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Abstract 

Parameter Estimation Analysis for  

Hybrid Adaptive Fault Tolerant Control 

Peter B. Eshak 

Research efforts have increased in recent years toward the development of intelligent fault 

tolerant control laws, which are capable of helping the pilot to safely maintain aircraft control at post 

failure conditions. Researchers at West Virginia University (WVU) have been actively involved in the 

development of fault tolerant adaptive control laws in all three major categories: direct, indirect, and 

hybrid. The first implemented design to provide adaptation was a direct adaptive controller, which used 

artificial neural networks to generate augmentation commands in order to reduce the modeling error. 

Indirect adaptive laws were implemented in another controller, which utilized online PID to estimate 

and update the controller parameter. Finally, a new controller design was introduced, which integrated 

both direct and indirect control laws. This controller is known as hybrid adaptive controller.  

This last control design outperformed the two earlier designs in terms of less NNs effort and 

better tracking quality. The performance of online PID has an important role in the quality of the hybrid 

controller; therefore, the quality of the estimation will be of a great importance. Unfortunately, PID is 

not perfect and the online estimation process has some inherited issues; the online PID estimates are 

primarily affected by delays and biases. In order to ensure updating reliable estimates to the controller, 

the estimator consumes some time to converge. Moreover, the estimator will often converge to a biased 

value. This thesis conducts a sensitivity analysis for the estimation issues, delay and bias, and their 

effect on the tracking quality. In addition, the performance of the hybrid controller as compared to direct 

adaptive controller is explored.  

In order to serve this purpose, a simulation environment in MATLAB/SIMULINK has been 

created. The simulation environment is customized to provide the user with the flexibility to add 

different combinations of biases and delays to the explored derivatives. Biases were considered in the 

range -500% to 500% and delays in the range 0.5 to 40 seconds. The stability and control derivatives 

considered in this research effort are a combination of decoupled derivatives in the three channels, 

longitudinal, lateral, and directional. Numerous simulation scenarios and flight conditions are considered 

to provide more credibility to the obtained results. In addition, a statistical analysis has been conducted 

to assess the results. The performance of the control laws has been evaluated in terms of the integral of 

the error in tracking the three desired angular rates, pitch, roll, and yaw. In addition, the effort of the 

neural networks exerted to compensate for tracking errors is considered in the analysis as well.  

The results show that in order to obtain reliable estimates for the investigated derivatives, the 

estimator needs to generate values with less than five seconds delay. In addition, derivatives estimates 

are within 50% or -15% off the exact values. Moreover, the importance of updating derivatives depends 

on the maneuver scenario and the flight condition. The estimation process at quasi-steady state 

conditions provides reliable estimates as opposed to estimation during fast dynamic changes; also, the 

estimation process has better performance at large rate of change of derivatives values. 
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Chapter 1. Introduction 

1. Introduction 

Although air travel represents the safest means of transportation with the least fatal accidents, 

aircrafts safety is the main concern while designing their control systems. System stability and good 

commands tracking were successfully accomplished by conventional design approaches such as gain 

scheduling; however, at a moment of hazardous flight conditions, such as failure, two factors decide the 

outcome of the situation. The first one is the capability of the pilot to become aware of the situation; the 

second is the extent and severity of the failure, which might overwhelm the pilot. Both mentioned 

factors encouraged research efforts to develop intelligent flight control systems (IFCS) more powerful in 

off nominal flight conditions [1]. 

State-of-the-art intelligent control approaches are required to discover failure and inform the 

pilot about the situation in a short time; as well as being capable of adapting the aircraft control system 

online. Conventional gain scheduling failed to satisfy these two crucial requirements for safety after 

failure. The second requirement in particular was the main objective of the innovative adaptive control 

approaches. 

Researchers introduced different designs and structures for adaptive control laws [2]; however, 

the ability to adapt the control system online remains the common duty of all of them. Direct adaptive 

control laws in this study are a good example that exploits the functionality of neural networks in 

approximating nonlinear function to be used in modeling system uncertainties.  Indirect adaptive laws 

are the other part in this study, which incorporates parameter identification techniques (PID) to update 

the controller parameters online. 

This research effort analyzes the performance of one of the adaptive controllers known hereafter 

as hybrid adaptive controller. This controller exhibited promising results in enhancing the tracking 

performance of the F-15 IFCS, developed in NASA, especially after failure occurrence. The hybrid 

adaptive controller - as shown in Figure 1-1 - combines direct adaptive laws in conjunction with indirect 

adaptive laws. 

The tracking performance of the hybrid controller depends on the quality of its two main parts, 

direct laws (online neural networks) and indirect laws (online PID). There are different online PID 

techniques but none of them is perfect in estimation and their estimates might have delays, biases, or 

both as compared to the actual value. Real parameter identification processes take time before 

convergence to usable values; furthermore, the convergence does not have to yield to perfect values. 

This research effort performs a sensitivity analysis for the potential issues in online estimation in order 

to evaluate the effect of those problems on the performance of the hybrid controller. 
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Figure 1-1: Architecture of the IFCS F-15 hybrid adaptive controller 

In order to create a simulation environment suitable for this analysis, the implemented hybrid 

controller in this research replaced real online PID with a direct parameter computation. This allows 

simulating a perfect PID estimation as well as different levels of PID performance.  

The range of delays and biases, which will be added to the perfect estimates for the purpose of this 

sensitivity analysis, were determined based on literature review and conducted simulations that 

compared between one of the best PID algorithms [3], Fourier Transform Regression (FTR), and the 

direct computation process. 

A previous research showed that FTR estimators generate estimates with accuracy around 30%, 

which will degrade further after failure [4]. [3] Moreover, The comparison between different parameter 

estimation algorithms shows that FTR algorithm is one of the best on-line applications; therefore, the 

considered bias range for the analysis extended to more than 30%.  

In addition, a SIMULINK simulation, as shown in Figure 1-2, provides both computed and FTR 

estimates to picture the range of potential biases and delays. The simulation showed that the bias range 

for different derivatives was between 10% and 50%. For instance, the estimation of      incurred an 

error of 44% [Figure 1-3]. 
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Figure 1-2: FTR derivatives vs. reference derivatives – SIMULINK block 

 
Figure 1-3: Computed vs. FTR estimated      

Since the study requires exploring all the potential biases, the range between  

-100% and 100% was sufficient. However, in order to explore the robustness limits of the derivatives, 

the 100% range was extended to 500%. With respect to determining a delay range, it was harder because 

neither the literature review nor the simulation succeeded to provide a good pattern. Therefore, this 

study includes delays in the range from a half second up to an extreme value of forty seconds. 

The explored parameters selected for this study are a combination of nine stability and control 

derivatives over the three flight directions, Longitudinal, Lateral, and Directional. The stability and 

control derivatives are non-dimensional coefficients, where a stability derivative measures how much 



4 

change occurs in a force or moment acting on the vehicle when there is a small change in a flight state 

such as angle of attack. While a control derivative measures how much change occurs in a force or 

moment acting on the vehicle when there is a small change in the deflection of a control surface such as 

the ailerons, elevator, and rudder. 

                                          
 

   

  
 

Where FM represents the forces and moments acting on the aircraft: [(forces along X-axis) Fx, 

(forces along Y-axis) Fy, (forces along Z-axis) Fz, (rolling moment) L, (pitching moment) M, (yawning 

moment) N].  

The aircraft states and controls are denoted by x: [angle of attack (    pitch rate (q), sideslip 

angle (    roll rate (p), yaw rate (r), stabilator deflection (     aileron deflection 

(                            

Aerodynamic derivatives are much more than nine; however, only nine were considered because 

of their significant effect on the flight dynamics. The nine derivatives are 

                                               . The first three derivatives are longitudinal-wise, 

the second three derivatives are lateral-wise, and the last three are directional-wise. Moreover, all the 

selected parameters intentionally excluded the coupling derivatives for their secondary importance. 

Third, sixth, and ninth derivatives are control derivatives, while others are stability derivatives. 

2. Objective 

The objective of this research is to analyze the effect of the parameter estimation quality on the 

performance of the hybrid controller. The real estimator takes time until the estimated parameters 

converge and the values at which they converge may be inaccurate. Therefore, studying the effect of 

bias and delay in estimated parameters is very important. In order to analyze the effect of PID issues on 

the tracking quality of the controller, different delay values and biases were added to the perfect 

estimates obtained from the direct computation. The errors in tracking the three angular rates and the 

exerted neural networks effort at each case were used for evaluation. 

Additionally, this study compares between the performance of the adaptive controller when the 

derivatives are updated and the performance when the derivatives are fixed. 

3. Thesis Outline 

This thesis is organized as follows: Chapter 2 presents the related work that has been developed 

by other researchers. Chapter 3 is dedicated to explain the technical concept of adaptive control laws and 
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parameter estimation techniques. The simulation environment and the experimental setup are described 

in Chapter 4. Chapter 5 presents the final testing results for the sensitivity analysis of online parameter 

estimation. A conclusion of the analysis and recommendations for future works are provided in  

Chapter 6. 
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Chapter 2. Literature Review 

This section provides a basic literature review covering the development efforts, problems, and 

currently undergoing research in the area of fault-tolerant control, which is a cutting-edge topic for the 

control of aerospace systems. The primary focus will be on adaptive flight control system, which is a 

class of the fault tolerant control. Adaptive control has three main categories indirect, direct, and hybrid 

adaptive techniques. [5, 6, 7, 8, 9] Direct adaptive approaches utilize different techniques, such as neural 

networks, to directly update the controller parameters without an explicit knowledge of the plant 

parameters. [3, 9, 10, 11] Indirect adaptive approaches, on the other hand, reconfigure the controller 

structure by using real-time PID techniques to explicitly estimate the plant parameters. [12, 13, 14] 

Recently, a hybrid technique was introduced, which combines direct with indirect adaptation seeking for 

better tracking performance. 

The aircraft control systems are much more complicated than most other control systems 

primarily due to the wide range of operational conditions and the complexity of the plant with highly 

nonlinear characteristics [15, 16]. Therefore, traditional linear feedback control designs may not be 

sufficient to obtain a satisfactory performance or even maintain stability throughout the flight envelope, 

especially in the presence of subsystem failures. In order to overcome the limitations of classic control 

methodologies, new techniques are being developed, which are capable of tolerating failures while still 

maintaining desirable and robust performance and stability properties. Aforementioned facts encouraged 

research in fault-tolerant control techniques. Several factors determine the restrictions when designing a 

fault tolerant control system such as cost, robust stability, the system behavior uncertainty, and the 

computational limitation.  

Flight control design was traditionally based on a gain scheduling approach by dividing flight 

space into linear-subspaces [17, 18, 19]. Conceptually, gain scheduling is simple and has been proven 

successful; however, it does not guarantee stability and fulfillment of desired handling qualities after 

failure. Therefore, several approaches have been investigated in the attempt to enhance tracking quality 

including adaptive control, such as neural network adaptive controllers [20], nonlinear control such as 

feedback linearization [21], optimal control [22], and robust control [23]. [24] The robustness of 

different adaptive control laws was investigated, and the results showed that the baseline dynamic 

inversion controller was reasonably robust. In addition, the approaches that integrate explicit parameter 

identification perform the best. 

Indirect Adaptive Control System (PID) 

During the development process of on-board computational power, [25] Iliff, K.W studied 

different offline PID techniques, the modified Newton-Raphson technique of minimization, simplified-

equations, analog matching, and regression methods. 
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The Maximum Likelihood method was another popular technique among other various statistical 

techniques that were used to estimate the stability and control derivatives from flight data that has been 

extensively conducted as a post flight analysis for several years [26]. 

Recently great advance in the on-board computational power has allowed the flight control 

community to consider the application of on-line parameter estimation techniques [3]. The on-line PID 

attracted attention as a part of fault tolerant control laws for time varying aircraft systems, especially an 

aircraft subject to drastic changes in aerodynamic characteristics due to potential failures. Two on-line 

PID techniques, in time domain and in frequency domain, were implemented within the IFCS F-15 

program. The performance of the two techniques was investigated. The two methods exhibited similar 

performance in terms of accuracy estimation, the time needed for convergence, and robustness to noise. 

However, the frequency domain-based method outperforms the time domain-based method in terms of 

computational requirements for on-line real time applications. 

Fault tolerant techniques typically require PID technology for estimating the values of stability 

and control derivatives to reconfigure the controller parameters accordingly at different operational 

conditions. Fourier Transform Regression (FTR) is one of the PID algorithms [4, 27]. The FTR, which is 

based on the frequency domain, is better than other PID techniques for on-line application. One of the 

features of the FTR is the on-line calculation of the standard deviations of the estimation error for 

aerodynamic parameters. Standard deviation can then be used to evaluate the reliability of the estimates 

prior to feeding these values to the control laws. FTR estimates are not exact; the error is around 30%, 

which will degrade further after failure. 

The F-15 intelligent flight control system (IFCS) research team at NASA has used in early 

studies a neural network to estimate stability and control derivatives for the control laws [28]. The real-

time gains of the control laws were computed by solving the Riccati equation. The research progress on 

this controller went through three phases, First Phase: developing a pre-trained neural network to store 

and recall the wind-tunnel-based stability and control derivatives of the vehicle. Second Phase: 

developing a neural network that can learn how to adjust the stability and control derivatives to account 

for failures or modeling incompleteness. Third Phase: developing a flight control system that employs 

the neural network outputs in controlling the aircraft. The team later developed a controller, which relies 

on the ―Stochastic Feedforward and Feedback Technique (SOFFT controller)‖. This controller, known 

as ―Generation 1‖, integrates the neural network from first phase to the third phase. 

PID was integrated with the SOFFT controller ―Gen1‖, [Figure 2-1], to replace the pre-trained 

neural network in the previous design [27].  PID scheme‘s purpose is to estimate and update state-space 

system matrices of aircraft to the SOFFT controller. two PID approaches were compared; First 

approach, directly identify the state-space system matrices (matrix approach). Second approach, evaluate 

the dimensionless stability and control derivatives (derivatives approach), then use those derivatives to 

build the system matrices. The PID estimates and the standard deviation of the estimation error must 

first converge within a user-preselected range before they are fed to the controller.  
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The previous controller showed good results at nominal conditions [10, 29]; however, the 

controller was not very successful after failure due to PID quality degradation. Therefore, further 

development was considered by implementing same PID scheme along with an on-line learning neural 

network for updating aerodynamic coefficients at post failure conditions. [29] The performance of two 

different neural networks, known as EMRAN (this is the NN used for this research effort) and DCS, was 

compared. The nonlinear inversion model adaptive controller outperforms the SOFFT controller.  

 

Figure 2-1: Architecture of the IFCS F-15 SOFFT "Generation 1" controller 

This research team implemented on-line PID in a fighter jet at subsonic flight conditions to 

estimate the mathematical model of an aircraft after damage in a primary control surface [30].  The PID 

then feeds the mathematical model at post-failure conditions to a failure accommodation scheme to 

compute a compensating control signal to adjust the remaining intact control surfaces for a safe 

continuation or termination of the flight. The results showed the importance of conducting an ‗ad-hoc‘ 

small amplitude and short-duration PID maneuver immediately following a positive failure detection to 

enhance the reliability of the on-line estimated parameters used in the accommodation scheme.  

Direct Adaptive Control System 

Patricia Melin, discussed using an adaptive controller blending neural networks [31], fuzzy logic 

and fractal theory. She introduced the use of this controller with nonlinear aircraft dynamic systems. The 

simulation results showed the efficiency of this scheme in adjusting instability behavior in aircraft 

systems [Figure 2-2].  
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Figure 2-2: Architecture of adaptive neuro-fuzzy-fractal control 

A fault-tolerant controller that features a failure detection [32], identification, and 

reconfiguration (FDIR) is developed. The adaptable controller maintains the desired closed-loop 

performance; moreover, robustness of the system was validated under a large number of different failure 

cases. [3] After failure, fault tolerant flight control is required to perform failure detection, identification, 

and then adaptation. 

Similar adaptive control laws were integrated in the flight control system of F/A-18C [16, 33, 

34]. This adaptive technique achieves reconfiguration by augmenting the pilot commands rather than the 

actuator commands. The flight tests show that this technique is effective in restoring acceptable flying 

qualities following a change in the aircraft dynamics. [15, 30] Implemented failure accommodation 

strategies using a variety of control surfaces (speed brakes, wing flaps, differential dihedral canards, 

spoilers, etc.) and thrust mechanisms (differential thrust, thrust vectoring). 

The NASA F-15 IFCS team has next developed a direct adaptive neural network-based 

controller [7]. The objective was to optimize the performance of the aircraft under nominal conditions 

and to recover the aircraft control after failure occurrence. Failure conditions include actuator failure, 

sensor failure, structure damage, and adverse flight conditions. This NASA controller is called 

―Generation 2‖, as shown in Figure 2-3. Burken presented some changes in the structure of the basic 

direct adaptive controller ―Gen 2‖ in order to improve the performance under unstable failure flight 

conditions. The results showed the advantage of the enhanced controller, called ―Gen2a‖, in reducing 

the occurrence of pilot-induced oscillations and increase system robustness after failure. [6] Using a 

reference model in the controller ―Gen2‖ to generate command inputs helped to achieve the desired 

handling qualities. 

Testing the dynamic inversion controller with locked stabilator showed significant lateral 

acceleration and angle of sideslip excursions resulting from lateral stick inputs [35]. The neural network 

was not able to adjust this behavior. In order to solve this problem, the research controller was modified 

by combining dynamic inversion in the longitudinal and lateral axes with a classical controller in the 

directional axis. This modification succeeded in obtaining reasonable handling qualities in the presence 

of the simulated failure. The results during a stabilator failure demonstrate how the neural network was 
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able to assist the controller to return the vehicle to nominal flight with lower normal acceleration 

transients and in a short time.  

 

 

Figure 2-3: Architecture of the IFCS F-15 direct adaptive "Generation 2" controller 

The developed direct adaptive controller was based on a non-linear dynamic inversion (NLDI) 

scheme augmented with a neural network (NN) to compensate inversion errors and changes in aircraft 

dynamics at post failure occurrence [36]. The performance of three different neural networks (the 

Extended Minimal Resource Allocating neural network (EMRAN), the Single Hidden Layer neural 

network (SHL), and the Sigma-Pi neural network was compared in augmenting NLDI scheme inside the 

direct adaptive controller. The comparison was in terms of achieved handling quality at different failure 

cases. The simulation results exhibited promising performance for all three neural networks; however, 

EMRAN (the NN selected for this research) slightly outperformed the other algorithms in terms of the 

angular rates tracking errors, while requiring a lower computational effort.  

Direct adaptive controller ―Gen2‖ exhibited better performance as compared to the SOFFT 

controller ―Gen1‖ in terms of trajectory tracking as well as pilot workload [27]. Moreover, this study 

presented the effect of integrating a pre-trained neural network in ―Gen2‖ to provide update values of 

the stability and control derivatives required by the dynamic inversion.  

Before integrating neural network algorithms as an essential part of the adaptive controller, 

various studies were conducted to show their capabilities, drawbacks, operation conditions, and 

application [37]. Neural network needs to work in real-time as a part of the flight control system and it 

has to fit in the flying computer system of the airplane. [38] Neural Networks were used to approximate 

main relationships of the aircraft dynamic in order to provide virtual measurements capable of replacing 

real sensors in case of a sensor failure.  

Flight control related applications have increasingly integrated Neural Networks [39]. Such as, 

overcoming issues associated with gain-scheduled control systems [40], the approximation of inverse 
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dynamics for feedback linearization control of fighter aircraft [41], Unmanned Aerial Vehicle [17], the 

adaptive control of air-to-air missiles [42], and Neural Adaptive Control for Bank-to-Turn Missiles to 

adaptively compensate for roll-induced cross coupling [39]. The ability of neural networks in modeling 

nonlinear systems [39], has been exploited in direct adaptive of a nonlinear controller, as in inverse 

model control [43].  

Hybrid Adaptive Control 

Hybrid adaptive controller was introduced to improve the tracking performance of the direct 

adaptive controller [13]. The investigated hybrid controller combined the indirect adaptive technique 

from ―Gen1‖ with direct adaptive algorithm from ―Gen2‖. The hybrid controller exploits both PID and 

NN in conjunction with the NLDI model. PID estimates stability and control derivatives to update B 

inverse matrix inside the NLDI to reduce the tracking error, and the neural network directly compensates 

for linearization modeling errors of the NLDI. Two parameter estimation approaches are discussed: a 

Lyapunov-based indirect adaptive law that uses the tracking error, and a recursive least-squares indirect 

adaptive law that uses modeling error for adaptation. The adaptive gains are found to be dependent on 

the learning rate. High-gain learning is analyzed using the root locus analysis of the closed-loop poles of 

the adaptive control. High-gain learning results in high-frequency oscillations in Lyapunov-based 

adaptive signals. The hybrid recursive least-squares adaptive law managed to reduce the adverse effect 

of high-gain learning. 

