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ABSTRACT 

 

Head and Neck Cancer Invasion: Contributions of Actin Regulatory Proteins and the 

Microenvironment 

Elyse L. Walk 

 

Metastasis of primary tumor lesions is the leading cause of cancer-related death. In head 

and neck cancer, a local-regional disease, metastasis is achieved mainly through 

invasion into surrounding tissue and spreads to cervical lymph nodes. Movement from 

the initial tumor site requires dynamic reorganization of the actin cytoskeleton, which 

utilizes the coordinated action of many actin regulatory proteins. However, there is 

increasing evidence that the tumor microenvironment is also a driver of invasion. This 

work aims to determine the contributions of proteins which regulate the actin cytoskeleton 

during head and neck cancer invasion both in vitro and in vivo, and provide details on 

how the HNSCC tumor microenvironment influences progression. This was 

accomplished, by the following Studies. In Study one, the actin binding protein coronin 

1B is found to be amplified and overexpressed in invasive HNSCC patient samples, and 

a novel function in the regulation of protrusive membrane structures called invadopodia 

is described. Study two defines an in vivo role for the actin regulatory protein cortactin, 

which has been previously associated with more aggressive cancers in vitro and in 

patients. This work finds that cortactin expression is dispensable for tongue tumor 

invasion in a transgenic model of oral cancer, implicating the tumor microenvironment as 

being the major contributor to driving oral cancer invasion. Study three describes a 

technique for monitoring and biopsying cervical lymph nodes of mice using high frequency 

ultrasound.  By using this technique, alterations in cervical lymph node size and blood 

flow were discovered in mice given the carcinogen 4-NQO to induce oral carcinogenesis. 

Collectively, these studies shed light on the importance of choosing comprehensive 

model systems for studying roles of actin binding proteins in cancer invasion. 
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Literature Review 

Head and neck squamous cell carcinoma 

Head and neck squamous cell carcinoma (HNSCC) is a disease of the upper 

aerodigestive tract, arising from mucosal surfaces of the oral cavity, larynx, pharynx, and 

nasal cavity1,2. HNSCC can be categorized into two distinct subtypes based on the 

involvement of human papillomavirus (HPV): HPV-positive and HPV-negative1,2. HPV-

positive tumors develop after infection with a high-risk HPV, which is almost exclusively 

HPV-163,4. The risk factors for HPV-negative tumors include prolonged tobacco and 

alcohol exposure2. Despite similar histology, HPV-negative HNSCC is more aggressive 

and has a worse prognosis, resulting in a 5-year survival rate of ~60%5. 

 HPV-related HNSCC primarily arises in the oropharynx and tonsils and comprises 

approximately 60% of all oropharyngeal head and neck cancers3. The increased survival 

rates associated with HPV-positive HNSCC are likely due to the molecular pathology 

behind its progression.  HPV consists of a small double-stranded circular DNA that 

encodes one group of “early” transcribed proteins (E1-7) and two “late” proteins (L1 and 

L2)4. Two early proteins, E6 and E7, are responsible for the transformation of epithelial 

cells by causing the degradation of tumor suppressor proteins p53 and Rb, respectively, 

leading to deregulated cell cycle progression4. Both p53 and Rb regulate the cell cycle by 

halting the G1/S transition in the event of DNA damage. Incidence of this subgroup of 

HNSCC has drastically increased over the past few decades in the United States, while 

HPV-negative tumor incidence has decreased, with estimates showing HPV-related 

tumors being the primary form of HNSCC by 20206.  
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 Despite declining incidence in the USA, overall survival rates of patients with HPV-

negative HNSCC have remained unchanged6. HPV-negative HNSCC is characterized by 

a higher frequency of genomic mutations and chromosomal losses and/or gains, resulting 

in a highly heterogeneous population of cells. A majority of these tumors harbor p53 

mutations, unlike the p53 degradation which occurs with HPV-related carcinomas. 

Chromosomal losses have been frequently found to occur at 9p21, 10q23, 17p13 and 

18q212. Within these areas are genes with important tumor-suppressor functions, namely 

CDKN2A, PTEN, TP53 and SMAD4, respectively. Amplification of chromosome 

segments generally occurs at locations that encode genes important for growth, motility 

and survival. In HNSCC, these locations include 3q26, 7p11, 7q31, 8q24 and 11q132,7. 

These regions are home to the following genes: PIK3CA (3q26), EGFR (7p11), MET 

(7q31), MYC (8q24) and CCND1 and CTTN at 11q13. Table 1 describes each of the 

tumor suppressors and promoters in greater detail. The accumulation of these genetic 

alterations results in establishment of tumors with a propensity to locally invade and 

metastasize to cervical lymph nodes1,2. Though distant metastases to the lung and bone 

occur, mortality is generally due to growth of primary tumors and loco-regional 

recurrence8,9. Detection of primary tumor invasion and lymph node infiltration is therefore 

of utmost importance in accurately determining patient diagnosis and staging. Multiple 

types of imaging modalities have been employed by clinicians in order to identify primary 

tumor location and aid in improving patient diagnosis. 
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Table 1: Common chromosomal alterations in HNSCC 
Chromosomal 

Location 
Gene Function Reference 

Tumor Suppressors 
9p21 CDKN2A Encodes p16, regulator of CDK4 and cell cycle progression 

 

10,11 

10q23 PTEN Phosphatase for PIP2, resulting in inhibition of AKT 
proliferation pathway 

12 

17p13 TP53 P53, activator of DNA damage repair, growth arrest and 
apoptosis pathways 

13,14 

18q21 SMAD4 Transcription factor downstream of TGF-β, mediator of 
many pathways including cell cycle, apoptosis and 

differentiation 

11 

Tumor Promoters   Tumor Promoters 
3q26 PIK3CA Catalytic subunit of PI3-kinase, part of AKT pathway which 

is involved in cellular growth, proliferation and survival 

11,15,16 

7p11 EGFR Epidermal growth factor receptor tyrosine kinase, signals as 
part of growth and survival pathways 

17 

7q31 MET c-Met receptor tyrosine kinase for hepatocyte growth factor, 
signals downstream leading to cell survival and motility, an 

oncogene  

18 

8q24 MYC Transcription factor in mitogenic signaling, regulates cell 
growth, an oncogene 

19 

11q13 CCND1 Cyclin D1, interacts with tumor suppressor Rb, promoting 
cell cycle progression 

20–22 

11q13 CTTN Cortactin, actin binding protein that regulates cell motility 
and invasion 

21–24 

 

Imaging HNSCC 

The goals of imaging in head and neck cancer patients are to determine the degree of 

primary tumor infiltration, size and involvement of cervical lymph nodes. This information 

provides clinicians with the means necessary for an accurate diagnosis and prognosis. 

Detection of lymph node involvement is imperative, as it is important to both patient 

diagnosis and prognosis. Patients with regional nodal metastasis have a poorer prognosis 

and decreased survival rates25. The most common imaging modalities used for HNSCC 

visualization are computed tomography (CT), positron emission tomography (PET), 

integrated PET/CT, magnetic resonance imaging (MRI) and ultrasound (US). The specific 

technique used depends on the suspected tumor location, as well as any additional 

necessary information for proper staging. 
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 CT requires the use of x-rays to produce individual slices of scanned objects, 

giving detailed images of structures within the body due to the variation between tissue 

types in their ability to block x-rays26. Tumors generally appear as masses which distort 

the normal anatomy of the affected neck region27. In comparison to MRI, CT scans 

provide better spatial resolution and are faster to acquire; however, detection of lymph 

node metastases can prove difficult, as the main criteria used is size and appearance, 

which has been shown to be unreliable28. 

