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The Superior Performing Asphalt Pavements (SuperpaveTM) asphalt concrete mix

design method was developed through Strategic Highway Program (SHRP) in 1993.

With the introduction of Superpave mix design, the Marshall method of mix design is

becoming obsolete for highway pavements.  Superpave implementation varies by state.

The WVDOH has implemented Superpave on all National Highway System projects

since 1997.  The decision regarding implementation of Superpave for low volume roads

in WV is still under review.

The primary objective of this research work was to compare the 19mm Superpave

and Base II Marshall design mixes in WV to supplement information required for

WVDOH to make a suitable decision regarding the implementation of Superpave for low

volume roads.

The Marshall and Superpave methods were compared by preparing similar mix

design with each method.  The mix designs from each method were cross-compared with

the conclusion that mixes developed under one method meet the criteria of the other

method.  In addition, the Asphalt Pavement Analyzer (APA) was used to evaluate rutting

performance of gyratory compacted samples in the laboratory.  The statistical analysis of

rut depth results indicated there is not enough evidence to conclude there is a significant

difference between the Marshall and Superpave mix design methods.  It can be concluded

that for the materials evaluated in this research, the Marshall and Superpave methods

produce interchangeable results.



iii

ACKNOWLEDGEMENTS

The author would like to express her gratitude to Dr. John Zaniewski, the author’s

advisor.  Without the guidance, and support, the author would never have had the

opportunity to pursue his Master of Science degree and participate in this research.

The author would also like to extend thanks to Dr. Ronald Eck and Dr. W. V.

Thayne, the author’s other committee members for their assistance and support during the

research work and in classes.

Special thanks are given to J.F. Allen Company, Buckhannon, WV, for all their

assistance throughout the project.

Final thanks are given to the author’s family and her fiancé Murali. Their love and

support have been a source of strength and motivation.



iv

Table of Contents
ABSTRACT ii

CHAPTER 1 INTRODUCTION 1

1.1 INTRODUCTION 1

1.2 PROBLEM STATEMENT 1

1.3 OBJECTIVES 2

1.4 SCOPE OF WORK AND LIMITATIONS 2

1.5 THESIS OVERVIEW 3

CHAPTER 2 LITERATURE REVIEW 4

2.1 INTRODUCTION 4

2.2 MARSHALL MIX DESIGN 4

2.2.1 MATERIAL SELECTION 4

2.2.2 AGGREGATE GRADATION 5

2.2.3 SPECIMEN FABRICATION 6

2.2.4 VOLUMETRIC ANALYSIS 6

2.2.5 STABILITY AND FLOW MEASUREMENTS 7

2.2.6 OPTIMUM ASPHALT CONTENT 8

2.3 SUPERPAVE MIX DESIGN 9

2.3.1 GYRATORY COMPACTOR 9

2.3.2 MATERIAL SELECTION 10

2.3.3 DESIGN AGGREGATE STRUCTURE 11

2.3.4 DESIGN ASPHALT BINDER CONTENT 17

2.3.5 MOISTURE SENSITIVITY OF DESIGN MIXTURE 18

2.5 ASPHALT PAVEMENT ANALYZER 18

2.5.1 Evaluation of Permanent Deformation: 19

2.5.2 Results of Ruggedness Study of the APA 20

2.5.3 Effect of Compaction and Specimen Type 21

2.5.4 Effect of Position 21

2.6 Conclusions 21

CHAPTER 3 RESEARCH METHODOLOGY 23

3.1 INTRODUCTION 23

3.2 MATERIALS 23

3.3 AGGREGATE PREPARATION 23



v

3.4 SIEVE ANALYSIS 23

3.5 SPECIFIC GRAVITY OF AGGREGATES 24

3.6 AGGREGATE CONSENSUS PROPERTY TESTS 25

3.7 MARSHALL MIX DESIGN PROCEDURE 25

3.7.1 AGGREGATE GRADATION 26

3.7.2 SPECIFIC GRAVITY 26

3.7.3 THEORETICAL MAXIMUM SPECIFIC GRAVITY 27

3.7.4 MARSHALL STABILITY AND FLOW TEST 27

3.7.5 TABULATING AND PLOTTING TEST RESULTS 28

3.7.6 DETERMINATION OF DESIGN ASPHALT CONTENT 29

3.8 SUPERPAVE MIX DESIGN PROCEDURE 29

3.8.1 AGGREGATE TRIAL BLENDS 29

3.8.2 DESIGN AGGREGATE STRUCTURE 30

3.8.3 DESIGN ASPHALT CONTENT 33

3.9 SPECIMENS FOR APA TESTING 36

3.10 ASPHALT PAVEMENT ANALYZER RUNS 36

3.11 TESTs FOR OTHER CRITERIA 37

CHAPTER 4 RESULT AND ANALYSIS 38

CHAPTER 5 CONCLUSIONS AND RECOMMENDATIONS 41

5.1 CONCLUSIONS 41

5.2 RECOMMENDATIONS 41

5.3 FUTURE RESEARCH 42

REFERENCES 43

APPENDIX A  AGGREGATE TESTS AND PROPERTIES 46

APPENDIX B Marshall Mix Design Data and Analysis 49

APPENDIX C Superpave Mix Design Data and Analysis 58

APPENDIX D  Data and Analysis for Exchanging Superpave and Marshall Mix Designs 68



vi

List of Figures

Fig. 2.1 Superpave Gyratory Compactor 10

Figure 3.1 Marshall gradation plot with control points 26

Fig 4.1 Output of Analysis of Variance 39

Figure B.1 Asphalt content versus Density – Marshall heavy 52

Figure B.2 Asphalt content versus Stability – Marshall heavy traffic mix. 52

Figure B.3 Asphalt content versus Flow – Marshall heavy traffic mix 53

Figure B.4 Asphalt content versus VTM – Marshall heavy traffic mix 53

Figure B.5 Asphalt content versus VMA – Marshall heavy traffic mix 54

Figure B.6 Asphalt content versus VFA –Marshall heavy traffic mix. 54

Figure B. 7 Asphalt content versus density, Marshall medium traffic mix. 55

Figure B.8 Asphalt content versus Stability – Marshall medium traffic mix. 55

Figure B.9 Asphalt content versus Flow – Marshall light traffic level 56

Figure B.10 Asphalt content versus Air voids –Marshall medium traffic mix. 56

Figure B.11 Asphalt content versus VMA – Marshall light traffic mix. 57

Figure B.12 Asphalt content versus VFA – Marshall 57

Figure C.1 Asphalt content versus Air voids-Superpave heavy traffic mix. 60

Figure C.2 Asphalt content versus VMA-Superpave heavy traffic mix. 60

Figure C.3 Asphalt content versus Percent Gmm at Nd-Superpave heavy traffic mix 61

Figure C.4 Asphalt content versus VFA – Superpave heavy traffic mix. 61

Figure C.5 Asphalt content versus Air voids-Superpave medium traffic mix. 63

Figure C.6 Asphalt content versus VMA-Superpave medium traffic level 63

Figure C.7 Asphalt content versus Percent of Gmm at Nd-Superpave medium

traffic mix 64



vii

Figure C.8 Asphalt content versus VFA-Superpave medium traffic mix. 64

Figure C.9 Asphalt content versus Air voids-Supeprave light traffic mix. 66

Fgure C.10 Asphalt content versus VMA-Superpave light traffic mix. 66

Figure C.11 Asphalt content versus percent Gmm at Nd-Supeprave light traffic mix. 67

Figure C.12 Asphalt content versus VFA - Superpave light traffic level 67

List of Tables

Table 2.1 Tolerance Limits of Master Gradation Range for Base II Mix-WVDOH

Standard Specifications 5

Table 2.2 Stability Correlation Ratios from AASHTO T245 8

Table 2.3 Marshall Mix Design Criteria (WVDOH MP 401.02.22). 9

Table 2.4 Superpave Aggregate Consensus Property Requirements as set forth by

WVDOH 12

Table 2.5 Gradation Specifications for 19mm Nominal Maximum Size 13

Table 2.6 Superpave Compaction Criteria (WVDOH MP 401.02.28) 15

Table 2.7 Superpave Volumetric Mix Design Criteria (WVDOH MP 401.02.28) 18

Table 2.8 APA Specifications (APAC Procedure) 20

Table 3.1 Washed Sieve Analysis for Material Passing #200 Sieve. 24

Table 3.2 Dry Sieve Gradation Analysis Results. 24

Table 3.3 Specific Gravity and Absorption Values. 24

Table 3.4 Average Consensus Property Test Results for Individual Aggregates 25

Table 3.6 Maximum Theoretical Specific Gravity for Marshall Mix Designs. 27

Table 3.7 Volumetric Parameters for Marshall Heavy Traffic Mix 28

Table 3.8 Volumetric Parameters for Marshall Medium Traffic Mix 28

Table 3.9 Summary of Marshall Mix Designs 29



viii

Table 3.10 Trial Blends for Evaluation of Aggregate Structure 32

Table 3.11 Trial Blends Bulk and Apparent Specific Gravity 32

Table 3.12 Theoretical Maximum Specific Gravity for Superpave Trial Blends 32

Table 3.13 Trial Blends Compaction Data 32

Table 3.14 Adjusted Volumetric Parameters for Superpave Trial Blends 32

Table 3.15 Blend 1 Volumetric Parameters for Medium and Light Traffic Level Mix

Designs 33

Table 3.16 Adjusted Volumetric Parameters for Medium and Light Traffic Level Mix

Designs 33

Table 3.17 Average Gmm Values for Superpave Mixes 34

Table 3.18. Volumetric Data for Superpave Heavy Traffic Level. 34

Table 3.19 Volumetric Data for Superpave Medium Traffic Level 35

Table 3.20 Volumetric Data for Superpave Light Traffic Level 35

Table 3.21 Summary of Superpave Mix Designs. 35

Table 3.19 Treatments Used in Experimental Design 36

Table 3.20 Rut Depth Results. 37

Table 4.1 Confidence Interval Computed for Various Parameters 40

Table A.1 Gradation Data for Aggregates 46

Table A.2 Specific Gravity of Aggregates 47

Table A.3. Aggregate Consensus Property Tests 48

Table B.1 Theoretical Maximum Specific Gravity Calculations 49

Table B.2 Marshall Heavy Traffic Level Mix Design 50

Table B.3 Marshall Medium Traffic Mix Design 51

Table C.1 Theoretical Specific Gravity for Trial Blends 58

Table C.2 Bulk Specific Gravity for Trial Blends 58



ix

Table C.3 Theoretical Maximum Specific Gravity Calculations for Superpave Heavy

Traffic Mix 59

Table C.4 Bulk Specific Gravity for Superpave Heavy Traffic Level Mix 59

Table C.5 Blend Bulk Specific Gravity Calculations –Superpave

Medium Traffic Mix. 62

Table C.6 Theoretical maximum Specific Gravity Calculations-Superpave

Medium Traffic Mix 62

Table C.7 Bulk Specific Gravity-Superpave Medium Traffic Mix. 62

Table C.8  Blend Bulk Specific Gravity Calculations –Superpave Light Traffic Mix. 65

Table C.9 Theoretical Maximum Specific Gravity Calculations-Superpave

Light Traffic Mix. 65

Table C.10 Bulk Specific Gravity-Superpave Light Traffic Mix. 65

Table D.1 Marshall Mix Designs with Superpave Methodology 68

Table D.2 Superpave Mix Designs with Marshall Methodology 69



1

CHAPTER 1 INTRODUCTION

1.1 INTRODUCTION

Most hot mix asphalt (HMA) produced during the 50 years between the 1940s

and mid 1990s were designed using the Marshall or Hveem methods.  Increases in traffic

volumes and heavier loads became initiative for the Strategic Highway Research Program

(SHRP) in 1988.  After a five year of effort, a new mix design, Superior Performing

Asphalt Pavements (Superpave)TM, was developed.  Superpave takes into consideration

the factors that are responsible for the typical distresses on asphalt pavements: rutting,

fatigue and thermal cracking. With the introduction of Superpave mix design, the

Marshall method of mix design is becoming obsolete for highway pavements.