Joshi, discusses another hybrid controller structure utilizing the application of parameter 

estimation [44]. Tracking problems of direct model reference adaptive control (MRAC) increased during 

abnormal changes in the plant structure. Hence, direct adaptation of state-feedback gains for state 

tracking alone was not enough and needed to be combined with estimation of the plant-reference model 

mismatch. Due to the mismatch, the plant can no longer track the state of the original reference model, 

but may be able to track a new reference model that still provides satisfactory performance. The 

reference model is replaced if the estimated plant-model mismatch exceeds a threshold that was 

determined via robust stability and performance criteria. The resulting controller is a type of hybrid 

direct-indirect adaptive controllers, which showed good performance in state tracking during the 

existence of plant-model mismatch as well as parameter deviations.  

Although the hybrid controller showed a superior performance, the controller stability is 

challenging to assess [12, 13]. Traditional phase and gain margins are not applicable for analyzing 

stability margins of nonlinear adaptive controllers; nevertheless, stability margins are necessary to 

determine robustness of control laws in the presence of system uncertainties. Therefore, authorizing 

adaptive control for flight systems is challenging due to the lack of stability standards for adaptive 

control. Understanding stability issues of adaptive controllers is crucial for further progress on adaptive 

control technologies. Bounded linear stability and convergence of nonlinear hybrid adaptive control are 

analyzed using an approximate linear equivalent system. Stability of adaptive flight control was assessed 

by extending the robust control concept of phase and gain margins to adaptive control laws.  
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Stability margin analysis shows that large adaptive gains reduce the phase margin [12, 13]. This 

method can enable metrics-driven adaptive control, where the adaptive gain is adjusted to meet stability 

margin requirements. The simulation shows that the metrics-driven hybrid adaptive controller has better 

tracking performance than the basic adaptive controller.  

In conclusion, the above represented literature review shows evidently that hybrid adaptive 

control laws exhibit superior performance as compared to other techniques such as gain scheduling, 

LQR optimal controller, and direct adaptive controllers. However, the required integrated PID schemes 

have some issues regarding the convergence delay and the convergence to inaccurate values. Based on 

this conclusion, an investigation of these two parameter estimation issues has been performed within this 

research effort.  Their effects on the hybrid controller performance have been analyzed and evaluated 

through a sensitivity study. The outcomes of the study are expected to contribute to a better 

understanding of the operation of PID schemes within hybrid adaptive control laws and provide tools for 

design, testing, and evaluation of fault tolerant control laws.  
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Chapter 3. Technical Background 

 The following technical discussion has been built based on references [14, 27, 45, 46, 47, 48, 49, 50, 51, 

52, 53, 54, 55, 56, and 57] 

1. Technical Background for Adaptive Control 

The word Adaptive Control has started being used as early as 1950. According to Merriam-

Webster dictionary, Adapt means to make fit often by modification according to changing 

circumstances. One of the earliest applications that stimulated the interest in adaptive control was the 

design of autopilots for high-performance aircrafts.  

An adaptive control system is a controller with changeable parameters to adapt accordingly to 

changes in the controlled system parameters and/or general operational conditions. Although gain 

scheduling was considered a kind of adaptive control in some books, that cannot be very accurate 

because an adaptive system has to utilize artificial intelligence techniques such as neural networks. 

Designing a controller that is capable of maintaining desirable behavior of an aircraft regardless of 

condition changes is a very challenging mission.  

Many flight adaptive control techniques have been investigated over a long time starting from 

the very primitive adaptive control known as gain scheduling. This basic technique considered designing 

a controller that functions only around a reference condition. Furthermore, this controller‘s parameters 

are updated according to lookup tables that contain information of the entire flight envelop.  

Aircraft operates over a wide range of altitudes and speeds; Moreover, aircraft system is highly 

nonlinear and time varying. However, a linearized aircraft model at different operation points can be 

used in order to simplify the design process of a suitable controller.  

For example, for an operating point (i), the linear aircraft model has the following form: 

 

                                     (3.1) 

                                               (3.2) 

 

        

 

Where Ai, Bi, Ci, and Di are functions of the operating point (i). As the aircraft flies through 

different flight conditions, the system matrices will change. Here comes the advantage of adaptation 

when the controller gains can be adjusted to match the new operation condition and be capable of 

providing consistent handling qualities. 

The controller structure consists of a feedback loop and a controller with adjustable parameters, 

as shown in Figure 3-1. The way of changing the controller parameters in response to changes in the 

plant and disturbance dynamics distinguishes one adaptive scheme from another.  
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Figure 3-1: Controller structure with adjustable controller parameters 

Gain Scheduling 

For the afore-presented aircraft model    , which operates over different operating points  , 

where                 . The aircraft parameters change is represented as                  Due to the 

adaptation concept behind gain-scheduling design, this section extends more on this primitive adaptive 

technique.  

The aircraft system is originally a non-linear system, but it can be linearized around each of the 

operating point. This is achieved by designing multiple controllers that can meet the performance 

requirements at each of the potential operating points.  

The mentioned controller is a traditional feedback controller; the only difference in this case is 

constant multiple gains to be designed at each operating point. This leads to a controller C ( ) with a set 

of gains                   covering N operating points [Figure 3-2].  

On board, once an operating point is detected, the controller gain changes to the corresponding 

gain  , which is obtained from the precopmuted set of gains. Significant parameters changes between 

designed operating points are handled by interpolation; however, designing more operating points is 

favorable to obtain better handling qualities. This design technique relies on having a look-up table that 

stores all the gain values   , which will be called when corresponding operating point is detected. 

Furthermore, the system needs auxiliary measurements that can be used to detect change in operating 

points. For aircraft, the auxiliary measurements are Mach number and the dynamic pressure (or 

Altitude).  

This approach adapts the controller for the aircraft parameter variations by changing the 

controller gains as functions of the auxiliary measurements. The advantage of gain scheduling is that the 

controller gains can be adapted as quickly as the auxiliary measurements respond to parameter changes.  
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On the other hand, the controller gains are precomputed off-line; therefore, operation outside the 

designed flight envelop and/or unpredictable changes in the plant dynamics will lead to deterioration in 

the performance. Another possible drawback of gain scheduling is the high design and implementation 

costs that increase with the number of operating points.  

 
Figure 3-2: Gain scheduling structure 

Gain scheduling, despite its limitations, is still a popular adaptation technique for handling 

parameter variations in flight control.  

Direct and Indirect adaptive Control 

The adaptive controller design, theoretically, contains an on-line parameter identification scheme 

to estimate the unknown plant parameters, then update the estimated parameters to control laws. 

Moreover, adaptive techniques have two categories based on the method in which the parameter 

estimator is connected to the control laws. The practical adaptive laws implemented in this document 

were inspired from the two theoretical approaches after introducing some modification, as presented at 

the end of this section.  

1- Indirect adaptive control 

The plant parameters are explicitly estimated on-line and used to calculate the controller 

parameters. The scheme outline is [Figure 3-3, [49]]:  

a. The plant model P (  ) is defined in terms of some unknown parameter vector   . 

b. An on-line parameter estimator generates an estimate   (t) of    at each time t by processing the 

plant input u and output y. 

c. The parameter estimate   (t) is used to form an estimated plant model    (  (t)). 

d. This estimated model is then used in the design process of the controller parameters or gain 

vector        which is found by solving a certain algebraic equation:          = F (  (t)) at each 

time t. 
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e. C (     ) is designed at each time t to satisfy the performance requirements for the estimated 

plant model   ( (t)) , which is not necessarily identical to the unknown plant model P(  ). 

In short, the main goal when designing an indirect adaptive controller is to select the control laws 

C (  ) and the appropriate parameter estimators that generate   (t), as well as the algebraic equation 

  (t) = F ( (t)) so that C (  (t)) meets the performance requirements for the plant model P (  ) with 

unknown     

 
Figure 3-3: Indirect adaptive controller structure 

 

2- direct adaptive control 

The controller gains, which are expressed in terms of the plant model parameters, are estimated 

directly without explicit knowledge of the plant parameters. Therefore, this approach does not involve 

intermediate calculations for the plant parameter estimates. 

The scheme outline is [Figure 3-4, [49]]: 

 

a. The plant model P (  ) is expressed in terms of the unknown controller gains vector   
   for 

which C (  
 
) meets the performance requirements for the plant model    (  

    

b. The on-line parameter estimator is designed based on    (  
   instead of P (  ) to provide direct 

estimates   (t) of   
  at each time t by processing the plant input u and output y. 

c. The estimate   (t) is then used to update the controller gains vector    without intermediate 

calculations. 
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In short, the main problem in direct adaptive control is to select the control laws C (  ) as well as 

the suitable parameter estimator that generates   (t). C (  ) must meet the performance requirements for 

the plant model   (  
     

 
Figure 3-4: Direct adaptive controller structure 

As mentioned earlier, both represented techniques are the cornerstone of the discussed hybrid 

adaptive controller in this research. The first adaptive algorithm discussed above, indirect adaptive, is 

the concept behind integrating PID schemes to indirectly estimate the system parameters and update the 

controller correspondingly, such as SOFFT controller (Gen1). The second algorithm, direct adaptive, is 

the concept behind directly reconfigure the controller structure to adapt for system changes (Gen2). Both 

algorithms can be combined to build the hybrid adaptive controller, which is the particular controller 

used for this study.  
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2. Technical Background for Parameter Estimation 

Parameter estimation can be utilized either online, when the system is in operation, or offline, 

post-operation. From the viewpoint of this study, online estimation is implemented as a part of the 

hybrid adaptive controller to indirectly compensate for the aircraft parameter change by updating the 

controller parameters. On the other hand, offline estimation process is popularly used for modeling 

systems especially when the nature of the physical system is hard to predict. Moreover, this technique is 

used to analyze the performance of a system using measured data history.  

I. Offline Parameter Estimation 

A. Aircraft Parameter Modeling 

Mathematical models of physical systems are necessary to predict future response; or in other 

words, predict the output of a system for its corresponding input. In most cases, experience and 

knowledge are not enough when modeling a new complex plant. Modeling a plant without having 

sufficient insight of its physical structure depends on two factors approximations and axioms. First, 

approximations are made to simplify the complex physical plant. Those approximations will only be 

acceptable within certain regions and for specific applications. Axioms are logical facts that have not 

been mathematically proved, but they either make sense or have not been contradicted by former 

experiments. Offline parameter estimation is utilized for modeling those types of new systems to help 

deciding the suitable approximations and axioms depending on the data history obtained from 

experiments (further discussion on this matter in section ―B. Aircraft Parameter Identification‖).  

Modeling a flight system is a great example that displays utilizing both axioms and assumptions 

to create a mathematical model. There are some basic axioms used when building aircraft models, such 

as isotropic characteristics, i.e. properties of materials are not dependent on direction). With respect to 

assumptions, for instance, the aircraft vehicle can be safely assumed a rigid body with constant mass and 

inertia.  

Equation of Motions: The resulting mathematical model consists of 12 equations, six dynamic and six 

kinematic equations: 

1- Linear momentum or force equations: 
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2- Angular momentum or moment equations: 
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3- Kinematic equations of translation: 
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4- Kinematic equations of rotation: 
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B. Aircraft Parameter Identification 

System identification and simulation process are two sides of the same coin. Simulation utilizes 

the mathematical model to predict an output for every input, while system identification uses inputs and 

outputs data history to estimate the model. If the model structure is fixed and only model parameters are 

determined, the aircraft system identification becomes a parameter estimation process.  

Aircraft system identification includes the following phases: 

 

1- Model postulation: the model general framework is defined based on prior experience with the 

system.  

2- Experiment design: determine suitable instrumentation to record the data history. 

3- Data compatibility analysis: data measurement is subject to error, and this error should be 

analyzed. 

4- Model structure determination: The exact model structure is set based on prior knowledge. 

5- Parameter and state estimation:  Two classes of methods are currently used for aircraft parameter 

estimation:  

I. Equation-error method: estimate unknown aerodynamic parameters (stability and control 

derivatives) by minimizing the sum of squared differences between measured and modeled 

aerodynamic forces and moments.  
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II. Output-error methods: parameters estimation is based on minimizing the sum of weighted 

square differences between the measured and modeled aircraft system outputs.  

6- Collinearity diagnostics: no correlation between data used for estimation; otherwise, the results 

are unreliable.  

7- Model validation: new data must be used for this last step. 

 

 
Figure 3-5: Block diagram of aircraft system identification 

II. Online Parameter Estimation 

A. Hybrid Adaptive 

Within this research effort, estimating parameters throughout the operation period is an 

important part of the implemented hybrid adaptive controller in order to reduce the error generating 

from leaving the reference condition. The estimation scheme is used to create the inverse B matrix at 

different operation points, which exists in the nonlinear dynamic inversion mode. 

                    (3.7) 

 
Figure 3-6: LDI block 

 

B. Fault Detection                                       

Fault detection techniques are another application of on-line PID. Each aircraft sub-system 

failure has unique dynamic fingerprint. Online PID is utilized to estimate particular flight data that will 

then be compared to the actual aircraft sensor measurements. Depending on the nature and significance 
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of the difference between the two data sets, a failure may be detected and identified. Two techniques of 

estimation are used for detecting failure in real-time: 

a. States estimation-based or filter-based detection method: 

The states are estimated using filters or observers, such as Kalman filter. Subsequently, the 

estimates are compared against sensor measurements and the differences determine the detection 

outcome. 

b. Parameter estimation- based detection method: 
 

The estimated parameters are directly compared against predefined thresholds for different 

failure types. Similarly, the online PID can be used to create an estimated model, whose output is 

compared against sensors measurements. 

 

A. Time-Domain Regression: 

Linear Regression Least Squares Method: 

Least squares method is intended for finding the unknown set of parameters   . The model can 

be nonlinear in the parameters        In this section a linear parameter-wise model is presented with 

noisy measurements  : 

                         (3.8) 

                                     

                              

                                                        

                                                                               

The measured y is a column vector of size N measurement samples. The purpose of using linear 

regression method is to determine    so that, the sum of squared differences between the measurement 

and the model is minimized: 

 

     
 

 
                            (3.9) 

 

   parameters are the necessary estimates to minimize the cost function (J) which can be found through: 

   

  
 
    

   
  

 
 

 
                  

    
             (3.10) 

By taking the derivative of equation(3.10) 

                                                             (3.11) 
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The least-square estimator results are given: 

                 (3.12) 

The matrix     is always square and symmetric. If the columns of X are linearly independent 

then     is invertible. Finally, the covariance matrix of the parameter estimates is found to assess the 

reliability of the estimation process. 

 

B. Frequency-Domain Regression  

Similarly, an estimation algorithm can be implemented in frequency domain instead of time 

domain. However, Frequency-Domain (FD) parameter identification algorithms slightly outperform 

Timed-Domain (TD) algorithms, considering that FD needs less data points for parameter estimation 

and direct relevance to frequency control design techniques. 

 

I. Fourier Transform 

 The FD algorithm first uses ―Fourier Transform‖ to transform time-domain data into frequency-domain 

data: 

                         

 
             (3.13) 

                    

                              

The finite interval [0, T] must be wide enough such that includes all the dynamics of the physical 

system. Aircraft dynamic system as an example, designing the finite interval must count for short period 

as well as roll mode as they are the fastest dynamic modes in the system. 

II. Linear Regression Method 

The linear regression algorithm in frequency-domain is very similar to the counterpart algorithm 

in time-domain.  Fourier transforms of all variables are found to obtain a corresponding equation in 

frequency domain: 

                 (3.14) 

            N x 1 vector of Fourier transform of the noisy sensors measurement. 

          : N x P matrix of the Fourier transform of the states measurements. 

  : P x 1 vector of unknown parameters. 
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          : N x 1  vector of measurement noise, 

Following the same time-domain approach, the least-square estimator in frequency domain becomes: 

           
  

        (3.15) 

                                            

For practical aircraft system identification, the vector of unknown parameters    is real; therefore, the 

estimator equation can be simplified to: 

                 
  

             (3.16) 

Finally, the covariance matrix is used to find the variance of the estimation error, which provides 

an on-line assessment of the accuracy of the estimation to determine the convergence criteria of the 

parameter estimation process. 

3. Implemented Control laws 

A) Indirect adaptive control laws:  

This part computes stability and control derivatives while the aircraft is moving throughout the 

flight envelop. Linear equations are used to compute the ideal values of these derivatives. Then those 

estimates update the NLDI model to reduce the modeling error and subsequently the neural network 

effort. Computation scheme was used as an ideal replacement of the online PID, frequency domain 

algorithm-FTR. More details on the parameter estimation background were presented earlier in this 

section.  

B) Direct adaptive control laws: 

The control laws follow the model trajectory using a non-linear dynamic inversion model 

(NLDI) augmented with artificial neural networks (NNs). As part of the NLDI control laws, pilot inputs 

are first converted into angular rate commands. Then those angular commands are used to produce the 

desired angular rates and their derivatives through first and second order reference models, such that 

desired handling qualities are achieved. The tracking error between the model references output and 

sensors measurements are adjusted using proportional, integral, and derivative tracking controller. 

Online learning NNs generate augmentation commands to compensate for inversion modeling errors. 

The reference models output (desired angular rates and their derivatives) along with tracking error 

compensation and NNs output are exposed to the dynamic inversion model, which will generate the 

plant inputs. Those generated commands, in the ideal case, will produce the desired angular values as 

obtained from the reference model, but three types of error will deform the output; the errors are 

tracking error, modeling error, and aerodynamic changes.  
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       (3.17) 

                are desired angular accelerations generated by the reference model. L1, M1, and N1 

are the non-linear terms of the moment equations. B is the state-space control matrix computed at 

departure-reference flight condition.                       are the commands that will be used to 

compute the actual control surface deflections. The B matrix might also be updated according to 

aerodynamic parameters change and in this case the control laws upgrade to hybrid adaptive laws. 

Finally, the type of the neural networks integrated in this controller is EMRAN.  

 

Figure 3-7: Architecture of the IFCS F-15 hybrid adaptive controller 
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Chapter 4. Overview of Simulation and 

Experiments 

1. Simulation Environment 

This section presents the different components of MATLAB/SIMULINK- based environment 

developed at WVU and then updated as a part of this research effort. This section is organized as 

follows: the first subsection provides a brief clarification for the parts existed prior to this study,  

[Figure 4-1]. Second subsection shows the blocks and parts updated for the purpose of this analysis. 

A. SIMULINK - Previous Work 

The Flight dynamic and Control toolbox (FDC) was used to provide the general framework for 

solving the equations of motion integrated within the aircraft model [51, 58, 59]. The aircraft model 

implemented in this simulation is an approximate nonlinear model of F-15 aircraft with canards. Look-

up tables are integrated to provide the aerodynamic and thrust characteristics. The simulation 

environment gives the user three choices in flying the aircraft, joystick, a set of pre-recorded maneuvers 

history, or a combination of both. To provide graphical environment for the simulation and pilot 

interaction, the model was interfaced with Aviator Visual Design Simulator (AVDS) [4Figure 4-2]. 

The previous controller integrated in conjunction with the aircraft model was ―Gen2‖ [51, 58, 

59]. The control laws are based on NLDI augmented with NNs to compensate for the inversion error. 

The NLDI parameters were updated by directly computing the parameters throughout the simulation, 

[Figure 4-3]. 

 
Figure 4-1: Overview of the previous SIMULINK-based simulation environment 
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Figure 4-2: Aviator Visual Design Simulator (AVDS) 

4 

 
Figure 4-3: Direct computation process of the inversion model parameters 

B. SIMULINK - Current Work 

This section presents all the new parts added to the previous program as part of this research 

effort. The new simulation environment includes a real FTR parameter identification scheme as well as 

the old direct computation model, as shown in Figure 4-6. These two blocks were implemented side to 

side in the new program in order to provide the user with the flexibility to choose between updating the 

NLDI model with perfect estimates or real estimates. The implemented PID, as shown in Figure 4-4, 

uses the sensor measurements to estimate the required parameters.  