 PET imaging relies on administration of radionuclides that are taken up by 

metabolically active tissues27. The most frequently used radionuclide for diagnosing 

cancer is the glucose analog 18F-fluorodeoxyglucose (18-FDG). This type of imaging 

takes advantage of the exceptionally high metabolic rates of tumor cells and is especially 

useful in detection of metastases. The downside to this method is poor spatial resolution, 

making it difficult to determine the precise site of localized metabolic activity. For this 

reason, PET imaging is usually coupled with CT technology (PET/CT), giving a more 

accurate depiction of the anatomic location, enhancing the ability to detect nodal 

involvement29.  

 MR imaging (MRI) uses a magnetic field for acquisition of images, which gives 

enhanced visualization of tendons, ligaments and spinal cords when compared to CT27. 

For this reason, it is often used as a complementary system to PET/CT for detection of 

primary tumors and metastases, especially in the brain. Addition of contrast agents can 

improve the resolution of internal organs or provide more insight into responses to drug 

therapy and patient survival30,31. Another form of MRI, termed diffusion-weighted MRI, 



5 
 

measures the diffusion of water molecules in various tissues32 and has also been shown 

useful in predicting patient response to therapies and overall outcome30,33.  

 Ultrasound (US) technology is mainly used for detecting lymph node metastases 

in combination with fine needle aspiration cytology (FNAC)34,35. As a result, it is the least 

used imaging modality. In US, sound waves are used to image internal structures, 

generating a typical black and white image that is obtained using Brightness (B)-mode. 

The amount of black or white of an object is due to variations in tissue density. This 

determines the echogenicity of the specific tissue: dark areas are deemed “hypoechoic” 

while white areas are “hyperechoic”. Some studies have attempted to use US alone or in 

conjunction with Power or Color Doppler sonography, which is used to image blood flow, 

in order to detect lymph node metastases36–38. However, it is not as sensitive alone and 

is generally combined with FNAC34,39. Despite this, studies repeatedly show that US-

guided FNAC is as good or better at determining nodal status when compared to PET/CT 

and MRI34,35. 

 The combination of these imaging modalities in the clinic results in accurate 

detection of cancer growth and spread to local and distant sites. Locoregional spread is 

the result of multiple factors, one of the most important being the ability to move within 

the specific tumor microenvironment. The heterogeneous nature of HNSCC confers 

cellular plasticity, allowing it to adapt multiple migration modes in order to invade. 

Migratory modes during cancer cell invasion  

Depending on tumor type and specific microenvironment, cancer cells employ one or a 

combination of several modes of migration in order to facilitate tumor invasion40. Cells 

can migrate as single entities or in collective groups. Single cell migration occurs in the 
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absence of cell-cell adhesions, and is broken into two distinct subtypes (amoeboid and 

mesenchymal), while collective invasion generally involves formation of invasive groups 

or protrusive strands40 (Figure 1). Which mode is used is dependent on the composition 

and interactions with various components of the extracellular matrix (ECM). The ECM is 

composed of the basement membrane (BM) and interstitial matrix41. The BM underlies 

epithelial and endothelial cells and is a dense network made up of mainly type IV collagen, 

glycoproteins laminin and entactin/nidogen, heparan sulfate proteoglycans and 

fibronectin42. On the other hand, the interstitial matrix is more loosely organized, made of 

fibrillar collagens, proteoglycans, glycoproteins and also fibronectin, giving tissue 

enhanced elasticity41. The combination of these provides a framework that requires 

dynamic interactions and network reorganization by cells for efficient stromal navigation. 

Amoeboid motility is characterized by limited adhesions to the ECM and high 

actomyosin contractility43. The resulting cells are rounded in form, able to deform the 

cytoskeleton, and by producing membrane blebs, pseudopodia or filopodia, are able to 

squeeze through spaces within the ECM without employing extracellular proteolysis. The 

amoeboid mode requires high activity of the small GTPase RhoA, which signals through 

the serine(Ser)/threonine(Thr) kinase Rho-associated Kinase (ROCK) in order to 

generate the actomyosin-based forces necessary for membrane deformation44. ROCK 

activation increases contractility through inhibitory phosphorylation of myosin 

phosphatase (MYPT1) at Thr696, which increases myosin-II light chain (MLC2) 

phosphorylation at Thr18/Ser19. Inhibition of ROCK activity is responsible for driving the 

mesenchymal mode of motility45.  
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Mesenchymal migration requires formation of adhesions to the ECM and matrix 

proteolysis in order to move within the microenvironment40. Cells with the mesenchymal 

phenotype are elongated, producing lamellipodia and invadopodia to direct migration 

through and break down of the surrounding ECM. Mesenchymal migration is controlled 

by the small GTPase, Rac1, which signals through the actin binding protein WAVE2 

following activation by a NEDD9/DOCK3 complex43. DOCK3 is a guanine nucleotide 

exchange factor (GEF) for Rac146 while NEDD9 is a scaffolding protein located in the 

cytoplasm47. Loss of any of these factors in mesenchymal cells results in adaptation of 

amoeboid migration, since Rac1 is a potent negative regulator of actomyosin 

contractility43. 

Figure 1: Modes of migration. Highly 

plastic tumor cells can adapt different 

migratory modes depending 

extracellular signals. Cells can move 

individually, using protease-

independent amoeboid blebs or 

filopods to squeeze through 

surrounding matrix or by protease-

dependent mesenchymal migration 

that requires MMP activity to break 

down extracellular matrix components. 

Individual cells can migrate in streams 

using either of the modes, following the 

path of other tumor cells or fibroblasts. 

Collective migration occurs when cell-

cell adhesions are maintained, with one 

or a few cells generating a force that is 

transmitted through the rest of the 

group to propel the cells forward. 

Friedl, P. and Wolf, K. (2010) J. Cell. 

Biol., 188(1), 11-19 (modified).  
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In multicellular streaming, cells using one of the previously mentioned migratory 

modes form chains of cells, “streaming” one after the other through previously formed 

tracks, generated by leader cells or stromal fibroblasts, within the ECM. Cell streams are 

typically attracted by a chemotactic gradient48, provided by growth factors such as 

epidermal growth factor (EGF) or colony stimulating factor 1 (CSF1)48. Although termed 

a “stream” or “chain”, cells move in a stream without forming cell-cell contacts, similar to 

single cell migration by retaining the ability to generate force for rapid movement. This 

migratory mode is utilized for the dissemination of breast cancer cells49,50. 

In contrast to single cell migration, collective cell migration relies on maintenance 

of cell-cell contacts to form protrusive strands or groups capable of moving as a single 

entity48. Many cancer types are known to use this migratory mode for invasion, including 

HNSCC51,52. Depending on the density and content of the microenvironment, cells can 

adopt different morphologies, organized as small clusters, or strands with a single or 

multiple leader cells. Leader cells are responsible for the pathway generation necessary 

for forward migration, and can be either tumor associated fibroblasts or carcinoma cells 

themselves53,54. Paths are generated by matrix remodeling through secretion of matrix 

metalloproteinases (MMPs). Tight spatiotemporal regulation of RhoA and ROCK activity 

is required for maintaining a cohesive cellular unit55,56. Actomyosin contractility is also 

necessary for this migratory mode, however in order to sustain the collective strands, 

there must be lower levels of contractility within the groups, at cell-cell junctions. At these 

junctions, there are decreased concentrations of MLC. Both RhoA and ROCK are 

necessary for MLC activation. Dysregulation of the activity of either leads to global 

actomyosin activation and decreased collective invasion in SCC cell lines55. Regulation 
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of MLC at points of cell-cell contact is carried out by discoidin domain receptor 1 (DDR1), 

a membrane-bound protein that interacts with fibrillar collagen and has an intracellular 

kinase domain55. Normally, engagement of DDR1 with collagen results in 

Figure 2. Cortactin domain interactions and functions. A. Cortactin Structure. Cortactin binds Arp2/3 

via its N-terminal acidic (NTA) domain through a conserved DDW motif. Adjacent to this are six and half 

repeats (R) which mediate F-actin binding, specifically through R4. This is followed by a helical domain 

and proline rich region (PRR). The PRR contains serine and tyrosine residues that are phosphorylated by 

various kinases to increase cortactin activity. At the far C-terminal location is an SH3 domain that interacts 

with several different kinases and adaptor proteins that link them to the actin cytoskeleton. Arrows denote 

phosphorylation events. B. Cell-cell adhesions and their associated proteins. Cortactin plays a role in 

both AJs and TJs. C. Proteins necessary for directed cell motility. Both Cell-ECM attachments and 

lamellipodia are necessary for forward migration. D. Invadopodia and matrix degradation. Cortactin is a 

core component of invadopodia, necessary for formation and function. 
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autophosphorylation and activation of the protein, which transmits extracellular signals 

inside the cell57. However in the context of collective migration, DDR1 instead interacts 

with cell polarity regulator Par3 which, together with Par6, regulates DDR1 and MLC 

localization at cell-cell junctions55. Loss of any of these components results in a loss of 

cohesive motility in vitro. 

