℎ𝑒𝑥 is the second-order rate constant (cm3 molecule-1 s-

1) for OH+hexane reaction, which is 5.2×10-12 cm3 molecule-1 s-1. 8 

The OH exposure is obtained from the ratio of the hexane signal with and without the 

photolysis lamps using the following the equation: 

 

OH exposure = −
ln (
[𝐻𝑒𝑥]𝑡
[𝐻𝑒𝑥]0

)

𝑘ℎ𝑒𝑥
= ∫ [𝑂𝐻]𝑑𝑡 =< 𝑂𝐻 >𝑡. 𝑡

𝑡

0

 

 

(3) 

Where [𝐻𝑒𝑥]0 is the initial concentration of hexane entering the flow tube, and [𝐻𝑒𝑥]𝑡 is final 

concentration of hexane exiting the flow tube after reaction with OH. < 𝑂𝐻 >𝑡  is the time 

averaged concentration of OH.  

  The rate constant for the OH oxidation of MGP (C7H14O6) particles (𝑘𝑟𝑥) is measured by 

the loss of particle-phase MGP (C7H14O6), determined from the AMS spectrum. An expression 

equivalent to Eqn (2), the time dependence decay of particle-phase MGP (C7H14O6) loss is as 

following:  

 𝑑[𝑀𝐺𝑃]

𝑑𝑡
= −𝑘𝑟𝑥. [𝑂𝐻]. [𝑀𝐺𝑃] 

(4) 

Where 𝑘𝑟𝑥  (cm3 molecule-1 s-1) is the second-order rate constant for OH oxidation of MGP 

(C7H14O6) particles. [MGP] and [OH] are the concentration of MGP (C7H14O6) and OH (molecules 

cm-3) in the flow tube, respectively. 

 From the simultaneous decay of gas-phase reference hexane and particle-phase MGP 

(C7H14O6) for the same fixed reaction time, the 𝑘𝑟𝑥 is obtained through the standard relative rate 

method: 

 
ln([𝑀𝐺𝑃]𝑡 [𝑀𝐺𝑃]0) = 𝑘𝑟𝑥[

ln ( [𝐻𝑒𝑥]𝑡 [𝐻𝑒𝑥]0⁄ )

𝑘𝐻𝑒𝑥
]⁄  

(5) 

Where [𝑀𝐺𝑃]𝑡 [𝑀𝐺𝑃]0⁄  is the fraction remaining of the particle phase MGP (C7H14O6) after a 

given amount of reaction time, [𝐻𝑒𝑥]𝑡 [𝐻𝑒𝑥]0⁄  is the fraction of the gas-phase reference hexane 

remaining after reaction. 
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It is more convenient for the kinetic analysis to derive the exponential form by substitute 

Eqn (3) into Eqn (5) as following:  

 [𝑀𝐺𝑃]𝑡
  [𝑀𝐺𝑃]0

= exp (− 𝑘𝑟𝑥 < 𝑂𝐻 >𝑡. 𝑡) 
(6) 

The observed MGP (C7H14O6) disappearance rate constants (𝑘𝑟𝑥 ) can be determined from an 

exponential fit by plotting [𝑀𝐺𝑃]𝑡 [𝑀𝐺𝑃]0⁄  versus < 𝑂𝐻 >𝑡. 𝑡 . 

2.1.1.4 Aerosol reactive uptake measurement  

The rate constant for gas-particles reaction is measured by the loss of particle-phase species. The 

kinetic of reaction in the particle phase depends on many factors, such as particle size and particle 

shape. Therefore, it is often more useful to describe the efficiency of the heterogeneous reaction 

in terms of a reactive uptake coefficient, γeff. A reactive uptake coefficient (γeff) is defined as a 

fraction of OH-particle collisions which yield a reactive loss of a reactant molecule in the particle 

phase. Here it has been assumed that the particle is spherical and well mixed on the timescale of 

the reaction. Using this definition of γeff, the organic particle species reaction rate (
𝑑[𝑂𝑟𝑔]

𝑑𝑡
) is, 

 𝑑[𝑂𝑟𝑔]

𝑑𝑡
= −𝛾𝑒𝑓𝑓. 𝑓. 𝐽𝑐𝑜𝑙𝑙 . 𝐶𝑝. 𝐴 

(7) 

where  𝑓 is the fraction of particle molecules remaining in the particle (i.e. [𝑂𝑟𝑔] [𝑂𝑟𝑔]0⁄ ) and 

depends on the extent of reaction. 𝐽𝑐𝑜𝑙𝑙  is the OH flux at the particle surface, 𝐶𝑝is the particle 

number density, and 𝐴 is the particle surface. Eqn (7) can be solved for 𝛾𝑂𝐻
𝑂𝑟𝑔

 by substituting 

𝑑[𝑂𝑟𝑔] 𝑑𝑡⁄ = −𝑘𝑟𝑥. [𝑂𝑟𝑔]. [𝑂𝐻], 𝑓 = [𝑂𝑟𝑔] [𝑂𝑟𝑔]0⁄ ,  𝐽𝑐𝑜𝑙𝑙 = 𝑐. [𝑂𝐻]/4 to obtain, 

 
𝛾𝑒𝑓𝑓 =

𝑘𝑟𝑥. [𝑂𝑟𝑔]. [𝑂𝐻]

𝑓. 𝐽𝑐𝑜𝑙𝑙. 𝐴. 𝐶𝑝
=
4. 𝑘𝑟𝑥. [𝑂𝑟𝑔]0
𝑐. 𝐴. 𝐶𝑝

 
(8) 

Where 𝑘𝑟𝑥 is the second order rate constant for the reaction of particle species with OH from Eqn 

(6), [𝑂𝑟𝑔]0 is a spatially averaged concentration (molecules cm-3), 

 
[𝑂𝑟𝑔]0 =

𝐶𝑃. 𝑉. 𝜌0. 𝑁𝐴
𝑀

 
(9) 
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Where 𝑉 is the particle volume, 𝑀 is the molar mass of particle species, 𝑁𝐴 is the Avogadro’s 

number, and 𝜌0  is the initial particle-phase density. Eqn (8) can be further simplified by the 

following expression: 1 

 
𝑟𝑒𝑓𝑓 = 

2𝑘𝑟𝑥𝑑𝑝𝜌0𝑁𝐴

3𝑐𝑀
 

(10) 

Here 𝑑𝑝 is the mean surface-weighted particle diameter. Note that if the value of 𝑟𝑒𝑓𝑓 is greater 

than 1, it indicates that there is a secondary loss processes for the particle species after the initial 

reaction with OH radical. Since the uncertainties in the measurements of 𝑘𝑟𝑥 (𝛿𝑘𝑟𝑥) and 𝑑𝑝 (𝛿𝑑𝑝) 

are independent, the uncertainty in  𝑟𝑒𝑓𝑓 (𝛿𝑟𝑒𝑓𝑓) is given by: 

 𝛿𝑟𝑒𝑓𝑓

|𝑟𝑒𝑓𝑓|
= √(

𝛿𝑘𝑟𝑥
𝑘𝑟𝑥

)2 + (
𝛿𝑑𝑝

𝑑𝑝
)2 

(11) 

2.1.2 GC-MS analysis experimental setup  

The studies presented in Chapters 4 and 5 were performed with an offline detection technique. The 

experiments are performed using an atmospheric pressure aerosol flow tube coupled with Scanning 

Mobility Particle Sizer (SMPS), Gas Chromatography-Flame Ionization Detector (GC-FID) and 

Teflon filter collection. Figure 2.8 displays the details of the experimental set up. 9, 10 
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Figure 2. 8 Schematic of the flow reactor used in off-line kinetic measurement experiments. Saccharide particles 

are generated by Aerosol Atomizer. The aerosol stream is then mixed with humidified N2, O2, O3, and dry N2. A total 

of 3 L min-1 aerosol stream enters an atmospheric pressure flow tube to react with OH radicals generated by 254 nm 

photolysis of O3 in the presence of water vapor.  Hexane is injected from bottom 1/5 of the flow tube. Upon exiting 

the flow tube, OH concentration is measured by quantifying the loss of hexane tracer using GC-FID. Aerosol stream 

is analyzed by a Scanning Mobility Particle Sizer (SMPS) and is collected by Teflon filter. The reaction time is 46 s. 

9 

The saccharides particles are generated by nebulizing a 5 mg/ml saccharides aqueous 

solution using a constant output atomizer (TSI, model3076) with a 1.5 L min-1 N2 flow. For 

semisolid particles studies, the aerosol flow (1.5 L min-1) passes through a room-temperature 

diffusion dryer to dry the particles and remove the excess water vapor. The diffusion dryer is a 47-

inch long PTFE Teflon tube with a 3-inch inner diameter (I.D.) filled with Drierite Desiccant (≥

98% CaSO4, <2% CoCl2). A 1/2-inch I.D. wire screen tube allows the aerosol flow to pass through 

the dryer with a residence time of 6 s. At the exit of the dryer, the 1.5 L min-1 dry particle stream 

is mixed with a 0.65 L min-1 flow of wet N2 into a 3 L Erlenmeyer flask with an estimated residence 

time of 84 s. For liquid nanodroplets study, the diffusion dryer is removed and the wet aerosol is 

directly mixed with the wet N2 in the 3 L Erlenmeyer flask. The wet N2 flow is obtained by 

bubbling pure N2 into water. The relative humidity is fixed at 30% with humidified N2 after which 
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another 0.25 L min-1 wet N2, 0.15 L min-1 O2 (5%), variable amounts of O3, and Dry N2 are added 

into the wet aerosol stream in order to obtain a total flow of 3 L min-1. The ratio of total humidified 

N2 over total aerosol sample flowrate is always 0.3.  The resulting flow is then injected into a 45-

inch long and 2-inch I.D. quartz tube surrounded by three UV lamps (UVP, λmean=254 nm). With 

a total flow through the flow tube of 3 L min-1, the resident time is of the order of 46 s. 

 Ozone is generated either by passing a 1.0 L min-1 O2 flow through an ozone generator 

(AC-500G, Ozone Solutions, 0.87 g/hr) or by passing a 5.66 L min-1 O2 through a corona discharge 

ozone generator (CD2000P, ClearWater Tech, LLC., 27 g/hr). The O3 concentration in the flow 

tube is varied by the O3 flow rate. For the semisolid particle studies, the maximum amount of the 

O3 in the flow tube is estimated to be 5 ppm. For the liquid nanodroplets study, the maximum 

amount of the O3 in the flow tube is around 0.48 ppm. The OH radicals are generated by photolysis 

of ozone in the presence of water vapor. The amount of OH radicals can be varied either by 

controlling the concentration of ozone in the flow tube or by the number of UV lamps turned on.  

The hexane is chosen as a gas-phase reference compound to quantify the average OH 

concentration. The initial hexane concentration entering the flow tube is 3 ppm. The hexane tracer 

is injected from the bottom 1/5 of the flow tube through a 1/8-inch I.D. Teflon tube. The OH 

exposure for the whole flow tube is obtained by injecting hexane first into the top of the flow tube 

and then separately through the bottom 1/5 of the flow tube at a relatively low O3 concentration. 1 

The correction factor is then applied to all OH exposure measurements. The decay of the relative 

hexane concentration is monitored by gas chromatography coupled to a flame ionization detector 

(FID) (Thermo Scientific Trace GC 2000). The gas is sampled onto the capillary column (phase 

ZB-5, 30 m × 0.32 mm I.D. and film thickness of 0.5 μFT, phenomenex) using a six-port valve. 

Helium is used as carrier gas at a flow rate of 5.0 mL min-1. The injection temperature and the FID 

detector temperature are 250℃ and 300℃, respectively. The oven temperature is isothermally set 

at 50°C for the 5 min runs. 

Upon exiting the flow tube, a 0.3 L min-1 of the total flow passes through an ozone denuder 

and is sent to a scanning mobility particle sizer (SMPS) (TSI, model 3936) for particle size 

distributions and concentration measurements. The typical surface-weighted mean diameter of the 

particles is about 350 nm. Another 0.05 L min-1 of the reacted flow passes through a packed 

potassium iodide tube to remove O3 before reaching the GC-FID for hexane measurement. The 
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remaining of the particle flow 2.65 L min-1 passes through a PTFE (polytetrafluoroethylene) filter 

(Millipore FALP, 1.0 um, diameter 47mm). The collection is performed for 30 mins in order to 

collect about 1mg of saccharides particles.  

Following the particle collection, the PTFE filter is sonicated twice for 15 min in a 10 mL 

mixture of ethanol: distilled water (1:1, v:v) together with 1 mg of internal standard xylose at room 

temperature. The combined (20 mL) extract aliquots are concentrated by rotary evaporation to 

about 10 mL. The remaining water solvent is removed by freeze drying with a Freeze Dryer 

(FreeZone 2.5 Plus, LABCONCO). Silylating reagent (1 mL) (pyridine: sylon BTZ (2:1, v:v) is 

added to the freeze-dried residue and allowed to react for 3 hour at room temperature. 

The silylated mixtures are analyzed using a Trace 1310 Gas chromatograph interfaced with 

a Single Quadrupole Mass Spectrometer (GC-MS, Thermo Scientific). A capillary column (TG-

SQC, 15 m × 0.25 mm I.D. and film thickness of 0.25 μm, Thermo Scientific) is used with helium 

as the carrier gas at a constant flow rate of 1.0 mL min−1. The MS transfer line and ion source are 

maintained at 275 and 300 °C, respectively. The scan range is set from 50 to 650 Da at 0.2 scan 

s−1. The column temperature is programed to increase from 40 °C to 160 °C at a rate of 30 °C 

min−1, from 160 °C to 170°C at a rate of 2 °C min−1, to 300 °C at a rate of 30 °C min−1, followed 

by an isothermal hold at 300 °C for 2 min. The total running time is 16 min. All the samples are 

injected in triplicate for the quantification analysis.  
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Chapter 3: Effect of relative humidity on the OH-initiated heterogeneous 

oxidation of monosaccharide aerosol 

The present experimental study investigates the effect of relative humidity on the decay of β-

methylglucopyranoside (MGP, C7H14O6), by measuring the relative reactant number density as a 

function of OH exposure (time-integrated total concentration of OH radical). The kinetics are 

observed for relative humidity ranging from 10% to 30%. A simple reaction-diffusion model was 

developed to investigate the effect of variations in diffusion coefficient on the chemical behavior. 

The model includes the reaction and diffusion of OH, monosaccharide molecules in the semi-solid 

phase with different initial conditions. The model parameters are extracted from literature data 

when available. The experimental findings, supported by the modeling results, are discussed 

toward a better understanding of the role of molecular diffusion on the chemical reactivity of semi-

solid materials and their implications for chemical transformation in atmospheric semi-solid 

particles. 

3.1 Experimental results 

3.1.1 Kinetic results 

Figure 3.1 displays the relative abundance of unreactive MGP (C7H14O6) in the particle phase as a 

function of OH exposure at a 30% relative humidity. The experimental points (red solid circles) in 

Figure 3.1 (b) are the average value of five different tracer masses shown in Figure 3.1 (a). The 

experimental data reported for a relative humidity at 30% in Figure 3.1 (b) are from two 

independent data sets. The error bars are two standard deviations about the mean value. The 

experimental decay of MGP (C7H14O6) is an initial fast decay at low OH exposure followed by a 

slower decay at high OH exposure. The thick red line in Figure 3.1 (b) is an exponential fit to the 

experimental data up to an OH exposure of 0.51012 cm-3 s and extrapolated to higher OH exposure. 

