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Delamination in Honeycomb FRP Sandwich Panels 

 

Weiqiao Wang 

Advisor: Dr. Julio F. Davalos 

Abstract: 

The focus of this dissertation is on developing efficient modeling techniques to 
study facesheet-core interface delamination in honeycomb fiber-reinforced polymer 
(HFRP) sandwich panels. Delamination problems are usually treated from a fracture 
mechanics point of view. However, interface delamination is generally very complex in 
nature and difficult to solve, because it involves not only geometric and material 
discontinuities, but also the inherently coupled Mode I, II and III fracture in layered 
material systems attributed to the well-known oscillatory singularity nature of the stress 
and displacement field in the vicinity of the delamination crack tip. One of the key issues 
in this research is to determine the best way to characterize interface delamination within 
the framework of continuum mechanics rather than using ad hoc methods just to facilitate 
numerical implementations, such as springs across a crack in the finite element method. 

The usual requirement of defining an initial crack and assuming self-similar 
progression of a crack, make traditional fracture mechanics approaches inefficient for 
modeling interface delamination. To circumvent these difficulties, five most relevant 
nonlinear crack models are reviewed and compared. It is concluded that by unifying 
strength-based crack initiation and fracture-based crack progression, the cohesive crack 
modeling approach has distinct advantages compared to other global methods.  

In this study, a cohesive zone model (CZM) with linear-exponential irreversible 
softening traction-separation law, satisfying empirical mixed-mode fracture criteria, is 
proposed to represent progressive damage occurring within the interface during the 
fracture process. The CZM is implemented as a cohesive interface element through a 
user-defined element subroutine within the general purpose finite element code 
ABAQUS. The framework and formulation of a three dimensional interface element are 
presented. Two sets of parameters are required for application of the developed interface 
element, namely, interfacial strength and fracture toughness. The initiation of fracture is 
determined by the interfacial strength and the progression of fracture is determined by the 
interface fracture toughness. The surface-like interface element consists of an upper and a 
lower face with initially zero thickness in the undeformed configuration. In the finite 
element modeling, these interface elements are positioned within the interface where 
potential delamination propagation is expected. A contact-type interface element is also 
developed to simulate contact behavior in the delaminated region. 
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Verification examples applying the developed interface element are presented 
with numerical simulations of standard fracture test configurations, namely double 
cantilever beam (DCB) and mixed-mode bending (MMB) specimens, under Mode I, 
Mode II, or mixed-mode loading conditions. For all the simulations, the present finite 
element solutions are in good agreement with either the linear elastic fracture mechanics 
analytical solutions or experimental data available in the literature. Non-self-similar 
delamination growth or a curved delamination front due to anticlastic bending effect in 
the DCB specimen is captured numerically. To test the robustness of the CZM in 
simulating delamination coupled with highly nonlinear structural response, delamination 
buckling of a laminated composite plate under in-plane compression is simulated; in 
order to lessen the burden of using a fine mesh, a slight modification of the formulation 
of the interface element was made resulting in a more brittle fracture behavior within the 
interface. 

Delamination in composite sandwich structures is an important failure mode. 
Although the problem of a facesheet delaminated from a solid core has been extensively 
investigated, the failure mechanism of delamination of a facesheet from a honeycomb 
core is far from fully understood. Application of the CZM to study facesheet-core 
interface delamination of honeycomb sandwich structures is rare. In this study, facesheet 
delamination in HFRP sandwich panels is addressed with the developed cohesive 
interface element.  

The interfacial properties of strength and fracture toughness are obtained through 
a systematic experimental program. The effects of such parameters as facesheet bonding 
layers and core-wall thickness are investigated, and although more tests are needed 
before a definite conclusion can be drawn from the current experimental data, some 
preliminary observations are provided regarding their effects on interface fracture 
response. It is shown that the response of the HFRP sandwich panel involving facesheet-
core interface delamination propagation is mainly controlled by the interface fracture 
toughness, while the interfacial strength has a relatively small effect. As such, the 
interfacial strength value need not be measured precisely. 

Simulation of the contoured double cantilever beam (CDCB) specimen with 
vertical core elements, used to obtain fracture toughness values, is successfully 
performed with the measured interfacial properties. It is verified that in this test the Mode 
II contribution is negligible, showing the validity of using the CDCB specimen for 
measurement of Mode I interface fracture toughness. A peeling delamination test of an 
HFRP sandwich panel is successfully modeled, demonstrating the predictive capability of 
the developed CZM to simulate the facesheet-core interface delamination propagation in 
actual HFRP sandwich panels with sinusoidal wave core configuration. Finally, a 
simulation of a four-point bending test of an actual HFRP sandwich panel is conducted, 
and without assuming an initial delamination, the cohesive zone modeling approach with 
the present interface element successfully predicted the delaminated region observed in 
the experiment. 
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Chapter 1 

Introduction 

1.1 Sandwich Structures 

Sandwich structure concept arose many years ago with the credit usually 

attributed to Fairbairn (1849) who first came up with this idea. Due to their many 

advantages, sandwich structures are gaining increasing applications in aeronautical, 

marine, automotive and civil engineering. Typically, a sandwich structure consists of two 

thin, stiff and strong facesheets of dense material separated by a thick core made of low 

density material which may also be much less stiff and strong (Figure 1.1 a). Such a 

structure provides an analogy to an I-beam where the facesheets are equivalent to the 

flanges, and the core acts as the web. Obviously by adjusting the height of the core, the 

bending stiffness of this arrangement could be very much greater than that of a single 

solid plate of the same total weight made of the same material as the facesheets. 

The facesheets carry in-plane and bending loads, while the primary function of 

the core is to resist transverse shear loads. The core should be stiff enough in the 

direction perpendicular to the facesheets to ensure that they maintain the correct distance 

apart while not sliding with respect to each other in order to ensure composite action. 

Also, the core must be stiff enough to keep the facesheets as flat as possible to prevent 

them from local buckling (wrinkling) under in-plane compressive loads. 
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Facesheets materials include metals and fiber reinforced composites, the latter 

being used mostly in advanced applications due to their high strength-to-weight ratios. A 

variety of core shapes have been used which may fall into three categories: foam or solid 

core, honeycomb core, and corrugated or truss core. The ‘solid’ core is relatively 

inexpensive and can consist of perforated chipboard, balsa wood, plastics, low density 

foams, lightweight concrete, or clay products, etc. (Figure 1.1a). Since World War II, 

honeycomb core architectures have been widely used. It is typically formed from strips of 

thin aluminum alloy or steel foil deformed and joined together (Figure 1.1b). The 

corrugated core is a fluted metal sheet attached alternately to the upper and lower 

facesheets (Figure 1.1c). Non-metallic honeycomb and corrugated cores are becoming 

increasingly popular due to their light weight and flexibility in the manufacturing process. 

Figure 1.1 Sandwich panels with various core configurations. 

Upper facesheet 

Honeycomb 
core 

Lower facesheet

(c) corrugated core 

(b) honeycomb core (a) foam core 



Chapter 1 Introduction  

 
 

3

The proper design of sandwich structure is very important in order to achieve its 

expected load-bearing capability. It involves such details as nature of the edge members, 

splices and joints in the cores and facesheets, stiffeners and inserts to distribute 

concentrated loads, type of adhesive, method of fabrication and so on. A detailed 

description of sandwich structures design and analysis can be found in the books by 

Plantema (1966), Allen (1969), Zenkert (1995) and Vinson (1999). 

1.2 HFRP sandwich panels 

Developments in new cores continue to be of primary interest. Recently, growing 

interests have arisen in composite materials for civil infrastructure rehabilitation. The 

concept of lightweight and heavy-duty honeycomb fiber-reinforced polymer (HFRP) 

sandwich panels, with sinusoidal wave core configuration in the plane extending 

vertically between face laminates, was developed for highway bridge decks by Kansas 

Structural Composites Inc. Stiffness characterizations for these panels have already been 

completed by Davalos et al. (2001).  

Figure 1.2 Configuration of the HFRP sandwich panel. 
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HFRP panels consist of a sinusoidal honeycomb core attached to two facesheets 

with bonding layers of polymer resin (Figure 1.2). Each component may fail in a distinct 

way, e.g. facesheet wrinkling, core shear, or facesheet-core debonding (Figure 1.3), 

which will degrade the structural performance of the sandwich panel or even lead to its 

sudden overall failure. 

Figure 1.3 Failure types of HFRP sandwich panels. 

(c) facesheet-core debonding 

(b) core shear 

(a) facesheet wrinkling 
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1.2.1 Delamination: An Important Failure Mode 

Among the aforementioned modes of failure, facesheet-core interface debonding 

or delamination is of major importance because of its frequent occurrence and adverse 

effects. It is critical that the interface bond between the facesheets and the core remain 

intact for the panel to perform its task. However, quite often manufacturing defects, in-

service loading conditions, impact of foreign objects, or high stress concentrations in the 

area of geometric or material discontinuities can cause an initial debonding at the 

interface. In the debonded region, the facesheet will lose its support from the core and it 

results in the loss of I-beam effect of the sandwich panel. Under compression or shear 

loads, it may cause the facesheet buckling and further delamination propagation, which 

can lead to catastrophic collapse of the structure. 

From the point of view of prediction and numerical simulation, the delamination 

failure in laminated composite and sandwich structures poses many challenges for 

engineers. Delamination can be conveniently treated as a problem of fracture mechanics. 

However, traditional methods in fracture mechanics such as the virtual crack closure 

integral assume an initial delaminated area and self-similar crack growth. Generally, 

delamination growth is non-self-similar, and thus renders the existing methodologies 

impractical. Furthermore, the facesheet-core delamination involves all the complications 

of the elastic bi-material fracture mechanics, especially the lack of rationally based 

procedures for the determination of mode components of strain energy release rates 

(SERR), GI, GII, and GIII in bi-material crack problems. 
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1.3 Objective and Scope 

The primary objective of this thesis is to investigate the feasibility of applying the 

cohesive zone model (CZM) for simulating delamination propagation of the HFRP 

sandwich panels. This model is not based on classical fracture mechanics which is 

heavily concerned with crack tip singular stress fields. In bi-material interface 

delamination problems, it is usually assumed that the interface is much weaker than the 

surrounding bulk materials and the crack path is known a priori along the interface. A 

cohesive layer is then interposed at the interface and the model is governed essentially by 

the critical values of the SERR (Gc) and strength (σc) of the interface as determined 

experimentally. The model unifies strength-based crack initiation and fracture-based 

crack propagation. The initiation of fracture is determined by σc and the progression of 

fracture is determined by Gc. A variety of CZMs have been used to address many kinds 

of problems in the literature. In the current study, a linear-exponential form of CZM is 

proposed and implemented into a general purpose finite element code as a special 3D 

interface element capable of dealing with mixed-mode crack situations. As opposed to 

traditional one-parameter (Gc) fracture mechanics methods, the two-parameter (Gc and σc) 

CZM has many advantages such as robustness, simplicity and the ability to account for 

contact of the delaminated surfaces. 

The secondary objective is to determine the interfacial properties, i.e. Gc and σc, 

of the HFRP sandwich panels. Contoured Double Cantilever Beam (CDCB) specimens 

are used for the Mode I interfacial fracture toughness GcI. Interfacial tensile and shear 

strength σcI, σcII (or σcIII) are determined by flatwise tension (FWT) and shear tests, 



Chapter 1 Introduction  

 
 

7

respectively. The influence of varying bonding layers and core thickness are investigated 

for the purpose of optimized practical application. 

The developed CZM is applied to many problems with delamination or debonding 

involved. Although the method is initially intended for study of delamination propagation 

in HFRP sandwich panels, it also provides an efficient approach to predict and track the 

delamination growth in laminated composite structures. Within the context of fracture 

mechanics, the primary emphasis here is slow stable crack growth, sub-critical and quasi-

static. Dynamic crack propagation is beyond the current version of the interface element 

formulation. Standard fracture test configurations loaded under Mode I, Mode II, and 

mixed-mode loading are simulated to verify the predictive capability of the developed 

CZM. For the modeling of HFRP sandwich panels, a CDCB specimen is first simulated, 

followed by modeling of a peeling test and a bending test of sandwich panels. 

Compressively loaded laminated composite plates containing initial delaminations will 

first undergo delamination buckling before experiencing delamination growth. In these 

cases, contact or loss of contact between the delaminated surfaces can be an important 

factor in the prediction of structural collapse or dictating the mode of delamination 

growth. Interface element with contact detecting capability is applied to address this 

problem. Composite plates containing through-the-width delaminations and subjected to 

compression are simulated. 
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1.4 Organization of the Dissertation 

The remainder of this dissertation is organized into six chapters. 

Chapter 2 is intended to provide background materials related to the topic to be 

investigated in the subsequent chapters. It contains a brief review of fracture mechanics 

with emphasis on the bi-material interfacial fracture problem followed by an introduction 

to five popular nonlinear crack models for nonmetallic materials. 

Chapter 3 focuses on modeling of delamination in layered composite laminates 

and composite sandwich structures. A comprehensive literature review is undertaken of 

previous work by other researchers in this field. Traditional modeling techniques are 

discussed, however preference is given to cohesive crack modeling via interface elements. 

In Chapter 4, the framework and formulation of a three dimensional cohesive 

interface finite element are described. A mixed-mode linear-exponential softening 

traction-separation law is proposed to represent progressive damage occurring in the 

interface during the fracture process. Typical nonlinear solution methods are also 

discussed. 

In Chapter 5, verification examples applying the developed interface element are 

presented with numerical simulations of standard fracture test configurations and 

buckling driven delamination in a laminated composite plate loaded with in-plane 

compression. Typical computational issues related to modeling with interface elements 

are discussed. 

Chapter 6 is exclusively devoted to modeling of facesheet-core interface 

delamination in HFRP sandwich panels. A systematic experimental program is carried 
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out to investigate interfacial properties as required in the application of the CZM. Using 

the measured properties, simulations are performed for three cases: a CDCB specimen, a 

peeling delamination test, and a four-point bending test. 

In the last chapter, major conclusions are summarized and suggestions for future 

work are given.  
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Chapter 2 

Fracture Mechanics and Nonlinear Crack 
Models 

The life of a structural component is limited by its ability to resist the effects of its 

usage history, which may consist of cyclic loads, fluctuations in temperature, or a 

corrosive environment. With the increasing cost of developing advanced structures, 

engineers find it more economical to refurbish and maintain the existing structures than 

to build new ones. The damage tolerance design method has become widely accepted in 

the industry to extend the life of a structural component. Allowing for the presence of 

sub-critical cracks that will not grow to critical length between periodic inspections, this 

method provides quantitative guidance for the balancing of the cost of repair or 

replacement of a damaged component against the possibility that continued service could 

lead to failure. This design method is primarily based upon fracture mechanics to ensure 

sufficient strength and structural integrity to sustain major damage and to avoid 

catastrophic failure. 

In this chapter, a brief review of fracture mechanics will be given with emphasis 

on the bi-material interfacial fracture mechanics. An introduction is then made to five 

nonlinear crack models for nonmetallic materials which are widely adopted in the 

literature for numerical modeling of crack initiation and propagation within materials or 

in the material interfaces. 
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2.1 Linear Elastic Fracture Mechanics (LEFM) 

The origin of contemporary fracture mechanics is Griffith’s work on the fracture 

of glass (Griffith, 1920). The basic idea put forward by Griffith is an energy balance 

equation that relates the rate of change of internal and external energy due to crack 

propagation to the surface tension corresponding to the newly created surfaces. An 

expression for the necessary condition for fracture propagation of a crack with surface 

area A, can be stated as 

 γ2)( =−VU
dA
d

 (2.1)

where V and U refer to the work of the external forces and internal strain energy, 

respectively, and γ is the specific surface energy of the solid.  

Griffith’s work was largely ignored by the engineering community until the late 

1940’s when Irwin (1948) and Orowan (1948) investigated brittle fracture of metallic 

structures and found that in the energy balance equation, the rate of plastic work, at the 

crack front, must also be considered as a component of the dissipated energy. Irwin 

concluded that if the characteristic size of the zone of plastic deformations is very small 

compared to the length of the crack, the energy flow into the fracture zone will come 

from the elastic bulk of the solid. Therefore, it will not be critically dependent on the 

details of the stress state very near the crack tip. In addition, the stress in the elastic bulk 

of the solid will not differ significantly from the purely elastic solution. This work led to 

the generalization of Griffith’s equation to 
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 GVU
dA
d

=− )(  (2.2)

where G is the energy release rate for crack propagation and incorporates the effects of 

small scale yielding at the crack tip. Because of this significant observation, under certain 

conditions, one can now justify calculating the energy available for crack propagation 

from a purely elastic analysis. This idea is the fundamental underpinning of linear elastic 

fracture mechanics (LEFM). 

Irwin’s second important contribution was to provide a quantitative relation 

between the sometimes mathematically awkward strain energy release rate (SERR), a 

global parameter, and the stress-intensity factor (SIF), a local crack-tip parameter. He 

was able to do this by recognizing the universality of the asymptotic stress and 

displacement fields around the crack-tip for linear elastic materials. The asymptotic stress 

fields for different configurations differ only by scalar coefficients, i.e. the stress-

intensity factors (SIFs), K’s. Imaging that the crack has extended by a small amount, 

Irwin calculated the work required to close it up to its original length which can be 

equated to the product of the energy release rate and the crack extension increment. By 

using the cracked body solutions of Westergaard (1939), he showed that the stresses and 

displacements near a crack tip in a linear elastic solid subjected to general loading 

conditions may be expressed in terms of three SIFs KI, KII, and KIII, corresponding to the 

three fundamental modes of fracture, i.e. opening, sliding, and shearing or tearing modes, 

respectively, as illustrated in Figure 2.1.  
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Figure 2.1 The three fundamental modes of fracture. 

The SIFs quantify the effects of geometry and boundary conditions on the near-tip 

stress and strain fields. In the vicinity of an ideally sharp crack tip in a linear elastic and 

isotropic material (Figure 2.2), the stresses can be expressed in the following form 

referenced to the polar coordinates (r, θ) 

 ( )θ
π

σ ijij f
r

K
2

=  (2.3)

where K is one of the three SIFs, and fij(θ) is a function of θ. The SIFs can be used to 

determine whether or not the crack would grow. An alternative measure of the tendency 

for crack propagation is the SERR, G and its components GI, GII, and GIII, which are 

easily related to K’s as 

 
E

KG
E

KG II
II

I
I

22

, ==  (2.4)

in plane stress problems in isotropic materials. 

(a) Mode I (Opening) (b) Mode II (Sliding) (c) Mode III (Shearing)
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Figure 2.2 Stresses in a plane crack-tip. 

2.2 Elastic-Plastic Fracture Mechanics (EPFM) 

LEFM predicts impractical infinite stress at the crack tip, and it is limited by the 

small-scale yielding condition that the plastic zone near the crack tip be small compared 

to the size of the K-dominant region and any relevant geometric dimension. Irwin (1958) 

estimated the size of the plastic zone, ry, at a crack tip in a material with yield strength of 

σY as 

 2

2

Y
y n

Kr
πσ

=  (2.5)

where n = 1 for plane stress and n = 3 for plane strain. If ry is relatively small, LEFM 

could still be used provided that an effective crack length equal to ry/2 was added to the 

actual crack length. However, for high toughness, low strength materials which generally 

undergo extensive plastic deformation and crack-tip blunting prior to initiation of crack 

growth, LEFM cannot predict accurately the load carrying capacity of a degraded 

τ21 

σ11 

σ22 

τ12 
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θ 
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component made from these materials. To overcome this difficulty, there have been large 

advances in the development of elastic-plastic fracture mechanics (EPFM). 

Wells (1961) introduced the crack opening displacement (COD) concept, later 

called crack tip opening displacement (CTOD), δ, to model fracture under general 

yielding conditions. By assuming that δ will be directly proportional to overall tensile 

strain e after general yield has been reached, Wells suggested the following fracture 

criterion for the post-yield region 

 
YY e
e

ae
=

π
δ

2
 (2.6)

where eY = σY /E is the uniaxial yield strain. This set the basis for the widely used COD 

method. In 1960, Dugdale developed an important closed-form solution of plastic zone 

size applicable for plane stress condition. This key paper largely advanced the COD 

concept. Using method of complex variable theory of elasticity developed by 

Mushkhelishvili (1954), Dugdale supposed that for a thin sheet loaded in tension, the 

yielding will be confined to a narrow band lying along the crack line. Mathematically, 

this idea is identical to placing internal stresses on the portions of the (mathematical) 

crack face near its tips; the physical crack being the remaining stress-free length. In 

Dugdale’s model, the magnitude of the internal stresses are taken to be equal to the yield 

stress of the material, while the crack tip stress singularity was abolished. For a crack of 

length 2a in an infinite medium under uniform tension σ (Figure 2.3), the length of the 

plastic zone at the crack tip is given by Dugdale as 
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σπ
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sin2 2  (2.7)

Based on the Dugdale model, Goodier and Field (1963) first obtained the explicit relation 

of δ as follows 

 ⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

Y

Y

E
a

σ
σπσ

π
δ

2
seclog8

 (2.8)

Burdekin and Stone (1966) obtained this key result independently, and demonstrated that 

fracture could be governed by the critical value of COD, δc. Their work provided the 

basis for the well-known semi-empirical “COD Design Curve” approach. 

Figure 2.3 The Dugdale model. 

As an alternative to the COD design curve, Rice (1968) developed a path 

independent integral, J-integral, and Hutchinson (1968) showed how such a concept 

could be used to obviate the need for a direct description of the discrete and nonlinear 

events involved in crack extension. The basic equation is 

d
a x

y 
crack

plastic zone 
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 ds
x

wdyJ ∫
Γ ∂

∂
−=

uΤ  (2.9)

where Γ is the a curve that surrounds the crack-tip, T is the traction vector, u is the 

displacement vector, w is the strain energy density and the y direction is taken normal to 

the crack line. The path independent of the J-integral arises because deformation 

plasticity (i.e. nonlinear elastic behavior) is used. Begley and Landes (1972) recognized 

that J provides three distinct attractive features: 1) for linear elastic behavior it is identical 

to G, 2) for elastic-plastic behavior it characterizes the crack-tip region and, hence, would 

be expected to be equally valid under nonlinear conditions, and 3) it can be conveniently 

evaluated experimentally. The interpretation of J as the rate of change of the potential 

energy for nonlinear constitutive behavior plays a key role for the analysis of fracture in 

elastic-plastic conditions. Hutchinson and Paris (1979) have shown that outside a core of 

non-proportional loading the deformation is nearly proportional. Provided the region of 

non-proportional loading is well contained within the region dominated by the J-

singularity there exists an annular region where the HRR (Hutchinson, 1968; Rice and 

Rosengren, 1968) field holds (Figure 2.4). If fracture process zone size R is small 

compared to the J-dominant region D, the initiation and growth of a crack can be 

expected to be governed by a critical value of J. 
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Figure 2.4 Basis for J-integral EPFM. 

2.3 Bi-material Interface Fracture Mechanics (BIFM) 

Despite the fact that LEFM techniques have been very successful for assessing 

defects in metals, limited success has been achieved so far for composite materials 

mainly due to their heterogeneous nature. Delamination in laminated composite and 

sandwich structures essentially involves cracking between materials of different 

properties. In this section, concepts of bi-material interface fracture mechanics (BIFM) 

will be briefly reviewed. 

Although long-standing problems of adhesion mechanics have required 

consideration of failure and fracture at and near interfaces, it was only the advent of 

composite materials and the improved understanding of fracture in non-monolithic solids 

that motivated a widespread interest in interfacial fracture studies. The interface crack 

problem was first studied by Williams (1959) who showed that the stresses near the crack 

tip exhibit an oscillatory character of the type r-1/2+iε where ε is a bi-material constant. 

D 

R 

Boundary of 
J-dominant region 

Boundary of 
process zone 



Chapter 2 Fracture Mechanics and Nonlinear Crack Models 

 
 

19

This result has also been confirmed by other researchers (Rice and Sih, 1965; Erdogan, 

1965). The oscillatory stress singularity leads to physical absurdity of crack surface 

interpenetration or overlapping, as pointed out by England (1965) and Malyshev and 

Salganik (1965). Various ways have been proposed to resolve this problem: some have 

eliminated the oscillatory term by postulating a frictionless contact zone (Comminou, 

1977a, 1977b; Gautesen and Dundurs, 1987, 1988), by relinquishing the hypotheses of 

infinitesimal deformations (Knowles and Sternberg, 1983; Ravichandran and Knauss, 

1989; Hermann, 1989) or by introducing a transition layer (Yang and Shih, 1990). Others 

(Shih and Asaro, 1988, 1989; Shih, 1991) have used a numerical plasticity model to 

compute the detailed stress and deformation fields at the crack-tip. But the more widely 

used approach to deal with this problem is the concept of small-scale contact (Rice, 1988) 

which essentially ignores its presence on the basis of its usually small size. 

Unlike homogeneous materials, bi-material interface crack exhibits a coupling of 

tensile and shear effects. In a 2-D problem, both opening and shearing modes are induced 

even when the geometry and loading are symmetric with respect to the crack plane. The 

oscillatory singular stress field is characterized by a complex stress-intensity factor, K, 

together with the bi-material constant ε, relating the elastic properties of the two materials. 

Consider two isotropic elastic materials bonded along the x1-axis as shown in 

Figure 2.5. Let Ei, vi and µi denote the Young’s modulus, the Poisson’s ratio and the 

shear modulus of the ith material, respectively. Dundurs (1969) defined the following 

mismatch parameters 
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where subscripts 1 and 2 refer to the materials above and below the interface, 

respectively; E’ = E in plane stress and E/(1-v2) in plane strain, k = (3-v)/(1+v) in plane 

stress and 3-4v in plane strain. 

Figure 2.5 Interface crack between two dissimilar materials. 

Both α and β vanish when the elastic properties of the two materials are the same 

and they change sign when the materials are interchanged. The bi-material constant ε can 

then be defined as 
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The complex stress-intensity factor, K, is defined as 

 21 iKK +=K  (2.12)
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where i = 1− . The notations K1 and K2 instead of KI and KII are commonly adopted for 

a bi-material system. 

The stresses on the interface directly ahead of the tip, at θ = 0, are given by 

 ε

π
σσ ir

r
iKKi

2
21

1222
+

=+=σ  (2.13)

where riε is the so-called oscillatory singularity which causes complications that are not 

present in the elastic fracture mechanics of homogeneous materials. 

The corresponding crack flank displacements at a distance r behind the tip, θ = π, 

are given by 
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with  
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where ii EE = in plane stress and ( )21/ iii vEE −=  in plane strain. 

An alternative characterization of the near-tip stress field involves the energy 

release rate, G, together with the loading phase angle, Ψ. The interface energy release 

rate G is related to the stress-intensity factors by 

 
( ) *2

2

cosh E
G

πε
K

=  (2.16)
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and the phase angle is 
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where L is an arbitrary length parameter. Hutchinson and Suo (1992) suggested taking L 

as a measurement of the crack tip process zone, for example. The phase angle, indicating 

the mode mixity, measures the ratio between the shear stress and normal stress at the 

interface in front of the crack tip. 

Of the two non-dimensional parameters, α and β, measuring the dissimilarity in 

material elastic properties, α is more important. For most material systems, the influence 

of β is small and negligible (He and Hutchinson, 1989). Taking β = 0, thus ε = 0, 

equations (1.16) and (1.17) become 
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K

Ψ −=  (2.19)

The criterion for initiation of crack growth in the interface when crack tip is 

loaded in mixed mode characterized by Ψ  is 

 ( )ΨGG c=  (2.20)

The relationship between the loading phase angle, Ψ, and the interface toughness, Gc, is a 

property of the type of material on either side of the interface and the nature of the 

bonding. Usually, Gc is determined by experiment (Charalambides et al., 1989) although 
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Hutchinson (1989) proposed the following analytical expression to describe interface 

toughness variations 

 ( )ΨGG cc
2

0 tan1+=  (2.21)

where Gc0 is the toughness when the shear loading is zero. 

2.4 Nonlinear Crack Models for Nonmetallic Materials 

In brittle-matrix fiber-reinforced composites and quasibrittle materials (like 

concrete, rocks, ceramics, polymers, high-strength metallic alloys), nonlinear mechanical 

effects generally occur at the tip of macrocracks. Such local effects as, for example, 

plastic deformation, yielding, strain-hardening, strain-softening, mechanical damage, 

matrix microcracking, aggregate debonding, fiber bridging, fiber slippage, crazing, and 

so on, should be properly described through different simplified models. Excluding the 

metallic alloys, for which the bulk behavior cannot always be modeled as linear elastic, 

all the other structural materials may be studied through nonlinear crack models, where 

nonlinearity is concentrated only in the crack tip region. In this section, five most relevant 

nonlinear crack models are reviewed and compared. 

