
Graduate Theses, Dissertations, and Problem Reports

2016

Compressing Genome Resequencing Data Compressing Genome Resequencing Data

Aliya Farheen

Follow this and additional works at: https://researchrepository.wvu.edu/etd

Recommended Citation Recommended Citation
Farheen, Aliya, "Compressing Genome Resequencing Data" (2016). Graduate Theses, Dissertations, and
Problem Reports. 5578.
https://researchrepository.wvu.edu/etd/5578

This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research
Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is
permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license
in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses,
Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU.
For more information, please contact researchrepository@mail.wvu.edu.

https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F5578&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd/5578?utm_source=researchrepository.wvu.edu%2Fetd%2F5578&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu

Compressing Genome Resequencing Data

Aliya Farheen

Thesis submitted to the

Benjamin M. Statler College of Engineering and Mineral Resources

at West Virginia University

in partial fulfillment of the requirements

for the degree of

Master of Science

in

Computer Science

Donald A. Adjeroh, Ph.D., Chair

Elaine M. Eschen, Ph.D.

YanFang Ye, Ph.D.

Lane Department of Computer Science and Electrical Engineering

West Virginia University

Morgantown, West Virginia

December 2016

Keywords: DNA resequencing, genome compression, common substrings, compression

algorithm

Copyright 2016 Aliya Farheen

Abstract

Compressing Genome Resequencing Data

Aliya Farheen

Recent improvements in high-throughput next generation sequencing (NGS)

technologies have led to an exponential increase in the number, size and diversity of available

complete genome sequences. This poses major problems in storage, transmission and analysis

of such genomic sequence data. Thus, a substantial effort has been made to develop effective

data compression techniques to reduce the storage requirements, improve the transmission

speed, and analyze the compressed sequences for possible information about genomic structure

or determine relationships between genomes from multiple organisms.

In this thesis, we study the problem of lossless compression of genome resequencing

data using a reference-based approach. The thesis is divided in two major parts. In the first part,

we perform a detailed empirical analysis of a recently proposed compression scheme called

MLCX (Maximal Longest Common Substring/Subsequence). This led to a novel decomposition

technique that resulted in an enhanced compression using MLCX. In the second part, we

propose SMLCX, a new reference-based lossless compression scheme that builds on the MLCX.

This scheme performs compression by encoding common substrings based on a sorted order,

which significantly improved compression performance over the original MLCX method. Using

SMLCX, we compressed the Homo sapiens genome with original size of 3,080,436,051 bytes to

6,332,488 bytes, for an overall compression ratio of 486. This can be compared to the

performance of current state-of-the-art compression methods, with compression ratios of 157

(Wang et.al, Nucleic Acid Research, 2011), 171 (Pinho et.al, Nucleic Acid Research, 2011) and

360 (Beal et.al, BMC Genomics, 2016).

iii

Acknowledgements

I would like to express deepest gratitude to my research advisor Dr. Donald A. Adjeroh,

for the relentless support and guidance. I thank him to made me realize that with determination

and hard work, pursuing a dream is not an impossible task. I also thank my committee members,

Dr. Elaine M. Eschen and Dr. YanFang Ye for their suggestions and support. I also want to thank

Dr. Richard Beal for being supportive and helpful in numerous ways and guided me through

tough times. I am thankful to the LCSEE department for providing me with resources and funding

through the Graduate Teaching Assistantship. My deepest gratitude to my father Mohammed

Adbul Aleem, my mother Fahmeena Faryal and my brother for their unconditional love and

support. I am grateful to be blessed with friends who were always available for the moral

support and who helped in their respective capacities that made this journey (masters studies)

easier for me. I express my obedience and gratitude to my creator and my sustainer Allah, for I

believe his plans are better than my dreams.

iv

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION .. 1

1.1 PROBLEM AND MOTIVATION .. 1

1.2 THESIS CONTRIBUTIONS .. 2

1.3 THESIS OUTLINE ... 3

1.4 PUBLICATIONS RESULTING IN PART FROM THIS THESIS .. 3

CHAPTER 2 BACKGROUND AND RELATED WORK .. 4

2.1 GRS ... 5

2.2 GREEN ... 6

2.3 NEW LCS MOTIVATED APPROACH ... 7

2.4 GDC .. 7

CHAPTER 3 EMPIRICAL ANALYSIS AND IMPROVEMENT ON MLCX

COMPRESSION .. 10

 3.1 MLCX ALGORITHM ... 10

3.1.1 Compression methodology…………………………………………….......................11

3.1.2 Decompression methodology .. 12

 3.2 EMPIRICAL ANALYSIS………………………………………………………………………………………………….13

3.2.1 Analysis of Oryza sativa Genome…………………………………………………………13

 3.2.2 Homo sapiens Genome- KOREF……………………………………………………………14

 3.2.2.1 Compressing the original sequence using

 the extended genome alphabet……………………………….….15

 3.2.2.2 Case when the character-case of the alphabet

 symbol is not significant……………………………….................15

 3.2.2.3 Case with an alphabet composed only of

 characters from the set {a,c,g,t,n }……………………............15

 3.2.3 Homo sapiens Genome- YH vs KOREF…………………………………………………….19

3.3 CHOICE OF K-PARAMETER .. 19

3.3.1 Impact in compression method ... 21

3.3.2 Predicting best k-values .. 21

v

3.4 DECOMPOSITION TECHNIQUE ... 24

CHAPTER 4 NEW COMPRESSION SCHEME ... 29

4.1 SMLCX METHODOLOGY ... 29

4.1.1 Compression……………………………………………………………………………………….30

4.1.2 Decompression……………………………………………………………………………………32

 4.2 COMPRESSION RESULTS .. 32

 4.2.1 Arabidopsis thaliana Genome………………………………………………………………32

 4.2.2 Oryza sativa Genome………………………………………………..............................34

 4.2.3 Homo sapiens Genome-KOREF…………………………………………………………….34

 4.2.4 Homo sapiens Genome-YH vs KOREF……………………………………………………36

 4.2.5 SMLCX results using Decomposition Technique……………………………………37

4.3 COMPRESSION TIME .. 41

CHAPTER 5 CONCLUSIONS .. 43

5.1 SUMMARY……….43

5.2 FUTURE WORK ... 43

REFERENCES ... 44

APPENDICES ... 47

A Impact of Parameters (𝛾, 𝛽, Kρ,Kα) on MLCX Compression…………………………………………..47

B Impact of Parameters (𝛾, 𝛽, Kρ,Kα) on SMLCX Compression .. 51

vi

LIST OF FIGURES

2.0 Referential Compression Algorithm…………………………………………………………………………05

3.1 Compression Function for The MLCX Compression Scheme…………………………………….11

3.2 Decompression Function for The MLCX Compression Scheme…………………………………12

3.3.1 Homo Sapiens Chromosome 13: MLCX Encoding Payload……………………………………….25

3.3.2 Homo Sapiens Chromosome 13: Using MLCX then LZMA2 to

 Compress the Encoded Payload………………………………………………………………………………26

3.2.3 Homo Sapiens Chromosome 13: MLCX Encoding Character-Case Bitstring…………….26

3.2.4 Homo Sapiens Chromosome 13: Using MLCX Then LZMA2 to

 Compress the Encoded Character-Case Bitstring……………………………………………………27

4.1 SMLCX Compression of Chromosome 1 of TAIR Genome for Different k Values…….33

4.2.1 Homo Sapiens Chromosome 13: SMLCX Encoding Payload……………………………………39

4.2.2 Homo Sapiens Chromosome 13: Using SMLCX Then LZMA2 to

 Compress the Encoded Payload…………………………………………………………………………….39

4.2.3 Homo Sapiens Chromosome 13: SMLCX Encoding Character-Case Bitstring……….….40

4.2.4 Homo Sapiens Chromosome 13: Using SMLCX Then LZMA2 to

 Compress the Encoded Character-Case Bitstring……………………………………………………40

1. Homo Sapiens Chromosome 22: MLCX Encoding Payload………………………………….….47

2. Homo Sapiens Chromosome 22: Using MLCX Then LZMA2 to

Compress the Encoded Payload…………………………………………………………………………….47

3. Homo Sapiens Chromosome 22: MLCX Encoding Character-Case Bitstring……………48

4. Homo Sapiens Chromosome 22: Using MLCX Then LZMA2 to

Compress the Encoded Character-Case Bitstring………………………………………………….48

5. Homo Sapiens Chromosome X: MLCX Encoding Payload………………………………………49

6. Homo Sapiens Chromosome X: Using MLCX Then LZMA2 to

Compress the Encoded Payload……………………………………………………………………………49

7. Homo Sapiens Chromosome X: MLCX Encoding Character-Case Bitstring…………….50

8. Homo Sapiens Chromosome X: Using MLCX Then LZMA2 to

Compress the Encoded Character-Case Bitstring………………………………………………….50

9. Homo Sapiens Chromosome 22: SMLCX Encoding Payload……………………………….….51

10. Homo Sapiens Chromosome 22: Using SMLCX Then LZMA2 to

Compress the Encoded Payload……………………………………………………………………………51

11. Homo Sapiens Chromosome 22: SMLCX Encoding Character-Case Bitstring…………52

12. Homo Sapiens Chromosome 22: Using SMLCX Then LZMA2 to

Compress the Encoded Character-Case Bitstring………………………………………………….52

13. Homo Sapiens Chromosome X: SMLCX Encoding Payload……………………………….….53

vii

14. Homo Sapiens Chromosome X: Using SMLCX Then LZMA2 to

Compress the Encoded Payload………………………………………………………………………….53

15. Homo Sapiens Chromosome X: SMLCX Encoding Character-Case Bitstring………….54

16. Homo Sapiens Chromosome X: Using SMLCX Then LZMA2 to

Compress the Encoded Character-Case Bitstring…………………………………………………54

viii

LIST OF TABLES

3.1 Results of MLCX Compression Scheme On Oryza Sativa Genome……………………………….14

3.2 Compression Results for KOREF while preserving the original

extended genome alphabet…………………………………………………………………………………….….16

3.3 Compression Results for KOREF when the symbol case in the

extended genome alphabet is ignored…………………………………………………………………….….17

3.4 Compression Results for KOREF when alphabet only composed

 of characters {a,c,g,t,n}………………………………………………………………………………………………18

3.5 Compression results for YH genome with original extended alphabet…………………….….20

3.6 Results of MLCX Compression Scheme On Arabidopsis Thaliana,

 Oryza Sativa, Homo Sapiens Genomes for k=31 and best k range………………………………22

3.7 Statistics on training set belonging to Arabidopsis Thaliana Genome,

Oryza Sativa Genome, Homo Sapiens Genome……………………………………………………….….23

3.8 Results for compressing the complete Homo Sapiens Genome using the

SMLCX with different parameter variations (𝛾, 𝛽, Kρ,Kα)……………………………………………..27

3.9 Compression Results for Homo Sapiens-KOREF Genome Using Improved MLCX…….….28

4.1 SMLCX Compression Results for The Arabidopsis Thaliana Genome Alphabet……………33

4.2 SMLCX Compression Results for The Oryza Sativa Genome Alphabet…………………………34

4.3 SMLCX Compression Results While Preserving the Original

Extended Homo Sapiens-KOREF Genome Alphabet…………………………………………………….35

4.4 SMLCX Compression Results While Preserving the Original

Extended Homo Sapiens-YH Vs KOREF Genome Alphabet……………………………………….….36

4.5 Results for compressing the complete Homo Sapiens Genome using the

SMLCX with different parameter variations (𝛾, 𝛽, Kρ,Kα)……………………………………………..37

4.6 SMLCX Compression Results for Homo Sapiens-KOREF………………………………………………38

4.7 Comparison of The Compression Results for Homo Sapiens Genome

using the SMLCX and Improved MLCX Methods………………………………………………………….41

1

Chapter 1

Introduction

1.1 Problem and Motivation

Data compression has been studied for the past few years as a means to cope with huge

repositories of biological information. Scientists acquire the genetic information of a particular

species by studying the DNA segments. The DNA segments are sequenced to determine the

precise order of the four nucleotides/bases that compose a DNA molecule, i.e., adenine (A),

guanine (G), cytosine (C), and thymine (T). Knowledge of these DNA sequences is important in

biological research and in numerous applied fields such as medical diagnosis, biotechnology,

forensic biology, virology and biological systematics. The early sequencing methods did not

allow rapid sequencing of genomic species other than viruses and could not handle large

amounts of DNA. Sanger sequencing [1], was a breakthrough that helped scientists determine

the human genetic code, but was time-consuming and expensive.

Recent developments, such as Next Generation Sequencing (NGS) technologies, enabled

faster sequencing with high data accuracy while reducing the cost. In addition, NGS made large-

scale whole-genome sequencing accessible and practical for a researcher. Next-generation

sequencing generates masses of DNA sequence data that is richer and more complete than is

imaginable with Sanger sequencing. These newer technologies can deliver data outputs ranging

from 300 KB to 1 TB in a single sequencing run depending on the instrument type and

configuration. Sequencing data (in raw/assembled format) from a project are either archived by

the respective laboratory, or submitted to major public sequence repositories, such as GenBank

(NCBI), EMBL, DDBJ, etc. These repositories are currently witnessing exponential growth with

respect to the number of sequences being submitted each year [2]-[4]. Moreover, new large-

scale sequencing projects are frequently announced raising storage concerns. Statistics show

storage requirement of high-throughput sequencers in the world to be in the range of 50-100

PB per year [5]. The need for efficient storage and communication of such data is heightened

significantly. To address these challenges, genomic data compression methodologies have

emerged.

The DNA sequence can be represented in two bits (00, 01, 10 and 11) to match each of

the four bases to generate a compressed file. But, standard compression software such as Unix

“compress” and “compact” or the MS-DOS archive programs “pkzip” and “arj” often result in

data expansion [4][6][7] using more than two bits per base. The major reason for the expansion

2

is that these methods use models for traditional text and therefore fail to consider certain

special characteristics of biological sequences. Genome sequences are known to convey

important purposeful information between different generations of an organism. Moreover,

biological sequences contain different types of repetitions and other hidden regularities. Long

runs of tandem repeats and randomly interspersed repeats are prominent features of DNA

sequences [4]. Thus, from the viewpoint of compression and sequence understanding, the

repetitions inherent in biological sequences imply redundancies, which provide an avenue for a

significant compaction. Specialized approaches capturing the exact/inexact repeat patterns

have been suggested to achieve better compression than the general purpose compression

algorithms. Few methods depict successful compression ratios in past few years [4][6][8]-[19].

 Genome compression techniques have various design choices like lossy/loss-less

compression, ability to handle variable length sequenced reads, random access, encoding

strategies, reference dependency, single/multiple sequence alignment blocks. In this work, we

study the problem of lossless compression of genome resequencing data using a reference

based approach. This approach develops an end-to-end compression scheme to generate an

efficient mapping between a reference and a target (to-be compressed) genome. Then the

observed mapping is described in an efficient manner. This problem and its variations have been

studied in [17] [18] [20] - [23]. In [18] the authors introduced GReEn, a compression tool based

on arithmetic coding that overcomes some drawbacks of the previously proposed tool GRS [17].