27 

For the purpose of the sensitivity analysis, the old direct computation scheme was modified to 

provide the flexibility of adding different levels of delays and biases to a single derivative, to a group of 

the derivatives, or to all of them before being updated to the controller. In addition, the flexibility to 

either update or fix a single derivative, a group of the derivatives, or all of them was considered. The 

modified derivatives include the stability derivatives inside the controller and the control derivatives 

inside the B-inverse matrix, [Figure 4-8]. 

Another block named ―scopes1‖ was created for two purposes. First, provide comparing plots 

between the computed derivatives and the estimated derivatives. Second, sort the estimated derivatives 

to match the order of the computed derivatives to be updated later to the correct location inside the 

controller, [Figure 4-7]. 

In addition to this SIMULINK program, many MATLAB codes were written with different 

objectives to support the analysis and simulation. A block named ―plot‖, as shown in Figure 4-9, was 

created to connect between the simulation process and the written codes. This block was programmed to 

run automatically after the simulation ends, and call the specific MATLAB code according to the 

explored derivative, [Figure 4-10]. 

A block named ―Data Plots‖ was created to provide plots of the simulation states, as well as 

saving them to the work space to be used later by the MATLAB codes. Different MATLAB codes were 

written for this study, sample of the codes are presented in Appendix-A. 

 
Figure 4-4: Overview of the new SIMULINK-based simulation environment 

  



28 

 
Figure 4-5: Inside-view of the FTR parameter identification scheme 

 

 
Figure 4-6: FTR estimation vs. computation 

 

 
Figure 4-7: Inside-view of the “scopes1” block 
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Figure 4-8: Biases and delays Introduced to the derivatives inside the B-inverse matrix 

 

 
Figure 4-9: A block to call the MATLAB codes 

 
Figure 4-10: The code inside the “plot” block 
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Figure 4-11: Inside-view of the “Data Plots” block 

C. Graphical User Interface - Previous Work 

This part presents the previous Graphical User Interface (GUI) menus designed prior to this 

work. These GUIs were built to provide the user with the flexibility to select the desired flight 

simulation scenario. The first menu, as shown in Figure 4-12, allows the user to select the desired flight 

and simulation scenarios. Then, the second menu, as shown in Figure 4-13, includes three options for 

flying the aircraft. The third menu, as shown in Figure 4-14, includes choices between different NNs. 

Finally in the last menu, the user can select which parameters to be displayed during the simulation, as 

shown in Figure 4-15. 
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Figure 4-12: Setup menu for flight conditions 

 

 
Figure 4-13: Setup menu for pilot input  
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Figure 4-14: Setup menu for adaptation structure 

 

 
Figure 4-15:Setup menu for flight scopes 
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D. Graphical User Interface - Current Work 

Two new GUIs were designed to support this research. The first GUI menu provides the user 

with the flexibility to select any combination of delays and biases to be added to the derivatives inside 

the SIMULINK environment, [Figure 4-16]. The second menu allows the user to display comparing 

plots between the computed derivatives and their estimated values, as well as the standard deviations of 

their estimates, [Figure 4-17]. 

 
Figure 4-16: Setup menu for delay and bias 

 

 
Figure 4-17: Setup menu for derivatives scopes 
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2. Experimental Setup 

Numerous flight simulation scenarios were conducted to investigate the inherited imperfection in 

the derivatives estimation process and its subsequent effect on the hybrid adaptive controller tracking 

quality. The controller tracking results are compared with the reference ideal situation when all the 

derivatives are perfectly computed with no delay or error. The flight tests were conducted at different 

flight conditions and maneuvers, under both nominal and actuator failure conditions.  

The results and discussion are based on twelve flight scenarios. The first six scenarios are at 

nominal flight conditions, while the last six scenarios are replica of the first six but at failure conditions. 

A stabilator failure was considered as an example with a complete control loss of the right surface at 10  

deflection occurring after five seconds from the start of the simulation.  

The selected flight tests in this chapter were considered such that a significant change in the 

values of the investigated derivatives over the flight period is present. In addition, the scenarios included 

some decoupled maneuvers to study the individual effects in each channel, as well as, some coupled 

maneuvers to analyze the interactions between channels. The final decision is considered based on both 

the average of the obtained data from all the scenarios and separate observations from each scenario.  

Some general conditions apply to all flight scenarios; such as, all the tests last for 50 seconds. In 

addition, no flight turbulence is considered in either of the tests. All the flight tests start at altitude 6100 

m and speed 240 m/s. 

1- First Flight Test Scenario - Medium Coordinated turn: 

 

(Medium turns are characterized by a bank angle between 20 and 45 degrees [60]). 

a. The simulation started at altitude 6100 m with speed 240 m/s, as shown in Figure 4-18 and 

Figure 4-19 respectively.  

b. The turn started with a combination of aileron and rudder inputs applied together, as shown in 

Figure 4-20, in the same direction to cancel sideslip adverse effect. The entire turn maneuver was 

performed at constant altitude. 

c. Once the desired bank is attained, the aileron input was relaxed to stop the roll; however, a small 

amount of residual aileron pressure was required in the direction of the turn to keep the bank 

constant.  

d. The rudder was re-adjusted as well to maintain coordinated flight (ideally   = zero, yet in this 

scenario the sideslip angle was kept under 1 degree, as shown in Figure 4-23). 

e. Moreover, the throttle power was increased to keep the flight speed from decreasing during the 

turn, as shown in Figure 4-21. 

f. After the turn maneuver is completed, an opposite aileron pressure was applied to negate the 

bank angle and return to a level flight. 

g. Then an elevator input was applied to climb and end the flight scenario at a new altitude of 8000 

m, as shown in Figure 4-18. 
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h. The angle of attack throughout the simulation is presented in Figure 4-22. 

 
Figure 4-18: First flight test scenario - Altitude 

 
Figure 4-19: First flight test scenario - Velocity 

 
Figure 4-20: First flight test scenario – Pilot inputs 

 
Figure 4-21: First flight test scenario – Throttle 

inputs 

 
Figure 4-22: : First flight test scenario – AOA 

 
Figure 4-23: : First flight test scenario – Sideslip 

Angle 
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2- Second Flight Test Scenario - Pitch Doublet [61]: 

 

a. Start the test at altitude 6100 m and speed 240 m/s, as shown in Figure 4-24 and Figure 4-25. 

b. Pull back the elevator column sharply and hold input for 3 seconds, as shown in Figure 4-26. 

c.  Push forward on elevator column sharply and hold input for 3 seconds.  

d. Release the control column to neutral position for 4 seconds.  

e. Then repeat steps 2, 3, and 4 to produce a similar pitch doublet yet stronger.  

f. Aileron and rudder inputs were kept to zero during this scenario. 

g.  This simulation considers no throttle position changes, as shown in Figure 4-27. 

h. Angle of attack and sideslip angle are presented in Figure 4-28 and Figure 4-29 respectively. 

 
Figure 4-24: Second flight test scenario - Altitude 

 
Figure 4-25: Second flight test scenario - Velocity 

 
Figure 4-26: Second flight test scenario – Pilot 

inputs 

 
Figure 4-27: Second flight test scenario – Throttle 

input 
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Figure 4-28: Second flight test scenario - AOA 

 
Figure 4-29: Second flight test scenario – Sideslip 

angle 

3- Third Flight Test Scenario - Roll Doublet [61]: 

 

a. Start the test at altitude 6100 m and speed 240 m/s, as shown in Figure 4-30 and Figure 4-31. 

b.  Positive sharp aileron input was produced and held for 3 seconds, as shown in  

Figure 4-32. 

c.  Negative sharp aileron input was then produced for 3 seconds.  

d. Release the input to neutral position for 4 seconds.  

e. Then repeat steps 2, 3, and 4 to produce a similar roll doublet yet stronger.  

f. Elevator and rudder inputs were kept to zero during this scenario. 

g. This simulation considers no throttle position changes, as shown in Figure 4-33. 

h. Angle of attack and sideslip angle are shown in Figure 4-34 and Figure 4-35 respectively. 

 
Figure 4-30:  Third flight test scenario - Altitude 

 
Figure 4-31:  Third Flight test scenario - Velocity 
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4- Fourth Flight Test Scenario - Yaw Doublet [61]: 

 

a. Start the test at altitude 6100 m and speed 240 m/s, as shown in Figure 4-36 and Figure 4-37. 

b.  Positive sharp rudder input was produced and held for 3 seconds, as shown in| 

Figure 4-38. 

c.  Negative sharp rudder input was then produced for 3 seconds.  

d. Release the input to neutral position for 4 seconds.  

e. Then repeat steps 2, 3, and 4 to produce a similar yaw doublet yet stronger.  

f. Elevator and aileron inputs were kept to zero during this scenario. 

g. This simulation considers no throttle position changes, as shown in Figure 4-39. 

h. Angle of attack and sideslip angle are presented in Figure 4-40 and Figure 4-41 respectively. 

 

 
Figure 4-32:  Third Flight test scenario – Pilot 

inputs 

 
Figure 4-33:  Third Flight test scenario – Throttle 

input 

 
Figure 4-34:  Third Flight test scenario - AOA 

 
Figure 4-35:  Third Flight test scenario – Sideslip 

angle 
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Figure 4-36:  Fourth flight test scenario - Altitude 

 
Figure 4-37:  Fourth Flight test scenario – Velocity 

 
Figure 4-38:  Fourth Flight test scenario – Pilot 

inputs 

 
Figure 4-39:  Fourth Flight test scenario – Throttle 

input 

 
Figure 4-40:  Fourth Flight test scenario - AOA 

 
Figure 4-41:  Fourth Flight test scenario - Sideslip 

angle 
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5- Fifth Flight Test Scenario - High AOA Climbing [61]: 

 

a. Start the simulation with a steady level flight at altitude 6100 m and speed 240 m/s for 5 seconds, 

as shown in Figure 4-42 and Figure 4-43. 

b. Positive elevator input is exerted to start the climbing operation with a high AOA, as shown in 

Figure 4-44. 

c. The throttle power was increased gradually into full power, as shown in Figure 4-45, in order to 

support the high AOA (                 flight,[Figure 4-46], without causing a stall flight. 

d. The flight altitude reached 12000 m and speed 120 m/s. 

e. Sideslip angle is shown in Figure 4-47. 

 
Figure 4-42: Fifth flight test scenario - Altitude 

 
Figure 4-43: Fifth Flight test scenario – Velocity 

 
Figure 4-44: Fifth Flight test scenario – Pilot inputs 

 
Figure 4-45: Fifth Flight test scenario - Throttle 

inputs 
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Figure 4-46: Fifth Flight test scenario - AOA 

 
Figure 4-47: Fifth Flight test scenario – Sideslip 

angle 
 

f. Sixth Flight Test Scenario - All Doublets [61]: 

 

a. Start the flight scenario at altitude 6100 m and speed 240 m/s, as shown in Figure 4-48 and 

Figure 4-49. 

b. This flight test consists of a series of doublets on the three channels alternately, as shown in 

Figure 4-50. 

c.  Pull back the elevator column sharply and hold input for 3 seconds. 

d.  Push forward on elevator column sharply and hold input for 3 seconds.  

e. Release the control column to neutral position for 4 seconds.  

f. Positive sharp aileron input was produced and held for 3 seconds. 

g.  Negative sharp aileron input was then produced for 3 seconds.  

h. Release the input to neutral position for 4 seconds.  

i. Positive sharp rudder input was produced and held for 3 seconds. 

j.  Negative sharp rudder input was then produced for 3 seconds.  

k. Release the input to neutral position for the rest of the flight scenario.  

l. During each channel input, the two other channels were kept to zero. 

m. This simulation considers and no throttle position changes, as shown in Figure 4-51. 

n. The flight ends at altitude 4100 m and speed 290 m/s. 

o. Angle of attack and sideslip angle are presented in Figure 4-52 and Figure 4-53 respectively. 
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Figure 4-48: Sixth flight test scenario - Altitude 

 
Figure 4-49: Sixth flight test scenario - Velocity 

 
Figure 4-50: Sixth flight test scenario – Pilot inputs 

 
Figure 4-51: Sixth flight test scenario – Throttle input 

 
Figure 4-52: Sixth flight test scenario - AOA 

 
Figure 4-53: Sixth flight test scenario – Sideslip 

angle 
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Chapter 5. Results and Discussion 

The results and discussion in this section are based on the twelve flight scenarios presented in the 

last chapter. The discussion is divided for each derivative of the nine derivatives, which were introduced 

in the first chapter. The sensitivity analysis is based on the following aspects: 

1- Ideal Estimation: The flight tests are conducted first with all the derivatives perfectly computed 

and used to update the controller on time and with no bias. 

2- No Estimation:  The experiment is conducted again with one of the derivatives is fixed, while 

others are perfectly computed and fed to the controller to study the effect of fixing this specific 

derivative.  

3- Delayed Estimation: The tests are conducted with all the derivatives updated perfectly except 

one derivative, which is updated with a delay to study the effect of any potential delay in the 

estimation process on tracking the desired flight states.  

4- Biased Estimation: Conduct the same flight tests with all derivatives updated perfectly except 

one derivative, which is updated with different biases to study the effect of convergence to a 

different value during the estimation process.  

5- Delayed and Biased Estimation: Flight scenarios that combine delay and bias in the estimation of 

individual derivatives were conducted to explore the extreme effect of combining both types of 

errors. 

The investigated delay values extend from 0.5 to 40 seconds. The bias values range from 5% to 

500% and -5% to -500%. 

The errors between the reference (desired) and actual roll, pitch, and yaw rates (deg/sec) were 

used as performance metrics and basis of comparison. Additionally, the neural network output was 

recorded to assess the NN effort in compensating the error in each case. The integral of the three errors 

and the integral of the NNs‘ effort exerted to compensate for those errors over the test period are also 

presented to support the comparison.  

Finally, the comparison will be divided into three main sections: updated vs. fixed, updated vs. 

updated with a delay, and updated vs updated with a bias. As mentioned above, there are twelve flight 

tests that consist of six different fligh manuevers, which were performed twice at both nominal and 

stabilator failure conditions. A limited number of tests with both estimation delay and bias were also 

performed, analyzed, and discussed. 
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1. Nominal Condition 

       

I) Updated Derivative Against Fixed Derivative 

[Figure 5-1] shows both updated and fixed    . 

 

Figure 5-1: Updated vs. fixed    - Fifth scenario 

The hybrid controller succeeded in tracking the desired pitch, roll, and yaw rates in both cases; 

updated and fixed    . A clear comparison between the effect of updating and fixing       on the three 

rates tracking errors is presented through calculating the sum of the tracking errors on each channel as 

well as the total neural network effort exerted to compensate for the corresponding errors in both cases.  

The average results of all six scenarios, [Table 5-1],  show that the hybrid controller with fixed 

     had a better performance as compared to the ideal hybrid controller with updated     ; this 

unexpected behavior will be explained further at the end of this chapter. The pitch neural network effort 

decreased by updating    .  

The analysis of individual scenarios shows that the importance of updating      depends greatly 

on the variation range of      as well as the nature of the maneuvers and inputs.  Fifth scenario, 

[Table 5-2], which was characterized by 55% variation in      along with a large pitch input to climb 

with high AOA, shows that updating the derivative will enhance the quality of the controller in tracking 

the pitch rate by 36% as compared to using a fixed derivative, [Figure 5-2]. However, that scenario did 

not exhibit any change in the neural network effort to compensate for this huge error degradation.  

In the second scenario, [Table 5-3] - two pitch doublets, the performance of the controller 

unexpectedly degraded by 30% after updating the     . On the other hand, the neural network effort 

decreased by 21% when updating the derivative, as shown in Figure 5-3. As expected, due to 
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decoupling, updating this derivative did not have any effect on tracking either roll or yaw rates. 

Moreover, the neural network effor of both channels did not change when fixing        

 
Figure 5-2: Integral of pitch tracking error for 

updated vs. fixed    - Fifth scenario 

 
Figure 5-3: Integral of pitch neural network output for 

updated vs. fixed    - Second scenario 

Table 5-1: Updated vs. fixed     - Average results 

  Updated     Fixed     

Integral of Pitch Tracking Error 
(%) 

100.00 92.26 

Integral of Roll Tracking Error 
(%) 

100.00 99.78 

Integral of Yaw Tracking Error 
() 

100.00 99.53 

Integral of Pitch Neural 
Network (%) 

100.00 109.50 

Integral of Roll Neural 
Network (%) 

100.00 9.99 

Integral of Yaw Neural 
Network (%) 

100.00 99.78 



46 

II) Updated Derivative Against Delayed Derivative 

The effect of potential delays during the estimation process of      is discussed in this section. 

      is updated with different delays from 0.5 to 40 seconds and the tracking errors in every case are 

compared with the ideally updated derivative.  

Updating the derivative with a delay did not have any effect on Roll or Yaw rates in any of the 

flight tests, as expected. On the other hand, the delay had a significant effect on the quality of tracking 

pitch rate in some scenarios specially the ones that included considerable longitudinal input. For 

instance, the second scenario with a pitch doublet experiences 27% more error in tracking pitch rate with 

only 2 seconds delay in estimating    . Fifth scenario experiences 43% more error in tracking pitch rate 

 
Table 5-2: Updated vs. fixed     – Fifth scenario 

  Updated     Fixed     

Integral of Pitch Tracking 
Error (%) 

100 136.5 

Integral of Roll Tracking 
Error (%) 

100 99.382 

Integral of Yaw Tracking 
Error (%) 

100 97.8 

Integral of Pitch Neural 
Network (%) 

100 100.45 

Integral of Roll Neural 
Network (% 

100 99.714 

Integral of Yaw Neural 
Network (%) 

100 98.53 

 

 
Table 5-3: Updated vs. fixed     – Second scenario 

  Updated     Fixed     

 Integral of Pitch Tracking 
Error (%) 

10 69.24 

Integral of Roll Tracking 
Error (%) 

100 99.408 

Integral of Yaw Tracking 
Error (%) 

100 99.631 

Integral of Pitch Neural 
Network (%) 

100 121.54 

Integral of Roll Neural 
Network (%) 

100 100.06 

Integral of Yaw Neural 
Network (%) 

100 100.17 
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when there is 17 seconds delay. However, the average of all the scenarios does not exhibit considerable 

or consistent effect for the delay on pitch tracking error, as listed in Table 5-4. Finally, no more effort 

was needed from the neural network on roll or yaw channel, yet the pitch neural network exerted more 

effort. 

 

 
Figure 5-4 Updated vs. delayed (2-seconds)     - Second scenario 

 

 
Figure 5-5: Integral of pitch tracking error for updated vs. 

delayed (2-seconds)     - Second scenario 

 
Figure 5-6: Integral of pitch neural network output for 

updated vs. delayed (2-seconds)     - Second scenario 
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Table 5-4: Updated vs. delayed    – Average results 

Delay (sec) 0 0.5 1 2 3 4 5 7 9 10 12 15 17 20 25 30 35 40 

Integral of Pitch Tracking Error(deg) 100 99.65 98.7 98.26 101.1 101.6 101.7 91.57 93.41 95.16 99.57 99.99 98.62 98.76 97.25 91.56 91.17 90.84 

Integral of Roll Tracking Error(deg) 100 100.1 100.4 99.98 100.2 100.1 100.3 100 99.92 100.2 99.92 100.1 99.88 99.83 99.79 99.79 99.78 99.78 

Integral of Yaw Tracking Error(deg) 100 100.1 100.1 99.74 99.91 100.1 99.88 99.65 99.77 99.87 99.8 99.66 99.57 99.65 99.59 99.58 99.55 99.57 

Integral of Pitch Neural Network 100 100.7 102.9 108.3 113.6 113.5 111.9 108.8 108.7 108.7 111.9 112.1 111 112.1 110.7 112.9 110.8 111 

Integral of Roll Neural Network 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 

Integral of Yaw Neural Network 100 99.98 99.96 99.95 99.95 99.92 99.88 99.83 99.77 99.75 99.78 99.78 99.84 99.88 99.86 99.86 99.83 99.79 
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Figure 5-7: Updated vs. delayed (17-seconds)     - Second scenario 

 

 
Figure 5-8: Integral of pitch tracking error for updated 

vs. delayed (17-seconds)     - Second scenario 

 
Figure 5-9: Integral of pitch neural network output 

updated vs. delayed (17-seconds)     - Second scenario 

 

III) Updated Derivative Against Biased Derivative 

     estimate might practically converge to a wrong value; therefore, the effects of potential bias 

in the estimation are investigated in this section.       is updated with different biases from -500% up to 

500%  of the initial value of the derivative. The tracking errors in every case are compared with the 

ideally updated derivative. When the bias is less than 50% the neural network was able to maintain the 

pitch tracking error close to the original error produced whilst using the updated derivative. Starting 

from 50% bias, the error will become greater as compared to the fixed derivative. That makes sense 

because 50% bias results in as much difference as between the fixed value and the actual value of the 

derivative, as shown in Figure 5-1 and Figure 5-10. 