2.4.1 Damage Crack Model 

In this model, the strain energy density (SED) theory of Sih (1973, 1974) is 

applied to predict the failure modes. According to this theory, outside a core region of 

radius r0 (a minimum distance below which it is meaningless to study the mechanical 
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behavior of the material from a continuum-mechanics point of view), the SED field can 

always be described by the following general relationship 

 
( )
r

S
V
W θ

=
d
d  (2.22)

All the material elements ahead of the crack tip will fail and induce crack growth when 

the SED is higher than a critical value Sc which is a material property and can be related 

to the SIF. 

Based on the SED theory, the rate of change of the strain energy density factor dS 

with respect to the crack growth rate da remains constant for each loading increment, i.e. 

dS/da = constant. The straight line relationship S versus a rotates in a counterclockwise 

direction around a common point as the loading increment is increased. According to a 

model based on damage, the stress and strain fields in the whole body are reevaluated 

during the crack propagation, and the effective elastic modulus is reduced incrementally 

to reflect the degree of damage (Figure 2.6). The fracture strain εf  is a sensitive parameter 

with εf → ∞ to represent an elastic-perfectly plastic material and εf → εu  (ultimate strain) 

to represent an elastic-perfectly brittle material. For mixed mode problems, the trajectory 

of the crack is determined assuming the crack will propagate in a direction normal to the 

maximum principal tensile stress by a length given by the SED criterion. 
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Figure 2.6 Damage crack model. 

2.4.2 Cohesive Crack Model 

In many quasibrittle materials, it is common that the global structural behavior 

exhibits strain softening, i.e., a negative slope of the stress-strain diagram, due to micro-

cracking and localization of the deformation in a narrow band, called fracture process 

zone (FPZ), where energy dissipation occurs. The behavior of the material outside this 

band is still linear elastic. The fully developed fracture process zone (FPZ) is usually 

large compared to the crack length or other dimensions of a specimen, which renders 

LEFM inapplicable. The FPZ can be described by two simplified approaches: 1) the 

entire FPZ is lumped into the crack line and is characterized in the form of a stress-

displacement law which exhibits softening; 2) the inelastic deformations in the FPZ are 

smeared over a band of a certain width, imaged to exist in front of the main crack. In this 

subsection, we will focus on the first approach which is usually referred to as cohesive 

crack model (also called fictitious crack model, Dugdale-Barenblatt model). The second 

approach, called the crack band model, will be illustrated in the next subsection. 
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Figure 2.7 Various physical sources of cohesive cracks: a) atomic bonds, b) yield 
(dislocation) strip, c) grain bridging, d) fiber bridging, e) aggregate frictional interlock, 

and f) crack overlap (Bažant and Planas, p. 161, 1997). 

Cohesive crack models came into being in the early 1960’s to account for the 

basic aspects of the nonlinear material behavior ahead of the tip of a pre-existent crack. In 

these models, the crack is assumed to extend and to open while still transferring stress 

from one face to the other. The first cohesive model was proposed by Barenblatt (1962) 

to study the nonlinear behavior of the atomic bonds breaking during crack propagation 

(Figure 2.7a). Barenblatt simulated the interatomic forces by introducing distributed 

cohesive stresses on the newly formed crack surfaces, depending on the separation 

between the crack faces. His analysis showed that the cohesive zone could relieve the 

unrealistic crack tip singularity of LEFM. The fracture energy Gf was related to the 

atomic binding energy. Simultaneously, Dugdale (1960) proposed a relatively simple 

model to deal with plasticity at a crack tip, as previously mentioned in 2.2. The stress on 

the crack line ahead of the crack tip was assumed to be limited by the yield strength and 

the plastic deformation was concentrated along the crack line, thus generating a 

displacement discontinuity similar to a crack. This approximation can be justified based 

on flow of dislocations that combine and concentrate on the crack line (Figure 2.7b). 
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Since the pioneering studies of Barenblatt and Dugdale, cohesive crack models have 

frequently been used to describe the nonlinear behavior near the crack tip in metals, 

polymers, ceramics, and geomaterials. Many distinct micromechanisms with scales 

ranging from nanometers to centimeters, as shown in Figure 2.7, have been successfully 

treated using these models. 

In the late 1970’s, Hillerborg, Modéer and Petersson (1976) extended the concept 

of cohesive crack for concrete, called fictitious crack model. This model can not only be 

used to describe the behavior of a pre-existing crack, but by including crack initiation 

rules, it can also be applied to initially uncracked structures and describe all the fracture 

processes from no crack at all to complete structural breakage. The fictitious crack model 

provides a continuous link between the classical strength-based analysis of structures and 

the energy-based classical fracture mechanics: cohesive cracks start to open as dictated 

by a strength criterion that naturally and smoothly evolves towards an energy criterion for 

large cracks. As this model forms the basis of many other cohesive models developed 

later, its basic concepts will be introduced next. 

The basic assumption is the formation, as an extension of the real crack, of a 

fictitious crack, referred to as the process zone, where the material, although damaged, is 

still able to transfer stresses (Figure 2.8). The point separating the stress-free area, i.e., the 

real crack, from the process zone, is called the Real Crack Tip (R.C.T.), while the point 

separating the process zone from the uncracked material is referred to as the Fictitious 

Crack Tip (F.C.T.).  
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Figure 2.8 Fictitious crack model (Carpinteri et al., 2003).  

In the process zone, the crack will propagate when stress at the crack tip reaches 

the material’s ultimate tensile strength σu. During crack propagation, the stresses 

transferred by the material are some form of decreasing functions of the crack separation 

(Figure 2.9b). It is assumed that all the energy dissipation takes place in the process zone, 

while the bulk material remains linear elastic (Figure 2.9a). At the F.C.T., the stress will 

always be equal to the ultimate tensile strength, thus eliminating stress singularities. The 

area under the curve of stress versus crack separation represents the fracture energy, G, 

which together with σu, characterizes the two-parameter fracture model.  

Figure 2.9 Constitutive  laws: (a) undamaged material, (b) process zone. 
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Figure 2.10 Three-point bending concrete specimen for PBI methods.  

The cohesive crack models find a lot of applications for numerical modeling of 

crack propagation in materials exhibiting strain softening, for example, in concrete 

structures. Figure 2.10 shows a three-point bending test of a concrete beam. A mode I 

problem is considered since the crack trajectory is known along the middle span of the 

beam due to symmetry. The pseudo-boundary-integral (PBI) methods can be efficiently 

applied to this case. They are similar to boundary integral methods, but the kernel of the 

integral equation is discretized a priori typically using the finite element method (FEM). 

The cohesive crack problem will be reduced to solving a system of equations defined on 

the cracked cross-section. A FE mesh is created with M pairs of nodes arranged along the 

crack path. We assume, in general, that the structure has an initial notch spanning the 

nodes 1,⋅⋅⋅, N, and that the process zone has extended from the node at the initial R.C.T. 

node T = N + 1 to the F.C.T. node C; the nodes from U = C + 1 on pertain to the 

uncracked ligament. In the process zone, the cohesive forces σi are related to the crack 

opening wi according to a constitutive law f(wi). The governing equations of the problem 

are written in terms of the nodal values as 

 σi = 0 for  i = 1,⋅⋅⋅, N  (2.23a)
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 σi = f(wi) for  i = T,⋅⋅⋅, C  (2.23b)

 wi = 0 for  i ≥ C (2.23c)

In this system, σi and wi are explicit unknowns, and the load P is an implicit 

unknown. The PBI methods use elastic relations to link σi, wi and P. The solution can be 

sought by various methods, such as, the influence method (Petersson, 1981; Planas and 

Elices, 1991), the smeared-tip method (Planas and Elices, 1992; Bažant, 1990). 

Figure 2.11 Discrete interelement crack approach applied to mixed-mode crack growth 
(Carpinteri, p.85, 1998). 

The PBI methods are very powerful for the analysis of repetitive geometries of 

various sizes and different material properties, which are particularly suited for 

determining the size effect for a wide range of sizes. However, they are not intended to 

solve a single particular case, especially for mixed-mode loading problems, because the 

time savings in computing the crack growth cannot compensate for the computation of 

the influence matrices. In a mixed-mode problem, the crack path is unknown before the 

analysis, and the growth of a cohesive crack is a highly nonlinear process which usually 

requires complex numerical procedures. In the last two decades, a considerable amount of 

computational effort has been devoted to deal with cohesive cracks using FEM. Among 
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them, three main approaches have been used: 1) discrete interelement crack approach, 2) 

smeared crack approach, 3) discrete intraelement crack approach. 

In the discrete interelement crack approach, the crack extends between elements 

as shown in Figure 2.11. The softening behavior in the process zone is simulated using 

interface elements connecting the nodes on both sides of the crack. The FE mesh must be 

modified at each step of crack propagation. Automatic adaptive mesh generation and 

analysis program is needed to reduce the complexities involved. A number of special 

programs have been developed for such purpose, for example, C.CRA.P. (Carpinteri, 

1998), FRANC (Ingraffea, 2003), MERLIN (Saouma, 2003). In the smeared crack 

approach, conventional FE formulations are used with element-dependent stress-strain 

relations obtained by smearing the crack opening displacement in the element intersected 

by the crack. It has the advantage that the mesh topology is unchanged during crack 

growth. Such concept is very close to the crack-band model which will be introduced in 

the next subsection. Recently, a new robust discrete intraelement crack approach has been 

developed in which the crack runs through elements. This method is called the eXtended 

Finite Element Method (XFEM) by the developers (Belytschko and Black, 1999; Moës, 

Dolbow and Belytschko, 1999). In XFEM, the standard displacement-based finite 

element approximation is enriched near a crack by incorporating both the discontinuous 

field and the singular asymptotic crack tip field. Figure 2.12 shows a typical XFEM mesh 

with a curved crack of two tips. With such enrichment, the FE mesh can be considerably 

coarse near the crack tip and the elements need not to conform to the crack geometry. For 

growing cracks, no remeshing is necessary. In principle, this technique can be applied to 

problems with arbitrary discontinuities and singularities demonstrated by several 
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applications (Sukumar et al., 2000, 2003a, 2003b; Belytschko et al., 2001; Huang et al., 

2003; Patzák and Jirásek, 2003). Extension of this method to cohesive crack models are 

reported by Wells and Sluys (2001) and Moës and Belytschko (2002). Due to absence of 

a stress singularity, no special enrichments around the crack tip are needed. 

Figure 2.12 A typical XFEM mesh with a curved crack of two tips. The squared nodes 
are enriched with the Heaviside function, and the circled nodes are enriched with the 

near-tip asymptotic field. 

The aforementioned formulation of the cohesive crack model is its simplest 

version. Five possible extensions of this model were discussed in Bažant and Planas 

(1997): 1) extend the formulation to include cohesive crack tip singularity using a 

softening curve consisting of an initial spike with large strength, which is suitable for 

describing fracture of fiber-reinforced materials; 2) accept a behavior other than isotropic 

linear elastic in the bulk material around the crack; 3) introduce dependence on stress 

triaxiality; 4) introduce a fully consistent mixed-mode formulation; 5) introduce time-

dependence in the cracking behavior and in the bulk material. Due to these flexibilities, 

cohesive crack models are widely used and continually developed recently. Application 
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of these models to study delamination in composite structures will be discussed in 

Chapter 3, and a mixed-mode cohesive zone model will be implemented and applied in 

the subsequent chapters. 

 2.4.3 Crack Band Model 

Smeared cracking approach has gained wide popularity in finite element analysis, 

particularly, of concrete structures. Instead of modeling fracture by discrete line cracks, 

in this approach, cracks are represented in a smeared manner, as was first introduced by 

Rashid (1968), that infinite number of parallel cracks of infinitely small opening are 

imaged to be continuously distributed (smeared) over the finite element. This can be 

conveniently modeled by reducing the material stiffness and strength in the direction 

normal to the cracks after the peak strength of the material has been reached. Such 

changes of the stiffness matrix can be easily implemented in a finite element code, which 

is the appealing feature of this method. 

The smeared cracking with strain softening, however, leads to certain numerical 

difficulties, such as, localization instabilities and spurious mesh sensitivities. In order to 

prevent localization of smeared cracking into arbitrarily small regions, some 

mathematical concepts, called localization limiter, were introduced. One of such concepts 

is the crack band model, which is rather simple and also popular. This model was 

developed by Bažant and co-workers (Bažant, 1976; Bažant and Cedolin, 1979, 1980, 

1983). The basic attribute of this model is that the given constitutive relation with strain 

softening must be associated with a certain width hc of the crack band, which represents a 

reference width and is treated as a material property to be determined experimentally. 
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There is a close similarity between the crack band model and the cohesive crack 

model in terms of the softening constitutive law. This can be illustrated in Figure 2.13 for 

a uniaxial case. The only difference results from the strain and displacement distribution. 

Figure 2.14a and b show the comparison of the axial displacement distribution in a bar 

for a cohesive crack model and a crack band model. Figure 2.14c and d show the 

corresponding strain distributions. The difference could be nil for most engineering 

problems since it is almost invariably true that hc << L (bar length) in practical situations. 

Figure 2.13 Correspondence between the softening curve of the cohesive crack model (a), 
and the stress-strain curve of the crack band model (b). 

Figure 2.14 Comparison of the distributions of axial displacement and of strain in a bar 
for the cohesive crack model (a, c) and the crack band model (b, d) (Bažant and Planas, p. 

222, 1997).  
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2.4.4 Bridged Crack Model 

The fracture process zone in quasi-brittle materials typically consists of a 

microcracking region, near the tip of the macrocracks, and a bridging region, along the 

wake of the macrocracks. Microcracks initiate and propagate at nearby pre-existing flaws 

and secondary phases (e.g. grains, aggregates, fibers and particles); these secondary 

phases can restrain the macrocrack from opening by their bridging action. In normal 

concrete and various cementitious composites, for instance, the bridging and the 

microcracking regions often coexist on the same scale. In many composites the fracture 

process essentially involves the brittle growth of a single crack bridged by reinforcing 

elements.  

The bridged crack model is intended to describe the toughening mechanisms of 

load transfer from the reinforcements to the surrounding material. Similar to the cohesive 

crack model, it is also originated from Barenblatt’s or Dugdale’s model. The only 

difference between them regards the crack tip stress field, which is assumed to be 

singular for the bridged crack or finite for the cohesive crack (Figure 2.15). The condition 

KI = 0 provides smooth closure of crack faces of the cohesive crack (Figure 2.15b), 

instead of the parabolic shape consistent with KI ≠ 0 for the bridged crack (Figure 2.15a). 

In this model, the crack growth is governed by the toughness of the matrix, and the 

bridging tractions, which control crack opening, are governed by the properties of the 

reinforcing phase and by its interaction with the matrix. Various bridged crack models are 

proposed in the literature. A distinction between them regards distribution of the closing 

tractions, which may be continuous or discontinuous depending on distributions of the 

reinforcements in the material.  
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Figure 2.15 Conditions at the crack tip: (a) bridged crack model; (b) cohesive crack 
model (Carpinteri, p.144, 1998). 

2.4.5 Microcrack Interacting Model 

Experimental evidences show that quasi-brittle materials undergo profuse 

microcracking during evolution of fracture process. Macrocracks are developed as a 

consequence of growth and coalescence of a large number of microcracks due to the 

changes of material internal microstructures and the related damage mechanisms. It was 

observed that microcracking could greatly enhance the material fracture toughness. This 

toughening effect can be attributed to several possible mechanisms which involve both 

extrinsic and intrinsic mechanisms. Extrinsic mechanisms are active in the damaged area 

lying on the two sides of the crack, in which bridging effects are dominant and can be 

described using bridged crack models as introduced previously. Intrinsic mechanisms are 

to be found ahead and around the crack tips, where the interaction effects between the 

macrocrack and the microcracks, and between the microcracks themselves, are the major 

factors leading to the toughening mechanism, i.e. shielding effects. 

Based on displacement or stress discontinuities, or both, various boundary 

element methods (BEMs) have been developed to account for the microcrack-macrocrack 

(a) (b) 
crack profiles 

crack tip stresses 
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interactions. The main drawback of the BEMs is that the coefficient matrix of the 

algebraic system is full and the presence of special parabolic tip elements makes the 

matrix non symmetric, so that the solution is a time consuming process. A small-scale 

microcracking approach is admissible for those rocks and ceramic composites, where 

microcracks are detectable at a scale where the resolution is still at least one order of 

magnitude higher than the typical microstructural dimension. Microcracks are distributed 

with appropriate saturated density around the macrocrack tip to represent the damage 

level, while the influences of microcracks located in very far areas can be neglected. This 

approach has been used as the basis of some phenomenological models, where the 

dilatant behavior of a tensile crack is considered for deriving the constitutive equations of 

the material. Microcracking can also be studied using statistical approaches. The 

microcracks are randomly distributed with a certain statistical law according to the 

material microstructures, and their effects on the macrocrack are analyzed with LEFM 

resulting in a statistical population of SIFs at the main crack tip. 

2.4.6 Comparisons 

The physical reality in the crack tip region is often very complex and can hardly 

be described through a single simplified theoretical model, where only some of the 

peculiarities of the system are contained. Different models can be applied alternatively to 

describe the fracture phenomena in practical situations. For the same crack tip process 

zone, we could use the damage crack model for meso-scale analyses, as well as the 

microcrack interacting model for micro-scale analyses. When the process zone is 

particularly elongated, we can utilize the cohesive crack model, whereas the bridged 

crack model has to be considered when the matrix is particularly brittle or the 
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reinforcements show a discrete disposition. 

The damage crack model is equivalent to the cohesive crack model for particular 

values of the fracture strain εf. On the other hand, the bridged crack model is equivalent 

to the cohesive crack model when the matrix is relatively ductile. For composite materials 

whose matrices can be approximately as being perfectly brittle (e.g. fibrous ceramic-

matrix composites or fiber-reinforced mortar), the bridged crack model proves to be the 

most appropriate approach since it separately examines the toughening mechanisms of 

the different phases. For composites with quasi-brittle matrices (e.g. fiber-reinforce 

concrete), which are characterized by peculiar bridging or microcracking mechanisms, 

the cohesive crack model is the best approach since it allows the definition of a cohesive 

law representing all the toughening mechanisms of the composite. The crack band model 

is equivalent to the cohesive crack model in that they yield very similar results if the 

fracture energy equivalence is preserved. The choice of a discrete cohesive crack or crack 

band seems to be a matter of computational effectiveness and convenience of analysis. In 

the cases where boundary integral methods can be applied, the use of the cohesive crack 

model can be computationally more efficient. When the general FEM is used, the 

programming of the crack band model is much easier since no remeshing is required. The 

microcrack interacting model can deal with mutual crack interactions of a macrocrack in 

the proximity of a cloud of microcracks. It can be applied to describe the onset of 

propagation and the early stages of fracture. However, a satisfactory simulation of 

fracture phenomena needs an evolutive analysis by means of a discrete crack model, to 

take into account the influence of microcracks on the trajectory of the main crack. 
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The selection of the most consistent and suitable model depends on the 

morphological and phenomenological characteristics of the process zone. In general, the 

guidelines below should be followed: 

• When the mechanical damage is smeared in a uniform way, without 

irregularities or discontinuities, the damage crack model should be used; 

• When the mechanical damage is confined into a narrow band along the 

strain-softening crack line, the use of the cohesive crack model or the crack 

band model is suggested; 

• When the mechanical damage is confined into a narrow band where the 

bridging and restraining forces of the reinforcements are active, the bridged 

crack model is most appropriate; 

• When the mechanical damage ahead of the crack tip is represented by a 

cloud of microcracks, the microcrack interacting model is best suited. 

2.5 Summary 

This chapter serves as a brief introduction to basic fracture mechanics concepts 

within isotropic materials and on bi-material interfaces. To represent the nonlinear 

mechanical effects occurring at the tip of macrocracks in brittle or quasibrittle materials, 

five important nonlinear crack models are introduced and compared. 
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Chapter 3 

Delamination and Cohesive Crack 
Modeling 

For HFRP sandwich panels, facesheet delamination occurs when manufacturing 

defects or loading cause a section of the facesheet to detach from the core. The 

delaminated region may grow, potentially leading to catastrophic failure under certain 

loading conditions. The goal of the present study is to model efficiently and accurately 

the facesheet delamination initiation and propagation under various loading cases. 

3.1 Delamination in Composite Materials 

To begin the study, considering the similarity of facesheet delamination to 

interlaminar fracture or delamination in layered composite materials, a comprehensive 

literature search was performed to study previous work by other researchers in the field 

of delamination of composites.  

Failure analysis of fiber-reinforced laminated composites has steadily gained 

importance with increasing use of such materials in high-performance structures. 

Considerable inhomogeneity and anisotropy, in its fracture toughness, as well as in the 

stiffness and strength properties, are largely the results of material property mismatching 
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in a composite. Elementary events, such as matrix cracking, interface debonding and 

fiber-breaking, are coupled in a complicated way to cause damage growth and fracture 

(Liu et al., 1993). One major obstacle to achieving the full weight-saving potential of 

advanced composite materials in large, highly strained structures is the tendency of these 

materials to delaminate as a result of impact or manufacturing defect.  Delamination, or a 

debond between the plies of such a laminate, represents one of the weakest failure modes 

in a laminated composite (Armanios et al. 1991). The stress gradients that occur near 

geometric discontinuities such as ply drop-offs, stiffener terminations and flanges, 

bonded and bolted joints, and access holes promote delamination initiation, trigger 

interlaminar damage mechanisms, and may cause a significant loss of structural integrity. 

Numerous researchers have investigated this problem by means of analytical, numerical 

and experimental methods, which is reflected by abundant articles published in this area. 

In fact, several books cover this topic exclusively, including those written or edited by 

Johnson (1985), Kachanov (1988), Pagano (1989). 

3.1.1 G-based approaches 

Due to the similarity of a delamination to an embedded or through width crack, 

most researchers evaluated delamination between the layers of the composite from a 

fracture mechanics point of view. Delamination problems is generally very complex in 

nature and difficult to solve, because it involves not only geometric and material 

discontinuities, but also the inherently coupled Mode I, II and III fracture in layered 

material systems attributed to the well-known oscillatory singularity nature of the stress 

and displacement field in the vicinity of the delamination crack tip (Erdogan and Gupta, 

1971). In order to eliminate the singularity, a variety of singular field (SF)-based 
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approaches have been proposed, including the conventional finite crack extension 

approach (Sun and Manoharan, 1989; Hwu and Hu, 1992a), the modified finite crack 

extension approach (Beuth, 1996), the β = 0 approach (Davidson, 1995; Davidson et al. 

1995a), and the resin interlayer approach (Raju et al., 1988). In these procedures, 

components of energy release rate (ERR), G, are obtained using classical LEFM, which is 

valid providing that there exists a ‘singular zone’ or ‘zone of K-dominance’. However, 

for some composite materials, the damage zone is large compared to the radius of the 

singular field, invalidating the definition of a K-dominance zone. In these cases, 

decomposing G into individual components using these methods will lead to inconsistent 

results. As an alternative, using a crack tip element (CTE) analysis (Davidson et al. 1995a) 

along with a non-singular field (NSF) definition of mode mix, the ‘CTE/NSF’ approach 

was developed by Davidson et al. (1997). Its accuracy of predicting delamination growth 

in unidirectional and multidirectional laminated composites was evaluated by Davidson 

et al. (2000). The ‘CTE/NSF’ approach was found to be superior to the previous SF-

based approaches in that it yielded the material toughness as a single-valued function of 

mode mix. 

In interfacial fracture modeling of composite delamination, despite the difficulty 

in dealing with the crack tip oscillatory singularity, it was shown (Wang, 1983; Sun and 

Jih, 1987; Rice, 1988) that SIFs may not have the usual significance attached as in the 

isotropic crack case, however, based on Irwin’s virtual crack extension concept (1957), 

the ERR and its components are well defined quantities. Realistic values of mode 

components can be obtained if the extremely small oscillatory region close to the crack 

tip were simply ignored. Hence, the growth and propagation of an existing delamination 



Chapter 3 Delamination and Cohesive Crack Modeling 

 
 

43

is often modeled as being governed by the values of G around the delamination front. For 

instance, Bottega (1983) used a variational principle to derive a growth law based on the 

energy released during the growth of a delamination, where the delamination edge was 

considered as a moving intermediate boundary. Williams et al. (1981) used an energy 

criterion in predicting crack propagation and arrest in DCB fiber composite specimens. 

Mode mix is typically specified in terms of the ERR. However, other near-tip 

quantities can be used to designate mode mix, such as, stress intensity factors, stresses 

ahead of the crack tip and crack face displacements. Narayan and Beuth (1998) showed 

that use of different quantities to designate mode mix can give significantly different 

results in matching composite applications to mixed-mode toughness tests, due to the 

practice of using Gc data from toughness tests on 00 laminates to predict delamination 

resistance in applications involving debonding between off-axis plies. It is suggested that 

practitioners consider the differences in failure load predictions that would result if 

different near-tip quantities were used to relate composite applications to measured 

toughness. To this end, methods are provided for converting mode mix designation in 

terms of the ERR into designations in terms of other fracture quantities. 

3.1.2 Mixed-Mode Delamination Growth Criterion 

Delamination in composite materials is inherently mixed-mode. It is important 

that relative contributions of different modes should be carefully addressed. Several 

researchers studied this topic, including Chatterjee et al. (1986) who performed a general 

analysis. Other researchers discuss specific modes in more depth, for instance, Cui and 

Wisnom (1993) used an interface model consisting of spring elements to study mode II 
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delamination.  Meanwhile, Davidson et al. (1995b) evaluated the contributions of mode II 

and III to the total ERR in delamination problems. They also studied the effect of 

stacking sequence and ply orientation in laminate debonding. König et al. (1995) define a 

critical ERR based upon mixed-mode delamination and correlate this critical value to 

buckling induced delamination under cyclic loading. 

Interlaminar fracture toughness in Mode I (GIc), Mode II (GIIc) and Mode III (GIIIc) 

can be obtained experimentally using different specimens. As a common practice, GIc is 

measured by the double cantilever beam (DCB) specimen (Robinson and Song, 1992; 

O’Brien, 1998a; ASTM, 2000), GIIc by the end load split (ELS) or the end notch flexure 

(ENF) specimen (Davidson, et al. 1995b; O’Brien, 1998b; Martin and Davidson, 1999). 

Although several specimens have been suggested for the measurement of GIIIc (Lee, 1993; 

Martin, 1991; Robinson and Song, 1994; Trakas and Kortschot, 1997), an interaction 

criterion incorporating Mode III, however, has not yet been established. The edge-

cracked torsion test (ECT) appears to be the most likely candidate for standardization (Li, 

et al. 1997). In order to predict delamination onset or growth for two-dimensional 

problems, the calculated total ERR, GT, and its components are compared to interlaminar 

fracture toughness properties measured over a range of mode mixities from pure Mode I 

loading to pure Mode II loading. A quasi-static mixed-mode fracture criterion is 

determined by plotting the interlaminar fracture toughness, Gc, versus the mixed-mode 

ratio, GII/GT, determined from data generated using pure Mode I DCB, pure Mode II 

4ENF, and mixed-mode bending (MMB) tests of varying ratios as shown in Figure 3.1. A 

curve fit of these data is performed to determine a mathematical relationship between Gc 

and GII/GT. According to the total ERR criterion, GT = Gc, failure is expected when, for a 
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given mixed mode ratio GII/GT, the calculated total ERR, GT, exceeds the interlaminar 

fracture toughness, Gc. In order to predict delamination onset or growth for three-

dimensional problems the entire failure surface Gc = Gc (GI, GII, GIII) as shown in Figure 

3.2 is required. 

Figure 3.1 Mixed-Mode I, II failure criterion for IM7/8552 (Krueger et al. 2003). 

Figure 3.2 Mixed-Mode failure criterion for Modes I, II and III (Krueger et al. 2003). 
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In realistic structural applications, appropriate failure criteria should be chosen to 

account for the relative contributions of the different modes. The development of a 

criterion requires an extensive test program that is often prohibitive to conduct. In the 

absence of such test data in the mixed-mode range, the analyst must rely on empirical 

expressions. A variety of empirical delamination growth criteria have been proposed in 

the literature (e.g. Garg, 1988; Suo and Hutchinson, 1989). Reeder (1992, 1993) 

performed a comprehensive study of failure criteria for mixed-mode delamination in 

brittle graphite/epoxy, toughened graphite/epoxy and tough graphite/thermoplastic 

composites under the full mixed-mode range. The criteria evaluated included: 

1) Linear Criterion 
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2) Power Law Criterion 
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3) Bilinear Criterion 

 IcIII GGG += ξ  (3.3)

MMB tests were used to measure the mixed-mode delamination toughness of the 

above composites, providing experimental data to assess the criteria. It was concluded 

that the linear criterion appears to be the most suited to predict failure of thermoplastic 

PEEK matrix composites, while it is inaccurate for predicting the response of epoxy 

composites. The relatively simple bilinear criterion was found to yield the best results 

when simulating epoxy matrix composites. The power law criterion provided a 
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reasonable fit to the test data for the three different composite materials. In addition, it 

was found that α = β = 1, i.e. the linear criterion, could yield good fit to the experimental 

results (Johnson and Mangalagiri, 1987; Jurf and Pipes, 1982), although Donaldson (1987) 

and Hwu et al. (1995) suggested differing values of α and β. 