In [19] an algorithm that uses the maximal longest common substrings/subsequences to

compress a source sequence (target genome) given the reference is introduced. Motivated by

the compression efficiency in [19], further analysis of this technique led to development of the

new algorithm in this study.

1.2 Thesis Contributions

The contributions of the thesis are summarized as follows:

1. A detailed empirical analysis on the MLCX compression scheme proposed in [19].

2. Proposed a model to predict the influential k-parameter value using reference sequence

without application of the compression methodology.

3. Introduced a decomposition technique, which works conjointly with MLCX compression

to improve the compression.

4. A new compression model (called SMLCX) that performs compression using an ordered

selection of the common sub-patterns. This results in a significant improvement over the

MLCX, currently the best performing compression scheme for genome re-sequencing

data.

3

1.3 Thesis Outline

Chapter 2 presents a brief background and a review on compression methods for genomic

re-sequencing data. A quantitative comparison of the different compression methodologies –

their efficacies and limitations are presented. Chapter 3 presents a detailed empirical analysis

of the recently proposed method -MLCX (Maximal Longest Common Substrings/Subsequences).

The chapter is divided into two parts. First part involves an empirical analysis of the MLCX

compression methodology and the evaluation of k-parameter, which has a significant influence

on the effectiveness of the MLCX compression methodology. Second part deals with the

proposed new model for determining the k value and a decomposition technique, which

improves the compression performance for MLCX compression scheme.

In Chapter 4 we present SMLCX, an improved compression scheme. Results from the

developed new compression methodology has been tested with three sets of genomes, viz.,

Arabidopsis thaliana, Oryza sativa and Homo sapiens. The significance of k-value is studied.

Furthermore, the developed decomposition technique has been applied on the Homo sapiens

genome set.

Finally, conclusions are presented in Chapter 5, with a brief recommendation for future

study.

1.4 Publications Resulting in part from this Thesis

1. R. Beal, T. Afrin, A. Farheen, and D. Adjeroh, “A new algorithm for ‘the LCS

problem’ with application in compressing genome resequencing data,” in
Proceedings - 2015 IEEE International Conference on Bioinformatics and
Biomedicine, 2015, pp. 69–74. [19% acceptance rate].

2. R. Beal, T. Afrin, A. Farheen and D. Adjeroh, “A new algorithm for ‘the LCS

problem’ with application in compressing genome resequencing data,” BMC

Genomics, vol. 17, no. S4, p. 544, 2016.

3. R. Beal, A. Farheen and D. Adjeroh, “Compressing genome resequencing data via

the maximal longest factor,” in Proceedings - 2016 IEEE International Conference

on Bioinformatics and Biomedicine, 2016. [19 % acceptance rate].

4

Chapter 2

Background and Related Work

Genomic study poses serious computing requirements for acquiring, distributing, and

analyzing genomic data as more and more genomes are investigated. According to [24] by 2025,

an estimated 100 million to 2 billion human genomes could have been sequenced. The data-

storage demands for these could run to as much as 2 to 40 exabytes (1 exabyte =1018 bytes).

Although a single genome is only about 3.164 billion symbols, this increase is because the

amount of data that must be stored for a single genome is about 30 times larger than the size

of the genome itself, to make up for errors incurred during sequencing and preliminary analysis

[24]. This problem is compounded by the fact that genomes from other organisms or species

are also being sequenced at a rapid pace, some of which are even larger than the human

genome.

Compression techniques are the traditional means for handling huge data storage. These

methods reduce the space for storage and speed up the data transfer (e.g., among research

institutes). Another application of genome compressibility is to measure the “relatedness"

between two DNA sequences or two genomes important for biological research [4][44]. It is

recognized that the compression of DNA sequences is a very difficult task [6][8][25]. The

compression ratio achieved by general purpose compression algorithms for the genomic

sequence data is suboptimal. Existing genome compressors capture the repeat patterns

prevalent in biological sequences and then encode them using an optimal encoding scheme.

The scope of this work is to study reference based loss-less compression methodologies.

The input of a compression algorithm is a sequence of symbols from a given alphabet (∑). In

referential compression, first a reference genome is fixed and all further sequencing data of the

same species is mapped to the reference and only the differences (the compressed file) are

stored. As differences between individuals of the same species are small, the new sequences

frequently map very well to the reference, with differences occurring less than 1% of the bases

[26]. The long similar referential match blocks are found using the index structures e.g. hash-

based or suffix trees. Thus, the new sequences can be compressed by only noting location in

and differences to the reference. Availability of reference sequence to the decompressor

enables rapid compression rates. The Fig.2.0 shows the algorithmic sketch of referential

compression schemes.

5

Algorithm 1 Sketch of a Referential Compression Algorithm

1: while input contains characters do
2: Find longest matching substring in reference for current input position
3: if length of match > K then
4: Encode match as (match position, length)
5: else
6: Encode match with raw symbols
7: end if
8: end while

Figure 2.0: Referential Compression Algorithm

Lossless compression allows us to reconstruct the complete original input from the

compressed output unlike lossy compression. In most biomedical applications, lossless

sequence compressors are preferred as every single base is important. Out of different available

genomic data compression methods, each with different approaches for analyzing the sequence

variation, we study the most popular methods GRS, GReEn, GDC 2, GDC ultra, FRESCO, TGC, RLZ,

RLZopt and a new algorithm for the LCS problem with application in compressing genome

resequencing data.

2.1 GRS: [17]

One reference-based approach to compressing whole genome sequence is via the use of

reference SNP maps [46]. Wang et al. [17] recognized the genome sequences could be

compressed without the reference SNP maps or information regarding sequence variation. The

main idea of the GRS (Genome ReSequencing) method was to process the given genome

sequence data without the usage of the reference SNPs or other sequence variation

information, and then to rebuild the individual genome sequence data using a reference

genome sequence. The compression technique involved stepwise procedures as follows:

1. Evaluate the varied sequence percentage parameter (δ) for the input chromosome file

based on the reference chromosome.

2. For the chromosomes, where δ ≤ 0.03

 Evaluate the longest common sequence to find and record the varied nucleotide

sequence and pre-code the extracted difference.

 Compress the reduced difference sequence file using BZIP2 using the Huffman

coding

 Generate the command file to decompress the compressed file.

3. For the chromosomes, where 0.03 ≤ δ ≤ 0.1

 Segment each chromosome into ‘n’ number of pieces and calculate each

difference rate δi (1≤ i ≤n).

6

 Find the position with minimal Ʃδi, then compress each piece following strategy

in step 2.

4. For a chromosome with δ≥ 0.1, the sequence is not suitable to compress with the tool.

Report and terminate compression. No compression is performed.

The varied sequence percentage δ plays a key role in the GRS compression. The tool

quantifies the usage of the correct reference chromosome by evaluating the percentage of the

nucleotide sequence variation. High variation results in larger compressed file with more time

for the individual genome sequence. GRS used the modified UNIX diff function to find the

sequence variation in the technique. GRS achieved a ~159-fold compression tested against the

sequencing datasets from Homo sapiens, Oryza sativa and Arabidopsis thaliana. The GRS can

compress the A. thaliana genome data from 115.1 MB to 6.5 KB. The genomic sequences with

the sequence variation beyond a threshold cannot be compressed by GRS.

2.2 GReEn: [18]

GReEn (Genome Resequencing Encoding) compression technique overcomes the major

drawbacks of the GRS [17] which include the compression of the genome sequences with

excessive difference to the reference sequence, storage space requirements, and long running

times. GReEn also handles the arbitrary alphabets and uses arithmetic coding. Like most related

compression schemes, the compression efficiency of this GReEn depends on the degree of

similarity between both the reference and target sequences.

The compression was executed using arithmetic encoding on the fixed relative frequency

of the characters in the target sequence and the estimated probability of the character

subjected to change in encoding process. Compression efficiency depended upon the provision

of good probability estimates. The probability distribution is given by two sources (i) an adaptive

copy model which assumes the characters of the target sequence to be copies from the

reference genome;(ii) a static model that relies on frequencies of characters in target sequence.

The GReEn copy model was inspired by the copy expert of the XM [13] DNA compression

method. Here probability computations mainly depend on pointer positions in the reference

sequence that have a good chance of containing a character identical to the character being

encoded. To overcome this limitation a hash table is constructed with the occurrences of the

positions in the reference sequence of all the k-most-recently-encoded substrings (k-mers) of a

given size.

GReEn achieved faster running times and compression gains of over 100-fold for genome

sequences. A study of GReEn compression method was made on genome datasets, namely

Arabidopsis thaliana, Oryza sativa, Homo sapiens (for four different human genome

assemblies,namely HuRef, Celera, YH and KOREF_20090224). Compression throughput of this

7

probabilistic copy model was compared with the GRS. The performance of the encoder

significantly depended on the size of the k-mer and the number of prediction failures tolerated

by the copy model before it is restarted. Optimization of these parameters was not performed.

2.3 New LCS-Motivated Approach [19]

Beal et al. [19] proposed a new approach to compressing genome re-sequencing data

using common patterns between the reference and target sequences. We call this the MLCX

method since it exploits the maximal longest common sub-patterns (subsequences/substrings).

The MLCX approach measured the similarity between the genomic sequences using the Longest

Common Subsequence (LCS) and utilized the LCS components rather than the LCS itself in the

compression technique. The LCS has varied biological applications in sequence alignment for

comparative genomics, phylogenetic construction and analysis, rapid search in huge biological

sequences, compression for efficient storage of the genomic data sets. A new algorithm for the

LCS problem using suffix trees and the shortest-path graph algorithms was proposed. LCS

calculation involved three main steps (i)Construction of the Generalized Suffix Tree(GST) for two

sequences to calculate the common substrings (CSS) shared between two sequences;

(ii)Construction of the directed acyclic graph(DAG) of the obtained maximal CSS; and

(iii)Computation of the LCS by finding the longest path in the DAG. The CSS were found by a

preorder traversal of the GST.

The MLCX compression scheme exploits the common substrings (CSS) which constitute

the building blocks for the LCS. The CSS between the reference(R) and target (T) are computed.

The Longest Previous Factor (LPF) data structure [32][33] is used to choose only the maximal

CSS’s that make up the target. Chosen CSS are represented or encoded as tuples. The triplet

encoding record CSS position in T, position in Z (Z=T*R), and length. Further compression of

these tuples is done using the standard compression schemes such as PPMD, LZMA2(two modes

of 7-ZIP), BZIP2(a standard BWT based compressor). The MLCX scheme when applied to the Homo

sapiens genome resulted in a compression ratio of 199. This can be compared with the

compression ratios of current state-of-art methods such as GRS, GReEn (159 and 171

respectively).

2.4 GDC 2: [27]

GDC 2[27] is a scheme which analyzed the problem of compressing large collections of

complete genomic sequences. Compression of such large collections involve several sub

problems. These include compression in (1) raw sequencing reads; (2) reads after mapping onto

reference genomes; (3) results of variant calling ;(4) complete genomic sequences. GDC 2 utilizes

the high similarity between genomes in large sets belonging to the same species for

8

compression. For instance, two human genomes are known to be 99.5% similar [28]. Such high

similarity levels enable better compression ratios when a collection of genomes are compressed

rather than individual genome. GDC 2 was motivated by GDC-ultra [29], FRESCO [26], TGC [30],

three earlier compression schemes for collection of genomes.

 GDC-ultra [29] constructs a hash table based on a reference. The first sequence in a

given collection of genome set is compressed by evaluation of similarities between current

sequence and the reference. Each processed sequence is used as an additional reference to

compress next sequences in the genome set. Total number of references is limited to 40, i.e.,

the 41st sequence in the collection is compressed using 40 references. The differences are later

Huffman coded and results are recorded. GDC-ultra compressed a collection of 69 human

genomes with a compression ratio of about 1000 [27].

Wandelt et.al [26] developed FRESCO, another algorithm to compress collections of

genomes. The algorithm divide collection into two sets:(i) additional references, and

(ii) remaining sequences. A search structure (suffix tree) is constructed for the primary

reference. The similarities between additional references and primary reference sequences are

measured by performing classical Ziv–Lempel parsing of additional references. For each

additional reference, an order of triples (position in the primary reference, length of the identical

part, next symbol) is obtained. A search structure (hash table) is built for the Ziv–Lempel-parsed

additional reference sequences, which is used to further compress the remaining sequences

from the collection. Then, the sequence of triples is compressed using the additional Ziv–

Lempel-parsed reference sequences serving as the second level reference. The obtained

compression ratios are impressive. A compression ratio of about 3000 [27] was obtained for the

collection of about 1000 haploid genomes from the 1000 Genome Project, when 70 additional

reference sequences are used.

TGC algorithm [30] also compresses a collection of genomes but using a different input

format. This algorithm processes the Varied Call Format (VCF) files that describes differences

between genomes and the reference sequence. The main idea of TGC is to split the VCF file into

two files. The first file serves as dictionary of variants and stores a description of each variant

(i.e., its type, position, alternative alleles, etc.). The second file stores the binary representation

of presence/absence of each single variant in each single sequence. The bit vectors

corresponding to each individual genome are then compressed using a specialized Ziv–Lempel-

based algorithm. The dictionary file is also compressed using a specialized algorithm. For the

collection of 1092 diploid human genomes considering one reference sequence, the

compression ratio is about 15,500 [27].

Combining the methods from GDC-ultra and FRESCO algorithms, GDC 2 compression

algorithm uses a two level Ziv-Lempel factoring for genome set (S), after the construction of the

search structure for the reference sequence R. At the first level, the Ziv-Lempel factoring of all

9

sequences from the collection S was done producing a sequence Lk for each sequence Sk

composed of tuples. At the second level, GDC 2 performs a similar Ziv-Lempel factoring for each

sequence Lk
 in the collection L to obtain each differential sequence Dk in the collection D. Each

sequence Dk is composed of three kinds of tuples (1) first level literal (pair) ; (2) first level match

(triple); and (3) Second level match(quadruple). After this encoding of the differences between

the predictions (values of tuples e.g. matching positions) and real values is computed followed

by the arithmetic encoding of the successive tuples.

Decompression of the GDC 2 is done by applying arithmetic decoding on the compressed

file from which collection L is decoded. The collection of sequences S were constructed from L

and R. The multithreaded design of GDC 2 [27] executed four times faster than the existing

algorithms. For the human data set, the algorithm was quite fast (about 200 MB/s) and

collection of 1092 human genomes was compressed to 700 MB, which can be compared to 6.7

TB of the uncompressed FASTA files. This is a compression ratio of over 9,570.