Increasing the bias more will significantly increase the pitch tracking error. Moreover, starting 

from this bias level, the neural network effort will significantly increase in vain. Consequently, when the 

bias is more than 50%, not updating the derivative will be better. For negative bias, -15% will have as 
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much error as %50 bias. Positive bias does not drive the system into instability but negative bias 

produced an unstable system after -400%. Fifth scenario then second scenario showed the steepest error 

increase with increasing the bias value. At low biases, there is no effect on the roll or yaw tracking 

errors neither on their respective neural networks. However, at high negative biases, the tracking quality 

of yaw and roll angular rates has degraded along with an increase in their corresponding NNs. High 

Positive bias did not have any effect on the quality of roll and yaw channels or their neural networks‘ 

effort. 

Table 5-5: Updated vs. biased     - Average results 

Bias (%) 
Integral of 

Pitch Tracking 

Error(deg) 

Integral of Roll 

Tracking 

Error(deg) 

Integral of Yaw 

Tracking 

Error(deg) 

Integral of 

Pitch Neural 

Network 

Integral of 

Roll Neural 

Network 

Integral of 

Yaw Neural 

Network 

0 100.00 100.00 100.00 100.00 100.00 100.00 
5 93.43 99.84 99.75 98.95 100.00 99.96 

10 88.72 99.65 99.49 97.69 100.00 99.91 
15 86.17 99.47 99.24 96.71 100.00 99.87 
20 85.71 99.30 98.99 95.98 100.01 99.83 
25 87.28 99.12 98.75 95.11 100.01 99.79 
30 90.68 98.95 98.51 94.52 100.01 99.75 
50 116.87 98.29 97.62 93.93 100.02 99.60 
80 164.72 97.39 96.39 102.90 100.03 99.39 

100 197.98 96.80 95.67 113.12 100.04 99.26 
120 227.63 96.24 95.13 131.48 100.01 99.13 
150 277.58 95.48 94.26 156.18 100.03 98.98 
200 358.25 94.23 92.79 193.91 100.03 98.77 
250 428.47 92.96 91.40 223.92 100.00 98.47 
300 494.82 91.86 90.29 256.62 100.00 98.25 
350 556.45 90.86 89.30 288.19 99.99 98.04 
400 613.75 89.95 88.42 318.59 99.98 97.86 
450 667.08 89.11 87.65 347.68 99.97 97.68 
500 716.74 88.34 87.00 375.83 99.95 97.51 
-5 106.91 100.19 100.27 101.38 100.00 100.05 

-10 113.16 100.37 100.53 103.49 100.00 100.09 
-15 120.10 100.55 100.79 106.04 99.99 100.13 
-20 128.37 100.74 101.03 107.51 99.99 100.17 
-25 139.92 100.94 101.27 106.25 99.99 100.22 
-30 150.02 101.13 101.55 107.67 99.99 100.27 
-50 171.89 109.70 95.96 124.76 104.35 99.39 
-80 236.12 111.11 98.14 142.36 104.36 99.82 

-100 290.59 112.18 99.91 149.74 104.36 100.08 
-120 347.36 113.35 101.77 159.20 104.35 100.39 
-150 446.81 115.48 105.10 171.13 104.33 100.88 
-200 663.65 120.42 112.04 193.96 104.25 102.01 
-250 1073.06 128.57 125.78 229.44 103.99 104.23 



51 

-300 2608.23 166.23 254.64 245.65 103.97 110.60 
-350 3244.10 162.07 218.58 256.97 106.84 108.90 
-400 unstable unstable unstable unstable unstable unstable 
-450 unstable unstable unstable unstable unstable unstable 
-500 unstable unstable unstable unstable unstable unstable 

 

 
Figure 5-10: Updated vs. biased (50%)     - 

Fifth scenario 

 
Figure 5-11: Integral of pitch tracking error for 
updated vs. biased (50%)     - Fifth scenario 

 

 

 
Figure 5-12: Updated vs. biased (-15%)     - 

Fifth scenario 

 
Figure 5-13: Integral of pitch tracking error for 
updated vs. biased (-15%)     - Fifth scenario 
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Figure 5-14: Updated vs. biased (-200%)     - Second scenario 

 
Figure 5-15: Integral of pitch tracking error for 

updated vs. biased (-200%)     - Second scenario 

 
Figure 5-16: Integral of roll tracking error for updated 

vs. biased (-200%)     - Second scenario 

 
Figure 5-17: Integral of yaw tracking error for 

updated vs. biased (-200%)     - Second scenario 

 
Figure 5-18: Integral of pitch neural network output for 

updated vs. biased (-200%)     - Second scenario 

IV) Bias and Delay 

Tests were conducted using the fifth scenario to show the effect of combining both delay and 

bias. The results showed that the system became unstable at the bias value (-400%), and there were 

some inconsistently insignificant increase in the error as compared to the case of pure bias. In short, 

adding delay to bias did not show worse effect than the single bias. 
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2-     

I) Updated Derivative Against Fixed Derivative 

The average results all the six scenarios, when      is updated and fixed, shows that updating 

this derivative does not exhibit significant change in tracking performance or neural networks effort. 

Updating the derivative improved pitch tracking quality by only 1.5% as compared to no update. 

Conversely, the pitch neural network effort increased by about 1.5% after updating the derivative, 

[Table 5-6].  

The first flight scenario, coordinated turn, had the largest effect of updating      on pitch 

tracking error among all the scenarios whereas the pitch tracking improved by 10%, [Figure 5-19 and 

Figure 5-20]. The neural network effort, however, increased by 5% as compared to fixing the derivative, 

[Table 5-7]. 

 
Figure 5-19: Updated vs. fixed    - First scenario 

 
Figure 5-20: Integral of pitch tracking errors for 

updated vs. fixed    - First scenario 

Table 5-6: Updated vs. fixed     - Average results 

  Updated     Fixed     

Integral of Pitch Tracking 
Error (%) 

100.00 101.45 

Integral of Roll Tracking 
Error (%) 

100.00 100.03 

Integral of Yaw Tracking 
Error (%) 

100.00 100.05 

Integral of Pitch Neural 
Network (%) 

100.00 98.54 

Integral of Roll Neural 
Network (%) 

100.00 100.00 

Integral of Yaw Neural 
Network (%) 

100.00 100.02 
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Table 5-7: Updated vs. fixed     - First scenario  

  Updated     Fixed     

Integral of Pitch Tracking 
Error (%) 

100 110.51 

Integral of Roll Tracking 
Error (%) 

100 100.01 

Integral of Yaw Tracking 
Error (%) 

100 100.01 

Integral of Pitch Neural 
Network (%) 

100 94.893 

Integral of Roll Neural 
Network (%) 

100 99.972 

Integral of Yaw Neural 
Network (%) 

100 99.982 

 

II) Updated Derivative Against Delayed Derivative 

The delay does not have any effect on roll or yaw tracking along with their neural networks. The 

average of all the scenarios does not show a significant effect in either pitch tracking error or its NN. 

The first scenario, [Table 5-8], was the only scenario to show an effect to delay. When the delay 

becomes 7 seconds, pitch-tracking error starts to increase from the ideal case. Moreover, 20 seconds 

delay in updating      generates as much error as not updating this derivative, [Figure 5-21, Figure 

5-22, and Table 5-8]. The pitch neural network during this scenario does not show any success in 

reducing the error. 

 
Figure 5-21: Updated vs. delayed (20-seconds)  

   - First scenario 

 
Figure 5-22: Integral of pitch tracking error for 

updated vs. delayed (20-seconds)     - First scenario 
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Table 5-8: Updated vs. delayed    – First scenario 

Delay (sec) 0 0.5 1 2 3 4 5 7 9 10 12 15 17 20 25 30 35 40 

Integral of Pitch 
Tracking 

Error(deg) 
100 99.88 99.83 99.83 99.87 100 100.4 101.1 102.7 103.5 105 106.9 107.8 109.1 110.5 110.5 110.5 110.5 

Integral of Roll 
Tracking 

Error(deg) 
100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 

Integral of Yaw 

Tracking 
Error(deg) 

100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 

Integral of Pitch 
Neural Network 100 100 99.89 99.66 99.51 99.42 99.36 99.2 99.2 99.12 98.87 98.71 98.64 98.57 98.54 98.54 98.54 98.54 

Integral of Roll 
Neural Network 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 

Integral of Yaw 

Neural Network 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 
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III) Updated Derivative Against Biased Derivative 

The biased  estimates of     affect the quality of tracking pitch rate and the pitch neural 

network. The biased derivative does not present any effect on tracking either roll or yaw rates, or their 

respective neural networks outputs. Increasing the negative bias slowly increases the pitch neural 

network effort, contrary to increasing the positive bias, which slightly decreases the pitch neural network 

effort. In average, when     was updated with a bias, even with a very small value such as 10%, the 

pitch tracking error increased. When the bias reaches 80%, the pitch tracking error increases by 11%, 

which is worse than not updating the derivative. That means the estimation process becomes useless if it 

yields a convergence error greater than 80%. On the contrary, this derivative was not as sensitive to 

negative biases such that -500% bias only showed 14% more error as compared to the perfect derivative.  

The third scenario, two roll doublets, was the least sensitive to biased    , followed by the 

fourth scenario; two yaw doublets. On the other hand, the second scenario, [Figure 5-23 and Figure 

5-24] – two pitch doublets, was the most sensitive to bias, both positive and negative, followed by the 

fifth scenario; climbing with high AOA. 

 
Figure 5-23: Updated vs. biased (500%)     - 

Second scenario 

 
Figure 5-24: Integral of pitch tracking errors for 

Updated vs. biased (500%)     - Second scenario 
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Table 5-9: Updated vs. biased     - Average results 

Bias (%) 
Integral of 

Pitch Tracking 

Error(deg) 

Integral of Roll 

Tracking 

Error(deg) 

Integral of Yaw 

Tracking 

Error(deg) 

Integral of 

Pitch Neural 

Network 

Integral of 

Roll Neural 

Network 

Integral of 

Yaw Neural 

Network 

0 100.00 100.00 100.00 100.00 100.00 100.00 
5 100.75 100.01 100.01 99.89 100.00 100.00 

10 101.50 100.02 100.02 99.76 100.00 100.00 
15 102.25 100.03 100.03 99.64 100.00 100.01 
20 103.00 100.03 100.04 99.55 100.00 100.01 
25 103.76 100.04 100.06 99.42 100.00 100.01 
30 104.52 100.05 100.06 99.32 100.00 100.01 
50 107.59 100.08 100.11 98.88 100.00 100.03 
80 111.49 100.13 100.17 99.08 100.01 100.04 

100 114.52 100.16 100.21 98.72 100.01 100.05 
120 117.76 100.19 100.25 98.36 100.01 100.06 
150 122.96 100.24 100.33 98.69 100.01 100.07 
200 131.48 100.29 100.42 95.89 100.01 100.11 
250 140.47 100.38 100.53 97.00 100.01 100.14 
300 150.16 100.46 100.67 95.31 100.01 100.22 
350 159.60 100.55 100.77 93.58 100.04 100.27 
400 172.39 100.63 100.88 94.24 100.05 100.31 
450 188.03 100.71 100.99 95.60 100.05 100.36 
500 207.94 100.78 101.05 97.88 100.05 100.38 
-5 99.05 100.00 100.00 100.21 100.00 100.00 

-10 98.31 99.99 99.98 100.32 100.00 99.99 
-15 97.55 99.99 99.97 100.45 100.00 99.99 
-20 96.62 99.99 99.97 100.80 100.00 99.99 
-25 95.85 99.98 99.96 101.02 100.00 99.99 
-30 95.05 99.98 99.95 101.14 100.00 99.98 
-50 92.51 99.94 99.90 101.38 100.00 99.97 
-80 88.46 99.88 99.83 102.25 100.00 99.96 

-100 86.04 99.84 99.79 102.91 99.99 99.95 
-120 83.82 99.80 99.75 103.37 99.99 99.94 
-150 81.61 99.73 99.67 103.80 99.99 99.92 
-200 80.99 99.64 99.56 105.00 99.99 99.90 
-250 84.05 99.55 99.45 106.37 99.99 99.87 
-300 89.53 99.46 99.34 107.80 99.98 99.85 
-350 94.12 99.39 99.23 109.65 99.98 99.83 
-400 100.06 99.31 99.11 111.90 99.98 99.80 
-450 107.40 99.20 99.00 112.71 99.98 99.78 
-500 113.95 99.10 98.89 114.41 99.98 99.76 
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3-       

I) Updated Derivative Against Fixed Derivative 

Generally, tracking each of the three reference rates does not improve by updating     
 as 

compared to fixing     
. First, [Table 5-10], and fifth scenarios were the only exception to that, where 

the pitch tracking improved by about 17.5%, [Figure 5-26]. Second, [Table 5-12], and sixth scenarios, 

on the other hand, had better performance when the derivative is fixed. Finally, the neural networks in 

the three channel were unaffected by this derivative in all the scenarios. [Figure 5-25] shows both 

updated and fixed     
. 

 
Figure 5-25: Updated vs. fixed     - Fifth scenario 

 
Figure 5-26: Integral of pitch tracking errors for 

updated vs. fixed     - Fifth scenario 
 

 

Table 5-10: Updated vs. fixed       - First scenario 

  Updated     
 Fixed     

 

Integral of Pitch Tracking Error (%) 100 117.57 

Integral of Roll Tracking Error (%) 100 100.01 

Integral of Yaw Tracking Error (%) 
100 100.02 

Integral of Pitch Neural Network (%) 100 91.047 

Integral of Roll Neural Network (%) 
100 99.946 

Integral of Yaw Neural Network (%) 
100 99.965 
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Table 5-11: Updated vs. fixed      - Second scenario 

  Updated     
 Fixed     

 

Integral of Pitch Tracking Error (%) 
100.00 82.75 

Integral of Roll Tracking Error (%) 
100.00 99.02 

Integral of Yaw Tracking Error (%) 
100.00 99.57 

Integral of Pitch Neural Network (%) 
100.00 101.04 

Integral of Roll Neural Network (%) 
100.00 100.02 

Integral of Yaw Neural Network (%) 100.00 100.02 

 

II) Updated Derivative Against Delayed Derivative 

The average results of the six scenarios show slight difference between the ideal update and 

delayed update. The pitch tracking error will start increasing when the delay is 5 seconds, but the 

increase is very little. Moreover, roll and yaw tracking errors as well as neural networks effort in the 

three channels do not change.  

At first scenario, starting from 4 seconds delay, the pitch tracking error starts to increase 

consistently. Therefore, the estimation process for this derivative is inefficient if it produces estimates 

with 4 seconds delay. The error reaches its maximum value of 21% more than the ideal case when the 

delay is 20 seconds.  

Fifth scenario, [Table 5-12], was similar to the first one, yet more sensitive; this scenario was the 

most sensitive scenario with respect to this derivative estimation delay. Half a second delay was enough 

to start producing more error than the ideal case, and a second delay results in 5% more error. The 

maximum increase in error, of about 31%, occurs for a 10 seconds delay, as shown in Figure 5-28.  
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Table 5-12: Updated vs. delayed     – Fifth scenario 

Delay (sec) 
0 0.5 1 2 3 4 5 7 9 10 12 15 17 20 25 30 35 40 

Integral of Pitch 

Tracking Error(deg) 100 101.7 105.5 116 120.3 123.6 126.8 130.3 129.3 131.4 127.5 126.7 121 108.6 104.9 112.2 122.9 121.9 

Integral of Roll Tracking 
Error(deg) 100 99.98 99.96 99.98 100 99.95 100 99.99 100 100.1 100 99.97 100.1 100.1 100.1 100.2 100.1 100.1 

Integral of Yaw 

Tracking Error(deg) 100 100 100.1 100.3 100.1 100.3 100.5 100.5 100.6 100.6 100.8 100.9 100.7 100.8 100.8 100.7 100.8 101 

Integral of Pitch Neural 

Network 100 99.84 99.67 99.36 99.07 98.81 98.53 98.19 97.89 97.8 97.68 97.62 97.62 97.58 97.6 97.65 97.68 97.65 
Integral of Roll Neural 
Network 100 100 99.99 99.99 99.98 99.98 99.99 99.99 100 100 100 100 100.1 100.1 100.1 100.1 100 100.1 
Integral of Yaw Neural 

Network 100 100 100.1 100.2 100.2 100.3 100.4 100.5 100.5 100.6 100.6 100.5 100.5 100.4 100.4 100.4 100.7 100.7 

 
Figure 5-27: Updated vs. delayed (10-seconds)      - 

Fifth scenario 

 
Figure 5-28: Integral of pitch tracking errors for updated 

vs. delayed (10-seconds)      - Fifth scenario 
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III) Updated Derivative Against Biased Derivative 

In average, increasing the bias value affects both the quality of tracking pitch rate and the pitch 

neural network. In contrast, this derivative has negligible effect on roll and yaw rates and their neural 

networks. The controller is more sensitive to negative biases than to positive values. In average, the 

system becomes unstable when the bias value is -100% and in some scenarios, instability occurs from  

-80% bias. This derivative is better being fixed than using a biased derivative with more than 50% or  

-15% bias. 

The pitch neural network increases proportionally with positive bias growth; nevertheless, the 

negative bias did not have as much effect on the pitch NN. This derivative does not have any effect on 

roll and yaw NNs. On the other hand and to a smaller scale, the quality of tracking roll and yaw rates 

experienced small degradation with negative bias growth, but this effect was not present with positive 

bias increase. 

 
Figure 5-29: Updated vs. biased (50%)      - 

Fourth scenario 

 
Figure 5-30: Integral of pitch tracking error for 

updated vs. biased (50%)      - Fourth scenario 

 
Figure 5-31: Integral of pitch neural network output for  

updated vs. biased (50%)      - Fourth scenario 
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Table 5-13: Updated vs. biased     – Average results 

Bias (%) 
Integral of 

Pitch Tracking 

Error(deg) 

Integral of Roll 

Tracking 

Error(deg) 

Integral of Yaw 

Tracking 

Error(deg) 

Integral of 

Pitch Neural 

Network 

Integral of 

Roll Neural 

Network 

Integral of 

Yaw Neural 

Network 

0 100.00 100.00 100.00 100.00 100.00 100.00 

5 95.15 99.82 99.75 102.60 100.00 99.92 

10 92.05 99.62 99.50 104.82 100.00 99.85 

15 90.89 99.43 99.25 107.24 100.00 99.78 

20 91.61 99.24 99.01 109.66 100.00 99.70 

25 94.20 99.05 98.76 111.45 100.00 99.64 

30 99.17 98.87 98.53 113.26 100.00 99.57 

50 134.68 98.15 97.62 124.61 100.00 99.31 

80 198.64 97.12 96.39 146.91 100.00 98.98 

100 241.84 96.43 95.63 161.65 100.01 98.78 

120 279.20 95.81 94.89 191.52 99.96 98.57 

150 344.01 94.92 93.84 218.80 99.96 98.35 

200 434.32 93.43 92.12 260.01 99.95 97.98 

250 516.61 92.10 90.63 303.55 99.96 97.69 

300 592.24 90.87 89.37 343.31 99.97 97.45 

350 662.12 89.75 88.32 380.92 99.98 97.25 

400 726.45 88.73 87.41 418.27 99.98 97.08 

450 785.09 87.81 86.60 457.08 99.99 96.91 

500 840.07 86.95 85.90 492.67 100.00 96.77 

-5 105.32 100.20 100.26 97.86 100.00 100.08 

-10 109.38 100.38 100.50 97.18 100.00 100.15 

-15 115.82 100.59 100.77 95.34 100.00 100.24 

-20 124.60 100.80 101.06 92.73 100.01 100.33 

-25 133.44 101.01 101.34 91.13 100.01 100.42 

-30 142.93 101.18 101.61 88.57 100.02 100.51 

-50 187.13 102.13 102.80 94.62 100.03 100.89 

-80 3906.04 280.62 477.04 118.10 91.65 102.89 

-100 unstable unstable unstable unstable unstable unstable 

-120 unstable unstable unstable unstable unstable unstable 

-150 unstable unstable unstable unstable unstable unstable 

-200 unstable unstable unstable unstable unstable unstable 

-250 unstable unstable unstable unstable unstable unstable 

-300 unstable unstable unstable unstable unstable unstable 

-350 unstable unstable unstable unstable unstable unstable 

-400 unstable unstable unstable unstable unstable unstable 

-450 unstable unstable unstable unstable unstable unstable 

-500 unstable unstable unstable unstable unstable unstable 
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4-      

I) Updated Derivative Against Fixed Derivative 

 

 
Figure 5-32: Integral of roll tracking error for 

updated vs. fixed    
- Fourth scenario 

 
Figure 5-33: Updated vs. fixed    

- Fourth scenario 

[Figure 5-33], shows both updated and fixed    
. This is a lateral derivative; therefore, updating 

   
 does not improve the quality of pitch rate tracking, or reduce the pitch NN effort. As expected, 

because    
 directly connects the side slip angle to the roll moment, updating this derivative enhances 

the tracking of roll angular rate by about 12% in average, as listed in Figure 5-14. 