3.1.3 Virtual Crack Closure Technique 

In composite materials, due to their inherent complications, it is almost 

impossible to derive exact closed form expressions for the energy release rates. Therefore, 

numerical methods are broadly used based on LEFM. Although boundary element 

method (BEM) can also be utilized to study interface crack problems (Cho et al. 1992a, 

b), most researchers employed FEM in their investigations. ERR components can be 

extracted from a fracture FE model using the virtual crack closure technique (VCCT) 

(Rybicki and Kanninen, 1977; O’Brien, 1982; Raju, 1987). A recent overview of the 

VCCT has been given by Krueger (2002). This technique has been used almost 

exclusively in the analysis of composite delamination because it does not require 

knowledge of the near-crack-tip fields, which are complicated in form and have only 

recently been determined (Suo, 1990; Qu and Bassani, 1993). The global nature of the 

ERR helps in obtaining a numerical value as there is no need for an very refined mesh 

near the crack tip. A mesh can be chosen so that it is sufficiently coarse as not to be 

influenced by the oscillatory nature of stresses but fine enough to capture the broad 

features of the crack tip stress distribution. 

The theory behind VCCT is that if a crack with an initial length a extends by a 

small amount ∆, the energy absorbed in the process is equal to the work required to close 
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the crack to its original length (Figure 3.3.a). This work can be computed as 

 drrrW )()(
2
1

0
−∆= ∫

∆
σδ  (3.4)

where δ(r) is the crack opening or sliding displacement at a distance r behind the crack 

tip at (a+∆); σ is the associated stress distribution ahead of the crack tip at a. It is 

postulated that the crack front does not change shape for a very small increment of crack 

growth. Therefore, the opening displacement immediately behind the crack tip at a is the 

same as that behind the crack tip at (a+∆), when ∆ is infinitesimal. By using Equation 

(3.4), only one finite element analysis (for a crack of length a) needs to be done in order 

to calculate the ERR, which is expressed as 
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where t is the thickness of the material. 

In the finite element analysis, considering models with 4-node quadrilateral 

elements (Figure 3.3.b), the expressions for GI and GII are 
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The forces at the crack tip can be obtained by placing very stiff springs between 

coincident nodes c and d and evaluating the forces in these springs. For geometric 

nonlinear analysis where large deformations may occur, both forces and displacements 

obtained in the global coordinate system need to be transformed into a local coordinate 
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system which originates at the crack tip. The growth of the delamination is simulated by 

releasing the node for which the computed ERR reaches its critical value based on a 

mixed-mode interaction law as discussed previously. 

Figure 3.3 Virtual crack closure technique. 

The VCCT is very useful in dealing with cracks in heterogeneous materials since 

no assumption of isotropy or homogeneity around the crack tip is necessary. Thus, it has 

been widely used to simulate delamination in composite structures. For example, based 

on a three-dimensional FE model, Mukherjee et al. (1994) used it to calculate the energy 

release rates around a delamination in a layered composite. A frictionless contact theory 

was developed to prevent interpenetration between the faces of the delamination, which 

was revealed to be crucial for the correct simulation of the growing delamination under 

various loadings. Köning et al. (1995) employed the VCCT to predict delamination 

growth in plates containing a circular delamination loaded in tension and compression. A 

three-dimensional layered element was used and the Mode I, Mode II, and Mode III 
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energy release rates were computed along the delamination front. The location of the 

maximum predicted energy release rates, and hence the delamination growth, were in 

good agreement with experimental results.  

For laminated composite structures, the use of three-dimensional model to predict 

delamination using the VCCT can be computationally intensive. In order to minimize the 

cost, Krueger and O’Brien (2001) developed a modeling technique that combines shell 

elements and three dimensional elements. In this approach, a local three-dimensional 

solid finite element model is only used in the immediate vicinity of the delamination front. 

Multi-point constraints provided a kinematically compatible interface between the local 

three-dimensional model and the global structural model meshed with plate or shell finite 

elements. It was shown that this technique is relatively efficient since it reduces the 

number of degrees of freedom compared to a full three-dimensional model. 

3.1.3 Buckling Driven Delamination 

When a delaminated composite plate is subjected to in-plane compression, local 

buckling of the delaminated region or mixed-mode buckling, which is a combination of 

local and global buckling, may occur before global buckling, as shown in Figure 3.4. 

Localized buckling of delaminated plies in a composite laminate can reduce its ability to 

resist compressive loads and precipitate rapid delamination growth leading to structural 

collapse (Simitses et al., 1985; Yin et al., 1986). A large amount of research has been 

performed on this subject. Some representative work will be reviewed next. For a more 

detailed description, one is referred to the works of Kachanov (1988) and Kutlu (1991). 
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Figure 3.4 Three types of buckling mode shape. 

Various analytical methods have been developed to analyze a composite plate 

containing a single delamination. When the delamination is near surface and the 

unbuckled portion of the laminated composite plate could be considered infinitely thick 

compared to the thickness of the delamination, the ‘thin film’ model can be used to 

predict the local buckling loads (Kachanov, 1976). More general cases including thick 

surface delamination and mixed-mode buckling were studied by Chai and co-workers 

(1981, 1985) using one- and two-dimensional models. The parameters controlling the 

growth or arrest of the delamination damage were identified as the fracture energy, 

disbond depth and elastic properties of the materials from both sides of the delamination 

interface. Bottega and Maewal (1983) modeled the penny-shaped delamination in circular 

plates as a one-dimensional problem and used the energy method and asymptotic analysis 

to obtain the buckling loads and postbuckling load-displacement relation. Vizzini and 

Lagace (1987) studied the buckling of a delaminated sublaminate on an elastic foundation 

by Rayleigh-Ritz energy method. Kardomateas (1993) applied a perturbation method to 

investigate the initial stage of postbuckling behavior. Wang et al. (1995) presented a 

continuous analysis method for determining the local buckling loads of delaminated 

beams and plates. Transverse shear effects on delamination buckling and postbuckling of 

delaminated plates were examined by Chen (1993), Chattopadhyay and Gu (1994) and 

Kyoung and Kim (1995).  

(a) Local buckling (b) Global buckling (c) Mixed-mode buckling
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In cases of a delamination of arbitrary shape or multiple delaminations, FE 

analysis is required for accurate characterization of the buckling and postbuckling 

behavior of the delaminated composite plate. Based on a geometrically nonlinear FE 

analysis, Whitcomb (1981) performed a parametric study of postbuckled through-width 

delaminations in laminated plates. It was found that energy release rates GI and GII were 

very sensitive to delamination length, delamination depth, and load level. In addition, 

delamination growth was dominated by GI. In 1989, he extended this work to three-

dimensional cases and later contact effects were also included (Whitcomb, 1992). In both 

of these latter works, a postbuckled embedded delamination was investigated and it was 

pointed out that the problem is definitely mixed-mode, although Mode III effect was 

negligible for all cases considered. Mukherjee et al. (1991) combined the FEM and 

asymptotic expansion method in their analyses of the buckling of delaminated plates. Yeh 

and Tan (1994) conducted nonlinear FE analyses to predict the buckling loads of 

elliptically delaminated composite plates. Klug (1994) used the VCCT based on plate 

theory to model postbuckling delamination growth. From an FE nonlinear buckling 

analysis, Hwang and Mao (2001) studied the buckling loads, buckling modes, 

postbuckling behavior, and critical loads of delamination growth for delaminated 

unidirectional carbon/epoxy composites. In order to predict the delamination growth 

loads, the total ERR criterion, the ERR component criterion, and the interlaminar stress 

criterion (Brewer and Lagace, 1988) were used. Analyzing the response of laminated 

composites containing multiple delaminations is more complicated and difficult than 

dealing with a single delamination. The interface conditions of multiple delaminations 

involve strong interactions between the delamination surfaces. To study the problem of 
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multiple delaminations, several models have been developed (Kutlu and Chang, 1992, 

1995a, 1995b; Adan et al., 1994; Wang et al. 1997). 

3.2 Delamination in Composite Sandwich Structures 

In spite of the fruitful research activity in the area of delamination in composite 

materials, little is mentioned about the problem of interest, delamination of a facesheet 

from a honeycomb core. However, much effort has been devoted to the problem of a 

facesheet debonding from a solid core.  

3.2.1 Solid Core Sandwich Structures 

Carlsson et al. (1991) proposed the use of a cracked sandwich beam (CSB) test to 

analyze debond between facesheet and core due to shear stress. The strain energy release 

rate for Mode II can be determined from this test based upon the rate of change in beam 

compliance to crack extension. They performed extensive testing with glass/polyester 

facesheets on balsa core. Furthermore, Carlsson (1991) discussed issues related to the 

appropriate design of the CSB specimen in order to achieve debonding failure prior to 

core crush or core shear failure. Frostig et al. (1992) and Frostig and Baruch (1992) 

developed a general high-order sandwich plate theory (HSAPT) for the analysis of 

sandwich panels and plates. In this theory, the high order and the localized effects are 

results of the closed form solution of the mathematical model and no presumptions are 

imposed on the distribution of the deformations through the thickness of the core. The 

theory accounts for the vertical flexibility of the core along with its shear flexibility, and 

it is valid for a broad range of sandwich structures. Based on the HSAPT, rigorous 
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analyses of the bending behavior of delaminated sandwich beams and circular sandwich 

plates were performed (Frostig, 1992; Rabinovitch and Frostig, 2002). Behavior of 

sandwich plates with general construction and a transversely flexible core under general 

loading conditions could be effectively described with or without considering contact. 

Investigation of more localized effects at the edge of the delaminated region using 

fracture mechanics criteria based on FE analysis was presented by Falk (1994). This 

study revealed the stress concentrations that arise in the close vicinity of the edge of the 

delaminated region and demonstrates their crucial influence on the safety of the structural 

members. Triantafillou and Gibson (1989) determined critical disbond sizes between the 

core and facesheets using an energy approach. It was revealed that debonding occurs only 

if there are relatively large pre-existing delaminations at the interface; otherwise it is 

preceded by other modes of failure, such as, face yielding, face wrinkling and core 

shearing. Triantafillou and Gibson (1987) developed failure mode maps for foam core 

sandwich beams, from which the dominant failure mode can be predicted for every 

possible beam design. Applying the boundary collocation method, Razi et al. (1999) 

determined the stress distribution in sandwich panels with multiple-site arbitrarily located 

delaminations caused by impact.  

As with the delamination driven by buckling in layered composites, the debonded 

sandwich panels are very susceptible to buckling under in-plane compressive loads, 

which may lead to the propagation of delamination, and/or core and facesheet failure. 

Although the general principles are similar, differences arise in the behavior of 

delamination buckling and postbuckling within a sandwich structure from that of a 

laminated composite structure; the substrate in a delaminated sandwich structure includes 
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a much different kind of material, namely a transversely flexible core made of foam or 

low strength honeycomb. Hence, the contribution of the shear stresses and shear 

deformation of the core are expected to be noteworthy in the buckling analysis of a 

delaminated sandwich structure. Using a perturbation procedure, Kardomateas and 

Huang (1993) studied the buckling and initial postbuckling behavior of facesheet 

delamination or facesheet/core debonds based on the nonlinear beam theory with 

transverse shear deformation. Somers et al. (1991), Kim and Dharan (1992), and Hwu 

and Hu (1992b) derived closed-form solutions of the critical buckling load. The effects of 

core, facesheet, delamination length on the buckling load, the delamination growth, and 

the ultimate axial load capacity were discussed. Sleight and Wang (1995) modeled the 

debonded facesheet as a beam on a Winkler elastic foundation. They employed the 

Rayleigh-Ritz and finite difference method to predict the buckling loads, and compared 

them with plane strain finite element analysis. It was concluded that FE analysis is 

necessary in order to predict the buckling loads accurately. Chen et al. (1997) presented a 

continuous analysis to predict the local delamination buckling load of sandwich beams. 

The procedure allows direct determination of the buckling load by considering the entire 

beam without separating it into regions with and without delaminations.  

3.2.2 Honeycomb Core Sandwich Structures 

Information regarding delamination problems in sandwich structures with 

honeycomb core is very sparse, and only quite a few articles were found.  

  Detailed FE models were used by Burton and Noor (1997) to examine the effect 

of the adhesive joint between the square-cell honeycomb core and the facesheets on the 
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load transfer and static response of sandwich panels. The adhesive strain energy was used 

to investigate the effect of adhesive joint characteristics (thickness and adhesive joint 

fillet size) as well as the core cell size and wall thickness on the load transfer in the 

core/facesheet joint. Extensive in-plane compression tests of Nomex hexagonal 

honeycomb core sandwich panels were carried out by Avery (1998) and Avery and 

Sankar (2000) to investigate the effects of core and facesheet properties, and 

delamination length on the compression strength of debonded sandwich composites. FE 

analysis was also performed using equivalent solid core (Narayanan, 1999; Sankar et al. 

1999). 

Extensive research on the behavior of hexagonal honeycomb core sandwich 

panels applied to aircraft industry has been reported by the Cornell Fracture Group 

(Ingraffea et al. 1997; Ural et al., 1999). In their study, various modeling approaches 

were attempted using the program FRANC3D/STAGS. Explicit models were firstly used, 

in which all cell walls in the core were modeled explicitly with shell elements. With 

improvement of STAGS, sandwich elements were available to efficiently represent both 

facesheets and a homogenized core. The adhesive layer was initially modeled with spring 

elements, and later was represented with cohesive elements which largely enhanced the 

capability of predicting delamination growth. Using a computational fracture mechanics 

approach, TerMaath et al. (1999) applied the VCCT combined with FE analysis to study 

disbond growth in honeycomb sandwich structures. Using the explicit model, the across-

the-width edge peel-off case was effectively simulated. It was indicated that among 

various parameters, facesheet thickness and stiffness appear to display the greatest 

influence on the disbond growth. Han et al. (2002) proposed the cohesive element 
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approach to simulate delamination propagation in honeycomb core composite panels. The 

cohesive constitutive model was applied to reproduce traction-separation behavior 

between the facesheet and core. Detailed description of the cohesive crack modeling 

approach will be presented in the next subsection. 

3.3 Cohesive Crack Modeling 

LEFM based methods have limitations that an initial delamination must be 

assumed, the initial position of the delamination front needs to be known a priori, and the 

delamination growth is assumed to be self-similar. These necessitate the use of very small 

elements at the delamination front and pose essential difficulties where a curved 

delamination front develops due to spatially varying ERRs. Raju et al. (1988) have shown 

that the total ERR converges with mesh refinement, while the individual components of 

the ERR do not converge when the ratio of the size of delamination tip element to the ply 

thickness decreases. This is due to the oscillatory stress singularity occurring near the 

interface crack tip of dissimilar media. Finite elements with certain size limits should be 

used in order to get acceptably accurate numerical results. On the other hand, although 

providing valuable information concerning onset and stability of delamination growth, 

the use of VCCT to simulate delamination growth requires complex moving mesh 

techniques (Rinderknecht and Kröplin, 1994) to advance the crack front, especially when 

dealing with multiple delaminations in three-dimensional problems. 

In order to overcome the above limitations associated with the LEFM and VCCT, 

the continuum damage mechanics could be applied to model the interfacial damage 
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growth occurring in delamination problems. For example, to simulate sublaminate 

buckling and delamination of composite plates, using both fracture and damage 

mechanics, Rinderknecht and Kröplin (1995) developed a finite element called 

‘delamination process element’ incorporating the sublaminate and baselaminate as well 

as the resin-rich layer (a so-called process layer with very thin thickness), in which the 

connection between sublaminate and baselaminate can be fixed or controlled by either 

continuity or damage parameters. Sprenger et al. (2000) and Wagner et al. (2001) 

presented an FEM to simulate growing delaminations in composite structures. Using an 

inelastic material law with softening, the delamination process was assumed to take place 

within an interface layer having a small but non-vanishing thickness. In addition, to avoid 

mesh-dependent solutions, a regularization technique was applied. El-Sayed and 

Sridharan (2001, 2002) proposed a cohesive layer model in terms of stresses and strains 

of the material of the interface layer having small thickness. Provided appropriate 

properties of the cohesive layer are defined, this model was demonstrated to be efficient 

for predicting delamination growth in composites and sandwich structures. 

An alternative approach is the use of the cohesive interface elements placed 

between the composite laminae or at the interface of sandwich facesheet/core to represent 

the behavior of the resin-rich bonding layer. Instead of considering the interfacial 

material layer as a continuum, it is generally postulated that this layer is so thin compared 

to the thickness of the adjacent bulk material that it could be assumed to approach zero. 

Thus, the cohesive interface elements have zero thickness in the undeformed 

configuration. With this approximation, the information of the stress distribution through 

the thickness in the interfacial layer is lost, since it is modeled as uniform. 
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The concept of cohesive interface elements is based on a Dugdale-Barenblatt type 

cohesive zone model (CZM) as mentioned in Chapter 2. Since Hilleborg et al. (1976) 

applied the fictitious crack model to the analysis of concrete cracking, CZM concept has 

been gaining increasing popularity in describing fracture and failure behavior in a wide 

variety of material systems. With the crack path known a priori in the interface, CZM is 

particularly appealing when interfacial strength are relatively weak compared with the 

adjoining materials (Needleman, 1987), as in the case of composite laminae and 

sandwich facesheet/core interface.  

The CZM, characterized by a softening traction-separation law which provides a 

phenomenological mechanical relation between the interfacial tractions and separations, 

is an idealized description of the real physical fracture process as shown schematically in 

Figure 3.5 (a). As opposed to the LEFM, a non-singular stress field is thereby resulted at 

the crack tip. The choice of the law is basically free as there is no unequivocal correlation 

between the softening constitutive law and the result of the analysis. The bilinear 

cohesive law shown in Figure 3.5 (b) is usually used to describe fracture behavior in 

quasibrittle materials. Typical failure process is gone through from point a to f in Figure 

3.5 (a)-(b): at point a the tractions are small; around point b, large but finite tractions 

exist to resist separation; maximum tractions are reached at point c; material degradation 

occurs but still transfer loads at point d; tractions approach zero at point e and vanish 

thereafter as the result of complete debonding. The material characterization parameters 

of the softening constitutive law are the interfacial strength σc and the fracture toughness 

Gc of the material. Combining a strength-based formulation with a fracture mechanics-

based formulation, initiation and non-self-similar growth of cracks could be simulated 
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efficiently via CZM. In fact, a crack is initiated when the interface traction attains the 

interfacial strength, and the crack is advanced when the work of fracture equals to the 

material’s resistance to crack propagation. The softening portion of the constitutive law 

accounts for the complex mechanisms occurring in the volume of material ahead of the 

crack tip by which large amounts of energy are absorbed in the fracture process. The 

complex fracture mechanisms range from void nucleation, void growth, and coalescence 

of microcavities to macrocrack formation as shown in Figure 3.5 (a). 

Figure 3.5 Representation of the fracture process via the CZM. 
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3.3.1 Constitutive Laws 

One of the key problems in the application of CZM is the choice of an appropriate 

constitutive traction-separation law for the studied material within the cohesive zone. For 

instance, if the fracture in ductile materials is to be modeled, the trapezoidal cohesive law 

(Figure 3.5 (c)) is better than the bilinear one (Figure 3.5 (b)). A variety of such 

constitutive equations have been proposed in the literature. Several investigations dealt 

with the effect of the shape of the traction–separation function on the resulting fracture 

behavior (Elices et al., 2002; Tijssens et al., 2000; Needleman, 1990; Tvergaard and 

Hutchinson, 1992, 1994). Although it is generally recognized that the exact mathematical 

form of the interfacial constitutive law is less important than its capability to represent the 

interfacial strength and critical fracture energy, Chandra et al. (2002) demonstrated that, 

apart from these two parameters, CZM should include the shape of traction-separation 

law in order to accurately simulate the interface and reproduce the macroscopic 

mechanical behavior of composites. In their work, two different forms of CZMs 

(exponential and bilinear) were used to evaluate the response of interfaces in titanium 

matrix composites reinforced by silicon carbide (SCS-6) fibers. The computational 

results were then compared to thin slice push-out experimental data. It was observed that 

the bilinear CZM reproduced the macroscopic mechanical response and the failure 

process while the exponential form failed to do so. Hence, when using CZMs to model 

separation in a given material system, an appropriate shape, depending on the type of 

material system and the inelastic micromechanical processes, should be used. 

In addition to the bilinear cohesive laws mentioned above, the exponential form 

of traction-separation law is also widely used. The exponential form mimics the physics 
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involved in atomic separation (Rose et al., 1981). Needleman (1987) was one of the first 

to use it to simulate particle debonding in metal matrices. Xu and Needleman (1993, 1994, 

1995) further used the above models to study the void nucleation at the interface between 

particle and matrix, fast crack growth in brittle materials under dynamic loading, and 

dynamic crack growth at the interface of bimaterials. The constitutive laws relate the 

normal and shear traction components to the crack opening and sliding. Mixed mode 

crack propagation can be simulated, since the crack separations are coupled in the 

constitutive equations. Xu-Needleman’s constitutive laws are restricted to two 

dimensional plane problems. Rahul-Kumar et al. (1999) extended Xu-Needleman’s 

exponential constitutive law to predict normal and shear interfacial fracture in a three 

dimensional space. Later (2000), they augmented Xu-Needleman’s constitutive law to 

offer resistance to interpenetration of the surfaces of the interfacial material. 

Figure 3.6 Softening traction-separation constitutive law. 
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upon unloading such that the consumed local surface fracture energy is fully recovered 

(Figure 3.6. (a)). While this is rigorously correct when fracture occurs at the atomistic 

level, where cohesion directly arises from the atomic bonds, most macroscopic 

decohesion processes may be expected to entail some degree of irreversibility since 

stresses may internally redistribute upon external loading in such a way that cracks arrest 

and cracks faces close. This requires the formulation of irreversible cohesive laws such as 

proposed by Camacho and Ortiz (1996). Ortiz and Pandolfi (1999) extended this 

formulation to three dimensions. In their model, cohesive surfaces are assumed to unload 

to the origin (Figure 3.6. (b)). This procedure seems reasonable since the interfacial 

stiffness when reloading is lower than the original (undamaged) stiffness. Such a 

procedure simulates the effects of the damage mechanisms that occurred along the 

interface. Other authors (Chaboche et al., 1997; Petrossian and Wisnom, 1998) have 

proposed an unloading curve with a slope equal to that of the traction-separation curve at 

zero separation. Such a procedure, typically used in the formulation of plasticity 

problems, would lead to the use of the same stiffness when reloading, and to residual 

relative displacements along the interface when the load reverts to zero. 

A shortcoming of Ortiz-Pandolfi’s constitutive law is that the interfacial strength 

and the fracture toughness associated with Mode I, Mode II and Mode III fracture cannot 

be specified separately. In their modeling, mode coupling is accounted for by introducing 

an effective scalar opening displacement and the mode ratio is one of the input 

parameters, which are inappropriate since the mode mixity is unknown a priori in 

different loading conditions. Although Xu-Needleman’s constitutive law does not have 
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this limitation since it separates the work of peel and shear, it does not satisfy empirical 

mixed-mode fracture criteria as discussed in Section 3.1.2. 

An objective of this dissertation is to propose a linear-exponential irreversible 

constitutive law that incorporates mixed-mode fracture criteria using material 

characterization data to predict the initiation and subsequent growth of delamination in 

composite laminates and honeycomb sandwich structures. Material characterization test 

data of Mode I, Mode II, and Mode III are used to define the fracture toughness and 

interfacial strength for each failure mode. 

3.3.2 Nonlinear Finite Element Formulations 

The concept of applying CZM to simulate crack growth is usually implemented 

by means of interface elements located in the potential crack path. The fracture process is 

characterized by the nonlinear, traction-separation law described previously. An 

appealing feature of this method is that it does not presume a particular type of 

constitutive response in the bulk of the material, and successive crack growth is a natural 

outcome of the analyses. 

Cohesive interface elements can be divided into two main groups: point interface 

elements and continuous interface elements. Point interface elements are identical to 

spring elements connecting nodes. Several types of continuous interface elements have 

been proposed, including two dimensional line interface elements, three dimensional 

interface elements with or without initial thickness. 

Spring interface elements have been used by Yang et al. (2001) for fatigue crack 

growth in quasibrittle materials. The softening material in the cohesive zone was modeled 
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to be internal singular surfaces in the elastic body. The interactions of the singular 

surfaces were described in a cohesive force law. Damage in the interface was modeled to 

accumulate not only along the damage locus but also along an unloading path underneath 

it. With this formulation, subcritical fatigue crack growth due to cyclic loading within the 

cohesive zone could be modeled. Such point interface elements were also used by Cui 

and Wisnom (1993) and Shahwan and Waas (1997) for predicting delamination in 

composites. 

Since Needleman’s pioneering work (1987), two dimensional interface elements 

have been widely adopted in studies on void nucleation (Tvergaard, 1990; Xu and 

Needleman, 1993), quasi-static crack growth (Needleman, 1990; Tvergaard and 

Hutchinson, 1992), stability of the separation process (Suo et al., 1992; Levy, 1994), 

reinforcement cracking in metal matrix composites (Finot et al., 1994), dynamic crack 

growth (Xu and Needleman, 1994; Siegmund and Needleman, 1997), fracture at 

interfaces (Xu and Needleman, 1996; ), and impact damage in brittle materials (Camacho 

and Ortiz,1996). 

Despite its apparent versatility, extension of cohesive interface elements to three 

dimensions has been much less explored. Beer (1985) developed a general isoparametric 

joint element applicable to three-dimensional solid finite elements and two-dimensional 

shell finite elements. de Moura et al. (1996) developed an 18-node interface finite 

element for three-dimensional crack propagation. These works did not consider 

interfacial geometric nonlinearities. 

de-Andres et al. (1999) and Ortiz and Pandolfi (1999) considered the finite 

deformation of the interfacial surface material, and kept the geometric terms in the 
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consistent tangent stiffness matrix required in the finite element formulation. Although 

Allix and Corigliano (1999) kept geometric terms in the tangent stiffness matrix, the 

rotation tensor and the Jacobian of transformation of the interfacial surface material were 

approximated for simplicity. These approximations were made consistent with the von 

Karman plate theory assumptions for the bulk material. Qiu et al. (2001) presented a co-

rotational formulation applied to interface elements for two dimensional crack 

propagation. By including the interfacial geometric nonlinearity, large displacements and 

rotations with small strains were taken into account. 

The aforementioned three dimensional interface elements are specifically 

formulated to provide compatibility with also three dimensional solid elements. However, 

when they are used in conjunction with surrounding shell elements, computational errors 

can be introduced due to the incompatibility between shell and solid-like interface 

elements. To overcome this limitation, Reedy et al. (1997) developed a special 8-node 

hex interface element to connect opposing composite sublaminate shell elements. The 

interface element supplies the nodal forces and moments needed to make the two 

opposing shell elements act as a single element until a prescribed failure criterion is 

satisfied. Borg et al. (2004) presented a delamination CZM for shell elements. The 

thickness offset between shell elements was explicitly accounted for using an adhesive 

penalty contact formulation, in which fictitious beam elements were used to connect 

adjacent shell elements such that the rotational degrees of freedom of the shell elements 

could be included. 

An objective of this dissertation is to derive a co-rotational isoparametric interface 

finite element for three dimensional crack propagation taking into consideration all the 
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interfacial geometric nonlinearities in the consistent tangent stiffness matrix. The 

derivations stem from the discretization of the principle of virtual work equations for 

discontinuous structures. The details of the nonlinear interface finite element formulation 

are presented in Chapter 4. 

3.3.3 Computational Issues 

There are several relevant computational issues that arise when softening 

constitutive laws are used to model fracture process. 

3.3.3.1 Numerical Integration Schemes in the Interface Elements 

For numerical integration of continuum elements, the Gauss scheme is commonly 

used because of its accuracy. However, special care must be taken in choosing the 

integration scheme for the tangent stiffness matrix and the internal force vector of the 

cohesive interface elements as oscillations of the traction field may occur (Schellekens 

and de Borst, 1993; Mi et al., 1998). Schellekens and de Borst (1993) and Goncalves et al. 

(2000) used eigenmode analysis of the element stiffness matrices to demonstrate that the 

application of Gauss integration in evaluating the tangent stiffness matrix and the internal 

force vector of the interface elements leads to oscillatory traction profiles when large 

stress gradients are present over an interface element. The large stress gradients are as a 

result of the initial large stiffness of the softening constitutive law. With increasing mesh 

refinement, the element performance improves due to the decreasing stress gradients. 