Superpave implementation varies by state. Some have completely switched over

to the national Superpave standards.  Others have implemented the Superpave concepts,

but have adjusted criteria to suit local conditions. Others have partially implemented

Superpave for some projects but are using their legacy method for other projects.  Finally,

two states, California and Nevada, are continuing to use legacy methods.   The West

Virginia Division of Highways (WVDOH), constructed its first Superpave project on I-79

in 1997. Since then, WVDOH has implemented Superpave on all National Highway

System (NHS) projects.  The decision regarding implementation of Superpave for

non-NHS roads in West Virginia is still under review.  The primary objective of this

research work was to compare the Superpave and Marshall design mixes in West

Virginia to supplement information required for WVDOH to make a suitable decision

regarding the implementation of Superpave for low volume roads.

1.2 PROBLEM STATEMENT

One of the advantages of the Marshall mix design method in West Virginia is that

the performance of the mixes is known for local conditions and materials. There are no

Superpave projects for low volume roads in West Virginia to evaluate the performance of

mixes. An investigation is needed to compare the performance of Superpave and

Marshall mix design methods, to support replacement of conventional mix design with

the new mix design. This research work compared the Superpave and Marshall mixes in



2

West Virginia using the Asphalt Pavement Analyzer (APA) to evaluate rutting

performance in the laboratory.  Mix designs were prepared under the Marshall and

Superpave methodologies.  The resulting Marshall mix designs were evaluated under the

Superpave criteria, and vice versa.  If the mixes prepared under the Superpave method

met the Marshall criteria, it was hypothesized that these mixes would perform well in the

field. If the mixes prepared under the Marshall method pass the Superpave criteria, it was

hypothesized that contractors would not encounter any undue hardships in designing and

constructing pavements to the Superpave criteria.

1.3 OBJECTIVES

The objective of this research was to compare 19 mm Superpave and Base II

Marshall mixes in West Virginia. The primary area of interest for this comparison was

for medium and light traffic volume loads since the WVDOH has not implemented

Superpave for these traffic levels. The research included mix designs for high traffic

volume roads for completeness and to provide insight on how the research methodology

would rank these mixes.

1.4 SCOPE OF WORK AND LIMITATIONS

In this research work 19mm Superpave and Base II Marshall mixes were designed

for Heavy, Medium, and Light traffic levels.  Marshall and Superpave mixes were

designed from locally available materials.  The Marshall and Superpave mix design

procedures of the West Virginia Division of Highways (WVDOH) were followed.

Gyratory compactor was used to make the Asphalt Pavement Analyzer (APA) samples to

evaluate permanent deformation (rutting).  Results from tests with different aggregates,

gradations, and binder types show that the APA is sensitive to these factors and,

therefore, has a potential to predict relative rutting of hot mix asphalt mixtures ( 2 ).

The experimental design used for this research work provides comparison

between the mixes, traffic levels and their interactions. The work was limited to Base-II

mixes in West Virginia and to one source of aggregate and asphalt cement. The 19mm

nominal maximum size aggregate was used for the two mix design methods.  The J.F.
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Allen Company, Buckhannon, WV, provided the aggregate used for the research.  The

asphalt used was PG 70-22 from the source Marathon Ashland.

The work was also limited to laboratory testing.  Field evaluation could not be

performed since WVDOH has not constructed medium and light traffic volume

Superpave mixes.

1.5 THESIS OVERVIEW

This thesis is organized into five chapters and five appendices. After the first

chapter of Introduction, Chapter 2 is a summary of literature review.  Superpave and

Marshall mix design procedures are outlined with standard test procedures and

specifications required by the WVDOH.  The method of rut testing with the Asphalt

Pavement Analyzer (APA), as specified by the device manufacturer, is explained in

detail. The research methodology and procedures for preparing, testing and analyzing

samples is presented in Chapter 3.  Chapter 4 presents the results of the experimental

design and the analysis of the results.  Chapter 5 concludes the thesis with the

conclusions and recommendations.

The aggregate test data are presented in the Appendix A.  Detailed test data and

interim calculations of Marshall and Superpave mix designs are presented in Appendix B

and Appendix C respectively. Appendix D presents the data for evaluating Superpave

mix design with Marshall methodology and vice versa.
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CHAPTER 2 LITERATURE REVIEW

2.1 INTRODUCTION

It was in 600’s B.C. that the first Asphalt road was paved in Babylon.  The first

bituminous Hot Mix Asphalt (HMA) pavement in the United States was built in

Washington D.C, in 1873.  In the years between the 1940s and mid 1990s, most of the

hot mix asphalt projects  in United States were designed using the Marshall and Hveem

methods. According to survey in 1984, approximately 75 percent of the State Highway

Departments used some variation of the Marshall method while the remaining 25 percent

used some variation of Hveem method (4).  In 1995, a few states began to use the

Superpave design procedures (4).  The 2000 Superpave Implementation survey shows

that almost every state in United States is at some stage or the other in Superpave

implementation ( 8).

The Superpave and Marshall mix design methods, the Gyratory Compaction, and

Asphalt Pavement Analyzer (APA) are discussed in this chapter.

2.2 MARSHALL MIX DESIGN

Bruce Marshall, formerly the Bituminous Engineer with the Mississippi State

Highway Department, developed the original concept of the Marshall Method of

designing asphalt pavements.  The present form of Marshall mix design method

originated from an investigation started by the U.S Army Corps of Engineers in 1943 (4).

The purpose of the Marshall method is to determine the optimum asphalt content for a

particular blend of aggregates and traffic level.  The optimum asphalt content is

determined by the ability of a mix to satisfy stability, flow, and volumetric properties.

2.2.1 MATERIAL SELECTION

The materials used in the mix design should conform to the requirements set forth

in the Standard Specifications of WVDOH. Specifications for aggregate are covered

under sections 702 and 703 while asphalt cement is covered under section 705.
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2.2.2 AGGREGATE GRADATION

The aggregate blend gradation requirements for base II mixes is presented in

Table 2.1 (WVDOH Standard Specifications; Section 401).  Aggregates meeting these

requirements are not placed in single stockpile, as this would promote segregation.

Therefore, stockpiles must be blended to meet the gradation specifications. Equation 2.1

is used to estimate the blended gradation from multiple stockpiles.

Table 2.1 Tolerance Limits of Master Gradation Range for Base II Mix-WVDOH
Standard Specifications

 SIEVE BASE II
SIZE (mm) LEVEL

25 100
19 90-100

12.5 90 max
9.5
4.75
2.36 20-50
1.18
0.600
0.300
0.075 2.0-8.0

....+++= CcBbAap                            (2.1)

where,

p = the percent of material passing a given sieve for the combined aggregates A, B, C….;

A, B, C,… = the percent of material passing a given sieve for each aggregate A, B, C,…;

a,b,c,… = proportions of aggregates A, B, C,… to be used in the blend.

The specific gravity for the blend is computed as:

n

n

n

G
P

G
P

G
P

PPP
G

+++

+++
=

...

...

2

2

1

1

21                           (2.2)

where,
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G = blend specific gravity;

G1, G2,…Gn =  specific gravity values for fraction 1, 2,…n; and

P1, P2,…Pn = weight percentages of fraction 1,2,…n.

2.2.3 SPECIMEN FABRICATION

For determining the design asphalt content for a particular blend of aggregates by

the Marshall method, a series of test specimens are required to include a range of asphalt

contents of at least 2.0%, at intervals not to exceed 0.5%.  Three specimens are required

for each asphalt content used in the design.  The standard method for compacting the test

specimens is to immediately compact them after mixing process is completed.  The

WVDOH requires that the specimens are oven aged for two hours.  The WVDOH uses

compaction effort of 50 and 75 blows per side for medium and heavy traffic levels,

respectively.  WVDOH uses the medium traffic level procedures for light traffic levels.

At least one specimen is required at the estimated asphalt content to determine the

maximum specific gravity (AASHTO T209).   WVDOH requires two maximum specific

gravity samples.  These samples are prepared at the estimated asphalt content for the mix.

2.2.4 VOLUMETRIC ANALYSIS

The bulk specific gravity of the compacted samples is measured and used with the

maximum theoretical specific gravity to perform the volumetric analysis.  The volumetric

parameters and formulae for their calculation are:

( )







 −
−=

sb

bmb

G
PG

VMA
1

1100                            (2.3)

1001 







−=

mm

mb

G
G

VTM                                      (2.4)

100×−=
VMA

VTMVMAVFA                                (2.5)

where,

VMA = Volume of voids in mineral aggregate;
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Gmb = Bulk specific gravity of compacted mixture;

Pb = Asphalt content;

Gsb = Bulk specific gravity of aggregate;

VTM = Air voids in compacted mixture:

Gmm = Theoretical maximum specific gravity; and

VFA = Voids filled with asphalt.

Since the theoretical maximum specific gravity (Gmm) is only measured for one

asphalt content (preferably near the optimum), its value at the other asphalt contents is

computed as:

b

b

mm

b
se

G
P

G

P
G

−

−
=

1
1

                                            (2.6)

b

b

se

b
mm

G
P

G
P

G ''
'

1
1

+
−

=                                         (2.7)

where,

Gse = Effective specific gravity of aggregates;

Gmm = Theoretical maximum specific gravity measured;

Pb = Asphalt content used for Gmm samples;

'
mmG  = Calculated theoretical maximum specific gravity;

'
bP  = Asphalt content used for other compacted samples; and

Gb = Binder specific gravity (generally provided by binder supplier).

2.2.5 STABILITY AND FLOW MEASUREMENTS

Marshall stability is defined as the maximum load carried by a compacted

specimen tested at 140oF (60oC) at a loading rate of 2 inches/minute ( 4). The flow is

measured at the same time as the Marshall stability. The flow is equal to the vertical
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deformation of the sample (measured from start of loading to the point at which stability

begins to decrease) in hundredths of an inch ( 4).  The stability and flow measurements

procedure (AASHTO T245) indicates that the stability reading for a test specimen is only

accurate if the test specimen measures 63.5mm in height. For test specimens that vary

slightly from 63.5 mm, the stability reading should be multiplied with a correlation ratio

in Table 2.2 (AASHTO T245).

Table 2.2 Stability Correlation Ratios from AASHTO T245

Specimen Height Correlation Ratio
58.7 1.14
60.3 1.09
61.9 1.04
63.5 1.00
65.1 0.96
66.7 0.93
68.3 0.89
69.8 0.86
71.4 0.83
73.0 0.81
74.6 0.78
76.2 0.76

2.2.6 OPTIMUM ASPHALT CONTENT

The stability, flow, unit weight, air voids, VMA and VFA are plotted versus the

asphalt content. The optimum asphalt content of the mix is determined from the data

obtained from the plots. WVDOH specifies that the asphalt content that corresponds to

the specification’s median air void content (4.0%) is the optimum asphalt content. Using

the asphalt content at 4.0% air voids, the corresponding values for VMA, VFA, stability

and flow are determined from the plots and compared to the acceptance criteria in Table

2.3 (WVDOH MP 401.02.22).  The mix must be redesigned using different aggregate

blends if design criteria are not satisfied.
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Table 2.3 Marshall Mix Design Criteria (WVDOH MP 401.02.22).

Design Criteria Medium traffic design Heavy traffic design
Compaction, number of
blows per side 50 75
Stability (Newton) 5300 8000
Flow (0.25 mm) 8-16 8-14
Air voids (%) 3-5 3-5
VFA, % 65-78 65-75
VMA, % 13* 13*
*VMA specifications are for Base II mix.

2.3 SUPERPAVE MIX DESIGN

Despite the best efforts put with the existing mix design methods, it is common to

see severe rutting and cracking in asphalt pavements due to increased traffic loads and

environmental conditions. In the 1988, a research program called Strategic Highway

Research Program (SHRP) was started in USA.  The major funds of the SHRP research

program were allocated to establish new procedures for the selection of binders and mix

designs with regard to the rutting and cracking problems in the asphalt pavements.  The

research program was completed in 1993, producing the Superpave mix design method

(7).