The second order rate constant with two standard deviation error bars about the mean value for the 

OH oxidation of MPG (C7H14O6) particles is obtained from the exponential fit, which is 

(1.62±0.04) 10-12 cm3 s-1. There is an apparent offset between the experimental data and 

exponential fit at OH exposure higher than 1.51012 cm-3 s: these tracer masses as shown in Figure 

3.1 (a) do not appear to decay to zero. Possible reasons for this apparent offset have been 

suggested: there is signal interference from product compounds at the chosen tracer mass and 
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unreacted reactants in the core of particles with a slow mass transfer rate. 1 As shown in the Figure 

3.1 (a), the decay rate of MGP (C7H14O6) is found to be independent on the tracer mass fragments. 

This confirms that the observed MGP (C7H14O6) decay behavior is not due to the interference of 

product signal at the same chosen mass fragment peak.  

 

Figure 3. 1 Relative signal of unreacted MGP (C7H14O6) left in the particle phase as a function of OH exposure 

obtained (a) for mass fragments at m/z=60 (blue triangles), 73 (black open circles), 121 (black filled circles), 144 

(green diamonds), and 163 (red squares) and (b) by averaging the ion signal at five different masses. The error bars in 

(b) are two standard deviations about the mean value. The red line is obtained by fitting the experimental data up to 

0.51012 cm-3 s with an exponential function and extrapolated to higher OH exposure.  
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Figure 3.2 displays relative unreactive MGP (C7H14O6) in the particle as a function of OH 

exposure for 5% O2 (red solid circles) and 15% O2 (green solid triangles) in the gas phase at relative 

humidity of 30%. The decay rate of MGP (C7H14O6) is found to be independent on the gas phase 

molecular oxygen concentration. The second order rate constant for the OH oxidation of MGP 

(C7H14O6) at 15% O2 is obtained by fitting an exponential function to the experimental data up to 

an OH exposure of 0.51012 cm-3 s. The rate constants and uptake coefficients obtained from fit to 

the data are shown in Table 3.1.  

 

Figure 3. 2 Relative signal of unreacted MGP (C7H14O6) in the particle phase as a function of OH exposure obtained 

for 5% O2 (red solid circles) and 15% O2 (green solid triangles) at relative humidity of 30%. The experimental points 

are averaging the ion signal at five different masses. The error bars are two standard deviations about the mean value.   

Figure 3.3 displays the relative abundance of MGP (C7H14O6) in the particle phase as a 

function of OH exposure for different relative humidity. They are 10% RH (blue solid diamonds), 

20% RH (black solid squares) and 30% RH (red solid circles). The decay rate of MPG (C7H14O6) 

is found to be relative-humidity dependent. All three decay traces of MGP (C7H14O6) display a 

similar behavior: an initial fast decay at low OH exposure and a slower decay at high OH exposure. 

The observed MGP (C7H14O6) disappearance rate constants (𝑘MGP) are determined from by fitting 

the initial part of experimental data up to an OH exposure of 0.51012 cm-3 s to an exponential 

function. The observed decay rate coefficient of MGP (C7H14O6) is increased as the relative 

humidity is increased. The corresponding reactive uptake coefficients at low OH exposure are 



45 

 

0.76±0.14 for RH=10%, 1.34±0.39 for RH=20% and 1.83±0.09 for RH=30%. This suggests that 

water play a significant role during the heterogeneous oxidation reaction. The fraction of unreacted 

MGP (C7H14O6) remaining in the particle are 10% for RH=30%, 40% for RH=20% and 60% for 

RH=10% at an OH exposure of 1.81012 cm-3 s. The rate constants and uptake coefficients 

obtained from fit to the data are shown in Table 3.1.  

Table 3. 1 Rate constants and reactive uptake coefficients for heterogeneous oxidation of pure 

MGP (C7H14O6) nanoparticles at different relative humidity with OH radicals. 

Relative Humidity 

(RH %) 

Rate constant 

kMGP ± 2σ 

(cm s -1) 

Uptake coefficient 

(γMGP ± 2σ) 

10% 
(5% O2) 

6.73±0.06 10-13 

 

0.76±0.14 

20% 
(5% O2) 

1.19±0.17 10-12 1.34±0.39 

30% 
(5% O2) 

1.62±0.04 10-12 

 

1.83±0.09 

30% 
(15% O2) 

1.85±0.15 10-12 

 

2.09±0.18 

 

 

Figure 3. 3 Relative unreactive signal of MGP (C7H14O6) as a function of OH exposure for RH=10 % (blue solid 

diamonds), RH=20% (black solid squares), and RH=30% (red solid circles). The error bars are 2 standard deviations 

about mean value by averaging the signal of five different fragments. The reactive uptake coefficients (γ) are obtained 

from an exponential fit of the data up to OH exposure of 1.81012 cm-3 s. 
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3.1.2 Evolution of particle size characterization  

Figure 3.4 displays the absolute surface-weighted diameter (nm) as a function of OH exposure for 

10% (blue open diamonds), 20% (black open squares) and 30% (red open circles) relative humidity 

from Scanning Mobility Particle Sizer (SMPS) measurement. The error bars are two standard 

deviations about triple time particle size data measurement. The typical surface-weighted mean 

diameter of the particles is 228±14 nm (±2σ) for this study. There is almost no change on surface-

weighted mean diameter for RH=10% and RH=20%. There is about 10 nm particle diameter size 

reduced for RH=30% up to high OH exposure of 1.81012 cm-3 s. The particle size reduction is 

more likely to be due to the vaporization of volatile organic products. 

Figure 3.5 displays (a) total mass concentration (μg/m3) (b) total number concentration 

(#/cm3) and (c) the relative mass abundance of the MPG (C7H14O6) reactant in one single particle 

as a function of OH exposure for 10% (blue solid circles), 20% (black solid circles) and 30% (red 

solid circles) relative humidity. All these data are measured by Scanning Mobility Particle Sizer. 

The error bars are two standard deviations about triple time particle size data collection. In the 

panel (c), the relative mass fraction remaining in single particle is a ratio of total mass 

concentration/total number concentration between reacted and unreacted MGP (C7H14O6) 

nanoparticles. 

 Relative mass fraction remainning in single particle =
[𝑡𝑜𝑡𝑎𝑙 𝑚𝑎𝑠𝑠]𝑡 [𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑖𝑜𝑛]𝑡⁄

[𝑡𝑜𝑡𝑎𝑙 𝑚𝑎𝑠𝑠]0 [𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛]0⁄
           (1)  

where [𝑡𝑜𝑡𝑎𝑙 𝑚𝑎𝑠𝑠]𝑡 [𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑖𝑜𝑛]𝑡⁄  is one single particle mass is after a 

given amount of reaction time, [𝑡𝑜𝑡𝑎𝑙 𝑚𝑎𝑠𝑠]0 [𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛]0⁄  is one single 

particle mass before reaction. 
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Figure 3. 4 Absolute surface weighted diameter as a function of OH exposure for RH=10% (blue open diamonds), 

RH=20% (black open squares) and RH=30% (red open circles).  

In panel (a), the decay rates of the total mass concentrations (μg/m3) are almost the same 

at low OH exposure (up to 2.51011 cm-3 s). The total mass concentrations are reduced by about 

30% for RH=10%, RH=20% and 40% for RH=30% up to higher OH exposure of 1.91012 cm-3 s. 

In panel (b), the decay behaviors of the total number concentrations (#/cm3) are similar for all 

different relative humidity studies. The total number concentrations are reduced by about 20% for 

RH=10%, RH=20% and RH=30% up to higher OH exposure of 1.91012 cm-3 s. In panel (c), the 

decay behaviors of the relative mass fraction remaining in single particle are similar to those of 

total mass concentration in panel (a), the relative mass fraction remaining in single particle are 

reduced 15% for both RH=10%, RH=20%, and 25% for RH=30%.  
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Figure 3. 5 (a) Absolute total mass concentration (μg/m3) (b) absolute total number concentration (molecules/cm3) 

(c) relative single particle mass fraction remaining as a function of OH exposure for RH=10% (blue open diamonds), 
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RH=20% (black open squares) and RH=30% (red open circles). The error bars are two standard deviations about three 

set of data collection. 

3.1.3 Product results 

Figure 3.6 shows that the aerosol mass spectrum of the (a) unreacted MGP (C7H14O6) nanoparticles 

and (b) reacted MGP (C7H14O6) nanoparticles over the 30 to 180 m/z range. In panel (b) the reacted 

MGP (C7H14O6) nanoparticles aerosol mass spectrum is obtained at OH exposure of 0.41012 cm-

3 s for 30% relative humidity. Small peaks are observed in addition to the fragment peaks of the 

MGP (C7H14O6) molecule. These new signals are likely to be due to the fragmentation of the 

products upon on soft ionization, as detected for highly oxidized molecules. 2, 3 No signal is 

overserved at masses higher than that of the MGP (C7H14O6) parent ion peak. This suggests that 

fragmentation chain reactions dominate the bulk reaction mechanism. 

 

Figure 3. 6 Aerosol mass spectrum of MGP (C7H14O6) nanoparticles obtained at 10.5 eV for (a) unreacted (red) and 

(b) reacted (black) samples over the 130 to 180 m/z range. The reacted sample is obtained for an OH exposure of 

0.41012 cm-3 s and RH=30%. 
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Figure 3.7 shows the normalized signal of products ions at (a) m/z=77, (b) m/z=102, and 

(c) m/z=142 as a function of OH exposure for RH=10 % (blue squares), RH=20% (red triangles), 

and RH=30% (black circles). All the product signals reach a maximum at OH exposure less than 

that of 2.51011 cm-3 s. The OH exposure is almost twice smaller than that observed for reactant 

decay in Figure 3.3, where the OH exposure is at 5.01011 cm-3 s. In addition, the rise of products 

is found to be independent on the relative humidity. The following slower products decay is 

independent on relative humidity as well. This suggests that the presence of products in the bulk 

after reaching a maximum does not affect the decay rate of MGP (C7H14O6) reactant in the particle. 

No evidence of secondary product formation is observed in this study.  
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Figure 3. 7 Relative signal of the products detected in the bulk at (a) m/z=77, (b) m/z=102, and (c) m/z=142 as a 

function of OH exposure for RH=10 % (blue squares), RH=20% (red triangles), and RH=30% (black circles). 

3.2 Modeling of the reactant diffusion and reaction 

A simple reaction-diffusion kinetic model is developed in order to investigate the impact of bulk 

molecule diffusion on heterogeneous reaction behaviors. The reaction-diffusion equations couple 
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the reaction and diffusion of OH and MGP (C7H14O6) in the particle. The coupled partial 

differential equations are solved using numerical solver pdepe in Matlab software. This approach 

makes possible to calculate the concentration of OH and MGP (C7H14O6) as a function of time and 

position within the particle. In the model, the chemical reaction is limited by the diffusion of bulk 

molecule MGP (C7H14O6) to the particle surface. The diffusive timescale of the MGP (C7H14O6) 

reactant is relatively slow compared to the timescale of the MGP (C7H14O6) and OH chemical 

reactions. The simulation results are capable to reproduce the observed experimental trends. 4, 5 

3.2.1 Reaction-Diffusion model overview 

The OH concentration at the particle surface is modeled using a multistep uptake mechanism: 6 

 𝑂𝐻𝑔 + 𝑠𝑖𝑡𝑒𝑀𝐺𝑃  
𝑘𝑎𝑑
→  𝑂𝐻𝑎𝑑−𝑀𝐺𝑃 

(R1) 

 

 𝑂𝐻𝑎𝑑−𝑀𝐺𝑃
𝑘𝑑𝑒𝑠
→   𝑂𝐻𝑔 + 𝑠𝑖𝑡𝑒𝑀𝐺𝑃 

(R2) 

 𝑂𝐻𝑎𝑑−𝑀𝐺𝑃 +𝑀𝐺𝑃
𝑘𝑂𝐻+𝑀𝐺𝑃
→       𝑃𝑟𝑜𝑑𝑢𝑐𝑡 + 𝐻2𝑂 + 𝑠𝑖𝑡𝑒𝑀𝐺𝑃 

(R3) 

where 𝑘𝑎𝑑  is the pseudo-first order rate coefficient of adsorption (10 s-1), 6 𝑘𝑑𝑒𝑠  is the rate 

coefficient of desorption (2.861010 s-1). 7 𝑘𝑂𝐻+𝑀𝐺𝑃, the rate coefficient for OH reacting with MGP 

(C7H14O6) in aqueous solution is 5.3110-12 cm3 s-1. 8 The above multiple steps describe the 

following microscopic process: first, the OH radicals in the gas phase must adsorb onto a surface 

site. Site is one per MGP (C7H14O6) on the surface of the particle. After adsorption, the OH radicals 

either desorb back into the gas phase or react by abstracting a hydrogen atom from MPG (C7H14O6) 

which produce a water and another surface site. Overall the surface site is constant through the 

heterogeneous oxidation reaction. Therefore, the OH radical concentration adsorbed onto the 

particle surface is uniform which is governed by the rate coefficients for adsorption (𝑘𝑎𝑑) and 

desorption (𝑘𝑑𝑒𝑠). The experimental average OH concentration is 5.401010 molecules cm-3. The 

concentration of bulk MGP (C7H14O6) is assumed to be radially homogenous before the reaction, 

which is 4.531021 molecules cm-3. The diffusion coefficient of OH radical in the particle phase 

(DOH) is set to 110-9 cm2 s-1, which is sufficiently small so that it does not significantly penetrate 

into the particle. Each particle is assumed to be spherical symmetry with a radius of 100 nm. The 

reaction-diffusion equations written using spherical polar coordinates are as follows: 7, 9   
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 𝜕[𝑂𝐻]𝑎𝑑−𝑀𝐺𝑃

𝜕𝑡
=
𝐷𝑂𝐻

𝑟2
𝜕

𝜕𝑟
 (𝑟2

𝜕[𝑂𝐻]𝑎𝑑−𝑀𝐺𝑃

𝜕𝑟
) − 𝑘𝑂𝐻+𝑀𝐺𝑃[𝑂𝐻]𝑎𝑑−𝑀𝐺𝑃[𝑀𝐺𝑃]  

(2) 

 𝜕[𝑀𝐺𝑃]

𝜕𝑡
=
𝐷𝑀𝐺𝑃
𝑟2

𝜕

𝜕𝑟
 (𝑟2

𝜕[𝑀𝐺𝑃]

𝜕𝑟
) − 𝑘𝑂𝐻+𝑀𝐺𝑃[𝑀𝐺𝑃][𝑂𝐻]𝑎𝑑−𝑀𝐺𝑃 

(3) 

In the model, the initial particle water activity after the diffusion dryer is assumed to be 0.1. The 

room temperature experimental viscosity of glucose (C6H12O6) at 0% relative humidity is 5.2108 

Pa s which is much smaller than the viscosity of glass transition at room temperature (12 Pa s). 10 

Thus the gas/particle equilibrium follow the linear relationship (𝜏𝑒𝑞 =
𝑅𝑝
2

𝜋2𝐷
). For highly viscous 

droplet with a diameter between 50 and 500 nm, the time scale to establish gas-particle equilibrium 

is generally governed by particle-phase diffusion. 11 The experimental diffusion coefficient of 

water in pure citric acid (C6H8O7) droplet with a water activity of 0.1 is about 1.010-11 cm2 s-1. 12 

When the MGP (C7H14O6) dry particles with water activity of 0.1 are introduced into flow tube 

with 10%, 20% and 30% relative humidity respectively, the time scale of gas-particle equilibrium 

is about 1 s based on the gas-particle equilibrium equation (𝜏𝑒𝑞 =
𝑅𝑝
2

𝜋2𝐷𝑏
). The particle phase water 

content concentration is in equilibrium with the surrounding relative humidity in the gas phase 

through the flow tube. Thus, the particle viscosity is uniform through the reaction. In the model, 

the diffusion coefficient of bulk molecule MPG (C7H14O6) is assumed to be constant and the same 

everywhere in the particle despite bulk concentration gradient due to oxidation reaction. 