It was concluded by the above authors that for line interface elements and linear 

plane interface elements the performance can be improved by using either a nodal 

lumping scheme, Newton-Cotes, or Lobatto integration scheme. For quadratic interface 
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elements, Newton-Cotes and Lobatto integration schemes produce smooth traction 

profiles when the displacement field over the element varies in only one direction. 

Oscillatory traction profiles may occur in other cases. However, this adverse effect is 

only significant for the central integration point, and it is less pronounced than the 

oscillations occurring when Gauss integration is used. If necessary, more refined meshes 

or linear elements can be used to reduce the magnitude of the stress oscillation. 

Another relevant issue related to the integration of cohesive interface elements is 

the use of full integration schemes. Analyses of problems involving crack propagation 

and strain-softening behavior have shown that the use of full integration was superior to 

the use of reduced integration schemes (de Borst and Rots, 1989). Furthermore, because 

of the non-smooth profile of the stress in an element which is only partially delaminated, 

a high number of integration points might yield a more accurate estimation of the 

stiffness and of the residual forces. However, Alfano and Crisfield (2001) have shown 

that for fully integrated linear 4-node interface elements, increasing the number of 

Simpson integration points from 2 to 20, in order to improve the accuracy of the stiffness 

and the residual force vector, leads to a less robust solution algorithm and, therefore, to a 

reduction of the average increment size, whereas the spurious oscillations of the load-

displacement curves due to a coarse mesh around the delamination front still remain. 

3.3.3.2 Mesh Sensitivity 

The softening constitutive law of the CZM relates tractions to separations and not 

to strains. Hence the method does not suffer from the well-known ‘loss-of-ellipticity’ 

problems associated with a continuum rather than a surface. Such problems have led to a 

range of non-local continuum models which require a length parameter, such as the crack 
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band model as discussed in Section 2.4.3. However, the length parameter is not required 

in the CZM and it does not suffer from the severe mesh-sensitivity associated with 

softening stress-strain models or with strength-based models. Nonetheless, the CZM does 

require, as input, a strength as well as a critical fracture energy. Consequently, there is 

still some form of mesh sensitivity. 

In particular, if the mesh is not sufficiently fine, the computed global load-

displacement responses can be very non-smooth and exhibit a wide range of artificial 

‘snap-throughs’ and ‘snap-backs’ that are purely artifacts of the mesh (Alfano and 

Crisfield, 2001). The reason for the non-smooth response is the inability of the coarse 

mesh to smoothly capture the correct strain field around the crack front as it propagates. 

In contrast to methods involving traditional fracture mechanics, with the CZM there is no 

precisely defined crack-tip and, instead, there is a softening ‘process zone’. As a result of 

the latter there is no stress singularity. Nonetheless, particularly with high cracking 

strengths, there is a rapidly varying ‘strain’ field and, for a good solution, a fine mesh is 

required in the region around the process zone. In order to obtain a relatively smooth 

solution, it was suggested (Mi et al., 1998) that the mesh should be fine enough to include 

at least two interface elements in the cohesive zone located at the crack tip. 

To circumvent non-convergence of the equilibrium iterations associated with 

using CZMs, analysts often resort to the device of artificially lowering the strengths. The 

improvement in convergence is due to the effect of increasing the cohesive zone ahead of 

the crack tip. The lower the interface strength, the larger will be the cohesive zone, and 

hence the smoother the solution. This method has been successfully used by Wisheart and 

Richardson (1998) in the simulation of DCB tests in composite laminates. The sensitivity 
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of the CZM to the interface strength has also been investigated by Alfano and Crisfield 

(2001). It was reported that reducing the values of the maximum admissible tractions 

lighten the computational burden because it allows for a coarser mesh around the crack 

tip and an increased average increment size. However, too small values can result in a 

large underestimation of the maximum load and should be avoided. Other approaches 

involve adaptive remeshing to provide local fine mesh around the crack front in each load 

step. However, this method introduces special problems for implicit non-linear finite 

element analyses. In particular, even in the absence of history variables, once the 

displacements from one mesh have been interpolated to a new mesh, one may experience 

equilibrium jumps, which can impose severe difficulties for the non-linear solution 

procedure.  

A more promising method is the use of local enrichment of the kinematics in the 

zone where a crack propagates (de Borst, 2003). This idea was put forward by Belytschko 

and co-workers in the XFEM as mentioned in Section 2.4.2. A similar approach has 

successfully been adopted by Crisfield and Alfano (2002) in conjunction with a CZM, 

using one-dimensional beam elements. In this work, polynomial hierarchical functions 

are used to adaptively enrich the finite-element interpolating spaces around the process 

zone. Hierarchical enrichment has been achieved by effectively changing the boundary 

conditions as the analysis proceeds and the cracks propagate. Enrichment is automatically 

provided ahead of the process zone and removed once the crack is fully open. 

3.3.3.3 Nonlinear Solution Procedures 

Even with a properly designed FE mesh and a good element integration scheme, 

the softening nature of the constitutive law of the CZM frequently causes convergence 
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difficulties in the numerical solution. These are often related to the singularity of the 

tangent stiffness of the FE model. In dealing with this problem, Crisfield and coworkers 

have made a great effort and put forward several sophisticated and efficient procedures.  

Crisfield et al. (1997) found that when using the Newton-Raphson method, under 

load (with the arc-length method) or displacement control, the iterative solutions often 

oscillated when a positive slope of the total potential energy was found, and therefore 

failed to converge. In order to obtain convergence, a ‘line search’ procedure with a 

negative step length was presented. The local softening interface relationship used often 

results in a global softening response of the structure. In these cases, arc-length methods, 

such as proposed by Riks (1975), are generally used to pass through limit points, which 

are typically present in the equilibrium path, by means of a constraint equation to relate 

the incremental load factor to the norm of the incremental displacement vector. Mi et al. 

(1998) and Qiu et al. (2001) proposed the use of a modified cylindrical arc-length method 

(Hellweg and Crisfield, 1998) to obtain converged solutions. This technique chooses 

between the two roots to the cylindrical arc-length equation for the iterative change of the 

load factor, selecting the one providing the minimum residual norm associated with the 

two values of the displacement vector. However, even with this new technique, the 

solution sometimes enters a cycle and oscillates between two points. The oscillation must 

be detected so that the increment size can be reduced.  

In a very recent work, Alfano and Crisfield (2003) developed a more robust 

‘double-line-search’ (DLS) method which is based on the combination of a local-control 

arc-length method and two types of line-search procedures. This method is particularly 

suited to the analysis of the delamination process using the CZM, in which strong non-
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linearities are mainly related to a localized set of degrees of freedom. The control 

function is defined as a weighted sum of a localized set of relative-displacement 

parameters and, for each increment, these parameters are selected with a view to making 

the control function locally increase. The local-control method is more efficient than the 

modified cylindrical arc-length method but is also more unstable. The ‘lack of 

robustness’ is typically related to the extreme ‘non-smoothness’ of the problem and the 

use of line searches was considered as a remedy. When the classical ‘single-line-search’ 

(SLS) fails to compute an optimal step length, with the DLS method a different type of 

line search is performed in order to modify the iterative change of the load factor so as to 

obtain a ‘better’ iterative search direction. In general, the numerical results reported 

indicate that, although for some types of problems line searches may be not required at all, 

for some others it may be at least necessary to introduce conventional line searches 

through the SLS method, whereas in order to successfully complete the most difficult 

analyses the DLS method is needed. 

Another alternative to overcome the difficulties of dealing with material softening 

when using cohesive interface elements is the use of explicit time integration for the FE 

formulation. Although explicit formulations are typically used to solve transient dynamic 

problems, they could also be used to address a problem involving quasi-static loading 

when the model contains a large number of elements, complex contact conditions, 

geometric instabilities, or material softening. The explicit time integration methods are 

conditionally stable because the minimum time step used for the explicit time integration 

of the governing equations depends on the highest eigenvalue in the mesh. Potential 

pitfalls such as ‘snap-back’ and ‘snap-through’ need no special treatment in a dynamic 
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approach as opposed to path following algorithms used in a static approach. The explicit 

form of CZMs have been used to simulate delamination in composite structures by Reedy 

Jr. (1997) and Borg et al. (2001, 2002, 2004a, 2004b).  

Hence, an additional objective of this dissertation is to investigate the 

aforementioned computational issues related to element integration schemes, mesh 

sensitivity, and nonlinear solution procedures in the development of the cohesive 

interface elements. 

3.4 Summary 

In this chapter, modeling of delamination in composite and sandwich structures 

are discussed. With the aim of efficiently simulating honeycomb sandwich facesheet-core 

delamination initiation and propagation, the cohesive crack modeling approach is adopted, 

directed to the implementation of a CZM as interface finite elements. 
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Chapter 4 

Nonlinear Cohesive Interface Finite 
Element Formulation 

In order to efficiently model delamination in composite and sandwich structures, 

interface elements based on CZMs can be effectively used. In this chapter, the framework 

of a three dimensional cohesive interface finite element will be described. To begin with, 

the principle of virtual work is given of solids containing cracks or discontinuous singular 

surfaces. The kinematics of the interfacial surface is developed next to describe correctly 

the finite deformation of the interface. In the third section, a linear-exponential softening 

traction-separation law, satisfying empirical mixed-mode fracture criteria, is proposed to 

represent progressive damage occurring in the interface during the fracture process. 

Section four is devoted to the detailed description of the three dimensional cohesive 

interface element formulations. In the last section, some typical nonlinear solution 

methods are discussed. 

4.1 Principle of Virtual Work 

Cracks in solids can be viewed as discontinuities which can be characterized as 

jumps in the displacement field across material lines or surfaces and have been termed as 

strong discontinuities (Simo et al., 1993). The presently available approaches to model 
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displacement discontinuities can be classified into two main groups, namely the 

continuum mechanics approach and the fracture mechanics approach. Both families of 

approaches are developed from different departure points. The link between them has 

been established recently by Oliver et al. (2002). In this dissertation, the nonlinear 

(decohesive) fracture mechanics approach will be adopted based on the interfacial 

constitutive equations.  

For discontinuous systems, the classical form of the principle of virtual work for a 

continuum has to be extended to include the description of interfacial displacement jumps, 

which has been done by Ortiz and Pandolfi (1999). Considering a body occupying an 

initial configuration 3R⊂Ω , it undergoes a deformation under the body forces bi (per 

unit volume) and surface tractions it
~ (per unit external surface area). The external virtual 

work extWδ of the body forces and surface tractions is 

 ∫∫∫∫∫
ΩΩ∂

Ω+= dubdSutW iiiiext δδδ ~  (4.1)

where Ω∂ is the entire surface area of the body. The prescribed surface tractions are 

acting on σΩ∂ , and over the remaining part of the boundary, uΩ∂ , the displacement field 

is prescribed. Since δui = 0 on uΩ∂ , the surface integral in the external virtual work 

expression is extended to cover the entire surface Ω∂  = σΩ∂ + uΩ∂ . The boundary 

conditions are 

 ijij tn ~=σ  on σΩ∂ , and ii uu ~=  on uΩ∂  (4.2)
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where nj is the unit normal component of the external surface, and σij are the Cauchy 

stress tensor components, and the tilde denotes the prescribed quantity. The internal 

virtual work due to the stress field σij is 

  ∫∫∫
Ω

Ω= dW ijijδεσδ int  (4.3)

where εij are the infinitesimal strain tensor components. Using the elasticity equilibrium 

equations, it can be easily proved that if the stress field is statically admissible, the 

external virtual work in Equation (4.1) should be equal to the internal virtual work in 

Equation (4.3), i.e. 

 

 
ij ij i i i id t u dS b u dσ δε δ δ

Ω ∂Ω Ω

Ω = + Ω∫∫∫ ∫∫ ∫∫∫
 

 

(4.4)

Implementation of the principle of virtual work is to impose Equation (4.4) for every 

kinematically admissible displacement field to determine a statically admissible stress 

field. 

Suppose now that the body is traversed by an interfacial surface S, Figure 4.1(a). 

Furthermore, orient S by choosing a unit normal n̂ . For simplicity, assume that the 

interfacial surface then partitions the body into two subbodies ±Ω , lying on the upper and 

lower sides of S, denoted S± and oriented by unit normal ±n̂ , respectively (Figure 4.1(b)). 

The interfacial surface is an internal surface comprised of the upper and lower surfaces S±. 

The traversing surface S in its undeformed configuration is denoted S0. The surfaces S, S+, 

and S− are assumed to coincide with the reference surface S0 in the undeformed 

configuration as shown in Figure 4.2. Thus, in the undeformed state, the interfacial 
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surface is of zero thickness. The upper and lower surface S± can independently displace, 

stretch, and rotate. However, the motion of them is constrained by the material 

constitutive law used to describe the interfacial surface. In the context of a formed crack, 

S+ and S− are the crack surfaces.  

Figure 4.1 A 3D body containing an interfacial surface. 

Since the displacement are discontinuous across the interfacial surface, the 

principle of virtual work can only be written for each continuous subbody  as 

 

∫∫∫∫∫∫∫∫∫∫
++++ ΩΩ∂

+++

Ω

Ω++=Ω dubdSutdSutd iiii
S

iiijij δδδδεσ ~  

 

∫∫∫∫∫∫∫∫∫∫
−−−− ΩΩ∂

−−−

Ω

Ω++=Ω dubdSutdSutd iiii
S

iiijij δδδδεσ ~  
(4.5)

where ±
it are the surface tractions acting on the upper and lower surface S±. Although the 

stress components are not necessarily continuous, the resultants due to the traction 

components acting on any interior surface must be continuous by Newton’s Third Law. 

Hence, the balance equation at the interfacial surface boundaries requires 

Ω 
Ω - 

Ω +
S 

n̂  

Ω -

Ω + 

S 

S +

S-

-n̂

+n̂  
n̂

(a) Interfacial surface traversing  
a 3D body 

(b) Upper and lower surfaces S± 
and interfacial surface S 
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 0=+ −−++ dStdSt ii    ±± ∈∀ Sxi  (4.6)

Adding the equations in Equation (4.5) and replacing −−dSti with ++− dSti , we obtain 

 ( ) ∫∫∫∫∫∫∫∫∫∫
ΩΩ∂

+−++

Ω

Ω+=−−Ω
+

dubdSutdSuutd iiii
S

iiiijij δδδδδεσ ~  (4.7)

The behavior of the cohesive interfacial surface may be expected to differ markedly 

depending on whether the surface undergoes sliding or normal separation. This requires 

the continuous tracking of the normal and tangential directions to the surface; this task is 

compounded by the discontinuous behavior of the interfacial surface deformation. One 

scheme for identifying a unique deformed configuration of the cohesive interfacial 

surface is to introduce a midsurface S  throughout the history of deformation. The 

midsurface is defined by the locus of the midpoints P  of the line joining two points P- 

and P+ coincident in the undeformed configuration and located on S- and S+, respectively 

(Figure 4.3). The traversing surface S is assumed to coincide with the interfacial 

midsurface S  throughout the history of deformations. Therefore, the normal and 

tangential components of the tractions and displacement jump vectors are determined by 

the local orientation of the midsurface S , which is defined by its unit normal n̂ . Denote it̂  

the traction component acting on the midsurface along the direction of the global 

coordinate Xi. Thus, applying Newton’s Third Law, the boundary equation for the surface 

traction it̂  acting on the interfacial midsurface S  is related to the internal surface 

tractions ±
it  as follows 
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 SdtdStdSt iii
ˆ−=−= −−++    ±± ∈∀ Sxi  and  Sx ∈ (4.8)

Therefore, the second term of the left side of the Equation (4.7) can be modified using 

Equation (4.8). This leads to the final form of the principle of virtual work equation for 

discontinuous systems 

 ˆ
ij ij i i i i i i

S

d t u dS t u dS b u dσ δε δ δ δ
Ω ∂Ω Ω

Ω+ = + Ω∫∫∫ ∫∫ ∫∫ ∫∫∫  (4.9)

where iu  are the displacement jumps which play the role of a deformation measure 

with the tractions it̂  furnishing the conjugate stress measure. Note that the displacement 

jump component iu  is measured along the global coordinate Xi. Defining a local 

midsurface coordinate system such that the basis vectors are normal and tangential to the 

midsurface, Equation (4.9) can be rewritten as 

  ij ij j ij i i i i i
S

d t R u dS t u dS b u dσ δε δ δ δ
Ω ∂Ω Ω

Ω+ = + Ω∫∫∫ ∫∫ ∫∫ ∫∫∫  (4.10)

where ti are the interfacial traction components acting on a unit deformed interfacial 

midsurface area; Rij is the rotation tensor relating the midsurface local coordinate system 

to the fixed global coordinate system. In this context, t1 and t2 are the tangential traction 

components, t3 the normal traction component to the interfacial midsurface S . Moreover, 

the displacement jumps ∆1 and ∆2 are defined as the sliding displacement jumps and ∆3 as 

the opening displacement jump associated with traction components t1, t2, and t3, 

respectively, as shown at a material point P  in Figure 4.3.  
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Figure 4.2 Interfacial surfaces in the deformed and undeformed configurations. 

 

Figure 4.3 Interfacial midsurface with tractions and corresponding displacement jumps. 

X1 

X2 

X3 

+S  

−S  

S

P+ 

P- 

P 1n̂

2n̂3n̂
P

∆2, t2 

∆1, t1 

∆3, t3 

X1, x1, u1 

X2, x2, u2 

X3, x3, u3 

Xi (η1,η2) 
S0 

+
iu (η1,η2) 

−
iu (η1,η2) 

+
ix (η1,η2) 

−
ix (η1,η2) 

+S

−S

Undeformed 
configuration 

Deformed 
configuration 



Chapter 4 Nonlinear Cohesive Interface Finite Element Formulation 

 
 

81

4.2 Kinematics of the Interfacial Surface 

The fundamental problem introduced by the interfacial surface is the question of 

how to express the rotational tensor R in Equation (4.10) in terms of the upper and lower 

surface displacement iu± . The derivations of the kinematical relationships are based on 

relating the spatial coordinates to the surface curvilinear coordinates. As shown in Figure 

4.2. Consider a three dimensional space with Cartesian coordinates Xi, i = 1, 2, 3, and let 

there be surface S± coincident with S0 defined in this space by Xi = Xi (η1, η2), where η1, 

η2 are curvilinear coordinates on the surface S0. Let the Cartesian coordinates ix± = ix±
 (η1, 

η2), i = 1, 2, 3 describe motion of the upper and lower surfaces S± in the deformed 

configuration. Any material point on S± in the deformed configuration is related to the 

same material point on S0 through 

 i i ix X u± ±= +  (4.11)

where iu± are displacement of a material point with respect to the fixed Cartesian 

coordinate system. The coordinates i ix x=  (η1, η2), i = 1, 2, 3 define the midsurface S  as  

 ( ) ( )1 1
2 2i i i i i ix x x X u u+ − + −= + = + +  (4.12)

The surface S  is coincident with S0 in the undeformed configuration. As mentioned 

earlier, the components of the relative displacement vector are evaluated at the 

midsurface S . Define the midsurface displacement gradients as 
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 i
i

xg α
αη

∂
=
∂

 (4.13)

where α = 1, 2. Thus, the local orientation of the tangential unit vectors to the midsurface 

S  in terms of the displacement gradient is 

 { }T
11 21 31, ,g g g=1n  (4.14)

 { }T'
12 22 32, ,g g g=2n  (4.15)

and the normal vector then is 

 '= ×3 1 2n n n  (4.16)

Hence, the magnitude of the differential midsurface area of the deformed configuration is 

expressed as 

1 2 1 2dS Ad d d dη η η η= = 3n  (4.17)
 

 ( ) ( ) ( )2 2 2
21 32 22 31 11 32 12 31 11 22 12 21 1 2g g g g g g g g g g g g d dη η= − + − + −

 

In the undeformed configuration, the differential surface area is defined as 

 0
1 2dS Ad dη η=  (4.18)

where A does not depend on the displacements. In general, the tangential vectors 1n , 

'
2n are not orthogonal in a curvilinear coordinate system, so that, 2n  vector is introduced 

that is orthogonal to 3n  and 1n  by 
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 = ×2 3 1n n n  (4.19)

For i = 1, 2, 3, the normal and tangential unit vectors to the surface S  at a material point 

P S∈ are 

 ˆ = i
i

i

nn
n

 (4.20)

These unit vectors are the direction cosines of the local orthogonal coordinate system at a 

material point P S∈ and form the rotation tensor 

 [ ]ˆ ˆ ˆ, ,= 1 2 3R n n n  (4.21)

This orthogonal tensor relates the local coordinate system located at any point in the 

midsurface S  to the fixed coordinate system. Using the rotation tensor, the normal and 

tangential components of the displacement jump vector expressed in terms of the 

displacement field are 

 ( ) ( )i ij j ij j j ij j jR x R x x R u u+ − + −∆ = = − = −  (4.22)

where Rij are the components of the rotation tensor. Note that the rotation tensor depends 

only on the interfacial midsurface displacement gradients, i.e. R = R (giα). From Equation 

(4.17), ( )iA A g α= , which indicates that A  is a function of the displacement gradients. 
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4.3 Constitutive Traction-Separation Laws 

 In the CZM, fracture is considered as a gradual phenomenon in which separation 

takes place across a cohesive zone resisted by cohesive tractions. The degradation of the 

material in the cohesive zone is represented by softening-type traction-separation laws 

which capture both strength-based bond weakening and fracture-based bond rupture from 

the viewpoint of the molecular theory of strength. In the following subsections, an 

exponential constitutive law is presented, which is then extended to explicit mixed-mode 

description with a linear-exponential form. 

4.3.1 Exponential Constitutive Law 

As mentioned earlier in Section 3.3.1, the exponential traction-separation law has 

been favored by many analysts and it was motivated by atomistic considerations 

following the work of Rose et al. (1981). The irreversible exponential constitutive law 

proposed by Ortiz and Pandolfi (1999) will be introduced next. 

For isothermal conditions, the local traction (t) across the cohesive interfacial 

midsurface S  derives from a free energy density function per unit undeformed area, 

( ),φ ∆ q , in the form 

 ( ),φ∂
=
∂

∆
∆

t q  (4.23)

where ∆ represents the displacement jump across the interfacial midsurface, and q 

denotes a set of internal variables which describe the inelastic processes of decohesion. 



Chapter 4 Nonlinear Cohesive Interface Finite Element Formulation 

 
 

85

Here, ∆ vanishes when the body undergoes a rigid body translation. The internal 

variables, q, evolve according to a set of kinetic relations in the form 

 ( ),f=q δ q  (4.24)

The potential structure of the cohesive law in Equation (4.23) follows as a 

consequence of the first and second laws of thermodynamics. The adoption of a potential 

structure reduces the formulation of the cohesive law from two independent functions, 

t(∆, q), to a single scalar function, ( ),φ ∆ q . 

In a 3D setting, let ∆n denote the opening displacement in the normal direction, ∆s 

the sliding displacement in the shear direction. Corresponding work-conjugate tractions 

across the surfaces are tn (normal) and ts (shear). By assuming that resistance of the 

cohesive surfaces to (relative) sliding remains independent of the direction of sliding (i.e. 

isotropic), the free energy function has the simpler form 

 ( ), ,φ φ δ δ= n s q  (4.25)

The cohesive law in Equation (4.23) then becomes 

 ( ) ( )ˆ, , , , s
n s n s n s

n s s

φ φ∂ ∂
= ∆ ∆ + ∆ ∆ = +
∂∆ ∂∆ ∆

∆nt q q t t  (4.26)

where n̂  is the unit normal of the interfacial surface; ∆s/∆s is a unit vector in the direction 

of shear relative displacement resultant. The sliding displacement is composed of two 

fractions 
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 2 2
1 2 s s s∆ = = ∆ + ∆∆s  (4.27)

For shear traction, we also have  

 2 2
1 2s s st t t= = +st  (4.28)

By introduction of a scalar parameter, β, we can assign different weights to the 

sliding and the normal opening displacements. The effective opening displacement 

becomes: 

 2 2 2
n sβ∆ = ∆ + ∆  (4.29)

Then, the effective traction can also be expressed as 

 222
sn ttt −+= β  (4.30)

It’s noteworthy that β also defines the relationship between maximum values of 

shear and normal tractions. 

The free energy potential is chosen to be of an exponential form as 

 /1 1 c
c c

c

e eφ σ −∆ ∆⎡ ⎤⎛ ⎞∆
= ∆ − +⎢ ⎥⎜ ⎟∆⎝ ⎠⎣ ⎦

 (4.31)

where e = exp(1) and ∆c denotes the peak value of ∆ at t = σc; σc is the interfacial strength. 

Following an irreversible path with unloading always directed towards the origin (Figure 

4.4), the relationship between the effective traction and effective opening displacement 

becomes, for loading and unloading, 
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(4.32a)

 

/ c
c

c

t e eφ σ −∆ ∆∂ ∆
= =
∂∆ ∆

, if ∆ = ∆ max  and ∆ ≥ 0, loading 
 

max

max

tt = ∆
∆

,                   if ∆ < ∆ max  or ∆< 0, unloading (4.32b)

where tmax and ∆max are the maximum effective traction and relative displacement 

throughout a loading history. Under compression, in order to avoid penetration, a simple 

linear elastic behavior with a relatively high stiffness Kc is assumed to model the contact 

between the upper and lower interfacial surfaces.  

Figure 4.4 Irreversible exponential traction-separation law. 

In nonlinear elastic materials, a standard application of the J-integral (Equation 

(1.9)) establishes the link between the critical energy release rate Gc for crack 

propagation and the cohesive law. Choosing a contour Γ for the evaluation of the J-

integral which surrounds the cohesive zone gives 

 ,1 1 ,1 10 0 0

r r r
J dx t dx td= = ∆ = ∆∫ ∫ ∫t ∆i  (4.33)
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where r is the cohesive zone length. 

For brittle materials and for ductile materials under small scale yielding where 

plasticity effects are negligible, the J-integral can be expressed as the rate of decrease of 

potential energy with respect to the crack length a and is equivalent to the energy release 

rate, G, 

 J G
a

∂Π
= − =

∂
 (4.34)

where Π is the potential energy of the system. From Equation (4.33) and (4.34), and 

using Equation (4.32a), the fracture energy (Gc) is given by the area under the t-∆ curve 

 
0c c cG td eσ
∞

= ∆ = ∆∫  (4.35)

Figure 4.5 Irreversible linear-exponential traction-separation relationships for Mode I (a), 
Mode II and Mode III (b) 

4.3.2 Mixed-Mode Linear-Exponential Constitutive Law 

In the exponential traction-separation law described above, the interfacial strength 

and the fracture energy associated with Mode I, Mode II and Mode III fracture cannot be 
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specified separately. Mode coupling was accounted for by the scalar parameter β as given 

before the analysis, which is inappropriate since the mode mixity is generally unknown a 

priori for different loading situations as the crack propagates. In order to circumvent this 

limitation, in this section, an irreversible linear-exponential constitutive law is proposed 

that incorporates mixed-mode fracture criteria. 

4.3.2.1 Uncoupled Model 

For the uncoupled model, linear-exponential relationships ti = ti (∆i) are assumed 

for the cases of a single-mode delamination as shown in Figure 4.5. For pure Mode I 

delamination, the traction-opening displacement relationship (Figure 4.5(a)) is 

if 3 3c∆ ≤ ∆  
 

3 3

3 3
3 1 /

3 3
c

K
t

K e −∆ ∆

∆⎧⎪= ⎨
∆⎪⎩ if 3 3c∆ > ∆  

(4.36)

In Equation (4.36) the penalty-like stiffness is 3 3 3/c cK σ= ∆ ; σc3 is the peak traction, i.e. 

interfacial tensile strength; e = exp (1) and ∆c3 denotes the critical value of normal 

separation ∆3 when t3 = σc3. Under compression ∆3 < 0, and in order to avoid penetration, 

a relatively high stiffness Kc is assumed.  

For pure Mode II or Mode III problem, the traction-sliding displacement 

relationship is depicted in Figure 4.5(b). For ∆1, ∆2 > 0, it is the same as for mode I, 

whereas for ∆1, ∆2 < 0 it is antisymmetric with respect to the origin. The analytical 

expression is 

if cα α∆ ≤ ∆  
 1 / c

K
t

K e α α

α α
α

α α
−∆ ∆

∆⎧⎪= ⎨
∆⎪⎩ if cα α∆ > ∆  

(4.37)
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where /c cKα α ασ= ∆ ,α = 1, 2; σcα are the interfacial shear strengths, and ∆cα  are the 

critical shear separations. 