2.3.1 GYRATORY COMPACTOR

The key piece of equipment used in the Superpave mix design method is the

gyratory compactor, Figure 2.1.  One of the main goals of the SHRP was to develop a

laboratory compaction method, which can consistently produce specimens representative

of in-service pavements. The Superpave gyratory compactor compacts HMA samples to

densities achieved under traffic loading conditions.  Its ability to estimate specimen

density at any point during the compaction process is its key feature (4).

Gyratory compaction has been used in asphalt mix design since early 1900’s.

Midway through the Strategic Highway Research Program, an evaluation of available

gyratory compaction research was done to develop a gyratory protocol, which would

simulate the density achieved at the end of pavement’s life. Studies conducted during

SHRP show that the density of the HMA sample is influenced mostly by the angle of
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gyration, and slightly by the speed of gyration and the vertical pressure. The stresses

applied to the mixture and the mixture properties are the two parameters that would

influence asphalt mixture density (3).

Fig. 2.1 Superpave Gyratory Compactor

The AASHTO provisional standard TP 4-00 covers the compaction of cylindrical

specimens of hot-mix asphalt (HMA) using the Superpave gyratory compactor. This

standard specifies  the compaction criteria of the Superpave gyratory Compactor. The

ram shall apply and maintain a pressure of 600 ±18 kPa perpendicular to the cylindrical

axis of the specimen during compaction.  The compactor shall tilt the specimen at an

angle of 1.25 ±0.02 o and rotate the specimen molds at a rate of 30.0 ±0.5 gyrations per

minute throughout compaction.

The ruggedness evaluation of AASHTO TP4 conducted by FHWA arrived at the

conclusions that ( 9):

•    The tolerance on compaction angle (±0.02o) is reasonable and necessary

•    The tolerance on compaction pressure (±18kPa) is too high

2.3.2 MATERIAL SELECTION

Binder selection is based on environmental data, traffic level and traffic speed. A

Performance Grade asphalt binder is designated with a high and low temperature grade,

such as PG 70-22. For this binder, 70 is the high temperature grade and is the 7-day



11

maximum pavement design temperature in degrees centigrade for the project.  The low

temperature grade, -22, is the minimum pavement design temperature in centigrade (5).

The SHRP made no research effort to specifically look at aggregates. However,

guidance was eventually provided based on a consensus approach by a group of experts.

Superpave requires both consensus and source aggregate tests be performed to assure that

the combined aggregates selected for the mix design are acceptable.  The consensus

property criteria are the minimum requirements for the aggregates to be used in the

Superpave mix design method and they are the same regardless of geographic location.

The source property criteria are specified by the state highway agencies (5).  Superpave

requires the following consensus properties be determined for the design aggregate blend:

•  Coarse aggregate angularity (ASTM D 5821) –materials retained on 4.75 mm

sieve.

•  Fine Aggregate angularity (AASHTO T304) – materials passing the 2.36 mm

sieve.

•  Flat & Elongated particles (ASTM D4791) –materials retained on 9.5 mm

sieve.

•  Sand Equivalent  (AASHTO T176) –materials passing the 4.75 mm sieve.

The flat and elongated test follows the general procedures of ASTM D 4791, but

is modified for Superpave.  Under the Superpave guidelines an aggregate particle coarser

than 4.75mm sieve is flat and elongated if the ratio of the maximum to minimum

dimension is greater than 5 ( 5).

Aggregate property requirements set forth by WVDOH is shown in Table

2.4(WVDOH MP-2)

2.3.3 DESIGN AGGREGATE STRUCTURE

Trial blends are established by mathematically combining the gradations of

individual stockpiles into a single blend using Equation 2.1.  The gradation of the

aggregate blend must be within the control limits to meet the Superpave requirements.

The gradation control is based on four control sieves: the maximum sieve, the nominal
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Table 2.4 Superpave Aggregate Consensus Property Requirements as set forth by
WVDOH

Design
ESALs

Coarse Aggregate
angularity (%min)*

Fine aggregate
angularity (%min)

Sand
equivalent

Flat &
elongated

(Million) 100 mm
from
surface

>100 mm
from
surface

100 mm
from
surface

>100 mm
from
surface

Percent
minimum

Percent
minimum

<0.3 55/- - - - 40 -
0.3 to <3 75/- 50/- 40 40 40 10
3 to <10 85/80 60/- 45 40 40 10
10 to <20 90/95 80/75 45 40 45 10
20 to <30 95/90 80/75 45 40 45 10
30 100/100 100/100 45 45 50 10

*Percent of one/more than one fractured faces

maximum sieve, the 2.36-millimeter sieve, and the 75-micron sieve.  The Superpave

definitions for nominal maximum aggregate size and maximum aggregate size are:

•  Nominal Maximum Aggregate Size: One sieve size larger than the first sieve

to retain more than 10.0% of the material.

•  Maximum Aggregate Size: One sieve size larger than the nominal maximum

aggregate size.

The restricted zone is another part of grading specification.  Aggregate blends that

pass through the restricted zone that do not use excessive amounts of rounded aggregates

and that meet the minimum VMA requirements perform satisfactorily (4). However, the

WVDOH specifications do not allow any mix with a gradation passing through the

restricted zone.  There is evidence to support the belief that mixtures closer to the low

end of the control limits (those going underneath the restricted zone) provide a desirable

structure for resisting rutting ( 4).  WVDOH Specifications for 19mm nominal maximum

size are shown in Table 2.5.

Once an aggregate blend is identified, which meets the gradation criteria, the

consensus propery for the blend is determined as:

...
...

2211

222111

++
++

=
pPpP

pPxpPxX (2.8)
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Table 2.5 Gradation Specifications for 19mm Nominal Maximum Size

SIEVE CONTROL POINTS RESTRICTED ZONE
SIZE
(mm)

Lower Upper Lower Upper

25 100 100 - -
19 90 100 - -

12.5 - 90 - -
9.5 - - - -
4.75 - - - -
2.36 23 49 34.6 34.6
1.18 - - 22.3 28.3
0.6 - - 16.7 20.7
0.3 - - 13.7 13.7
0.15 - - - -
0.075 2 8 - -

where

X = Blended consensus property;

xi =  Consensus property for stockpile;

Pi = Percent of stockpile i in the blend; and

pi = Percent of stockpile which either passes or is retained on the dividing sieve.

The Superpave process requires evaluating the aggregate blends to determine a

design aggregate structure.  The Superpave guidelines suggest selecting two blends with

gradation below the restricted zone and one blend with a gradation above the restricted

zone.  The asphalt content for the blends may be estimated based on experience or using

the equations:

( )sbsasbse GGFGG −+= (2.9)

( )








−









+

×−
=

sasb

se

s

b

b

as
ba GG

G
P

G
P

VPV 111

(2.10)

( )nbe SV ln0675.0176.0 ×−= (2.11)
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( )
( )( ) sbabeb

babeb
bi WVVG

VVG
P

++×
+×

= (2.13)

where,

Gse = Effective specific gravity of aggregate;

Gsb = Bulk specific gravity of aggregate;

Gsa = Apparent specific gravity of aggregate;

F = factor for absorption;

Vba = volume of absorbed binder;

Pb = Asphalt content, percent by weight of mix;

Pc = percent of aggregate;

Gb = Specific gravity of binder;

Va = volume of air voids;

Ws = weight of aggregate;

Vba = volume of absorbed binder;

Vbe = volume of effective binder;

Sn = nominal maximum sieve size of aggregate blend; and

Pbi = percent (by weight) of binder;

Two samples are prepared for each aggregate blend.  The samples are mixed,

cured for 2 hours and compacted and the Gmb is determined. The Superpave gyratory

compactor is used to compact the samples.  The number of gyrations applied to the mix

regulates the compactive effort.  The number of gyrations required is a function of the

traffic level.  As shown in the Table 2.6, Superpave defines three compaction

requirements for a mix.
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Table 2.6 Superpave Compaction Criteria (WVDOH MP 401.02.28)

Compaction ParametersESALs (million)
Ni Nd Nm

<0.3 6 50 75
0.3 to <3 7 75 115
3 to <30 8 100 160

> 30 9 125 205

The number of gyrations for design, Nd, was selected to simulate the compacted

state of an asphalt pavement following construction.  An initial compactive effort, Ni,

was defined to identify “tender” mixes.  Some mixes are difficult to compact in the field

because the mix lacks the internal friction required to prevent the excessive deformation.

As traffic is applied to a pavement, the mix will continue to compact until an equilibrium

condition is achieved.  The maximum Superpave compactive effort, Nmax was selected to

ensure the material does not over compact under traffic.  Nmax and Ni are a function of Nd:

Ni = (Nd)0.45 (2.14)

Nmax = (Nd)1.10 (2.15)

where

Ni = Initial number of gyrations;

Nd = Design number of gyrations; and

Nm = maximum number of gyrations.

The WVDOH requirements for compactive effort are given in Table 2.6.The

design aggregate structure samples are compacted to Nd.  The bulk specific gravity of the

mix at Ni must be computed as:

( )
di Nmb

i

d
Nmb G

h
h

G ,, = (2.16)

where

Gmb,Ni = Bulk specific gravity at Ni;

hd = Height of the specimen at Nd;
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hi = Height of the specimen at Ni;

Gmb,Nd = Bulk specific gravity at Nd;

The percent maximum specific gravity at Ni is computed as:

mm

Nmb
Nmm G

G
G i

i

,
, 100% = (2.17)

Two samples for each aggregate blend are prepared and evaluated to determine

Gmm.  Gmb and Gmm are used for a volumetric analysis.  VTM, VMA and VFA are

computed using equations 2.3 to 2.5.

Since Pb was only estimated, the VTM is generally not equal to the criteria of

4.0% air voids.  Thus, the volumetric parameters are “corrected” to a 4.0% air content

using the equations:

( )( )dabtestb NVPP @44.0, −×−= (2.18)

( )dadest NVCNVMAVMA @4@ −×+= (2.19)

( ) estdaestest VMANVVMAVFA @100 −= (2.20)

( )daimmimm NVGGEst @0.4%% ,, −−= (2.21)

( )dammmmmm NVGGEst @0.4%% ,, −−=  (2.22)

where

Pb,est  = Estimated asphalt binder content;

Pbt  = Trial percent asphalt binder content;

Va  = percent air voids in total mix at Nd;

VMAest  = Estimated voids in mineral aggregate;

C = 0.1 when Va is less than 4.0%,

C = 0.2 when Va is 4.0% or greater

VFAest  = Estimated voids filled with asphalt;
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Est%Gmm,i = Estimated percentage of maximum specific gravity at Ni;

Est%Gmm,m = Estimated percentage of maximum specific gravity at Nd;

In addition the dust to binder ratio is computed as:

 ( ) ( )
( ) estb

sbse

sbse
bsestbe P

GG
GGGPP ,, ×−××= (2.23)

estbe

mm
estbe P

P
PF

,

075.0
,

%
/ = (2.24)

where

F/Pbe,est = Estimated fines to effective asphalt ratio; and

%P0.075mm = percent material finer than 0.075 mm sieve.

The corrected volumetric parameters are compared to the Superpave criteria,

Table 2.7.  The design aggregate structure, which “best” meets the criteria is selected for

determining the design binder content.  If none of the aggregate blends produce an

acceptable mix, a new aggregate blend must be determined and evaluated.

2.3.4 DESIGN ASPHALT BINDER CONTENT

The design binder content is defined by Superpave as the asphalt content that

produces 4.0% air voids at Nd and meets all other criteria.  A good estimate of design

asphalt content is established from the design aggregate blend trials. Two or three

samples depending on the agency are prepared at four levels of binder content:

Pb,est-0.5%, Pb,est, Pb,est +0.5% and Pb,est+1.0%.  The samples are compacted to Nd

gyrations and a volumetric analysis is performed and the results are plotted. As with the

Marshall procedure, the asphalt content corresponding to 4.0% air voids is determined.

This asphalt content is used with other plots to determine the other volumetric properties.