Another compression scheme RLZ [20] is based on self-indexing. The algorithm

compresses input sequences with LZ77 [31] encoding relative to the suffix-array of a reference

sequence. Raw sequences are never stored and even very short matches to the reference are

encoded. Careful consideration of the reference sequence is vital for this method since initial

results with cross-species compression were discouraging. RLZopt [21] is presented as an

extension of RLZ. The key aspect in RLZopt compression is longest increasing subsequence

computation that allows to efficiently encode positions. It incorporates improvements like local

look-ahead optimizations and random access.

In this work, we focus on compression of individual genomes, rather than a collection of

genomes. Thus our work is more closely related to RLZ, GRS, GReEn and MLCX. The methods we

propose can be extended to compress multiple genomic sequences in a collection.

10

Chapter 3

Empirical Analysis and Improvement on MLCX Compression

This chapter details an empirical analysis performed on two representative genome

datasets using the MLCX compression algorithm. The empirical analysis was performed on the

genome datasets Oryza sativa and Homo sapiens. Thus the performance in data compression

was evaluated and compared with that of the available reference based compression

algorithms, GRS and GReEn.

The study revealed that genome alphabet size, symbol-case, and the parameter k were

vital in enhancing performance of the compression process. Further, a new decomposition

strategy was applied in conjunction with the MLCX algorithm, which further improved the

results. It was observed that, under the decomposition approach, the specific representation

used- in terms of the bitwise encoding of the symbols before applying the MLCX algorithm also

has a definite impact on compression performance.

3.1 MLCX Algorithm [19]

The MLCX compressor implementation can be separated into two major phases –

preprocessing and encoding. In preprocessing phase, the common substrings (CSS) that exist

between the reference and target sequences are calculated and are made accessible in data

structures. The maximal CSS that make up the common subsequences between the target (T)

and reference (R) are also identified in this phase. At the encoding phase, exact matching

compression methodology that use repeat positions and length to represent an exact repeat is

implemented. The matching common substring blocks and unmatched plain characters/symbols

between the reference and the target are stored in separate files. The maximal CSS’s are chosen

to encode repeat positions of the target (T) in sequential order. The encoded output files are

further compressed using standard text compressors, such as LZ, PPM, or BZIP2.

The common substrings are computed using the generalized suffix tree (GST) structure.

A GST is a suffix tree for a set of strings {S1, S2, ..., Sn} that contains all the suffixes from each

sequence in the set. It can be built in linear time and linear space, and used to find all

occurrences of the common substrings between the given strings. The label on any path from

the root to an internal node in GST must be a substring of set of original strings. Hence, GST

guarantees that each suffix is represented by a unique path on the tree [34][35]. To intelligently

choose which CSS’s are likely to be part of the common subsequences that will lead to improved

compression, the Longest Previous Factor (LPF) [32][33] is used. The LPF data structure provides

11

the length of the longest factor (matching substring) of a string W starting at position i, that

occurs previously in W. For instance, the LPF for the string “abracadabra” is of length 4 and

occurred at position i=0. Both the length and position of matches are stored using the LPF and

POS data structures respectively.

Consider compressing the target T with respect to the reference R. Let Z = R°T, where

′°’ denotes the concatenation operations. The MLCX algorithm works by building upon the target

with tuples by choosing the maximal CSS’s and thereafter compresses these tuples with other

available compression schemes such as PPMD, LZMA2 and BZIP2. The algorithm adopts a left-to-

right directive sequential scan of the LPF data structure and the position (POS) data structure on

Z, to compress the target. The algorithm therefore outputs two files - the triples file and the

symbols file, which are initially void of any data.

3.1.1 Compression Methodology:

Let i = |R| + 1. If LPF[i] < k, then the character symbol is encoded by appending 1-byte

char T[i-IRI] to symbols file and thus the value of i is incremented. Else if LPF[i] ≥ k, the

recognized CSS is encoded with the triplet (pT,pZ, l), where pT = i-|R| is the starting position of

the CSS in T, pZ = POS[i] is the starting position of the CSS in Z [1…i-1], and l = LPF[i] is the

length of the CSS. In the aforementioned case, each of the 4-byte words pT, pZ, and l are

appended to the triples file. Now i = i + l is set, to consider compressing the suffix following the

currently encoded CSS. This process continues unto i≤ |Z|. The algorithm is shown in Fig.3.1. The

figure shows the portion of the script that handles the compression of the target T (given the

reference R, parameter k, and the LPF and POS arrays on Z) into the symbols file (with filename

symbols_fn) and triples file (with filename triples_fn).

Figure 3.1: Compression function for the MLCX compression scheme

12

The output files triples (long words file) and symbols (byte file) are binary sequences that

can be further compressed with standard compression schemes. Based on the k-value in the

constructed LPF data structure, the compression algorithm uses only one of the two files to

encode the target. The algorithm proceeds by converting the observed maximal CSS’s (based on

k) either into triples (12 bytes) or by encoding a symbol with using one byte.

3.1.2 Decompression Methodology:

The decompression also involves a left-to-right scan on both triples and symbols files.

For instance, consider the current long word w1 in triples. According to the proposed triple

encoding, this will be the position of a CSS in T. If i = w1, then the next two long words w2 and

w3 in triples file are selected. At this point T [i…i+w3-1] = Z [w2…w2+w3-1]. Since there is

access to just R and T [1…i-1] during decompression, it is only feasible to pick up each symbol

of Z [w2…w2 + w3-1]. This selection is done with R[j] if j ≤|R| or T [[j-|R|] otherwise, for w2 ≤ j

≤w2+w3-1. After this step, i is incremented as i = i+w3. On the other hand, if i≠ w1, the next

char c in symbols file is selected since T[i] = c. Here i is incremented and the process continues

until i≤ |T|. Fig. 3.2 shows the algorithm to reconstruct the target T with the reference R using

the symbols file (with filename symbols_fn) and the triples file (with filename triples_fn).

Figure 3.2: Decompression function for the MLCX compression scheme

13

3.2 Empirical Analysis

In the following sections, the MLCX compression scheme is applied on genomes from

different species, and evaluated in terms of the genome alphabet (∑) size, letter-case of alphabet

symbols, the k-parameter, and different reference genomes for the human genome. The data

compression tests were conducted on Amazon Elastic Compute Cloud (EC2) with instance type

m4.4xlarge. The specifications of m4.4xlarge instance include 16 vCPU count, 64 GiB RAM and

high network performance.

The performance of the MLCX compression algorithm was examined on real genomic

data belonging to different species. We use the hg18 release from the UCSC Genome Browser,

the Homo sapiens Korean genomes KOREF20090131 and KOREF20090224 [36], the Homo

sapiens genome of a Han Chinese referred to as YH [37]. Two versions of the genome of the

thale cress Arabidopsis thaliana, TAIR8 and TAIR9 [38], and of the genome of the rice Oryza

sativa TIGR5.0 and TIGR6.0 [39] were also used. This real-world genomic datasets often contain

symbols beyond the traditional four letter DNA alphabet ∑= {A, C, G,T}, with each symbol

denoting one of the four basic nucleotides: adenine (A), cytosine (C), guanine (G), thamine (T).

The possible reason behind these extra non- ATGC characters is the representation of repetitive

stretches, low-complexity regions by lowercase characters, gaps of indeterminate length by a

hyphen (-) character or ambiguous cases with unknown character symbol [40]. The extended

alphabet properties of the datasets considered in terms of alphabet size and symbols are also

further discussed.

The Arabidopsis thaliana genome dataset consists of 5 chromosomes, with byte sizes

ranging between 18.5 MB to 30.5 MB. The sequence alphabet size (|∑|) for the first two

chromosomes is 11 symbols. For chromosomes 3, 4, 5 the |∑| is 10, 7, 5 symbols respectively.

The Oryza sativa genome comprises of 12 chromosomes, with byte sizes ranging between 23

MB to 43 MB. Generally, the chromosomes in this dataset contain alphabet sizes of 5 symbols.

Nevertheless, chromosome 3, 10 and 11 have alphabet sizes of 6, 9 and 11 symbols, respectively.

The Homo sapiens KOREF genome dataset sequences are comprised of alphabet size with 21

symbols for all the 24 chromosomes. The 21 symbols are {A, C, G, K, M, R, S, T, W, Y, a, c, g, k,

m, n, r, s, t, w, and y}. However, the mitochondria DNA chromosome M contains just 11 symbols,

unlike other members of the dataset. This dataset consists of chromosomes with byte sizes

approximately ranging between 50 MB to 247 MB.

3.2.1 Analysis of Oryza sativa Genome

Genomic compression tests were performed on Orzya sativa using TIGR6.0 as target and

TIGR5.0 as reference. The output files symbols and triples were further compressed using

14

standard compression schemes, LZMA2 and PPMD. The compression results are tabulated in Table

3.1.

Table 3.1: Results of MLCX Compression Scheme on Oryza sativa genome TIGR6.0

 using TIGR5.0 as reference. C denotes the result of the encoded genome

 using basic MLCX encoding. L(C), P(C) denotes result of applying

LZMA2 and PPMD compression on C.|X| denotes the length or size of X in bytes.

Chromosome
Size of

Chromosome
(bytes)

MLCX
GRS [17]
(bytes)

GReEn[18]
(bytes)

|C|
(bytes)

|L(C)|
(bytes)

|P(C)|
(bytes)

1 43,268,879 15,207 4,735 4,551 1,502,040 4,972

2 35,930,381 4,645 1,649 1,517 1,409 1,906

3 36,406,689 54,234 15,693 15,556 47,764 17,890

4 35,278,225 21,474 6,636 6,432 36,145 6,750

5 29,894,789 17,030 5,431 5,359 6,177 5,539

6 31,246,789 12 146 141 14 482

7 29,696,629 5,899 2,064 1,972 4,067 2,448

8 28,439,308 23,126 8,794 10,115 118,246 9,507

9 23,011,239 12 146 141 14 366

10 23,134,759 175,228 49,713 50,277 788,542 60,449

11 28,512,666 41,407 13,006 13,351 2,397,470 14,797

12 27,497,214 12 146 141 14 429

Sum 372,317,567 358,286 108,159 109,553 4,901,902 125,535

From Table 3.1, it is evident that the encoding itself achieved a compression ratio of 1039

which was further improved to 3442 by application of the LZMA2 compression. While, the

standard GRS and GReEn algorithms compressed the dataset with ratios of 76 and 2966

respectively. This translates to a 97.7% improvement over GRS (4,901,902 bytes) and a 13.8%

improvement over GReEn (125,535 bytes) using MLCX algorithm.

Observe that, the compressed data obtained upon encoding chromosomes 6, 9 and 12

were 12 bytes each. These chromosomes are identical with the reference TIGR5.0 and only

needed one triplet in triples file for encoding. However, further compression of the obtained

output files in MLCX using the LZMA2 or PPMD resulted in data expansion. Procedure on how to

handle such distinct case is discussed in section 3.2.2.

3.2.2 Homo sapiens genome- KOREF

Data compression tests were conducted by compressing the Homo sapiens genome with

KOREF assembly [1] using KOREF_20090224 as target and KOREF_20090131 as reference. The

dataset was tested on different variations of symbol-case in the extended genome alphabet.

Firstly, MLCX compression was deployed on the original extended genome alphabet with |∑| of

15

21 symbols {A, C, G, K, M, R, S, T, W, Y, a, c, g, k, m, n, r, s, t, w, and y} in KOREF dataset. Later,

compression methodology was applied for the genome alphabet where character-case is not

significant with |∑| of 11 symbols. for the 24 chromosome. Further, all the non-ATCG characters

of the extended alphabet were mapped to a symbol ‘N’ and compression scheme was applied

with |∑| of 5 symbols {a, c, g, t, n}.

As a special case for the mitochondria DNA chromosome M, LZMA2 technique was not

applied on C, the basic encoded sequence, since this led to data expansion rather than

compression. Therefore, the chromosome M was indicated by simply appending a 25-bitstring

header, without further compression. This technique increases the size of the overall encoded

file by 4 bytes, but it is still better than the GRS and GreEn results.

3.2.2.1 Compressing the original sequence using the original extended genome alphabet

Table 3.2 summarizes the results for the case where the original sequence alphabet was

preserved. The results obtained by compressing the encoded symbols and triples (see Section

3.1.1) files with LZMA2 were 21.39% and 13.97% improvement respectively, over GRS and

GReEn algorithms respectively. On the other hand, compression performed with PPMD algorithm

for the encoded symbols and triples, were significantly higher when comparison with GRS and

GReEn. The original 3,080,436,051 bytes of data from KOREF_20090224 dataset is compressed

to 15,460,323 bytes using MLCX encoding technique in conjunction with LZMA2 compression.

3.2.2.2 Case when the character-case of the alphabet symbol is not significant

In this section, the results are summarized for the scenario where in the character-case

(upper/lower) of the alphabet considered were not significant. Here, the genome alphabet in

the KOREF assembly will contain just 11 symbols {A, C, G, K, M, R, S, T, W, Y, N} for 24

chromosomes and the chromosome M with only 7 symbols. Detailed results are shown in Table

3.3. In this scenario, a total of 3,080,436,051 bytes in the considered dataset was compressed

to 2,178,031 bytes using LZMA2 and to 3,429,666 bytes using PPMD.

3.2.2.3 Case with an alphabet composed only of characters from set {a, c, g, t, n}

In this scenario, the entire set of characters were transformed to lowercase prior to

compression and the unknown nucleotides were all mapped to symbol ‘n’. After the said

mapping transformation, the sequences in the genome dataset will comprise only of characters

from the set {a, c, g, t, n} reducing the alphabet set size to 5 instead of 21. In this variation, the

original 3,080,436,051 bytes in the considered genome dataset was compressed to 2,142,110

bytes using LZMA2 as shown in Table 3.4. Post the encoding step, the encoded symbols and

triple’s files using LZMA2 compression technique provided better results than RLZ and GRS. The

GReEn approach [18] recorded the best result in this scenario.

16

Table 3.2: Compression results for KOREF_20090224 using KOREF_20090131
as reference while preserving the original extended genome alphabet.

C denotes the result of the encoded genome using basic MLCX encoding.

L(C), P(C) denote results of applying LZMA2, PPMD compression on C.
|X| denotes the length or size of X in bytes.