The irreversibility of the interface damage can be taken into account by the 

following relation 

      
( )
( )

max

max

i
i i

i

t
t = ∆

∆
 

if ( )maxi i∆ < ∆  or 

0i∆ <  
(4.38)

where (ti)max and (∆i)max are the maximum tractions and relative displacements throughout 

a loading history, i = 1-3. By Equation (4.38), cohesive surfaces are assumed to unload to 

the origin. 

The areas under the traction-relative displacement curves are assumed to be equal 

to the critical energy release rates, namely, GcI, GcII, GcIII which are characteristic 

parameters of the interface and can be measured separately by single-mode delamination 

tests. 

 3
I 3 3 3 3 3 3

1 2.5
2 c

c c c c cG t d
δ

σ σ
∞

= ∆ + ∆ = ∆∫  

 

II 1 1 III 2 22.5 , 2.5c c c c c cG Gσ σ= ∆ = ∆  

(4.39)

 

4.3.2.2 Mixed-Mode Model 

Following the approach by Crisfield and Alfano (2002), the mixed-mode 

delamination can be extended to three-dimensional cases for the single-mode linear-

exponential traction-separation law described above. A scalar γ  which accounts for the 

interactions between Mode I, Mode II and Mode III is defined as 
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 )'(max)(
'0

τγτγ
ττ ≤≤

=  (4.40)

where 

 
1/

1 2 3

1 2 3

( ') ( ') ( ')
( ') 1

c c c

t t t
t

αα α α

γ
⎡ ⎤⎛ ∆ ⎞ ⎛ ∆ ⎞ ⎛ ∆ ⎞
⎢ ⎥= + + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟∆ ∆ ∆⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

 (4.41)

with the scalar α being a material parameter, which will generally assume values between 

2 and 4. For ∆3 < 0, since Mode I should not contribute to the damage process, the 

McCauley bracket ⋅  is used as 

if 0≥x  
 

⎩
⎨
⎧

=
0
x

x
if 0≤x  

(4.42)

Before ∆ci is reached, it is assumed that there are no interface damage and no coupling 

between different modes. The mixed-mode constitutive relationship is then given by 

if 0)( ≤τγ  
 

i i
i r

i i

K
t

K e−

∆⎧⎪= ⎨
∆⎪⎩ if 0)( >τγ  

(4.43)

where i = 1, 2, 3. It is easy to verify that relationships (4.40) – (4.43) specialize to (4.36) 

and (4.37) for a single-mode delamination problem. Note also that, as a consequence of 

the irreversibility of the damage, γ  is a monotonic increasing function of τ. 

With the above mixed-mode relationship, the following generalized ellipse fracture 

criterion can be fulfilled 
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For α = 2 and α = 4, a linear and a quadratic interaction criterion are recovered, 

respectively. 

4.3.2.3 Proof of the Mixed-Mode Constitutive Law 

In this section, the mixed-mode model proposed previously is shown to satisfy 

generalized ellipse fracture criterion in Equation (4.44) for the progression of 

delamination. 

It is assumed that the relative displacement history is proportional, such that 

 32211 // ∆=∆=∆ zz  (4.45)

where z is fixed during the delamination process. 

Using Equation (4.35) and assuming that ∆3 > 0, from Equation (4.43) we can split the 

integral in two parts 

 
3 3
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ˆ

I 3 3 3 3 3 3 3 30 0
G t d K d e K dγ∞ ∆ ∆ −

∆
= ∆ = ∆ ∆ + ∆ ∆∫ ∫ ∫  (4.46)

The integration limits 3
~∆ and 3∆̂  correspond to the beginning and to the end of the 

damage process, respectively. Without loss of generality we can assume a monotonic 

loading, and then we can write 
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where 
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Setting 0=γ  related to the beginning of the damage process, we obtain 

 
3

3
1~
β

=∆  (4.49)

In addition, ∞=∆3
ˆ  at the end of the damage process for the proposed linear-exponential 

constitutive law. Hence, the evaluation of Equation (4.46) yields 
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Since I 3 32.5c c cG σ= ∆ , we arrive at 

       I
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G
G β
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 (4.51)

Analogous relationships can be obtained for Mode II and Mode III as 
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and then 
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(4.56)

which is coincident with Equation (4.44). 

4.4 Interface Element Formulation 

In this section, we formulate a general isoparametric interface element for the 

analysis of three dimensional crack propagation. At first, the basic nonlinear finite 

element equations are presented. Based on this, element matrices for the interface 

element are then derived. 
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4.4.1 Nonlinear Finite Element Solutions 

The finite element equations for standard displacement based finite element 

analysis stem from the principle of virtual work given in Equation (4.10) as follows  

 ij ij j ij i i i i i
S

d t R u dS t u dS b u dσ δε δ δ δ
Ω ∂Ω Ω

Ω+ = + Ω∫∫∫ ∫∫ ∫∫ ∫∫∫  (4.57)

It is convenient to replace the expression of the internal virtual work with the integral 

over the reference volume Ω0 as 

 
0

0ij ij j ij i i i i i
S

S E d t R u dS t u dS b u dδ δ δ δ
Ω ∂Ω Ω

Ω + = + Ω∫∫∫ ∫∫ ∫∫ ∫∫∫  (4.58)

where Sij are the second Piola-Kirchhoff stress tensor components and Eij are the Green-

Lagrange strain tensor components. The displacement field ui is interpolated with shape 

functions as 

 i ik ku N d=  (4.59)

where Nik is a component of an interpolation function matrix and dk are the nodal 

displacements. The virtual displacement field δui then is 

 i ik ku N dδ δ=  (4.60)

where δdk are the virtual nodal displacements. The continuum variational statement in 

Equation (4.58) is approximated by a variation over a finite set δdk. Substituting Equation 

(4.60) into Equation (4.58), we obtain 
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0

0 0ij i
k ij j ij i ik i ik

k kS

E u
d S d t R dS t N dS b N d

d d
δ

Ω ∂Ω Ω

⎧ ⎫∂ ∂⎪ ⎪Ω + − − Ω =⎨ ⎬∂ ∂⎪ ⎪⎩ ⎭
∫∫∫ ∫∫ ∫∫ ∫∫∫  (4.61)

Since δdk are independent variables, we can choose each one to be nonzero and all others 

to be zero. Thus, for each δdk there is an associated equation fk = 0 with k = 1, 2, …, n 

given as follows 

0

0 0ij i
k ij j ij i ik i ik

k kS

E u
f S d t R dS t N dS b N d

d dΩ ∂Ω Ω

∂ ∂
= Ω + − − Ω =

∂ ∂∫∫∫ ∫∫ ∫∫ ∫∫∫  (4.62)

This system of equations forms the basis for the displacement finite element procedure 

which consists of n equations and n unknowns. Each equilibrium equation in Equation 

(4.62) obtained by discretizing the virtual work equation is written as follows 

 ( )1 2, , , 0,k nf d d d =  or ( ) 0,kf d =  1, 2, ,k n=  (4.63)

where (d) is equivalent to (d1, d2, ..., dn). In the most general form, the above equation is 

materially and geometrically nonlinear. The stress-strain and the traction-separation 

relations are nonlinear. Moreover, the strains and the separations are also nonlinear 

functions of the nodal displacements. 

An iterative solution procedure such as Newton-Raphson is necessary to linearize 

and solve the nonlinear equilibrium equations in Equation (4.63). At iteration i, denote di 

the approximate displacement state. We assume that at the next iteration, i+1, with di+1, 

the equilibrium equations are exactly satisfied. Denote hi = di+1 − di as the difference 

between the exact solution and the approximate solution. Then the nonlinear equilibrium 

equations can be written as 
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 ( ) ( )1 0i i i
k kf d f d h+ = + =  (4.64)

Expanding the left side of the equation with a Taylor series expansion about the 

approximate solution di gives 

 ( ) ( ) ( ) 0i i i i i i
k kr r krs r sf d K d h K d h h+ + + =…  (4.65)

where 

 ( )
i

i k
kr

r d d

fK d
d

=

⎡ ⎤∂
= ⎢ ⎥∂⎣ ⎦

and   ( )
2

i

i k
krs

r s d d

fK d
d d

=

⎡ ⎤∂
= ⎢ ⎥∂ ∂⎣ ⎦

 (4.66)

are the Jacobian and Hessian matrices, respectively. Since the magnitude of hi is small, 

higher order terms in Equation (4.65) can all be neglected. It leads to the linearized 

system of equations 

 i i i
kr kK h f= −  (4.67)

At iteration i, hi can be solved in Equation (4.67), and then the next approximate 

displacement state is di+1 = di + hi. 

In the Newton-Raphson method, fk is the residual load vector which defines the 

out-of-balance force vector. The iterative procedure is designed to drive the residual to 

zero. From Equation (4.62), the first two terms stemming from the internal virtual work is 

called the internal force vector denoted as 
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0

int
0

ij i
k ij j ij

k kS

E u
f S d t R dS

d dΩ

∂ ∂
= Ω +

∂ ∂∫∫∫ ∫∫  (4.68)

The last two terms stemming from the external virtual work is termed the external force 

vector denoted as 

 
ext

k i ik i ikf t N dS b N d
∂Ω Ω

= + Ω∫∫ ∫∫∫  (4.69)

Thus, the residual load vector can be rewritten as 

 int ext
k k kf f f= −  (4.70)

Furthermore, the Jacobian matrix K is to be computed in Equation (4.67). It is also called 

the tangent stiffness matrix. We now discuss the contribution of each term in Equation 

(4.62) to the tangent stiffness matrix. The contribution from the first term is related to the 

bulk material 

 
0 0

2

0 0
ij ij ija mn

kr ij
k r mn r k

E S EEK S d d
d d E d dΩ Ω

∂ ∂ ∂∂
= Ω + Ω

∂ ∂ ∂ ∂ ∂∫∫∫ ∫∫∫  (4.71)

Similarly, the tangent stiffness matrix contribution from the second term is associated 

with the interfacial surface material and is obtained as 

 

j iji ib m
kr ij j

m r k r kS S

t Ru u
K R dS t dS

d d d d
∂ ∂∂ ∂∂∆

= +
∂∆ ∂ ∂ ∂ ∂∫∫ ∫∫  

 
2 1i i r

j ij j ij
k r k r rS S

u u At R dS t R dS
d d d A d
∂ ∂ ∂

+ +
∂ ∂ ∂ ∂∫∫ ∫∫  

(4.72)
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where 0 /rA dS dS A A= = . The first term of the above equation vanishes since the 

displacement jump iu  is linearly related to the nodal displacement dr. Thus, the tangent 

stiffness matrix contribution of the interfacial surface material is 

2 1ij i i ib r
kr j j ij j ij

r k k r k r rS S S

R u u u AK t dS t R dS t R dS
d d d d d A d
∂ ∂ ∂ ∂ ∂

= + +
∂ ∂ ∂ ∂ ∂ ∂∫∫ ∫∫ ∫∫  

       

(4.73)

The prescribed surface tractions and body forces may depend on the material deformation. 

Hence, in the most general form, the contribution of the external force vector from the 

last two terms in Equation (4.62) is 

1 1c i ir r
kr ik i ik ik i ik

r r r r r r

t bA JK N t N dS N b N d
d A d d J d∂Ω Ω

⎛ ⎞ ⎛ ⎞∂ ∂∂ ∂
= + + + Ω⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
∫∫ ∫∫∫  (4.74)

where 0
rJ d d= Ω Ω . Thus, the tangent stiffness matrix K is obtained from Equations 

(4.71-4.74) as follows 

 a b c
kr kr kr krK K K K= + +  (4.75)

4.4.2 Three Dimensional Isoparametric Interface Element 

In this subsection, a general three dimensional isoparametric interface element 

will be formulated. As we discussed in the preceding subsection, the main task is to 

derive the interface element tangent stiffness matrix K and the interface element internal 

force vector intf as required in the nonlinear solution procedure. The expressions for K 

and intf are complex due to the geometrical and material nonlinearities. The geometric 

nonlinearities are related to the stretching and rotation of the upper and lower surfaces of 
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the interface element, while the material nonlinearity is caused by the nonlinear traction-

separation constitutive law. 

The element consists of an upper and lower surface S± with n nodes contained in 

each surface as shown in Figure 4.6. In the undeformed configuration, the upper and 

lower surfaces are coincident. The node numbering convention is such that the difference 

between the upper node number and the lower node number is n. The nodes of the lower 

surface are numbered first and those of the upper surface are numbered afterwards. Each 

node has three translational degrees of freedom.  

Figure 4.6 General three dimensional isoparametric interface element. 

The global displacement for each node is (u, v, w) in the reference coordinate 

system (X1, X2, X3). In the nodal displacement vector d, degrees of freedom 

corresponding to the displacement along the same direction are grouped together. In each 

group, the first n quantities correspond to the lower surface nodes and is represented with 

a ‘-’ superscript; the following (n+1) ∼ 2n ones correspond to the upper surface nodes and 

is denoted with a ‘+’ superscript. Therefore, the nodal displacement vector d is 

{ }1 1 1 1 1 1

T
, , , , , , , , , , , , , , , , ,

n n n n n n
u u u u v v v v w w w w+ + − − + + − − + + − −=d … … … … … …  (4.76)
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Using standard interpolation polynomials, in the natural coordinate system of the 

interface element (η1, η2) which is located in the interfacial midsurface, the continuous 

displacement field, ( )T
, , , , ,u u v v w w+ − + − + −=u , on the upper and lower surfaces can be 

expressed in terms of the nodal displacements as 

 i ir ru N d=  (4.77)

where Nir is a component of the 6 × 6n shape function matrix N which contains the usual 

bilinear interpolation polynomials expressed in the natural coordinate system (η1, η2), 

N(η1, η2) : [N1(η1, η2), N2(η1, η2),…, Nn(η1, η2)], 

 

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

N

Ν
Ν

Ν
Ν

Ν
Ν

 (4.78)

The global displacement jump can then be obtained as 

 j ji ir ru L N d=  (4.79)

where Lji is a component of the operator matrix 

 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−+
−+

−+
=

110000
001100
000011

L  (4.80)
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For computational purpose, ju  requires transformation from global coordinates to the 

local coordinate system (η1, η2) as given in Equation (4.22). Therefore, the displacement 

jump in the incremental form is 

 jji
i ji j ji j j r ji r

r r

uR
R u R u u d R d

d d
δ δ δ δ δ

∂∂
∆ = + = +

∂ ∂
 (4.81)

From the Equations (4.12), (4.13), and (4.77), the derivative of the rotation matrix with 

respect to the nodal displacement is obtained from the following variation 

 
( )'

1
2

ml lrji
ji r

m

L NR
R d

g α α

δ δ
η

∂∂
=

∂ ∂
 (4.82)

where '
mrL  is a component of the operator matrix 

 '

1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1

+ +⎡ ⎤
⎢ ⎥= + +⎢ ⎥
⎢ ⎥+ +⎣ ⎦

L  (4.83)

Substituting Equations (4.79) and (4.83) into Equation (4.82) gives 

 ( )i ir ir rB B dδ δ∆ = +  (4.84)

where we have defined the following 

 

( )'
1
2

ml lrji
ir jk ks s

m

L NR
B L N d

g α αη

∂∂
=

∂ ∂
 

 

ir ji jk krB R L N=  

(4.85)

Thus, the displacement jump/nodal displacement matrix is given as 
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 i
ir ir

r

B B
d
∂∆

= +
∂

 (4.86)

The second term in Equation (4.68) is the interface element internal force vector which 

can be obtained using Equation (4.79) as follows 

 i
r j ij j ij ik kr j jr

kS S S

u
f t R dS t R L N dS t B dS

d
∂

= = =
∂∫∫ ∫∫ ∫∫  (4.87)

The interface tangent stiffness matrix stems from the linearization of the internal 

force vector as discussed in the previous subsection. It consists of the contribution of the 

material tangent stiffness matrix and the geometric tangent stiffness matrix. From 

Equation (4.73), and the consistent linearization of the internal force vector in Equation 

(4.87) we obtain 

 Sdt
d
B

dS
d
AtBSd

d
t

B
d
f

K j
S w

jt

w

r
j

S
jt

w

k

k

j

S
jt

w

t
tw ∫∫∫∫∫∫ ∂

∂
+

∂
∂

+
∂
∆∂

∆∂

∂
=

∂
∂

=
~

~~ 0

0

 (4.88)

where AAdSSdAr == 0 . 

The first term of Equation (4.88) is the material tangent stiffness matrix. 