A summary of simulation parameters and rate constants is shown in Table 3.2. 

Table 3. 2 Key simulation parameters and rate constants for mixture semisolid particles. 

Parameter Value Description 

RH 10%, 20%, 30% Relative humidity 

[OH] 5.401010 Average experimental [OH] 

𝑟𝑝 100 nm Radius of the particle 

𝑘𝑎𝑑 10 s-1 Pseudo-first order adsorption rate 

coefficient of OH. 6 

𝑘𝑑𝑒𝑠 2.861010 s-1 Desorption rate coefficient of OH. 7 

𝑘𝑂𝐻+𝑀𝐺𝑃 5.3110-12 cm3 s-1 Rate coefficient of OH+MGP in aqueous 

solution. 8 
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𝐷𝑂𝐻 1.0010-9 cm2 s-1 Diffusion coefficient for OH. 5 

𝑟𝑀𝐺𝑃 0.361nm Hydrodynamic radius of MGP at 

298.15K. 13 

𝐷𝑀𝐺𝑃
10%𝑅𝐻  2.5010-14 cm2 s-1 Diffusion coefficient of MGP with a 

water activity of 0.1. 

(Viscosity of glucose particles at 10%RH 

is 7.40 (log value), based on E-S 

equation: 

 𝐷𝑔𝑙𝑢𝑐𝑜𝑠𝑒
10%𝑅𝐻 =2.4710-16 cm2 s-1). 10 

𝐷𝑀𝐺𝑃
20%𝑅𝐻  8.0010-14 cm2 s-1 Diffusion coefficient of MGP with a 

water activity of 0.2. 

(Viscosity of glucose particles at 20%RH 

is 6.10 (log value), based on E-S 

equation:  

𝐷𝑔𝑙𝑢𝑐𝑜𝑠𝑒
20%𝑅𝐻 =4.8410-15 cm2 s-1). 10  

𝐷𝑀𝐺𝑃
30%𝑅𝐻  3.5010-13 cm2 s-1 Diffusion coefficient of MGP with a 

water activity of 0.3. 

(Viscosity of glucose particles at 30%RH 

is 5.55 (log value), based on E-S 

equation: 

𝐷𝑔𝑙𝑢𝑐𝑜𝑠𝑒
30%𝑅𝐻 =1.6910-14 cm2 s-1). 10 

*the water activity of sample is equal to the relative humidity of gas surrounding sample 

3.2.2 Reaction-Diffusion model results 

Figure 3.8 shows the modeled unreacted mole fraction of MPG (C7H14O6) integrated over the 

entire particle as a function of OH exposure for 10% (blue solid line), 20% (black solid line) and 

30% (red solid line) relative humidity. These profiles reproduce the observed MPG (C7H14O6) 

decay behaviors in Figure 3.3. These decay behaviors can be interpreted by examination of the 

diffusion coefficients of MPG (C7H14O6) in the system. In this work, the value of 𝐷𝑀𝐺𝑃
10% 𝑅𝐻 is set 

as 2.5010-14 cm2 s-1, which is 100 times bigger than the diffusion coefficient of glucose 

(𝐷𝑔𝑙𝑢𝑐𝑜𝑠𝑒
10%𝑅𝐻 =2.4710-16 cm2 s-1) established from binary aqueous-glucose viscosity with water 

activity of 0.1. The value of 𝐷𝑀𝐺𝑃
20% 𝑅𝐻 is set as 8.0010-14 cm2 s-1, which is 16 times bigger than the 

diffusion coefficient of glucose (𝐷𝑔𝑙𝑢𝑐𝑜𝑠𝑒
20%𝑅𝐻=4.8410-15 cm2 s-1) established from binary aqueous-

glucose viscosity with water activity of 0.2. The value of 𝐷𝑀𝐺𝑃
30% 𝑅𝐻 is set as 3.5010-13 cm2 s-1, 
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which is 20 times bigger than the diffusion coefficient of glucose (𝐷𝑔𝑙𝑢𝑐𝑜𝑠𝑒
30%𝑅𝐻=1.6910-14 cm2 s-1) 

established from binary aqueous-glucose viscosity with water activity of 0.3. 10 This model shows 

an associated increase in relative humidity and bulk diffusion coefficient of particle molecule 

species. At 10% RH, the modeled decay of MGP deviates from the experimental data. The 

difference between experimental and computational results may be attribute to either unstable wet 

N2 flow rate during the kinetics measurement, or limitation of model by using a constant bulk 

diffusion. 

 

Figure 3. 8 Modeled total fraction of reactant remaining for different OH exposure for RH=10% (thin blue line), 

RH=20% (thin black line), and RH=30% (thick red line) 

 Figure 3.9 displays the modeled space-time plots of bulk concentration of MPG (C7H14O6) 

for 10%, 20% and 30% relative humidity with a constant OH concentration of 5.401010 cm-3. The 

y-axis is the radial distance from the core of the aerosol particle, which is 100 nm. The x-axis is 

the reaction time of 37 s. The MGP (C7H14O6) concentration is assumed to be distributed uniformly 

within the particle at the reaction time zero, which is 4.531021 molecules cm-3. For 10% relative 

humidity, the bulk of particle is free of OH radicals as most of them reacted at the surface. The 

depleted MGP (C7H14O6) is within the outermost 20 nm of the aerosol. The surface concentration 

of MGP (C7H14O6) stays low, which is about 1.671020 molecules cm-3. The modeled unreacted 

mole fraction of reactant MGP (C7H14O6) over the entire particle is about 0.69 up to a reaction 

time of 37s. For 20% relative humidity, the MGP (C7H14O6) concentration decays occur more 
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deeply into the particle bulk and the MGP (C7H14O6) concentration gradient is in the top 40 nm of 

the particle. After 37 s, the modeled unreacted mole fraction of reactant MGP (C7H14O6) over the  

 

Figure 3. 9 Modeled space-time plots of bulk concentration of MPG (C7H14O6) for (a) 10%, (b) 20% and (c) 30% 

relative humidity. The constant OH concentration is 5.401010 cm-3. 
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entire particle is about 0.50 due to chemical reaction with OH radicals. For 10% and 20% relative 

humidity, the MGP (C7H14O6) concentration in the unreactive core remains homogenously through 

the reaction. For 30% relative humidity, the model shows that gradient in the MGP (C7H14O6) 

concentration is generated relatively rapidly compared to those of 10% RH and 20% RH studies. 

The magnitude of this diffusion coefficient is sufficient to allow the MGP (C7H14O6) reactant in 

the core of the particle to diffuse to the particle surface and react with OH radicals. The MGP 

(C7H14O6) concentration in the core of particle is about half of that of unreacted initial MGP 

(C7H14O6). The modeled unreacted mole fraction of reactant MGP (C7H14O6) over the entire 

particle is about 0.17 after reaction time of 37 s. 

3.3 Discussion and implication for heterogeneous chemistry 

The reaction between OH radical and MGP (C7H14O6) molecule has been studied in the liquid 

solution by identifying the final products as well as the reaction intermediates. 9, 14-16 Electron 

paramagnetic resonance experiments showed that the initial reaction step is a hydrogen atom from 

the organic function group RH abstracted by OH radical to produce an organic radical and a water 

molecule. 9 In the presence of O2, α-hydroxy-peroxyl radical is generated. 16 These peroxyl radicals 

can then decompose to give a HO2 radical and a carbonyl compound. The main products have been 

observed are glucose and some organic acids through the loss of small alcohol and ketone 

molecules as determined in the aqueous solution. 15 The relative humidity independent rapid rise 

of the product signals shown in the Figure 3.7 are in agreement with oxidation of carbohydrate at 

the particle surface. The observed decays of product signals are likely to be due to further reaction 

with the OH radicals. Propagation chain reaction in the particle bulk would likely produce volatile 

organic compound which vaporize into the gas phase. The normalized product signals are 

consistent with chemical reactions mostly occurred at the particle surface with negligible bulk 

activity. The presence of the products in the particle surface has no significant effect on 

heterogeneous oxidation kinetics behavior. No evidence of oligomer products is observed in the 

present work. From these data, it is likely that MGP (C7H14O6) rapidly react with OH and break 

down into smaller molecular species and vaporized to the gas phase. 

 A reaction diffusion model with a fast surface-only reaction is developed to evaluate the 

effect of varying bulk diffusion coefficients due to changes in the particle surrounding relative 

humidity during exposure to OH radicals. OH radicals are assumed to react with MGP (C7H14O6) 
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molecule in semi solid organic matrix with the same rate coefficient as in the aqueous phase. In 

the simulation, the particle is assumed to be with a constant diameter by neglecting the vaporization 

of the volatile organic products. The assumption that OH radicals adsorbed onto the particle 

surface lead to reaction has been shown to be valid for OH radicals reacting with most saturated 

organic molecules with an initial step of abstraction of a hydrogen atom. The vaporization of 

volatile organic products from the particle surface would lead a new MGP (C7H14O6) layer with 

effect on the particle bulk. The qualitative agreement between the experimental data in Figure 3.3 

and the simulation result in Figure 3.8 suggest that the diffusion of MGP (C7H14O6) from the bulk 

to the surface is the rate-limiting step. The reacto-diffusion length for OH radical within the particle 

is modeled to be within 1 nm, which is consistent with experimental measurement the reactive-

diffusion length of OH in viscous organic aerosol. 3 Because the OH reacto-diffusion length is so 

small, the depth over which reaction occur is dependent on the diffusion coefficient of reactant in 

the condensed phase. As is shown in Figure 3.9, there is a gradient concentration of MPG 

distribution in the particle due to the slow diffusion of MGP (C7H14O6). From 10% relative 

humidity to 30% relative humidity, the water content in the condensed phase is increased, the 

particle viscosity is decreased, then the diffusion coefficient of MGP (C7H14O6) is increased, 

thereby the depth of reaction region in the particle surface is increased from 20 nm to the whole 

volume of the particle.  

 The reaction-diffusion model developed here strongly links the occurrence of observed 

kinetics to particle viscosity at different relative humidity. This remains true even if an initial 

uniform particle viscosity is assumed. In this case, the diffusion of MGP (C7H14O6) (DMGP ) across 

the particle is uniform, and provided DMGP is based on binary aqueous-glucose viscosity through 

the Einstein-Stokes equation. The simulation results show that the MGP (C7H14O6) decay behavior 

is extremely sensitive to the diffusion coefficient of MGP (C7H14O6). A decrease in coefficient of 

MGP (C7H14O6) can slow down the kinetic. Under such conditions, it takes longer time for the 

MGP (C7H14O6) to diffuse into the particle surface due to the high particle viscosity. At 10% 

relative humidity condition, the value of 𝐷𝑀𝐺𝑃 is 100 times bigger than the diffusion coefficient of 

glucose established from binary aqueous-glucose viscosity with water activity of 0.1. At higher 

relative humidity condition, the value of 𝐷𝑀𝐺𝑃  is less than 20 times bigger than the diffusion 

coefficient of glucose established from binary aqueous-glucose viscosity with water activity of 

0.3. 10 The simulation results of the decay of MGP (C7H14O6) behavior reproduce the observed 
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experimental kinetic trends in Figure 3.3. It revealed two key findings: (1) heterogeneous oxidation 

of semi-solid particles is limited by the bulk diffusion. (2) the presence of water significantly 

increases water soluble aerosol reactivity by reducing the particle viscosity. 

 Madden et al have reported thin film experimental results for the heterogeneous oxidation 

of levoglucosan under different relative humidity conditions with offline analysis method. 9 The 

experimental results are opposite to the observed kinetics behavior in Figure 3.3. They found that 

the kinetics determined reactant concentration in the thin film are increased with the relative 

humidity decreased. For the thin film experiments, the heterogeneous decay of the levoglucosan 

reactant is not controlled by the diffusion of bulk reactant but more likely by surface phenomena. 

 Under real atmospheric condition, the life time of semi-solid particles may be inferred from 

the particle size, the value of reactive uptake coefficient and OH radical concentration. The kinetics 

result from Figure 3.3, supported by the reaction-diffusion model, suggests that at higher OH 

exposure, the reaction significantly slows down due to the slow bulk diffusion of reactant, 

therefore increasing the aerosol particles lifetime. The aerosol particles in high relative humidity 

environment may have a shorter lifetime. 

3.4 Conclusion 

The kinetics of the OH-initiated heterogeneous oxidation of methyl-β-D-glucopyranoside (MGP) 

(C7H14O6) show an initial rapid decay followed by a slower decay of the bulk reactant fraction. 

The observed kinetics behavior become more prominent as the surrounding relative humidity 

decreases. The initial decay rates of pure semi-solid MGP (C7H14O6) nanoparticles (up to an OH 

exposure of 0.51012 cm-3 s) are 6.73±0.06 10-13 for 10% RH, 1.19±0.17 10-12 for 20% RH and 

1.62±0.04 10-12 for 30% RH. The corresponding reactive uptake coefficients obtained from the 

observed loss of particle species are 0.76 ± 0.14 for 10% RH, 1.34 ± 0.39 for 20% RH and 1.83 ± 

0.09 for 30% RH. The bulk reactant decay rate coefficient is found to be independent on the gas 

phase molecular oxygen concentration. 

The rise rates and decay rates of normalized products signal are independent on relative 

humidity. This suggests that the presence of products in the bulk has no effect on kinetics behavior 

of heterogeneous oxidation of semi-solid particles. The very low level of product signals remained 
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in the reacted particles suggests that the primary products due to the reactions occurred at the 

particle surface are likely to further react to give small molecular species that vaporized into the 

gas phase. Under these conditions, diffusion of the bulk reactant from the particle inner core to its 

surface is expected to be the rate limiting steps. A reaction-diffusion kinetic model using systems 

of partial differential equations is developed to support this hypothesis.  