Each migratory mode requires dynamic reorganization of the actin cytoskeleton, 

leading to the formation of pseudopodia, filopodia, lamellipodia or invadopodia58. 

Production of these subcellular structures requires dynamic 

polymerization/depolymerization of actin filaments regulated by a variety of actin-binding 

proteins. Proteins involved in regulating actin polymerization kinetics govern the 

production, stabilization and turnover of resultant filamentous (F) actin networks. F-actin 

strands are composed of globular (G) actin monomers that contain a cleft for binding ATP. 

Filament growth occurs most rapidly using G-actin bound with ATP, where intrinsic 

hydrolysis of ATP occurs to form ADP+Pi intermediates. ATP hydrolysis within F-actin 

renders filaments more labile and subject to depolymerization. Depending on the specific 

protein(s), F-actin can be assembled into higher-order forms, including bundled strands 

or sheets59. Pseudopodia and filopodia are formed through bundling of actin strands, 

while invadopodia and lamellipodia contain actin networks organized into a branched 

orthogonal array60. Newly formed branched F-actin complexes are generated by the 

nucleation activity of the actin-related protein 2/3 (Arp2/3) complex, which is activated by 

nucleation promoting factors (NPFs) including the Wiskott-Aldrich Syndrome protein 

(WASp) family61–63 and cortactin64–67.  
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The many faces of cortactin: Regulation of actin cytoskeletal dynamics in cancer 

cell motility and invasion 

Cortactin is a multi-domain scaffolding protein (Figure 2) first identified as a 

substrate of Src kinase that localized to regions containing cortical F-actin68. Cortactin 

overexpression has been linked to increased invasion and metastasis in multiple cancer 

types, including breast69,70, colorectal71, hepatocellular72, esophageal73, melanoma74  and 

HNSCC22,75–78. The gene encoding cortactin is located at chromosomal location 11q13, 

which is found amplified in approximately 30% of head and neck cancers and associated 

with a poor patient outcome21,23,24,79,80. The association of cortactin with aggressive tumor 

progression is likely due to its role as an important regulator of actin cytoskeleton 

organization during cell motility and endocytosis81.  

Cortactin activates Arp2/3 through association with a conserved DDW amino acid 

motif with the N-terminal acidic (NTA) domain. The amino terminus also contains a region 

with six and half tandem repeats responsible for binding to F-actin68. The C-terminal half 

of cortactin mediates signal transduction events, with an alpha-helical and a proline-rich 

region containing several tyrosine and serine residues that are conserved sites of 

phosphorylation for a variety of oncogenic protein kinases68.  Phosphorylation of cortactin 

at these sites serves to regulate the ability of cortactin to activate Arp2/3 complex 

nucleation by direct and indirect mechanisms82. The extreme C-terminus contains a Src 

homology (SH) 3 domain that interacts with multiple proline-rich binding partners. In 

addition to promoting Arp2/3 activity, cortactin simultaneously binds to Arp2/3 complex 

and F-actin branchpoints to help stabilize and protect F-actin branches from spontaneous 

disassembly66. Collectively these cortactin functions contribute to different aspects of 
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head and neck cancer cell dissemination, including regulation of cell-cell adhesion, 

motility, and ECM degradation. 

Cell-cell and cell-matrix adhesions are important for maintaining tissue 

architecture. Altering adhesion is important in driving tumor progression. Contacts 

between epithelial cells are made through adherens junctions (AJ) and tight junctions 

(TJ)83. Initiation of AJs is the first step in intercellular contact formation. The major 

molecules responsible for the initial adhesion event are members of the cadherin family 

of transmembrane glycoproteins, with E-cadherin the most important member for 

maintaining epithelial cell-cell adhesion83. Following initial cell-cell contact, E-cadherin 

clustering occurs at membrane contact points, leading to recruitment of catenin family 

proteins (p120-, β- and α-catenin), which link E-cadherin clusters to the actin 

cytoskeleton84. In addition to catenins, E-cadherin ligation at the cell surface designates 

assembly sites for Arp2/3-mediated branched actin networks85. Arp2/3 activity is 

necessary for the maturation of E-cadherin contact points86. Cortactin associates with the 

adherin junction actin network to maintain stability of Arp2/3-F-actin branchpoints, thereby 

enabling extension of nascent contacts and adhesion maturation87,88. Loss of E-cadherin 

expression is a hallmark event in epithelial-mesenchymal transition (EMT), and is 

important for the acquisition of the invasive mesenchymal phenotype89,90. HNSCC tumors 

with low E-cadherin expression are consistently linked to lymph node metastasis, 

increased tumor stage and decreased patient survival91–94. AJ formation also leads to 

basolateral recruitment of the transmembrane proteins claudin and occludin, key proteins 

that comprise the core components needed for tight junction formation83.  
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Tight junctions form a paracellular barrier between epithelia that regulates solute 

flow between cells while restricting diffusion of transmembrane proteins to apical and 

basolateral compartments83. The cytoskeleton is connected to TJs through zonula 

occludens (ZO) 1, 2 and 3, members of a scaffolding protein family that bind claudin 

and/or occludin as well as F-actin83. ZO-1 and ZO-3 directly bind F-actin95,96, while ZO-1 

and ZO-2 are important for maintaining TJ barrier function97. Cortactin may also play a 

role in regulating TJ function, as it has been shown to directly interact with ZO-1 in 

Drosophila98. In support of this, mice with Cttn knockout display increased endothelial and 

intestinal cell permeability99,100, while binding of cortactin to ZO-1 promotes colorectal 

cancer progression71.  

Cell motility requires cell-matrix adhesion formation and coordinated adhesion 

turnover to generate the force necessary to propel the cell forward and maintain motility. 

One type of cell-ECM interaction is the focal adhesion (FA). FA initiation begins when 

members of the integrin family of integral membrane matrix receptors engage insoluble 

protein components of the extracellular matrix101. Integrins are composed of α and β 

subunits that heterodimerize in order to transmit cellular signals, leading to growth and 

motility102.  Engagement of integrins with the ECM causes them to adopt an active 

conformation that leads to intracellular signaling, while interactions with cytoskeletal 

proteins triggers a change in affinity for ECM ligands. A major activator of integrins is the 

cytoplasmic adaptor protein talin, which provides a direct link by binding to the β-integrin 

subunit and to actin filaments103. Recruitment of talin initiates formation of nascent cellular 

adhesions, which are stabilized following subsequent recruitment of the adaptor proteins 

vinculin and α-actinin, as well as focal adhesion kinase (FAK)104. Both vinculin and α-



14 
 

actinin provide additional links to the actin cytoskeleton by simultaneously interacting with 

talin and F-actin103. Additionally, vinculin is thought to play an important role in further 

recruitment of FA core proteins and transmission of external mechanical stimuli105. FAK 

is important in governing the turnover of FAs during cell movement, since genetic deletion 

of FAK expression in fibroblasts results in increased FA stablity106. Cortactin is also found 

in FAs, where it functions to regulate adhesion turnover by serving as a mediator between 

F-actin and FAs. Tyrosine phosphorylation of cortactin by FAK following integrin-

stimulated FAK activation regulates this activity107,108. Signaling between β1 integrin, FAK 

and cortactin has been implicated in the acquisition of radioresistance in HNSCC, where 

inhibiting β1 integrin activity led to dissociation from FAK and cortactin, increasing 

radiation-induced cell death109.  