Substituting Equation (4.86) into the first term we obtain 

 ( ) SdBBDBSd
d

t
B kwkwjk

S
jt

w

k

k

j

S
jt

~~~ +=
∂
∆∂

∆∂

∂
∫∫∫∫  (4.89)

where B  and B~  were defined in Equation (4.85), and Djk is a component of the 3 × 3 

material tangent stiffness matrix D, and its computation is deferred to Section 4.3.3.4. 
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The second term of Equation (4.88) is the geometric tangent stiffness matrix due to the 

stretching of the midsurface, and it is obtained as 

 00

00

~
2
1~ dS

N
g
AtBdS

d
AtB kw

k

r
j

S
jt

w

r
j

S
jt

αα η∂
∂

∂
∂

=
∂
∂

∫∫∫∫  (4.90)

The third term of Equation (4.88) is also part of the geometric tangent stiffness matrix 

related to the rotation, and it is obtained as 

 SdtN
N

g
R

Sdt
d
B

S
jkt

lw

l

kj
j

S w

jt ∫∫∫∫ ∂
∂

∂

∂
=

∂

∂

αα η2
1

~
 (4.91)

Substituting Equations (4.89) ∼ (4.91) into Equation (4.88) gives the interface element 

tangent stiffness matrix 

      ( ) 0

0

~
2
1~~ dS

N
g
AtBSdBBDBK kw

k

r
j

S
jtkwkwjk

S
jttw

αα η∂
∂

∂
∂

++= ∫∫∫∫  

 

                                   SdtN
N

g
R

S
jkt

lw

l

kj∫∫ ∂
∂

∂

∂
+

αα η2
1  

(4.92)

In the above equations, the partial derivatives of the rotation with respect to the 

midsurface displacement gradients are computationally expensive to calculate. In the 

Newton’s method, the internal force vector needs to be computed accurately, but the 

tangent stiffness matrix may be computed approximately. Therefore, we could make the 

following approximations 

 0≈
∂
∂

g
R , 0≈

∂
∂

g
R , 0≈

∂
∂

g
rA  (4.93)
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From Equation (4.85), we also have 0=irB . Thus, introducing these geometric 

approximations into Equation (4.92), we can obtain the final form of the tangent stiffness 

matrix as follows 

 SdBDBK kwjk
S

jttw
~~

∫∫=  (4.94)

 

In summary, in matrix form, the internal force vector and the tangent stiffness 

matrix are given by 

 Sd
S

tBf
Τ

∫∫= ~int  (4.95)

and 

 Sd
S

BDBK ~~
∫∫ Τ=  (4.96)

4.4.3 Formulation of Eight-Node 3D Interface Element 

Based on the previous discussion, the formulation of an eight-node 3D interface 

element will be given in this subsection. The interface element is a degenerate form of a 

3D continuum element with initial zero-thickness as shown in Figure 4.7. This surface-

like element consists of two four-node bilinear isoparametric surfaces, with nodes 1∼4 

lying on the lower surface of the element, and nodes 5∼8 on the upper surface. In the 

model generation process, these cohesive interface elements are embedded between the 
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surrounding solid or shell elements, and each pair of lower and upper surface nodes 

should be made coincident in the undeformed configuration. 

Figure 4.7 3D eight-node interface element.  

The nodal displacement vector d in Equation (4.76) now is 

{ }Τ−−++−−++−−++= 414141414141 ,,,,,,,,,,, wwwwvvvvuuuu ………………d  (4.97)

The displacement field is interpolated with the shape function matrix N as 

 Ndu =~  (4.98)

where ( ) ( ) ( ){ }Τ= 212121 ,,,,,~ ηηηηηη wvuu ; N is given in Equation (4.78), and N(η1, η2) : 

[N1(η1, η2) , N2(η1, η2) ,…, N4(η1, η2)] is 
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( )( )211 11
4
1 ηη −−=N , ( )( )212 11

4
1 ηη −+=N  

 

( )( )213 11
4
1 ηη ++=N , ( )( )214 11

4
1 ηη +−=N  

(4.99)

The nodal coordinates of the undeformed interface element are contained in the vector Q 

which has the same structure as that of the nodal displacement vector d, 

{ }Τ−−++−−++−−++= 414141414141 ,,,,,,,,,,, ZZZZYYYYXXXX ………………Q  (4.100)

where (X, Y, Z) is the global coordinate system. The same shape function matrix N is 

used to interpolate the material coordinate in the interior of the upper and lower surface 

 NQQ =
~  (4.101)

where ( ) ( ) ( ){ }Τ= 212121 ,,,,,~ ηηηηηη ZYXQ . 

Hence, from Equation (4.12), the material coordinates of the interface element 

midsurface is given by 

 NdLNQq '
2
1~ +=  (4.102)

where ( ) ( ) ( ){ }Τ= 212121 ,,,,,~ ηηηηηη zyxq ; 'L  is the operator matrix given in Equation 

(4.83). The tangent vectors to the interfacial midsurface are then obtained by 

 dNLQNqn
ααα

α ηηη ∂
∂

+
∂
∂

=
∂
∂

=
)'(

2
1~

 (4.103)

The normal vector to the interfacial midsurface is calculated as 
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21

213

~~

ηη ∂
∂

×
∂
∂

=×=
qqnnn  (4.104)

The tangential vector n2 is redefined to ensure it is orthogonal to n1 as: n2 = n3 × n1. The 

unit vectors are defined as iii nnn =ˆ . The rotation tensor R is then given in Equation 

(4.21) as [ ]ˆ ˆ ˆ, ,= 1 2 3R n n n . Thus, from Equation (4.22), the displacement jumps are 

obtained by 

 LNdRΤ=∆  (4.105)

As we discussed previously, the derivative of the rotation tensor with respect to the nodal 

displacement vector is neglected. Then, B~  is given as 

 LNRB Τ=~  (4.106)

Finally, the internal force vector fint  is obtained by Equation (4.95) as 

 
1 1

int
3 1 2

1 1

d dη ηΤ

− −

= ∫ ∫f B t n  (4.107)

where t is the interfacial traction vector. The tangent stiffness matrix K is given by 

Equation (4.96) as 

 
1 1

3 1 2
1 1

d dη ηΤ

− −

= ∫ ∫K B DB n  (4.108)

where D is the interfacial material tangent stiffness matrix. Its computation is discussed 

in the following subsection. The integrations of the interface element internal force vector 
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and tangent stiffness matrix are performed on the reference surface (midsurface). 

Different integration schemes could be used as we discussed in Chapter 3. 

4.4.4 Interface Element Material Tangent Stiffness 

Independently of the constitutive law, the components of the interface element 

material tangent stiffness matrix D are obtained from the following incremental 

expression 

 i
i j ij j

j

tt Dδ δ δ∂
= ∆ = ∆
∂∆

 (4.109)

The expressions for the cohesive constitutive laws include the exponential 

constitutive law as presented in Section 4.3.1, and the mixed-mode linear-exponential 

constitutive law as proposed in Section 4.3.2. Let us first consider the case in which no 

interpenetration occurs, i.e. ∆3 > 0. 

For the exponential constitutive law, the derivation of the material tangent 

stiffness matrix D has already been given by Roy and Dodds (2001). Following Equation 

(4.26), the individual traction components can be expressed as 

 '
i

i i i

t tφ φ∂ ∂∆ ∂∆ ∂∆
= = =
∂∆ ∂∆ ∂∆ ∂∆

 (4.110)

Then, the material tangent stiffness matrix can be derived as 

 ( )
2

'' '
ij

j i

D φ φ ∂ ∆
= +

∂∆ ∂∆
 (4.111)
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From the above equation, it follows that Dij = Dji. Using Equation (4.29) and Equation 

(4.111), it gives 

 
2' '

2 ''
2
i j

ij ij ijD c
βφ φβ δ φ

⎧ ⎫∆ ∆ ⎡ ⎤⎪ ⎪= + −⎨ ⎬⎢ ⎥∆ ∆ ∆⎪ ⎪⎣ ⎦⎩ ⎭
 (4.112)

where i, j = 1, 2, 3; δij is the Kronecker delta; and cij is defined as 

if i or j = 3 
 2

1

1
ijc β

⎧
⎪= ⎨
⎪⎩ if i, j (1, 2)∈  

(4.113)

In addition, 

(4.114a)

 

/' c
c

c

t e eφ σ −∆ ∆∆
= =

∆
, 

'
'' 1

c

φφ
⎡ ⎤∆

= −⎢ ⎥∆ ∆⎣ ⎦
,  for loading 

 

' max

max

tφ = ∆
∆

, '' max

max

tφ =
∆

,                           for unloading (4.114b)

For the mixed-mode linear-exponential constitutive law, by differentiating (4.43) 

with respect to ∆i, the material tangent stiffness matrix can be obtained as 

iijij KD δ=  if 0)( ≤tγ  

1
1

1 (1 )
(1 )

j
ij i i ij i

cj

eD K K
αγ

α
α α δ γ

γ

−−
−

−

⎡ ⎤∆
= − ∆ − +⎢ ⎥

+ ∆⎢ ⎥⎣ ⎦
 if 0)( >tγ  

(4.115)

where i, j = 1, 2, 3; α = 2 ∼ 4; δij is the Kronecker delta; 1 1δ δ= , 22
~ δδ = , 3 3δ δ= ; and 

/i ci ciK σ= ∆ , where σci are the interfacial strengths, and ∆ci  are the critical separations. 

From the above equation, a non-symmetric material tangent stiffness matrix is produced 

unless α = 2 and the same properties are used for Mode I, Mode II and Mode III. 
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For the case in which interpenetration occurs, i.e. when ∆3 < 0, the components 

D13 = D31 = D23 = D32 = 0, with the nonzero components D11, D12, D21, D22 given by 

Equation (4.112) or (4.115), while 33 3 3/c c cD K kσ= = ∆  with the compression multiplier 

k = const. 

The interface element can also be used as a frictionless contact-type element 

which is applicable for the initial crack region and for the cracked part when crack 

propagates. It is similar to the interface element involving interpenetration. All the 

components of the material tangent stiffness matrix are zero except that 33 3 3/c cD kσ= ∆  

with k = const. 

4.5 Nonlinear Solution Procedures 

The formulation of the cohesive interface element described above is 

implemented in the commercial finite element code ABAQUS (2001) via the user-

defined element subroutine UEL. Modeling delamination with interface element of 

softening nature could induce highly nonlinear structural response. In this section, typical 

nonlinear solution methods are discussed, including Newton-Raphson method, line 

search method, and the constrained arc-length method. 

4.5.1 Newton-Raphson Method 

The Newton-Raphson method consists of iteratively solving Equation (4.67) for 

i
jh  at load increment step j as follows 



Chapter 4 Nonlinear Cohesive Interface Finite Element Formulation 

 
 

112

 ( ) ( ) j
i

kj
i
kr

i
j fKh 1−

−=  (4.116)

where ( ) 1−
j

i
krK  is the inverse of the tangent stiffness matrix and ( ) j

i
kf  is the residual load 

vector at iteration i of increment j. The next approximate displacement state is obtained 

as i
j

i
j

i
j hdd +=+1 . The iteration continues until the following convergence criterion is 

reached, 

 
int

2

2

ext

ext
ε

−
<

f f

f
 (4.117)

where ε is the tolerance error usually taken as ε = 10-3.  

Within the FE analysis, the process of seeking a converged solution is 

demonstrated in Figure 4.8 using the Newton-Raphson incremental-iterative method. The 

external forces are applied at the first load step and an initial guess for the nodal 

displacements is assumed. As it is conventional in the FEM, the global internal force 

vector and tangent stiffness matrix are assembled from those values at the element level. 

Then the system of equilibrium equations is solved. We check if the convergence 

criterion is satisfied, if it is not, then the system is not in equilibrium which means that 

the nodal displacements need to be corrected. We correct the nodal displacements until 

they meet the convergence criterion. After the convergence criterion is satisfied, we 

proceed with the next load step by increasing the external load by a factor and use the 

previous nodal displacements as the initial guess. From here the procedure is repeated.  
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Figure 4.8 The Newton-Raphson incremental-iterative method.  

With the Newton-Raphson method, a quadratic convergence rate can be achieved. 

But the solution to Equation (4.75) is computationally expensive and the tangent stiffness 

matrix has to be recalculated at each iteration. An alternative is the modified Newton-

Raphson method, in which the tangent stiffness matrix is not updated at every iteration, 

but occasionally. That is, instead of calculating Ki at iteration i, we use Ki = Ki-1. 

4.5.2 Line Search Method 

The Newton-Raphson method has proved to be successful in tracing the 

equilibrium path beyond limit points in analyses of nonlinear structural problems under 

displacement control, if the displacement does not decrease after the limit point on the 

equilibrium path; i.e., if there is no snapback. However, the application of the Newton-

Raphson method alone in highly nonlinear problems does not always lead to a converged 

extf 

extfj-1 

extfj  

d 
dj-1 

0
jh 1

jh 2
jh

1
jd 2

jd 3
jd

0
jK

1
jK

2
jK

0
jf  

1
jf  

2
jf



Chapter 4 Nonlinear Cohesive Interface Finite Element Formulation 

 
 

114

solution. If the approximation to the solution is far from the radius of convergence, then 

the Newton-Raphson method fails to converge. To overcome this difficulty, Crisfield 

(1982) developed the line search method used in conjunction with the Newton-Raphson 

method to solve the highly nonlinear FE equations that stem from a problem involving 

concrete cracking. 

The line search method can be derived from an energy basis. Suppose that the 

potential energy for a given structural system exists. A Taylor Series expansion of the 

total potential energy Π as a function of the displacement vector d gives 

 ( ) ( ) ( ) ( ) ( ) …+++∏=+∏
Τ iiiiiiii hdKhhdfdhd

2
1

0  (4.118)

where  

 ( )
id
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dd
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⎠
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⎝
⎛
∂
∏∂

= ,   ( )
id

i

dd
dK

=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∏∂

= 2

2

 (4.119)

and i is the iteration number. Note that K is the tangent stiffness matrix and f is the 

residual force vector discussed previously. Thus, for equilibrium it is required that 

 ( ) 0=idf  (4.120)

As with the Newton-Raphson method, we obtain h as 

 fKh 1−−=  (4.121)

and then the nodal displacements are updated from 
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 iii hdd +=+1  (4.122)

In a more general form, it is 

 iii hdd ϑ+=+1  (4.123)

where the scalar ϑ is the iterative step length. With ϑ = 1, the Newton-Raphson method is 

recovered. The line search method consists of obtaining ϑ such that the total potential is 

minimized. Note that hi is obtained from Equation (4.121) and di is known from the 

previous iteration. Hence, the total potential energy Π only depends on ϑ. Expanding Π 

in a Taylor Series about the solution ϑ then gives 

 ( ) ( ) …+
∂
∂

∂
∏∂

+∏=+∏ δϑ
ϑ

ϑδϑϑ d
d0  (4.124)

For the solution at ϑ  to be stationary, we require the following condition 

 0=
∂
∂

∂
∏∂

ϑ
d

d
 (4.125)

From Equations (4.119) and (4.122), the stationary condition reduces to 

 ( ) ( ) 0== Τ ϑϑ fhs  (4.126)

where s if the tangent to the total potential energy Π versus. the step length ϑ curve. 

Hence, the smallest ϑ with 0 ≤ ϑ  ≤ 1 satisfying Equation (4.126) is the solution. Since 

the value ϑ  need not to be exact, we use an interpolation method to determine ϑ. Let s0 = 
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s (ϑ = 0) and sj = s (ϑ  = ϑj), we require sj+1 = s (ϑ  = ϑj+1) = 0. A linear interpolation to 

obtain ϑj+1 gives the iteration scheme 

 
j

jj ss
s
−

=+
0

0
1 ϑϑ  (4.127)

with the following convergence criterion 

 ε<
0s

s j  (4.128)

where ε is the line search tolerance within the range 0.7 ≤ ε  ≤ 0.9.  

In summary, the procedure consists in solving Equation (4.121) for hi at iteration i. 

Then, we seek the optimum step length ϑ through the iterative scheme in Equation (4.127) 

with s defined in Equation (4.126). When the convergence criterion in Equation (4.128) is 

satisfied, the displacements are updated with Equation (4.123). The Newton-Raphson 

method stops when the convergence criterion in Equation (4.117) is satisfied. 

4.5.3 Constrained Arc-Length Method 

Snap-through and snapback are two possible load-displacement structural 

responses involving limit points as shown in Figure 4.9. An example that involves snap-

through is the buckling of shallow arches and an example involving snapback is the 

delamination of composite laminate. In Figure 4.9a for snap-through, under load control, 

an unstable dynamic response is expected at the limit point and the dynamic response will 

follow a path from A to B. Under displacement control the structural response is stable. In 
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Figure 4.9b for snapback, an unstable dynamic response occurs either under load or 

displacement control. 

Figure 4.9 Unstable structural response. 

A major drawback of the Newton-Raphson method is that no limit points can be 

passed through under a load control procedure. When the specified load exceeds the load 

at the limit point the solution diverges. The divergence is characterized by growth of the 

residual forces. The response of structures undergoing a fracture process is highly 

nonlinear and sophisticated path following techniques have to be employed. The local 

softening associated with the cohesive constitutive law often results in global softening 

behavior of the structure and the load-displacement responses are usually characterized 

by snap-throughs or snapbacks. The Arc-length method originally introduced by Riks 

(1975) is intended to enable solutions to pass through limit points. In this method, both 

the load and displacement are unknowns and solved simultaneously. The incremental 

load is determined by a constraint equation which is a function of the nodal 
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displacements and the load factor. The Newton-Raphson equilibrium iterations converge 

along an arc as shown in Figure 4.10, thereby preventing divergence even when the slope 

of the load versus displacement becomes zero or negative. The constraint equation is 

forced to be satisfied at each iteration. 

Figure 4.10 Path following arc-length method. 

A typical arc-length method has four aspects (Crisfield, 1991): parameterization 

form, predictor phase, corrector phase, and step-length control. The possible 

parameterizations of a solution method are load control, displacement control, external 

work control, etc. But using either of these alone poses several problems in tracing the 

solution path. In the arc-length method, an adaptive parameterization is adopted in a more 

generalized form, which can be changed as required during the process of path following. 
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In the predictor phase, information that belongs to the point previously computed is used 

to compute a suitable starting value for the corrector phase. And in the corrector phase 

some numerical procedure is used to find out the solution of the constrained system of 

equations with the initial guess supplied by the predictor. The control of step size along 

the path is a crucial issue in the development of an arc-length method. Once the 

parameterization form, predictor and corrector strategies have been selected, it is 

expected that a step size control procedure can be achieved such that the desired solution 

path can be obtained at a minimum computational expense. 
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Chapter 5 

Verification Examples and 
Computational Issues of Modeling with 

Interface Elements 

The formulation of the cohesive interface element described in Chapter 4 is 

implemented in the commercial finite element code ABAQUS (2001) via the user-

defined element subroutine UEL. Verification examples applying the developed interface 

element are given in this chapter with numerical simulations of standard fracture test 

configurations, including the double cantilever beam (DCB) test and the mixed mode 

bending (MMB) test. Among them, Mode I fracture occurs in the DCB specimen, Mode 

II and mixed-mode occurs in the MMB specimen. To assess the finite element modeling 

with the interface element, the response of the test configurations from the numerical 

simulation are compared to either the analytical solutions based on LEFM or 

experimental data available in the literature. Typical computational issues as previously 

mentioned in Chapter 3 will also be discussed. In the last section, delamination buckling 

of a laminated composite plate under in-plane compression is modeled to test the 

robustness of the CZM in simulating delamination coupled with highly nonlinear 

structural response. 
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5.1 Mode I Fracture Test of DCB Specimen 

Figure 5.1 Configuration of the DCB specimen. 

The DCB specimen is defined by ASTM as a standard test used to determine the 

Mode I interlaminar fracture toughness. The geometry and loading conditions of the DCB 

specimen are shown in Figure 5.1. The test is commonly performed on a unidirectional 

fiber-reinforced laminate with the fibers oriented parallel to the length of the initial 

delamination. The experiment consists of a displacement-controlled load that is applied at 

aluminum end blocks hinge-jointed to the DCB specimen. The initial delamination is 

achieved by incorporating a thin film at the midplane of the laminate layup near the 

loaded end prior to curing. There are issues pertaining to this conventional test specimen. 

First, with this specimen, the delamination front may not be straight due to the 

distribution of the energy release rate G across the width of the beam, which is caused by 

the anticlastic bending effect. This phenomenon is also called crack tunneling (James and 

Newman, 2003). It justifies the use of a 3D rather than 2D FE model which assumes a 

flat and straight crack front through the beam width. Secondly, the main delamination 

may branch into multiple cracks that may follow the fiber-matrix interfaces. This 
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situation may lead to Mode II loading. In addition, the phenomenon of fiber bridging can 

also lead to variations of the critical energy release rate. 

A complex fracture behavior involving fiber breakage, ply jumping, and fiber 

bridging often occurs when multidirectional laminates are used in the DCB specimen. 

The delamination branches to interfaces away from the midplane which leads to larger 

values of fracture toughness. Robinson and Song (1992) investigated if the complex 

fracture behavior is a function of the test rather than an intrinsic property of the material. 

They developed a modified DCB test specimen to suppress crack jumping and fiber 

bridging effects. To achieve pure Mode I delamination in a layup other than 00, the arms 

of the DCB specimen were designed such that these are balanced and symmetric so as to 

eliminate the stretching-shearing and stretching coupling effects. In addition, the layup of 

the angle ply laminate was designed to minimize the bending-twisting effects. The tests 

were designed to ensure there was no curvature or shear distortion of the laminate due to 

thermal stresses from curing. 

The displacement d/2 is specified equal and opposite at the tip of the upper and 

lower arm of the DCB test specimen, respectively. The corresponding reaction force P is 

computed. The response is characterized by the load-deflection response P - d. 

5.1.1 LEFM Analytical Solution of the DCB Specimen 

The analytical solution has been given by Mi et al. (1998). For completeness, we 

present the derivation in this subsection based on the concepts of linear elastic fracture 

mechanics. We start with the potential energy of the DCB specimen which is given by 



Chapter 5 Verification Examples and Computational Issues of Modeling with 
Interface Elements 

 
 

123

 PdU −=∏  (5.1)

where U is the strain energy of the DCB; d is the applied tip opening displacement; and P 

is the corresponding reaction force opposite and equal at the upper and lower arm of the 

DCB. The free body diagram is shown in Figure 5.2. For a linear isotropic material, the 

strain energy due to bending of the DCB is simply 
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 (5.2)

where Mi is the moment acting either in the upper or lower portion i shown in Figure 5.2; 

E is the elastic modulus assuming the beam made of isotropic material; and Ii is the 

moment of inertia of portion i. The moment of inertias for the specimen are related as: I1 

= I2 = I and I3 = 8I. The respective moments acting in portion 1, 2, and 3 are 

 PxM =1 ,  PxM =2 ,  03 =M  (5.3)

Substituting Equation (5.3) into Equation (5.2) and performing the integrations one 

obtains the strain energy of the DCB specimen as 

 
EI
aPU

3

32

=  (5.4)

Substituting Equation (5.4) into Equation (5.1) and using Castigliano’s theorem, the load 

tip deflection is obtained as 
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P
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Hence, considering each symmetric half (either upper or lower portion) of the specimen, 

the energy release rate is 

 
2 2

I
1 P aG
B a BEI
∂∏

= − =
∂

 (5.6)

where B is the width of the specimen. If GI < GcI, where GcI is the Mode I critical energy 

release rate, then the crack is stationary and a = a0. Thus, the initial response of the 

specimen is given by Equation (5.5) as 

 
EI
Pa

d
3

2 3
0=  (5.7)

where a0 is the initial crack length. If GI = GcI then the crack grows with a > a0. Then, the 

response of the specimen is obtained by eliminating a in Equations (5.5) and (5.6) so that 

 ( )
2

23

3
2

EIP
EIBG

d c=  (5.8)

Hence, the load-deflection response is given by the linear relationship in Equation (5.7) 

before the crack propagates, and by Equation (5.8) when the crack starts to grow. The 

above simplified solution neglects shear deformation and rotational effects at the crack 

tip. 

5.1.2 Numerical Simulation of the DCB Specimen 

The Mode I DCB specimen is modeled with the properties listed in Table 5.1, 

which were chosen in order to replicate the anisotropic properties of the ply layup in a 
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test by Robinson and Song (1992). The loading and geometrical dimensions are shown 

schematically in Figure 5.2. 

Figure 5.2 3D model of the DCB specimen. 

Table 5.1 Mechanical properties of the fiber-reinforced laminate for the DCB specimen. 

E11 (N/mm2) E22 = E33 (N/mm2) G12 = G13 = G23 
(N/mm2) ν12 = ν13 = ν23 

126,000 7,500 4, 981 0.263 

 

The interface elements are positioned in the midplane where delamination is 

constrained to grow. Since the fracture in the specimen is under Mode I loadings, the 

exponential constitutive law is used in the formulation of the interface element. Two 

parameters are required, i.e. Mode I fracture toughness Gc and the interfacial tensile 

strength σc. Among them, Gc was experimentally obtained as 0.281 N/mm2, while σc is 

chosen initially as 20 N/mm2 according to similar tests in the literature. Due to symmetry, 

only one arm of the beam is modeled, and the lower surface of the interface element is 

constrained in the direction of the beam thickness. Moreover, the lower surface of the 

interface element is chosen as the reference surface and Gc is also halved accordingly. 

The ABAQUS finite element model in the deformed state is shown in Figure 5.3. The 

beam is modeled with C3D8I incompatible mode, 8-noded solid continuum element 

d 
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available in the ABAQUS library. The C3D8I elements are superior in bending to other 

3D continuum elements. The beam is modeled using relatively fine mesh with two 

elements through the thickness, 65 elements along the length. To simulate the anticlastic 

effects, 15 elements are used across the width. The finite element model consists of 2700 

elements, of which 750 are interface elements. The eight-node 3D isoparametric interface 

element is compatible with C3D8I element. In the initial undeformed configuration, each 

pair of upper and lower surface nodes are coincident. 

An incremental-iterative approach should be used for the nonlinear finite element 

analysis as we discussed in Chapter 4. The Newton-Raphson method available in 

ABAQUS is used to trace the loading path of the DCB specimen with a displacement-

control analysis. Gauss and Lobatto integration schemes are both applied. Since the bulk 

material is linear elastic, no pronounced distinction in the structural response is observed 

utilizing both integration schemes.  

The finite element solutions are compared to the analytical solutions in Equations 

(5.7) and (5.8) with E = E11. VCCT as introduced in Chapter 3 is also attempted assuming 

self-similar straight delamination. The load – deflection response of the DCB specimen is 

plotted in Figure 5.4. It can be seen that excellent agreement is obtained between the 

results from the FE analysis with interface element, and the solutions using VCCT, 

analytical solutions, and experimental data. A contour plot of the mean stress within 

deformed interface elements is shown in Figure 5.5. A top view of the delamination front 

region is plotted in Figure 5.5(b). The yellow strip is a region of low stress values, 

indicating that delamination has occurred. The brown strip is a region of intermediate 

stress values due to material softening. The red strip is the process zone with high stresses 
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and it is the region where onset of delamination is occurring. The green strip is the 

location of the delamination front which is not straight across the width, since non-self-

similar delamination growth occurs due to the free edge effect and the anticlastic bending 

effect. 

In Figure 5.6, issues of mesh sensitivity, effects of step size and interfacial 

strength are investigated. Two mesh designs are used, 65 × 15 × 2 and 40 × 7 × 1 

(number of elements along length × width × thickness of the beam). In the FE analysis 

with mesh design 65 × 15 × 2, the interfacial tensile strength = 20.0 N/mm2. When larger 

step size is used, we get a less smooth solution during delamination propagation. As 

pointed out by Roy and Dodds (2001), large step sizes generally lead to satisfactory 

convergence of the global Newton iterations. However, the computed response might 

miss key features of the decohesion behavior and accumulate significant errors. If the 

bulk material involves plasticity, the peak stress attained in the cohesive zone would 

govern strongly the development of plasticity in the bulk material and consequently the 

overall specimen strength and ductility. Thus, with large step sizes, interface elements 

may pass from the pre-peak to post-peak side of the traction-separation curve without 

enforcing the peak stress level on adjacent bulk material. To eliminate these effects, the 

interface element could control the step sizes based on the maximum separations 

occurring in the element. 

 In the analysis with coarse mesh design 40 × 7 × 1, when the interfacial tensile 

strength = 20.0 N/mm2, with Newton-Raphson method, converged solutions after 

delamination initiation could not be obtained, whereas using Riks arc-length method, the 

response shows sharp snapbacks and snap-throughs followed by numerical divergence. In 
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this case, more sophisticated path-following methods, e.g. the modified cylindrical arc-

length method (Hellweg and Crisfield, 1998), are needed to obtain converged solutions. 

Unfortunately, such local arc-length procedures are currently not available in ABAQUS. 

Nonetheless, when we lower the strength to 10.0 N/mm2, good prediction of the response 

is achieved, although the maximum load is slightly underestimated. In addition, if more 

integration points are used, the predicative capability of the interface element could also 

be improved. 

Figure 5.3 Finite element model of the DCB specimen. 

 

 

 

 

 

Figure 5.4 Load – deflection response of the DCB specimen. 
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Figure 5.5 Contour plot of the mean stress within interface elements. 

Figure 5.6 Mesh sensitivity, effects of step size and interfacial strength. 
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In summary, the global structural responses of the DCB specimen could be 

accurately simulated with the developed interface element. To obtain a relatively smooth 

solution, the mesh should be sufficiently fine in the evolving process zone at the 

delamination front. Slightly lowering the interfacial strength could reduce the burden on 

mesh refinement without sacrificing the accuracy of the prediction. 

5.2 Mode II and Mixed-Mode Fracture Test of MMB Specimen 

The mixed-mode bending (MMB) test specimen is generally used for the 

characterization of Mode I and Mode II fracture interaction. The MMB test configuration 

was proposed by Reeder and Crews (1990, 1991). The main advantage of this specimen 

is the possibility of using virtually the same configuration for fracture test spanning pure 

Mode I, mixed-mode, and pure Mode II by varying the mode ratio.   

 The experimental setup of the MMB test specimen is schematically shown in 

Figure 5.7. The specimen is simply supported with an initial crack length a0 located at 

midplane. The load P1 is applied at the left end of the upper arm and a load P2 is applied 

at the middle of the specimen. The loads applied are P1 = P c/L and P2 = P (c/L + 1), 

where L is half length of the beam, c is the lever arm length, and P is the actual applied 

load. By varying the loading length c, different mode ratios can be achieved. 

5.2.1 Analytical Solution of the MMB Specimen 

The closed form solutions have been given by Allix et al. (1995) for Mode II, and 

extended by Mi et al. (1998) to include mixed-mode situations. The analytical solutions 
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could also be derived based on LEFM as we did in Section 5.5.1 for Mode I fracture of 

the DCB specimen. For simplicity, we only give the final solutions next for pure Mode II 

and mixed-mode fracture. 

Figure 5.7 Mixed-Mode testing: a) experimental setup; b) loads applied to the specimen. 

Mode II Fracture: 

A pure Mode II fracture is resulted by setting c to zero, i.e. loading the beam at its 

center. There are three cases to be considered when the analytical solutions are sought: 

the initial loading response associated with an initial length of delamination, followed by 

the unloading path due to delamination growth when the delamination length a < L, and 

another loading response after the delamination grows such that a > L. Thus, the 
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analytical solutions expressed as the load-midspan deflection (P-w2) relationship include 

three parts. The first part related to the initial loading response is 

 ( )3 3
0

2

2 3
96

P L a
w

EI
+

=  (5.9)

where L is the half-length of the beam; I is the moment of inertia of one arm of the beam; 

and a0 is the initial delamination length. 

The second part corresponding to the unloading path (a < L) is 
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where GcII is the critical energy release rate in Mode II; and B is the beam width. 

The third part is the equivalent relationship when a > L and is given by 
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Mixed-Mode Fracture: 

When the loading length c ≠ 0, mixed-mode fracture occurs. As with pure Mode 

II fracture, analytical solutions to mixed-mode fracture also consist of three parts. 

Expressed as the load-specimen end deflection (P-w1) relationship, the first part for the 

initial loading is 
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For the second and third parts, since fracture interaction is involved, different interaction 

criteria could be used to derive the analytical solutions. Let us define PI and PII as the 

loads associated with Mode I and Mode II respectively as 

 I
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Then if we assume the linear interaction criterion of Equation (3.1), the second part of the 

solution for a < L is obtained as follows 
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When a > L, the third part of the solution has the same form as Equation (5.12), i.e. 
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However, the delamination length a is to be obtained by solving the following equation 
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5.2.2 Numerical Simulation of the MMB Specimen 

In this subsection, the MMB specimen as illustrated in Figure 5.7 is simulated 

with the interface finite element which is formulated with the mixed-mode linear-

exponential constitutive law. The properties of the beam are listed in Table 5.2. The 

geometric dimensions are: L = 50 mm, a0 = 30 mm, h = 3 mm, B = 1 mm; where h is the 

beam height. 
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Table 5.2 Mechanical properties for the MMB specimen. 

E11 (N/mm2) E22 = E33 
(N/mm2) 

G12 = G13 = G23 
(N/mm2) ν12 = ν13 ν23 

135,300  9,000 5,200 0.24 0.46 

 

Finite element models with reasonable fine meshes are created as shown in Figure 

5.8 for the deformed shape of the MMB specimen in pure Mode II fracture and mixed-

mode situation. The beam is modeled using C3D8I elements available in the ABAQUS 

library, with 200 elements along the length, 2 elements along the beam width and 2 

elements along the height of each arm. Interface elements are positioned at the midplane 

of the specimen, of which interface elements with contact properties are used for the 

initial crack length to prevent overlapping of the arms, and interface elements formulated 

with the mixed-mode linear-exponential constitutive law are positioned to simulate crack 

growth. The following properties are used for the interface elements: fracture toughness 

GcI = GcII = GcIII = 4.0 N/mm, interfacial strengths σc1 = σc2 = σc3 = 57 N/mm2. 

Firstly, we consider the pure Mode II fracture with the loading length c set to zero. 

Finite element analysis results of applied load versus midspan deflection (P - w2) 

relationship are plotted against closed-form solutions in Figure 5.9. In the figure, there 

are three curves corresponding to the three parts of the analytical solutions in Equations 

(5.9) - (5.11), respectively: the linear part OB related to a cantilever with an initial crack 

length a0, the unloading segment ABC for fracture with crack length a < L, and the 

loading curve DE valid for a > L. From the figure, we can observe that the finite element 