The design mixture must meet the requirements for Ni, VMA, VFA and dust to binder

ratio as presented in Table 2.7.  Two additional samples are mixed with the selected

asphalt content and compacted to Nm to verify the mix meets the criteria.
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2.3.5 MOISTURE SENSITIVITY OF DESIGN MIXTURE

The moisture sensitivity of the design mixture is evaluated by performing

AASHTO T-283 on the design aggregate blend at the design asphalt content. Specimens

are compacted to 7.0 ±1.0% air voids. The conditioned subset of three specimens is

subjected to partial vacuum saturation followed by an optional freeze cycle, followed by

a 24 hour heating cycle at 60oC. The conditioned subset and unconditioned subset of

three specimens each are tested to determine indirect tensile strengths. The moisture

sensitivity is determined as a ratio of the tensile strengths of the conditioned subset

divided by the tensile strengths of the control subset. The use of AASHTO T-283 is not

required to design a Superpave mix. However, some method of moisture sensitivity

should be employed ( 5).

Table 2.7 Superpave Volumetric Mix Design Criteria (WVDOH MP 401.02.28)

Design air voids   4.0%
Fines to effective asphalt ratio  0.6 - 1.2
Tensile strength
ratio

  80%
minimum

VMA, %                 Nominal maximum size
37.5 mm 25 mm 19mm 12.5 mm 9.5 mm

11.0 12.0 13.0 14.0 15.0
Design % Theoretical maximum Percent voids
ESALs specific gravity filled with
(millions) Ni Nd Nmax asphalt

(VFA)
<0.3 91.5 96.0 98.0 70-80

0.3 < 3 90.5 96.0 98.0 65-78
3 < 10 89.0 96.0 98.0 65-75
10 < 30 89.0 96.0 98.0 65-75

> 30 89.0 96.0 98.0 65-75

2.5 ASPHALT PAVEMENT ANALYZER

Ruts are depressions, which occur in the pavement’s wheel path.  Traffic

compaction or displacement of unstable material causes ruts.  Negligible amount of

rutting occurs in HMA surfaces due to continued densification under traffic after initial



19

compaction during construction.  Rutting in a pavement can be larger if the HMA layer,

underlying layers, or the subgrade soil is overstressed and significant densification or

shear failures occur.  Some common mistakes made when designing the HMA mixes like

selection of high asphalt content, use of excessive filler material (material passing #200

sieve), use of too many rounded particles in aggregates are all contributors to rutting in

HMA ( 4).  In recent years, the potential for rutting on the nation’s highways has

increased due to higher traffic volumes and the increased use of radial tires that typically

exhibit higher inflation pressures ( 6).

The most common type of laboratory equipment that predicts field-rutting

potential is a loaded wheel tester (LWT).  The LWTs currently being used in United

States include the Georgia Loaded Wheel Tester (GLWT), Asphalt pavement Analyzer

(APA), Hamburg Wheel Tracking Device (HWTD), LCPC (French) Wheel Tracker,

Purdue University Laboratory Wheel Tracking Device (PURWheel), and one-third scale

Model Mobile Load Simulator ( 6).

The APA is the new generation of the Georgia Loaded GLWT and was first

manufactured in 1996 by Pavement Technology, Inc. The APA is a multi-functional

LWT that can be used for evaluating rutting, fatigue cracking, and moisture susceptibility

of hot and cold asphalt mixes (2).

2.5.1 Evaluation of Permanent Deformation:

The standard method followed to determine rutting susceptibility using APA is

developed by APAC Materials Services in ASTM format. Rutting susceptibility of mixes

is  estimated by placing beam or cylindrical samples under repetitive wheel loads and

measuring the amount of permanent deformation under the wheel loads.  Triplicate beam

samples or cylindrical samples can be tested in APA under controllable high temperature

and in dry or submerged-in water conditions. The rut depth is measured after the desired

number of cycles (usually 8000) of load application (11). The Table 2.8 shows the test

parameters specified in the APAC procedure.
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Table 2.8 APA Specifications (APAC Procedure)

Factors Range specified in
APAC procedure

Air void content 7 ±1 %
Test
temperature

Based on average
high pavement
temperature

Wheel load 100 ±5 lb
Hose pressure 100 ±5 psi
Specimen type Beams, cylinders
Compaction Rolling, vibratory,

and gyratory

2.5.2 Results of Ruggedness Study of the APA

APAC Materials Services conducted a ruggedness study of the Asphalt Pavement

Analyzer rutting test in 1999 ( 11). Six factors; air void content of the test specimens, the

test temperature, specimen preheating time, wheel load, hose pressure, and specimen

compaction method were investigated and the following conclusions and

recommendations were made regarding the specifications of the standard procedure.

1. The air void content range of the specimens given in the procedure should be

changed from 7 ±1.0% to 7 ±0.5%.  This will reduce the variability in the test

results but it will also affect the productivity of the labs because of having to

discard samples out of the tighter range.

2. The test temperature has a major effect on the test results. Proper calibration

of the APA chamber temperature and ovens for preheating specimens is

critical in obtaining meaningful test results.

3. Compaction and specimen type had a significant effect on the test results.

4. The ranges evaluated in the study for preheat time, wheel load, and the hose

pressure did not have a significant effect on the rut results. Therefore, it was

concluded that the standard procedure gives adequate guidance on the control

of each of these test parameters.
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2.5.3 Effect of Compaction and Specimen Type

The results from the ruggedness study of the APA shows that for the low rut

potential mixes, the Superpave Gyratory Compactor  (SGC) cylinders tended to have

higher rut depths, while for the high rut potential mixes the Asphalt Vibratory Compactor

(AVC) beams yielded collectively higher rutting. The reasons postulated for this behavior

are:

•  In high rut potential mixes, the center part of the cylinder mold supports the

load when the rut depth advances to the depth of the contour at the center of

the mold (12).

•  The compaction modes of cylinder and beam samples may produce different

density gradients in the samples (12).

The evaluation of density gradients in APA samples shows that vibratory

compaction tends to result in more compaction at the top and less compaction at the

bottom for both beams and cylinders.  Gyratory compacted samples showed less

compaction in the top and bottom of samples and significantly more compaction in the

middle.  The top of the AVC specimens should be loaded in APA. This type of

specification is not needed for SGC compacted samples as the density in the top and

bottom layers were not significant not significantly different (12).

2.5.4 Effect of Position

Studies have shown that there is variation in the left, center and right rut depth

measurements of the APA.  Although the wheel loads are individually calibrated, it has

been observed that the wheel loads are not necessarily independent. During calibration,

the load applied by any wheel is affected by whether or not the other wheels are in

loading or rest position indicating the is an interaction between the wheel loads.

2.6 CONCLUSIONS

The Marshall and Superpave mix design methods were briefly described.  State

highway agencies have some discretion in the specific details of how the methods are

implemented.  The specifics for the WVDOH method were presented since they are the

methods and procedures followed during this research.
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The literature on the APA demonstrates it is a useful device for evaluating the

rutting potential of a mix.  However, there is an inherent variability in the results

produced with the device, particularly with respect to load position.  The experimental

plan developed for this research was designed to minimize the effect of the variability in

the APA results.
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CHAPTER 3 RESEARCH METHODOLOGY

3.1 INTRODUCTION

This research compares 19 mm nominal maximum aggregate size Superpave to

Marshall Base II mixes in West Virginia.  Mix designs were prepared for Heavy, Medium

and Light traffic levels using the Superpave methodology and for Heavy and Medium

traffic level using the Marshall methodology.  The resulting Marshall mix designs were

evaluated under the Superpave criteria and vice versa.  APA samples were made using

Gyratory Compactor to evaluate rutting potential of the mixes.  The following sections of

this chapter explain the laboratory-testing program conducted in the Asphalt Technology

Laboratory of West Virginia University, Morgantown.  The data and interim calculations

for the aggregates are presented in Appendix A.

3.2 MATERIALS

The aggregate used in this research work was provided by J.F Allen Company,

Buckhannon, WV.  Four types of aggregates (#57, #8, #9, Limestone Sand) and bag fines

were used to develop aggregate blends meeting the gradation requirements. The asphalt

used for both Superpave and Marshall mix design methods was PG 70-22 obtained from

Marathon, Ashland.

3.3 AGGREGATE PREPARATION

The aggregates were obtained from J.F. Allen Company.  Three of the aggregate

types were ASTM coarse aggregate sizes #57, #8, and #9.  The fourth aggregate type was

crushed limestone sand.  The aggregates were processed by washing, oven drying and

sieving.  Dried aggregates were separated with a nest of sieves, consisting of: 1”, 3/4”,

3/8”,  #4,  #8,  #16,  #30, #50, and #200 and the material retained on each sieve and pan

was placed in storage bins.

3.4 SIEVE ANALYSIS

Three samples of each aggregate type were tested to determine the amount of

material passing the #200 sieve (ASTM C117) and to determine gradation (ASTM

C136).  The amount of material passing the #200 sieve was determined by washed
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sieving for each type of aggregate is shown in Table 3.1. The average gradation results

for each aggregate type are shown in Table 3.2.

Table 3.1 Washed Sieve Analysis for Material Passing #200 Sieve.

Sample No. #57 #8 #9 L. Sand
1 0.9 1.3 1.3 6.9
2 0.9 2.0 1.5 6.7
3 1.1 1.2 1.9 6.4

Average 1.0 1.5 1.6 6.7

Table 3.2 Dry Sieve Gradation Analysis Results.

Sieve No. Sieve size #57 #8 #9 Limestone Sand Bag fines
% passing % passing % passing % passing %passing

1” 25  mm 100 100 100 100 100
¾” 19 mm 84 100 100 100 100
3/8” 12.5 mm 36 100 100 100 100
½” 9.5 mm 14 96 100 100 100
#4 4.75 mm 2.4 14 69 99 100
#8 2.36 mm 1.6 3.5 5.0 77 100
#16 1.18 mm 1.4 2.3 2.1 45 100
#30 0.6 µm 1.3 1.9 1.9 29 100
#50 0.3 µm 1.2 1.7 1.8 17 97.0
#200 0.075 µm 1.0 1.5 1.7 6.6 92.0

3.5 SPECIFIC GRAVITY OF AGGREGATES

Three samples of each aggregate type and one sample of bag fines were tested to

determine the specific gravity and absorption (AASHTO T85 for coarse aggregate

AASHTO T84 for fine aggregate).  The average specific gravity and absorption values

are shown in Table 3.3.

Table 3.3 Specific Gravity and Absorption Values.

#57 #8 #9 L. sand Bag
Fines

Bulk Specific Gravity 2.687 2.686 2.648 2.665
Apparent Specific Gravity 2.731 2.734 2.751 2.732 2.680
% Absorption 0.6 0.7 1.4 0.9
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3.6 AGGREGATE CONSENSUS PROPERTY TESTS

The aggregate properties that are specified as a result of the SHRP program are

the coarse and fine aggregate angularity, flat and elongated particles, and sand equivalent

results. Three samples each of #57 and #8 aggregate were tested to determine the average

coarse aggregate angularity ( ASTM D5821). Three samples each of #8, #9 and

Limestone Sand were tested to determine the Uncompacted Void Content of Fine

Aggregate (AASHTO T304 Method A). Following the general procedures of ASTM D

4791, three samples of #57 and #8 aggregate were tested to determine the average Flat

and Elongated particles whose maximum to minimum dimension is greater than 5. Three

samples of Limestone Sand were tested to get an average sand equivalent value

(AASHTO T176). The aggregate average consensus property test results are shown in

Table 3.4.  The aggregate blends met the Superpave mix design criteria.

Table 3.4 Average Consensus Property Test Results for Individual Aggregates

Property #57 #8 #9 L.Sand
Coarse aggregate angularity 100/100 100/100
Fine aggregate angularity 46.0 46.0 46.0
Flat & elongated particles 0 0
Sand equivalent value 100 78.0

3.7 MARSHALL MIX DESIGN PROCEDURE

The design traffic levels used in Marshall mix design method were Medium

Traffic (less than 3 million ESALs), and Heavy Traffic (greater than 3 million ESALs).