Directional mesenchymal migration requires formation of protrusions termed 

lamellipodia, which are generated through Arp2/3-mediated actin polymerization and 

assembly of a cortical branched F-actin network. Initiation of lamellipodia formation 

occurs through stimulation by growth factors, including as EGF110. Lamellipodia appear 

as thin, sheet-like protrusions in 2D that are maintained and elongated through Arp2/3-

driven actin nucleation. F-actin elongation in lamellipodia is accelerated by the additional 

and rapid generation of F-actin barbed-ends. Actin subunits are organized into filaments 

facing the same direction, which creates “barbed” and “pointed” ends. While addition of 

G-actin monomers can occur at both sides, polymerization is much more favorable at the 

barbed end59. Barbed end production is increased in lamellipodia by the actin filament-

severing activity of ADF/cofilin proteins111,112. Arp2/3 complex has relatively low ability to 

activate actin polymerization on its own, requiring activation by different groups of 
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nucleation promoting factors (NPFs) through direct binding113. Arp2/3 NPFs include the 

Wiskott-Aldrich syndrome protein (WASP) family members WASP and N-WASp, related 

WAVE/Scar proteins and cortactin113. Cortactin is a weak NPF on its own, but is able to 

synergize with N-WASp to enhance NPF activity and promote robust actin 

polymerization64. Localization of cortactin to sites of actin assembly in lamellipodia 

requires its interaction with both F-actin and Arp2/3114.  Cortactin-mediated Arp2/3 

activation is further enhanced by binding to the adaptor protein Nck1115 and WASp-

Interacting Protein (WIP)65,82. Cortactin tyrosine phosphorylation by several different non-

receptor tyrosine kinases, including Src family kinases, FAK and Abl family kinases, are 

also necessary for promoting its Arp2/3 complex and F-actin interactions81. Src 

phosphorylation of cortactin at tyrosines (Tyr) 421/466 augments its interaction with Nck1, 

which enhances actin assembly82,116. In addition to tyrosine phosphorylation, 

serine/threonine phosphorylation of cortactin by Rac1/Cdc42 activated kinases PAK1 or 

PAK3, or Erk1/2 enhance binding of the cortactin SH3 domain to N-WASp81.  Cortactin 

SH3 domain binding relieves N-WASp autoinhibition, promoting Arp2/3 activation that 

results in increased lamellipodia persistence and enhanced motility in HNSCC cells117.  

While cortactin directly influences Arp2/3-F-actin network stability, cortactin is not 

required for lamellipodia formation64,118 but is necessary for lamellipodia persistence118. 

For this reason, cortactin is required for directed cell migration, evidenced by increased 

random motility in cortactin-null mouse embryonic fibroblasts119. Conversely cortactin 

overexpression enhances migration in HNSCC cell lines120, fibroblasts121 and mammary 

epithelial cells67. 
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Mesenchymal cancer cells invade into surrounding tissue by proteolysis of the 

basement membrane and underlying ECM. The main cellular mechanism for invasion-

based proteolysis is accomplished through formation of actin-rich membrane protrusions 

called invadopodia122. Invadopodia were first identified in Src-transformed fibroblasts, to 

sites of focalized proteolytic activity123. Invadopodia formation requires coordination of 

several cytoskeletal networks and regulatory proteins124. These structures function 

through recruitment of matrix metalloproteases (MMPs), which facilitate ECM 

proteolysis125,126. Similar to lamellipodia, invadopodia formation is initiated upon ligand-

induced activation of growth factor receptors, including EGFR, triggering a downstream 

signaling cascade that activates Src, PKC and ERK122,123,127–129. This in turn results in 

activation of Arp2/3, cortactin, N-WASp and cofilin122,127,130.  Recruitment of these core 

components initiates formation of pre-invadopodia that lack MMP activity131. Deletion of 

Arp2/3, cortactin or N-WASp in cancer cells results in a loss of invadopodia formation. 

Following recruitment of the precursor core components, the adaptor protein Tks5 binds 

PtdIns(3,4)P2 (PIP2) at the plasma membrane, stabilizing newly-formed invadopodia 

precursors132. Tks5 interacts with Nck1, enhancing N-WASp activity within 

invadopodia127,133. Invadopodia maturation (defined by the acquisition of ECM 

degradation capability) occurs following recruitment of MT1-MMP (MMP14), a 

membrane-bound matrix metalloproteinase131 that leads to focalized activation of MMP 2 

and 9 that are secreted from invadopodia125. Invadopodia maturation requires cortactin 

tyrosine phosphorylation, which releases bound cofilin from cortactin, allowing cofilin to 

enhance F-actin barbed end formation and subsequent invadopodia elongation130. 

Secreted and membrane-bound MMPs are trafficked to elongated invadopodia through 
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caveolae-mediated endocytosis134–136 and exocytic reinsertion137–139 in a cortactin-

dependent manner125. Invadopodia elongation requires additional actin nucleation, 

promoted through cofilin-mediated severing and diaphanous-related formin mDia1 

unbranched F-actin polymerization.  F-actin in invadopodia is stabilized by the F-actin 

bundling activity of the crosslinking protein fascin140. In addition to F-actin, vimentin-

enriched intermediate filaments and microtubules contribute to the processes of 

invadopodia elongation and MMP trafficking124. Without the activity of these downstream 

components utilized in invadopodia elongation and maturation, invadopodia-mediated 

ECM matrix degradation is dramatically reduced.  Cortactin therefore plays important 

roles in tumor invasion through manifold roles in invadopodia biogenesis.   

Coronin 1B promotes actin regulatory protein and network turnover 

Figure 3: Domains of Coronin 1B. N-term extension (NE): Contains important serine 

phosphorylation site needed for interactions with binding partners. WD40 Repeats: Forms β-

propeller structure in other proteins such as β-subunit of G-proteins, mediate protein-protein 

interactions. Includes charged patch and Arg 30 which interacts with F-actin. C-term extension 

(CE): May enhance structural integrity of propeller. Unique region: Unknown function, varies 

among coronins. Coiled coil (CC): Heptad repeat that mediates homo-oligomerization. Also 

interacts with Arp2/3. 
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 The coronin protein family are conserved regulators of cell motility141. They were 

first discovered in the slime mold Dictyostelium discoideum, where they localized to 

“crown-like” structures on the dorsal surface and were found as a component of 

contracted myosin-actin preparations142. Subsequent studies in D. discoideium and yeast 

found that coronin has multiple functional roles in motility, cytokinesis, phagocytosis and 

actin filament disassembly143–147. There are three classes of mammalian coronins; all 

have a similar basic structure consisting of WD40 repeats that form a β-propeller, short 

conserved N- and C- terminal regions around the propeller and a unique region 

connecting the propeller to a coiled-coil domain (Figure 3)148. However, each specific type 

has different functions within the cell149. Type I coronins are regulators of actin network 

assembly, with the ability to bind both F-actin and Arp2/3 complex. Type II coronins have 

been implicated in the regulation of focal adhesions and nuclear co-repression. Finally, a 

third type of “long” coronin (Coro7), which contains two β-propeller regions and lacks a 

coiled-coil domain, has more distinct functions that vary in mammals and lower organisms 

despite having a conserved structure. In humans, Coro7 localizes to the Golgi apparatus, 

where it is important for maintaining morphology and membrane trafficking, and has no 

apparent interactions with the actin cytoskeleton. Non-mammalian Coro7, on the other 

hand, still influences actin-dependent processes, and plays roles in phagocytosis and 

vesicle trafficking149. This section will focus on the ubiquitously expressed Type I coronin, 

coronin 1B, which is investigated in Study 1. 
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 Coronin 1B is important in regulating branched actin network turnover. It localizes 

to the leading edge of fibroblast lamellipodia, where it interacts with both F-actin and 