analysis agrees very well with the closed-form solutions. In highly nonlinear analysis, 
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contact-type interface elements might lead to numerical instabilities which can be 

resolved in ABAQUS using *controls, analysis = discontinuous to improve efficiency. 

Simulation without contact-type interface elements is also performed and the result is 

shown in Figure 5.9 in which the deflection is largely over-predicted. We demonstrate the 

snapback by considering a shorter initial crack length with a0 = 15 mm. The only change 

to the closed form solution is that the initial loading curve OB becomes stiffer and so that 

when it meets the unloading curve ABC, a dynamic unstable crack growth will occur. In 

the finite element analysis, a converged solution has to be obtained with the Riks method 

available in ABAQUS. The result is shown in Figure 5.9 which closely follows the 

unloading path.  

The mixed-mode case is then studied setting c to 41.5 mm so that GI/GII = 1.0. In 

Figure 5.10, load-deflection responses at the specimen end (P1 – w1) are shown from both 

the finite element analysis and closed-form solutions. As with the Mode II fracture case, 

three curves OB, ABC, and DE are plotted in the figure, which are related to the 

analytical solutions in Equations (5.12), (5.14) and (5.15), respectively. It can be seen 

that different mixed-mode interaction criteria, e.g., linear or quadratic criterion, would 

lead to distinguishable structural responses. Nevertheless, it is reported that most of the 

experimental results lie between these two limit cases (Reeder, 1992). The results from 

the finite element simulation are in good agreement with the closed-form solutions. 

However, large discrepancies exist for the portion of the response corresponding to stable 

crack growth when a > L. This is because the analytical solution does not take into 

account the geometrical nonlinear deformation of the beams while the numerical 

simulation does. 
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Figure 5.8 Finite element models of the MMB specimen. 

P2 = P (c/L+1), w2 

P1 = P c/L, w1 

(b) Mixed-mode fracture 

(a) MMB specimen in pure Mode II fracture 

P2 = P (c/L+1), w2 
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Figure 5.9 Load-deflection responses of the MMB specimen in pure Mode II fracture. 

Figure 5.10 Load-deflection responses of mixed-mode fracture in the MMB specimen. 
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5.3 Delamination Buckling of Laminated Composite Plates 

In this section, the phenomenon of buckling driven delamination growth in a 

compressively loaded laminated composite plate is analyzed. When the composite plate 

with an initial delamination is subjected to in-plane compression, the delaminated area 

may buckle and subsequently spread, thus causing a decrease in the load-carrying 

capacity of the structure. Hence, modeling of this phenomenon is of great practical 

importance. 

In this study, we focus on a near-surface thin layer delaminated from the base 

laminate. In this case, the problem is much more complicated than the previous modeling 

of DCB and MMB specimens, since it involves complex interaction between 

delamination propagation and the response of the structure. As the buckling develops, 

large deformation may also occur in the delaminated area which could lead to progressive 

local fiber-matrix failure. Hence, the first part of this section will introduce the local 

fiber-matrix failure criteria suitable for the problem at hand. In the second part, applying 

the interface elements, finite element modeling of the buckling-driven delamination in a 

composite plate containing a single through-the-width delamination will be conducted 

incorporating local fiber-matrix failure. 

5.3.1 Fiber-Matrix Failure Criteria 

A set of failure criteria has been proposed by Hashin (1980) to predict failure 

modes in unidirectional fiber-reinforced composite materials. Four failure modes are 

considered in our case: fiber failure in tension, fiber failure in compression, matrix failure 

in tension, and matrix failure in compression. Failure criterion for each failure mode is 
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introduced next. The stresses are computed in the principal material directions for each 

ply orientation and used in the failure criteria. For simplicity, only in-plane stress 

components, including σ11, σ22, and σ12, are considered for shell elements used to model 

the delaminated thin layer. The in-plane shear strength is Scp measured from cross-ply 

laminates. The strength perpendicular and parallel to the fiber direction is denoted as Y 

and X, respectively. The subscripts ‘t’ and ‘c’ denote tension and compression. 

Fiber failure:  

The failure index for fiber failure in tension or in compression is 
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If the criterion is satisfied with ef ≥ 1 in any one of the plies in the laminate, then fiber 

failure occurs in that ply. Once failure occurs, material properties in the damaged area 

degrade. The property degradation model as proposed by Kutlu and Chang (1995b) is 

used here. If fiber failure occurs, ply longitudinal Young’s modulus E11, in-plane shear 

modulus G12, and Poisson’s ratio ν12  are reduced to zero within the damaged area. 

Matrix failure:  

The failure index for matrix failure in tension or in compression is 
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If the criterion is satisfied with em ≥ 1 in any one of the plies in the laminate, then matrix 

cracking occurs in that ply. If matrix failure occurs, ply transverse Young’s modulus E22, 

and Poisson’s ratio ν12  are reduced to zero within the damaged area of the layer. 

The failure analysis presented above is implemented using the user subroutine 

USDFLD available in ABAQUS. The USDFLD invokes the material properties and the 

stresses of all the integration points of the elements. At each integration point, the failure 

criteria are evaluated and the material properties are degraded accordingly when any one 

of the modes of failure occurs. 

5.3.2 Numerical Simulation of Buckling-Driven Delamination 

The specimen under consideration is a 2 in. long and 1 in. wide, graphite-epoxy 

laminate (T300/976), consisting of 20, 00 plies with total thickness of 0.1 in. It is clamped 

at both ends and was tested in axial compression by Kutlu and Chang (1995b) as shown 

in Figure 5.11. The case of the specimen containing a single short initial through-the-

width delamination is considered in this study. The delamination is located 0.02 in. from 

the top surface of the laminate at its center with length of 0.75 in. Very thin Teflon strips 

(0.001 in. thick) were placed at the designated interfaces during layups to introduce the 

initial delamination. In the test, the strain along the loading direction was recorded at the 

middle point of the delaminated region on the top of the specimen, which is referred to as 

front strain. The mechanical properties of the T300/976 graphite-epoxy laminate are 

listed in Table 5.3, and interlaminar strength and fracture toughness of the laminate are 

listed in Table 5.4. 
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Figure 5.11 Laminated beam configuration. 

Table 5.3 Mechanical properties of T300/976 graphite-epoxy. 

E11 (msi) E22 = E33 
(msi) 

G12 = G13 
(msi) G23 (msi) ν12 = ν13 ν23 

20.2 1.41 0.81 0.5 0.29 0.4 

 

Table 5.4 Interlaminar strength and fracture toughness of T300/976 graphite-epoxy. 

Xt (ksi) Xc (ksi) Yt (ksi) Yc (ksi) Scp (ksi) GcI 
(lb./in.) 

GcII = GcIII 
(lb./in.) 

220 231 6.46 36.7 15.5 0.5 1.8 

 

Taking advantage of symmetry in geometry, loading conditions, and 

experimentally observed buckling shapes of the specimen, quarter-size finite element 

models are created. Two different types of models, here called Solid-Solid model and 

Solid-Shell model, are employed which are shown in Figure 5.12 in the deformed state. 

1.0" 

0.1" 

0.375"
0.02" 

C.L. 
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Both models use C3D8I elements to model the thick base laminate; for the top thin layer 

involving delamination, the Solid-Solid model uses C3D8I elements while the Solid-

Shell model uses S4 shell elements available in ABAQUS. Element S4 has four nodes 

with six degrees of freedom per node and it is transverse shear deformable. Interface 

elements formulated with the mixed-mode linear-exponential constitutive law are 

positioned at the interface between the top thin layer and the base laminate where 

potential delamination is constrained to develop. 

Care must be taken to correctly perform the buckling analysis. If the loading on 

the structure is perfectly in-plane, i.e. membrane or axial stresses only, the out-of-plane 

deflections necessary to initiate buckling will not develop, and the analysis will fail to 

predict buckling behavior. To overcome this problem, apply a small out-of-plane 

perturbation, such as a modest temporary force or specified displacement, to begin the 

buckling response. A preliminary eigenvalue buckling analysis of the structure could be 

conveniently used as a predictor of the buckling mode shape, allowing to choose 

appropriate locations for applying perturbations to stimulate the desired buckling 

response. The perturbation or imperfection induced should match the location and size of 

that in the real structure since the structural response could be very sensitive to these 

parameters. In the present analysis, appropriate initial imperfections are introduced into 

the ‘perfect’ model to account for the presence of the thin Teflon strips using the first 

buckling mode shape extracted through a linear eigenvalue buckling analysis. The 

response of the specimen prove to be sensitive to the prescribed imperfection as shown in 

Figure 5.13 for the relationship of crack opening displacement (COD) at the center line 
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versus in-plane compression load Consistent results yielded when using a scaling factor 

SF < 0.001, which also represents the actual thickness of the Teflon strips. 

Figure 5.12 Finite element models of the T300/976 graphite-epoxy laminate with 
buckling – driven delamination. 

(b) Top thin layer modeled with shell elements in the Solid-Shell model. 

(a) Top thin layer modeled with solid elements in the Solid-Solid model.

Interface 
elements 

Base 
laminate

Top layer 

In-plane 
compression 

Symmetry 
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Figure 5.13 Imperfection – sensitivity of the response of COD vs. compression load. 

Unlike the modeling of the DCB and MMB specimens previously, buckling – 

driven delamination analysis is very sensitive to the interfacial strength. Lowering the 

interfacial strength could significantly underestimate the failure load. In the present 

modeling, interfacial strengths σc1 = σc2 = 9.3 ksi,σc3 = 6.46 ksi are used which are the 

same as those used by El-Sayed and Sridharan (2001) who also modeled the specimen 

applying a cohesive layer model. Sufficiently fine mesh should be used to obtain 

converged solutions when the delamination grows. The finest mesh size of 0.003125 in. 

for the interface elements is used.  

Before presenting the detailed results of the analysis, typical loading history is 

examined in Figure 5.14 which depicts the variation of the front strain with in-plane 

compression load obtained from the finite element analysis using interface elements and 

the experimental data (Kutlu and Chang, 1995b). As shown in the figure, the loading 
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history can be clearly divided into four stages. In the first initial loading stage, the strain 

varies linearly with load and remains compressive. In the second stage, the strain begins 

to decrease and shifts toward tension, indicating the buckling of the top thin layer and the 

beginning of the postbuckling phase. During postbuckling the strain becomes tensile. As 

the load continues to increase, the initiation of delamination growth is indicated by a 

sudden change in the slope of the load-strain curve. Unstable delamination growth is 

observed with dropping load in the finite element analysis, whereas snap-through 

occurred in the experiment. In the final stage, delamination grows stably until it reaches 

the supports that clamp the specimen. 

Figure 5.14 Typical loading history of the load vs. strain response. 
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Figure 5.15 COD at the center line vs. in-plane compression load relationship. 

 Figure 5.16 Variation of the front strain with in-plane compression load. 

0

1000

2000

3000

4000

5000

6000

7000

8000

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
COD (in.)

In
-p

la
ne

 c
om

pr
es

si
on

 lo
ad

 ( 
lb

.)

Solid-Solid model
Solid-Solid model (brittle fracture)
Solid-Shell model (brittle fracture)
w/o interface elements
El-Sayed and Sridharan (2001)

Buckling of top 
thin layer

Delamination 
grows

-8000

-7000

-6000

-5000

-4000

-3000

-2000

-1000

0
-0.002 -0.001 0 0.001 0.002 0.003 0.004 0.005 0.006 0.007

Front strain

In
-p

la
ne

 c
om

pr
es

si
on

 lo
ad

 ( 
lb

.)

Solid-Solid model
Solid-Solid model (brittle fracture)
Solid-Shell model (brittle fracture)
w/o interface elements
Experimental result



Chapter 5 Verification Examples and Computational Issues of Modeling with 
Interface Elements 

 
 

147

In Figure 5.15, finite element analysis results of the crack opening displacement 

(COD) at the center line versus in-plane compression load relationship are plotted 

together with the solution of El-Sayed and Sridharan (2001). Figure 5.16 depicts the 

variation of the front strain with in-plane compression load. In general, the Solid-Solid 

model and the Solid-Shell model produce similar results. Yet, no satisfactory results were 

obtained when compared to the experimental data (load-strain) and the solution of El-

Sayed and Sridharan (2001) (load-COD). In Figure 5.15, the predicted load drops too 

much in the stage of unstable delamination growth. However, there is no explicit 

experimental evidence, since experimental data of COD versus in-plane compression 

load was not reported and snap-through occurred in the response of front strain versus 

compression load. 

In order to use a relatively coarse mesh while maintain the actual interfacial 

strength, a different scheme was attempted in the formulation of the interface element. It 

is assumed that the interface element is damaged completely when the separation ∆ > 1.1 

∆c instead of 6.0 ∆c as originally postulated. Then the fracture toughness is Gc = 0.55 

σc∆c. With this formulation, a more brittle type of fracture is induced. Accordingly, stiffer 

responses are obtained as shown in Figures 5.15 and 5.16. Results from the Solid-Shell 

model are correlated well with those from the solution of El-Sayed and Sridharan (2001) 

and the experimental data. However, the Solid-Solid model overestimates the 

compression load in the postbuckling stage. One way to verify the usage of reasonable 

parameters for the interface element is to compare the structural responses in the linear 

range from both models with and without interface elements. For the traction-separation 

softening law, the linear range of the curve should model the global linear response of the 
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structure, so correct penalty stiffness, Kc = σc / ∆c, should be used. From Figures 5.15 and 

5.16, it is observed that the structural linear responses are captured accurately with the 

chosen interfacial strength. Material damage within the top thin layer in the delaminated 

region, i.e. fiber failure or matrix failure, is accounted for in the Solid-Shell model 

applying the method discussed in Section 5.3.1. However, no local failure is induced in 

the top thin layer, which is the reason why the finite element analysis did not predict well 

the final stage of the strain – load response. Thus, more sophisticated failure analysis is 

desired for the accurate prediction of the final failure load, which is, however, out of the 

scope of the current study. 
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Chapter 6 

Facesheet-Core Interface Delamination in 
HFRP Sandwich Panels 

As we already discussed in previous chapters, delamination in composite 

sandwich structures is an important failure mode. Although the problem of a facesheet 

delaminated from a solid core has been extensively investigated, the failure mechanism 

of delamination of a facesheet from a honeycomb core is far from fully understood. The 

robustness of the cohesive zone model (CZM) implemented as interface element has been 

verified in Chapter 5 in modeling of standard fracture test configurations and buckling-

driven delamination in composite laminates. Application of CZM to study facesheet-core 

interface delamination of honeycomb sandwich structures is rare. To our best knowledge, 

only one research of this kind was reported by Han et al. (2002) in which buckling 

induced delamination propagation of a hexagonal core honeycomb sandwich panel was 

addressed using a cohesive element method. The composite sandwich panels studied 

typically have relatively small cells of 3/16 in. and shallow cores, which are mainly used 

as airframe in commercial aircraft industries. Moreover, the core was homogenized and 

not explicitly modeled, which could be justified since the core cell is small compared to 

other geometric dimensions. In our case, however, the use of sinusoidal core HFRP 

sandwich panels for highway bridge application is a fairly new concept, with large 



Chapter 6 Facesheet-Core Interface Delamination in HFRP Sandwich Panels 

 
 

150

honeycomb cell openings (≈ 4" × 2") leading to different failure mechanisms at the 

facesheet-core interface. 

In this chapter, the developed cohesive interface element is applied to investigate 

facesheet-core interface delamination in HFRP sandwich panels. For this purpose, the 

interfacial properties, i.e. interface fracture toughness Gc and interfacial strength σc need 

to be acquired first. Extensive experiments were performed to measure the Mode-I 

interface fracture toughness (GcI) for the HFRP sandwich panels using contoured double 

cantilever beam (CDCB) specimens. The interface tensile and shear strengths were also 

measured experimentally. To provide guidelines for the optimized practical design, the 

effects of such parameters as facesheet bonding layers and core-wall thickness were 

investigated. Hence, this chapter is organized as follows. The first part presents the 

experimental results. In the second part, numerical simulation of the HFRP sandwich 

panels are conducted using the cohesive interface element. 
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6.1 Experimental Investigation of Interfacial Properties 

In this section, experiments are conducted to measure the interfacial properties, Gc 

and σc. Among them, Mode I interface fracture toughness (GcI) is obtained using CDCB 

specimens; interfacial tensile and shear strength σcI, σcII (or σcIII) are determined by 

flatwise tension (FWT) and shear tests, respectively. 

6.1.1 Configuration and Properties of HFRP Sandwich Panels 

At first, for completeness, the configuration and material properties of HFRP 

sandwich panels are introduced. For more detailed description, one is referred to the 

original work by Davalos et al. (2001). The HFRP sandwich panel for bridge deck 

applications considered in this study was developed by Kansas Structural Composites 

(Plunkett, 1997). The geometry of the sandwich structure is intended to improve stiffness 

and buckling response by the continuous support of core elements with the face laminates 

(or facesheets). Originated from the basic concept of sandwich structures, two faces 

composed of FRP laminates are co-cured with the core as shown in Figure 6.1. The core 

geometry consists of closed honeycomb-type FRP cells. It is noteworthy that the 

thermosetting property of resin distinguishes honeycomb cores from their metal 

counterparts in both manufacturing and consequent corrugated shapes. Unlike traditional 

honeycomb sandwich structures, the shape of the FRP corrugated cell wall is defined by a 

sinusoidal function in the plane. The combined flat and waved FRP cells are produced by 

sequentially bonding a flat sheet to a corrugated sheet, which is similar to the processing 

of the paper resin sandwich panel. The assembled cellular core is then co-cured with the 

upper and bottom facesheets to build a sandwich panel (see Figure 1.2). 
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Figure 6.1 HFRP sandwich panel. 

 

Figure 6.2 Representative volume element (RVE) of honeycomb core. 
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The waved flutes of core elements are produced by forming FRP sheets onto a 

corrugated mold. As shown in Figure 6.2, the distance of adjoining crests represents the 

wavelength l, and the interval between two adjoining flats gives the amplitude 2h. In the 

coordinate system of Figure 6.2, the wave function of the corrugated core wall can be 

defined as 

 ⎟
⎠
⎞

⎜
⎝
⎛ −=

l
xhy π2cos1  (6.1)

In the current study, HFRP sandwich panels with the following dimensions are used: h = 

1 in. and l = 4 in. The constituent materials used for the facesheets and the core consist of 

E-glass fibers and polyester resin, and their properties are listed in Table 6.1. 

A typical facesheet may include the following three types of fiber layers (Figure 

6.3): (1) Chopped Strand Mat (ChopSM), which is made of short fibers randomly 

oriented resulting in nearly isotropic in-plane properties. This layer is placed in the inner 

side of the facesheet and provides a uniform and resilient bond between the facesheet and 

the core; (2) bidirectional Stitched Fabrics (SF) with balanced off-angle unidirectional 

fibers (e.g. 00/900 or ± 450); and (3) unidirectional layer of fiber bundles or rovings. In 

general, the fiber architecture of upper and bottom facesheets is symmetric about the 

midsurface plane of the sandwich panel, while each facesheet may exhibit some 

extensional-bending coupling effect due to the presence of the ChopSM bonding layer. In 

the current study, the fiber system of the facesheet (Figure 6.3) includes two layers of 

specified bi-ply combination mat (CS-3208) consisting of a 00/900 SF and a ChopSM 

layer, nine layers of unidirectional combination mat (UM-1810) consisting of a 

unidirectional layer and a ChopSM layer, and two bonding layers of ChopSM. The resin 
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used is polyester (UN1866). The layer properties of the facesheets are given in Table 6.2. 

The stiffness of each ply can be obtained using micromechanics models. Based on the 

assumption that the material is isotropic in the plane, the stiffness properties of the 

ChopSM layer was evaluated by an averaging procedure for randomly oriented 

composites. The elastic constants for each individual layer and the core material are listed 

in Table 6.3. 

Figure 6.3 Lay-up of facesheets. 

Interior face

Exterior face  

UM-1810 (00 roving + ChopSM) 

CS-3208  (00/900 SF + ChopSM) 

Bonding layer (ChopSM) 

UM-1810 (00 roving + ChopSM) 

UM-1810 (00 roving + ChopSM) 

UM-1810 (00 roving + ChopSM) 

UM-1810 (00 roving + ChopSM) 

UM-1810 (00 roving + ChopSM) 

CS-3208  (00/900 SF + ChopSM) 

UM-1810 (00 roving + ChopSM) 

UM-1810 (00 roving + ChopSM) 

UM-1810 (00 roving + ChopSM) 

Bonding layer (ChopSM) 
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Table 6.1 Properties of the constituent materials. 

Material E (ksi) G (ksi) ν ρ (lb/in.3) 

E-glass fiber 10501 4177 0.255 0.092 

Polyester resin 734 236 0.300 0.041 

 
 

Table 6.2 Layer properties of facesheets. 

Material Ply type Nominal weight 
(oz/ft2) 

Thickness, tf 
(in.) 

Fiber volume 
fraction 

Bonding layer ChopSM 3.0 0.06 0.235 

00 1.75 0.0215 0.382 

900 2.0 0.0245 0.383 CS 3208 

ChopSM 0.85 0.01 0.399 

00 2.0 0.02 0.469 
UM 1810 

ChopSM 1.0 0.01 0.469 
 
 

Table 6.3 Layer stiffness properties. 

Ply name Orientation E1 (ksi) E2 (ksi) G12 (ksi) G23 (ksi) ν12 ν23 

Bonding 
layer Random 1705 1705 608 342 0.402 0.400 

00 or 900 4404 1249 484 451 0.293 0.385 
CS 3208 

Random 2522 2522 894 467 0.410 0.383 

00 5265 1488 509 543 0.287 0.371 
UM 1810 

Random 2905 2905 1030 543 0.289 0.371 

Core mat Random 4404 1249 484 451 0.293 0.385 

Note: For unidirectional layer: G13 = G12; for random layer: G13 = G23. 
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6.1.2 Mode I Interface Fracture Toughness 

The conventional method for determining the interface fracture toughness under 

Mode I loading is by testing double cantilever beam (DCB) specimens. The critical strain 

energy release rate, GcI, which is a measure of the Mode I fracture toughness of an 

interface bond, is given by 

 
2

I 2
c

c
P dCG
b da

=  (6.2)

where, Pc = critical load, b = width of the DCB specimen, and dC/da = rate of change of 

compliance with respect to crack length a, also called the compliance gradient. The 

difficulty involved in measuring the crack length can be circumvented by contouring the 

DCB specimen such that dC/da is a constant. The specimen is known as the contoured 

double cantilever beam (CDCB) which was described in detail in (Davalos et al., 1997).  

In order to avoid discontinuities that may occur in evaluating the interface fracture 

toughness, the honeycomb core of the CDCB specimen consists of evenly spaced vertical 

panels instead of the actual sinusoidal wave configurations. The spacing distance is about 

0.25" resulting in five or six vertical panels along the width of the specimen. Moreover, 

the facesheets are reduced to only include one layer of unidirectional combination mat 

(UM-1810) and the ChopSM bonding layer(s), since the bonding layer and the core-wall 

thickness are expected to be the dominant parameters influencing the interface properties.  

In the UM-1810, the ContSM layer was placed on the outside face (see Figure 6.4), and 

the surfaces of the facesheets were sanded for bonding purposes.  
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The profile of the CDCB specimen is shown in Figure 6.5. It has length of 22", 

and width of 1.75". The upper and lower contours were cut out of a single board of 

Yellow Poplar Laminated Veneer Lumber (LVL). These wood contours were bonded 

onto the surfaces of the upper and lower facesheets. Polyurethane premium construction 

adhesive was used as the bonding agent. The specimen has an initial sawed crack with 

length a0 = 4" positioned at the interface between the lower facesheet and the core where 

the crack is expected to propagate under opening load at the right end of the specimen. 

Along this crack line, the specimen could be divided into two parts: the upper part 

consisting of the upper LVL contour, the upper facesheet and the honeycomb core; the 

lower part consisting of the lower facesheet and the lower LVL contour. By appropriately 

designing the shapes of the wood contours, the CDCB specimen is made symmetric about 

the crack line such that the stiffness of the upper and lower parts are equal, and thus a 

pure Mode I fracture is achieved. To ensure such symmetric condition, compliance 

calibrations of the specimen should be performed, which will be described in detail later.  

As previously mentioned, for the purpose of optimal practical design, the number 

of bonding layers and the core-wall thickness tc were varied to study the effects of these 

parameters on the interface properties. In fact, for the bonding layer, 1 or 2 layer(s) were 

used, thus the total facesheet thickness tf = 0.0382 + n × 0.082 inch, where the thickness 

of the UM–1810 layer is 0.0382", the thickness of one bonding layer is 0.082", and n is 

the number of bonding layer(s). With regard to the core-wall thickness, three types of 

honeycomb core were used, each with thickness of 0.06", 0.09", and 0.12", respectively. 

Therefore, there are six types of specimens to be examined, each with different 
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combinations of bonding layer(s) and core-wall thickness. For convenience, here we use 

the following naming convention to distinguish each class of specimen: 

For example, C2B2 is a specimen with core-wall thickness of 0.09", and has two bonding 

layers. 

Figure 6.4 Facesheet lay-up of specimens for measuring interface properties. 

Figure 6.5  Profile of the CDCB specimen. 
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Compliance Calibrations: 

From Equation (6.2), it is evident that the accuracy of measuring the interface 

fracture toughness GcI is restricted by the precision with which the compliance gradient, 

dC/da, is determined. Therefore, much effort was devoted to investigating this 

fundamental parameter prior to any fracture test. A systematic experimental compliance 

calibration program involving six distinct types of specimens aforementioned was 

sequentially conducted. The main task of performing the compliance calibration test is to 

design the shapes of the upper and lower wood contours, such that the specimen 

maintains a symmetric geometry about the crack line located at the interface between the 

core and the lower facesheet (see Figure 6.5). Instead of elaborating about the specific 

compliance calibration process of each class of specimen, we present next the design of a 

representative contour shape and the calibration test for the C1B1 specimen type. 

In the initial design of contour shapes, we applied the modified beam theory 

which was originally developed by Qiao et al. (2003) to predict constant values of 

tapered DCB specimens involving hybrid interface bonds. In this analytical approach, the 

uncracked region of the specimen is modeled as a tapered beam on a generalized elastic 

foundation while taking into account relative translations and rotations of the crack tip. 

Based on the analytical solutions, the slopes of the upper and lower contours are 

determined as k1 = 0.17 and k2 = 0.16, respectively. It results in the shape of the specimen 

as shown in Figure 6.6 with heights of each contour H1 = 3.74", H2 = 4.735", and h0 = 

1.215". With such design, the compliance gradient, dC/da, remains approximately 

constant for crack length a = 4" ∼ 19" as observed in Figure 6.7. 
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Figure 6.6 Wood contour shapes for the CDCB specimen. 

Figure 6.7 Theoretical compliance vs. crack length relationship for C1B1 specimen. 
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A finite element analysis is also carried out to verify the initial design. A 3D finite 

element model is created in ABAQUS (Figure 6.8). The properties of the specimen are 

listed in Table 6.4. Solid elements C3D8 are used for the LVL contours, and shell 

elements S4 are used for the facesheets and the core. Surface-based tie constraints are 

used to couple the displacements of the LVL contours, the facesheets, and the core. Node 

release method is used to simulate the crack propagation along the facesheet-core 

interface, and a unit tip-load is applied as shown in Figure 6.8. From the analysis, the tip 

displacement where the load is applied yields the specimen compliance for a given crack 

length. From a linear regression of the compliance versus crack length plot, we obtained 

dC/da = 7.1 × 10-5 (lb-1) for crack length a = 4.4" ∼ 14.3". 

Table 6.4 Properties of LVL, facesheets and core for C1B1 specimens. 

Property LVL Facesheet Core 

E11 (ksi) 1200 1870 1710 

E22 = E33 (ksi) 80 1500 1710 

G12 = G13 = G23 (ksi) 65 530 611 

ν12 = ν13 = ν23 0.3 0.387 0.4 

Thickness (in.) --- 0.12 0.06 

 

 

 

Figure 6.8 Finite element model of the CDCB specimen. 
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As pointed out by Boyajian (2002), although both analytical and finite element 

approaches offer a good reference point from which the contour shapes might be arrived 

at, these methods are based on certain approximations, and thus should not be solely 

relied upon in the determination of the dC/da value. Instead, the parameter dC/da should 

always be determined experimentally through compliance calibrations.  

The experimental calibrations were performed on an MTS servo hydraulic testing 

machine (458.10 MicroConsole/418.91 MicroProfiler) operating under a displacement-

control mode with a loading rate of 0.001 in./sec. Load is applied through a pair of steel 

straps attached to the right end of the specimen (see Figure 6.9). During the calibrations, 

the applied load and displacement were continuously recorded by the MTS machine. 

Simultaneously, another pair of load-displacement data was acquired externally, i.e. the 

load was obtained from the output of a two-kip load cell and the opening displacement at 

the loading end was measured using a highly sensitive extensometer. The extensometer 

unit is an MTS model 632.03 clip-on gage which can give accurate readings sensitive to 

0.00001". It possesses a double cantilever configuration with slot-grooved free-ended 

deflecting arms that affix to the specimen through a pair of knife-edges. Two small pieces 

of wood were bonded to the loading end of the specimen to accommodate these knife-

edges (see Figure 6.9b). 

For each type of specimen, two calibration tests were conducted. The specimen 

typically has an initial crack length a0 = 4". Various crack lengths had to be simulated to 

determine the compliance versus crack length relationship. These crack lengths were 

produced by sawing the interface to specified lengths. Nine crack locations in the range 

of 4" ∼ 20" were created, each with crack length advancing by 2" incrementally. By 



Chapter 6 Facesheet-Core Interface Delamination in HFRP Sandwich Panels 

 
 

163

definition, the compliance can be found as the inverse of the ratio of the applied load and 

its corresponding displacement. Experimentally, this was determined by applying a 

monotonically increasing load within the linear elastic range (typically up to about 150 

lbs.) and collecting corresponding tip displacement data. The collected displacement-load 

data was then plotted and a best-fit curve, i.e. a straight line in this case, was found using 

linear regression. The slope of this line is thus the experimental compliance of the 

specimen corresponding to the current crack position. For each crack length, the 

procedure just outlined was repeated twice and the final compliance value was found as 

the average of these two compliance values. As such, nine pairs of data points in terms of 

compliance versus crack length were obtained from each calibration test. The dC/da 

parameter is then found from the slope of the linear regression performed on these data 

points. In order to effectively determine the slope of the regressed line, out of the nine 

data points, only five or six were used to determine the dC/da parameter. The decision to 

omit other data points is mainly due to the ‘hinging action’ as discussed by Boyajian 

(2002). It arises from a change in the constraint condition as the location of the crack 

approaches the end of the specimen, resulting in a relaxed fixity condition for the 

contoured cantilever beam. Thus, it yields a much larger value of compliance than the 

otherwise expected linear trend. As a matter of fact, the dC/da values of the calibrated 

specimens were computed by restricting the crack length range to the interval from 4" to 

14", corresponding to the linear portion of the experimental curve. More importantly, this 

is also the region in which major cracks were observed to occur during the fracture test 

performed later. 
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Figure 6.9 Calibration test of the CDCB specimen. 

Figure 6.10 Compliance vs. crack length relationship from finite element analysis and 
calibration tests of the CDCB specimen. 

0.00E+00

1.00E-03

2.00E-03

3.00E-03

4.00E-03

5.00E-03

6.00E-03

7.00E-03

0 4 8 12 16 20
crack length, a (in)

co
m

pl
ia

nc
e,

 C
 (i

n/
lb

)

FE analysis
experiment #1
experiment #2

(a) Side-view of the CDCB specimen (b) Details of load straps and clip-on gage 



Chapter 6 Facesheet-Core Interface Delamination in HFRP Sandwich Panels 

 
 

165

The compliance versus crack length values for C1B1 specimen is shown in Figure 

6.10, which agrees very well with the results from finite element analysis. It also clearly 

shows the ‘hinging action’ effects aforementioned after certain value of crack length is 

reached. The calibration results for each class of specimen are reported next. 

Calibration Results: 

Wood contours for each class of specimen are similar in shape, i.e. all have the 

same width B = 1.75", and height of lower contour H2 = 4.735", h0 = 1.215". The 

differences arise from upper contour height H1 with different design for each class of 

specimen. The dC/da values from finite element analyses and experimental calibrations 

are reported together within the crack range 4 - 14" and the corresponding r2 values. The 

r2 value is a statistical measure of the preciseness of the actual data approaching the 

curve-fitted line in linear regression. Thus, the closer this parameter is with respect to 

unity, the greater is the degree to which the actual data matches the curve-fitted line. A 

percentage difference comparison made between the experimental and finite element 

results is also included. All of these results are summarized in Table 6.5. It is revealed 