The average neural network effort from all the scenarios does not increase when the derivative 

was fixed; however, the following detailed  analysis of each scenario will show that the increase occurs 

in some of the scenarios. The roll-NN, in third scenario (two roll doublets) and fourth scenario (two yaw 

doublets), had to increase the effort when the derivative is fixed. Moreover, the fourth scenario 

experienced the most significant performance degradation on roll channel when the derivative is fixed 

by 30% more error, [Table 5-15 and Figure 5-32]. The yaw tracking quality was affected in some of the 

scenarios, but the error scale was very small; around 3%. This derivative did not have any effect on the 

yaw-NN.  
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5-14: Updated vs. fixed    
– Average results 

  Updated    
 Fixed    

 

Integral of Pitch Tracking Error (%) 100.00 100.01 

Integral of Roll Tracking Error (%) 100.00 112.25 

Integral of Yaw Tracking Error (%) 100.00 101.83 

Integral of Pitch Neural Network (%) 100.00 100.02 

Integral of Roll Neural Network (%) 100.00 99.60 

Integral of Yaw Neural Network (%) 100.00 100.11 

Table 5-15: Updated vs. fixed     
 - Fourth scenario 

  Updated    
 Fixed    

 

Integral of Pitch Tracking Error (%) 
100 100.33 

Integral of Roll Tracking Error (%) 
100 129.32 

Integral of Yaw Tracking Error (%) 
100 101.15 

Integral of Pitch Neural Network (%) 
100 99.966 

Integral of Roll Neural Network (%) 100 104.52 

Integral of Yaw Neural Network (%) 100 100.03 

II) Updated Derivative Against Delayed Derivative 

[Table 5-16], shows that updating      with a delay increases the error in tracking the desired roll 

rate. A second delay causes an 8% increase in the roll tracking error, which is less than the resulting 

error from completely fixing the derivative. Any delay greater than a second will be worse than not 

updating        At 25 seconds delay, the error hits its maximum of 26% more than the ideal case. 

Detailed analysis of the scenarios shows that the maximum error in tracking the roll rate 

occurred in the fourth scenario by a 53% more error at 3 seconds delay, [Figure 5-34, and Figure 5-35]. 

The average results do not present a significant degradation on tracking yaw rate; however, 

detailed analysis shows that the fifth scenario had a very sensitive yaw rate tracking quality towards the 

update timing of       such that a second delay was enough to cause an 11% error, [Figure 5-36, and 

Figure 5-37]. 
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The delay does not cause any change in the tracking quality of pitch rate. Finally, the general 

effect of delayed      on the neural networks varied from an increase in the roll-NN effort to no effect 

on the yaw or pitch NNs. 

 
Figure 5-34: Updated vs. delayed (3-seconds)    

- 

Fourth scenario 

 
Figure 5-35: Integral of roll tracking error for 
updated vs. delayed (3-seconds)    

- Fourth 

scenario 

 
Figure 5-36: Updated vs. delayed (1-second)    

- 

Fifth scenario 

 
Figure 5-37: Integral of yaw tracking error for 

updated vs. delayed (1-second)    
- Fifth scenario 
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Table 5-16: Updated vs. delayed    
– Average results 

 

Delay (sec) 0 0.5 1 2 3 4 5 7 9 10 12 15 17 20 25 30 35 40 
Integral of 

Pitch 

Tracking 

Error(deg) 

100.00 100.03 100.02 100.04 100.04 99.97 99.98 99.91 99.87 99.83 99.88 99.85 99.85 99.86 99.96 100.09 100.18 100.08 

Integral of 

Roll 

Tracking 

Error(deg) 

100.00 101.20 107.69 116.91 122.83 121.44 119.63 118.41 119.14 120.02 122.73 122.50 123.31 123.82 125.72 118.49 115.10 112.41 

Integral of 

Yaw 

Tracking 
Error(deg) 

100.00 101.89 102.80 102.00 102.66 103.12 102.59 102.31 101.79 101.83 103.04 103.41 102.89 101.58 103.18 102.19 102.52 102.20 

Integral of 

Pitch Neural 
Network 

100.00 100.01 100.00 99.99 100.01 100.00 100.00 99.99 100.00 100.02 100.00 100.00 99.99 99.99 100.00 100.01 100.02 100.03 

Integral of 

Roll Neural 

Network 
100.00 100.06 100.18 100.54 100.85 100.86 100.63 99.98 101.24 102.37 102.97 100.21 100.84 101.07 102.88 102.71 101.92 100.84 

Integral of 

Yaw Neural 

Network 
100.00 100.06 100.11 100.13 100.09 100.02 99.95 99.72 99.48 99.34 99.01 98.64 98.39 98.23 98.38 99.03 99.71 100.31 
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III) Updated Derivative Against Biased Derivative 

[Table 5-17] shows that if     estimate has a 10% bias, the roll tracking error is 21% more, 

which is worse than not updating the derivative at all. Therefore, the estimation process becomes 

ineffective if it yields a bias more than 10%. Same rule applies to negative biases, where a -10% bias 

will result in 18% more error, [Figure 5-38, and Figure 5-39]. 

The biased value of this derivative affects also the yaw tracking quality, where 50% bias causes a 

10% more error. Yaw-tracking quality is less affected by negative biases, where -500% bias will only 

result in 10% error. On the contrary, the biased derivative does not change the quality of tracking pitch 

rate.  

With respect to the neural networks, the roll-NN effort increased proportionally with bias growth 

in both directions: positive and negative. Furthermore, the negative bias growth was of less effect. 

Additionally, the bias had small proportional effect on the yaw-NN effort; also, the negative bias 

increase produces more increase in the effort than positive increase. Finally, this derivative does not 

affect the pitch-NN. 

Detailed analysis shows that the fourth scenario was the most sensitive to biased estimation in 

terms of roll tracking quality, where a 5% bias was enough to produce a 35% more error. Likewise, a  

a -10% bias produces a 105% more error. Moreover, the fifth scenario was the only scenario to show 

degradation in tracking pitch rate quality with bias increase. 

 
Figure 5-38: Updated vs. biased (-10%)    

- Fourth 

scenario 

 
Figure 5-39: Integral of roll tracking error for 

updated vs. biased (-10%)    
- Fourth scenario 

IV) Bias and delay 

The fourth scenario was used to test the effect of combining delay and bias. The results did not exhibit a 

considerable change in the errors resulted because of bias only.   
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Table 5-17: Updated vs. biased    
– Average results 

Bias (%) 
Integral of 

Pitch Tracking 

Error(deg) 

Integral of Roll 

Tracking 

Error(deg) 

Integral of Yaw 

Tracking 

Error(deg) 

Integral of 

Pitch Neural 

Network 

Integral of 

Roll Neural 

Network 

Integral of 

Yaw Neural 

Network 

0 100.00 100.00 100.00 100.00 100.00 100.00 
5 100.11 108.25 100.88 100.00 102.83 99.80 

10 100.21 121.22 101.77 100.00 105.65 99.60 
15 100.32 136.57 102.69 100.00 108.49 99.39 
20 100.42 152.95 103.63 99.99 111.41 99.19 
25 100.51 170.05 104.60 100.00 114.37 98.99 
30 100.61 187.69 105.59 99.99 117.34 98.79 
50 100.98 261.21 109.96 99.99 129.81 97.99 
80 101.48 378.84 117.62 99.97 149.88 96.83 

100 101.80 462.57 123.45 99.96 163.28 96.41 
120 102.12 550.00 129.57 99.95 176.59 96.56 
150 102.65 687.32 139.27 99.94 196.32 97.12 
200 103.65 929.60 156.80 99.92 228.88 98.48 
250 104.84 1182.22 175.61 99.93 262.10 99.89 
300 106.26 1439.63 192.74 99.94 297.18 100.86 
350 107.82 1725.26 228.05 99.98 336.03 101.14 
400 109.50 2035.52 282.60 100.09 377.09 102.70 
450 119.27 2366.33 347.00 100.34 419.05 106.84 
500 131.36 3011.53 410.13 100.05 468.84 110.13 
-5 99.88 103.64 99.15 100.01 97.16 100.20 

-10 99.77 117.16 98.32 100.01 94.33 100.40 
-15 99.65 131.79 97.51 100.01 91.49 100.60 
-20 99.53 147.07 96.72 100.01 88.90 100.80 
-25 99.41 162.68 95.94 100.01 86.92 101.00 
-30 99.29 178.59 95.18 100.01 85.33 101.19 
-50 99.05 243.56 92.21 100.02 81.08 101.96 
-80 99.26 341.99 88.11 100.03 79.27 103.01 

-100 99.57 407.52 86.13 100.04 80.55 103.64 
-120 99.88 472.49 84.93 100.05 85.09 104.20 
-150 100.22 568.44 84.22 100.07 95.86 104.92 
-200 100.32 722.80 83.87 100.10 116.63 105.80 
-250 99.91 869.35 84.09 100.15 139.39 106.36 
-300 99.16 1008.26 85.44 100.21 163.64 106.67 
-350 98.25 1138.70 90.25 100.28 188.71 106.78 
-400 97.28 1261.14 96.41 100.37 214.08 106.74 
-450 96.31 1376.00 102.92 100.47 239.99 106.60 
-500 95.30 1483.43 109.88 100.61 266.95 106.39 
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5-    
  

I) Updated Derivative Against Fixed Derivative 

 
Figure 5-40: Updated vs. fixed    

- Fifth scenario 

 

[Figure 5-40], shows both updated and fixed    ; this derivative is a lateral derivative. The 

average results show an unexpected slight improvement, by about 2%, in the tracking of roll and yaw 

rates when the derivative is fixed as compared to updating the derivative. The detailed analysis of every 

single scenario, except the first scenario, supported the aforementioned conclusion.Third, fifth, and sixth 

scenarios experienced greater roll and yaw tracking quality when     is fixed. On the other hand, the 

first scenario was the only scenario to show a very small improvement in the roll-tracking when 

updating the derivative; 3% error reduction, [Table 5-18]. 

Table 5-18: Updated vs. fixed     
 - First scenario 

 
Updated     Fixed     

Integral of Pitch Tracking Error (%) 
100 100 

Integral of Roll Tracking Error (%) 
100 102.9 

Integral of Yaw Tracking Error (%) 
100 100.11 

Integral of Pitch Neural Network (%) 
100 99.998 

Integral of Roll Neural Network (%) 
100 100.15 

Integral of Yaw Neural Network (%) 
100 100 
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Table 5-19: Updated vs. fixed     
- Fifth scenario 

  Updated     Fixed     

Integral of Pitch Tracking Error (%) 
100 99.674 

Integral of Roll Tracking Error (%) 
100 94.177 

Integral of Yaw Tracking Error (%) 
100 94.907 

Integral of Pitch Neural Network 
(%) 

100 100 

Integral of Roll Neural Network 
(%) 

100 99.914 

Integral of Yaw Neural Network 
(%) 

100 100.12 

II) Updated Derivative Against Delayed Derivative 

The average results of all scenarios show that the hybrid controller is insensitive to the delay in 

updating      [Table 5-20]. In fact, the average results show no consistent difference between the ideal 

case and any of the delay cases. Except for the sixth scenario, which is more sensitive to the delay in this 

derivative in terms of roll-tracking quality. The roll tracking error was the greatest at 10 seconds delay 

by a 19% more error, [Figure 5-41 and Figure 5-42]. 3 seconds delay in updating the derivative during 

this scenario will result in 3% error. Therefore, it is recommended that if the estimation process for this 

scenario has a delay more than 3 seconds, the fixed derivative becomes more efficient. 

 
Figure 5-41: Updated vs. delayed (10-seconds)    

- 

sixth scenario 

 
Figure 5-42: Integral of roll tracking error for updated 

vs. delayed (10-seconds)    
- Sixth scenario 
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 Table 5-20: Updated vs. delayed    
– Average results 

 

Delay (sec) 0 0.5 1 2 3 4 5 7 9 10 12 15 17 20 25 30 35 40 
Integral of 

Pitch Tracking 

Error(deg) 
100.00 99.98 99.97 99.96 100.00 99.98 99.96 99.96 99.93 99.95 99.95 99.93 99.92 99.92 99.91 99.92 99.92 99.92 

Integral of Roll 
Tracking 

Error(deg) 
100.00 100.08 100.31 100.05 100.55 99.10 99.91 101.12 102.15 102.47 100.35 98.63 98.17 98.16 98.14 98.16 98.25 98.27 

Integral of Yaw 

Tracking 
Error(deg) 

100.00 99.73 99.33 98.54 99.25 99.14 98.78 99.17 99.04 98.87 98.54 98.37 98.30 98.29 98.25 98.27 98.35 98.37 

Integral of 

Pitch Neural 
Network 

100.00 100.01 100.01 100.03 100.02 100.01 100.01 100.01 100.02 100.02 100.03 100.01 100.02 100.02 100.02 100.02 100.02 100.02 

Integral of Roll 

Neural 

Network 
100.00 99.87 99.80 99.76 99.84 100.11 100.58 100.62 99.98 99.85 99.78 99.96 100.01 100.01 100.01 100.01 100.01 100.01 

Integral of Yaw 

Neural 

Network 
100.00 100.00 99.99 100.00 100.02 100.01 100.02 100.02 100.01 100.02 100.03 100.03 100.03 100.03 100.03 100.03 100.03 100.02 
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III) Updated Derivative Against Biased Derivative 

The average results show that updating the derivative with only 5% bias results in a 4% more 

error in tracking roll rate, [Figure 5-43 and Figure 5-44]. Even though the error is small, but because the 

fixed derivative produces no error, any bias greater than 5% will yield lower tracking efficiency.  

Pitch rate tracking quality is decreasing proportionally with positive bias growth. On the 

contrary, the negative bias increase does not have the same effect on pitch tracking. Yaw tracking 

quality is affected also by bias increase in both directions; however, it is more sensitive to positive bias 

increase than negative bias.  

Roll-NN effort increases proportionally with the bias increase in both signs. Similarly, pitch and 

yaw NNs effort increases with positive bias growth; nonetheless, the negative bias growth does not 

affect these two neural networks.  

In general, the hybrid controller seems to be more sensitive to positive bias increase than to 

negative bias in terms of stability and error development.  

 

 
Figure 5-43: Updated vs. biased (5%)    

- First 

scenario 

 
Figure 5-44: Integral of roll tracking error for 
updated vs. biased (5%)    

- First scenario 
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Table 5-21: Updated vs. biased    
– Average results 

Bias (%) 
Integral of 

Pitch Tracking 

Error(deg) 

Integral of Roll 

Tracking 

Error(deg) 

Integral of Yaw 

Tracking 

Error(deg) 

Integral of 

Pitch Neural 

Network 

Integral of 

Roll Neural 

Network 

Integral of 

Yaw Neural 

Network 

0 100.00 100.00 100.00 100.00 100.00 100.00 
5 100.06 104.83 101.25 100.02 100.15 100.00 

10 100.12 109.83 102.59 100.04 100.31 100.01 
15 100.18 114.98 104.00 100.05 100.49 100.01 
20 100.24 120.26 105.48 100.07 100.67 100.02 
25 100.31 125.68 107.04 100.08 100.88 100.02 
30 100.37 131.24 108.68 100.10 101.12 100.03 
50 100.65 154.97 115.99 100.16 102.49 100.05 
80 101.16 196.41 129.81 100.25 105.61 100.06 

100 101.68 229.67 141.82 100.30 107.97 100.07 
120 102.41 269.86 157.27 100.35 110.45 100.07 
150 104.00 350.98 190.39 100.43 114.56 100.04 
200 110.32 583.77 293.70 100.52 123.38 100.23 
250 113.95 1587.12 365.93 100.63 135.35 100.72 
300 7971.51 58088.38 12288.45 210.07 1899.46 120.23 
350 30718.33 101759.00 33569.82 1741.16 8871.68 123.85 
400 24048.87 116656.67 27483.12 467.04 10497.15 155.46 
450 47143.20 177616.80 40633.00 2683.16 11045.70 139.65 
500 unstable unstable unstable unstable unstable unstable 
-5 99.94 95.34 98.84 99.99 99.86 100.00 

-10 99.88 90.88 97.80 99.97 99.80 99.99 
-15 99.83 86.66 96.86 99.95 99.80 99.99 
-20 99.77 82.71 96.05 99.94 99.85 99.98 
-25 99.71 79.18 95.50 99.92 99.96 99.98 
-30 99.66 76.17 95.09 99.90 100.13 99.97 
-50 99.44 71.49 94.17 99.84 101.12 99.95 
-80 99.13 88.11 94.96 99.74 103.09 99.92 

-100 98.93 105.18 97.32 99.68 105.01 99.90 
-120 98.73 122.87 100.72 99.61 107.37 99.88 
-150 98.45 149.58 106.23 99.52 111.48 99.85 
-200 98.00 193.94 116.32 99.38 118.95 99.80 
-250 97.59 237.65 127.25 99.25 126.90 99.75 
-300 97.21 280.63 138.61 99.13 135.23 99.71 
-350 96.87 322.64 150.15 99.03 143.84 99.67 
-400 96.57 363.74 161.75 98.94 152.70 99.63 
-450 96.29 403.97 173.34 98.87 161.76 99.60 
-500 95.97 443.17 184.86 98.81 171.01 99.55 
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6-     
  

I) Updated Derivative Against Fixed Derivative 

[Figure 5-45] shows both updated and fixed     
.  

 
Figure 5-45: Updated vs. fixed     

- Third scenario 

 
Figure 5-46: Integral of roll tracking error for 

updated vs. fixed     
- Sixth scenario 

 

The average results show that the roll tracking quality improved by about 2% when updating the 

derivative. Moreover, detailed analysis shows that the sixth scenario, [Table 5-22], had the greatest 

improvement of 11%, [Figure 5-46], followed by the fifth scenario by a 7% improvement in a roll 

tracking quality. 

Table 5-22: Updated vs. fixed      
 – Sixth scenario 

  Updated     
 Fixed     

 

Integral of Pitch Tracking Error (%) 
100 99.964 

Integral of Roll Tracking Error (%) 
100 110.54 

Integral of Yaw Tracking Error (%) 100 97.443 

Integral of Pitch Neural Network 
(%) 

100 100.08 

Integral of Roll Neural Network 
(%) 

100 95.641 

Integral of Yaw Neural Network 
(%) 

100 99.916 
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II) Updated Derivative Against Delayed Derivative 

The average results show that the delay does not have a dangerous effect on roll tracking quality 

since updating the derivative with 7 seconds delay will increase the error in tracking roll rate by 2%, 

which is worse than not updating the derivative, [Table 5-23]. That means if the estimation process takes 

longer than 5 seconds to converge, the whole estimation process is not likely to improve the 

performance of the controller. Delay does not show any effect on any of the other five parameters.  

The detailed analysis shows that the fifth and sixth scenarios were the two most scenarios 

affected by the delay in terms of roll tracking quality. The fifth scenario develops 11% error in tracking 

roll rate at only 2 seconds delay. Likewise, the sixth scenario obtains the greatest error of 15% when 

there is a 17 seconds delay, [Figure 5-47 and Figure 5-48].  

The only scenario that shows significant increase in the roll-NN effort, in order to compensate 

for the error, was the fifth scenario. The maximum effort increase is 16% and occurs at 30 seconds 

delay. The effect of the delay in updating this derivative on pitch and yaw tracking and their neural 

networks effort was negligible.  