Arp2/3 complex150. Studies from the Bear laboratory at University of North Carolina, 

Chapel Hill have led to a proposed mechanism of coronin 1B’s function in regulating actin 

network turnover in lamellipodia (Figure 4)151.  Branched actin networks formed by Arp2/3 

complex and stabilized by cortactin are necessary for lamellipodia function. However, 

forward migration requires turnover of these components, where coronin 1B participates 

in network breakdown. Coronin 1B interacts with and inhibits Arp2/3-mediated actin 

Figure 4: Coronin 1B antagonizes cortactin function. Cortactin is responsible for stabilizing 

Arp2/3 branched actin networks, preventing their spontaneous disassembly. Upon activation of 

coronin 1B through dephosphorylation of serine 2 by SSH1L, the coronin 1B trimer displaces 

cortactin and Arp2/3 at F-actin branches, leading less stable branch points and recycling of 

cortactin and Arp2/3. PKC phosphorylation at serine 2 inactivates coronin 1B, causing it to lose its 

affinity for ADP+Pi/ATP actin and dissociate. This allows for cofilin-mediated severing and turnover 

of actin. 
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nucleation, a function that also requires binding to F-actin152,153. The interaction with F-

actin is achieved through the interaction of a charged patch within the β-propeller region 

centered at residue Arg30153. Coronin 1B activation is achieved by slingshot (SSH1L) 

phosphatase-mediated dephosphorylation at serine 2152.  Localization of coronin 1B to 

the leading edge is needed for proper SSH1L recruitment, since this phosphatase is also 

required for local activation of cofilin, stimulating F-actin severing activity following 

dephosphorlyation at serine 3.  Coronin 1B there may play an additional role in 

coordinating regional cofilin activity. Following corinin 1B activation, activated coronin 1B 

displaces Arp2/3 and cortactin in the branched cortical actin network, destabilizing cortical 

actin branch points151. Coronin 1B activity is downregulated by protein kinase C 

phosphorylation at serine 2150, resulting in coronin 1B dissociation from F-actin branches.  

The resulting F-actin serves as a substrate for cofilin, where cofilin-mediated F-actin 

severing deconstructs the network to drive lamellipodia actin turnover151. In addition, 

coronin 1B regulates proper actin filament elongation by preventing cofilin binding to 

newly polymerized actin filaments that contain high ATP/ADP+Pi, due to an increased 

affinity of coronin 1B for newly polymerized actin monomers within F-actin152,153. Coronin 

1B knockdown in fibroblasts alters lamellipodia dynamics, enhancing the frequency of 

protrusions that are shorter and less persistent than in control cells, supporting the idea 

that proper recycling of actin network components is important for efficient lamellipodia 

migration152.  

Coronin 1B also plays additional roles in promoting the mesenchymal mode of cell 

migration. Recently coronin 1B was found to interact and negatively regulate the activities 

of Rho kinase 2 (ROCK2)154, a serine/theronine kinase important for driving amoeboid 
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motility by stimulating actomyosin contractility. Attenuation of ROCK signaling is required 

for neuregulin-1 (NRG-1)-induced cell scattering of breast carcinoma cells154. 

Downregulation of coronin 1B enhances phosphorylation of the downstream ROCK 

targets myosin phosphatase 1 (MYPT1) and myosin light chain (MLC)154. Translocation 

of coronin 1B to endothelial cell lamellipodia occurs following sphingosine-1-phosphate 

(S1P) stimulation155. This response requires phospholipase D2 (PLD2) and Rac1, again 

showing a link to the mesenchymal phenotype. 

Despite the fact that mice with genetic deletion of coronin 1B are viable and 

fertile156, there is evidence of coronin 1B playing important roles in the heart, brain and 

nervous system. During mouse heart development, coronin 1B is expressed in the 

atrioventricular cushion, where cardiac EMT takes place, as well as in the endocardium 

and epicardium157. The Wilms’ tumor-1 (Wt1) transcription factor influences coronin 1B 

expression in vitro and cardiac-specific deletion of Wt1 decreases coronin 1B expression 

in the epicardium157. Another study investigating changes in platelets from patients with 

coronary artery disease (CAD) found them to have decreased coronin 1B expression158. 

Platelet activation has been shown to contribute to plaque development that leads to 

CAD. Arp2/3 contributes to the cytoskeletal rearrangements needed for this process159, 

therefore it is likely that coronin 1B-mediated actin cytoskeleton reorganization is involved 

in circulatory pathology. In vascular smooth muscle cells, platelet-derived growth factor 

(PDGF)-induced migration requires down-regulation of coronin 1B160, which is in line with 

reduced coronin 1B expression during platelet activation. Contrary to fibroblast 

lamellipodia, knockdown of coronin 1B in vascular smooth muscle cells increased 

lamellipodia protraction rate and protrusion distance. Inactivation of coronin 1B by 
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phosphorylation at serine 2 occurs in response to vessel injury160. Decreased coronin 1B 

activity in components of the circulatory system appears necessary for effective migration 

and vessel remodeling, however more studies are needed to confirm this. 

Coronin 1B expression has also been shown to be important for neurite 

outgrowth161,162, and is up-regulated during an experimental system of spinal cord injury 

in rats163. Neurite extensions from primary neurons and neuroblastoma cells increase 

following coronin 1B overexpression, and coronin 1B co-localizes with the neuronal 

regeneration marker GAP-43 in growth cones and extended neurite terminals163. 

Following spinal cord injury, similar increases of coronin 1B expression are also observed 

in neurons. This up-regulation is mediated by the transcription factor p53162. Additionally, 

coronin 1B has been identified as a binding partner for importin α5 in adult mouse brain, 

and is located in the nucleus of hippocampal neurons164. While the role of coronin 1B in 

the nucleus remains to be elucidated, it is likely related to intra-nuclear actin-dependent 

functions165.  

 There have been no reported studies to date that define a role for coronin 1B in 

any cancer type. However, its location near cortactin in the chromosome 11q13 

amplicon166 suggests it may play important roles in enhancing motility and invasion in 

carcinoma tumor cells harboring 11q13 amplification, including breast and head and neck 

cancers167. 

 

This review has detailed different aspects of HNSCC relevant to the dissertation work 

presented herein. These include the genetic alterations leading to progression, modes of 

imaging important for diagnosis of primary tumors and lymph node involvement, and the 
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various migratory modes and actin cytoskeletal proteins involved in tumor invasion. 

Amplification of the chromosomal region 11q13 results in cortactin overexpression, which 

has been repeatedly shown to drive invasion and metastasis detected through imaging 

modalities such as PET/CT, MRI and ultrasound. The following studies touch on each of 

these different components to tumor growth and detection. Study 1 identifies coronin 1B 

as a potential co-mediator of invasion along with cortactin in cases with 11q13 

amplification, and reveals for the first time expression of coronin 1B in HNSCC and in 

invadopodia. In Study 2, we investigate the role of cortactin in a transgenic mouse model 

of oral tumorigenesis. We determine that contrary to in vitro and xenograft model data, 

cortactin is dispensable for tongue cancer invasion, demonstrating the importance of 

using complete microenvironments in mouse models of cancer. Finally in Study 3, we 

apply high frequency ultrasound (HF US) to a mouse model of oral cancer. We map 

mouse cervical lymph nodes by HF US and histology and show the utility of image-guided 

fine needle biopsy on mice similar to that used in the clinic. We use this technique to show 

early cervical lymph node changes that occur prior to carcinogen-induced tumor 

formation, and how these changes are the result of hyperproliferation of the paracortical 

T-cell zone within the nodes. Collectively, these studies provide an enhanced 

understanding of actin regulatory proteins in HNSCC and their roles both in vitro and in 

vivo, as well as emphasizes the importance of utilizing the best models for accurate 

analysis of their functions in human cancers.    
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Abstract 

Amplification of chromosome 11q13 in head and neck squamous cell carcinoma 

(HNSCC) is a common late-stage occurrence associated with poor patient prognosis. 