Chromo
some

Size of
Chromosome

(bytes)

MLCX
GRS [17]
(bytes)

GReEn [18]
(bytes)

|C|
(bytes)

|L(C)|
(bytes)

|P(C)|
(bytes)

1 247,249,719 2,836,652 1,082,859 1,529,521 1,336,626 1,225,767

2 242,951,149 2,871,186 1,050,170 1,538,040 1,354,059 1,272,105

3 199,501,827 2,115,410 790,444 1,168,800 1,011,124 971,527

4 191,273,063 2,398,432 910,898 1,298,385 1,139,225 1,074,357

5 180,857,866 2,064,874 764,458 1,119,632 988,070 947,378

6 170,899,992 1,902,067 710,355 1,042,874 906,116 865,448

7 158,821,424 2,326,721 844,194 1,216,189 1,096,646 998,482

8 146,274,826 1,617,884 617,996 877,833 764,313 729,362

9 140,273,252 1,877,509 704,205 971,220 864,222 773,716

10 135,374,737 1,623,010 617,633 872,519 768,364 717,305

11 134,452,384 1,586,558 604,901 861,654 755,708 716,301

12 132,349,534 1,476,523 566,997 810,150 702,040 668,455

13 114,142,980 1,100,576 399,527 587,787 520,598 490,888

14 106,368,585 1,026,227 377,695 552,091 484,791 451,018

15 100,338,915 1,055,663 398,720 549,673 496,215 453,301

16 88,827,254 1,225,378 443,009 630,605 567,989 510,254

17 78,774,742 1,081,739 396,371 566,697 505,979 464,324

18 76,117,153 865,138 320,361 448,896 408,529 378,420

19 63,811,651 862,129 320,789 459,144 399,807 369,388

20 62,435,964 605,179 229,418 320,095 282,628 266,562

21 46,944,323 488,340 180,096 435,182 226,549 203,036

22 49,691,432 568,734 205,244 446,176 262,443 230,049

X 154,913,754 7,525,925 2,494,884 3,649,064 3,231,776 2,712,153

Y 57,772,954 1,343,260 429,099 581,344 592,791 481,307

M 16,571 151 151(*) 151(*) 183 127

Sum 3,080,436,051 42,445,265 15,460,474 22,533,722 19,666,791 17,971,030

17

Table 3.3: Compression results for KOREF_20090224 using KOREF_20090131
as reference when the symbol case in the extended genome alphabet is ignored.

C denotes the result of the encoded genome using basic MLCX encoding.

 L(C), P(C) denote results of applying LZMA2, PPMD compression on C.
|X| denotes the length or size of X in bytes.

Chromos
ome

Size of
Chromosome

(bytes)

MLCX

|C|
(bytes)

|L(C)|
(bytes)

|P(C)|
(bytes)

1 247,249,719 381,577 161,319 256,974

2 242,951,149 356,526 153,805 239,789

3 199,501,827 284,096 119,348 190,691

4 191,273,063 330,381 137,301 219,597

5 180,857,866 259,922 109,768 173,917

6 170,899,992 265,222 110,544 175,675

7 158,821,424 292,797 121,289 192,652

8 146,274,826 222,972 93,378 146,574

9 140,273,252 309,512 132,957 201,428

10 135,374,737 245,264 103,115 160,554

11 134,452,384 222,735 92,471 145,730

12 132,349,534 214,123 88,447 138,954

13 114,142,980 148,938 62,730 97,607

14 106,368,585 141,128 57,354 93,249

15 100,338,915 138,219 58,777 91,122

16 88,827,254 151,606 62,779 97,541

17 78,774,742 136,168 57,030 88,495

18 76,117,153 113,469 47,122 73,573

19 63,811,651 130,468 53,531 82,966

20 62,435,964 94,273 38,689 60,088

21 46,944,323 71,121 28,744 44,373

22 49,691,432 81,329 33,663 50,898

X 154,913,754 523,282 196,868 322,567

Y 57,772,954 152,464 57,002 84,652

M 16,571 64 64(*) 64(*)

Sum 3,080,436,051 5,267,656 2,178,095 3,429,666

18

Table 3.4: Compression results for KOREF_20090224 using KOREF_20090131
as reference when alphabet only composed of characters {a, c, g, t, n}.

C denotes the result of the encoded genome using basic MLCX encoding.

L(C) denotes result of applying LZMA2 compression on C.
|X| denotes the length or size of X in bytes.

Chromosome
Size of

Chromosome
(bytes)

MLCX
RLZ [20]
(bytes)

GRS [17]
(bytes)

GReEn[18]
(bytes)

|C|
(bytes)

|L(C)|
(bytes)

1 247,249,719 375,756 152,562 591,629 152,388 90,555

2 242,951,149 357,368 146,673 576,769 146,754 89,440

3 199,501,827 284,821 117,372 472,814 117,544 72,708

4 191,273,063 330,939 135,034 471,157 134,628 83,611

5 180,857,866 260,446 108,110 428,287 108,407 66,597

6 170,899,992 265,974 108,776 411,404 109,866 67,264

7 158,821,424 293,461 119,001 395,524 119,223 71,898

8 146,274,826 223,280 92,707 350,337 94,139 56,650

9 140,273,252 309,882 131,109 357,584 119,647 68,607

10 135,374,737 245,797 101,536 335,464 101,486 60,303

11 134,452,384 223,127 90,831 326,836 91,380 54,966

12 132,349,534 214,769 87,643 320,444 89,170 55,408

13 114,142,980 149,195 58,306 266,378 64,313 36,962

14 106,368,585 141,483 58,643 248,165 58,865 34,245

15 100,338,915 138,595 58,020 235,094 56,569 32,693

16 88,827,254 151,886 61,496 217,748 60,580 35,315

17 78,774,742 136,504 56,172 193,700 55,582 33,836

18 76,117,153 113,625 46,447 182,604 48,098 29,191

19 63,811,651 130,763 52,873 162,826 53,355 30,505

20 62,435,964 94,494 38,178 149,403 38,114 22,969

21 46,944,323 71,135 28,501 112,822 29,048 16,620

22 49,691,432 81,440 33,387 119,791 32,562 18,423

X 154,913,754 523,473 202,113 428,878 224,997 129,497

Y 57,772,954 152,219 56,620 150,901 61,306 33,312

M 16,571 64 64(*) 56 75 54

Sum 3,080,436,051 5,270,496 2,142,174 7,506,615 2,168,096 1,291,629

19

3.2.3 Homo sapiens Genome- YH Vs KOREF

The KOREF genomes (KOREF_20090224 and KOREF_20090131) are obtained from two

individuals with the same ancestry (Korean). Thus they are relatively more similar when

compared with genomes from two people with different ancestry. This section details the test

case conducted on the Homo sapiens genome using YH assembly as target and KOREF_20090224

as reference. The YH genome is taken from a person with Han Chinese origin. Thus, there are

more differences between YH and KOREF genomes when compared with KOREF_20090224 and

KOREF_20090131. YH dataset consists of 24 chromosomes with byte sizes ranging between 50

MB to 247 MB and consists of sequence alphabet size of 11 symbols {A, C, G, K, M, N, R, S, T, W,

Y}. The mitochondria DNA chromosome M have lesser alphabet symbols. Although, the alphabet

case dependency was not implemented for this test scenario, it could be a potential work of

interest to investigate in the future.

Table 3.5 summarizes the compression results where the original sequence alphabet was

preserved in target YH and reference KOREF_20090224. GRS could not compress most of the

chromosomes in this assembly given the significant differences between the genome sequences

(here δ>0.3) [17]. The original 3,080,436,051 bytes in the considered dataset was compressed

to 19,365,065 bytes using LZMA2. This translates to a 38.4% improvement over GReEn

(31,415,217 bytes).

The compression ratio observed using target YH and reference KOREF_20090224 is 159.

In Table 3.2, the target KOREF_20090131 was compressed with the reference KOREF_20090224

with a compression factor of 199. In the reference based compression methodologies the

compression rates highly depend on the similarity between the to-be-encoded sequence

(target) and the reference. Referentially compressed DNA sequences comprise lists of long

stretches of interval matches and reach highest compression rates for in-species compression.

However, compressing, for instance, a human genome against a mouse genome leads to

considerably worse rates due to the many short matches found. The variation in the two

assemblies YH and KOREF in the Homo sapiens genome lead to reduction in compression

performance.

3.3 Choice of k-Parameter

The k-parameter is a threshold value to determine if it’s beneficial to either encode a

given CSS as symbol (i.e. 1 byte) or as triple (i.e. 12 bytes). Based on compression results

obtained for genomic dataset Arabidopsis Thaliana using the target TAIR9 and reference TAIR8,

k-parameter value was chosen to be 31 and used in MLCX compression scheme. This value is

acknowledged to change for other genomic datasets.

20

Table 3.5: Compression results for YH genome using KOREF_20090224 as

reference with original extended alphabet preserved. C denotes the result

of the encoded genome using basic MLCX encoding. L(C) denotes result of applying

LZMA2 compression on C.|X| denotes the length or size of X in bytes.

Chromosome
Size of

Chromosome
(bytes)

MLCX
GRS [17]
(bytes)

GReEn [18]
(bytes)

|C|
(bytes)

|L(C)|
(bytes)

1 247,249,719 4,848,860 2,618,422 2,349,124

2 242,951,149 3,985,810 1,431,230 2,420,007

3 199,501,827 3,437,153 1,230,786 17,410,946 1,730,477

4 191,273,063 3,546,960 1,257,452 1,877,056

5 180,857,866 3,086,822 1,104,082 1,792,278

6 170,899,992 3,243,274 1,149,085 25,815,446 1,588,739

7 158,821,424 2,958,977 1,059,713 1,820,425

8 146,274,826 2,590,052 915,747 1,358,770

9 140,273,252 2,293,134 836,928 1,476,495

10 135,374,737 2,383,251 848,497 1,353,193

11 134,452,384 2,469,256 874,995 1,274,433

12 132,349,534 2,352,218 807,042 16,136,610 1,174,966

13 114,142,980 1,687,363 602,282 11,227,954 866,266

14 106,368,585 1,648,189 563,406 826,672

15 100,338,915 1,460,972 521,666 892,429

16 88,827,254 1,560,767 547,736 1,015,246

17 78,774,742 1,303,343 470,271 864,710

18 76,117,153 1,372,841 485,903 13,187,892 713,787

19 63,811,651 1,146,510 411,414 589,422

20 62,435,964 1,115,182 387,408 8,409,776 493,404

21 46,944,323 795,214 275,232 726,269 374,383

22 49,691,432 756,235 262,401 444,932

X 154,913,754 1,637,742 583,009 3,258,188

Y 57,772,954 376,380 119,850 859,688

M 16,571 591 508 321 127

Sum 3,080,436,051 52,057,096 19,365,065 92,915,214 31,415,217

MLCX compression method uses the LPF data structure to represent the CSS’s in the

target. A left-to-right scan of LPF data was done choosing leftmost CSS in target (say T [i…i+l-

1], where l is length of LPF[i]). A decision is made whether to encode this CSS as either a triple

or a symbol. The next CSS is positioned at target, T [i+l…i+ l+ LPF[i+l]-1] of length LPF[i+l]

if previous CSS is encoded as a triple otherwise positioned at target, T [i+1…i+LPF[i+1]] of

length LPF[i+1]. Obviously, it is better to encode a length (l = 1) CSS with a 1-byte symbol,

rather than a 12-byte triple. It is clearly the case that for any CSS length 1 ≤ l < 12, since it is

21

better to encode the first symbol with 1-byte and take a chance that the next CSS to the right

will be significantly larger. Why can we afford to take this chance? One LPF property, which also

allows for an efficient construction of the data structure is that LPF [i + 1] ≥ LPF [i] −1. That

is, if we pass upon encoding the CSS at i of length (LPF[i] = l) as a triple, we can encode T[i] as

a symbol and (1) are guaranteed that there is at least a length (l − 1) CSS with a prefix of T [i +

1 ... n] and (2) the longest CSS common to a prefix of T [i + 1 ... n] is of length LPF [i + 1],

maybe even larger than LPF[i]. Clearly, we want to encode most CSSs as triples to take

advantage of the concise triple representation. Now, the question becomes: how large should

we set k, such that we can afford to take a risk passing up length (l < k) CSSs in hopes of finding

even larger CSSs, better suited as triples?

3.3.1 Impact in Compression Method

First, we analyze the impact of the k parameter on compression. We performed

compression on a few chromosomes in Arabidopsis thaliana, Oryza sativa and Homo sapiens

genome datasets for k values ranging from 1 to 200. The empirical analysis was performed and

a model was proposed for determining the best k value rather than using a fixed k parameter.

Compression results for fixed and best k values are summarized in Table 3.6.

Table 3.6 shows an improvement of 1.87% for Arabidopsis thaliana, 12.5% for Oryza

Sativa and 1.4% for Homo sapiens genomic dataset. Undoubtedly, the results indicate that

algorithm becomes too optimistic for k ≥ 100. This reduces the possibility to encode smaller

CSS’s triples in notion that larger CSS’s might exist. In conclusion, k should be at least 11 and not

so large, that only CSS’s which are worthy of encoding into triples are considered.

3.3.2 Predicting the best k values

From the analysis as detailed in Section 3.3.1, it is evident that the MLCX compression

can output better compression. This improvement in output is attributed to the usage of best-

determined k value for each chromosome, rather than the using a generic/fixed ‘k-value’ for all

chromosomes in a genome species. Hence, there arises a need for the creation of an adaptive

model to predict the ‘k-value’ for any given chromosome in a genomic dataset.

As discussed in section 3.3, k parameter determines whether it's beneficial to encode a

particular Common SubString (CSS) either as a tuple or symbol. The k-value controls whether we

encode a given CSS as a triple to gain the benefit of concise triple representation. In triplet

encoding, best k-value is the optimal length CSS that cannot be neglected for encoding in a

notion of finding even larger CSS. k-value is dependent on both total number and length of the

larger CSS obtained between a given reference and target for compression.

22

Table 3.6: Results of MLCX compression scheme on Arabidopsis thaliana genome,
Oryza sativa genome, Homo sapiens genome for k=31 and best k range.

C denotes the result of the encoded genome using basic MLCX encoding. |X| denotes
the length or size of X in bytes.

Chromosome
Size of

Chromosome
(bytes)

MLCX Compression (in bytes)
Best Range for
k- parameter

|C|

(where k=31)

|C|

(best k range)

Arabidopsis thaliana Genome

2 19,698,289 504 504 16-200

4 18,585,056 4,555 4,418 18

Sum 119,146,348 7,324 7,187 -

Oryza sativa Genome

2 35,930,381 4,645 4,011 11-17

6 31,246,789 12 12 1-200

11 28,512,666 41,407 36,281 13-18

Sum 95,689,836 46,064 40,304 -

Homo Sapiens Genome

1 247,249,719 2,836,652 2,805,483 23

8 146,274,826 1,617,884 1,603,437 24

18 76,117,153 865,138 855,557 23

22 49,691,432 568,734 559,764 21

X 154,913,754 7,525,925 7,411,675 22

Y 57,772,954 1,343,260 1,305,661 19

Sum 732,019,838 14,757,593 14,541,577 -

One in many ways to evaluate the behavior of CSS between two strings is to assess

Longest Common Prefixes (LCPs) amongst all pairs of consecutive suffixes in a suffix array. The

suffix array is a sorted array considering all suffixes of a string. LCP array stores shared CSS

lengths between two suffixes calculated using the KASAI et al. algorithm [41]. For instance, LCP

array for S= “banana” has common prefixes “ana”, “na” and “a” between suffices for S with

corresponding lengths 3, 2 and 1. The k-value essentially depends on the longest independent

CSS blocks (i.e., “ana” in case of S= “banana”) but not on all the common prefixes. These

independent CSS blocks were acquired from LCP array by first sorting the calculated LCP array

values in descending order and then each sorted CSS is marked on Z=T°R to obtain only CSS

block lengths with no repeated common prefixes. Here ‘°’ denotes concatenation.