The binder used in the mix design was PG 70-22 (obtained from the source

Marathon/Ashland). The aggregate in the storage bins were combined as required to

produce the required gradation. The steps followed in determining the two Marshall mix

designs are explained in the following section. The summary of the tests performed in

determining the Marshall mixes are presented in this section. The detailed test data and

calculations are presented in Appendix B.
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3.7.1 AGGREGATE GRADATION

The result of sieve analysis of aggregates shown in Table 3.2 were used to

combine the aggregate to achieve an aggregate blend used by J.F. Allen Company for

Marshall Base II mix:

Aggregate type Percent of
blend

#57 35.5
#8 17.0
#9 10.0

Sand 36.5
Bag house fines 1.0

The plot of gradation is shown in Figure 3.1 with control points.  The aggregate

blend was within the tolerance limits of Master Range and hence the aggregate structure

meets the gradation requirements; Table 2.4

Figure 3.1 Marshall gradation plot with control points

3.7.2 SPECIFIC GRAVITY

The binder supplier provided the specific gravity of the asphalt binder and the

value used was 1.020. The Equation 2.1 was used to calculate the specific gravity of the
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aggregate blend.  The bulk specific gravity was 2.670 and the apparent specific gravity

was 2.733 for the blend.

3.7.3 THEORETICAL MAXIMUM SPECIFIC GRAVITY

From the experience of J.F.Allen Company, the optimum asphalt content for Base

II Marshall mix in West Virginia was 4.9% for Heavy traffic level. As described in

Chapter 2, the maximum theoretical specific gravity is measured at one asphalt content

and used to compute Gmm at the other asphalt contents.  The validity of this approach

was tested by performing the Gmm procedure on three samples at five asphalt contents,

3.9%, 4.4%, 4.9%, 5.4%, 5.9% for the heavy traffic mix and 4.4%, 4.9%, 5.4%, 5.9%,

6.2% for the medium traffic mix.  Table 3.6 shows the results for the laboratory test

results, and the computed approach.  The computed and measured values compare

favorably.  The lab-measured values were used for the Marshall volumetric analysis.

Table 3.6 Maximum Theoretical Specific Gravity for Marshall Mix Designs.

Heavy traffic Medium traffic
Asphalt Average Computed Asphalt Average Computed
content Gmm Gmm content Gmm Gmm

% Lab % Lab
3.9 2.550 2.552 4.4 2.533 2.529
4.4 2.533 2.533 4.9 2.513 2.513
4.9 5.513 - 5.4 2.491 -
5.4 2.491 2.494 5.9 2.476 2.472
5.9 2.476 2.475 6.2 2.452 2.453

3.7.4 MARSHALL STABILITY AND FLOW TEST

Three samples  at each asphalt content were mixed and compacted using Marshall

Hammer. The samples were 1100g and 1150g for the medium and heavy traffic levels

respectively. The corresponding compaction level was 50 and 75 blows per side. The

bulk specific gravity of each compacted sample was determined (AASHTO T166) and

the average volumetrics at each asphalt content were computed using the equations 2.3 to

2.5.  The Marshall Stability and Flow of each sample was determined (AASHTO T245).
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3.7.5 TABULATING AND PLOTTING TEST RESULTS

The volumetric data and Stability and Flow test results were tabulated and the

Stability values for specimen height different than 63.5 mm were corrected using Table

2.3. The average value for volumetric parameters, stability and flow of each set of three

specimens was calculated. The tabulated results for Heavy and Medium traffic level

Marshall mix designs are presented in Tables 3.7 and Table 3.8 respectively. The

following plots were prepared from the results and are presented in Appendix C.

•  Asphalt content versus density

•  Asphalt content versus Marshall stability

•  Asphalt content versus flow

•  Asphalt content versus air voids.

•  Asphalt content versus VMA

•  Asphalt content versus VFA

Table 3.7 Volumetric Parameters for Marshall Heavy Traffic Mix

AC, % Density %VMA %VFA Air voids,% Stability Flow
     (Newton) (0.25 in)

3.9 2347 15.54 48.68 7.97 2230.2 14.5
4.4 2390 14.42 60.9 5.64 2180.4 17
4.9 2402 14.44 69.46 4.41 2017.8 12.7
5.4 2394 15.19 74.28 3.91 2008.9 16.3
5.9 2392 15.68 78.47 3.38 2318.3 15.3

Table 3.8 Volumetric Parameters for Marshall Medium Traffic Mix

AC, % Density %VMA %VFA Air
voids,%

Stability Flow

(Newton) (0.01 in)
4.4 2359 15.5 55.5 6.9 2099 15.0
4.9 2362 15.8 61.4 6.1 2163 17.0
5.4 2377 15.8 71.0 4.6 2062 19.0
5.9 2395 15.6 79.0 3.3 2073 14.3
6.4 2396 16.0 85.7 2.3 2046 20.0
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3.7.6 DETERMINATION OF DESIGN ASPHALT CONTENT

The asphalt content that corresponds to the specification’s median air void content

(4.0%) is the design asphalt content. The design asphalt content was determined from the

plots for Heavy and Medium traffic level. The Marshall stability, flow, VMA and VFA at

the design asphalt content were determined from the plots and were compared to the

specification values. The results are summarized in the Table 3.9. All the properties met

the Marshall criteria, Table 2.4.

Table 3.9 Summary of Marshall Mix Designs

Traffic AC, % Density %VMA %VFA Stability Flow
level (Newton) (0.01 in)

Medium 5.5 2405 14.5 68.0 2025 15
Heavy 5.0 2374 15.7 71.0 2100 17

3.8 SUPERPAVE MIX DESIGN PROCEDURE

The design traffic levels used in Superpave mix design were Light Traffic (<0.3

million ESALs), Medium Traffic (0.3 to <3 million ESALs), Heavy Traffic (3 to <30

million ESALs). The asphalt binder used in the mix design was PG 70-22. The design

aggregate structure for the heavy traffic level was established following the procedures

presented in Chapter 2.  This design aggregate structure was evaluated for the other

traffic levels by preparing samples at estimated asphalt content, compacting with the

appropriate number of gyrations, then performing the volumetric analyses.  This process

demonstrated the same design aggregate structure could be used for all traffic levels.  The

binder content was then determined for each traffic level.

3.8.1 AGGREGATE TRIAL BLENDS

Three trial blends were evaluated to determine the best aggregate structure. The

percent of each aggregate type in the trial blends are shown in Table 3.10; the gradation

chart is shown in Figure 3.2. All the three trial blends were within the control points of

19mm nominal maximum size and below the restricted zone (Table 2.5). The restricted

zone is meant to be a guide to help ensure that too much natural sand is not used in the

mixture and to help ensure that minimum VMA requirements are met.
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The aggregate consensus property test values for aggregate blends and the

combined average aggregate bulk and apparent specific gravities were determined using

the Equation 2.8 and 2.2, respectively, and are presented in Table 3.11

The initial binder contents for heavy-traffic level mix design were computed

using the Equations 2.9 to 2.13. The initial binder content was 4.4% for blend 1 and 4.5%

for blend 2 and blend 3.

Three samples for each trial blend at their corresponding initial binder content

were tested to determine the average Theoretical Maximum Specific Gravity (AASHTO

T209) in Table 3.12.

3.8.2 DESIGN AGGREGATE STRUCTURE

Three samples for each trial blend at their corresponding initial binder content

were compacted to 100 gyrations, which is Nd for heavy traffic level. The bulk specific

gravity (AASHTO T 166) and volumetrics (Equations 2.3 to 2.5) of the compacted

samples were determined and the average values are presented in Table 3.13.

The estimated design asphalt content was computed using Equation 2.17.  The

volumetric data at the estimated design asphalt content for  all  three blends were

computed (Equations 2.18 to 2.21) and summarized in Table 3.14.

All the three blends meet the Superpave volumetric criteria, Table 2.3.   The trial

Blend 1 was selected as design aggregate structure for Heavy Traffic level Superpave

mix design because it was used by J.F. Allen Company for a Superpave project in West

Virginia and has proven performance.

The initial binder content of Superpave mix design for medium and light traffic

levels was estimated to be 5.0%. Three samples with blend 1 were tested to determine the

average Theoretical Maximum Specific Gravity (AASHTO T209) at 5.0% asphalt

content.
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Table 3.10 Trial Blends for Evaluation of Aggregate Structure

Blend #57 #8 #9 L. Sand Bag fines
1 34.0% 14.0% 15.0% 36.0% 1.0%
2 35.5% 17.0% 10.0% 36.5% 1.0%
3 40.0% 15.0% 14.0% 30.0% 1.0%

Table 3.11 Trial Blends Bulk and Apparent Specific Gravity

Blend 1 Blend 2 Blend 3
Bulk Specific Gravity 2.669 2.669 2.672
Apparent Specific Gravity 2.712 2.724 2.724

Table 3.12 Theoretical Maximum Specific Gravity for Superpave Trial Blends

Sample no Blend 1 Blend 2 Blend 3
1 2.539 2.536 2.536
2 2.538 2.534 2.533
3 2.538 2.534 2.533

Average 2.538 2.535 2.535

Table 3.13 Trial Blends Compaction Data

Blend no. Gmb Pb VTM %Gmm
at Nd

1 2.384 4.4 6.1 93.9
2 2.361 4.5 6.9 93.1
3 2.370 4.5 6.5 93.5

Table 3.14 Adjusted Volumetric Parameters for Superpave Trial Blends

Blend Est
Design

AC

Est
%

VMA

Est
%

VFA

Est
D/B ratio

1 5.2 14.2 71.8 0.90
2 5.7 14.9 73.2 0.84
3 5.5 14.8 72.9 0.81
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Samples at 5.0% asphalt content were compacted using 75 gyrations and 50

gyrations, which is the design number of gyrations for light and medium traffic level

respectively.  Two samples were prepared at each compaction level. The volumetric

results determined using Equations 2.3 to 2.5 are shown in Table 3.15.

Table 3.15 Blend 1 Volumetric Parameters for Medium and Light Traffic Level Mix
Designs

Traffic level Avg. Gsb Avg. Gmm Pb VTM VMA %Gmm at Nd
Medium 2.367 2.513 5.0 5.8 15.8 94.2
Light 2.513 2.513 5.0 7.6 17.3 92.4

The estimated design asphalt content for medium and light traffic level Superpave

mixes was computed using Equation 2.17.  The volumetric data at the estimated design

asphalt content for the two traffic levels are computed (Equations 2.18 to 2.21) and

presented in Table 3.16.

Table 3.16 Adjusted Volumetric Parameters for Medium and Light Traffic Level Mix
Designs

Traffic level Estimated
Design AC

Estimated
% VMA

Estimated
% VFA

Estimated
D/B

Medium 5.7 15.4 75.9 0.81
Light 6.4 16.6 74.0 0.71

The volumetric parameters at the estimated design asphalt content met Superpave

criteria and hence blend 1 was selected as design aggregate structure for the medium and

light traffic level Superpave mixes.

3.8.3 DESIGN ASPHALT CONTENT

The design aggregate structure process showed the same aggregate blends could

be used for all traffic levels.  The estimated asphalt contents were 6.4%, 5.7%, and 5.2%

for the light, medium and heavy traffic levels respectively.  The first procedure for

determining the design binder content is to measure Gmm.  Since the binder content the

medium and heavy traffic were separated by 0.5%, six binder contents cover the needed

binder contents for Gmm testing; 4.7 to 6.7% at 0.5% increments.  The Gmm for the low
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traffic level was determined for percent binder contents of 5.9 to 7.4% in 0.5%

increments.  Table 3.17 gives the average Gmm values at each asphalt content.

Table 3.17 Average Gmm Values for Superpave Mixes

Asphalt Content
Percent

Average
Gmm

4.7% 2.523
5.2% 2.502
5.7% 2.495
6.2% 2.485
6.7% 2.464
5.9% 2.487
6.4% 2.469
6.9% 2.452
7.4% 2.434

Two samples each at 4.7%, 5.2%, 5.7%, and 6.2% asphalt content were

compacted to 100 gyrations. The average bulk specific gravities determined (AASHTO

T166) and the volumetrics computed using Equations 2.2 to 2.5 at each asphalt content

were tabulated in Table 3.18.

Table 3.18. Volumetric Data for Superpave Heavy Traffic Level.