Within the core amplified region is the gene that encodes cortactin (CTTN), a filamentous 

(F-) actin binding protein and Src kinase substrate that stabilizes Arp2/3-F-actin 

branchpoints in dynamic cortical F-actin structures. CTTN gene amplification results in 

increased lymph node metastases and decreased survival rates in HNSCC patients.  

CTTN amplification in HNSCC cell lines enhances tumor cell motility and invasion.  

Regions flanking the core 11q13 amplicon are often amplified in HNSCC, and contain 

several genes with the potential to cooperate with CTTN in regulating tumor invasion. 

One such gene within the 11q13 region is coronin 1B (CORO1B), an actin-binding protein 

that antagonizes cortactin function by promoting the breakdown of F-actin branches, 

impairing cell motility. Here, we show that coronin 1B is a potential mediator of HNSCC 

invasion.  CORO1B amplification and overexpression occurs in a subset of HNSCC 

patients with CTTN amplification.  Coronin 1B localizes with cortactin within HNSCC 

invadopodia, ventral membranous protrusions responsible for degrading extracellular 

matrix (ECM) to facilitate loco-regional tumor invasion.  RNAi-mediated coronin 1B 

knockdown decreases the number of invadopodia per cell, enhances cell spreading and 

reduces ECM degradation and 3D spheroid collagen invasion. These results collectively 

point to a potential role for coronin 1B is in regulating HNSCC tumor cell invasion through 

modulating invadopodia function, and supports a potential prognostic role for CORO1B 

amplification in identifying a previously unidentified HNSCC subset that may display 

increased invasiveness in HNSCC cases with 11q13 amplification.
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Introduction 

Head and neck squamous cell carcinoma (HNSCC) is a heterogeneous disease that 

results from distinct molecular changes of the squamous epithelia in the upper 

aerodigestive tract1. Amplification of the chromosomal region 11q13 is a late-stage 

genetic event associated with poor clinical outcome2–5. The amplicon typically spans from 

11q13.1 to 11q13.4, and has been identified in 30% of HNSCC patients6. The most 

frequently amplified subregion, located at 11q13.36, encodes several genes important in 

cell cycle and actin regulation, including CCND1 (cyclin D1) and CTTN (cortactin). 

Cortactin is a multi-domain scaffolding protein with important roles in actin cytoskeleton 

organization, including cell motility and vesicular trafficking7–9. Cortactin gene 

amplification and overexpression in HNSCC is associated with lymph node metastasis, 

recurrence, and decreased disease-free survival due to more aggressive and invasive 

tumors2–5,10,11. HNSCC cell lines with 11q13 amplification and cortactin overexpression 

are more motile and invasive than lines without amplification11, and overexpression of 

cortactin in non-invasive lines results in an invasive phenotype12. 

 While the core region amplified within the 11q13 amplicon is at 11q13.3; the 

flanking regions from 11q13.1-11q13.4 are frequently co-amplified, thus are considered 

part of the amplicon6. Genes located within this region therefore have the potential to 

function in a cooperative manner with core amplicon products in HNSCC and augment 

tumor progression. Coronin 1B (CORO1B) was previously identified by our laboratory in 

a gene mining study to discover potential actin regulators of motility and invasion 

amplified in HNSCC13. CORO1B is located at the border of 11q13.1/.2, making it a 

possible candidate for co-amplification with CTTN.  Coronin 1B is an Arp2/3 complex- 
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and actin-binding protein that regulates cell motility14. In fibroblast lamellipodia, it co-

localizes with Arp2/3, actin and cortactin, where it promotes turnover of Arp2/3-cortactin 

F-actin networks. Coronin 1B is phosphorylated at serine 2 by protein kinase C (PKC)15,16, 

and remains inactive until recruitment of slingshot 1L (SSH1L) to the cell membrane and 

subsequent dephosphorylation14. Following activation, coronin 1B binds to F-actin 

branchpoints, displacing Arp2/3 and cortactin, resulting in a less stable F-actin branch 

with altered geometry15. SSH1L recruitment also results in activation of cofilin, which 

facilitates F-actin severing and filament disassembly. PKC phosphorylation of coronin 1B 

at serine 2 inactivates coronin 1B, where it is subsequently recycled to the leading edge15.  

The antagonistic activities of cortactin and coronin 1B on Arp2/3-F-actin branchpoints has 

been proposed to be necessary for dendritic F-actin network turnover within lamellipodia 

and efficient cell migration15. A role for coronin 1B in regulating motile events in HNSCC 

or other cancer types has not been reported. 

Tumor cell migration and invasion requires dynamic reorganization of the actin 

cytoskeleton, resulting in the formation of lamellipodia, filopodia and invadopodia in 

response to extracellular signals17. While lamellipodia and filopodia are necessary for 

motility, invasion through the basement membrane and stroma is thought to require 

invadopodia activity. Invadopodia are F-actin-rich membrane protrusions produced in 

cancer cells and Src-transformed fibroblasts that actively degrade the extracellular matrix 

(ECM) through the action of matrix membrane metalloproteinases (MMPs)18. Cortactin is 

a critical component of the F-actin invadopodia “core” that regulates invadopodia 

formation and function. RNAi-mediated knockdown of cortactin in HNSCC and other 

tumor cell lines results in reduced ECM degradation, defective matrix metalloproteinase 
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(MMP) localization and secretion12.  Invadopodia biogenesis has been divided into distinct 

stages to determine the key steps required for tumor cells to acquire the ability to 

degrade18.  Initial events involve the accumulation of F-actin, cortactin, Arp2/3 and N-

WASp to form invadopodial precursors (“pre-invadopodia”) that are incapable of 

degrading ECM. Invadopodia mature by subsequent actin polymerization and recruitment 

of various MMPs, with MT1-MMP (MMP14) localization the key event in triggering 

initiation of ECM degradation. While the role of cortactin in invadopodia formation and 

activity has been well studied19–21, a role for coronin 1B in regulating invadopodia function 

has not been established. 

In this study, we determine that coronin 1B is overexpressed with cortactin in a 

subset of HNSCC with 11q13 amplification.  We show that coronin 1B is a component of 

the invadopodia F-actin core, where it localizes with cortactin in mature invadopodia. 

RNAi-mediated inhibition of CORO1B expression results in decreased ECM invadopodia 

degradation activity in 2D and suppresses HNSCC invasion in 3D collagen matrices.  

Coronin 1B knockdown reduced expression of focal adhesion kinase (FAK), resulting in 

enhanced tumor cell spreading and adhesion.  Taken together, these data suggest that 

coronin 1B is essential for invadopodia function and tumor cell invasion, where co-

amplification with cortactin may cooperatively accelerate ECM matrix degradation to 

promote aggressive tumor progression in a subset of HNSCC with 11q13 amplification. 
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Materials and Methods 

Cell culture and lentiviral infection 

HNSCC cell lines 584, HN4, OSC19, FaDu, UMSCC1, UMSCC2, 1483 and MSK921 

were cultured as described previously22. PLKO.1 lentiviral vectors (ThermoScientific, 

Pittsburgh, PA) with shRNA targeting Coro1B (shRNA1B 4, 5' - 

ATGCAGTTTGTAGAACCGGGC - 3' and shRNA 1B 6, 5' - 

ACATTCCAGATGAGTACCACG - 3') were used for stable knockdown in UMSCC1 and 

OSC19 cells. Lentiviral particles (Santa Cruz Biotechnology, Dallas, TX) containing non-

targeting shRNA were used as a control. Stable lines expressing non-targeting shRNA or 

shCoro1B KD were generated by puromycin selection following standard methods23. 