The statistical behavior of independent CSS pave the way to finding the best k-value. In

MLCX compression model statistics like mean, standard deviation, co-efficient of variation (CV),

entropy and median are used to predict the k-value best suited for a particular genome

sequence in compression. Few genomic sequences of Arabidopsis thaliana, Oryza sativa, and

23

Homo sapiens datasets were chosen as training data. Regression analysis was then performed

on training data to determine the predicted k ̂parameter. We used the following equation for

linear regression,

k=̂ 𝛽0+ 𝛽1𝜇 + 𝛽2 (
𝜎

𝜇
)

where µ is the mean , 𝜎 is the standard deviation , 𝛽0 is the intercept , 𝛽1 is the regression

coefficient for µ (the mean) and 𝛽2 is the regression coefficient for
𝜎

𝜇
 (the coefficient of

variation). Table 3.7, illustrates computed mean (µ), standard deviation (𝜎), coefficient of

variation (CV =
𝜎

𝜇
) of the independent CSS’s for the selected reference chromosomes in each

genome dataset.

Table 3.7: Statistics on training set belonging to Arabidopsis thaliana genome,
Oryza sativa genome, Homo sapiens genome.

Chromosome
Size of

Chromosome
(bytes)

Mean
(µ)

Standard
Deviation(𝝈)

Co-efficient of

Variation (
𝝈

𝝁
)

Arabidopsis thaliana Genome

2 19,698,289 6.47 9.24 1.43

4 18,585,056 6.55 21.26 3.25

Oryza sativa Genome

2 35,930,381 7.30 20.76 2.84

6 31,246,789 7.59 26.69 3.52

11 28,512,666 7.57 15.60 2.06

Homo sapiens Genome

1 247,249,719 8.27 3710.89 448.81

8 146,274,826 7.47 680.51 91.05

18 76,117,153 7.128 417.89 58.63

22 49,691,432 10.07 6,495.40 645.28

X 154,913,754 7.541 664.70 88.14

Y 57,772,954 16.61 16,095.15 968.77

From Table 3.7 it is observed that there is significant variation in the statistics from

different chromosomes, even for the same genome. Thus, to improve the prediction, different

models were developed for groups of chromosomes. Based on calculated CV value, three

clusters (CV<10, CV>100 and 10≤CV≤100) were identified. Linear regression on each cluster

determines the approximate prediction function and coefficients required to predict the k-

value. For this cluster based approach, we obtained the following models for the k-parameter

prediction:

24

CV< 10 : k ̂= 𝛽0+ 𝛽1𝜇 + 𝛽2 (
𝜎

𝜇
)

0≤CV≤100 : k ̂= 𝛽3 + 𝛽4𝜇 + 𝛽5 (
𝜎

𝜇
)

CV> 100 : k ̂= 𝛽6 + 𝛽7𝜇 + 𝛽8 (
𝜎

𝜇
)

Here, we obtained 𝛽0 =37.8442, 𝛽1 =-3.9993, 𝛽2 =2.7233, 𝛽3 =3.9138, 𝛽4 =4.0355, 𝛽5 =-0.

0042, 𝛽6 = 22.5897, 𝛽7 =1.1965, 𝛽8 = -0.0211.

To evaluate k,̂ compression outputs obtained using the generic/fixed k-value and

predicted k-value are compared. For Arabidopsis thaliana genome, the prediction model

degrades the compression by 0.3% but for both Oryza sativa and Homo sapiens improves by

11.3% and 0.44% respectively over fixed k-value compression. Also, required computing

resources (i.e. disk space and execution time) for this model are relatively high. Henceforward,

it was inferred that rather than prediction, a better approach would be to search for best range

of k-parameter,which can be determined from the compression results on the training dataset.

In the further sections, the best k-value range search in combination with new a decomposition

technique improves the compression performance using less computing resources.

3.4 Decomposition Technique:

From the study in Section 3.2.2, it was found that the scenario involving character case

of alphabet symbol being non-significant yielded a compression ratio of 585 which is much

better when compared with the compression ratio of 199 obtained by compressing the original

sequence with extended alphabet. It is known that the IUB/IUPAC amino acid and nucleic acid

codes use only upper-case letters [43]. Also some environments and formats (such as FASTA) do

not distinguish between lower-case and upper-case. According to the NCBI website for BLAST

input formats “Sequences [in FASTA format] are expected to be represented in the standard

IUB/IUPAC amino acid and nucleic acid codes, with these exceptions: lower-case letters are

accepted and are mapped into upper-case; …..”. Further for improved visualization some

programs/ environments (e.g. USC Genome Browser) use character-case to show repeats from

Repeat Masker and Tandem Repeats Finder [43]. To handle such environments, a new

decomposition method is developed with the objective of retaining the letter-case for the

alphabet symbols with the better compression results obtained when MLCX compression

scheme is applied. This technique is capable of handling non-ATGC characters as well as

lowercase characters. This makes it suitable for practical application to real-world sequencing.

The new technique will decompose each chromosomes into two parts: (1) the payload

(𝜌), representing the chromosome character-case, and (2) the character-case bitstring (α),

whereby each bit records whether the corresponding position in the target is an upper-case or

lower-case character. Next, we apply MLCX compression algorithm to compress ρ into Cρ and α

into Cα. For implementation, it is beneficial to pack 𝛽 consecutive bits from bitstring 𝛼 into a

25

primitive data type. For improved representation, the payload (𝜌) can also be converted into a

bitstream, e.g., using fixed-length encoding of the symbols into integers. Thus, similar to the

bitstring (α), we pack 𝛾 consecutive bits from the payload bitstream into a primitive datatype.

Thus, the parameters (𝛾, 𝛽, k) essentially define the encoding scheme. While k affects only the

encoding stage after preprocessing to the compute LPF, 𝛽 and 𝛾 have direct impact on both the

compression ratio and compression time. Figures 3.3.1 - 3.3.4 and Appendix A show the impact

of the parameters (𝛾, 𝛽, k) on the compression performance using the MLCX method. It is

observed that the performance varied significantly with these parameters. For the symbol-case

bitstring (𝛼), the best overall results were obtained at 𝛽= 28 for each chromosome, but at

different k values (kα), for given 𝛽. Similarly, for the payload bitstring (𝜌), the best results were

obtained at 𝛾= 8, and again at different k values (kρ)for given .

The MLCX compression algorithm was improved so that after preprocessing, encoding

using a given k value is relatively very fast requiring less than 1 second for the longest

chromosomes. This motivate the idea for the search of k, for a given method. Let the following

functions denote our previous algorithms: (triples; symbols) = MLCX(R; T; k) for reference R,

target T, and minimum-encoding length k. One challenge in the experiments is to select a k. The

best result can be achieved by executing the algorithms over several k values and then choosing

the scheme with the smallest encoded output. That is, we can specify the encoding as follows:

C =MLCX(R; T; k*); k*=argmink{MLCX(R; T; k)}. Similarly, we can perform the search on the

compressed data: L(C) =LZMA2(MLCX (R; T; k*)); k*=argmink{LZMA2(MLCX(R; T; k))}. Table 3.8

shows the compression results using the improved MLCX algorithm with total compressed size

of the genomes rather than the individual chromosomes. The table shows results under

different variations of the algorithmic parameters (𝛾, 𝛽, kρ,kα).

Figure 3.3.1 Homo sapiens chromosome 13: MLCX Encoding payload, ρ.

150000

170000

190000

210000

230000

250000

270000

1 6 11 16 21 26 31 36 41 46

|(
C
ρ
)|

 (
b

yt
es

)

K

packed_4 packed_8 packed_12 packed_16

packed_20 packed_24 packed_28

26

Figure 3.3.2 Homo sapiens chromosome 13: Using MLCX then LZMA2 to compress the
encoded payload, (Cρ).

Figure 3.3.3 Homo sapiens chromosome 13: MLCX Encoding character-case bitstring, α.

55000

65000

75000

85000

95000

105000

115000

125000

1 6 11 16 21 26 31 36 41 46

|L
(C

ρ
)|

 (
b

yt
e

s)

K

packed_4 packed_8 packed_12 packed_16

packed_20 packed_24 packed_28

270000

320000

370000

420000

470000

520000

570000

620000

670000

720000

770000

1 6 11 16 21 26 31 36 41 46

|(
C
α
)|

 (
b

yt
e

s)

K

Packed_4 Packed_8 Packed_12 Packed_16

Packed_20 Packed_24 Packed_28

27

Figure 3.3.4 Homo sapiens chromosome 13: Using MLCX then LZMA2 to compress the
encoded character-case bitstring, (Cα).

Table 3.8: Results (in bytes) for compressing the complete Homo sapiens

 genome U using the improved MLCX with different parameter variations 𝛾, 𝛽, kρ,kα. C
denotes the result of the encoded genome using improved MLCX encoding. L(C) denotes

result of applying LZMA2 compression on C.|X| denotes the length or size of X in bytes.

Parameters
Total

|U|

Improved MLCX
Encoding

|C|

Improved MLCX

compression |l(c)|
Total

|l(cρ)|+

|l(cα)| 𝜸 𝜷 kρ kα
Total |Cρ| Total |Cα|

Total

|l(cρ)|

Total

|l(cα)|

8 28 22-34 21-46 3,080,436,051 7,289,776 20,549,726 2,108,097 5,605,288 7,713,385

20 28 8-15 21-46 3,080,436,051 5,997,460 20,549,726 2,223,688 5,605,288 7,828,976

28 28 4-10 21-46 3,080,436,051 5,766,916 20,549,726 2,379,526 5,605,288 7,984,814

Table 3.9 shows the compression results using the improved MLCX algorithm by packing

𝛽 = 28 consecutive bits from bitstring (𝛼) and packing 𝛾 = 8 consecutive bits from the

payload (𝜌). The ranges for kρ and kα were chosen to be 22-34 and 21-46 respectively by

investigating the graphs in Figures 3.3.1 - 3.3.4 and Appendix A that depict influence of k both

on the compressing bitstring and compressing the payload. The table also shows the comparison

of the improved MLCX method against the state-of-the-art methods GRS and GreEn. The

chromosome mitochondria DNA (M) was not further compressed using LZMA2 and handled as

mentioned in the section 3.2.2. The improved MLCX compression produced significant

150000

160000

170000

180000

190000

200000

210000

1 6 11 16 21 26 31 36 41 46

|L
(C

α
)|

 (
b

yt
e

s)

K

Packed_4 Packed_8 Packed_12 Packed_16

Packed_20 Packed_24 Packed_28

28

improvement with compression ratio of 399 over the original MLCX method with compression

ratio of 199.

 Table 3.9: Compression results for Homo sapiens genome using KOREF_20090224
 as target and KOREF_20090131 as reference using the improved MLCX.

(𝛾 = 8, 𝛽 = 28, kρ=[22-34], kα=[21-46])

Chromosome
Size of

Chromosome
(bytes)

Improved MLCX
(bytes)

GRS [17]
(bytes)

GReEn [18]
(bytes)

1 247,249,719 546,657 1,336,626 1,225,767

2 242,951,149 543,557 1,354,059 1,272,105

3 199,501,827 416,949 1,011,124 971,527

4 191,273,063 472,449 1,139,225 1,074,357

5 180,857,866 424,557 988,070 947,378

6 170,899,992 377,809 906,116 865,448

7 158,821,424 429,718 1,096,646 998,482

8 146,274,826 320,016 764,313 729,362

9 140,273,252 369,472 864,222 773,716

10 135,374,737 327,461 768,364 717,305

11 134,452,384 314,419 755,708 716,301

12 132,349,534 295,639 702,040 668,455

13 114,142,980 219,995 520,598 490,888

14 106,368,585 205,825 484,791 451,018

15 100,338,915 207,114 496,215 453,301

16 88,827,254 231,513 567,989 510,254

17 78,774,742 207,982 505,979 464,324

18 76,117,153 170,949 408,529 378,420

19 63,811,651 169,397 399,807 369,388

20 62,435,964 128,469 282,628 266,562

21 46,944,323 99,924 226,549 203,036

22 49,691,432 110,924 262,443 230,049

X 154,913,754 934,563 3,231,776 2,712,153

Y 57,772,954 187,584 592,791 481,307

M 16,571 443(*) 183 127

Sum 3,080,436,051 7,713,385 19,666,791 17,971,030

In the next Chapter, a new and improved compression scheme is proposed by making

some key modifications in the MLCX algorithm. Test results for new scheme on three

representative genome datasets, comparative analysis of compression performance, execution

times are documented. The compression and decompression times for the decomposition

technique with pack bits are discussed.

29

Chapter 4

New Compression Scheme

Motivated by the MLCX compression, a new compression scheme is proposed in this

chapter. Compression and comparative analysis for this new method is tested on three genome

datasets namely Arabidopsis thaliana, Oryza sativa, Homo sapiens are discussed.

The backbone of the MLCX method lies in the total number and lengths of the common

substring (CSS’s) chosen to encode between target and reference sequences for compression.

The compression improves by encoding the longer CSS’s as triplets rather than encoding

individual symbols. The major drawback in MLCX scheme is the sequential scan on both LPF and

POS (position) data structures [19] to choose CSS for encoding. Also, the chosen CSS is encoded

as either triplet or symbol based on the k value. Due to this procedure, two short CSS’s may be

encoded rather than one longer CSS. This means more bytes are used to encode the substrings

which reduces the compression efficiency.

To address this limitation, a new compression scheme (SMLCX) is proposed in this study.

SMLCX stands for Sorted Maximal Longest Common Substring/Subsequence. The SMLCX

method selects and encodes, the longest CSSs of length at least minimal encoding length (k)

first. The CSSs are sorted based on the LPF and POS data structures and then the longest CSSs

are chosen instead of the left to right directive scan. Unlike the MLCX which uses two output

files (symbols and triples), in this method only one output file ‘words’ is used to write with the

long words. Compression and decompression methodologies for SMLCX are described in the

sections in this chapter.

4.1 SMLCX Methodology

In compression via the LPF, we know the sizes of substrings that may be encoded, but

we need a policy to tell us which substrings should be selected/encoded. MLCX algorithm selects

the substrings sequentially, left-to-right from the LPF. When compressing the factor matching a

prefix of target T[i...n], we encode this l-length factor only if l ≥ k. Otherwise, we encode the

(l =1) length symbol T[i]. Then, we consider compressing a prefix of the uncompressed T[i + l...n].