 

 
Figure 5-47: Updated vs. delayed (17-seconds) 

    
- Sixth scenario 

 
Figure 5-48: Integral of roll tracking error for 

updated vs. delayed (17-seconds)     
- Sixth 

scenario 
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Table 5-23: Updated vs. delayed      
 – Average results 

 

 

 

Delay (sec) 0 0.5 1 2 3 4 5 7 9 10 12 15 17 20 25 30 35 40 

Integral of Pitch 
Tracking 

Error(deg) 
100.00 100.01 100.03 100.05 100.05 100.07 100.07 100.06 100.05 100.03 100.02 100.03 100.06 100.09 100.16 100.23 100.21 100.13 

Integral of Roll 

Tracking 
Error(deg) 

100.00 100.27 100.60 100.88 101.18 101.25 101.47 101.33 102.01 101.68 101.94 102.06 102.14 102.07 101.95 101.99 102.22 102.18 

Integral of Yaw 

Tracking 

Error(deg) 
100.00 99.60 99.57 100.01 99.87 99.68 99.66 99.27 98.99 98.76 98.71 98.49 98.61 98.60 98.33 98.56 98.59 98.61 

Integral of Pitch 

Neural Network 
100.00 100.00 99.99 99.98 99.98 99.98 99.97 99.96 99.95 99.95 99.94 99.93 99.92 99.91 99.91 99.92 99.93 99.93 

Integral of Roll 
Neural Network 

100.00 99.94 99.91 99.87 99.85 99.75 99.61 99.35 99.11 99.06 99.09 98.82 98.80 98.69 98.47 98.58 98.32 97.86 

Integral of Yaw 

Neural Network 
100.00 99.93 99.88 99.81 99.77 99.75 99.72 99.64 99.52 99.44 99.26 98.94 98.76 98.59 98.68 99.06 99.47 99.67 
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III) Updated Derivative Against Biased Derivative 

The roll tracking quality decreases proportionally with bias increase. A 5% bias is enough to 

increase the error by 13%; likewise, a -5% bias produces a 20% more error, [Table 5-24]. This fact 

indicates that if the bias cannot be limited within 5%, the derivative with biased update will be worse 

than not updating the derivative at all. Fourth scenario experiences the strongest roll tracking 

degradation with increasing the bias, [Figure 5-49, and Figure 5-50].  

With respect to roll-NN effort, at less than 80% bias, the effort does not increasing. At higher 

biases, nevertheless, the roll-NN effort increases proportionally with the bias increase. On the other 

hand, the roll-NN effort started increasing proportionally with the negative bias growth starting from -

5% until the system became unstable at -100% bias.  

At low bias, the bias increase does not have an effect on either pitch or yaw tracking qualities; 

nonetheless, when the bias value grows higher, both tracking qualities start to degrade proportionally 

until the system becomes unstable. In all the cases, the bias does not present considerable effect on pitch 

and yaw neural networks.  

Generally, the hybrid controller was more sensitive to negative bias growth than to positive bias; 

the system becomes unstable when the bias reaches -100%, besides the error growth slope is steeper 

with negative bias increase. 

 
Figure 5-49: Updated vs. biased (-5%)     

- Fourth 

scenario 

 
Figure 5-50: Integral of roll tracking error for 

updated vs. biased (-5%)     
- Fourth scenario 
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Table 5-24: Updated vs. biased      
 – Average results 

Bias (%) 
Integral of 

Pitch Tracking 

Error(deg) 

Integral of Roll 

Tracking 

Error(deg) 

Integral of Yaw 

Tracking 

Error(deg) 

Integral of 

Pitch Neural 

Network 

Integral of 

Roll Neural 

Network 

Integral of 

Yaw Neural 

Network 

0 100.00 100.00 100.00 100.00 100.00 100.00 
5 99.74 113.51 98.45 99.99 95.97 100.28 

10 99.48 138.69 97.05 99.97 92.05 100.56 
15 99.22 165.53 95.79 99.96 89.55 100.84 
20 98.96 193.34 94.70 99.95 88.17 101.11 
25 98.75 222.11 93.71 99.94 87.37 101.38 
30 98.60 251.81 92.83 99.92 86.93 101.64 
50 98.48 375.84 90.57 99.89 89.81 102.59 
80 98.86 569.20 91.62 99.86 109.06 103.73 

100 99.03 695.75 94.27 99.86 127.21 104.27 
120 99.04 817.24 97.63 99.89 146.18 104.66 
150 98.71 989.61 105.16 99.97 175.22 105.00 
200 97.22 1250.02 126.01 100.20 226.18 105.04 
250 95.45 1479.77 147.94 100.42 280.29 104.64 
300 93.64 1683.15 168.50 100.64 335.56 103.95 
350 91.96 1863.51 187.82 100.86 391.06 103.10 
400 90.55 2024.45 206.16 101.08 446.37 102.13 
450 89.52 2191.44 225.23 101.29 503.35 101.21 
500 88.79 2336.94 243.40 101.50 559.04 100.26 
-5 100.25 119.50 101.72 100.01 104.04 99.71 

-10 100.49 149.71 103.62 100.04 108.00 99.43 
-15 100.74 182.85 105.67 100.05 111.94 99.14 
-20 100.97 217.64 107.88 100.07 116.01 98.85 
-25 101.20 253.87 110.26 100.08 120.41 98.56 
-30 101.42 290.88 112.75 100.10 124.97 98.28 
-50 102.27 444.64 123.89 100.16 143.28 97.16 
-80 140.78 849.88 202.47 98.93 169.82 95.49 

-100 unstable unstable unstable unstable unstable unstable 
-120 unstable unstable unstable unstable unstable unstable 
-150 unstable unstable unstable unstable unstable unstable 
-200 unstable unstable unstable unstable unstable unstable 
-250 unstable unstable unstable unstable unstable unstable 
-300 unstable unstable unstable unstable unstable unstable 
-350 unstable unstable unstable unstable unstable unstable 
-400 unstable unstable unstable unstable unstable unstable 
-450 unstable unstable unstable unstable unstable unstable 
-500 unstable unstable unstable unstable unstable unstable 
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7-    
  

I) Updated Derivative Against Fixed Derivative 

 
Figure 5-51: Updated vs. fixed    

- Fifth scenario 

 
Figure 5-52: Integral of yaw tracking error for 

updated vs. fixed    
- Fifth scenario 

[Figure 5-51] shows both updated and fixed    
. The average results show that updating this 

derivative only enhances the quality of tracking yaw rate, which improved by 3%. Detailed analysis 

shows that the fifth scenario utilizes updating the derivative to improve the yaw tracking quality by a 

51% and to reduce the yaw-NN effort by a 7%, [Table 5-26]. Similarly, the fourth scenario shows an 

improvement in the yaw tracking quality by a 9% after updating the derivative, but the yaw neural 

network effort remained unchanged. On the contrary, the yaw tracking quality in the sixth, and third 

scenarios degraded after updating    
 by a 15% and a 6% respectively. Detailed analysis also supports 

the conclusion from the average results that all the other parameters are not significantly affected by 

updating this derivative. 

Table 5-25: Updated vs. fixed     
- Fifth scenario 

  Updated    
 Fixed    

 

Integral of Pitch Tracking Error (%) 
100 100.09 

Integral of Roll Tracking Error (%) 
100 100.35 

Integral of Yaw Tracking Error (%) 100 151.02 

Integral of Pitch Neural Network (%) 100 100.09 

Integral of Roll Neural Network (%) 
100 100.11 

Integral of Yaw Neural Network (%) 
100 107.18 
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Table 5-26: Updated vs. fixed     
- Sixth scenario 

  Updated    
 Fixed    

 

Integral of Pitch Tracking Error (%) 
100 99.526 

Integral of Roll Tracking Error (%) 
100 99.741 

Integral of Yaw Tracking Error (%) 
100 84.918 

Integral of Pitch Neural Network (%) 
100 100.22 

Integral of Roll Neural Network (%) 
100 99.981 

Integral of Yaw Neural Network (%) 
100 99.422 

II) Updated Derivative Against Delayed Derivative 

The average results show that yaw rate tracking quality is the only affected parameter by delayed 

update of    
  A 3 seconds delay results in a 4% more error, which is worse than not updating the 

derivative at all. Therefore, if the estimation process needs more than 3 seconds to converge, the fixed 

derivative will be more efficient. The worst average yaw tracking error of 8% occurs when the delay is 

10 seconds, [Table 5-27].  

The fifth scenario experiences the greatest yaw tracking quality degradation because of delay. A 

2 seconds delay causes 8% error and the maximum error of a 48% occurs at a 17 seconds delay, [Figure 

5-53, and Figure 5-54]. This was the only scenario that has a proportional, small increase in yaw-NN 

effort with delay increase as an attempt to decrease the tracking error. Followed by the sixth scenario, 

three seconds delay results in an error of 7%. The worst yaw tracking error of 26% occurs when the 

delay is 12 seconds.  

 
Figure 5-53: Updated vs. delayed (17-seconds)    

- 

Fifth scenario 

 
Figure 5-54: Integral of yaw tracking error for 

updated vs. delayed (17-seconds)    
-  Fifth scenario 
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Table 5-27: Updated vs. delayed     
- Average results 

 

 

Delay (sec) 0 0.5 1 2 3 4 5 7 9 10 12 15 17 20 25 30 35 40 

Integral of Pitch 
Tracking 

Error(deg) 
100.00 99.96 100.01 100.09 100.03 100.04 100.03 100.16 99.98 99.97 100.09 99.87 99.97 99.86 99.87 99.89 99.88 99.96 

Integral of Roll 
Tracking 

Error(deg) 
100.00 100.05 100.07 100.14 100.10 100.00 100.06 100.15 100.05 100.08 100.18 100.00 100.13 100.18 100.05 100.10 100.14 100.17 

Integral of Yaw 
Tracking 

Error(deg) 
100.00 96.62 94.66 101.58 104.31 102.34 105.80 102.26 106.65 108.44 103.94 107.54 109.67 106.40 108.45 102.18 101.04 102.12 

Integral of Pitch 

Neural Network 
100.00 99.99 100.01 100.03 100.05 100.06 100.07 100.06 100.05 100.05 100.10 100.09 100.07 100.09 100.09 100.08 100.08 100.09 

Integral of Roll 

Neural Network 
100.00 100.00 99.99 99.99 99.99 99.99 99.99 100.00 99.98 99.96 99.97 100.00 99.99 100.00 99.98 99.98 99.99 99.99 

Integral of Yaw 

Neural Network 
100.00 100.02 100.05 100.11 100.17 100.21 100.26 100.43 100.54 100.56 100.54 100.55 100.58 100.35 100.20 100.25 100.39 100.62 
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III) Updated Derivative Against Biased Derivative 

The Yaw tracking quality inversely decreases with the bias increase. A 5% bias produces a 14% 

average error, [Figure 5-55, and Figure 5-56]; nevertheless, the controller is not as sensitive to the 

negative bias to the extent that a -30% bias had no significant average error. However, greater negative 

bias results in a high yaw tracking error, such that a -50% bias produces a 49% error. Therefore, if the 

estimation process converges to a biased value more than 5% or -30%, the entire derivative updating 

scheme is inefficient.  

Yaw-NN effort is sensitive to positive bias growth; the NN effort increases proportionally, 

[Figure 5-57].Conversely, the negative bias growth does not increase the yaw-NN effort.  

Negative bias growth has minor effect on pitch and roll average tracking errors as well as their 

neural networks average effort. On the contrary, positive bias growth reduces the quality of tracking 

pitch and roll rates but still does not affect their neural networks average effort. 

 
Figure 5-55: Updated vs. biased (5%)    

- Fifth 

scenario 

 
Figure 5-56: Integral of yaw tracking error for 
updated vs. biased (5%)    

- Fifth scenario 

 
Figure 5-57: Integral of yaw neural network output for  

updated vs. biased (50%)    
- Fifth scenario 
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Generally, the hybrid controller was more sensitive to positive bias growth than to negative bias; 

the system becomes unstable when the bias reaches 400%, besides the slope of the error growth is 

steeper with positive bias increase. 

Table 5-28: Updated vs. biased     
- Average results 

Bias (%) 
Integral of 

Pitch Tracking 

Error(deg) 

Integral of Roll 

Tracking 

Error(deg) 

Integral of Yaw 

Tracking 

Error(deg) 

Integral of 

Pitch Neural 

Network 

Integral of 

Roll Neural 

Network 

Integral of 

Yaw Neural 

Network 

0 100.00 100.00 100.00 100.00 100.00 100.00 
5 100.55 100.58 114.29 99.91 100.04 100.65 

10 101.12 101.19 131.10 99.80 100.09 101.33 
15 101.70 101.82 149.57 99.70 100.13 102.02 
20 102.31 102.49 169.22 99.59 100.17 102.74 
25 102.93 103.18 189.78 99.49 100.21 103.48 
30 103.57 103.91 211.21 99.37 100.25 104.23 
50 106.31 107.17 306.06 98.94 100.37 108.28 
80 111.51 113.49 476.35 98.08 100.50 114.81 

100 116.07 118.76 612.65 97.46 100.51 118.54 
120 121.51 125.13 770.01 96.80 100.47 123.52 
150 133.22 136.83 1052.56 94.75 100.32 131.53 
200 158.31 176.41 1713.10 92.73 99.81 147.19 
250 193.73 287.35 2806.72 90.57 99.40 165.88 
300 289.87 613.75 5942.32 84.41 101.29 205.36 
350 1328.03 8854.75 49497.67 76.84 96.65 458.00 
400 unstable unstable unstable unstable unstable unstable 
450 unstable unstable unstable unstable unstable unstable 
500 unstable unstable unstable unstable unstable unstable 
-5 99.46 99.44 89.52 100.10 99.96 99.36 

-10 98.94 98.91 84.20 100.20 99.91 98.75 
-15 98.44 98.40 81.74 100.28 99.86 98.15 
-20 97.95 97.91 81.99 100.37 99.81 97.57 
-25 97.48 97.44 89.06 100.46 99.76 97.00 
-30 97.02 96.99 100.08 100.54 99.72 96.45 
-50 95.32 95.38 149.08 100.86 99.51 94.41 
-80 93.14 93.54 222.54 101.28 99.20 91.70 

-100 91.90 92.73 267.65 101.53 98.98 90.10 
-120 90.79 92.57 309.41 101.77 98.76 88.68 
-150 89.33 92.84 366.08 102.08 98.43 85.81 
-200 87.32 93.43 445.92 102.53 97.89 82.14 
-250 85.74 94.02 511.59 102.90 97.34 80.11 
-300 84.45 94.57 566.47 103.22 96.81 79.90 
-350 83.42 95.08 613.07 103.48 96.29 78.96 
-400 82.56 95.54 653.20 103.73 95.79 77.78 
-450 81.85 95.96 688.24 103.93 95.31 76.92 
-500 81.23 96.37 719.91 104.12 94.84 76.35 
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8-    
  

I) Updated Derivative Against Fixed Derivative 

[Figure 5-58], shows both updated and fixed    
.  

 
Figure 5-58: Updated vs. fixed     - Second scenario 

The average results show no difference between updating and fixing the derivative. It should be 

noted that the range of variation of this derivative for the flight scenarios considered is rather limited. 

The hybrid controller performance will not improve by updating    
 within the considered range. 

Furthermore, the detailed analysis of each scenario supports the same conclusion. 

Table 5-29: Updated vs. fixed      – Average results 

  Updated    
 Fixed    

 

Integral of Pitch Tracking Error (%) 
100.00 100.00 

Integral of Roll Tracking Error (%) 
100.00 100.00 

Integral of Yaw Tracking Error (%) 
100.00 99.87 

Integral of Pitch Neural Network 
(%) 

100.00 100.00 

Integral of Roll Neural Network 
(%) 

100.00 100.00 

Integral of Yaw Neural Network 
(%) 

100.00 99.99 
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II) Updated Derivative Against Delayed Derivative 

Since updating the derivative is not necessary, this section is not important but to keep the analysis consistent along the study. 

Delay in updating this derivative also does not produce any change in the performance of the hybrid controller, [Table 5-30]. 

 

Table 5-30: Updated vs. delayed      – Average results 

 

 

 

Delay (sec) 0 0.5 1 2 3 4 5 7 9 10 12 15 17 20 25 30 35 40 

Integral of Pitch 

Tracking 

Error(deg) 
100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 99.99 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

Integral of Roll 

Tracking 

Error(deg) 
100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

Integral of Yaw 
Tracking 

Error(deg) 
100.00 99.96 99.93 99.99 100.10 100.07 99.97 99.91 99.96 99.74 99.98 99.81 99.91 99.99 100.08 99.94 100.01 99.88 

Integral of Pitch 

Neural Network 
100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

Integral of Roll 

Neural Network 
100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

Integral of Yaw 
Neural Network 

100.00 100.00 100.00 100.00 99.99 99.99 99.99 99.99 99.99 99.99 99.99 99.99 99.99 99.99 100.00 100.00 99.99 99.99 
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III) Updated Derivative Against Biased Derivative 

Average results, [Table 5-31], show that yaw tracking quality is the only affected parameter by 

any bias in the estimation of this derivative. Yaw tracking quality degrades as the bias increases, yet the 

tracking quality degradation is small compared to the other derivatives effect; for instance, 500% bias 

develops 111% average error in tracking yaw rate, [Figure 5-59, and Figure 5-60].  

Detailed analysis shows that first and fourth scenarios experience very small increase, about 4%, 

in the yaw neural network effort at very high biases.  

 

 
Figure 5-59: Updated vs. biased (500%)    - Sixth 

scenario 

 
Figure 5-60: Integral of yaw tracking error for 

updated vs. biased (500%)    - Sixth scenario 
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Table 5-31: Updated vs. biased      – Average results 

Bias (%) 
Integral of 

Pitch Tracking 

Error(deg) 

Integral of Roll 

Tracking 

Error(deg) 

Integral of Yaw 

Tracking 

Error(deg) 

Integral of 

Pitch Neural 

Network 

Integral of 

Roll Neural 

Network 

Integral of 

Yaw Neural 

Network 

0 100.00 100.00 100.00 100.00 100.00 100.00 
5 100.00 100.00 100.21 100.01 100.01 100.02 

10 100.00 100.00 100.44 100.01 100.01 100.04 
15 100.00 100.00 100.70 100.02 100.02 100.05 
20 100.00 100.00 100.97 100.03 100.03 100.07 
25 100.00 100.00 101.27 100.03 100.03 100.09 
30 99.99 100.00 101.60 100.04 100.04 100.11 
50 99.99 100.01 103.22 100.07 100.07 100.18 
80 99.99 100.01 106.88 100.10 100.10 100.29 

100 99.99 100.01 110.24 100.13 100.13 100.36 
120 99.99 100.02 114.29 100.16 100.15 100.43 
150 99.99 100.02 120.83 100.19 100.19 100.54 
200 100.00 100.03 132.32 100.25 100.26 100.73 
250 100.01 100.04 144.20 100.32 100.32 100.92 
300 100.02 100.05 156.45 100.38 100.38 101.11 
350 100.03 100.07 169.17 100.44 100.44 101.30 
400 100.05 100.09 182.44 100.50 100.51 101.49 
450 100.07 100.13 196.43 100.56 100.57 101.68 
500 100.08 100.18 211.28 100.62 100.63 101.88 
-5 100.00 100.00 99.81 100.00 99.99 99.98 

-10 100.00 100.00 99.65 99.99 99.99 99.96 
-15 100.00 100.00 99.50 99.98 99.98 99.95 
-20 100.00 100.00 99.38 99.97 99.97 99.93 
-25 100.00 100.00 99.28 99.97 99.97 99.91 
-30 100.00 100.00 99.21 99.97 99.96 99.89 
-50 100.01 99.99 99.23 99.94 99.94 99.82 
-80 100.01 99.99 99.85 99.90 99.90 99.72 

-100 100.02 99.99 100.57 99.87 99.87 99.65 
-120 100.03 99.99 101.49 99.85 99.84 99.58 
-150 100.04 99.98 103.28 99.80 99.81 99.47 
-200 100.05 99.98 107.87 99.74 99.74 99.30 
-250 100.06 99.97 113.82 99.68 99.67 99.13 
-300 100.08 99.97 120.93 99.61 99.61 98.96 
-350 100.10 99.96 129.09 99.55 99.54 98.79 
-400 100.09 99.96 137.84 99.53 99.48 98.63 
-450 100.11 99.96 146.81 99.47 99.41 98.46 
-500 100.13 99.96 155.91 99.41 99.34 98.30 
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9-     
  

I) Updated Derivative Against Fixed Derivative 

[Figure 5-45] shows both updated and fixed     
.  