Percent Asphalt Content Air voids % Gmm,Nd VMA at Nd VFA Nd Avg Gmb
4.7 5.3 94.7 14.7 63.8 2.389
5.2 3.8 96.2 14.5 73.6 2.406
5.7 3.0 97.0 14.6 79.3 2.420
6.2 2.7 97.3 15.0 82.3 2.419

Two samples each at 5.2%, 5.7%, 6.2%, and 6.7% asphalt content were

compacted to 75 gyrations. The average bulk specific gravities determined (AASHTO

T166) and the volumetrics computed using Equations 2.2 to 2.5 at each asphalt content

were tabulated in Table 3.19.
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Table 3.19 Volumetric Data for Superpave Medium Traffic Level

Percent Asphalt
Content

Air voids % Gmm,Nd VMA at Nd VFA Nd Avg Gmb

5.2 5.2 94.7 15.7 67.2 2.373
5.7 4.0 96.2 15.4 73.8 2.394
6.2 3.4 97.0 15.7 78.1 2.400
6.7 2.4 97.3 15.9 85.2 2.406

Two samples each at 5.9%, 6.4%, 6.9%, 7.4% asphalt content were compacted to

50 gyrations. The average bulk specific gravities determined (AASHTO T166) and the

volumetrics computed using Equations 2.2 to 2.5 at each asphalt content were tabulated

in Table 3.20.

Table 3.20 Volumetric Data for Superpave Light Traffic Level

Percent Asphalt Content Air voids % Gmm,Nd VMA at Nd VFA Nd Avg Gmb
5.9 4.8 95.2 16.5 71.0 2.368
6.4 3.7 96.3 16.6 77.6 2.377
6.9 2.8 97.2 16.8 83.5 2.384
7.4 1.6 98.4 16.9 90.7 2.396

The volumetric data was plotted versus asphalt content for all  three traffic design

levels. The design asphalt content corresponding to 4.0% air voids was determined  for

three mixes. The volumetric properties at design asphalt content were determined from

the plots. The summary of the three mix designs is shown in Table 3.21.

Table 3.21 Summary of Superpave Mix Designs.

Design Traffic Level Design
AC

% Gmm,Nd VTM VMA VFA

Heavy 5.1 96.0 4.0 14.5 70.2
Medium 5.7 96.0 4.0 15.4 73.7
Traffic 6.2 96.0 4.0 16.6 75.0

The complete data and interim calculations of Superpave mix designs are

presented in Appendix C.
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3.9 SPECIMENS FOR APA TESTING

The Superpave Gyratory Compactor was used to make the specimens for testing

with the APA. The APA specimens were made to 95 mm height with 7.0 ±0.5 % air

voids range. The specimens out of this air voids range were discarded.

3.10 ASPHALT PAVEMENT ANALYZER RUNS

The APA procedure described in Chapter 2 was followed to obtain rut depth

results of the specimens. All samples were tested at 140oF with a hose pressure of 100 psi

and a wheel load of 100 lb.  Rut depths were measured after 8000 cycles.

There are 18 combinations of factors and levels.  The combinations of mix design

and traffic levels were assigned a treatment number as defined in Table 3.19.  Two sets of

test results were obtained for each combination, providing 36 experimental units.  Each

test result is an average of two test specimens, one in the front position of the mould and

the other in the back.  The factor levels in the experimental design were:

Factors Levels
Mix design method Superpave, Marshall
Traffic level Light, Medium, High
APA position Left, Center, Right

Table 3.19 Treatments Used in Experimental Design

Treatment
No.

Type of mix
design

Design
traffic level

1 Superpave Heavy
2 Superpave Medium
3 Superpave Light
4 Marshall Heavy
5 Marshall Medium
6 Marshall Light

The WVDOH uses the medium traffic level for all pavements with less than 3

million ESALs.  Thus, the Marshall medium traffic level mix design was used to prepare

the samples for the Marshall light traffic level. Since the Marshall light and medium

traffic level mix designs were equivalent one would expect similar performance.
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To minimize the effects of position in the APA machine and test sequence, the

order of testing the specimens was randomized. The Table 3.20 presents the order of

testing the specimens and average rut depth results.

Table 3.20 Rut Depth Results.

Positions
Left Center Right

APA TEST
SEQUENCE

1 2 3

1 5.591* 6.16 2 9.39 3
2 9.34 6 4.73 1 9.32 5
3 6.26 5 5.80 4 4.75 6
4 9.39 3 9.17 5 6.45 3
5 8.39 2 4.61 6 5.03 4
6 5.26 3 3.89 4 6.90 1
7 4.09 1 6.54 2 6.58 6
8 6.32 4 6.53 3 6.02 2
9 9.29  6 5.09 5 5.62 4
10 6.83  2 3.62 1 7.68 5
11 5.20 4 5.49 3 6.58 2
12 8.70 5 8.50 6 5.12 1

*Subscript indicates treatment number as defined
in Table 3.19

3.11 TESTS FOR OTHER CRITERIA

Two samples for each mix design were evaluated to check for the other mix

design criteria.  Marshall samples were made using Superpave mix designs and checked

for the criteria and vice versa.  Both the mix designs passed the other mix design’s

criteria.  The data are presented in Appendix D.
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CHAPTER 4 RESULT AND ANALYSIS

There are indications in the literature that Superpave mixes have lower optimum

binder content than Marshall mixes.  This was not the case for the mixes designed during

the research.  The Superpave mixes consistently had a greater binder content than

Marshall mixes, ranging from 0.2% to 0.7% higher.  The largest range was for the

Superpave light traffic level versus the Marshall, since the WVDOH does not have

Marshall procedure for light traffic level, the Superpave light traffic design was

compared to a Marshall medium traffic design.

An Analysis of Variance shown in Figure 4.1 was performed using the SAS

program. The factors of mix design type, test sequence, and position indicate that there is

insufficient evidence to identify a difference. The traffic level indicates a difference at the

95% confidence level. The interaction effect of mix design type versus traffic level

indicates there is not sufficient evidence to identify a difference.

The confidence interval for the difference in the means of two mixes is –1.98 to

0.62. This interval is not within the detection limits.

The SAS program was run to compare possible combinations of mix and traffic

on one to one bases. The results were used to compute a confidence interval about the

difference in the adjusted means as:

( )
21

,
2

'
2

'
1 µµαµµ −×±− SEt df (Eqn. 4.1)

where,

µ’
1=adjusted mean µ1

µ’
2=adjusted mean µ2

SE=standard error

If the test is conducted a number of times under the same conditions, the

difference in the adjusted means would fall within this range, 95% of the time.
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Fig 4.1 Output of Analysis of Variance

_________________________________________________________________________________________
The GLM Procedure

Class Level Information
Class Levels Values
mix 2 1 2
traf 3 1 2 3
seq 12 1 2 3 4 5 6 7 8 9 10 11 12
posit 3 1 2 3

Number of observations 36

The GLM Procedure
Dependent Variable: depth

Sum of
Source DF Squares Mean Square F Value Pr > F
Model 18 67.1728747 3.7318264 1.67 0.1491
Error 17 38.0637559 2.2390445
Corrected Total 35 105.2366306

R-Square Coeff Var Root MSE rutd Mean
0.638303 22.99807 1.496344 6.506389

Source DF Type I SS Mean Square F Value Pr > F
mix 1 1.80902500 1.80902500 0.81 0.3813
traf 2 32.72620556 16.36310278 7.31 0.0051
mix*traf 2 1.19761667 0.59880833 0.27 0.7685
seq 11 22.41098858 2.03736260 0.91 0.5514
position 2 9.02903889 4.51451944 2.02 0.1638

Source DF Type III SS Mean Square F Value Pr > F
mix 1 2.73985482 2.73985482 1.22 0.2841
traf 2 23.79695449 11.89847725 5.31 0.0161
mix*traf 2 0.92319986 0.46159993 0.21 0.8157
seq 11 22.41098858 2.03736260 0.91 0.5514
position 2 9.02903889 4.51451944 2.02 0.1638

The GLM Procedure
Level of -----depth----------
Mix N Mean Std Dev
1 18 6.28222222 1.58252425
2 18 6.73055556 1.89198145

Level of -------depth-----------
traf N Mean Std Dev
1 12 5.15916667 0.97764521
2 12 7.22833333 1.38264459
3 12 7.13166667 1.92986026

Level of Level of ---------depth--------
Mix traf N Mean Std Dev

1 1 6 5.00833333 1.16425799
1 2 6 6.75333333 0.85439257
1 3 6 7.08500000 1.85536789
2 1 6 5.31000000 0.83224996
2 2 6 7.70333333 1.71297013
2 3 6 7.17833333 2.17852626

The GLM Procedure
Dependent Variable: depth

Parameter Estimate Error t Value Pr>|t|
Mix -0.68245326 0.61693654 -1.11 0.2841
_________________________________________________________________________________________
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Table 4.1 shows the range of the difference in adjusted means computed from the

results of the SAS General Linear Models procedure.  When zero is outside the range,

there is an indication of consistent difference in the test result. The comparisons which

doesn’t include zero in its range are

•  Superpave Light – Superpave Heavy

•  Superpave Medium - Superpave Heavy

•  Marshall Medium - Marshall Heavy

•  Marshall Light - Marshall Heavy

These comparisons are consistent with the concept, mixes for higher traffic levels

are designed for higher rut resistance.

Zero within the range for the comparisons of the different mix design methods for

a given traffic level is consistent with the ANOVA result.

Table 4.1 Confidence Interval Computed for Various Parameters

Comparison SAS program Results Confidence interval range
µ1 µ2 Estimate Standard Error Lower limit Upper limit

SPL ML 0.515 1.120 -2.88 1.85
SPL MM 0.641 1.052 -2.86 1.58
SPL MH -0.803 0.996 -1.75 2.43
SPM ML 0.176 1.005 -2.29 1.94
SPM MM 0.302 1.026 -2.47 1.86
SPM MH -1.142 0.953 -0.87 3.15
SPH ML 2.549 0.958 -4.57 -0.53
SPH MM 2.675 0.953 -4.69 -0.66
SPH MH 1.231 1.020 -3.38 0.92
SPL SPM 0.339 0.990 -1.75 2.43
SPL SPH -2.034 1.041 2.60 6.67
SPM SPH 2.034 1.040 -4.23 -0.16
ML MM 0.126 0.923 -2.073 1.821
ML MH -1.318 0.971 0.73 3.37
MM MH -1.444 0.993 0.65 3.54
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CHAPTER 5 CONCLUSIONS AND RECOMMENDATIONS

5.1 CONCLUSIONS

Based on the laboratory effort and statistical analysis of data, the following

conclusions were made:

•  The statistical analysis does not provide enough evidence to say that there is a

difference in the Superpave and Marshall mix design methodologies.

•  The ANOVA indicated a difference due to traffic levels. The multiple

comparison procedure indicated that mixes designed for higher traffic levels

are more rut resistant than mixes designed for lower traffic levels.

•  The mixes prepared under the Superpave method passed the Marshall criteria.

•  The mixes prepared under the Marshall method passed the Superpave criteria.

This indicates that contractors using Marshall methodology to design and

construct pavements should not face unusual difficulties with Superpave

mixes.

•  The asphalt contents of Superpave mix designs are higher than Marshall mix

design for the same traffic level.

5.2 RECOMMENDATIONS

•  Based on the information developed during this research, differences between

the Marshall Base II and Superpave 19 mm mixes, evaluated for all traffic

levels, could not be detected statistically.  Thus, it would appear that

Superpave implementation could proceed with concerns about pavement

performance.

•  The fact that the Superpave mixes required slightly higher asphalt content

would increase the cost of the mixes.  For non-NHS roads, this may be

beneficial as pavement performance, other than rutting, is generally improved

with the higher asphalt film thickness associated with higher asphalt contents.



42

5.3 FUTURE RESEARCH

•  Similar analysis could be done using PG 64-22, which is generally used for

non-NHS roads in WV.

•  More aggregate types should be studied to have a broader perspective. This

study was limited to one source of limestone aggregates. Other aggregates

commonly used in the state should be studied, including other limestone

sources and natural sands.