An important observation is that we can view the LPF as a mechanism that gives us a variety of

ways to efficiently store target (T) in a contiguous manner on disk. The notion of an LPF selection

policy naturally leads to exploring compression algorithms with different policies, motivating the

following technique.

One limitation of the MLCX method is embedded in the sequential left-to-right scan

policy, which is historically the policy with LPF processing. The problem is: factors are selected

30

in a left-to-right way and so, two leftmost short factors may be used to encode a substring rather

than one significantly longer factor. To resolve this issue, we propose a new policy: the Sorted

MLCX (SMLCX). The SMLCX will not use the LPF in the traditional sequential way and instead, we

will select the longest such factors available to encode the substrings of the target. The

challenges here are due to the fact that we are not processing factors left-to-right. By selecting

the longest factors available, (1) we require bookkeeping to guarantee that each symbol is

compressed exactly once and (2) we cannot immediately write the (likely) unordered

compressed encodings to file, since storing encodings in a left-to-right way reduces the amount

of information that is encoded per factor and allows for efficient decompression. These were

not challenges needed to be addressed by MLCX.

Like MLCX, we will only encode factors of length at least k, the minimal-encoding length.

Unlike the MLCX, the compressed output of the SMLCX will be one file named words. The

challenge is that both the (a) factor encodings and (b) singletons, i.e. individual symbol

encodings, will exist in the same file. Since the encoded data is in one file, we only need to

represent factors with two pieces of information: (1) the position of the factor in the dictionary

and (2) the length of the factor. Symbols can simply be encoded with their negated integer

representation so that we can distinguish between symbols and encoded factors in words.

Below, we detail the compression and decompression.

4.1.1 Compression

(1) Given the m-length reference R and the n-length target T, let Z = R ◦ T and compute

(LPFZ , POSZ) = lpfpos(Z).

(2) We collect the LPF/POS information for T by creating P. Each P[i] = (pos, len), for 1 ≤ i ≤ n,

where pos = i + m and len = LPFZ [i + m]. We sort P by the len attribute.

(3) Now, we define a way to record these encodings as they would appear in the target T. We

use an n-length working space W to record (a) whether a symbol was already encoded and (b)

the factor encoding information. As we choose to compress factors, we will update W. We set

W[i] = 0 to signify that the symbol T[i] was not yet compressed. We set W[i] = (dpos, len) to

signify the start of a length-len factor at position dpos in the dictionary. For other symbols

encoded by the factor, we set W[i] = 1. Initially, W[1...n] = {0, ..., 0}, signifying that no symbols

in T are compressed.

(4) Let i = n (length of target), where P[i] is the longest factor length.

(5) If P[i].len ≥ k, then we consider the factor with info P[i]. Otherwise, go to (6).

(a) When W[P[i].pos] ≠ 0, then W is already part of a longer factor, so we disregard this

factor and consider the next longest factor: decrement i and go to (5).

31

(b) Otherwise, W[P[i].pos] is not part of a current factor and we must verify that the

factor has a prefix of sufficient length not already encoded. Find the leftmost position q,

P[i].pos ≤ q ≤ P[i].pos + P[i].len − 1, in W with W[q] ≠ 0. If q does not exist, we can encode the

entire factor; set len1 = P[i].len. Otherwise, only W[P[i].pos ...q – 1] can be encoded. Adjust the

factor length: len1 = q − P[i].pos. If len1 < k, then the factor is too short to be encoded, so, go

to († 2). Otherwise, the factor is long enough to encode. So, we set the information for the start

of the factor: W[P[i].pos] = (POS[P[i].pos], len1) and mark the other symbols in the factor as

encoded: set W[j] = 1 for P[i].pos + 1 ≤ j ≤ P[i].pos + len1 − 1. Note that each W[j] = 1 prevents

the respective symbol from being encoded in another factor. († 2) Decrement i and go to (5).

(6) Lastly, we need to write the encodings of target T to the words file. Let i = 1.

(a) If W[i] = 0, then this symbol was not encoded by any factor, so we must encode the

individual T[i]. So, write to words the integer −int(T[i]) and increment i. Otherwise, W[i] will be

a pair (dpos, len), so we will write two integer words: the position of the factor in Z[1...i−1]

(W[i].dpos), and the factor length (W[i].len). Set i = i + W[i].len. If i ≤ |T|, go to (6a). Otherwise,

the complete T is compressed in words.

Now, we discuss the running time. The time required to compute (LPFZ , POSZ) is in

O(m + n) [45]. Since R and T are sequences for the same chromosome, we can assume that

m ∈ O(n) and so, constructing (LPFZ , POSZ) requires O(n) time. The time required to then sort

the LPF information of length-n is in O(n log n).

Given the LPF/POS information in sorted form, the running time of SMLCX is bounded

by O(nk). Since each element of the n-length working space W is processed to write the words

file, we need at least Ω(n) time. In the worst-case execution, we will have all LPFZ [i] = k,

m + 1 ≤ i ≤ m + n. By choosing the first factor, we will require O(k) time to set W; this choice is

a successful selection. Then, the next factors chosen will have overlapping conflicts with the

previously set factors, each requiring O(k) time to scan W and deem an unsuccessful selection.

In the worst case, we will need to process each of the O(n) potential factors, each requiring O(k)

time. Thus, O(nk) time is required. Another way to analyze the complexity is to observe that

successful selections will require a total of O(n) work and each of the potentially O(n)

unsuccessful selections will require at most O(k) time. The worst-case running time is formalized

as: Given a reference text R, an n-length target text T, sorted LPF/POS information on R ◦ T,

and a minimum encoding length k, the SMLCX compresses T with respect to R in time bounded

by Ω(n) and O(nk). If we run SMLCX on the same R and T for other choices of k, each execution

will require O(nk) time since the sorted LPF/POS information can be reused.

32

4.1.2 Decompression

Since SMLCX stores the encodings in left-to-right order with respect to their appearance

in the uncompressed target T, decompression is a simple left-to-right scan of words. The task is

to reconstruct Z, since the uncompressed target is then T = Z[m+1...m+n]. Note that Z does not

need to be physically constructed during decompression. We only refer to Z for ease of

discussion since: Z[i] = R[i], if 1 ≤ i ≤ m T[i – m], if m + 1 ≤ i ≤ m + n Let Z = R and i = m + 1. († 3)

We retrieve the next word w1 from words. If w1 < 0, this represents an encoded symbol, so, set

Z[i] = −w1 and increment i. Otherwise, we get the next word w2, and then set Z[i...i + w2 – 1] =

Z[w1...w1 + w2 – 1] (these symbols are set sequentially from left-to-right). Then, let i = i + w2.

Lastly, if i ≤ m + n then go to (†3). Otherwise, the uncompressed target is T = Z[m + 1...m + n].

Clearly, the running time of the MLF decompression algorithm is linear in the length of the

uncompressed target T. Given an n-length target text T compressed by SMLCX with respect to a

reference text R, the decompression of T requires O(n) time.

4.2 Compression Results

For consistency and comparison with earlier work, the proposed SMLCX compression

scheme is implemented to compress three similar biological genomic datasets – Arabidopsis

thaliana, Oryza sativa, Homo sapiens. In the dataset of Homo sapiens, two different assemblies,

KOREF and YH are analyzed. The experiments were conducted on the AWS platform with EC2

instance embedded with the m4.4x large environment properties.

The impact of the influential k-parameter in SMLCX compression is studied by

compressing the genome for a range of k values in this chapter. Further, compression of the

obtained encoded output ‘words’ file is done using the standard compression scheme LZMA2.

4.2.1 Arabidopsis thaliana genome

SMLCX compression of the Arabidopsis thaliana genome chromosomes was performed

using TAIR 9 as target and TAIR 8 as reference. Dataset comprises of five chromosomes with

byte sizes approximately ranging somewhere between 18.5MB to 30.5MB. Generally, the

chromosomes in this dataset contain alphabet sizes of 11 symbols. Nevertheless, chromosomes

4 and 5 have alphabet sizes of 7, 5 respectively.

 To find the best k, close inspection of compression results for chromosome 1 with

varying k values is done. From Figure 4.1, best k parameter value is observed at 9. Therefore, we

choose k=9 for this compression technique. Table 4.1 shows the compression results for all the

chromosomes in this genome dataset.

33

Figure 4.1: SMLCX Compression of chromosome 1 of TAIR genome for different k values

Table 4.1 SMLCX Compression results for the Arabidopsis thaliana genome alphabet

Results for TAIR9 genome using TAIR8 as reference.

C denotes the result of the encoded genome using SMLCX encoding.

L(C) denotes result of applying LZMA2 compression on C.|X| denotes the
length or size of X in bytes

Chromosome(C) SMLCX
MLCX [19]

(bytes)

GRS [17]
(bytes)

GReEn[18]

(bytes)

Size in
bytes

|C|
(bytes)

|L(C)|
(bytes)

1 30,427,671 876 784 963 715 1,551

2 19,698,289 416 457 584 385 937

3 23,459,830 620 606 759 2,989 1,097

4 18,585,056 3,812 2,227 2,507 1,951 2,356

5 26,975,502 336 395 502 604 618

Sum 119,146,348 6,060 4,469 5,315 6,644 6,559

It is evident that SMLCX scheme showed an improvement of 15.9% over the MLCX

scheme for this genomic dataset. All of the chromosomes in this genome dataset are

competitive with the GRS and GReEn systems, except for chromosome 4. We attribute this to

chromosome 4 having the smallest average CSS length of about 326K, followed by chromosome

3 (≈455K), chromosome 1 (≈458K), chromosome 2 (≈510K), and chromosome 5 (≈1,704K).

Overall, SMLCX compressed all the chromosomes in Arabidopsis thaliana genome in less bytes,

when compared with GRS, GReEn and MLCX scheme.

0

1000

2000

3000

4000

5000

6000

7000

8000

1 7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

1
0

3

1
0

9

1
1

5

1
2

1

1
2

7

1
3

3

1
3

9

1
4

5

1
5

1

1
5

7

1
6

3

1
6

9

1
7

5

1
8

1

1
8

7

1
9

3

1
9

9

B
Yt

es
 in

 W
o

rd
s

Fi
le

K values

TAIR: Compression of Chromosome 1 with k=1 to 200

34

4.2.2 Oryza sativa Genome

SMLCX compression is tested on the Orzya sativa genome using TIGR6.0 as reference

and TIGR5.0 as target. For this test, k is chosen to be 9. Compression results for each

chromosome are shown in Table 4.2.

Table 4.2: SMLCX Compression results for Orzya sativa genome alphabet results for

TIGR5.0 genome using TIGR6.0 as reference. C denotes
 the result of the encoded genome using SMLCX encoding.

L(C) denotes result of applying LZMA2 compression on C.
|X| denotes the length or size of X in bytes

Chromosome(C) SMLCX
MLCX [19]

(bytes)

GRS [17]
(bytes)

GReEn[18]

(bytes)
Size in bytes

|C|
(bytes)

|L(C)|
(bytes)

1 43,268,879 14,344 5,626 4,735 1,502,040 4,972

2 35,930,381 4,592 1,939 1,649 1,409 1,906

3 36,406,689 52,460 19,107 15,693 47,764 17,890

4 35,278,225 20,724 7,902 6,636 36,145 6,750

5 29,894,789 16,652 6,180 5,431 6,177 5,539

6 31,246,789 8 8(*) 12(*) 14 482

7 29,696,629 5,536 2,384 2,064 4,067 2,448

8 28,439,308 20,068 7,970 8,794 118,246 9,507

9 23,011,239 8 8(*) 12(*) 14 366

10 23,134,759 170,828 59,439 49,713 788,542 60,449

11 28,512,666 38,776 14,434 13,006 2,397,470 14,797

12 27,497,214 8 8(*) 12(*) 14 429

Sum 372,317,567 344,004 125,005 107,757 4,901,902 125,535

As seen in the MLCX scheme the results for the chromosomes 6,9,12 were bloated if

further compression of the words file is done using LZMA2. This problem was handled as

discussed in section 3.2.1. The SMLCX method results were comparable to GReEn and MLCX

method. The GRS method was not competitive on this task. The overall best result on this

genome was obtained with MLCX.

4.2.3 Homo sapiens Genome- KOREF

We conducted experiments compressing the Homo sapiens genome with KOREF

assembly using KOREF_20090224 as the target and KOREF_20090131 as the reference. For this

test, k is chosen to be 9. Compression results for each chromosome are shown in Table 4.3. As

seen earlier, the results were comparable to MLCX method with improvement over GRS, GReEn.

The mitochondria DNA chromosome M results were bloated if further compression of the words

file is done using the LZMA2 and was handled in the similar way discussed in section 3.2.2.

35

Table 4.3: SMLCX Compression results while preserving the original extended
Homo sapiens genome alphabet results for KOREF_20090224 genome using

KOREF_20090131 as reference. C denotes the result of the encoded genome using SMLCX

encoding. L(C) denotes result of applying LZMA2 compression on C.
|X| denotes the length or size of X in bytes.

Chromosome(C) SMLCX
MLCX [19]

(bytes)

GRS [17]
(bytes)

GReEn[18]

(bytes)
Size in bytes |C|

(bytes)
|L(C)|
(bytes)

1 247,249,719 351,577 252,420 161,319 1,336,626 1,225,767

2 242,951,149 336,526 234,220 153,805 1,354,059 1,272,105

3 199,501,827 261,112 115,265 119,348 1,011,124 971,527

4 191,273,063 302,436 134,034 137,301 1,139,225 1,074,357

5 180,857,866 237,192 106,856 109,768 988,070 947,378

6 170,899,992 243,076 108,620 110,544 906,116 865,448

7 158,821,424 267,912 118,502 121,289 1,096,646 998,482

8 146,274,826 204,532 91,669 93,378 764,313 729,362

9 140,273,252 272,488 119,530 132,957 864,222 773,716

10 135,374,737 222,700 98,705 103,115 768,364 717,305

11 134,452,384 204,336 90,296 92,471 755,708 716,301

12 132,349,534 196,444 85,890 88,447 702,040 668,455

13 114,142,980 139,004 62,305 62,730 520,598 490,888

14 106,368,585 129,688 56,986 57,354 484,791 451,018

15 100,338,915 126,128 55,301 58,777 496,215 453,301

16 88,827,254 138,732 60,961 62,779 567,989 510,254

17 78,774,742 123,560 55,178 57,030 505,979 464,324

18 76,117,153 105,668 46,786 47,122 408,529 378,420

19 63,811,651 118,016 51,941 53,531 399,807 369,388

20 62,435,964 87,308 38,798 38,689 282,628 266,562

21 46,944,323 66,752 29,065 28,744 226,549 203,036

22 49,691,432 73,904 32,381 33,663 262,443 230,049

X 154,913,754 503,080 209,588 196,868 3,231,776 2,712,153

Y 57,772,954 142,660 58,107 57,002 592,791 481,307

M 16,571 56 56(*) 64(*) 183 127

Sum 3,080,436,051 4,854,887 2,313,460 2,178,095 19,666,791 17,971,030

36

4.2.4 Homo sapiens Genome- YH Vs KOREF

The proposed compression methodology was applied in compressing the Homo sapiens

genome using the YH assembly as the target and KOREF_20090224 as reference. A detailed

study on the alphabet character-case was not performed for this batch of experiments.