The reaction-diffusion kinetic model accounts for the changes in the diffusion coefficient 

of reactant in the particle. It suggests that the observed kinetics are consistent with particle 

viscosity, leading to uniform but very slow bulk diffusion of the reactant. The details of which 

processes take place are sensitive to the diffusion coefficient of bulk reactant using current best 

available literature data. The model currently only applies constant bulk diffusion and neglects 

particle size reduced due to the bulk mass reactive loss. The simulation results show that the bulk 

diffusion coefficient of reactant MGP (C7H14O6) is increased as the relative humidity increased, 

which is consistent with a recent report that the binary aqueous-monosaccharide viscosity is 

decreased as the relative humidity is increased. 
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Chapter 4: Effect of bulk composition on the heterogeneous oxidation of semi-

solid multi-component saccharide aerosols 

In the present work, we use lactose (C12H22O11) and MGP (methyl-β-D-glucopyranoside, C7H14O6) 

as model molecules to form highly oxygenated semi-solid organic particles. The goal of the present 

study is to investigate the impact of oligomer-induced viscosity changes on the mechanisms of 

oxidative aging of semi-solid particles through both online VUV-AMS (Vacuum-Ultraviolet 

Aerosol Mass Spectrometer) and offline GC-MS (Gas chromatograph Gas chromatograph 

interfaced with a Single Quadrupole Mass Spectrometer) analysis techniques using an atmospheric 

pressure flow-tube reactor. The decay rates of saccharide are determined by measuring the loss 

signal of saccharide in the particle phase as a function of OH exposure (time-integrated total 

concentration of OH radical). The observed decay rates in semi-solid particles are monitored for 

MGP:lactose molar ratios of 1:1, 2:1, 4:1, and 8:1. Implications of differences in decay rates of 

MGP and lactose over a range of molar ratio MGP:lactose are discussed in a diffusion-reaction 

kinetic model with a composition-dependent diffusion coefficient.  

4.1 Experimental results  

4.1.1Kinetic results 

4.1.1.1 VUV-AMS analysis kinetic results  

Figure 4.1 displays the relative abundances of unreactive MGP reactant remaining in the particle 

phase as a function of OH exposure at MGP:lactose molar ratios of 1:1 (red solid circles), 2:1 

(black solid squares), 4:1 (blue solid triangles), and 8:1 (green solid diamonds). The experimental 

data are reported for relative humidity at 30% RH. The relative signal of MGP is an average of 

five different mass fragments (m/z 60, m/z 73, m/z 121, m/z 144, m/z 163) identified in the aerosol 

mass spectra. The error bars are two standard deviation from the mean value. The solid lines are 

exponential fits to the experimental data with an exponential function below OH exposures of 

2.01012 molecules cm-3 s -1 in order to determine the rate constants for the reaction of OH with 

MGP at MGP:lactose molar ratios of 1:1, 2:1, 4:1, and 8:1, respectively. For high OH exposure, 

the mass fractions of MGP reactant remaining in the particle are 0.76 at 1:1 ratio, 0.65 at 2:1 ratio, 

0.39 at 4:1 and 0.26 at 8:1 ratio. The summary of rate constants and uptake coefficients is shown 
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in Table 4.1. The calculated uptake coefficients using initial decay kinetics only indicate the 

particle reactivity at low OH exposure. The error bars are two standard deviation from the 

individual measurements.  

Table 4. 1 Rate constants and uptake coefficients for MGP in OH oxidation of semi-solid MGP-

lactose particles at 30% RH obtained in online kinetics measurement. 

Molar ratio 

(MGP:lactose) 

Rate constant 

kMGP±2σ 

(cm s -1) 

Uptake coefficient 

(γMGP±2σ) 

1:1 

 
4.02±4.78 10-14 0.05±0.06 

2:1 2.24±1.10 10-13 0.31±0.15 

 

4:1 3.26±0.04 10-13 

 

0.48±0.01 

8:1 4.73±0.68 10-13 

 

0.73±0.10 

 

 

 

Figure 4. 1 Decay of MGP as a function of OH exposure obtained at MGP:lactose molar ratios of 1:1 (red solid 

circles), 2:1 (black solid squares), 4:1 (blue solid triangles), and 8:1 (green solid diamonds). The kinetics are measured 

using five ion peaks (m/z60, m/z73, m/z121, m/z144, m/z163). The error bars are 2σ about the mean value from the 

average of [MGP]/[MGP]0. The solid lines (red for 1:1 ratio, black for 2:1 ratio, blue for 4:1 ratio and green for 8:1 
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ratio) are exponential fits of the MGP experimental data for OH exposure below 2×1012 molecule cm-3 s-1 and 

extrapolated to higher OH exposure (dash lines). 

4.1.1.2 GC-MS analysis kinetic results 

Figure 4.2 displays the relative abundances of unreactive MGP (red solid circles) and lactose 

(black solid squares) remaining in the particle as a function of OH exposure at MGP:lactose molar 

ratios of (a) 1:1, (b) 2:1, and (c) 4:1. The experimental data are reported for relative humidity at 

30% RH. Within the experimental error bars, the observed MGP decay rate is close to that of 

lactose at MGP:lactose molar ratios of 1:1 and 2:1. At ratio 4:1, the initial lactose decay appears 

to be much slower than that of MGP reactant up to OH exposure of 2.0×1012 molecules cm-3 s -1. 

At high OH exposure, the mass fractions of unreacted reactants remaining in the particle are 0.92, 

0.77, 0.66 for MGP, and 0.87, 0.85, 0.66 for lactose at MGP:lactose molar ratios of 1:1, 2:1, and 

4:1, respectively. The solid lines are exponential fits to the experimental data with an exponential 

function up to OH exposures of 1.61012 molecules cm-3 s -1, 1.31012 molecules cm-3 s -1, 1.21012 

molecules cm-3 s -1 in order to determine the rate constants for the reaction of OH with MGP/lactose 

at MGP:lactose molar ratios of 1:1, 2:1, and 4:1, respectively. The summary of rate coefficients 

and effective uptake coefficients is displayed in Table 4.2.  

Table 4. 2 Rate constants and uptake coefficients for OH oxidation of semi-solid MGP-lactose 

particle at 30% RH obtained in offline kinetics measurement. 

Molar ratio 

(MGP:lactose) 

Rate constant 

kMGP±2σ 

(cm s -1) 

Uptake coefficient 

(γMGP±2σ) 

Rate constant 

kLac±2σ 

(cm3 s-1) 

Uptake coefficient 

(γLac±2σ) 

1:1 

 
1.63±0.66 10-13 

 

0.21±0.08 1.30±0.12 10-13 

 

0.17±0.02 

2:1 2.88±0.74 10-13 0.42±0.11 2.34±0.55 10-13 

 

0.34±0.08 

4:1 4.11±1.61 10-13 

  

1.06±0.25 0.94±0.50 10-13 

 

0.15±0.08 
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Figure 4. 2 The normalized concentration of unreacted MGP (red solid circles) and lactose (black filled squares) 

remaining in semi-solid MGP-lactose particles at 30% RH as a function of OH exposure obtained by GC-MS analysis 
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for MGP:lactose molar ratios of (a) 1:1; (b) 2:1; (c) 4:1 kinetics measurement. The error bars of 

[𝑠𝑎𝑐𝑐ℎ𝑎𝑟𝑖𝑑𝑒]
𝑡
[𝑠𝑎𝑐𝑐ℎ𝑎𝑟𝑖𝑑𝑒]

0
⁄  represent the maximum and minimum experimental values. The error bars of OH 

exposure are two standard deviation about the mean value of four GC-FID analysis measurement. The lines (red for 

MGP, black for lactose) are exponential fits of the experimental data at OH exposures below 1.6×1012 molecule cm-3 

s -1.  

4.1.2 Particle size characterization  

Figure 4.3 displays the surface-weighted particle size distribution for semi-solid saccharide 

particles obtained in both online experiment and offline experiment. The particle sizer scan of 

saccharide particles is from unreacted sample with MGP:lactose a molar ratio of 1:1. The average 

of particle surface-weighted diameter of online analysis sample is about 220 nm and that of offline 

analysis sample is about 360 nm. 

 

Figure 4. 3 Surface-weighted particle size distribution for unreacted saccharide particles with MGP:lactose a molar 

ratio of 1:1. The mean surface-weighted diameter and the total concentration of number particle size are 218.2 nm and 

3.05×105 #/cm3 for the VUV-AMS analysis sample (black dashed line) and 366.4 nm and 2.58×105 #/cm3 for the GC-

MS analysis sample (red dashed line). 

4.1.2.1 VUV-AMS analysis evolution of particle size characterization 

Figure 4.4 displays the absolute surface-weighted diameter (nm) as a function of OH exposure 

obtained at MGP:lactose molar ratios of 1:1 (red solid circles), 2:1 (black solid squares), 4:1 (blue 

solid up-triangles), and 8:1 (green solid down-triangles). These data are measured by Scanning 
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Mobility Particle Sizer (SMPS) measurement. The error bars are two standard deviation about 

triple time particle size data measurement. The typical surface-weighted mean diameter of the 

particles is about 220 nm for this study. There is no significant decrease on surface-weighted mean 

diameter as function of OH exposure for all ratios study.   

 

Figure 4. 4 Absolute surface weighted diameter as a function of OH exposure obtained at MGP:lactose molar ratios 

of 1:1 (red solid circles), 2:1 (black solid squares), 4:1 (blue solid up-triangles), and 8:1 (green solid down-triangles). 

The error bar is 2σ about mean value.  

Figure 4.5 displays relative single particle mass fraction remaining as a function of OH 

exposure obtained at MGP:lactose molar ratios of 1:1 (red solid circles), 2:1 (black solid squares), 

4:1 (blue solid up-triangles), and 8:1 (green solid down-triangles). All these data are measured by 

Scanning Mobility Particle Sizer. The error bars are two standard deviation about triple time 

particle size data collection. There is no significant decrease within error on relative single particle 

mass fraction remaining as a function of OH exposure for all ratios study.  
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Figure 4. 5 Relative single particle mass fraction remaining as a function of OH exposure obtained at MGP:lactose 

molar ratios of 1:1 (red solid circles), 2:1 (black solid squares), 4:1 (blue solid up-triangles), and 8:1 (green solid 

down-triangles). The error bar is 2σ about mean value. 

4.1.2.2 GC-MS analysis evolution of particle size characterization  

Figure 4.6 displays relative surface weighted diameter as a function of OH exposure obtained at 

MGP:lactose molar ratios of 1:1 (red solid circles), 2:1 (black solid squares), and 4:1 (blue solid 

triangles). These data are measured by Scanning Mobility Particle Sizer (SMPS) measurement. 

The error bars are two standard deviation about four time particle size data measurement. The 

typical surface-weighted mean diameter of the particles is about 360 nm for this study. There is no 

significant decrease on surface-weighted mean diameter as function of OH exposure for all ratios 

study.  
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Figure 4. 6 Relative surface weighted diameter as a function of OH exposure obtained at MGP:lactose molar ratios 

of 1:1 (red solid circles), 2:1 (black solid squares), 4:1 (blue solid triangles). The error bar is 2σ about mean value.  

Figure 4.7 displays relative single particle mass fraction remaining as a function of OH 

exposure obtained at MGP:lactose molar ratios of 1:1 (red solid circles), 2:1 (black solid squares), 

and 4:1 (blue solid up-triangles). These data are measured by Scanning Mobility Particle Sizer 

(SMPS) measurement. The error bars are two standard deviation about four time particle size data 

measurement. There is no significant decrease within error on relative single particle mass fraction 

remaining as a function of OH exposure for all ratios study.  
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Figure 4. 7 Relative single particle mass fraction remaining as a function of OH exposure obtained at MGP:lactose 

molar ratios of 1:1 (red solid circles), 2:1 (black solid squares), 4:1 (blue solid up-triangles). The error bar is 2σ about 

mean value.  

4.1.3 Products identification 

Figure 4.8 displays typical offline analysis of chromatograms obtained for the unreacted (black) 

and reacted (red) saccharides particle with MGP:lactose a molar ratio of 4:1 collected at the OH 

exposure of 1.21012 molecule cm-3 s -1.  
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Figure 4. 8 GC-MS chromatogram of the silylated saccharides from the OH-initiated oxidation of saccharides for 

MGP:lactose a molar ratio of  4 : 1 at the OH exposure of 1.21012 molecule cm-3 s -1. The reacted sample is red line 

and unreacted sample is black line. The retention time for internal standard xylose is 6.17 min and 6.83 min, for 

reactant MGP is 9.13 min, for reactant lactose is 12.79 min and 13.10 min, for glucose product is 10.09 min. The 

glucose product starts to be observed in the ratio 4:1 study. All the saccharides were identified with authentic samples. 

Figure 4.9 shows a normalized product glucose signal as a function of OH exposure 

identified in semi-solid MGP-lactose particles with a molar ratio of 4:1. The glucose signal starts 

to be detected at OH exposure of 4.01011 molecules cm-3 s -1 and reach a maximum at OH 

exposure of 6.01011 molecules cm-3 s-1. The glucose signal is relative stable between OH exposure 

of 1.01012 molecules cm-3 s -1 and 3.01012 molecules cm-3 s -1. The glucose signal starts to be 

reduced after OH exposure of 3.01012 molecules cm-3 s -1. 

 

Figure 4. 9 Normalized signal of glucose detected in semi-solid MGP-lactose particles at a molar ratio of 4:1 as a 

function of OH exposure. The error bars of normalized product signal represent the maximum and minimum 

experimental values. The error bars of OH exposure are two standard deviation about the mean value of four GC-FID 

analysis measurement. 
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4.2 Reaction-Diffusion model development  

4.2.1 Reaction-Diffusion model overview 

A. Model study of bulk composition effect on semisolid particle diffusion 

A reaction-diffusion kinetic model is developed in order to investigate the effect of composition-

dependent diffusion on heterogeneous reaction behaviors. The coupled partial differential 

equations are solved using numerical solver pdepe in Matlab software. 1, 2  

Detailed Reaction-Diffusion equations.  