 
Figure 5-61: Updated vs. fixed     

- Third scenario 

 
Figure 5-62: Integral of yaw tracking error for 

updated vs. fixed     
- Third scenario 

 

The average results show no difference between updating and fixing     
. Detailed analysis 

shows that the quality of the yaw tracking in the fifth scenario improved by about a 10%, and the yaw-

NN effort decreased by a 2% after updating this derivative, [Table 5-32]. Contrary to third and sixth 

scenarios, where the yaw tracking performance degraded after updating the derivative by a 6% and 4.5% 

respectively, [Table 5-33, Figure 5-61, and Figure 5-62]. All other parameters remained unchanged. 

Table 5-32: Updated vs. fixed      
 – Fifth scenario 

  Updated     
 Fixed     

 

Integral of Pitch Tracking Error (%) 
100 100.04 

Integral of Roll Tracking Error (%) 
100 99.999 

Integral of Yaw Tracking Error (%) 
100 110.06 

Integral of Pitch Neural Network 
(%) 

100 100.02 

Integral of Roll Neural Network 
(%) 

100 100.03 

Integral of Yaw Neural Network 
(%) 

100 102.06 
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Table 5-33: Updated vs. fixed      
 – Third scenario 

  Updated     
 Fixed     

 

Integral of Pitch Tracking Error (%) 100 99.795 

Integral of Roll Tracking Error (%) 100 99.988 

Integral of Yaw Tracking Error (%) 
100 93.767 

Integral of Pitch Neural Network 
(%) 

100 100.03 

Integral of Roll Neural Network 
(%) 

100 99.991 

Integral of Yaw Neural Network 
(%) 

100 99.812 

 

II) Updated Derivative Against Delayed Derivative 

 

The average results show that the delay does not have any effect. Detailed analysis shows that 

the fifth scenario‘s yaw quality degrades by about a 10% at a 10 seconds delay. For the fifth scenario, 

therefore, updating this derivative will only be effective if the delay is less than a 10 seconds. Same 

scenario, the greatest degradation of 12% occurs at 17 seconds delay, [Figure 5-63, Figure 5-64, and 

Table 5-34]. 

 

 
Figure 5-63: Updated vs. delayed (17-seconds)     

- 

Fifth scenario 

 
Figure 5-64: Integral of yaw tracking error for updated 

vs. delayed (17-seconds)     
- Fifth scenario 
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Table 5-34: Updated vs. delayed      
 – Fifth scenario 

 

 

Delay (sec) 0 0.5 1 2 3 4 5 7 9 10 12 15 17 20 25 30 35 40 

Integral of Pitch Tracking Error(deg) 100 100 100.1 100.2 100.2 100.2 100.2 100.2 100.1 100.1 100.1 99.94 99.97 100.1 100.1 100.1 100 100.1 

Integral of Roll Tracking Error(deg) 100 100 99.99 99.97 100 100 99.99 99.99 99.99 100 99.94 99.95 100 100 100 100 99.99 99.97 

Integral of Yaw Tracking Error(deg) 100 98.52 96.98 99.23 100.7 100 102.5 105.3 108.6 109.9 107.1 109.4 111.5 108.4 107.7 111.8 110.2 112 

Integral of Pitch Neural Network 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 

Integral of Roll Neural Network 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 

Integral of Yaw Neural Network 100 100.2 100.3 100.6 100.9 101.1 101.3 101.7 101.9 101.9 102 102 102 102.1 102.3 102.3 102.2 102 
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III) Updated Derivative Against Biased Derivative 

Increasing the bias in either positive or negative direction increases the yaw tracking error. The 

controller is more sensitive to negative biases such that a -100% bias will destabilize the system. On the 

contrary, the positive bias increase has an unexpected favorable effect on the pitch and roll tracking 

performance; nevertheless, the negative bias has a slightly bad effect on them, [Table 5-35]. 

Table 5-35: Updated vs. biased      
 – Average results 

Bias (%) 

Integral of 

Pitch Tracking 

Error(deg) 

Integral of Roll 

Tracking 

Error(deg) 

Integral of Yaw 

Tracking 

Error(deg) 

Integral of 

Pitch Neural 

Network 

Integral of 

Roll Neural 

Network 

Integral of 

Yaw Neural 

Network 

0 100.00 100.00 100.00 100.00 100.00 100.00 

5 99.34 99.50 88.39 100.08 99.93 99.29 

10 98.71 99.03 83.25 100.16 99.86 98.60 

15 98.11 98.58 82.53 100.23 99.79 97.93 

20 97.51 98.14 87.06 100.31 99.72 97.28 

25 96.94 97.73 100.05 100.38 99.65 96.65 

30 96.38 97.34 114.64 100.46 99.58 96.04 

50 94.34 95.94 176.18 100.73 99.30 93.74 

80 91.75 94.45 262.28 101.10 98.87 90.67 

100 90.30 93.99 314.07 101.32 98.59 88.98 

120 89.02 94.04 361.40 101.53 98.31 86.92 

150 87.39 94.46 424.72 101.81 97.89 83.74 

200 85.25 95.25 513.63 102.21 97.22 79.69 

250 83.64 96.01 586.60 102.54 96.58 77.32 

300 82.41 96.66 647.82 102.82 95.95 76.02 

350 81.46 97.21 699.88 103.06 95.36 74.65 

400 80.69 97.68 745.20 103.27 94.79 74.10 

450 80.08 98.11 784.55 103.46 94.25 73.26 

500 79.57 98.49 819.08 103.63 93.73 72.36 

-5 100.67 100.52 116.31 99.92 100.07 100.73 

-10 101.37 101.07 135.63 99.84 100.13 101.48 

-15 102.08 101.64 156.84 99.75 100.20 102.25 

-20 102.80 102.25 179.35 99.68 100.27 103.04 

-25 103.55 102.88 202.86 99.59 100.33 103.86 

-30 104.31 103.54 227.41 99.50 100.39 104.70 

-50 107.49 106.53 336.49 99.19 100.63 108.83 

-80 112.79 119.29 368.07 98.21 101.01 118.07 

-100 unstable unstable unstable unstable unstable unstable 

-120 unstable unstable unstable unstable unstable unstable 

-150 unstable unstable unstable unstable unstable unstable 

-200 unstable unstable unstable unstable unstable unstable 

-250 unstable unstable unstable unstable unstable unstable 

-300 unstable unstable unstable unstable unstable unstable 

-350 unstable unstable unstable unstable unstable unstable 

-400 unstable unstable unstable unstable unstable unstable 

-450 unstable unstable unstable unstable unstable unstable 

-500 unstable unstable unstable unstable unstable unstable 
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2. Failure Condition 

The last six flight scenarios are repeated considering a stabilator failure in order to study the 

importance of parameter estimation and the effect of the estimation issues on the performance of the 

hybrid controller at post failure conditions. Although a thorough systematic analysis has been carried out 

to include the entire set of nine derivatives, in this section only those particular derivatives will be 

discussed that showed a different trend at post-failure conditions than at nominal conditions. The 

derivatives discussed in this section are presented in decreasing order of the impact that the failure had 

on them. 

        

I) Updated Derivative Against Fixed Derivative 

This derivative was the most affected by the stabilator failure in terms of the controller 

performance and neural networks effort when updating the derivative as compared to fixing it. As 

presented previously, at nominal condition, updating this derivative had no favorable impact on the 

controller; however, at failure condition, the average results show that the pitch tracking improved by 

15% after updating the derivative. Detailed analysis shows that every single scenario experiences an 

enhancement in tracking pitch rate after updating     .  Not only pitch rate, but also tracking roll and 

yaw rates improved by the update, which did not happen at nominal condition. 

The three neural networks‘ effort, to different extents, also decreases when the derivative is 

updated. For instance, third flight scenario shows that pitch-NN, roll-NN, and yaw-NN effort increases 

when fixing the dertivative by 19% [Figure 5-69], 1.5%, 5% [Figure 5-70] respectively. The same flight 

scenario shows when the derivative is fixed and regardless of the increase in the neural networks effort, 

the controller tracking performance worsen; The pitch, roll, and yaw tracking errors increase by 25% 

[Figure 5-66], 11% [Figure 5-67], and 11% [Figure 5-68] respectively, [Table 5-36]. 

Table 5-36: Updated vs. fixed       – Third scenario – Stabilator failure 

  Updated      Fixed      

Integral of Pitch Tracking Error (%) 
100.00 124.73 

Integral of Roll Tracking Error (%) 
100.00 110.92 

Integral of Yaw Tracking Error (%) 100.00 110.90 

Integral of Pitch Neural Network (%) 
100.00 118.87 

Integral of Roll Neural Network (%) 
100.00 101.49 

Integral of Yaw Neural Network (%) 
100.00 104.05 
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Figure 5-65: Updated vs. fixed     - Third scenario – 

Stabilator failure 

 
Figure 5-66: Integral of pitch tracking error for 

updated vs. fixed     - Third scenario – Stabilator 
failure 

 
Figure 5-67: Integral of roll tracking error for updated 

vs. fixed     - Third scenario – Stabilator failure 

 
Figure 5-68: Integral of yaw tracking error for 

updated vs. fixed     - Third scenario – Stabilator 
failure 

 
Figure 5-69: Integral of pitch neural network output 

for updated vs. fixed     - Third scenario – 
Stabilator failure 

 
Figure 5-70: Integral of yaw neural network output 

for updated vs. fixed     - Third scenario – 
Stabilator failure 
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II) Updated Derivative Against Delayed Derivative 

The delay in updating this derivative affects the quality of tracking pitch, roll, and yaw rates. The 

pitch tracking was the most affected, since the average results show that fives seconds delay increases 

the error by 12%. The resulted error in tracking roll and yaw rates, however, was smaller; in the range of 

5% due to five seconds delay. Detailed analysis shows that the fifth scenario is very sensitive to delay, 

such that a one second delay results in a 20% increase in the pitch tracking error. With respect to neural 

networks, the delay in this derivative only increases the pitch-NN effort, but the delay has no impact on 

the roll or yaw neural networks. The average results show that if the estimation process causes more 

than five seconds delay, updating      will be inefficient. 

III) Updated Derivative Against Biased Derivative 

The bias impact on this derivative at failure is similar to nominal condition as the entire 

controller performance degrades as the bias increases. The controller is more sensitive towards negative 

more than positive bias so that the system becomes unstable when the bias reaches -100%. 

       

The average results show that updating this derivative enhances the pitch tracking quality by 

about 2.5% as compared to not updating it in addition to a yaw-tracking enhancement by 1.5% and no 

change in the roll tracking quality. Detailed analysis shows that the controller performance remained 

unchanged after updating      in all the flight scenarios except the second scenario.  In the second 

scenario, the pitch, roll, and yaw tracking quality improved after updating the derivative by 10.5%, 3%, 

and 7% respectively, [Table 5-37]. With respect to delay and bias, the delay impact was similar to the 

aforementioned effect at nominal condition but with greater error growth. Additionally, the bias increase 

results in unstable behavior faster than at nominal flight. 

Table 5-37: Updated vs. fixed     
 – Second scenario – Stabilator failure 

  Updated     
 Fixed     

 

Integral of Pitch Tracking Error (%) 
100 110.45 

Integral of Roll Tracking Error (%) 
100 103.13 

Integral of Yaw Tracking Error (%) 
100 107.16 

Integral of Pitch Neural Network 
(%) 

100 96.945 

Integral of Roll Neural Network (%) 
100 99.671 

Integral of Yaw Neural Network (%) 
100 106.6 
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The average results show that updating     increases the quality of tracking yaw rate by 7% as 

compared to not updating this derivative. On the contrary, the average results does not show any change 

in the other parameters. The detailed analysis shows that the yaw tracking quality improved in all the 

scenarios to different extents. The fifth scenario presents the maximum improvement in yaw tracking 

after updating     by 37%, [Table 5-38, Figure 5-71, and Figure 5-72].  

 
Figure 5-71: Updated vs. fixed    

- Fifth scenario – 

Stabilator failure 

 
Figure 5-72: Integral of yaw tracking error for updated 

vs. fixed    
- Fifth scenario – Stabilator failure 

 

Table 5-38: Updated vs. fixed     
 – Fifth scenario – Stabilator failure 

  Updated     
 Fixed     

 

Integral of Pitch Tracking Error (%) 
100 100.11 

Integral of Roll Tracking Error (%) 
100 96.411 

Integral of Yaw Tracking Error (%) 
100 136.87 

Integral of Pitch Neural Network (%) 
100 100.47 

Integral of Roll Neural Network (%) 
100 100.05 

Integral of Yaw Neural Network (%) 100 101.94 
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3. Unexpected results  

Preceding the start of this study, it was expected to observe a consistent improvement in the 

controller performance by updating the derivatives. However, that was not always true and even in some 

cases, it was the opposite and the fixed derivative provided a slightly better tracking. Based on the 

obtained results, this section proposes potential reasons for this unexpected observation. This discussion 

utilizes four figures included down to support the determined viewpoint. Both [Figure 5-73] and [Figure 

5-74] present a steady-state level flight extends from the beginning to 20 seconds later followed by a 

pitch input at around the 25
th

 second then a steady state climbing till the end of the scenario (hereafter 

known as Flight-1). [Figure 5-75 and Figure 5-76] show another type of flight scenarios that consists of 

three doublets in the three channels (hereafter known as Flight-2). This maneuver introduces the 

controller to a small variation in      while producing a high disturbance all the maneuver period and 

keeps the flight away from steady state.  

Updating     in Flight-1 improved the performance of the controller; however, updating the 

same derivative in Flight-2 confused the controller and resulted in a worse performance as compared to 

no update. The comparison between those two flights seems to suggest that estimating and updating a 

derivative at unsteady-state flight conditions may generate greater tracking error as compared to not 

updating the derivative. The reason is that the estimation process is based on linearized equations 

derived at steady state reference conditions, and those equations are more accurate around reference 

conditions.  

[Figure 5-73 and Figure 5-74], at the time between the 23
rd

 and the 40
th

 second, the aircraft was 

introduced to the only input over the maneuver time, which results in a disturbed flight condition. 

Moreover, this was the only period when the controller performance was worse while updating    . 

Flight-2, along those lines, [Figure 5-75] shows at the 7
th

 second the beginning of the disturbance, which 

coincides with the start of obtaining a worse performance from updating the derivative.  

The second reason can be shown by dividing Flight-1 period into three sections; 1-22 seconds, 

22-40 seconds, and 40-50 seconds. The last section shows the part of the flight that included the greatest 

variation in value of    . This part experiences the best improvement of the controller by updating the 

derivative. In addition, Flight-2 shows a smaller change in     with no favorable performance for the 

updated controller as compared to the controller with fixed    . The two cases support the second 

reason that the range of change in the value of the investigated derivative is very important for the 

performance of the estimation scheme.  
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Figure 5-73: Updated vs. fixed     (Flight-1) 

 
Figure 5-74: Integral of pitch tracking error for 

updated vs. fixed     (Flight-1) 

 
Figure 5-75: Updated vs. fixed    (Flight-2) 

 
Figure 5-76: Integral of pitch neural network output 

for updated vs. fixed     (Flight-2) 
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Chapter 6. Conclusions and Recommendations 

1. Conclusions 

Update 

The following aspects can summarize the importance of updating derivatives within a fault 

tolerant control system as revealed through this study: 

A. Derivative variation rate: The change in the derivative value must be significant for the 

estimation/updating process to enhance the controller performance. 

 

B. Steady-State estimation: the estimation/updating process produces best results if it takes place 

during low acceleration maneuvers. It seems that abrupt changes in the updated parameters may 

interfere adversely with the NN on-line learning process. 

 

C. Failure conditions: the study of a stabilator failure condition shows that the controller 

performance improved by about 36% by updating     . This improvement was not obtained at 

nominal conditions when the same derivative was updated. Therefore, updating particular 

derivatives is crucial at post failure conditions as compared to nominal condition. 

 

The analysis has shown that the benefits of continuously updating the derivatives during the 

flight are affected by numerous factors such as the nature of the derivative, the derivative rate of change, 

the type and dynamics of the maneuver, and NN learning. Finally, updating some derivatives is much 

more important at failure than at nominal flight. 

Delay 

The analysis included all the potential delays from a half second up to forty seconds. Although 

inconsistencies have been recorded, most derivatives show worse performance after five seconds delay 

as compared to not updating the derivative at all. Therefore, the convergence time needs to be less than 

five seconds in order for the estimation scheme to be more efficient than a controller with fixed 

derivatives. However, a longer delay does not necessarily induce a dangerous effect on the controller 

performance, at least for the flight conditions considered.  

It was also noted that the reason of this inconsistency is that sometimes the value of the delayed 

derivative can coincidently fall near the actual value of the derivative.  [Figure 6-1 and Figure 6-2] show 

an example of a situation when the bigger delay is closer to the actual value than the smaller delay. 
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Figure 6-1: Updated vs. Delayed     (4 seconds) 

 
Figure 6-2: Updated vs. Delayed     (10 seconds) 

Bias 

The bias, on the other hand, showed a consistent and expected impact. The average results of all 

the derivatives show that when the bias is less than 30%, the error is acceptable. As long as the bias is 

less than 50%, the updated control scheme will provide more efficiency than the fixed one. Similarly, in 

the opposite direction, the bias must be less than -15%. The bias could have a dangerous impact 

particularly at higher levels; moreover, the controller is more sensitive to negative bias than to positive 

bias. The FTR scheme provides estimates at accuracy within a 30% from the perfect value of the 

derivative; hence, the FTR will provide reliable assistance to the controller. 

Bias and Delay 

The effect of simultaneous delays and biased values showed insignificant difference from the 

tracking error generated by pure bias. Although the conclusion was obtained from limited number of 

tests, the tests were conducted on derivatives with primary effect on their channels 

2. Recommendations 

The primary purpose of this study was to explore the impact of delays and biases in the 

estimation process on the controller performance.  The study showed the positive impact of parameter 

updating during quasi-steady state conditions and the possibly adverse impact during fast dynamic 

changes. In addition, the analysis showed that controller performance appears to depend on the rate of 

change of the derivatives. This conclusion opens two questions for further exploration in future research.  

The objective of the first question is to obtain a map for the derivatives change during the flight 

in response to flight condition changes and different system inputs. In other words, the question is ―what 

is the effect of different flight inputs and flight scenarios on derivatives change rate?‖ Answering this 

question will help us know which maneuvers make bigger change in derivatives, know at which 

maneuvers the controller will be enhanced by updating derivatives, and know at which maneuvers the 
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update should be avoided. The second question is ―when do fast dynamic changes occur during flight?‖ 

Answering this question will help us explore the best timing for updating derivatives, in terms of steady 

and unsteady times, and their effect on the controller performance. 
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Appendices
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A. MATLAB Codes 

Various MATLAB codes were written to support the analysis and simulation in this research 

effort. However, this appendix presents only two MATLAB codes as an example.  

1. plots_master_cma.m 

This section shows an example of a code out of nine written codes for each derivative. Moreover, 

the presented code is only a part of a 1060 lines code. Each of the nine codes performs various tasks: 

a. Save all the required variables for the analysis of each derivative after the simulation in 

SIMULINK. 

b.  Plot the relevant figures to different cases, updated, fixed, delayed, and biased derivatives. 

c. Create folders on the hard disk and save all the figures in their corresponding folders. 

d.  Create and save matrices including all the tracking error calculations and save them in the folder 

to be used later in Excel for statistical analysis. 