Table 4.4: SMLCX Compression results while preserving the original extended
Homo sapiens genome alphabet for YH genome using KOREF_20090224 as reference.

C denotes the result of the encoded genome using SMLCX encoding.

 L(C) denotes result of applying LZMA2 compression on C.
|X| denotes the length or size of X in bytes.

Chromosome(C) SMLCX
MLCX [19]

(bytes)

GRS [17]
(bytes)

GReEn [18]

(bytes)
Size in bytes

|C|
(bytes)

|L(C)|
(bytes)

1 247,249,719 4,548,860 2,145,631 2,618,422 2,349,124

2 242,951,149 3,615,608 1,384,772 1,431,230 2,420,007

3 199,501,827 3,121,396 1,187,878 1,230,786 17,410,946 1,730,477

4 191,273,063 3,220,656 1,223,732 1,257,452 1,877,056

5 180,857,866 2,804,072 1,071,502 1,104,082 1,792,278

6 170,899,992 2,949,028 1,112,749 1,149,085 25,815,446 1,588,739

7 158,821,424 2,678,568 1,019,833 1,059,713 1,820,425

8 146,274,826 2,357,436 895,181 915,747 1,358,770

9 140,273,252 2,066,628 794,013 836,928 1,476,495

10 135,374,737 2,161,292 823,306 848,497 1,353,193

11 134,452,384 2,244,832 851,871 874,995 1,274,433

12 132,349,534 2,137,476 816,001 807,042 16,136,610 1,174,966

13 114,142,980 1,547,220 588,776 602,282 11,227,954 866,266

14 106,368,585 1,500,004 571,194 563,406 826,672

15 100,338,915 1,329,604 506,261 521,666 892,429

16 88,827,254 1,408,464 531,196 547,736 1,015,246

17 78,774,742 1,173,280 451,096 470,271 864,710

18 76,117,153 1,259,076 477,600 485,903 13,187,892 713,787

19 63,811,651 1,021,480 391,876 411,414 589,422

20 62,435,964 1,017,300 384,103 387,408 8,409,776 493,404

21 46,944,323 730,600 271,385 275,232 726,269 374,383

22 49,691,432 688,000 259,989 262,401 444,932

X 154,913,754 1,465,676 578,227 583,009 3,258,188

Y 57,772,954 335,052 123,221 119,850 859,688

M 16,571 576 576(*) 508 321 127

Sum 3,080,436,051 47,382,184 18,461,969 19,365,065 92,915,214 31,415,217

37

For this dataset, improvement of 4.6 % over MLCX method was seen. Significant

improvement was seen over GRS and GReEn. The mitochondria DNA chromosome M results

were bloated if further compression of the words file is done using the LZMA2 and was handled

in the similar way discussed in section 3.2.2.

4.2.5 SMLCX Results using Decomposition Technique

Similar to MLCX method an analysis is performed for packing of bit-level data with

decomposition technique to improve the compression of the SMLCX. As seen in Section 3.4,

the influence of parameters (𝛾, 𝛽, kρ,kα) on compression throughput is studied. Figures 4.2.1-

4.2.4 and Appendix B show the impact of these parameters on the compression performance

using the SMLCX method. For the symbol-case bitstring (𝛼), the best overall results were obtain

ed at 𝛽= 20 for each chromosome, but at different k values (kα), for given 𝛽. Similarly, for the

payload bitstring (𝜌), the best results were obtained at 𝛾= 8, and again at different k values (kρ)

for given 𝛾. Table 4.5 shows the compression results using the improved MLCX algorithm with

total compressed size of the genomes rather than the individual chromosomes. The table

shows results under different variations of the algorithmic parameters (𝛾, 𝛽, kρ,kα).

Table 4.5: Results (in bytes) for compressing the complete Homo sapiens

genome U using the SMLCX with different parameter variations 𝛾, 𝛽, kρ,kα.

Parameters Total

|U|
(bytes)

SMLCX Encoding
(bytes)

SMLCX compression
(bytes)

Total

|l(cρ)|+

|P(cα)|
(bytes)

𝜸 𝜷 kρ kα
Total |Cρ| Total |Cα|

Total

|L(cρ)|

Total

|P(cα)|

8 20 3-100 30-100 3,080,436,051 4,831,508 57,750,988 2,142,475 4,190,013 6,332,488

8 28 3-100 6-20 3,080,436,051 4,831,508 15,810,401 2,142,475 5,300,274 7,442,749

28 20 3-50 30-100 3,080,436,051 4,401,756 57,750,988 2,494,039 4,190,013 6,684,052

28 28 3-50 6-20 3,080,436,051 4,401,756 15,810,401 2,494,039 5,300,274 7,794,313

Table 4.6 shows the compression results using the SMLCX algorithm by packing

𝛽 = 20 consecutive bits from bitstring (𝛼) and packing 𝛾 = 8 consecutive bits from the

payload (𝜌). The ranges for kρ and kα were chosen to be 3-100 and 30-100 respectively by

investigating the graphs in figures 4.2.1-4.2.4 and Appendix B that depict influence of k both on

the bitstring and payload. The table also shows the comparison of the SMLCX method against

the state-of-the-art methods MLCX, GRS and GreEn. The chromosome mitochondria DNA (M)

was not further compressed using LZMA2 and handled as mentioned in the section 3.2.2. The

SMLCX compression produced significant improvement with compression ratio of 486 over the

improved MLCX method with compression ratio of 399.

38

Table 4.6: SMLCX Compression results for Homo sapiens genome using

KOREF_20090224as target and KOREF_20090131 as reference.

Chro
moso

me

Size of
Chromosome

(bytes)

 SMLCX
(bytes)

Improved MLCX
Compression

[from Table 3.9]
(bytes)

GRS
[17]

(bytes)

GReEn
[18]

(bytes)

1 247,249,719 450,440 546,657 1,336,626 1,225,767

2 242,951,149 446,709 543,557 1,354,059 1,272,105

3 199,501,827 337,298 416,949 1,011,124 971,527

4 191,273,063 376,490 472,449 1,139,225 1,074,357

5 180,857,866 324,210 424,557 988,070 947,378

6 170,899,992 308,658 377,809 906,116 865,448

7 158,821,424 353,782 429,718 1,096,646 998,482

8 146,274,826 261,692 320,016 764,313 729,362

9 140,273,252 306,677 369,472 864,222 773,716

10 135,374,737 268,475 327,461 768,364 717,305

11 134,452,384 255,167 314,419 755,708 716,301

12 132,349,534 241,581 295,639 702,040 668,455

13 114,142,980 182,753 219,995 520,598 490,888

14 106,368,585 167,683 205,825 484,791 451,018

15 100,338,915 169,927 207,114 496,215 453,301

16 88,827,254 190,932 231,513 567,989 510,254

17 78,774,742 170,379 207,982 505,979 464,324

18 76,117,153 140,284 170,949 408,529 378,420

19 63,811,651 139,849 169,397 399,807 369,388

20 62,435,964 104,536 128,469 282,628 266,562

21 46,944,323 81,549 99,924 226,549 203,036

22 49,691,432 134,093 110,924 262,443 230,049

X 154,913,754 758,955 934,563 3,231,776 2,712,153

Y 57,772,954 160,043 187,584 592,791 481,307

M 16,571 326(*) 443(*) 183 127

Sum 3,080,436,051 6,332,488 7,713,385 19,666, 791 17,971,030

39

Figure 4.2.1 Homo sapiens chromosome 13: SMLCX Encoding payload, ρ.

Figure 4.2.2 Homo sapiens chromosome 13: Using SMLCX then LZMA2 to compress the
encoded payload, (Cρ).

0

100000

200000

300000

400000

500000

1 6 11 16 21 26 31 36 41 46

|(
C
ρ
)|

 (
b

yt
e

s)

K

pack_4 pack_8 pack_12 pack_16

pack_20 pack_24 Pack_28

60000

70000

80000

90000

100000

110000

120000

1 6 11 16 21 26 31 36 41 46

|L
(C

ρ
)|

 (
b

yt
e

s)

K

pack_4 pack_8 pack_12 Pack_16

Pack_20 Pack_24 Packed_28

40

Figure 4.2.3 Homo sapiens chromosome 13: SMLCX Encoding character-case bitstring, α.

Figure 4.2.4 Homo sapiens chromosome 13: Using SMLCX then ppmd to compress the
encoded character-case bitstring, (Cα).

200000

300000

400000

500000

600000

700000

800000

1 6 11 16 21 26 31 36 41 46

|(
C
α
)|

 (
b

yt
e

s)

K

packed_4 packed_8 packed_12 packed_16

packed_20 packed_24 packed_28

100000

120000

140000

160000

180000

200000

220000

240000

1 6 11 16 21 26 31 36 41 46

|P
(C

α
)|

 (
b

yt
e

s)

K

Packed_4 packed_12 packed_8 Packed_16

Packed_20 packed_24 packed_28

41

4.3 Compression Time

We compared the compression time results for the Homo sapiens genome under the

decomposition technique. Table 4.7, shows the compression performance, compression times

and decompression times.

 Table 4.7: Comparison of the compression results for Homo sapiens genome using

KOREF_20090224 as target and KOREF_20090131 as reference

using the SMLCX and improved MLCX methods.

Tc : Compression Time ; TD : DeCompression Time

Size of

Chromosome
(bytes)

Improved MLCX Method SMLCX Method

Compresse
d

(bytes)

TC
(sec)

TD
(sec)

Compress
ed

(bytes)

TC
(sec)

TD
(sec)

1 247,249,719 546,657 897.21 0.57 450,440 927.98 0.76

2 242,951,149 543,557 922.08 0.56 446,709 960.30 0.74

3 199,501,827 416,949 748.53 0.47 337,298 769.15 0.63

4 191,273,063 472,449 717.84 0.44 376,490 747.05 0.60

5 180,857,866 424,557 677.74 0.42 324,210 702.03 0.56

6 170,899,992 377,809 651.06 0.40 308,658 660.55 0.53

7 158,821,424 429,718 587.26 0.37 353,782 611.46 0.50

8 146,274,826 320,016 542.87 0.35 261,692 559.44 0.46

9 140,273,252 369,472 479.85 0.33 306,677 493.86 0.44

10 135,374,737 327,461 497.28 0.32 268,475 514.80 0.43

11 134,452,384 314,419 475.89 0.31 255,167 494.64 0.41

12 132,349,534 295,639 482.37 0.31 241,581 500.32 0.39

13 114,142,980 219,995 375.94 0.26 182,753 392.19 0.34

14 106,368,585 205,825 349.75 0.25 167,683 360.06 0.32

15 100,338,915 207,114 322.07 0.23 169,927 334.88 0.31

16 88,827,254 231,513 305.05 0.21 190,932 310.18 0.28

17 78,774,742 207,982 282.27 0.19 170,379 291.34 0.26

18 76,117,153 170,949 272.29 0.18 140,284 181.62 0.24

19 63,811,651 169,397 208.10 0.16 139,849 208.50 0.20

20 62,435,964 128,469 214.29 0.16 104,536 224.33 0.19

21 46,944,323 99,924 141.05 0.12 81,549 146.70 0.15

22 49,691,432 110,924 144.30 0.13 134,093 150.94 0.14

X 154,913,754 934,563 589.84 0.43 758,955 622.20 0.83

Y 57,772,954 187,584 143.34 0.15 160,043 159.96 0.21

M 16,571 443(*) 4.71 0.01 326(*) 4.98 0.01

Sum 3,080,436,051 7,713,385 11032.98 7.33 6,332,488 11329.46 9.93

42

While the improved MLCX method resulted in improvements over the state-of-art, the

new SMLCX resulted in the best compression for every chromosome, except for Chromosome

22 and mitochondria DNA (M). The compression ratios obtained were 399 for the improved

MLCX and 486 for the SMLCX. These can be compared with those from related work, namely,

157 for GRS [17], 171 for GReEn [18] and 360 for MLCX [43].

However, the new SMLCX method required relatively more time for both compression

and decompression, when compared with MLCX. The major reason is the sorting stage required

by SMLCX in order to select the CSS’s with the longest lengths first.

43

Chapter 5

Conclusion

5.1 Summary

We study the problem of lossless compression of genome resequencing data using a

reference based approach. We analyzed various reference based genomic compression

algorithms like GRS, GReEn and MLCX. The study conducted on MLCX compression scheme

helped to understand the usage mechanism of the common substrings (CSS) for compression in

detail. During this study we proposed improved MLCX compression method and a new

decomposition technique. Using the proposed methodologies, a significant improvement in

compression ratio from 199 to 360 was observed for the Homo sapiens genome. For the MLCX

compression, the impact of the minimal encoding length the k-parameter was also studied in

terms of compression size in bytes. Further, we propose a prediction model to predict the

influential k value prior to compression. Proposed k-model further improved the MLCX

compression throughput for two genomes namely Oryza sativa and Homo sapiens by 11.3% and

0.44% respectively.

Our investigation on the nature and structure of the common substrings used by the

MLCX compression methodology led to a new compression scheme SMLCX. SMLCX, a new

reference-based lossless compression scheme builds on MLCX. This scheme performs

compression by encoding common substrings based on a sorted order, which significantly

improved compression performance over the original MLCX method. Using SMLCX, we

compressed the Homo sapiens genome with original size of 3,080,436,051 bytes to 6,332,488

bytes, for an overall compression ratio of 486. This can be compared to performance of current

state-of-the-art compression methods, with compression ratios of 157 (Wang et al. [17]), 171

(Pinho et al.[18]) and 360 (Beal et al., [43])

 5.2 Future Work

 For both improved MLCX and the SMLCX methods, we have used length-k CSS’s for the

compression. One direction for future work would be to identify techniques to improve these

algorithms to make use of CSS’s of various lengths. A dynamic approach to decide length-k based

on the structure of the CSS reduces the impact of the influential k-parameter value on the

compression obtained. Another direction for future work would be a study for prior knowledge

of pack bits (β) best suited for a given genome, or a given chromosome. The scope for using the

proposed methods in compressing the collections of target genomes using the collection of

reference genomes in a specific genome species can also be inspected.

44

References

[1] F. Sanger and A. R. Coulson, “A rapid method for determining sequences in DNA by primed
synthesis with DNA polymerase,” J. Mol. Biol., vol. 94, no. 3, 1975.

[2] T. Bose, M. H. Mohammed, A. Dutta, and S. S. Mande, “BIND - An algorithm for loss-less
compression of nucleotide sequence data,” J. Biosci., vol. 37, no. 4, pp. 785–789, 2012.