The OH concentration at the particle surface is modeled using a multistep uptake mechanism: 3 

 𝑂𝐻𝑔 + 𝑠𝑖𝑡𝑒𝑙𝑎𝑐𝑡𝑜𝑠𝑒  
𝑘𝑎𝑑
→  𝑂𝐻𝑎𝑑−𝑙𝑎𝑐𝑡𝑜𝑠𝑒 

(R1) 

 𝑂𝐻𝑔 + 𝑠𝑖𝑡𝑒𝑀𝐺𝑃  
𝑘𝑎𝑑
→  𝑂𝐻𝑎𝑑−𝑀𝐺𝑃 

(R2) 

 𝑂𝐻𝑎𝑑−𝑙𝑎𝑐𝑡𝑜𝑠𝑒
𝑘𝑑𝑒𝑠
→   𝑂𝐻𝑔 + 𝑠𝑖𝑡𝑒𝑙𝑎𝑐𝑡𝑜𝑠𝑒 

(R3) 

 𝑂𝐻𝑎𝑑−𝑙𝑎𝑐𝑡𝑜𝑠𝑒
𝑘𝑑𝑒𝑠
→   𝑂𝐻𝑔 + 𝑠𝑖𝑡𝑒𝑙𝑎𝑐𝑡𝑜𝑠𝑒 

(R4) 

 𝑂𝐻𝑎𝑑−𝑙𝑎𝑡𝑜𝑠𝑒 + 𝑙𝑎𝑐𝑡𝑜𝑠𝑒
𝑘𝑂𝐻+𝑙𝑎𝑐𝑡𝑜𝑠𝑒
→         𝑃𝑟𝑜𝑑𝑢𝑐𝑡 + 𝐻2𝑂 + 𝑠𝑖𝑡𝑒𝑙𝑎𝑐𝑡𝑜𝑠𝑒 

(R5) 

 𝑂𝐻𝑎𝑑−𝑀𝐺𝑃 +𝑀𝐺𝑃
𝑘𝑂𝐻+𝑀𝐺𝑃
→       𝑃𝑟𝑜𝑑𝑢𝑐𝑡 + 𝐻2𝑂 + 𝑠𝑖𝑡𝑒𝑀𝐺𝑃 

(R6) 

where 𝑘𝑎𝑑  is the pseudo-first order rate coefficient of adsorption (10 s-1), 4 𝑘𝑑𝑒𝑠  is the rate 

coefficient of desorption (2.861010 s-1). 5 The rate coefficient for OH reacting with lactose 

𝑘𝑂𝐻+𝑙𝑎𝑐𝑡𝑜𝑠𝑒  is set to its value in aqueous solution: 5.1510-12 cm3 s-1. 6 𝑘𝑂𝐻+𝑀𝐺𝑃  , the rate 

coefficient for OH reacting with MGP in aqueous solution is 5.3110-12 cm3 s-1. 7 The above 

multiple steps describe the following microscopic process: first, the OH radicals in the gas phase 

adsorb onto a surface site. Site is one per saccharide at the surface of the particle. After adsorption, 

the OH radicals either desorb back into the gas phase or react by abstracting a hydrogen atom from 

saccharide which produces a water and another surface site. The mole fraction of surface site for 

MGP/lactose is the same as its bulk mole fraction. The experimental average OH concentration is 
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1.351011 molecules cm-3 for VUV-AMS analysis kinetic experiments and 8.701010 molecules 

cm-3 for GC-MS analysis kinetic experiments. The diffusion coefficient of OH radical in the 

particle phase (DOH) is set to be 110-9 cm2 s-1, which is close to the value of 𝐷𝐻2𝑂 for mixtures of 

citric acid (C6H8O7) and sucrose (C12H22O11) droplet at 30% RH. 8 The concentrations and 

diffusion coefficients of the saccharide molecules are assumed to be radially homogeneous before 

the reaction. The particles are assumed to have spherical symmetry with a radius of 100 nm for 

VUV-AMS analysis sample and 180 nm for GC-MS analysis sample. The reaction-diffusion 

equations written using spherical polar coordinates are as follows:  

 𝜕[𝑂𝐻]𝑎𝑑−𝐿𝑎𝑐
𝜕𝑡

=
𝐷𝑂𝐻
𝑟2

𝜕

𝜕𝑟
 (𝑟2

𝜕[𝑂𝐻]𝑎𝑑−𝐿𝑎𝑐
𝜕𝑟

) − 𝑘𝑂𝐻+𝐿𝑎𝑐[𝑂𝐻]𝑎𝑑−𝐿𝑎𝑐[𝑙𝑎𝑐𝑡𝑜𝑠𝑒] 
(1) 

 𝜕[𝑂𝐻]𝑎𝑑−𝑀𝐺𝑃
𝜕𝑡

=
𝐷𝑂𝐻
𝑟2

𝜕

𝜕𝑟
 (𝑟2

𝜕[𝑂𝐻]𝑎𝑑−𝑀𝐺𝑃
𝜕𝑟

) − 𝑘𝑂𝐻+𝑀𝐺𝑃[𝑂𝐻]𝑎𝑑−𝑀𝐺𝑃[𝑀𝐺𝑃] 
(2) 

 𝜕[𝑙𝑎𝑐𝑡𝑜𝑠𝑒]

𝜕𝑡
=
𝐷𝐿𝑎𝑐(𝑥𝐿𝑎𝑐)

𝑟2
𝜕

𝜕𝑟
 (𝑟2

𝜕[𝑙𝑎𝑐𝑡𝑜𝑠𝑒]

𝜕𝑟
) − 𝑘𝑂𝐻+𝐿𝑎𝑐[𝑙𝑎𝑐𝑡𝑜𝑠𝑒][𝑂𝐻]𝑎𝑑−𝐿𝑎𝑐 

(3) 

 𝜕[𝑀𝐺𝑃]

𝜕𝑡
=
𝐷𝑀𝐺𝑃(𝑥𝐿𝑎𝑐)

𝑟2
𝜕

𝜕𝑟
 (𝑟2

𝜕[𝑀𝐺𝑃]

𝜕𝑟
) − 𝑘𝑂𝐻+𝑀𝐺𝑃[𝑀𝐺𝑃][𝑂𝐻]𝑎𝑑−𝑀𝐺𝑃 

(4) 

A Vignes-type fit is used to parametrize the relationship between the diffusion coefficients 

of saccharides and bulk composition: 9 

 𝐷𝑀𝐺𝑃(𝑥𝑀𝐺𝑃)
30% 𝑅𝐻 = (𝐷𝑀𝐺𝑃

30% 𝑅𝐻)𝑥𝑀𝐺𝑃(𝐷𝑙𝑎𝑐𝑡𝑜𝑠𝑒
30% 𝑅𝐻)(1−𝑥𝑀𝐺𝑃) (5) 

where 𝐷𝑀𝐺𝑃
30% 𝑅𝐻 and 𝐷𝑙𝑎𝑐𝑡𝑜𝑠𝑒

30% 𝑅𝐻 are the diffusion coefficients of MGP and lactose in a binary aqueous 

droplet at 30% RH and  𝑥𝑀𝐺𝑃  is the mole fraction of MGP. 10 The diffusion coefficients of 

saccharides in the mixture semi-solid particles follow a logarithmic dependence on the mole 

fraction of monosaccharide component. The value of 𝐷𝑀𝐺𝑃
30% 𝑅𝐻 is 6.0010-13 cm2 s-1, which is 35 

times higher than the diffusion coefficient of glucose established using the S-E relationship 

through the binary aqueous-glucose viscosity at 30% RH. 11 The value of 𝐷𝑙𝑎𝑐𝑡𝑜𝑠𝑒
30% 𝑅𝐻 is the same as 

the diffusion coefficient of sucrose established from the binary aqueous-sucrose viscosity at 30% 

RH. 10 The summary of simulation parameters and rate constants is shown in Table 4.3. 
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Table 4. 3 Key simulation parameters and rate constant for mixture semisolid particles 

Parameter Value Description 

RH 30% Relative humidity 

[OH] 1.351011 cm-3 (online) 

8.701010 cm-3 (offline) 

Average experimental [OH] 

 

𝑟𝑝 100 nm (online sample) 

180 nm (offline sample) 

Radius of the particle 

𝑘𝑎𝑑 10 s-1 Pseudo-first order adsorption rate coefficient of OH. 4 

𝑘𝑑𝑒𝑠 2.86 1010 s-1 Desorption rate coefficient of OH. 5 

𝑘𝑂𝐻+𝑀𝐺𝑃 5.3110-12 cm3 s-1 Rate coefficient of OH+MGP in aqueous solution. 7 

𝑘𝑂𝐻+𝑙𝑎𝑐𝑡𝑜𝑠𝑒  5.1510-12 cm3 s-1 Rate coefficient of OH+lactose in aqueous solution. 6 

𝐷𝑂𝐻 110-9 cm2 s-1 Diffusion coefficient for OH. 8 

𝐷𝑀𝐺𝑃
30%𝑅𝐻  6.010-13 cm2 s-1 Diffusion coefficient of MGP with a water activity of 0.3. 

(Binary aqueous-glucose viscosity at 30% RH is 5.554 (log 

value), based on E-S equation, 𝐷𝑔𝑙𝑢𝑐𝑜𝑠𝑒
30%𝑅𝐻 =1.6910-14 m2 s-1). 11 

𝐷𝑙𝑎𝑐
30%𝑅𝐻  1.510-17 cm2 s-1 Diffusion coefficient of lactose with a water activity of 0.3. 

(Binary aqueous-sucrose viscosity at 30% RH is 8.526 (log 

value), based on E-S equation,  𝐷𝑠𝑢𝑐𝑟𝑜𝑠𝑒
30%𝑅𝐻 =1.5010-17 m2 s-1). 11 

𝑟𝑀𝐺𝑃 0.361nm Hydrodynamic Radius of MGP molecule. 12 

𝑟𝑙𝑎𝑐  0.433nm Hydrodynamic Radius of lactose molecule. 12 

 

4.2.2.1 VUV-AMS analysis kinetic model results 

Figure 4.10 shows the modeled mass fractions of reactant MGP remaining in the particle as a 

function of OH exposure for different MGP:lactose molar ratios of 1:1, 2:1, 4:1, and 8:1. The 

profiles reproduce those observed in the VUV-AMS analysis kinetics measurement of saccharides 

decay behaviors observed in Figure 4.1. At ratio 1:1, the modeled decay of MGP is relative faster 

than the observed occurrence up to OH exposure of 2.0×1012 molecule cm-3 s -1. In the VUV-AMS 

analysis kinetics measurement, the dry MGP-lactose particle stream after diffusion dryer (with less 

than 10% RH) were then directly mixing with 30% RH and reacting with OH radicals in the flow 

tube. It takes relative longer time for semi-solid MGP-lactose particles with ratio 1:1 to get 

equilibrium with surrounding 30% RH than those with ratio 2:1, 4:1 and 8:1. 11, 13 Davies and 

Wilson recently reported that 𝐷𝐻2𝑂 for citric acid:sucrose molar ratio of 1:1 at 20% RH is about 
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1.0×10-12 cm2 s-1. 8 By using this value of 𝐷𝐻2𝑂 calculated with  𝜏𝑒𝑞 =
𝑅𝑝
2

𝜋2𝐷𝑏
 (𝑅𝑝 is the particle 

radius, and 𝐷𝑏 is the water molecular diffusivity in the particle phase), it takes at least 10 s for a 

semi-solid particle with a radius of 100 nm to get equilibrium with surrounding RH. 13 In the flow 

tube, it takes much longer than 10 s for semi-solid MGP-lactose particles (ratio 1:1) to get 

equilibrium with surrounding 30% RH and the reaction is only 37 s here. The viscosity of semi-

solid MGP-lactose particles with ratio 1:1 is higher than that of particles estimated with a uniform 

water activity of 0.3 in the simulation. Therefore, there is a discrepancy between the experimental 

observation and modeled behavior in the low OH exposure at ratio 1:1. 

 

Figure 4. 10 Modeled total mass fraction of unreacted reactant MGP (solid lines) remaining in the particle as a 

function of OH exposure for different MGP:lactose molar ratios of 1:1 (red solid line), 2:1 (black solid line), 4:1 (blue 

solid line), and 8:1 (green solid line). The particle radius is 100 nm here. 𝐷𝑀𝐺𝑃0  is the assumed initial diffusion 

coefficient of MGP in saccharides particle over different molar ratios. 𝐷𝑀𝐺𝑃0 is 3.0010-15 cm2 s-1 at ratio 1:1. 𝐷𝑀𝐺𝑃0 

is 1.7510-14 cm2 s-1 at ratio 2:1. 𝐷𝑀𝐺𝑃0 is 7.2110-14 cm2 s-1 at ratio 4:1. 𝐷𝑀𝐺𝑃0 is 1.8510-13 cm2 s-1 at ratio 8:1. 

4.2.2.2 GC-MS analysis kinetic model results  

Figure 4.11 displays modeled mass fractions of unreacted MGP (solid lines) and lactose (dash 

lines) remaining in the particle as a function of OH exposure for MGP:lactose molar ratios of (a) 

1:1 (red), (b) 2:1 (black), and (c) 4:1 (blue). These modeled profiles reproduce the trends observed 

in the GC-MS analysis kinetics measurement of saccharides decay behaviors observed in Figure 

4.2. In the model, at ratio 1:1 and 2:1 the surface mole fraction of MGP/lactose reactive site is 
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equal to its bulk mole fraction. At ratio 4:1, the surface mole fraction of MGP is the same as its 

bulk mole fraction, but the lactose reactive site is reduced by a factor of 2 compared to its bulk 

mole fraction to reproduce the trend observed in Figure 4.2 (c). 

 

Figure 4. 11 Modeled mass fractions of unreacted MGP (solid lines) and lactose (dash lines) remaining in the 

particle as a function of OH exposure for MGP:lactose molar ratios of (a) 1:1 (red), (b) 2:1 (black), and (c) 4:1 (blue). 

𝐷𝑀𝐺𝑃0 is the assumed initial diffusion coefficient of MGP in the particle with different MGP:lactose molar ratios , 

which is radially homogeneous before the reaction. The diffusion coefficient of lactose is 0.83 of that of MGP. The 

diffusion coefficients of saccharides follow the Vignes-type relationship during the reaction. Here the particle radius 

is 180 nm. 

Figure 4.12 displays the modeled space-time plots of MGP concentration for MGP:lactose 

molar ratios of (a) 1:1, (b) 2:1, (c) 4:1 with a constant OH gas number density of 8.70×1010 cm-3. 

The particle radius is 180 nm and the reaction time is 46 s. In Figure 4.12 (a) At 46 s, the depleted 

MGP is observed to be only within the outermost 10 nm of the aerosol with its concentration being 

close to zero within top 0.3 nm of the particle. In Figure 4.12 (b) After 46 s, the MGP concentration 

decays occur 15 nm deeper into the particle bulk compared to that of MGP:lactose 1:1 ratio. The 

MGP concentration gradient is observed within the top 25 nm of the particle. In Figure 4.12 (c) it 

shows that a MGP concentration gradient is established within the outermost 50 nm of the particle 

after the reaction time of 46 s. The MGP concentration in the unreactive inner core remains 

homogeneously through the reaction. 
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Figure 4. 12 Modeled space-time plots of concentration of MGP for MGP:lactose molar ratios of (a) 1:1 (b) 2:1 and 

(c) 4:1 with a constant OH gas number density of  8.701010 cm-3. The particle radius is 180 nm and the reaction time 

is 46 s. 

Figure 4.13 shows simulated radial distribution and temporal evolution of the bulk 

diffusion coefficient of MGP in homogeneous multiple component particle for the model 

parameters shown in Table 4.2 for MGP:lactose molar ratios of (a) 1:1, (b) 2:1, (c) 4:1. The 

diffusion coefficient of saccharides is assumed to initially have a radially homogeneous profile. 
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The radial heterogeneity of particle diffusion is established to follow the Vignes-type relationship 

through the radial concentration gradient of MGP component resulting from reaction shown in 

Figure 4.12. In Figure 4.13 (a), the diffusion coefficient of MGP near the surface within 10 nm 

remain largely unaffected by the oxidation process. In Figure 4.13 (b), a diffusion coefficient 

gradient of MGP is observed within the top 25 nm of the particle. The diffusion coefficient of MGP 

is reduced by a factor of 40 from the inner core of particle compared to the surface of particle. 