that the finite element analysis can provide a good estimation of the dC/da value.  
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Table 6.5 Compliance calibration results of the CDCB specimens. 

dC/da (× 10-5 lb-1) 
Specimen type H1 (in.) 

Experiment (r2) FE (r2) 

Percentage 
difference 

C1B1 3.74 6.97 (0.983) 7.34 (0.993) - 5.3 % 

C1B2 2.86 8.95 (0.983) 8.11 (0.992)    9.4 % 

C2B1 2.82 7.11 (0.906) 7.80 (0.993) - 9.7 % 

C2B2 2.82 7.61 (0.935) 7.58 (0.992)   0.4 % 

C3B1 2.0 7.18 (0.980) 8.36 (0.990)      - 16.4 % 

C3B2 2.0 --- 8.44 (0.992) --- 

 

Fracture Tests: 

Mode I facesheet-core interface fracture test results, as achieved by use of the 

CDCB specimens, are presented in this section.  

The fracture tests were performed using the same specimens as utilized in the 

compliance calibration tests. During fracture testing, simultaneous load and crack 

opening displacements (COD) are recorded at every 0.2 seconds by a data acquisition 

system, with a loading rate of 0.0003 in./sec. The measured maximum load Pc is 

substituted into Equation (6.2). With the calibrated value of dC/da, the Mode I fracture 

toughness, GIc, could then be obtained for each class of specimen. 

As discussed by Boyajian (2002), there are essentially two types of cracking 

associated with adhesively bonded or jointed structures, namely, stable and unstable 

cracks. Generally, all structural adhesive systems display a form of elastic behavior prior 

to crack initiation. At this stage, the crack remains stationary with no measurable inelastic 

flow until a critical value, GIc, is reached. Once this critical value is exceeded, differences 
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in cracking behaviors between adhesive systems are evident. For some systems, cracking 

extends at a nearly constant value of strain energy release rate, so that materials 

displaying this sort of ‘cracking-stability’ are classified as being strain rate insensitive. 

This behavior is generally characterized by a flat plateau in the structural response of load 

versus displacement curve in the cracking region, as shown in Figure 6.11a. Other 

material systems display an unstable cracking behavior as shown in Figure 6.11b. The 

high load at the first peak, also known as the (first) crack-initiation load, typically 

corresponds to the critical load, Pc, which is used in computing the fracture toughness 

value of Equation (6.2). Once the crack initiates, the required force to advance the crack 

decreases, thus resulting in the saw-toothed appearance of Figure 6.11b. The crack is only 

reinitiated when the load level once again reaches a critical initiation value, Pc.  

The ideal adhesive bonding is the one requiring high crack initiation energy and 

producing stable crack growth. However, in reality, fracturing often occurs as a 

combination of unstable and stable crack growth. In the facesheet-core interface 

fracturing tests, a typical plot of the relationship of the measured load versus COD is 

shown in Figure 6.12. Initially, there is a linear elastic region prior to the onset of 

cracking. Following this, are a series of regions in which cracking initiates and arrests. At 

last, testing is terminated in an abrupt manner with the complete fracturing of the 

interface, as described by a sudden drop in load. Unstable crack growth is mainly due to 

various defects in fabricating of the specimens, such as a non-uniform bonding layer, as 

observed in Figure 6.13 showing the specimen after tested. 



Chapter 6 Facesheet-Core Interface Delamination in HFRP Sandwich Panels 

 
 

168

Figure 6.11 Schematic load vs. displacement curves of (a) a rate insensitive material with 
a flat region of cracking indicating stable cracking and (b) a rate sensitive material with a 

region of saw-toothed cracking indicating unstable cracking (Boyajian, p. 114, 2002).  

Figure 6.12 Typical fracturing behavior of facesheet-core interface. 
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Figure 6.13 Fractured facesheet-core interface after test. 

The relationship of load versus COD from the fracturing tests of facesheet-core 

interface for each class of specimen is shown in Figure 6.14. Three to five samples were 

tested in each class of specimen, from which the critical load, Pc, is determined as the 

average of the maximum loads attained in every sample. The Mode I fracture toughness, 

GIc, is then obtained by substituting the critical load and the calibrated value of dC/da 

into Equation (6.2). It is noteworthy that when applying Equation (6.2), the width b 

should be the total thickness of the core panels across the width of the specimen. All of 

these results are summarized in Table 6.6. Obviously, more tests are needed before a 

definite conclusion can be drawn from the current experimental data. However, some 

preliminary observations can be made regarding the effects of facesheet bonding layers 

and core-wall thickness: (1) adding bonding layers can significantly increase the interface 

fracture toughness (GIc of C1B2 is two times larger than that of C1B1); (2) increasing 

core-wall thickness cannot achieve a pronounced improvement of the interface fracture 

toughness.  
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(a) 

(b) 
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(c) 

(d) 
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(e) 

Figure 6.14 The relationship of load vs. COD from fracturing tests of facesheet-core 
interface for specimen types (a) C1B1, (b) C1B2, (c) C2B1, (d) C2B2, and (e) C3B1. 

Table 6.6 Mode I facesheet-core interface fracture toughness values. 

Specimen type b (in.) dC/da (× 10-5 lb-1) Pc (lb.) GIc (lb./in.) 

C1B1 0.36 6.97 438.0 18.6 

C1B2 0.36 8.95 675.8 56.8 

C2B1 0.45 7.11 565.6 25.3 

C2B2 0.45 7.61 537.1 24.4 

C3B1 0.6 7.18 432.8 11.2 
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6.1.3 Interfacial Strength 

Before applying the developed CZM, another interfacial property need to be 

evaluated, i.e. the interfacial strength, including interfacial tensile strength and interfacial 

shear strength. Testing methods and results are presented in this section. 

The Flatwise Tension (FWT) test (ASTM C 297-94, 1999) is often adopted to 

measure interfacial tensile strength for honeycomb sandwich structures with main 

applications in aerospace and automotive industries. For the newly developed sinusoidal 

core HFRP sandwich panels, this standard test has to be modified for actual application. 

The dimensions of the specimen is 4" × 4" (width × length) with an RVE of honeycomb 

core as shown in Figure 6.2. Two steel plates with dimensions of 6" × 8" × 0.25" (width × 

length × thickness) are bonded to the facesheets for applying loading (see Figure 6.15a). 

The specimen was tested on the MTS machine with a loading rate of 0.001 in./sec. (see 

Figure 6.15b). Fracture occurred only on one side due to the fabrication process of the 

material (see Figure 6.15c). Typical response of the FWT test is depicted in Figure 6.16 

which describes an almost linear elastic behavior followed by a sudden failure with the 

facesheet-core interface fully debonded. The interfacial tensile strength is calculated as 

 c
c

T
A

σ =  (6.3)

where Tc is the critical load, A is the area of the core considering the actual core-wall 

thickness. As in the fracture tests, three to five samples were tested for each type of 

specimen, from which the critical load, Tc, is determined as the average of the maximum 

loads attained in every sample. The test results are summarized in Table 6.7. 
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Figure 6.15 FWT test of the HFRP sandwich specimen with an RVE of honeycomb core. 

Figure 6.16 Typical response of the FWT test. 
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There is no standard test for measuring interfacial shear strength. The testing 

configuration as shown in Figure 6.17 is used in this study. It consists of two rectangular 

steel plates and two L-shape steel plates with the geometries and dimensions 

schematically shown in the figure. The sandwich specimen consists of evenly spaced 

vertical panels as used in the fracture tests. An initial notch was created to induce 

desirable cracking in the facesheet-core interface. LORD 7542A/B urethane adhesive was 

used to bond the specimen to the rectangular steel plates. The specimen was tested on the 

MTS machine with a loading rate of 0.001 in./sec. (see Figure 6.18a). Due to bending 

effects, a pure shear fracture couldn’t be achieved. For most tests, the fracture propagated 

into the facesheet. Only two tests were performed successfully and the desirable fracture 

type was obtained as shown in Figure 6.18b. As with the FWT test, the measured critical 

load is substituted into Equation (6.3) to determine the interfacial shear strength. The test 

results are summarized in Table 6.8. 

Table 6.7 Facesheet-core interfacial tensile strength. 

Specimen type A (in.2) Tc (lb.) σc3 (psi) 
1C1B2 1.44 964 670 

C1B3 1.423 1217 855 

C2B1 2.134 1937 908 

C2B2 2.134 1524 714 

C2B3 2.134 1790 839 
1C3B2 2.40 1405 585 

Note: 1 parallel core used. 
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Figure 6.17 Testing configuration for measuring the interfacial shear strength. 
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Figure 6.18 Testing configuration for measuring interfacial shear strength. 

Table 6.8 Facesheet-core interfacial shear strength. 

Specimen type A (in.2) Tc (lb.) σc1 = σc2 (psi) 

C1B1 1.26 2207 1752 

 

In spite of the limited experimental data, from Table 6.7, it can be concluded that 

when facesheet bonding layers and core-wall thickness are varied, there is no drastic 

change of the interfacial tensile strength which falls in the range of 400 psi ∼ 1000 psi. 

On the other hand, although more shear tests of specimens with stronger facesheets 

should be performed, it is expected that similar to the FWT tests, the interfacial shear 

strength value of 1752 psi for C1B1 can give a good estimation of the overall interfacial 

shear strength. As a matter of fact, it will be demonstrated in the subsequent section that 

the response of the HFRP sandwich panel involving facesheet-core interface 

delamination propagation is mainly controlled by the interface fracture toughness, while 

(a) during test  (b) after test  
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the interfacial strength has a relatively small effect. As such, the interfacial strength value 

need not be measured precisely. 

6.2 Simulation of the CDCB Specimen Using CZM 

In this section, simulation of the CDCB specimen used in the fracture test is 

attempted with the above measured interfacial properties. The test specimen C1B1#1 is 

simulated here as a representative example.  

Basically, the finite element model is similar to that used to simulate the 

compliance calibrations (see Figure 6.8). The same geometries and material properties as 

listed in Table 6.4 are used. The only difference is related to the facesheet-core interface 

modeling. The core is modeled with shell elements except that near the interface along 

which the delamination is expected to propagate, solid elements are used. Shell-to-solid 

transition in the core is implemented using multi-point constraint *MPC SS Linear 

available in ABAQUS. The developed cohesive interface elements formulated with the 

mixed-mode linear-exponential constitutive law are then inserted between facesheet shell 

elements and core solid elements to simulate the progressive material damage occurring 

in the interface during delamination propagation. The finite element model is shown in 

Figure 6.19 in the deformed configuration. It consists of 2984 solid elements, 2024 shell 

elements, and 216 interface elements. 

The peak load in the test C1B1#1 was 340.0 lbs, hence Mode I fracture toughness 

is obtained as GcI = 11.2 lb./in. Without the actual experimental data of fracture 

toughness for Mode II and Mode III, it is assumed that GcII = GcIII = 3 GcI. Since the 
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fracture is Mode I dominant, this assumption is relatively reasonable and would not 

considerably influence the results. The interfacial properties for the specimen are listed in 

Table 6.9. 

Table 6.9 Fracture toughness and interfacial strength for the C1B1 specimen. 

GcI GcII = GcIII σc3 σc1 = σc2 

11.2 lb/in. 33.6 lb/in. 400 psi 1750 psi 

 

The results from the finite element simulation using interface elements are 

compared to the experimental data of the CDCB specimen. The load versus COD 

relationships at the loaded end is shown in Figure 6.20. It can be seen that excellent 

correlations are obtained. Nonetheless, appropriate stiffness, Kc, for the interface element 

under compression should be used to avoid interfacial penetration. It is shown in the 

figure that when Kc is equal to ten times the tension stiffness of the interface element, i.e. 

compression multiplier (cm) = 10, the postcracking response of the specimen could be 

accurately captured. Mesh convergence study is also performed with four times finer 

mesh size near the interface. Almost the same results yields which shows the advantage 

of using the CZM.  

Results of analyses with different interfacial tensile strength σc3 are compared in 

Figure 6.21. The load versus COD relationships are plotted for σc3 = 400 psi and σc3 = 

800 psi, while GcI = 11.2 lb./in. It is observed that the main difference between the two 

cases is the delamination initiation load, but the influence of changing σc3 is relatively 

small, since the delamination load was increased by only 10% when σc3 was increased by 

100% from 400 psi to 800 psi, while GcI was kept constant. So, we can conclude that 
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delamination propagation is not sensitive to σc3 when GcI remains constant. Likewise, 

analyses with different values of GcI while σc3 is kept constant are depicted in Figure 6.22. 

It can be seen that GcI is a very sensitive parameter since 100% increase in GcI induced 

34% increase in the delamination load, which is a significant change compared with the 

effect of changing σc3. These results suggest that the fracture mechanics-based approach 

is more appropriate for the study of interface delamination propagation of HFRP 

sandwich panels as opposed to a strength-based approach (Wang and Davalos, 2003). 

Mode-mixity in the CDCB specimen is investigated regarding the validity of 

measuring Mode I fracture toughness with the specimen. Variation and percentage 

difference of energy release rate in Mode I and Mode II as the delamination propagates 

are shown in Figure 6.23. It is evident that the delamination process is truly Mode I 

dominant with Mode II contribution less than 8% within the measuring crack range. 

In Figure 6.24, contours of maximum principal stresses as the delamination 

propagates are plotted. It clearly shows the evolution of the fracture process zone where 

highest stresses are present in the red region of the figure. There is no distinguishable 

crack front in the facesheet-core interface since fracture occurs in the whole process zone 

in various forms, e.g. fiber bridging.  
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Figure 6.19 Finite element simulation of the CDCB specimen. 

Figure 6.20 Results of COD vs. load relationship from finite element simulation 
compared to experimental data of the CDCB specimen. 
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Figure 6.21 Sensitivity to interfacial strength (GcI = 11.2 lb./in.). 

Figure 6.22 Sensitivity to fracture toughness (σc3 = 400 psi). 
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(a) 

(b) 

Figure 6.23 Mode-mixity in the CDCB specimen: (a) variation and (b) percentage 
difference of energy release rate in Mode I and Mode II as the delamination propagates. 

0

20

40

60

80

100

120

140

160

0 0.05 0.1 0.15 0.2 0.25
COD (in.)

G
I, 

G
II

 (l
b.

/in
.) G  

G  
I

II

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

0 0.05 0.1 0.15 0.2 0.25
COD (in.)

G
II

/G
I (

%
)



Chapter 6 Facesheet-Core Interface Delamination in HFRP Sandwich Panels 

 
 

184

Figure 6.24 Contours of maximum principal stresses as the delamination propagates. 

6.3 Peeling Delamination Test of HFRP Sandwich Panel 

A peeling delamination test of an HFRP sandwich panel was conducted to verify 

the predictive capability of the developed CZM to simulate the facesheet-core interface 

delamination propagation in HFRP sandwich panels with actual sinusoidal wave core 

configuration. A longitudinal HFRP sandwich panel including only one core cell in the 

transverse direction was attached to a steel plate and loaded under tension at one end 

through a piano hinge as shown in Figure 6.25a. The specimen has dimensions of 28" × 

4.5" × 5" (length × width × height), while the top facesheet has an additional length of 2" 

to accommodate the piano hinge. The sinusoidal wave core has a configuration of RVE 

as shown in Figure 6.2 with h = 1", l = 4", and core-wall thickness = 0.09". The facesheet 

(a) (b) 

(c) (d) 
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lay-up is shown in Figure 6.3 and layer properties are listed in Tables 6.2 and 6.3. An 

initial interfacial delamination with length of 7.5" was sawed to induce progressive 

delamination in the interface. The disbonded length was long enough to avoid 

undesirable damage within the facesheet. Open holes were drilled in the outside flat 

panels of the core in order to bolt the bottom facesheet to the steel plate. The specimen 

was tested on the MTS machine with a loading rate of 0.0003 in./sec. Upon loading, the 

initial delamination propagated slowly through the facesheet-core interface until peeling 

of the entire top facesheet occurred, leaving a cleanly delaminated interface as shown in 

Figure 6.25b. 

Finite element modeling of the peeling delamination test is performed applying 

the developed CZM with the mixed-mode linear-exponential constitutive law. The 

interfacial properties used in the finite element simulation are listed in Table 6.10; these 

values are based on the former experimental measurements. Due to lack of experimental 

data for fracture toughness of Mode II and Mode III, it is assumed that GcII = GcIII = 3 GcI.  

Table 6.10 Fracture toughness and interfacial strength for the peeling delamination test. 

GcI GcII = GcIII σc3 σc1 = σc2 

24.4 lb/in. 73.2 lb/in. 700 psi 1800 psi 

 

A 3D finite element model is created with ABAQUS. The facesheets are modeled 

with shell elements, and the core is modeled entirely with solid elements using finer mesh 

near the interface of the top facesheet and the core. The developed cohesive interface 

elements are embedded between the top facesheet shell elements and core solid elements 

to model the material degradation within the interface during delamination propagation. 
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The bottom facesheet is fixed and directly connected to the core without embedding 

interface elements since delamination didn’t occur in this interface. Open holes in the flat 

panels of the core are not considered because their influences on the overall structural 

response are expected to be negligible. The finite element model is shown in Figure 6.26 

in the deformed state. It consists of 3024 solid elements, 3364 shell elements, and 372 

interface elements. 

 In Figure 6.27, the finite element results of COD versus applied load are 

compared to experimental data of the peeling delamination test. Evidently, the 

delamination initiation load is accurately predicted. In the region of delamination 

propagation, the experimental curve displays a combination of stable and unstable 

delamination growth due to the non-uniform bonding layer as observed in Figure 6.25b 

showing the specimen after being tested. Nonetheless, the global response of the 

specimen in this region is captured with a reasonable accuracy. 

Mode-mixity in this test is evaluated as shown in Figure 6.28. Against the initial 

speculation, Mode II influence is negligible compared to that of Mode I with only 0.27% 

contribution at most. Thus, the peeling delamination in this test is basically in pure Mode 

I and fracture toughness values of Mode II and Mode III need not to be specified exactly. 
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(a) experimental set-up. 

(b) detached interface after test. 

Figure 6.25 Peeling delamination test of an HFRP sandwich panel with sinusoidal core 
wave configuration: (a) experimental set-up; (b) detached interface after test. 

Initial 
delamination Steel plate Hinge

Sinusoidal coreFacesheet Extra resin region 



Chapter 6 Facesheet-Core Interface Delamination in HFRP Sandwich Panels 

 
 

188

Figure 6.26 Finite element model of the peeling delamination test of an HFRP sandwich 
panel with sinusoidal wave core configuration. 

Figure 6.27 Finite element results compared to experimental data of the peeling 
delamination test. 

P, COD 

Interface elements 

0

30

60

90

120

150

180

0 0.4 0.8 1.2 1.6 2 2.4
COD (in.)

Lo
ad

, P
 (l

b.
)

Experiment
Interface element

Delamination 
initiation 

Delamination 
propagation 



Chapter 6 Facesheet-Core Interface Delamination in HFRP Sandwich Panels 

 
 

189

Figure 6.28 Mode-mixity in the peeling delamination test: percentage difference of 
energy release rate in Mode I and Mode II as the delamination propagates. 

6.4 Four-Point Bending Test of HFRP Sandwich Panel 

In this section, numerical simulation is attempted for a four-point bending test of 

the HFRP sandwich panel with sinusoidal wave core geometry.  
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4", and core-wall thickness = 0.09". The facesheet lay-up is shown in Figure 6.4 with one 
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Figure 6.29 shows schematically the testing configuration, where L = 24", a = 12", b = 

4.5", and h = 2". The experimental set-up is displayed in Figure 6.30a. The applied load 

was recorded using an external load cell placed between the loading block and the 

specimen. Midspan deflection was measured using LVDTs. The test was performed with 

a loading rate of 0.001 in./sec. Four specimens were tested with the final failure 

exclusively attributed to facesheet delamination in the shear loading section as shown in 

Figure 6.30b. 

Finite element modeling of the four-point bending test is performed applying the 

developed CZM with the mixed-mode linear-exponential constitutive law. The interfacial 

properties for the cohesive interface element, as listed in Table 6.11, are based on 

previous experimental measurements. Without experimental data for fracture toughness 

of Mode II and Mode III, it is assumed that GcII = GcIII = 3 GcI. 

Table 6.11 Fracture toughness and interfacial strength for the four-point bending test. 

GcI GcII = GcIII σc3 σc1 = σc2 

25 lb/in. 75 lb/in. 800 psi 1500 psi 

 

A 3D finite element model is created with ABAQUS. Due to symmetry, only half 

of the sandwich beam is modeled. The facesheets are modeled with shell elements, and 

the core is modeled entirely with solid elements. Material degradation within the 

facesheet-core interfaces during delamination propagation is modeled by embedding 

cohesive interface elements between the facesheet shell elements and core solid elements. 

The finite element model is shown in Figure 6.31 in the deformed state. It consists of 

1512 solid elements, 1624 shell elements, and 504 interface elements. 
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In this simulation, the major difference with all the previous numerical modeling 

solutions is that no initial delamination is present in the specimen. As discussed in 

chapter 3, traditional fracture mechanics methods are invalid for this case. However, with 

resorting to CZMs, crack initiation and growth could still be successfully predicted. As 

shown in Figure 6.31, the delaminated region is found to be located in the shear loading 

section of the beam which is consistent with the observation in the experiments. In Figure 

6.32, the finite element result of midspan deflection versus applied load is compared to 

experimental data of the four-point bending test. We can observe that the failure load due 

to facesheet delamination is accurately predicted. In the numerical simulation, severe 

snapback is induced right after delamination initiation, which could not be captured in the 

experiment when delamination propagated very quickly leading to catastrophic sudden 

collapse of the specimen. Because of lack of more sophisticated numerical solution 

methods, the finite element analysis was terminated prematurely, since the global 

response was successfully captured. 
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Figure 6.29 Four-point bending test configuration. 

Figure 6.30 Four-point bending test: (a) experimental set-up; (b) specimen after being 
tested showing delamination failure. 
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Figure 6.31 Finite element model of the four-point bending test of an HFRP sandwich 
panel with sinusoidal wave core configuration. 

Figure 6.32 Finite element results compared to experimental data of the four-point 
bending test. 
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Chapter 7 

Concluding Remarks 

In this dissertation, our attention has been focused on developing efficient 

modeling techniques to study facesheet-core interface delamination in HFRP sandwich 

panels. For this purpose, a CZM is proposed and implemented as interface elements 

through a user-defined element subroutine within the commercial general purpose finite 

element code ABAQUS. The predictive capability of the developed CZM is thoroughly 

verified through simulations of standard fracture test configurations and experiments 

available in the literature for laminated composites. The applicability of the CZM to 

simulating facesheet delamination in HFRP sandwich panels is investigated. In this 

chapter, major findings and conclusions are presented, followed by suggestions for future 

work. 

7.1 Cohesive Crack Modeling Technique 

Delamination problems are usually treated from a fracture mechanics point of 

view. However, interface delamination is generally very complex in nature and difficult 

to solve, because it involves not only geometric and material discontinuities, but also the 

inherently coupled Mode I, II and III fracture in layered material systems attributed to the 

well-known oscillatory singularity nature of the stress and displacement field in the 
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vicinity of the delamination crack tip. One of the key issues in this research is to 

determine the best way to characterize interface delamination within the framework of 

continuum mechanics rather than using ad hoc methods just to facilitate numerical 

implementations, e.g. springs in finite element methods. 

Through a comprehensive literature review in Chapter 2-3, it is found that 

requiring assumptions of an initial crack and self-similar progression of cracks, 

traditional fracture mechanics approaches are inappropriate for modeling interface 

delamination. To circumvent these difficulties, five most relevant nonlinear crack models 

are reviewed and compared. It is concluded that unifying strength-based crack initiation 

and fracture-based crack progression, the cohesive crack modeling approach has distinct 

advantages compared to other global methods.  

7.2 Nonlinear Cohesive Interface Finite Element Development 

In this dissertation, a CZM with linear-exponential irreversible softening traction-

separation law, fulfilling empirical mixed-mode fracture criteria, is proposed to represent 

progressive damage occurring within the interface during the fracture process. The CZM 

is implemented as cohesive interface elements through the user-defined element 

subroutine UEL within ABAQUS. The framework and formulation of a three 

dimensional interface element are presented. Two sets of parameters are required for 

application of the developed interface element, namely, interfacial strength and fracture 

toughness. The initiation of fracture is determined by the interfacial strength and the 

progression of fracture is determined by the interface fracture toughness. The surface-like 



Chapter 7 Concluding Remarks 

 
 

196

interface element consists of an upper and a lower face with initially zero thickness in the 

undeformed configuration. In the finite element modeling, these interface elements are 

positioned within the interface where potential delamination propagation is expected. 

Contact-type interface element is also developed to simulate contact behaviors in the 

delaminated region. 

7.3 Interface Element Modeling Verification 

Verification examples applying the developed interface element are presented 

with numerical simulations of standard fracture test configurations, namely DCB and 

MMB specimens, under Mode I, Mode II, or mixed-mode loading conditions. For all the 

simulations, the finite element solutions are in excellent agreement with either the LEFM 

analytical solutions or experimental data available in the literature. Non-self-similar 

delamination growth or a curved delamination front due to anticlastic bending effect in 

the DCB specimen is captured numerically.  

Typical computational issues related to modeling with interface elements are 

discussed. It is shown that no pronounced distinction in the structural response is 

observed using Gauss or Lobatto integration schemes since the bulk material is linear 

elastic. Nonetheless, if more integration points are used, the predicative capability of the 

interface element can be improved. Issues of mesh sensitivity, effects of interfacial 

strength and step size are investigated. Generally, cohesive zone modeling does not 

require very fine mesh near the crack front since no singularity is present. However, in 

order to obtain a relatively smooth solution, the mesh should be sufficiently fine in the 
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evolving process zone at the delamination front. Slightly lowering the interfacial strength 

can reduce the burden on mesh refinement without sacrificing the accuracy of the 

prediction. It is found that when larger step size is used, it leads to a less smooth solution 

during delamination propagation, and the response of interface elements may ‘jump’ 

from the pre-peak to post-peak side of the traction-separation curve without enforcing the 

peak stress level on adjacent bulk material. To eliminate these effects, the step size is 

automatically adjusted within the interface element based on the maximum separations 

attained. In addition, interface interpenetration should be carefully handled by 

appropriately amplifying the compressive stiffness without causing ill-conditioning of the 

overall material tangent stiffness matrix.  

To test the robustness of the CZM in simulating delamination coupled with highly 

nonlinear structural response, delamination buckling of a laminated composite plate 

under in-plane compression is simulated. In order to lessen the burden of using fine mesh, 

slight modification of the formulation of the interface element is made resulting in more 

brittle fracture behavior within the interface. The powerful predictive capability of the 

interface element modeling is demonstrated by producing numerical results that compare 

well with experimental data and similar simulation result available in the literature. 

Material damage within the thin layer in the delaminated region is accounted for using 

Hashin’s failure criteria. However, more sophisticated failure analysis is desired for the 

accurate prediction of the final failure load. 
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7.4 Facesheet Delamination in HFRP Sandwich Panels 

Delamination in composite sandwich structures is an important failure mode. 

Although the problem of a facesheet delaminated from a solid core has been extensively 

investigated, the failure mechanism of delamination of a facesheet from a honeycomb 

core is far from fully understood. Application of CZM to study facesheet-core interface 

delamination of honeycomb sandwich structures is rare. In this research, facesheet 

delamination in HFRP sandwich panels is addressed with the developed cohesive 

interface element.  

The interfacial properties, i.e. interfacial strength and fracture toughness, are 

measured through a systematic experimental program. Effects of such parameters as 

facesheet bonding layers and core-wall thickness are investigated. Although more tests 

are needed before a definite conclusion can be drawn from the current experimental data, 

some preliminary observations can be made regarding the effects of facesheet bonding 

layers and core-wall thickness: (1) adding bonding layers could significantly increase the 

interface fracture toughness (GIc of C1B2 is two times larger than that of C1B1); (2) 

increasing core-wall thickness cannot achieve a pronounced improvement of the interface 

fracture toughness. On the other hand, in spite of the limited experimental data, it is 

concluded that when facesheet bonding layers and core-wall thickness are varied, there is 

no drastic change of the interfacial tensile strength which falls in the range of 400 psi ∼ 

1000 psi. Although more shear tests of specimens with stronger facesheets should be 

performed, it is expected that similar to the FWT tests, the interfacial shear strength value 

of 1752 psi for C1B1 can give a good estimation of the overall interfacial shear strength. 

In fact, it is demonstrated that the response of the HFRP sandwich panel involving 
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facesheet-core interface delamination propagation is mainly controlled by the interface 

fracture toughness, while the interfacial strength has a relatively small effect. As such, the 

interfacial strength value need not be measured precisely. 

Simulation of the CDCB specimen is successfully performed with the measured 

interfacial properties. It is verified that in the fracture test, Mode II contribution is 

negligible, showing the validity of using the CDCB specimen for measurement of Mode I 

interface fracture toughness. A peeling delamination test of an HFRP sandwich panel is 

successfully modeled, demonstrating the predictive capability of the developed CZM to 

simulate the facesheet-core interface delamination propagation in HFRP sandwich panels 

with actual sinusoidal wave core configuration. Against the initial speculation, Mode II 

influence is negligible compared to that of Mode I with only 0.27% contribution at most. 

Finally, simulation of a four-point bending test of the HFRP sandwich panel is attempted. 

Without assuming an initial delamination, the cohesive zone modeling approach using the 

interface element successfully predicts the delaminated region observed in the 

experiments. 

7.5 Suggestions for Future Work 

Although the developed cohesive zone modeling technique has proven to be 

simple and robust in many applications involving interface delamination, the current 

formulation of the CZM is still to be refined and extended. Further investigations in the 

following directions are suggested. 
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Under mixed-mode loading, delamination initiation may occur before each 

traction component reaches its maximum interfacial strength. Thus, a multi-axial stress 

criterion could be incorporated for more accurate prediction of the onset of delamination. 

Subsequent to delamination, friction between the delaminated surfaces could also be 

considered using the classical Coulomb friction model. 

The softening nature of the constitutive law of the CZM frequently causes 

convergence difficulties in the numerical solution, especially in cases of short cracks and 

coarse finite element mesh. The robustness of the CZM could be enhanced either by 

developing a more sophisticated path-following technique than what is available in 

ABAQUS, or by implementing the CZM in the explicit version of ABAQUS through the 

user-defined material subroutine VUMAT. 

The strength of the CZM lies in its capability of accounting for the irreversibility 

of the material degradation during crack growth, which is especially suitable for fatigue 

life prediction when delamination is involved as demonstrated by the study of Roe and 

Siegmund (2003). Fatigue life prediction is crucial in evaluating the performance of the 

HFRP sandwich panels for highway bridge applications. Hence, fatigue crack growth 

simulation is practically important and should be investigated in the future study. 

Continuing experimental investigations should be performed to evaluate the 

interfacial properties. In order to obtain consistent results, special care should be taken in 

fabricating the specimens. Interfacial shear strength could be measured using the same 

experimental set-up as in the current study, but stronger facesheet should be fabricated to 

avoid undesirable damage within the facesheet. Mode II interface fracture toughness 

could be measured using either the cracked sandwich beam (CSB) specimen (Carlsson, 
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1991) or the tapered end-notched flexure (TENF) specimen (Wang and Qiao, 2003). 

Mode interaction could be studied using a carefully designed test rather than the peeling 

delamination test. 
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