The code 

nlast=length(t); 
t_last=t(nlast); 

  
counteri=counteri+1; 
% this value is defined to zero in handle_01 
% Then get updated every time this file is called 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   
% Assigning variables   
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
% 1) Updated Derivative 
if (Cma_delay==0) & (Cma_bias==0) 
counteru=1; 

  
% Simulation Attitude 
RAR=Roll_Actual_Reference.signals.values; 
PAR=Pitch_Actual_Reference.signals.values; 
YAR=Yaw_Actual_Reference.signals.values; 

  
% Tracking Errors 
RTE=Roll_Tracking_Error.signals.values; 
PTE=Pitch_Tracking_Error.signals.values; 
YTE=Yaw_Tracking_Error.signals.values; 

  
% Integration of Tracking Errors 
RTEI=Integration_Roll_Tracking_Error.signals.values; 
PTEI=Integration_Pitch_Tracking_Error.signals.values; 
YTEI=Integration_Yaw_Tracking_Error.signals.values; 
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% Neural Network Outputs 
NN_roll=NN_Output.signals.values(:,1); 
NN_pitch=NN_Output.signals.values(:,2); 
NN_yaw=NN_Output.signals.values(:,3); 

  
% Integration of Neural Network Outputs 
NNI_roll=Integration_NN_Output.signals.values(:,1); 
NNI_pitch=Integration_NN_Output.signals.values(:,2); 
NNI_yaw=Integration_NN_Output.signals.values(:,3); 

  

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%% 

  
% 4) Biased Derivative 
else 
counteru=4; 

  
% Simulation Attitude 
RAR_Bias=Roll_Actual_Reference.signals.values; 
PAR_Bias=Pitch_Actual_Reference.signals.values; 
YAR_Bias=Yaw_Actual_Reference.signals.values; 

  
% Tracking Errors 
RTE_Bias=Roll_Tracking_Error.signals.values; 
PTE_Bias=Pitch_Tracking_Error.signals.values; 
YTE_Bias=Yaw_Tracking_Error.signals.values; 

  
% Integration of Tracking Errors 
RTEI_Bias=Integration_Roll_Tracking_Error.signals.values; 
PTEI_Bias=Integration_Pitch_Tracking_Error.signals.values; 
YTEI_Bias=Integration_Yaw_Tracking_Error.signals.values; 

  
% Neural Network Outputs 
NN_roll_Bias=NN_Output.signals.values(:,1); 
NN_pitch_Bias=NN_Output.signals.values(:,2); 
NN_yaw_Bias=NN_Output.signals.values(:,3); 

  
% Integration of Neural Network Outputs 
NNI_roll_Bias=Integration_NN_Output.signals.values(:,1); 
NNI_pitch_Bias=Integration_NN_Output.signals.values(:,2); 
NNI_yaw_Bias=Integration_NN_Output.signals.values(:,3); 

  
end 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%% 

  
% 5) Creating Folders 
tf11 = isdir('C:\Users\Peter\Desktop\Runs\cma\Updated_Not Updated\Updated\'); 
tf12 = isdir('C:\Users\Peter\Desktop\Runs\cma\Updated_Not Updated\Not Updated\'); 
tf13 = isdir('C:\Users\Peter\Desktop\Runs\cma\Updated_Not Updated\Updated vs Not 

Updated\'); 
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% To create the folder only if it wasn't created before 
if tf11==0  
mkdir('C:\Users\Peter\Desktop\Runs\cma\Updated_Not Updated\Updated\') 
end 

  
if tf12==0 
mkdir('C:\Users\Peter\Desktop\Runs\cma\Updated_Not Updated\Not Updated\') 
end 

  
if tf13==0 
mkdir('C:\Users\Peter\Desktop\Runs\cma\Updated_Not Updated\Updated vs Not 

Updated\') 
end 

  

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%% 
% Plot the comparisons between Updated and Not Updated 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%% 

  
%To plot only when I have the two values (Updated and Not Updated) 
if counteri==2;    

  
% Roll Tracking Errors Updated vs Not Updated 
figure 
plot(t,RTE,'--k',t,RTE_U,':r') 
legend('Cm_\alpha Updated','Cm_\alpha Not Updated') 
title('Roll Tracking Errors for Updated and Not Updated Cm_\alpha') 
xlabel('Time(sec)') 
ylabel('Roll Tracking Error(Deg/s)') 
saveas(gcf,'C:\Users\Peter\Desktop\Runs\cma\Updated_Not Updated\Updated vs Not 

Updated\Updated vs Not Updated_Roll Tracking error cma.jpg') 
hgsave('C:\Users\Peter\Desktop\Runs\cma\Updated_Not Updated\Updated vs Not 

Updated\Updated vs Not Updated_Roll Tracking error cma') 
close 

  
% Integral of Roll Tracking Errors Updated vs Not Updated 
figure 
plot(t,RTEI,'--k',t,RTEI_U,':r') 
legend('Cm_\alpha Updated','Cm_\alpha Not Updated') 
title('Integral of Roll Tracking Errors for Updated and Not Updated Cm_\alpha') 
xlabel('Time(sec)') 
ylabel('Total Roll Tracking Error(Deg)') 
saveas(gcf,'C:\Users\Peter\Desktop\Runs\cma\Updated_Not Updated\Updated vs Not 

Updated\Updated vs Not Updated_Integral of Roll Tracking error cma.jpg') 
hgsave('C:\Users\Peter\Desktop\Runs\cma\Updated_Not Updated\Updated vs Not 

Updated\Updated vs Not Updated_Integral of Roll Tracking error cma') 
close 

  
% Pitch Tracking Errors Updated vs Not Updated 
figure 
plot(t,PTE,'--k',t,PTE_U,':r') 
legend('Cm_\alpha Updated','Cm_\alpha Not Updated') 
title('Pitch Tracking Errors for Updated and Not Updated Cm_\alpha') 
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xlabel('Time(sec)') 
ylabel('Pitch Tracking Error(Deg/s)') 
saveas(gcf,'C:\Users\Peter\Desktop\Runs\cma\Updated_Not Updated\Updated vs Not 

Updated\Updated vs Not Updated_Pitch Tracking error cma.jpg') 
hgsave('C:\Users\Peter\Desktop\Runs\cma\Updated_Not Updated\Updated vs Not 

Updated\Updated vs Not Updated_Pitch Tracking error cma') 
close 

  
% Integral of Pitch Tracking Errors Updated vs Not Updated 
figure 
plot(t,PTEI,'--k',t,PTEI_U,':r') 
legend('Cm_\alpha Updated','Cm_\alpha Not Updated') 
title('Integral of Pitch Tracking Errors for Updated and Not Updated Cm_\alpha') 
xlabel('Time(sec)') 
ylabel('Total Pitch Tracking Error(Deg)') 
saveas(gcf,'C:\Users\Peter\Desktop\Runs\cma\Updated_Not Updated\Updated vs Not 

Updated\Updated vs Not Updated_Integral of Pitch Tracking error cma.jpg') 
hgsave('C:\Users\Peter\Desktop\Runs\cma\Updated_Not Updated\Updated vs Not 

Updated\Updated vs Not Updated_Integral of Pitch Tracking error cma') 
close 

  
% Yaw Tracking Errors Updated vs Not Updated 
figure 
plot(t,YTE,'--k',t,YTE_U,':r') 
legend('Cm_\alpha Updated','Cm_\alpha Not Updated') 
title('Yaw Tracking Errors for Updated and Not Updated Cm_\alpha') 
xlabel('Time(sec)') 
ylabel('Yaw Tracking Error(Deg/s)') 
saveas(gcf,'C:\Users\Peter\Desktop\Runs\cma\Updated_Not Updated\Updated vs Not 

Updated\Updated vs Not Updated_Yaw Tracking error cma.jpg') 
hgsave('C:\Users\Peter\Desktop\Runs\cma\Updated_Not Updated\Updated vs Not 

Updated\Updated vs Not Updated_Yaw Tracking error cma') 
close 

  
% Integral of Yaw Tracking Errors Updated vs Not Updated 
figure 
plot(t,YTEI,'--k',t,YTEI_U,':r') 
legend('Cm_\alpha Updated','Cm_\alpha Not Updated') 
title('Integral of Yaw Tracking Errors for Updated and Not Updated Cm_\alpha') 
xlabel('Time(sec)') 
ylabel('Total Yaw Tracking Error(Deg)') 
saveas(gcf,'C:\Users\Peter\Desktop\Runs\cma\Updated_Not Updated\Updated vs Not 

Updated\Updated vs Not Updated_Integral of Yaw Tracking error cma.jpg') 
hgsave('C:\Users\Peter\Desktop\Runs\cma\Updated_Not Updated\Updated vs Not 

Updated\Updated vs Not Updated_Integral of Yaw Tracking error cma') 
close 

  
% The difference between tracking errors when the derivative is Updated and 
% Not Updated 
RTE_error=abs(RTE_U)-abs(RTE); 
PTE_error=abs(PTE_U)-abs(PTE); 
YTE_error=abs(YTE_U)-abs(YTE); 

  
figure 
plot(t,RTE_error,t,PTE_error,'--k',t,YTE_error,':r') 
legend('Roll Tracking Error','Pitch Tracking Error','Yaw Tracking Error') 
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title('The Difference between the Tracking Errors for Updated and Not Updated 

Cm_\alpha') 
xlabel('Time(sec)') 
ylabel('Degrees') 
saveas(gcf,'C:\Users\Peter\Desktop\Runs\cma\Updated_Not Updated\Updated vs Not 

Updated\The Difference between the Tracking Errors for Updated and Not Updated 

Cma.jpg') 
hgsave('C:\Users\Peter\Desktop\Runs\cma\Updated_Not Updated\Updated vs Not 

Updated\The Difference between the Tracking Errors for Updated and Not Updated 

Cma') 
close 

  
% Roll Neural Network Outputs Updated vs Not Updated 
figure 
plot(t,NN_roll,'--k',t,NN_roll_U,':r') 
legend('Cm_\alpha Updated','Cm_\alpha Not Updated') 
title('Roll Neural Network Ouputs for Updated and Not Updated Cm_\alpha') 
xlabel('Time(sec)') 
ylabel('NN output') 
saveas(gcf,'C:\Users\Peter\Desktop\Runs\cma\Updated_Not Updated\Updated vs Not 

Updated\Updated vs Not Updated_Roll Neural Network Ouputs cma.jpg') 
hgsave('C:\Users\Peter\Desktop\Runs\cma\Updated_Not Updated\Updated vs Not 

Updated\Updated vs Not Updated_Roll Neural Network Ouputs cma') 
close 

  
% Integral of Roll Neural Network Outputs Updated vs Not Updated 
figure 
plot(t,NNI_roll,'--k',t,NNI_roll_U,':r') 
legend('Cm_\alpha Updated','Cm_\alpha Not Updated') 
title('Integral of Roll Neural Network Ouputs for Updated and Not Updated 

Cm_\alpha') 
xlabel('Time(sec)') 
ylabel('Total NN output') 
saveas(gcf,'C:\Users\Peter\Desktop\Runs\cma\Updated_Not Updated\Updated vs Not 

Updated\Updated vs Not Updated_Integral of Roll Neural Network Ouputs cma.jpg') 
hgsave('C:\Users\Peter\Desktop\Runs\cma\Updated_Not Updated\Updated vs Not 

Updated\Updated vs Not Updated_Integral of Roll Neural Network Ouputs cma') 
close 

  
% Pitch Neural Network Outputs Updated vs Not Updated 
figure 
plot(t,NN_pitch,'--k',t,NN_pitch_U,':r') 
legend('Cm_\alpha Updated','Cm_\alpha Not Updated') 
title('Pitch Neural Network Ouputs for Updated and Not Updated Cm_\alpha') 
xlabel('Time(sec)') 
ylabel('NN output') 
saveas(gcf,'C:\Users\Peter\Desktop\Runs\cma\Updated_Not Updated\Updated vs Not 

Updated\Updated vs Not Updated_Pitch Neural Network Ouputs cma.jpg') 
hgsave('C:\Users\Peter\Desktop\Runs\cma\Updated_Not Updated\Updated vs Not 

Updated\Updated vs Not Updated_Pitch Neural Network Ouputs cma') 
close 

  
% Integral of Pitch Neural Network Outputs Updated vs Not Updated 
figure 
plot(t,NNI_pitch,'--k',t,NNI_pitch_U,':r') 
legend('Cm_\alpha Updated','Cm_\alpha Not Updated') 
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title('Integral of Pitch Neural Network Ouputs for Updated and Not Updated 

Cm_\alpha') 
xlabel('Time(sec)') 
ylabel('Total NN output') 
saveas(gcf,'C:\Users\Peter\Desktop\Runs\cma\Updated_Not Updated\Updated vs Not 

Updated\Updated vs Not Updated_Integral of Pitch Neural Network Ouputs cma.jpg') 
hgsave('C:\Users\Peter\Desktop\Runs\cma\Updated_Not Updated\Updated vs Not 

Updated\Updated vs Not Updated_Integral of Pitch Neural Network Ouputs cma') 
close 

  
% Yaw Neural Network Outputs Updated vs Not Updated 
figure 
plot(t,NN_yaw,'--k',t,NN_yaw_U,':r') 
legend('Cm_\alpha Updated','Cm_\alpha Not Updated') 
title('Yaw Neural Network Ouputs for Updated and Not Updated Cm_\alpha') 
xlabel('Time(sec)') 
ylabel('NN output') 
saveas(gcf,'C:\Users\Peter\Desktop\Runs\cma\Updated_Not Updated\Updated vs Not 

Updated\Updated vs Not Updated_Yaw Neural Network Ouputs cma.jpg') 
hgsave('C:\Users\Peter\Desktop\Runs\cma\Updated_Not Updated\Updated vs Not 

Updated\Updated vs Not Updated_Yaw Neural Network Ouputs cma') 
close 

  
% Integral of Yaw Neural Network Outputs Updated vs Not Updated 
figure 
plot(t,NNI_yaw,'--k',t,NNI_yaw_U,':r') 
legend('Cm_\alpha Updated','Cm_\alpha Not Updated') 
title('Integral of Yaw Neural Network Ouputs for Updated and Not Updated 

Cm_\alpha') 
xlabel('Time(sec)') 
ylabel('Total NN output') 
saveas(gcf,'C:\Users\Peter\Desktop\Runs\cma\Updated_Not Updated\Updated vs Not 

Updated\Updated vs Not Updated_Integral of Yaw Neural Network Ouputs cma.jpg') 
hgsave('C:\Users\Peter\Desktop\Runs\cma\Updated_Not Updated\Updated vs Not 

Updated\Updated vs Not Updated_Integral of Yaw Neural Network Ouputs cma') 
close 

  
% Statistics Percentage Matrix for Updated vs Unupdated 
%  (unupdated/updated)*100 

  
Upd_vs_Unupd_Percent1(1,2)=(PTEI_U(end)/PTEI(end))*100; 
Upd_vs_Unupd_Percent1(2,2)=((RTEI_U(end))/RTEI(end))*100; 
Upd_vs_Unupd_Percent1(3,2)=(YTEI_U(end)/YTEI(end))*100; 
Upd_vs_Unupd_Percent1(4,2)=(NNI_pitch_U(end)/NNI_pitch(end))*100; 
Upd_vs_Unupd_Percent1(5,2)=(NNI_roll_U(end)/NNI_roll(end))*100; 
Upd_vs_Unupd_Percent1(6,2)=(NNI_yaw_U(end)/NNI_yaw(end))*100; 
Upd_vs_Unupd_Percent1(:,1)=100; 

  
% Statistics Matrix for Updated vs Unupdated 
Upd_vs_Unupd(1,1)=PTEI(end); 
Upd_vs_Unupd(2,1)=RTEI(end); 
Upd_vs_Unupd(3,1)=YTEI(end); 
Upd_vs_Unupd(4,1)=NNI_pitch(end); 
Upd_vs_Unupd(5,1)=NNI_roll(end); 
Upd_vs_Unupd(6,1)=NNI_yaw(end); 
Upd_vs_Unupd(1,2)=PTEI_U(end); 
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Upd_vs_Unupd(2,2)=RTEI_U(end); 
Upd_vs_Unupd(3,2)=YTEI_U(end); 
Upd_vs_Unupd(4,2)=NNI_pitch_U(end); 
Upd_vs_Unupd(5,2)=NNI_roll_U(end); 
Upd_vs_Unupd(6,2)=NNI_yaw_U(end); 

  
% Initiate Statistics Percentage Matrix for Updated vs. Delayed vs. Biased 

  
% Pitch Tracking Error: (delayed/updated)*100 
PTE_Percent1(1,1)=100; 
% Roll Tracking Error 
RTE_Percent1(1,1)=100; 
% Yaw Tracking Error 
YTE_Percent1(1,1)=100; 
% Pitch Neural Network Effort 
PNN_Percent1(1,1)=100; 
% Roll Neural Network Effort 
RNN_Percent1(1,1)=100; 
% Yaw Neural Network Effort 
YNN_Percent1(1,1)=100; 

  
end 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Delay 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
% Statistics Percentage Matrix for Updated vs Delayed vs Biased 

  
% Pitch Tracking Error: (delayed/updated)*100 
PTE_Percent1(1,end+1)=(PTEI_delay(end)/PTEI(end))*100; 
% Roll Tracking Error 
RTE_Percent1(1,end+1)=(RTEI_delay(end)/RTEI(end))*100; 
% Yaw Tracking Error 
YTE_Percent1(1,end+1)=(YTEI_delay(end)/YTEI(end))*100; 
% Pitch Neural Network Effort 
PNN_Percent1(1,end+1)=(NNI_pitch_delay(end)/NNI_pitch(end))*100; 
% Roll Neural Network Effort 
RNN_Percent1(1,end+1)=(NNI_roll_delay(end)/NNI_roll(end))*100; 
% Yaw Neural Network Effort 
YNN_Percent1(1,end+1)=(NNI_yaw_delay(end)/NNI_yaw(end))*100; 

  
end 

 
% Save the statistics Data every run after getting both updated and 
% unupdated data 
if counteri >= 2 
save('C:\Users\Peter\Desktop\Runs\cma\Statistics.mat', 'Upd_vs_Unupd_Percent1', 

'Upd_vs_Unupd', 

'PTE_Percent1','RTE_Percent1','YTE_Percent1','PNN_Percent1','RNN_Percent1','YNN_Per

cent1') 
end 
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2. Call_plots_master.m 

The analysis in this research was very complex because it considers various simulations for nine 

derivatives each at two cases updated and not updated, as well as simulations at 17 delay and 36 bias 

levels. The MATLAB code presented in this section was written in order to automate the analysis 

process as much as possible. Since this code is very long, only a short part is presented out of 3160 lines 

code. 

The code perfoms the following tasks: 

a. Sequentially change the delay and bias variables corresponding to the explored case and 

derivative, and update them to the SIMULINK environment for simulation. 

b. Run the SIMULINK model for each derivative. 

The code 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% cma 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
%updated 
set(cb3_handle,'Value',1); 
set(edit3_handle,'String','0'); %Delay 
set(edit23_handle,'String','0'); %Bias 
del_03; % Imitate pressing 'OK' 
sim('f15gen2_2_4_copy_w_est') 

  

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
%unupdated 
set(cb3_handle,'Value',1); 
set(edit3_handle,'String','50'); %Delay 
set(edit23_handle,'String','0'); %Bias 
del_03; % Imitate pressing 'OK' 
sim('f15gen2_2_4_copy_w_est') 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
%Delay 
set(cb3_handle,'Value',1); 
set(edit3_handle,'String','.5'); %Delay 
set(edit23_handle,'String','0'); %Bias 
del_03; % Imitate pressing 'OK' 
sim('f15gen2_2_4_copy_w_est') 

  
set(cb3_handle,'Value',1); 
set(edit3_handle,'String','1'); %Delay 
set(edit23_handle,'String','0'); %Bias 
del_03; % Imitate pressing 'OK' 
sim('f15gen2_2_4_copy_w_est') 
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set(cb3_handle,'Value',1); 
set(edit3_handle,'String','2'); %Delay 
set(edit23_handle,'String','0'); %Bias 
del_03; % Imitate pressing 'OK' 
sim('f15gen2_2_4_copy_w_est') 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

  
%Bias 
set(cb3_handle,'Value',1); 
set(edit3_handle,'String','0'); %Delay 
set(edit23_handle,'String','5'); %Bias 
del_03; % Imitate pressing 'OK' 
sim('f15gen2_2_4_copy_w_est') 

  
set(cb3_handle,'Value',1); 
set(edit3_handle,'String','0'); %Delay 
set(edit23_handle,'String','10'); %Bias 
del_03; % Imitate pressing 'OK' 
sim('f15gen2_2_4_copy_w_est') 

  
set(cb3_handle,'Value',1); 
set(edit3_handle,'String','0'); %Delay 
set(edit23_handle,'String','15'); %Bias 
del_03; % Imitate pressing 'OK' 
sim('f15gen2_2_4_copy_w_est') 

  
% Negative Bias 
set(cb3_handle,'Value',1); 
set(edit3_handle,'String','0'); %Delay 
set(edit23_handle,'String','-5'); %Bias 
del_03; % Imitate pressing 'OK' 
sim('f15gen2_2_4_copy_w_est') 

  
set(cb3_handle,'Value',1); 
set(edit3_handle,'String','0'); %Delay 
set(edit23_handle,'String','-10'); %Bias 
del_03; % Imitate pressing 'OK' 
sim('f15gen2_2_4_copy_w_est') 

  
set(cb3_handle,'Value',1); 
set(edit3_handle,'String','0'); %Delay 
set(edit23_handle,'String','-15'); %Bias 
del_03; % Imitate pressing 'OK' 
sim('f15gen2_2_4_copy_w_est') 
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