Figure 4.13 (c) shows a more pronounced MGP diffusion coefficient gradient than those at ratio 

1:1 and 2:1. The observed diffusion gradient of MGP is within the outermost 50 nm of the particle. 

The diffusion coefficient of MGP is reduced by 2 orders of magnitude within the top 50 nm. 
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Figure 4. 13 Modeled space-time plots of diffusion coefficients of MGP for MGP:lactose molar ratios of (a) 1:1 (b) 

2:1 and (c) 4:1 with a constant OH gas number density of 8.70×1010 cm-3. The particle radius is 180 nm and reaction 

time is 46 s. 

4.3 Discussion and implication for heterogeneous chemistry 

In Table 4.1, as the MGP:lactose molar ratio is changed from 8:1 to 2:1, the value of γMGP is 

decreased by a factor of 2.4. In Table 4.2, as the MGP:lactose molar ratio is varied from 4:1 to 1:1, 

the value of γMGP is decreased by a factor of 5. From both VUV-AMS and GC-MS data analysis, 
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it shows that the reactant decay rate is greatly dependent on the bulk composition. In the semi-

solid particles, diffusion of the reactant from the particle bulk to its surface is expected to be the 

rate limiting step. 1 These decay behaviors can be interpreted by examination of the diffusion 

coefficients of saccharide in the system. The presence of high molecular weight component 

(lactose) in the bulk phase increases the viscosity of particle, therefore it reduces the bulk diffusion 

in the semi-solid particles. 11 Our results are consistent with a previous study of the ozonolysis of 

maleic acid in the mixture of maleic acid-sucrose semi-solid particles. 14  

In the Table 4.2, the value of γLac is smaller than that of the γMGP within 20% at ratio 1:1 

and 2:1. This reactivity of lactose/MGP is consistent with the lactose/MGP diffusion: the diffusion 

coefficient of lactose is less than 20% smaller than that of MGP in the same particle based on using 

S-E relationship: the difference on diffusion constant among the species in the same matrix media 

is inversely proportional to their radius. However, at ratio 4:1, the value of γLac is smaller than that 

of the γMGP by a factor of 7. In the model, it is found that the initial decay of saccharide reactant is 

not only limited by bulk diffusion but also the concentration of OH adsorbed onto the surface site 

of saccharide reactant. According to the S-E relationship, it is not possible that 𝐷𝐿𝑎𝑐 is more than 

one order of magnitude slower than 𝐷𝑀𝐺𝑃 in the same particle. In aqueous solution (as is the case 

for 𝐷𝑏𝑢𝑙𝑘 ≥ 1×10-6 cm2 s-1), the reactivity of OH toward MGP and lactose are similar. 6, 7, 15 Here 

the significant discrepancy between γMGP and γLac is therefore unlikely to be due to differences in 

reactivity or bulk diffusion. It is more likely that there is less chance for OH radicals to react with 

the lactose molecules at the surface of the particle. In our MGP-lactose aqueous droplets with ratio 

of 1:1 study, we report a similar result: the value of γLac is smaller than that of γMGP is by a factor 

of 13. The difference in MGP/lactose reactivity is due to there is a poor spatial overlap between 

the OH radicals and lactose at the gas-liquid interface since lactose has an exclusion layer of ~1 

nm at the interface. 16 The semi-solid MGP-lactose particles with ratio of 4:1 have a relatively low 

viscosity, which explains the product glucose signal starts to be detected in the condensed phase. 

Here the bulk diffusion (as is the case for 𝐷𝑏𝑢𝑙𝑘 ≥ 1×10-13 cm2 s-1) may be fast enough for 

partitioning of bulk reactant at the interface and in the bulk to happen. A relative high amount of 

MGP and the increase production of glucose near the surface may replace lactose to react with OH 

radicals at the gas-solid interfaces. In the model, the concentration of lactose at the surface of 

particle is reduced to be half of its bulk concentration in order to simulate the partitioning of lactose 
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at the gas-solid interface. The simulation result is able to reproduce the observed lactose decay 

behavior at ratio 4:1.  

Slow 𝐷𝑀𝐺𝑃  leads to a concentration gradient of MGP within the particle illustrated in 

Figure 4.12. That the MGP concentration at the surface of the particle is getting close to zero after 

reaction of 46 s is only observed in the semi-solid MGP-lactose particles with ratio of 1:1. Here 

the replenishment of MGP at the surface of particle is not competitive against surface reaction loss 

due to slow 𝐷𝑀𝐺𝑃 (as is the case for 𝐷𝑏𝑢𝑙𝑘 ≤ 3×10-15 cm2 s-1). At ratio 4:1, the MGP concentration 

gradient within the top ~50 nm of the particle decreases by 3 orders of magnitude. A relatively fast 

𝐷𝑀𝐺𝑃 (as is the case for 𝐷𝑏𝑢𝑙𝑘 ≥ 1×10-13 cm2 s-1) leads to efficient amount of MGP react with OH 

radicals at the surface of particle.  

Figure 4.13 shows the evolution of MGP diffusivity in the bulk of semi-solid MGP-lactose 

particle, which illustrates the extent of slow bulk diffusion close to the particle surface. This 

gradient of bulk diffusion is established through a change to the MGP mole fraction in the particle 

resulting from the difference on reactivity between MGP and lactose in the particle. The steepness 

of diffusion gradient is more pronounced at ratio 4:1. This is attributed to consider the surface 

mole fraction of partitioning component. The time-space MGP diffusivity distribution suggests 

that chemical oxidation processes in more complex semi-solid organic particles containing high-

molecule-weight species induce a slow diffusion at the diffusion “front”, which accounts for 

solidifying effect. This will be particularly important as the molecular components become more 

oxidized in semi-solid multi-component particles with a relatively low viscosity (𝐷𝑏𝑢𝑙𝑘 ≥ 1×10-13 

cm2 s-1). 

Isaacman et al reported that the reactive uptake coefficients of hydrocarbons in the motor 

oil particles are structure dependent. 17 The logarithm of the relative abundance of hydrocarbons 

as a function of OH exposure display steeper slopes, which indicate faster reaction rates. It is the 

rate of surface reaction rather than the diffusion rate (bulk to surface) determining the oxidation 

reaction rate in the motor oil particles.  

In the atmospheric semi-solid aerosols, the presence of high-molecular-weight molecule 

species is responsible for significantly reduced the viscosity of these complex mixture particles. 

As the oxidation goes forward, the less reactive large molecule species remaining at the surface 
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induce a particle surface viscosity decrease followed by forming a “hard skin” at the outer layer of 

particle. This “hard skin” acts as a protective shell against the oxidative aging process, which 

shields the reactive species underneath the surface reacting with gas phase oxidants, and thus the 

aged aerosols survive long in the atmosphere.  

4.4 Conclusion 

The reactive uptake coefficients of the OH-initiated heterogeneous oxidation of semi-solid MGP-

lactose particles reveals that the value of γMGP is decreased by a factor of 5 as the mole fraction of 

lactose is increased from 20% to 50%. Such a behavior is expected for molecules in the semi-solid 

particles where the bulk diffusion of reactants is the rate-limiting step. The 𝐷𝑀𝐺𝑃 is lowered by the 

viscosity of the particles with the increasing mole fraction of lactose. The difference in the values 

of γMGP and γLac appear to be consistent with the difference between 𝐷𝑀𝐺𝑃 and 𝐷𝐿𝑎𝑐 at ratio 1:1 

and ratio 1:1 study. The observed uptake coefficients suggest that the reactivity difference among 

the molecule species in the relatively high viscosity of semi-solid particles (𝐷𝑏𝑢𝑙𝑘 < 1×10-14 cm2 

s-1) can be estimated by its molecular size. However, in the case of semi-solid particles with 

relatively low viscosity (𝐷𝑏𝑢𝑙𝑘 ≥ 1×10-13 cm2 s-1), the value of γLac is smaller than that of γMGP by 

a factor of 7. The simulations suggest that the observed low reactivity of lactose is limited by a 

relative low surface mole fraction of lactose due to partitioning toward the bulk of particle.  

A simple Vignes relationship has been successfully applied to estimate the bulk diffusion 

within semi-solid MGP-lactose particles at 30% RH over a range of molar ratio between MGP and 

lactose. The model is capable to treat the changes in bulk diffusion account for composition 

dependence. The observed kinetics are consistent with the slow composition-dependent bulk 

diffusion, leading to a gradient concentration of reactive species across the particle. The gradient 

diffusion of reactive species near the surface bulk illustrates that a “hard skin” formed during 

oxidative aging of semi-solid particles, which would pronouncedly reduce the chemical loss rates 

in aging semi-solid particles at long reaction times. The kinetics and simulation results provide 

valuable insight into the influence of bulk components in determining diffusivity properties within 

semi-solid organic particles and the role of composition-dependent bulk diffusion in regulating the 

rate of heterogeneous oxidation of semi-solid organic particles. 
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Chapter 5: Effect of surface partitioning on the heterogeneous oxidation of 

saccharide aerosols 

In the present study, we have characterized the OH-initiated heterogeneous oxidation of equimolar 

mixed aqueous aerosols of two non-surface-active saccharides: a monosaccharide, β-methyl 

glucopyranoside (MGP), and a disaccharide, lactose, using an atmospheric-pressure flow tube at 

room temperature. The relative concentrations of the aerosol reactants and primary products are 

monitored by off-line analysis as a function of the time-integrated total concentration of OH radical. 

We found that the kinetic traces of the monosaccharide and disaccharide reactants are significantly 

different. To gain more detailed insights into this mechanism, Molecular dynamics simulations 

were carried out, allowing for prediction of concentration profiles of reactants near the air-water 

interface. Stochastic simulations using a simplified chemical model were also performed to support 

the interpretation of the data. Our experimental results appear to be consistent with the formation 

of a ~1 nm exclusion layer of disaccharides at the particle surface resulting in a more probable 

reaction of the monosaccharide with the OH radical.  

5.1 Experimental results  

5.1.1 Kinetic results 

5.1.1.1 OH oxidation of MGP-lactose aqueous droplets kinetics result 

Figure 5.1 shows the relative decay of MGP (red filled circles) and lactose (black filled squares) 

in MGP-lactose aqueous droplets as a function of OH exposure. Each point is the mean value 

obtained by triple GC-MS analysis of two particles samples. The error bars represent the maximum 

and minimum experimental values. The apparent disappearance rate constants for the MGP and 

lactose in the MGP-lactose aqueous droplets are determined from an exponential fit with all the 

experimental data. The observed decay rate for MGP is (4.67±1.04) 10-12 cm3 s-1 and for lactose 

is (3.44±0.85) 10-13 cm3 s-1. The error bars are 2-stardard deviations from the fit. The good 

exponential fit of the MGP decay trace suggests that the reaction proceeds under pseudo first order 

conditions where diffusion of the reactants is not the rate limiting phenomena in aqueous droplets. 

Here the decay rate value of MGP in aqueous droplets is close to that of MGP measured in aqueous 

solution (𝑘𝑂𝐻+𝑀𝐺𝑃=5.3110-12 cm3 s-1). 1 The decay rate of lactose is a factor of 10 times slower 
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than that of MGP. The reactive uptake coefficient for MGP is 5.02±1.12 which suggests that the 

reaction proceeds through a complex multistep radical chain mechanism, and the uptake 

coefficient for lactose is 0.39±0.10.  

 

Figure 5. 1 Relative signal of unreacted saccharides in the MGP-lactose aqueous droplets as a function of OH 

exposure. The red filled circles are the normalized signal of MGP and the black filled squares are that of lactose. The 

fit lines are fitting all the experimental data to an exponential decay in order to determine the rate constant for the 

reaction of saccharides with OH. The decay rate for MGP+OH is (4.67±1.04) 10-12 cm3 s-1. The decay rate for 

lactose+OH is (3.44±0.85) 10-13 cm3 s-1  

5.1.1.2 OH oxidation of lactose aqueous droplets kinetics result 

Figure 5.2 shows the normalized decay of lactose in the lactose aqueous droplets as a function of 

OH exposure. The decay of lactose follows a biexponential decay behavior with the shape 

𝐴𝑒−𝑘𝑓𝑎𝑠𝑡.<𝑂𝐻>𝑡.𝑡+𝐵𝑒−𝑘𝑠𝑙𝑜𝑤.<𝑂𝐻>𝑡.𝑡. The first component represents an acute fast-decaying lactose, 

with an initial fast decay rate constant 𝑘𝑓𝑎𝑠𝑡 and the second component represents a slow-decaying 

lactose, with a slow decay rate constant 𝑘𝑠𝑙𝑜𝑤 . The apparent fast disappearance rate constant 

(𝑘𝑓𝑎𝑠𝑡) for the lactose in aqueous droplets is (9.58±3.25) 10-12 cm3 s-1. The following slow 

disappearance rate constant (𝑘𝑠𝑙𝑜𝑤) is (1.56±1.52) 10-13 cm3 s-1. Here the initial fast decay of the 

lactose reactant (𝑘𝑓𝑎𝑠𝑡) is of the same order of magnitude as that observed for the MGP (𝑘𝑀𝐺𝑃= 

(4.67±1.04) ×10-12 cm3 s-1) in the MGP-lactose aqueous droplet kinetics result and corresponds to 
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an uptake coefficient of 7.75±3.25. The decay rate is found to decrease considerably for OH 

exposure larger than 2×1011 cm-3 s corresponding to an uptake coefficient of 0.13±0.12. The rate 

constants and uptake coefficients obtained from fit to the data are shown in Table 5.1  

 

Figure 5. 2 Relative signal of unreacted lactose in binary aqueous-lactose droplet as a function of OH exposure. The 

black line is a biexponential fit with the shape 𝐴𝑒−𝑘𝑓𝑎𝑠𝑡.<𝑂𝐻>𝑡.𝑡+𝐵𝑒−𝑘𝑠𝑙𝑜𝑤.<𝑂𝐻>𝑡.𝑡. The arrested initial fast decay rate 

of lactose (𝑘𝑓𝑎𝑠𝑡) is (9.58±3.25) 10-12 cm3 s-1. The following slow decay rate of lactose (𝑘𝑠𝑙𝑜𝑤) is (1.56±1.52) 10-13 

cm3 s-1.   

Table 5. 1 Rate constants and uptake coefficients for heterogeneous oxidation of saccharides 

aqueous droplet with OH radicals.  

Molar ratio 

(MGP:lactose) 

Rate constant 

kMGP±2σ 

(cm3 molecule-1 s -1) 

Uptake coefficient 

(γMGP±2σ) 

Rate constant 

kLac±2σ 

(cm3 molecule-1 s-1) 

Uptake coefficient 

(γLac±2σ) 

0:1 

 

---------- ----------- 9.58±2.01 10-12 

(fast decay) 

1.56±1.52 10-13  

(slow decay) 

7.75±3.25 

(fast decay) 

0.13±0.12 

(slow decay) 

1:1 4.67±1.04 10-12  5.02±1.12 3.44±0.85 10-13 0.39±0.10 
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5.1.2 Particle size characterization 

Figure 5.3 displays the surface-weighted particle size distribution for aqueous saccharide droplets. 