[3] S. D. Kahn, “On the Future of Genomic Data,” Science (80-.)., vol. 331, no. 6018, pp. 728–
729, 2011.

[4] D. Adjeroh and F. Nan, “On compressibility of protein sequences,” Data Compression
Conf. Proc., pp. 422–434, 2006.

[5] S. Deorowicz and S. Grabowski, “Data compression for sequencing data,” Algorithms Mol.
Biol., vol. 8, no. 1, p. 25, 2013.

[6] S. Grumbach and F. Tahi, “A new challenge for compression algorithms: Genetic
sequences,” Inf. Process. Manag., vol. 30, no. 6, pp. 875–886, 1994.

[7] E. Rivals et al., “Detection of significant patterns by compression algorithms: the case of
approximate tandem repeats in DNA sequences,” Comput Appl Biosci, vol. 13, no. 2, pp.
131–136, 1997.

[8] E. Rivals, J. Delahaye, M. Dauchet, and O. Delgrange, “A guaranteed compression scheme
for repetitive DNA sequences,” in Data Compression Conference, 1996. DCC’96.
Proceedings, 1996, p. 453.

[9] T. Matsumoto, K. Sadakane, and H. Imai, “Biological sequence compression algorithms.,”
Genome Inform. Ser. Workshop Genome Inform., vol. 11, pp. 43–52, 2000.

[10] X. Chen, M. Li, B. Ma, and J. Tromp, “DNACompress: Fast and effective DNA sequence
compression,” Bioinformatics, vol. 18, no. 12, pp. 1696–1698, 2002.

[11] G. Manzini and M. Rastero, “A simple and fast DNA compressor,” Softw. - Pract. Exp., vol.
34, no. 14, pp. 1397–1411, 2004.

[12] B. Behzadi and F. Le Fessant, “DNA compression challenge revisited,” Comb. Pattern
Matching Proc. CPM-2005, vol. 3537, pp. 190–200, 2005.

[13] M. D. Cao, T. I. Dix, L. Allison, and C. Mears, “A simple statistical algorithm for biological
sequence compression,” in Data Compression Conference Proceedings, 2007, pp. 43–52.

[14] G. Korodi and I. Tabus, “Normalized maximum likelihood model of order-1 for the
compression of DNA sequences,” in Data Compression Conference Proceedings, 2007, pp.
33–42.

[15] A. J. Pinho, A. J. R. Neves, and P. J. S. G. Ferreira, “Inverted-repeats-aware finite-context
models for DNA coding,” in European Signal Processing Conference, 2008.

[16] A. J. Pinho, P. J. S. G. Ferreira, A. J. R. Neves, and C. A. C. Bastos, “On the representability
of complete genomes by multiple competing finite-context (Markov) models,” PLoS One,
vol. 6, no. 6, 2011.

[17] C. Wang and D. Zhang, “A novel compression tool for efficient storage of genome
resequencing data,” Nucleic Acids Res., vol. 39, no. 7, 2011.

[18] A. J. Pinho, D. Pratas, and S. P. Garcia, “GReEn: A tool for efficient compression of genome

45

resequencing data,” Nucleic Acids Res., vol. 40, no. 4, 2012.
[19] R. Beal, T. Afrin, A. Farheen, and D. Adjeroh, “A new algorithm for ‘the LCS problem’ with

application in compressing genome resequencing data,” in Proceedings - 2015 IEEE
International Conference on Bioinformatics and Biomedicine, BIBM 2015, 2015, pp. 69–
74.

[20] S. Kuruppu, S. J. Puglisi, J. Zobel, E. Chavez, S. Lonardi, and Eds, “Relative Lempel-Ziv
compression of genomes for large-scale storage and retrieval,” String Process. Inf. Retr.,
vol. 6393/2010, pp. 201–206, 2010.

[21] S. Kuruppu, S. J. Puglisi, and J. Zobel, “Optimized relative Lempel-Ziv compression of
genomes,” Conf. Res. Pract. Inf. Technol. Ser., vol. 113, pp. 91–98, 2011.

[22] L. S. Heath, A. Hou, H. Xia, and L. Zhang, “A genome compression algorithm supporting
manipulation,” Proc LSS Comput Syst Bioinform Conf., pp. 38–49, 2010.

[23] N. Ma, K. Ramchandran, and D. Tse, “A Compression Algorithm Using Mis-aligned,” IEEE
Int. Symp. Inf. Theory, no. 1, pp. 16–20, 2012.

[24] Z. D. Stephens et al., “Big data: Astronomical or genomical?,” PLoS Biol., vol. 13, no. 7,
2015.

[25] R. N. Curnow and T. B. L. Kirkwood, “Statistical Analysis of Deoxyribonucleic Acid
Sequence Data--A Review,” J. R. Stat. Soc. Ser. A (Statistics Soc., vol. 152, no. 2, pp. 199–
220, 1989.

[26] S. Wandelt and U. Leser, “FRESCO: Referential compression of highly similar sequences,”
IEEE/ACM Trans. Comput. Biol. Bioinforma., vol. 10, no. 5, pp. 1275–1288, 2013.

[27] S. Deorowicz, A. Danek, and M. Niemiec, “GDC 2: Compression of large collections of
genomes,” Sci. Rep., vol. 5, p. 11565, 2015.

[28] S. Levy et al., “The diploid genome sequence of an individual human,” PLoS Biol., vol. 5,
no. 10, pp. 2113–2144, 2007.

[29] S. Deorowicz and S. Grabowski, “Robust relative compression of genomes with random
access,” Bioinformatics, vol. 27, no. 21, pp. 2979–2986, 2011.

[30] S. Deorowicz, A. Danek, and S. Grabowski, “Genome compression: A novel approach for
large collections,” Bioinformatics, vol. 29, no. 20, pp. 2572–2578, 2013.

[31] S. Grabowski and S. Deorowicz, “Engineering relative compression of genomes,” 2011.
[32] R. Beal and D. Adjeroh, “parameterized longest previous factor,” Theor. Comput. Sci., vol.

437, pp. 21–34, 2012.
[33] R. Beal and D. Adjeroh, “Variations of the parameterized longest previous factor,” in

Journal of Discrete Algorithms, 2012, vol. 16, pp. 129–150.
[34] D. Adjeroh, T. Bell, and A. Mukherjee, The burrows-wheeler transform: Data compression,

suffix arrays, and pattern matching. 2008.
[35] D. Gusfield, “Algorithms on strings, trees, and sequences: computer science and

computational biology,” Theory and Practice, vol. 28, no. 4. p. 554, 1997.
[36] S.-M. Ahn et al., “The first Korean genome sequence and analysis: Full genome

sequencing for a socio-ethnic group,” Genome Res., vol. 19, no. 9, pp. 1622–1629, 2009.
[37] J. J. Wang et al., “The diploid genome sequence of an Asian individual,” Nature, vol. 456,

no. 7218, pp. 60–5, 2008.
[38] E. Huala et al., “The Arabidopsis Information Resource (TAIR): a comprehensive database

and web-based information retrieval, analysis, and visualization system for a model

46

plant.,” Nucleic Acids Res., vol. 29, no. 1, pp. 102–5, 2001.
[39] S. Ouyang et al., “The TIGR Rice Genome Annotation Resource: Improvements and new

features,” Nucleic Acids Res., vol. 35, no. SUPPL. 1, 2007.
[40] H. B. F. Dixon, H. Bielka, and C. R. Cantor, “Nomenclature for incompletely specified bases

in nucleic acid sequences. Recommendations 1984,” Journal of Biological Chemistry, vol.
261, no. 1. pp. 13–17, 1986.

[41] T. Kasai, G. Lee, H. Arimura, S. Arikawa, and K. Park, “Linear-Time Longest-Common-Prefix
Computation in Suffix Arrays and Its Applications,” Proc. 12th Annu. Symp. Comb. Pattern
Matching, pp. 181–192, 2001.

[42] S. Wandelt, M. Bux, and U. Leser, “Trends in Genome Compression,” Curr. Bioinform., vol.
9, no. 3, pp. 315–326, 2014.

[43] R. Beal et al., “A new algorithm for ‘the LCS problem’ with application in compressing
genome resequencing data,” BMC Genomics, vol. 17, no. S4, p. 544, 2016.

[44] H. H. Otu and K. Sayood, “A new sequence distance measure for phylogenetic tree
construction,” Bioinformatics, vol. 19, no. 16, pp. 2122–2130, 2003.

[45] M. Crochemore and L. Ilie, “Computing Longest Previous Factor in linear time and
applications,” Inf. Process. Lett., vol. 106, no. 2, pp. 75–80, 2008.

[46] M. H. Y. Fritz, R. Leinonen, G. Cochrane, and E. Birney, “Efficient storage of high
throughput DNA sequencing data using reference-based compression,” Genome Res.,
vol. 21, no. 5, pp. 734–740, 2011.

47

Appendices

A Impact of Parameters (𝜸, 𝜷, kρ,kα) on MLCX compression

Figure 1 Homo sapiens chromosome 22: MLCX Encoding payload, ρ.

Figure 2 Homo sapiens chromosome 22: Using MLCX then LZMA2 to compress the
encoded payload, (Cρ).

85000

95000

105000

115000

125000

135000

145000

155000

1 6 11 16 21 26 31 36 41 46

|(
C
ρ
)|

 (
b

yt
e

s)

K

packed_4 packed_8 packed_12 packed_16

packed_20 packed_24 packed_28

30000

35000

40000

45000

50000

55000

60000

65000

70000

1 6 11 16 21 26 31 36 41 46

|L
(C

ρ
)|

 (
b

yt
e

s)

K

48

Figure 3 Homo sapiens chromosome 22: MLCX Encoding character-case bitstring, α.

Figure 4 Homo sapiens chromosome 22: Using MLCX then LZMA2 to compress the
encoded character-case bitstring, (Cα).

150000

200000

250000

300000

350000

400000

450000

1 6 11 16 21 26 31 36 41 46

|(
C
α
)|

 (
b

yt
e

s)

K

Packed_4 Packed_8 Packed_12 Packed_20

Packed_16 Packed_24 Packed_28

75000

80000

85000

90000

95000

100000

105000

1 6 11 16 21 26 31 36 41 46

|L
(C

α
)|

 (
b

yt
es

)

K

Packed_4 Packed_8 Packed_12 Packed_16

Packed_20 Packed_24 Packed_28

49

Figure 5 Homo sapiens chromosome X: MLCX Encoding payload, ρ.

Figure 6 Homo sapiens chromosome X: Using MLCX then LZMA2 to compress the
encoded payload, (Cρ).

500000

550000

600000

650000

700000

750000

800000

850000

900000

950000

1000000

1 6 11 16 21 26 31 36 41 46

|(
C
ρ
)|

 (
b

yt
e

s)

K

packed_4 packed_8 packed_12 packed_16

packed_20 packed_24 packed_28

170000

190000

210000

230000

250000

270000

290000

310000

330000

350000

370000

1 6 11 16 21 26 31 36 41 46

|L
(C

ρ
)|

 (
b

yt
e

s)

K

50

Figure 7 Homo sapiens chromosome X: MLCX Encoding character-case bitstring, α.

Figure 8 Homo sapiens chromosome X: Using MLCX then LZMA2 to compress the
encoded character-case bitstring, (Cα).

1000000

1500000

2000000

2500000

3000000

3500000

4000000

4500000

5000000

5500000

6000000

1 6 11 16 21 26 31 36 41 46

|(
C
α
)|

 (
b

yt
e

s)

K

packed_4 packed_8 packed_12 packed_16

packed_20 packed_24 packed_28

750000

800000

850000

900000

950000

1000000

1 6 11 16 21 26 31 36 41 46

|L
(C

α
)|

 (
b

yt
e

s)

K

packed_4 packed_8 packed_12 packed_16

packed_20 packed_24 packed_28

51

B Impact of Parameters (𝜸, 𝜷, kρ,kα) on SMLCX compression

Figure 9 Homo sapiens chromosome 22: SMLCX Encoding payload, ρ.

Figure 10 Homo sapiens chromosome 22: Using SMLCX then LZMA2 to compress the
encoded payload, (Cρ).

100000

150000

200000

250000

300000

350000

400000

450000

500000

1 6 11 16 21 26 31 36 41 46

|(
C
ρ
)|

 (
b

yt
e

s)

K

Pack_4 Pack_8 Pack_12 Pack_16

Pack_20 Pack_24 Pack_28

60000

70000

80000

90000

100000

110000

1 6 11 16 21 26 31 36 41 46

|L
(C

ρ
)|

 (
b

yt
e

s)

K

Pack_4 Pack_8 Pack_12 Packed_16

Pack_20 Pack_24 Pack_28

52

Figure 11 Homo sapiens chromosome 22: SMLCX Encoding character-case bitstring, α.

Figure 12 Homo sapiens chromosome 22: Using SMLCX then PPMD to compress the
encoded character-case bitstring, (Cα).

100000

150000

200000

250000

300000

350000

400000

450000

500000

1 6 11 16 21 26 31 36 41 46

|(
C
α
)|

 (
b

yt
e

s)

K

pack_4 Pack_8 pack_12 pack_16

pack_20 pack_24 pack_28

60000

65000

70000

75000

80000

85000

90000

95000

100000

105000

110000

1 6 11 16 21 26 31 36 41 46

|P
(C

α
)|

 (
b

yt
e

s)

K

Pack_4 Pack_8 pack_12 pack_16

pack_20 pack_24 pack_28

53

Figure 13 Homo sapiens chromosome X: SMLCX Encoding payload, ρ.

Figure 14 Homo sapiens chromosome X: Using SMLCX then PPMD to compress the
encoded payload, (Cρ).

400000

550000

700000

850000

1000000

1150000

1300000

1450000

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

|(
C
ρ
)|

 (
b

yt
e

s)

K

Pack_4 Pack_8 Pack_12 Pack_16

Pack_20 Pack_24 Pack_28

190000

245000

300000

355000

410000

465000

520000

575000

630000

685000

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

|L
(C

ρ
)|

 (
b

yt
e

s)

K

Pack_4 Pack_8 Pack_12 Pack_16

Pack_20 Pack_24 Pack_28

54

Figure 15 Homo sapiens chromosome X: SMLCX Encoding character-case bitstring, α.

Figure 16 Homo sapiens chromosome X: Using SMLCX then PPMD to compress the
encoded character-case bitstring, (Cα)

1500000

3500000

5500000

7500000

9500000

11500000

13500000

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

|(
C
α
)|

 (
b

yt
e

s)

K

Pack_4 Pack_8 Pack_12 Pack_16

pack_20 Pack_24 Pack_28

500000

600000

700000

800000

900000

1000000

1100000

1200000

1300000

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

|P
(C

α
)|

 (
b

yt
es

)

K

Pack_4 Pack_8 Pack_12 Pack_16

Pack_20 Pack_24 Pack_28

	Compressing Genome Resequencing Data
	Recommended Citation

	tmp.1568233084.pdf.GHbnp