•  Field tests on the rutting performance should be considered.  The performance

evaluation performed during this study is based on rutting potential as

evaluated by the APA.  An alternative method for estimating the performance

of low volume mixes is needed, since rutting may not be the controlling

performance parameter on low volume roads.
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APPENDIX A  AGGREGATE TESTS AND PROPERTIES

Table A.1 Gradation Data for Aggregates

#8 Coarse Aggregate
Sample  Sample1                  Sample 2                 Sample 3  
SIEVE Wt % Wt. % Wt % Wt. % Wt % Wt. %
SIZE, mm retained retained Passing retained Retained Passing retained retained Passing

25 0 0 100 0 0 100 0 0 100
19 0 0 100 0 0 100 0 0 100

12.5 0 0 100 0 0 100 0 0 100
9.5 37 3.7 96 40.5 3.8 96 56.4 4.9 95
4.75 836 83 13 836.2 78.6 18 965.9 83.9 11
2.36 108 11 2.6 131 12 5.3 98 8.5 2.6
1.18 7.6 0.8 1.9 23 2.2 3.1 8 0.7 1.9
0.6 1.7 0.2 1.7 8.2 0.8 2.3 1.8 0.2 1.8
0.3 0.8 0.1 1.6 4.1 0.4 2.0 1.1 0.1 1.7

0.075 1.3 0.1 1.5 4.3 0.4 1.6 1.6 0.1 1.5
Pan 14.9 1.5 16.5 1.6 17.5 1.5

Total 1007 1063.9 1150.7

#9 Coarse Aggregate
Sample  Sample1                  Sample 2                 Sample 3  
SIEVE Wt % Wt. % Wt % Wt. % Wt % Wt. %
SIZE,
mm retained retained Passing retained retained Passing retained retained Passing

25 0 0 100 0 0 100 0 0 100
19 0 0 100 0 0 100 0 0 100

12.5 0 0 100 0 0 100 0 0 100
9.5 0 0 100 0 0 100 0 0 100
4.75 175 32 68 183.2 32.3 68 157.8 28.6 71
2.36 346 64 4.1 359 63 4.5 360 65 6.3
1.18 13 2.3 1.8 14 2.5 2.0 21 4 2.5
0.6 0.4 0.1 1.7 1.2 0.2 1.8 2.4 0 2.0
0.3 0.1 0.0 1.7 0.2 0.0 1.8 0.7 0 1.9

0.075 0.2 0.0 1.7 0.7 0.1 1.7 1.4 0 1.7
Pan 9.1 1.7 9.4 1.7 9.2 1.7

Total 543.6 567.4 552
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Table A.1 Gradation Data for Aggregates (continued)

SAND
Sample  Sample1                  Sample 2                 Sample 3  
SIEVE Wt % Wt. % Wt % Wt. % Wt % Wt. %
SIZE,
mm retained retained Passing retained retained Passing retained retained Passing

25 0 0 100 0 0 100 0 0 100
19 0 0 100 0 0 100 0 0 100

12.5 0 0 100 0 0 100 0 0 100
9.5 0 0 100 0 0 100 0 0 100
4.75 5.6 1.1 99 5.9 1.1 99 4.4 0.8 99
2.36 111 21 78 117 22 77 119 23 76
1.18 166 31 46 168 32 45 165 31 45
0.6 91 17 29 88 17 28 87 17 28
0.3 62 12 18 58 11 17 59 11 17

0.075 58 11 6.6 54 10 6.5 55 10 6.6
Pan 35 6.6 34 6.5 35 6.6

Total 528.8 525.4 522.8

Table A.2 Specific Gravity of Aggregates

 #57   #8  
                Sample No.                 Sample No.

1 2 3 1 2 3
Dry Wt. (g), A 4886.3 3790.6 3789.8 2756.1 1746.7 1741.3
SSD Wt.(g), B 4918.2 3812.6 3811.3 2773.8 1758.2 1752.6
Wet Wt. (g), C 3098.8 2403.1 2400.6 1752.4 1106.4 1102.9
Bulk SG 2.686 2.689 2.686 2.698 2.680 2.680
A/(B-C)
Apparent SG 2.734 2.732 2.728 2.746 2.728 2.728
A/(A-C)
Absorption, % 0.7 0.6 0.6 0.6 0.7 0.6



48

Table A.2 Specific Gravity of Aggregates (continued)

  #9   Sand  
                 Sample No.   
 1 2 3 1 2 3
Dry Wt. (g), A 495.7 495.4 496.6 493.1 493.6 493.4
Pycnometer Wt.(g),
B 1448.2 1448.2 1448.2 1448.2 1448.2 1448.2
Wt. In water (g), C 1761.8 1762.5 1763.2 1761.9 1762.5 1762.3
SSD Wt.(g), D 500.3 500 501.1 500 500.6 500.5
Bulk SG 2.655 2.668 2.673 2.647 2.649 2.647
A/(B+D-C)      
Apparent SG 2.722 2.736 2.739 2.749 2.753 2.752
A/(B+A-C)       
Absorption,% 0.9 0.9 0.9 1.4 1.4 1.4

Table A.3. Aggregate Consensus Property Tests

   Sand
Sample Sand Clay Equivalency

No.
reading
(A)

reading
(B) (A-10)/B*100

1 13.4 4.3 79
2 13.5 4.5 78
3 13.5 4.5 78

Aggregate
type

mass of fine
aggregate
(g)

Fine
aggregate
angularity

Sand 146.0 45.9
# 9 146.4 46.0
# 8 146.9 45.6
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APPENDIX B MARSHALL MIX DESIGN DATA AND ANALYSIS

Table B.1 Theoretical Maximum Specific Gravity Calculations

AC Sample Dry Wet Container Gmm
Wt. (g) Wt. (g) Wt. (g)

3.9 1 2071.1 2769.2 1511.1 2.547
2 2067.5 2766.9 1511.1 2.547
3 2072.9 2771 1511.1 2.550

4.4 1 2073.1 2766.2 1511.1 2.534
2 2072.8 2765.8 1511.1 2.534
3 2075.3 2767.6 1511.1 2.535

4.9 1 2086.2 2767 1511.1 2.513
2 2086.7 2769.9 1511.1 2.520
3 2029.2 2733.5 1511.1 2.515

5.4 1 2095.5 2583.9 1511.1 2.049
2 2093.2 2579.2 1511.1 2.042
3 2097 2583.2 1511.1 2.046

5.9 1 2110.6 2588.2 1511.1 2.042
2 2110.9 2587.7 1511.1 2.041
3 2109.2 2587 1511.1 2.041

6.4 1 2111.3 2583.8 1511.1 2.033
2 2110 2582.3 1511.1 2.031
3 2114.4 2586.3 1511.1 2.035

6.9 1 2106.9 2576.6 1511.1 2.023
2 2105.6 2575.2 1511.1 2.022
3 2107.5 2577.3 1511.1 2.024

7.4 1 2092.5 2562.6 1511.1 2.010
2 2098.6 2565 1511.1 2.009
3 2102.4 2568 1511.1 2.011
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Table B.2 Marshall Heavy Traffic Level Mix Design

Asphalt Content by               Mass in Grams      Specific Gravity  Voids in    Percent Air Voids     Stability (n) Flow
    Weight of Mix Specimen Weight Weight Saturated   Density Mineral          Pounds 0.01
Specimen Percent Thickness in Air In water surface dry Bulk Maximum Kg/m3 Aggregate Total Mix Filled Actual Adjusted inch

Number AC (mm) A C B D E  F      

          100 X 100 X    

      A/(B-C)  D X 1000  [(E-D)/E] [(F-G)/F]    

1 3.9 66 1187.9 686.5 1194.2 2.340      2425 2287.1 16.0

2 3.9 65 1186.6 688.3 1193.2 2.350      2350 2261.9 14.0

3 3.9 65 1185.6 687.8 1192.3 2.350      2225 2141.6 13.5

Average      2.347 2.55 2347 15.54 7.97 48.68 2333 2230.2 14.5

1 4.4 66 1184.3 692.5 1190.1 2.380      2000 1886.3 17.5
2 4.4 64 1184.6 694.8 1190.4 2.390      2350 2320.6 17.5

3 4.4 66 1181.2 695.1 1187.2 2.400      2475 2334.2 16.0

Average      2.390 2.533 2390 14.42 5.64 60.90 2275 2180.4 17.0

1 4.9 63 1187.2 694.8 1190.3 2.396      2025 2050.3 12.5
2 4.9 63 1174.5 689.5 1178.8 2.400      2125 2151.6 12.5

3 4.9 64 1190.4 701.5 1195.4 2.410      1875 1851.6 13.0

Average      2.402 2.513 2402 14.44 4.41 69.46 2008 2017.8 12.7

1 5.4 64 1182 696 1186.4 2.410      1975 1950.3 13.5
2 5.4 63 1180.7 690.7 1184.7 2.390      2000 2025.0 13.0

3 5.4 66 1179.4 688.1 1183.5 2.381      2175 2051.3 22.5

Average      2.394 2.491 2394 15.19 3.91 74.28 2050 2008.9 16.3

1 5.9 63 1188.9 695.3 1191.1 2.398      2450 2480.6 15.0
2 5.9 63 1185.3 693.2 1189.3 2.389      2300 2328.8 15.0

3 5.9 64 1184.5 692.6 1188.2 2.390      2275 2145.6 16.0

Average      2.392 2.476 2392 15.68 3.38 78.47 2342 2318.3 15.3
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Table B.3 Marshall Medium Traffic Mix Design

Asphalt Content by               Mass in Grams      Specific Gravity  Voids in    Percent Air Voids     Stability (n) Flow
    Weight of Mix Specimen Weight Saturated Weight in   Density Mineral          Pounds 0.01
Specimen Percent Thickness in Air surface dry water Bulk Maximum Kg/m3 Aggregate Total Mix Filled Actual Adjusted inch

Number AC (mm) A B C D E  F G     

100 X 100 X

A/(B-C) D X 1000 [(E-D)/E] [(F-G)/F]

1 4.4 62 1136.7 1142.3 658.0 2.347 1950 2023 14

2 4.4 61 1140.7 1144.6 662.3 2.365 1975 2110 15

3 4.4 61 1138.1 1142.5 661.0 2.364 2025 2163 15

Average 2.359 2.534 2359 15.55 6.92 55.49 1983 2099 15

1 4.9 61 1145.7 1150.1 665.0 2.362 2025 2163 16
2 4.9 61 1141.9 1147.7 663.9 2.36 2050 2190 17

3 4.9 61 1141.5 1146.9 663.8 2.363 2050 2190 17

Average 2.362 2.516 2362 15.88 6.14 61.37 2042 2163 17

1 5.4 61 1139.5 1142.9 663.2 2.375 2000 2136 19
2 5.4 62 1140.9 1144.5 665.2 2.380 2000 2075 18

3 5.4 61 1139.2 1144.0 664.4 2.375      1850 1976 20

Average      2.377 2.491 2377.000 15.78 4.58 71.01 1950 2163 19

1 5.9 61 1143.8 1146.6 667.2 2.386      1950 2083 15

2 5.9 60 1138.0 1140.3 664.4 2.391      1975 2134 15

3 5.9 61 1144.6 1146.8 671.5 2.408      1875 2003 13

Average      2.395 2.476 2395 15.59 3.27 79.04 1933 2073 14.3

1 6.4 60 1137.6 1139.4 669.0 2.418      1825 1972 21

2 6.4 61 1138.5 1141.5 662.5 2.377      1975 2110 20

3 6.4 61 1150.9 1154.2 673.1 2.392      1925 2056 20

Average      2.396 2.452 2396 16.01 2.29 85.69 1908 2046 20
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Figure B.1 Asphalt content versus Density – Marshall heavy
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Figure B.2 Asphalt content versus Stability – Marshall heavy traffic mix.
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Figure B.3 Asphalt content versus Flow – Marshall heavy traffic mix

Figure B.4 Asphalt content versus VTM – Marshall heavy traffic mix

12

13

14

15

16

17

18

3 3.5 4 4.5 5 5.5 6 6.5

Asphalt content, %

Fl
ow

3

4

5

6

7

8

9

3 3.5 4 4.5 5 5.5 6 6.5

Asphalt content, %

VT
M

, %



54

Figure B.5 Asphalt content versus VMA – Marshall heavy traffic mix

Figure B.6 Asphalt content versus VFA –Marshall heavy traffic mix.
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Figure B. 7 Asphalt content versus density, Marshall medium traffic mix.