The particle sizer scan of aqueous saccharide droplets is from unreacted sample obtained in the 

MGP-lactose aqueous droplets (red dashed line) measurement and in the lactose aqueous droplets 

(black dashed line) measurement. The average of particle surface-weighted diameter is about 360 

nm. 

 

Figure 5. 3 Surface-weighted particle size distribution for unreacted saccharides containing aqueous droplets.  Pure 

lactose droplets (black dashed line): the mean surface-weighted diameter is 361.8 nm, and the total concentration of 

number particle size is 2.32105 #/cm3. Equimolar MGP-lactose aqueous droplets (red dashed line): the mean surface-

weighted diameter is 365.4 nm, and the total concentration of number particle size is 2.46105 #/cm3. 

5.1.2.1 Evolution of MGP-lactose aqueous droplets characterization 

Figure 5.4 displays relative surface weighted diameter (red solid circles) and relative single particle 

mass fraction (relative ratio of total mass/total number concentration, black solid circles) 

remaining as a function of OH exposure obtained in the MGP-lactose aqueous droplets 

measurement. These data are measured by Scanning Mobility Particle Sizer (SMPS) measurement. 

The error bars are two standard deviation about four times particle size data measurements. There 

is no significant decrease on surface-weighted mean diameter as function of OH exposure. There 
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is a slight increase within 20% on relative single particle mass fraction up to OH exposure of 

2×1011 cm-3 s then decrease to be a ratio value of 1.0. 

 

Figure 5. 4 Relative surface weighted diameter (red solid circles) and relative single particle mass fraction remaining 

(black solid circles) as a function of OH exposure obtained in the MGP-lactose aqueous droplets measurement. The 

error bar is 2σ about mean value.  

5.1.2.2 Evolution of lactose aqueous droplets characterization 

Figure 5.5 displays relative surface weighted diameter (red solid circles) and relative single particle 

mass fraction (relative ratio of total mass/total number concentration, black solid circles) 

remaining as a function of OH exposure obtained in the lactose aqueous droplets measurement. 

These data are measured by Scanning Mobility Particle Sizer (SMPS) measurement. The error bars 

are two standard deviation about four time particle size data measurement. There is no significant 

changes on surface-weighted mean diameter and relative single particle mass fraction as function 

of OH exposure.  
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Figure 5. 5 Relative surface weighted diameter (red solid circles) and relative single particle mass fraction remaining 

(black solid circles) as a function of OH exposure obtained in the lactose aqueous droplets measurement. The error 

bar is 2σ about mean value.  

5.1.3 Products identification 

5.1.3.1 OH oxidation of MGP-lactose aqueous droplets study 

The first-generation product of oxidation lactose with OH, glucose is detected in the condensed 

phase by GC-MS. Figure 5.6 shows the normalized glucose signal (blue solid triangles) as a 

function of OH exposure obtained in the MGP-lactose aqueous droplets kinetics measurement. 

The normalized signal S for glucose is fit to the following double exponential equation as a 

function of OH exposure < 𝑂𝐻 >𝑡. 𝑡 : 

 
S (< 𝑂𝐻 >𝑡. 𝑡) = (

𝑘1
𝑘2 − 𝑘1

) . (𝑒−𝑘1.<𝑂𝐻>𝑡.𝑡 − 𝑒−𝑘2.<𝑂𝐻>𝑡.𝑡) 
(1) 

The kinetics rate 𝑘1 and 𝑘2 are second-order rate constants for the rise and decay of glucose. The 

formation rate coefficient k1 is set to that of the MGP decay observed in Figure 5.1. The fit to the 

data returns a rate coefficient k2 of 9.37(±3.30) 10-13 cm3 s-1 for the glucose oxidation.  
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Figure 5. 6 Normalized yields of the detected glucose in the MGP-lactose aqueous droplets as a function of OH 

exposure. The blue line is fitting all the experimental data points with a double exponential function. k1 is set as 4.67 

10-12 cm3 s-1, which is rate constant for the reaction of MGP with OH in the MGP-lactose aqueous droplets. k2 is 

9.3710-13 cm3 s-1 in order to best fit the observed trend. 

5.1.3.2 OH oxidation of lactose aqueous droplets study  

Figure 5.7 shows the normalized glucose signal (blue solid triangles) exhibits a double exponential 

behavior with the shape (
𝑘1

𝑘2−𝑘1
) . (𝑒−𝑘1.<𝑂𝐻>𝑡.𝑡 − 𝑒−𝑘2.<𝑂𝐻>𝑡.𝑡) as a function of OH exposure as 

shown in Eq. (1). The glucose signals are observed during the oxidation of lactose aqueous 

aerosols. The rate constant for the rise of glucose, 𝑘1 is set to be the observed disappearance rate 

constant for lactose in the lactose aqueous droplets, 9.5810-12 cm3 s-1. The rate constant for the 

decay of glucose, the return 𝑘2 is 1.30 (±0.54) 10-12 cm3 s-1 in order to fit the observed behavior. 

The summary of fitted 𝑘1 and  𝑘2 for the evolution of normalized glucose signals identified in both 

ternary aqueous-MGP-lactose droplets and binary aqueous-lactose droplets is in Table 5.2. 
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Table 5. 2 The fitted kinetic parameters for the evolution of normalized glucose signals identified 

in both the MGP-lactose aqueous droplets and the lactose aqueous droplets. 

Molar ratio 

(MGP:lactose) 

Formation rate 

constant for glucose 

k1±2σ 

(cm3 molecule-1 s -1) 

Loss rate 

constant for glucose 

k2 ±2σ 

(cm3 molecule-1 s -1) 

0:1 9.58±2.01 10-12 9.37±3.30 10-13 cm3 s-1 

1:1 4.67±1.04 10-12  1.30±0.54 10-12 cm3 s-1 

 

 

Figure 5. 7 Normalized signal of detected glucose in the lactose aqueous droplets as a function of OH exposure. 

The blue line is a double exponential fit with the shape (
𝑘1

𝑘2−𝑘1
) . (𝑒−𝑘1.<𝑂𝐻>𝑡.𝑡 − 𝑒−𝑘2.<𝑂𝐻>𝑡.𝑡) to all the experimental 

data. The rate constant for the rise of glucose k1 is 9.5810-12 cm3 s-1, which is rate constant for the reaction of lactose 

with OH in binary aqueous-lactose aerosol. k2, the rate constant for the decay of glucose is 1.3010-12 cm3 s-1 in order 

to fit the observed trend. 

5.2 Molecular perspective of gas-liquid interfaces: learned from dynamic 

simulation results 

Molecular dynamics simulation (performed by T.M. Masaya) are applied to quantify the 

saccharides partitioning at the interface and estimate the length of the lactose exclusion layer. The 
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averaged normalized atoms occurrence profiles were obtained from analyzing a 110 ns production 

run for water, MGP, and lactose for 4 independent runs. Figure 5.8 displays the MGP and lactose 

profiles within the first 15 Å (1.5 nm) of the surface. The shading areas are one-standard deviation 

about the mean from the averaging of 4 independent profiles. The MGP and Lactose profiles are 

normalized to the area under the curves. The ratio between the areas of the water and saccharide 

profiles is kept to the ratio of water-to-saccharide molecules in the simulations. After 110 ns of 

simulation, the water molecules diffuse outside their initial boundaries. The position of the water 

surface is determined on both sides of the simulation box by the location at which the water profile 

derivative reaches 1% of its maximum value. The saccharide occurrence close to the water surface 

remains greater for MGP than for lactose. The MGP profile is found to be low at the surface and 

to increase rapidly within the first 10 Å (1 nm) of the air-water interface. The lactose profile is 

found to rapidly decrease close to the surface, generating an exclusion layer with no or very low 

lactose occurrence of up to 10 Å (1 nm). 2 

 

Figure 5. 8 Simulated averaged number of atoms occurrence at a given location found after analyzing a 110ns 

production simulation run for water (blue dashed line), MGP (green dotted line), and lactose (solid red line) for 4 

independent runs within 15 nm of the water surface. The shading areas are one standard deviation about the mean 

from the 4 independent profiles. The MGP and Lactose profiles are normalized by the area under the curve. 2 
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5.3 Reaction-diffusion kinetic model development  

5.3.1 Stochastic model overview 

A reaction-diffusion kinetic model was developed using Kineticscope software in order to 

investigate role of air-water interface plays in bulk aqueous chemistry. 3, 4 

(http://hinsberg.net/kineticscope) The particle is modeled with a radius of 100 nm. A stack of 200 

individual 100100 nm compartments that are 0.5 nm thick represents the center of particle to the 

surface of the particle. The outermost compartment represents the gas-particle interface and 

beneath of that represents the bulk region of the aerosol. A reactive site is defined as a MGP, 

lactose, or glucose molecule in the compartment. Species (i.e. molecules) can diffuse forward and 

back between the compartments. In order to simulate the partitioning of lactose at the gas-particle 

interface, lactose is allowed to diffuse only downward in the gas-particle interface. The number of 

outermost compartments selected as gas-particle interface represents the thickness of lactose 

exclusion layer in the surface of the aerosol. The diffusion coefficient of organic material for dilute 

aqueous solution is about 10-5 cm2 s-1. 5 Such high diffusion coefficient will lead to a very long 

simulation. Here the diffusion coefficients of MGP and lactose are applied on the order of 10-10 

cm2 s-1 which still lead to a well-mixed particle within a few microseconds. In order to have a 

shorter simulation, the bulk concentration of MGP and lactose are set only 11016 cm-3, two orders 

of magnitude smaller than the experimental number density. The OH gas density is of the order of 

11011 cm-3 and the total reaction time is 10s corresponding to an overall OH exposure of 11012 

cm-3 s-1. The summary of reaction and diffusion parameters used in the stochastic simulation is 

listed in the Table 5.3. Within each compartment, elementary chemical reaction steps describe the 

reaction of OH with MGP, lactose and glucose. The reaction rate coefficients for each elementary 

chemical reaction are set as that of aqueous solution. The chemistry is described as follows: 

 𝑂𝐻𝑔 + 𝑠𝑖𝑡𝑒 
𝑘𝑎𝑑
→  𝑂𝐻𝑎𝑑−𝑠𝑖𝑡𝑒 

(R1) 

 𝑂𝐻𝑎𝑑−𝑠𝑖𝑡𝑒
𝑘𝑑𝑒𝑠
→   𝑂𝐻𝑔 + 𝑠𝑖𝑡𝑒 

(R2) 

 
MGP + 𝑂𝐻𝑎𝑑−𝑠𝑖𝑡𝑒 

𝑘
→ Products 

(R3) 

 
Lactose + 𝑂𝐻𝑎𝑑−𝑠𝑖𝑡𝑒 

𝑘
→  Glucose 

(R4) 

 
Glucose + 𝑂𝐻𝑎𝑑−𝑠𝑖𝑡𝑒

𝑘
→  Products 

(R5) 
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 𝑂𝐻𝑔 + 𝑠𝑖𝑡𝑒 
𝑘𝑎𝑑
→  𝑂𝐻𝑎𝑑−𝑠𝑖𝑡𝑒 

(R6) 

 

Table 5. 3 Reaction and diffusion parameters used in the stochastic simulation of the heterogeneous 

reaction of OH radicals with the MGP-lactose aqueous droplets.  

 OH reaction rate coefficient 

(cm3 s-1) 

Bulk diffusion coefficient 

(cm2 s-1) 

OH adsorption rate  

(s-1) 

MGP 510-12 6.710-10 100 

Lactose 410-12 4.910-10 100 

Glucose 510-12 6.710-10 100 

Products -- 6.710-10 -- 

OH -- 10.010-10 -- 

 

5.3.2 Kinetic model results 

Figure 5.9 shows the overlap integrated model profiles of unreacted saccharide with experimental 

data in the well-mixed droplet as a function of OH exposure. The simulation was run for different 

thickness of the lactose exclusion layer. The best match is for a layer of 2nm. The thickness of the 

lactose exclusion layer has only a minimum effect on the MGP decay profile but strongly affects 

the lactose decay. Thicker exclusion layers lead to no observable decay of the lactose over the 

considered OH exposure range. 
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Figure 5. 9 Modeled mass of saccharides remaining in the aerosol as a function of OH exposure for MGP (red): 

lactose (black) a molar ratio 1:1 in aqueous droplet. All the lines are the modeled fit. A lactose exclusion layer of 

2nm (solid line) is in a best agreement with the experimental data. 

Figure 5.10 displays modeled space-time plots of lactose and MGP in the aqueous droplet 

(molar ratio 1:1) with a constant OH gas number density of 11011 cm-3. The y-axis is the radial 

distance from the core of the aerosol particle. The x-axis is the reaction time. The concentration of 

lactose and MGP within the droplet are homogenous through the whole reaction due to the fast 

diffusion of saccharides in the dilute aqueous droplet. The MGP is approximately completely 

consumed within 6 s. The concentration of lactose starts to be significantly reduced after 6s. There 

is no lactose molecules within 2 nm of the surface of droplet through the whole reaction. 

 

Figure 5. 10 Modeled space-time plots of concentration of lactose (left) and MGP (right) for Lactose:MGP a 

molar ratio of 1:1 aqueous droplet with a constant OH gas number density of 11011 cm-3. 

Figure 5.11 shows the number density of lactose (top, blue) and OH (bottom, red) as a 

function of the particle radius. The OH concentrations is found to decay very rapidly at the surface 

of the particle to reach zero after 3 to 4 nm. The lactose has an opposite profile. The poor overlap 

of the two profiles lead to a slow kinetic for OH+lactose reaction as only very few OH are reaching 

the lactose layer. The MD simulation in Figure 5.8 clearly shows that the MGP concentration is 

significantly higher at the interface than that of lactose. If the reaction rate of the OH radical with 

reactive species molecule at the gas-liquid interface is faster than that of the bulk reaction, then the 
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surface partitioning could lead to a large reactivity difference between the two saccharides. As the 

MGP diffusion to the interface is fast, the heterogeneous reaction rate will remain constant for 

MGP as the reaction progresses. At higher lactose and MGP number densities, the behavior is 

expected to remain the same although the dimension of the system will likely change. For a given 

OH exposure, higher MGP concentration in the particle could result in a slower lactose decay rate 

as more OH radicals react with the MGP at the interface. Keeping the lactose so far away from the 

surface is likely to lead to no reaction at all as the radical will react with the very concentrated 

MGP instead. 

 

Figure 5. 11 The number density of lactose (top, blue) and OH (bottom, red) as a function of the particle radius. 