Western blotting and antibodies 

Western blotting was performed using standard techniques24. Antibodies used were: anti-

cortactin clone 4F11 (1 μg/ml11), anti-β-actin (1:10,000; EMD Millipore, Billerica, MA), and 

anti-coronin-2 (1:2000, Bethyl Laboratories, Montgomery, TX).  

Immunohistochemistry 

Human HNSCC cases were obtained from the West Virginia Tissue Bank and used under 

the approval of West Virginia University Institutional Review Board. Five-micrometer 

sections from human HNSCC tissue blocks were processed and stained using a 

Discovery XT automated staining system (Ventana Medical Systems, Tucson, AZ, 

USA).Primary antibodies used were: rabbit polyclonal anti-coronin1B (1:250, generous 

gift from James Bear15) and anti-cortactin clone 4F11 (1 μg/ml11). Primary antibodies were 

detected using the Omnimap antibody horseradish peroxidase kit (Ventana) and slides 

were counterstained with hematoxylin. 
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Preparation and labeling of CTTN and CORO1B FISH probes 

Proper bacterial artificial chromosome (BAC) clones for the areas of interest were 

selected using www.ensembl.org.  Two BAC clones, RP11-347I13 encompassing the 

CTTN gene and RP11-249K11 encompassing the CORO1B gene, were obtained from 

CHORI (Oakland, CA) and cultured overnight in LB Broth with chloramphenicol.  

Resulting cultures were streaked on LB agar plates and cultured overnight.  Five single 

colonies were chosen for each clone and expanded in LB Broth overnight for DNA 

verification.  Touchdown PCR was performed to validate BACs using the following set of 

primers for CTTN: Forward 5’-GGTGTGGAACAAGACCGAATGGAT-3’ and Reverse 5’-

CAGGCATTGACAGTGATGACACCT-3’; and the following set of primers for CORO1B: 

Forward 5’-GAGGGACCCTGGGAATAAAGTGAA-3’ and Reverse 5’-

GTGTTCAGGAAGTGGATGTAGGGA-3’.  One verified single colony per clone was 

cultured overnight for DNA extraction using the Qiagen QIAamp DNA Mini Kit (Valencia, 

CA) and the Repli-G Kit (Qiagen, Valencia, CA) was used as per manufacturer’s 

instructions for whole genome amplification.  Concentrations were estimated by gel 

electrophoresis and 1μg of DNA for each clone was then labeled with the use of Vysis 

Nick Translation Kit (Des Plaines, IL) with SpectrumRed (RP11-347I13) or 

SpectrumGreen (RP11-249K11) conjugated dUTPs, according to manufacturer’s 

protocol.  Labeled DNA was ethanol precipitated with herring sperm and human Cot-1, 

and the DNA pellet was re-suspended in 10μl of t-DenHyb (Insitus Biotechnologies, 

Albuquerque, NM). 
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FISH of HNSCC Tissue Microarrays 

A duplicate core HNSCC tissue microarray (TMAs) was constructed from archival paraffin 

blocks of 39 patients seen at Fox Chase Cancer Center using a MTA-1 manual tissue 

arrayer (Beecher Instruments, Sun Prairie, WI).  Five µm array sections were subjected 

to dual-color FISH performed according to standard protocol using reagents from the 

SpotLight Tissue Pre-Treatment Kit (Zymed).  Briefly, the slides were incubated in Citri-

Solv twice for 5 min each and then in 100% ethanol twice for 1 min each for paraffin 

removal.  Slides were incubated in Pretreatment Solution for 18 min, followed by three 

two minute PBS, Enzyme Reagent at 37°C for 20 min, then three additional  two minute 

PBS washes.  Slides were then dehydrated in a graded ethanol series.  A mixture of 

100ng of CTTN SpectrumRed probe and 300ng of CORO1B SpectrumGreen probe per 

113mm2 of hybridization area was diluted in t-DenHyb (Insitus Technologies, 

Albuquerque, NM) and applied to the selected area on each slide. Hybridized cores were 

covered with a glass coverslip in mounting media and sealed with rubber cement. Co-

denaturation of probe and target DNAs was performed in the Hybridizer DAKO at 85°C 

for 5 min and hybridized at 37°C for 36 hr.  Post-hybridization washes were performed 

with 2xSSC/0.3%NP-40 at 72°C, followed by washing with 2xSSC for two min at room 

temperature.   The hybridized slide was dehydrated in a graded ethanol series. Chromatin 

was visualized by counterstaining with DAPI (0.3 µg/ml in Vectashield Mounting Medium, 

Vector Laboratories). 

Visual analysis of CTTN and CORO1B gene levels was performed on a Zeiss 

Axioimager M1 epifluorescence microscope using single interference filter sets for green 

(FITC), red (Texas red), and blue (DAPI), as well as dual (red/green) and triple (blue, red, 
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green) band pass filters. A minimum of thirty tumor cell nuclei were analyzed per TMA 

core.  Images were captured using CytoVision software (Applied Imaging Inc., San Jose, 

CA). 

Gelatin degradation assay 

Gelatin degradation assays to evaluate invadopodia function were performed as 

described25. Briefly, HNSCC cell lines OSC19 and UMSCC1 were plated on Oregon 

Green 488-conjugated gelatin (Life Technologies, Grand Island, NY) coated coverslips, 

allowed to degrade for 6 and 8 hours, respectively, rinsed in PBS and fixed with fresh 4% 

paraformaldehyde (Electron Microscopy Sciences, Hatfield, PA). Cells were 

permeabilized with 0.4% Triton-X/PBS in preparation for immunofluorescence labeling.  

Immunofluorescence staining and confocal microscopy  

Primary antibodies were diluted in 5% BSA/PBS. F-actin was labeled with rhodamine-

conjugated phalloidin (Life Technologies). Primary antibodies used were: mouse 

monoclonal anti-coronin 1B (1:500, Abnova, Taipei, Taiwan), rabbit polyclonal anti-

coronin 1B (1:500) and anti-cortactin clone 4F11 (1 μg/ml). Primary antibodies were 

visualized using Alexa Fluor 405 and 647 conjugated goat anti-rabbit or anti-mouse 

secondary antibodies (1:2000; Life Technologies). Cells were mounted with ProLong 

Gold (Life Technologies) and images were acquired with a Zeiss LSM510 confocal 

microscope using AIM software (Carl Zeiss MicroImaging, Thornwood, NY). Gelatin 

degradation and cell area quantification was performed as described25 using ImageJ 

software. Cell volumes were measured using the Countess® Automated Cell Counter 

(Life Technologies) and selecting “more data” to display cell volumes. 

 



48 
 

 

3D spheroid invasion assay 

96 well plates were coated with 100 μL of 1.5% noble agar (BD Biosciences, Sparks, MD) 

in Dulbecco’s PBS. 1 x 103 (OSC19) or 5 x 103 (UMSCC1) cells were plated into individual 

wells for 48 h to form spheroids. 24 well plates were coated with 400 μL of 2 mg/mL rat 

tail collagen I (BD) and allowed to polymerize. Three spheroids from individual wells were 

transferred to a microcentrifuge tube and centrifuged at 1000 x g for 1 min. The media 

was aspirated and replaced with 500 μL of 2 mg/mL rat tail collagen I (BD). The spheroid 

mixture was transferred to an individual well of the pre-coated 24-well plate. Plates were 

incubated for 1 h at 37°C, then overlayed with 1 mL of complete media. Spheroid invasion 

was imaged at 0 and 48 h by phase contrast microscopy (Zeiss, Axiovert 200M). Maximal 

radial distances for invaded cells were calculated using Axiovision 4.6 software (Zeiss). 