Figure B.8 Asphalt content versus Stability – Marshall medium traffic mix.
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Figure B.9 Asphalt content versus Flow – Marshall light traffic level
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Figure B.10 Asphalt content versus Air voids –Marshall medium traffic mix.
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Figure B.11 Asphalt content versus VMA – Marshall light traffic mix.
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APPENDIX C SUPERPAVE MIX DESIGN DATA AND ANALYSIS

Table C.1 Theoretical Specific Gravity for Trial Blends

 Weight of the container in water, (g)[D] = 1511.1
   A E A/(A+D-E)
BLEND AC,% Sample Dry wt.(g) Wet wt.(g) Gmm

1 4.4 1 2231.8 2864.0 2.539
2 2074.4 2768.2 2.538
3 2077.2 2769.8 2.538

2 4.5 1 2081.5 2771.8 2.536
2 2074.4 2766.9 2.534
3 2077.5 2768.8 2.534

3 4.5 1 2097.7 2770.6 2.503
2 2072.4 2771.5 2.552
3 2081.9 2771.1 2.533

Table C.2 Bulk Specific Gravity for Trial Blends

  A B C A/(C-B)
Blend Sample Dry Wt. (g)Wet Wt. (g)SSD Wt. (g)Gmb
Blend 1 1 4767.6 2784.4 4788.1 2.379
 2 4770.7 2791.2 4787.9 2.389
 3 4778.2 2798.1 4803.3 2.383
Blend 2 1 4794.6 2795.0 4818.6 2.369
 2 4786.0 2786.0 4814.0 2.360
 3 4783.0 2781.0 4809.1 2.358
Blend 3 1 4941.4 2892.9 4968.4 2.381
 2 4781.4 2787.2 4805.0 2.370
 3 4767.5 2779.5 4798.5 2.361
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Table C.3 Theoretical Maximum Specific Gravity Calculations for Superpave Heavy
Traffic Mix

Weight of the container in water, (g) [D] = 1511.1 
  A E A/(A+D-E)  
AC,% Sample Dry wt. (g) Wet wt. (g) Gmm Avg Gmm

4.7 1 2110.4 2785.2 2.523
2 2009.6 2723.9 2.522 2.523

5.2 1 2021.6 2724.7 2.502
2 2022.4 2725.2 2.502 2.502

5.7 1 2098.5 2768.2 2.494
2 2095.6 2767.1 2.496 2.495

6.2 1 2090.8 2760.2 2.484
2 2099.2 2765.9 2.486 2.485

Table C.4 Bulk Specific Gravity for Superpave Heavy Traffic Level Mix

 Sample A B C A/(C-B)  
AC, % No. Dry wt. (g)Wet wt. (g) SSD Wt. (g) Gmb Avg Gmb

4.7 1 4774.8 2787.1 4791.2 2.383
2 4759.6 2788.6 4776.2 2.395 2.389

6.4 1 4801.0 2808.3 4810.1 2.398
2 4765.0 2796.7 4771.5 2.413 2.406

6.9 1 4800.9 2825.2 4806.6 2.423
2 4775.2 2804.9 4781.2 2.416 2.420

7.4 1 4760.9 2802.1 4766.5 2.424
2 4755.2 2791.0 4762.0 2.413 2.419
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Figure C.1 Asphalt content versus Air voids-Superpave heavy traffic mix.
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Figure C.2 Asphalt content versus VMA-Superpave heavy traffic mix.
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Figure C.3 Asphalt content versus Percent Gmm at Nd-Superpave heavy traffic mix
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Figure C.4 Asphalt content versus VFA – Superpave heavy traffic mix.
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Table C.5 Blend Bulk Specific Gravity Calculations –Superpave Medium Traffic Mix.

Sample A B C A/(C-B)
No. Dry Wt. (g) Wet Wt. (g) SSD Wt. (g) Gmb

1 4745.0 2742.5 4748.8 2.365
2 4753.2 2750.5 4768.8 2.355
3 4739.0 2762.9 4752.9 2.381

Table C.6 Theoretical Maximum Specific Gravity Calculations-Superpave Medium
Traffic Mix

Weight of the container in water, (g) [D] = 1511.1  
  A E A/(A+D-E)  
AC,% Sample Dry wt. (g) Wet wt. (g) Gmm Avg Gmm

5.2 1 2013.4 2719.1 2.500
2 2021.6 2725.4 2.504 2.502

5.7 1 2092.8 2764.8 2.494
2 2098.5 2768.9 2.496 2.495

6.2 1 2088.4 2758.4 2.483
2 2090.8 2761.2 2.487 2.485

6.7 1 2099.4 2759.6 2.467
2 2110.9 2763.9 2.460 2.464

Table C.7 Bulk Specific Gravity-Superpave Medium Traffic Mix.

 Sample A B C A/(C-B)  
AC, % No. Dry wt. (g)Wet wt. (g) SSD Wt. (g) Gmb Avg Gmb

5.2 1 4730.4 2749.6 4743.3 2.373
2 4716.2 2740.8 4729.3 2.372 2.372

5.7 1 4760.1 2773.7 4769.7 2.385
2 4747.1 2779.2 4754.8 2.403 2.394

6.2 1 4652.2 2736.9 4657.9 2.422
2 4707.0 2765.6 4713.0 2.417 2.419

6.7 1 4734.2 2770.0 4742.4 2.400
2 4751.4 2787.5 4757.0 2.412 2.406
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Figure C.5 Asphalt content versus Air voids-Superpave medium traffic mix.
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Figure C.6 Asphalt content versus VMA-Superpave medium traffic level
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Figure C.7 Asphalt content versus Percent of Gmm at Nd-Superpave medium traffic mix
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Figure C.8 Asphalt content versus VFA-Superpave medium traffic mix.
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Table C.8  Blend Bulk Specific Gravity Calculations –Superpave Light Traffic Mix.

Sample A B C A/(C-B)
No. Dry Wt. (g) Wet Wt. (g) SSD Wt. (g) Gmb

1 4698.6 2704.4 4720.5 2.331
2 4684.5 2690.7 4711.9 2.318
3 4685.8 2701.1 4721.3 2.319

Table C.9 Theoretical Maximum Specific Gravity Calculations-Superpave Light Traffic
Mix.

Weight of the container in water, (g) [D] = 1511.1  
A E A/(A+D-E)

AC,% Sample Dry wt. (g) Wet wt. (g) Gmm Avg Gmm
5.9 1 2061.3 2744 2.488

2 2072.4 2749.7 2.485 2.487
6.4 1 2148.0 2788.8 2.468

2 2144.3 2787.3 2.470 2.469
6.9 1 2103.6 2756.4 2.451

2 2100.2 2754.8 2.452 2.451
7.4 1 2124.9 2762.6 2.433

2 2110.4 2754.8 2.435 2.434

Table C.10 Bulk Specific Gravity-Superpave Light Traffic Mix.

 Sample A B C A/(C-B)  
AC, % No. Dry wt. (g)Wet wt. (g) SSD Wt. (g) Gmb Avg Gmb

5.9 1 4675.3 2710.7 4685.7 2.367  
 2 4638.8 2692.2 4651.5 2.368 2.367
6.4 1 4676.5 2721.0 4685.1 2.381  
 2 4653.2 2700.4 4662.3 2.372 2.376
6.9 1 4614.5 2682.7 4622.4 2.379  
 2 4645.9 2706.6 4651.3 2.389 2.384
7.4 1 4555.5 2656.8 4564.0 2.389  
 2 4666.0 2728.2 4670.8 2.402 2.395
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Figure C.9 Asphalt content versus Air voids-Supeprave light traffic mix.
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Fgure C.10 Asphalt content versus VMA-Superpave light traffic mix.
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Figure C.11 Asphalt content versus percent Gmm at Nd-Supeprave light traffic mix.
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Figure C.12 Asphalt content versus VFA - Superpave light traffic level
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APPENDIX D  DATA AND ANALYSIS FOR EXCHANGING SUPERPAVE AND MARSHALL MIX

DESIGNS

Table D.1 Marshall Mix Designs with Superpave Methodology

Asphalt Content by
Mass in
Grams   

Specific Gravity
 Voids in    Percent Air Voids

    Weight of Mix  Weight Weight Saturated   Density Mineral   
MIX Percent in Air In water surface dry Bulk Maximum Kg/m3 Aggregate Total Mix Filled
 AC A C B D E  F   

         100 X 100 X
     A/(B-C)  D X 1000  [(E-D)/E] [(F-G)/F]

SL 6.2 4673.2 2711.3 4683.1 2.370
6.2 4664.8 2709.4 4675.2 2.373

Average 2.372 2.485 2372 16.66 4.57 72.58

SM 5.7 4760.1 2773.7 4769.7 2.385
5.7 4747.1 2779.2 4754.8 2.403

Average 2.394 2.533 2394 15.42 5.49 64.38

SH 5.1 4798.2 2800.2 4807.8 2.390
5.1 4786.5 2796.1 4797.1 2.392

Average 2.391 2.505 2391 14.98 4.55 69.63

ML 5.5 4659.0 2703.4 4668.4 2.371
5.5 4655.4 2702.1 4667.2 2.369

Average 2.370 2.483 2370 16.09 4.55 71.71

MM 5.5 4754.8 2769.1 4765.2 2.382
5.5 4755.2 2768.9 4766.0 2.381

Average 2.382 2.483 2382 15.68 4.09 73.93

MH 5.0 4784.2 2792.6 4795.2 2.389
5.0 4792.6 2794.4 4802.2 2.387

Average 2.388 2.514 2388 15.00 5.01 66.59
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Table D.2 Superpave Mix Designs with Marshall Methodology

 Asphalt Content by               Mass in Grams      Specific Gravity  Voids in    Percent Air Voids     Stability (n) Flow
     Weight of Mix Specimen Weight Weight Saturated   Density Mineral          Pounds 0.01

Specimen Percent Thickness in Air In water surface dryBulk Maximum Kg/m3 Aggregate Total Mix Filled Actual Adjusted inch
 Number AC (mm) A C B D E  F      

          100 X 100 X    
       A/(B-C)  D X 1000  [(E-D)/E] [(F-G)/F]    

MH 1 5.0 64 1193.8 699.7 1199.8 2.387 2525 2493.4 15.0
2 5.0 63 1174 686.1 1180 2.377 2400 2490.0 20.0
3 5.0 62 1190 696.6 1196.1 2.382 2700 2801.3 17.0

Average 2.382 2.51 2382 15.24 5.09 66.58 2542 2594.9 17.3

SPH 1 5.1 64 1214.8 711.1 1219.6 2.389 2975 2937.8 20.0
2 5.1 64 1210.3 706.6 1215.4 2.379 2575 2542.8 14.0
3 5.1 64 1207.6 704.0 1213.4 2.371 2525 2493.4 17.0

Average 2.379 2.508 2379 15.43 5.13 66.78 2692 2658.0 17.0

MM 1 5.5 58 1099.1 639.9 1103.3 2.372 1850 2152.1 15.0
2 5.5 62 1131.5 651.5 1138.6 2.323 1725 1789.7 20.0
3 5.5 61 1133.4 659.5 1137.4 2.372 2000 2137.5 15.0

Average 2.355 2.482 2355 16.63 5.10 69.35 1858 2026.4 16.7

SPM 1 5.7 61 1141.1 662.7 1145 2.366 2175 2323.2 22.0
2 5.7 62 1134.4 655.6 1139.6 2.344 1975 2049.1 20.0
3 5.7 62 1137.5 657.4 1142.3 2.346 2100 2178.8 22.0

Average 2.352 2.495 2352 16.94 5.74 66.13 2083 2183.7 21.3

SPL 1 6.2 63 1143.5 660.1 1148.2 2.343 1850 1873.1 24.0
2 6.2 61 1134.2 660.3 1138.5 2.372 1950 2082.8 20.0
3 6.2 61 1141.8 661.1 1146.4 2.353 2075 2217.6 22.0

Average 2.356 2.485 2356 17.24 5.20 69.84 1958 2057.9 22.0
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