5.4 Discussion and implication for atmospheric chemistry 

Quantitative studies of surface tension increments (STI) of several polyols suggest that higher-

order polyols like sucrose exhibits the largest positive STI (approximately completely excluded 

from the surface of water). 6 Figure 5.12 shows the polyol partitioning free energies is in an 

excellently linear dependence of solvent accessible surface area. The relationship between the 

partitioning free energy ∆𝐺𝑝 and surface-bulk partition coefficient 𝐾𝑝,2 can be related through the 

following equation: 
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 ∆𝐺𝑝 = −𝑅𝑇 ln𝐾𝑝,2 (2) 

Where surface-bulk partition coefficient for the solute (𝐾𝑝,2 =
𝑚2
𝜎

𝑚2
𝑏⁄ ), defined as the molar 

concentration ratio between the solute in the air-water interface and solute in bulk. R is 8.314 J 

mol-1 K-1 and T is the temperature on the Kelvin scale. The linear fit of the partitioning free energy 

∆𝐺𝑝 to the solvent accessible surface area (SASA) data not including sucrose is leading to:  

 ΔpG
o(kCal mol-1) = ASA(Å2)×0.013–3.08 (3) 

Figure 5.12 also displays the Gibbs free energies for MGP and lactose obtained using 

calculated SASA values and Eq. 3. The obtained ∆𝐺𝑝  values are 1.04 kCal mol-1 and 3.26 kCal 

mol-1 for MGP and lactose, respectively. For MGP this corresponds to a concentration at the 

interface about 6 times lower than that of the bulk. With a ∆𝐺𝑝 value higher than 3 kCal mol-1, 

lactose is likely not to be found at the interface. The calculation suggests that 𝐾𝑝,2 for MGP is 38 

times as much as that of lactose. Therefore, the concentration of MGP in the gas-particle interface 

is much higher than that of lactose. 

 

Figure 5. 12 The partitioning free energy ∆𝐺𝑝 for each polyol is plotted against the solvent accessible surface area 

(ASA) of that solute. The accessible solvent accessible surface area is calculated using Surface Racer 5 and the Gibbs 

free energy values (black dots) are from Pegran et al. 6 The solid red line is a linear fit (Eq. 3.) to the data up to 
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mannitol and extrapolated (red dashed line) up to lactose. The blue squares are interpolated and extrapolated Gibbs 

free energy values for MGP and lactose based on their calculated solvent accessible surface area. 

For aqueous phase chemistry study, as Figure 5.1 shows the decay rate of lactose is about 

10 times slower than that of MGP in the MGP-lactose aqueous droplets with a molar ratio 1:1. The 

reaction rate constant for OH+lactose and OH+MGP are almost the same in the aqueous solution. 

The decay rate of OH+MGP measured in aqueous droplet is close to the reaction rate of OH+MGP 

in aqueous solution. The reactive uptake coefficient observed for the MGP reactant is 5.02±1.12, 

which indicates a complex radical chain reaction where the OH radical is not the sole reactive 

species in the aqueous droplet. In aqueous droplets, where the diffusion is not a rate limiting step 

these radicals are likely to be present at the air-water interface as well as in the bulk. The reaction 

scheme may lead to a wide range of products with different partitioning properties. It is possible 

that some of these products have a higher affinity toward the air-water interface therefore limiting 

the access of the OH radical to the high lactose concentration in the bulk. 

 The binary aqueous lactose study is shown in Figure 5.2 and Figure 5.7. The fast-decaying 

rate of lactose starts to slow down where the product glucose signal rises the maximum at the OH 

exposure of 0.21012 molecule cm-3 s -1. The fast-decaying rate of lactose (𝑘𝑓𝑎𝑠𝑡=(9.58±3.25) 10-

12cm3s-1) is the same order of magnitude of the reaction rate of OH+lactose (𝑘𝑂𝐻+𝑙𝑎𝑐𝑡𝑜𝑠𝑒=5.1510-

12 cm3 s-1) in aqueous solution. The slow-decaying rate of lac constant (𝑘𝑠𝑙𝑜𝑤= (1.56±1.52) 10-13 

cm3 s-1) is close to that measured (𝑘𝐿𝑎𝑐=(3.44±0.85) 10-13 cm3 s-1) in ternary aqueous-MGP-

lactose droplets in Figure 5.1. The biexponential decays observed for the OH oxidation of binary 

aqueous-lactose droplets may be attributed to the formation of glucose as an oxidation product, 

migrating toward the interface, between the lactose and the surface.  

 The fitted formation rate of glucose in the MGP-lactose aqueous droplets in Figure 5.6 is 

fixed with the value of decay rate of MGP (𝑘𝑀𝐺𝑃=(4.67±1.04) ×10-12 cm3 s-1) obtained in Figure 

5.4. The fitted formation rate of glucose in binary aqueous-lactose droplets in Figure 5.7 is fixed 

with value of initial fast decay rate of lactose (𝑘𝑓𝑎𝑠𝑡=9.5810-12 cm3 s-1) obtained in the Figure 5.1. 

Both of the formation rates of glucose are the same order of magnitude as the reaction rate of 

lactose (𝑘𝑂𝐻+𝑙𝑎𝑐𝑡𝑜𝑠𝑒=5.1510-12 cm3 s-1) in aqueous solution. Both of the return decay rates of 

glucose are close to the order of magnitude as the decay rate of MGP measured in aqueous droplets. 
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This result is consistent with the similar reactive species with a similar partitioning coefficient at 

the interface.   

The experimental observed decay rates of both MGP and lactose combined with the 

molecular dynamic simulations suggest that partitioning could play a significant role on the 

reactivity of reactive species in aqueous aerosols. For well-mixed mixture particles, the reactive 

species molecules could compete to react with gas-phase oxidation at the gas-liquid interface 

which depends on the propensity of the reactive molecules to transport into the interface. This is 

particularly important as the molecular components become more oxidized with products 

generated.  

Wan and Yu 7 have reported the saccharide and polyols composition of atmospheric 

aerosols collected in urban centers in Hong Kong. The amount of levoglucosan, xylose, and 

fructose in the atmospheric aerosols are the most abundant monosaccharides during all the seasons. 

Disaccharides (trehalose) and trisaccharide (melezitose) are also found in the atmospheric aerosols 

in the fall season. Table 5.4 shows the SASA for these detected saccharides and the corresponding 

partitioning Gibbs free energy calculated using a linear fit equation (Eq. 3.) from the data reported 

by Pegran et al., and the fall abundance relatively to levoglucosan. 5, 6  

Table 5. 4 Relative abundance, solvent accessible surface area, and partitioning Gibbs free 

energy for detected saccharide in atmospheric aerosols. 7 

Saccharide Relative abundance in 

aerosols 

ASA (Å2) ΔpGo (kCal mol-1) 

Levoglucosan 1 268.78 0.41 

Xylose 0.98 276.39 0.51 

Fructose 0.21 311.12 0.97 

Trehalose 0.02 445.18 2.71 

Melezitose 0.14 635.02 5.18 

 

All the detected saccharides in Table 5.4Table 5. 4 display a positive Gibbs free energy 

and may be characterized as surface inactive compounds. The extrapolated values of ΔpG
o spam a 

very broad range corresponding to partitioning constants between 0.5 for levoglucosan and 1.6×10-
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4 for the trisaccharide melozitose. In such mixed particles, levoglucosan is present at the interface 

with relatively high concentrations while the trisaccharide is restricted to the bulk, likely with a 

large (>1 nm) exclusion layer. Because of the large range of partitioning properties, the interface 

displays a gradient of concentrations for each saccharide, with the monosaccharide having a higher 

concentration at the interface than the disaccharide and trisaccharide. The chemical composition 

of the interface and how it evolves under oxidative conditions will change the optical properties 

of the particles and their surface tension. This will ultimately affect the reflective property of the 

atmosphere and the process of cloud nucleation. For multicomponent aqueous aerosols, it becomes 

vital to understand the role of partitioning at the interface involved in the particle aging. Including 

such effects in atmospheric and cloud formation models may lead to dramatic changes in their 

predictive abilities.  

5.5 Conclusion 

The heterogeneous oxidation of the MGP-lactose aqueous droplets reveals a much higher reactive 

uptake coefficient for MGP than for lactose. In aqueous droplets, the bulk diffusion of the reactants 

is not to be the rate limiting step. The difference in reactive uptake coefficients appears to be 

consistent with the formation of a lactose exclusion layer at the surface of the particle. Molecular 

dynamic simulations suggest that there is formation of a ~1 nm lactose exclusion layer below the 

particle surface in the MGP-lactose aqueous droplets. The lactose abundance is low within the first 

few molecular layers of the air-water interface while that of the MGP is up to one order of 

magnitude larger. There is a higher probability of finding the MGP at the open water surface 

relatively to the lactose. 

The simple stochastic modeling shows that the observed kinetics trend can be reproduced 

if there is a sufficient amount of MGP within the lactose exclusion layer to react with the OH 

radicals. The decay of the lactose is found to be strongly dependent on the amount of radicals 

diffusing below the lactose exclusion layer. This developed model is found insufficient to 

reproduce the behavior observed for the heterogeneous OH oxidation of binary aqueous-lactose 

droplets. In this case, the formation of oxidation products and their diffusion into the exclusion 

layer may lead to a more complex kinetic behavior.  
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The study of the heterogeneous OH oxidation of the MGP-lactose aqueous droplets 

provides a further understanding the role of surface-bulk partitioning on aqueous aerosol 

chemistry. A full understanding of the elementary phenomena controlling the chemical 

transformation requires more detailed investigations of the reactivity of aerosols containing 

organic compounds with different degrees of oxidation. It is likely that the inclusion of surface 

partitioning in the chemistry of aqueous aerosols could have a transformative effect on the 

predictive ability of atmospheric models.  
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Chapter 6. Conclusion 

Heterogeneous oxidation of atmospheric aerosols is one of the least understood processes involved 

in the chemical aging (chemical oxidation) of atmospheric aerosols. This thesis mainly focuses on 

investigating the role of bulk diffusion in the heterogenous oxidation of semi-solid particles and 

figuring out the rate-limiting step in aqueous aerosol chemistry. The experiments were performed 

in an atmospheric pressure aerosol flow tube with online VUV-AMS (Vacuum-Ultraviolet Aerosol 

Mass Spectrometer) analysis technique and offline Teflon filter collection then analyzed using 

GC-MS (Gas chromatograph Gas chromatograph interfaced with a Single Quadrupole Mass 

Spectrometer) analysis technique. The organic particles used ranged from single component semi-

solid, multiple component semi-solid to liquid phase state. The monosaccharide (MGP, methyl-β-

D-glucopyranoside, C7H14O6) and disaccharide (lactose, C12H22O11) are chosen as model 

molecules to form highly oxygenated organic particles.  

 

6.1 The kinetics of OH+semi-solid saccharide particles  

The kinetics of the OH-initiated heterogeneous oxidation of MGP over a wide range of ambient 

relative humidity was studied in Chapter 3 with VUV-AMS analysis technique. 1 The observed 

kinetics behavior shows an initial rapid exponential decay followed by a slower decrease of the 

reactant fraction. The heterogeneous oxidation of MGP semi-solid particles is kinetically limited 

by the bulk diffusion of the reactant MGP (DMGP). The reactive uptake coefficient of MGP (γMGP) 

is increased by a factor of 2.4 as the surrounding relative humidity ranging from 10% to 30%, 

which can be explained by a decrease of particle viscosity and increase of bulk diffusivity due to 

moisture-induced viscosity reduction. The observed decay rate of MGP depends on the bulk 

diffusion coefficient of MGP, which can be described by a reaction-diffusion kinetic model with 

a constant diffusion coefficient.  

The heterogeneous oxidation of OH radicals with MGP-lactose semi-solid particles over 

different molar ratio of MGP:lactose changing from 1:1 to 4:1 at 30% relative humidity was 

studied in Chapter 4 using both VUV-AMS and GC-MS analysis techniques. 2 The value of γMGP 

is decreased by a factor of 5 as the molar ratio MGP:lactose is changed from 4:1 to 1:1. The value 

of γMGP shows a pronounced decrease with the mole fraction of lactose increased, which can be 
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explained by an increase of particle viscosity and decrease of MGP bulk diffusivity due to 

oligomer-induced viscosity increase. The values of γLact are smaller than those of MGP within 20% 

at ratio 1:1 and 2:1, which can be illustrated by the value of DLac is 20% smaller than that of DMGP. 

However, the value of γLac is smaller than that of γMGP by a factor of 7 at ratio 4:1. The observed 

low reactivity of lactose in the relatively high viscosity of semi-solid particles, which is interpreted 

by a relatively low surface mole fraction of lactose due to the partitioning of lactose toward the 

bulk of particle. 

A reaction-diffusion model with composition-dependent diffusion was applied to 

investigate the impact of oligomer on oxidation of semi-solid multi-component particles. This 

study demonstrates that Vignes-type equation may explain the changes in diffusivity altered by 

oligomerization. Simulation results suggest that a gradient diffusivity near the surface bulk and a 

decrease in particle surface viscosity in the oxidation of semi-solid multi-component particles. 

This model treatment allows prediction of the evolution of the diffusivity during oxidative aging 

of mixed organic multi-component aerosols. 

From this kinetics of OH+semi-solid saccharide particles study, now we have a better 

understanding of the role of bulk diffusion in determining the oxidation rate of reactive species in 

the semi-solid particles. This study highlights that the diffusion of the bulk reactant from the 

particle inner core to its surface is the rate-limiting step in oxidation of the semi-solid aerosols. 

The reactivity difference among the molecule species in the relatively high viscosity of semi-solid 

particles can be estimated by its molecular size. We successfully resolve composition-dependent 

bulk diffusion and temporal change of bulk diffusivity in the complex multi-component semi-solid 

particles. Our simulation results suggest that a “hard skin” (a decrease in the viscosity of particle 

surface) formed at the outer layer of particle in the oxidation of semi-solid multi-component 

particles containing oligomers. The chemical life-time of reactive species in the semi-solid 

particles can increase from seconds to days as the bulk diffusion of reactants decrease by multiple 

orders of magnitude in response to low relative humidity or oligomerization.  

6.2 The kinetics of OH+aqueous saccharide droplets  

The kinetics of the OH-initiated heterogeneous oxidation of the MGP-lactose aqueous droplets 

was studied in Chapter 5 using an offline analysis technique. 3 The measured kinetics result reveals 
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the value of γLac is smaller than that of γMGP is by a factor of 13. Molecular dynamic simulations 

suggest that there is formation of a ~1 nm lactose exclusion layer below the particle surface in the 

MGP-lactose aqueous droplets. The lactose abundance is low within the first few molecular layers 

of the air-water interface while that of the MGP is up to one order of magnitude larger. There is a 

higher probability of finding the MGP at the open water surface relatively to the lactose. A simple 

stochastic reaction-diffusion model was employed to explain the possible effect of lactose surface 

exclusion on the heterogeneous kinetics. A 2.5 nm length of lactose exclusion layers is able to 

reproduce the experimental trends, which is larger than that predicted by the MD simulations. 

Because of the fast reaction of the OH radical with the MGP, there is a poor spatial overlap of the 

OH radical at the interface with the lactose in the particle bulk.  

From this kinetics of OH+aqueous saccharide droplets study, now we have learned the 

critical importance of partitioning of bulk reactant at the gas-liquid interface in determining the 

reaction rate of reactive species in aqueous droplets, where the bulk diffusion of the reactants is 

not the rate limiting step any more. It is evident that gas-liquid interface is important to properly 

account for chemical transformations in aqueous droplets. The chemical life of reactive species in 

aqueous droplets depends on the relative concentrations close to the particle surface. These 

findings demonstrate that the inclusion of surface partitioning in the chemistry of aqueous aerosols 

could have a transformative effect on the predictive ability of atmospheric models.  
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