Electric cell-substrate impedence sensing of cell adhesion 

5x 105 cells were plated into 8-well 8W10E electric cell-substrate impedance sensing 

(ECIS) dishes (Applied Biophysics, Troy, NY). Measurements were taken at 45 kHz 

immediately upon addition of cells, and continuously recorded every minute for 24 h. 

Statistical analysis 

Differences in mean values between groups were evaluated using Students t-test, with 

significance determined at P < 0.05 
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Results 

Cortactin and coronin 1B gene amplification correlates with increased protein 

expression in HNSCC 

Expression of coronin 1B has not been evaluated in HNSCC or any other cancer type. To 

determine the genomic and protein expression status of CORO1B and CTTN in HNSCC, 

an HNSCC TMA representing 42 cases was screened by FISH using genomic probes 

specific for CORO1B and CTTN. Eleven cases contained CTTN amplification, with two 

patients containing co-amplification of CORO1B (Figure 1A). The lower incidence of 

CORO1B amplification can be explained by the location of CORO1B within the 11q13 

region, lying outside the core amplicon including CTTN6. Subsequent analysis of over 100 

HNSCC cases increased co-amplification event to ~14.5% (data not shown). In addition, 

five cases with CTTN amplification also have 3-4 gene copies of CORO1B, providing the 

potential for upregulated protein expression. TMAs subsequently screened by IHC with 

antibodies to coronin 1B or cortactin showed protein overexpression in all cases with gene 

amplification (Figure 1B), indicating that CORO1B and CTTN co-amplification occurs in a 

subset of HNSCC patients. 

 

Coronin 1B is expressed in HNSCC cell lines and co-localizes with cortactin in 

mature invadopodia 

Co-expression and co-amplification of coronin 1B and cortactin in HNSCC suggests that 

elevated coronin 1B expression may cooperate with cortactin to enhance invasion and 

metastasis. Protein expression in multiple HNSCC cell lines was analyzed, with coronin 

1B overexpression found in the OSC19 and UMSCC1 (lacking 11q13 amplification), as 
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well as the 11q13 amplified lines FaDu, and UMSCC2 (Figure 2A).  UMSCC1 and OSC19 

cells spontaneously form invadopodia, and were used to determine the subcellular 

localization of coronin 1B in invasive HNSCC using gelatin degradation assays. Confocal 

immunofluorescence microscopy (IF) showed coronin 1B colocalization with cortactin in 

the invadopodia F-actin core, coincident with sites of gelatin degradation (Figure 2B).  

These data indicate that coronin 1B is a component of invadopodia, and suggests a 

potential function for coronin 1B in invadopodia similar regulation of Arp2/3 and cortactin 

function in lamellipodia15.  

 

Coronin 1B is required for HNSCC invadopodia function and 3D invasion 

To determine if coronin 1B is required for invadopodia formation and/or function, 

UMSCC1 and OSC19 cells were infected with lentivirus encoding two different shRNA 

sequences specific to human CORO1B. Stable clones obtained by puromycin selection 

displayed > 90% knockdown of coronin 1B compared to stable non-silencing shRNA 

control lines (Figure 3A). Gelatin degradation assays using control and coronin 1B 

knockdown cells indicated that the amount of gelation degradation per cell was decreased 

by 40 (sh1B 4) and 60% (sh 1B 6) in UMSCC1 cells, and 30 (sh1B 6) and 50% (sh1B 4) 

in OSC19 cells (Figure 3B-C). To determine if decreased invadopodia activity in coronin 

1B cells correlates with decreased invasive behavior, 3D spheroid collagen invasion 

assays were performed using control and sh1B 6 lines.  Knockdown of coronin 1B 

decreased invasion in both HNSCC cell lines, with an average reduction in invasive area 

of 163 µm in UMSCC1 and 116 µm in OSC19 coronin 1B knockdown cells compared to 

shRNA controls (Figure 3D-E). Taken together, these data indicate that coronin 1B 
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regulates invadopodia-mediated ECM degradation activity in 2D, as well as cell motility 

and invasion through collagen I in 3D. 

 

Coronin 1B knockdown alters cell attachments through modulation of FAK 

expression 

A striking observation in cells lacking coronin 1B expression was that individual tumor 

cells appeared larger, which is most apparent in the UMSCC1 line (Figure 3B). 

Measurements of cell area revealed significant increases in cell area in both UMSCC1 

and OSC19 lines expressing either of the two coronin 1B shRNAs (Figure 4A). UMSCC1 

cell area increased from an average of 3019.33 µm2 in shCtl cells to 7103.37 µm2 in sh1B 

4 and 4122.08 µm2 in sh1B 6 cells. The increase in OSC19 cells was less but still 

significant, with the average area of 5482.83 µm2 in shCtl cells increased to 7197.32 µm2 

in sh1B 4 and 6531.59 µm2 in sh1B 6 cells.  It is important to note that the pre-existing 

larger control cell area in OSC19 cells may be near the maximal spread volume limit for 

this line, thus restricting additional volume increases induced by coronin 1B knockdown.  

The increase in cell area resulting from coronin 1B knockdown is most likely due to 

enhanced cell spreading, since the volume of knockown cells for each HNSCC line in 

suspension compared to control is unchanged (Figure 4B). Since cellular spreading 

requires formation of integrin-based ECM attachments, we conducted ECIS assays to 

determine the effects of coronin 1B knockdown on cell adhesion. While the rate of 

attachment was not altered, cells with decreased coronin 1B expression had increased 

average electrical resistance compared to control cells (Figure 4C). This is likely due to 

elevated rates of cell spreading, resulting in increased cell area. To determine the 
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mechanism responsible for increasing cell spreading, we investigated the expression 

level of potential focal adhesion modulators, focusing on FAK.  FAK is a cytoplasmic 

tyrosine kinase that regulates focal adhesion dynamics governing cell spreading and 

motility26. FAK expression was downregulated in UMSCC1 and OSC19 coronin 1B 

knockdown cells compared to controls (Figure 4D). These results suggest that FAK 

expression in HNSCC cells is dependent on coronin 1B, where reduction of coronin 1B 

expression enhances cell spreading by preventing efficient FAK-medicated focal 

adhesion turnover. 
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Discussion 

In this study, we demonstrate that CORO1B is amplified and overexpressed in a subset 

of HNSCC cases along with CTTN upon 11q13 amplification. We also show coronin 1B 

localizes to HNSCC invadopodia, where it is required for efficient ECM degradation and 

3D collagen invasion. We have revealed a role for coronin 1B in cell adhesion, as 

decreased coronin 1B expression leads to enhanced cell adhesion and a reduction in 

total FAK expression. Overall, these results point to an important role for coronin 1B in 

regulating multiple aspects of the actin cytoskeletal dynamics utilized during HNSCC 

tumor cell invasion and metastasis.  

The 11q13 amplicon has been well-established as being associated with poor 

clinical outcome in HNSCC27,28. The region spanning 11q13.1-11q13.4 is a gene-rich 

area, with the most common region of amplification located at 11q13.36. This location 

contains several core genes, including CTTN. CTTN amplification and protein 

overexpression is linked to increased tumor aggressiveness, lymph node metastasis and 

poor prognosis. While other genes have been associated with HNSCC at this location29,30, 

none have been shown to cooperate with CTTN in enhancing tumor invasion. Coronin 1B 

is a functional antagonist of cortactin and Arp2/3 complex function at F-actin branchpoints 

in lamellipodia, displacing both proteins to promote actin machinery turnover15. 

Additionally, the CORO1B locus found at 11q13.1/.2 and is co-amplified with CTTN in 

some cases (Figure 1). These data suggests that coronin 1B amplification may serve as 

a potential prognostic marker in select HNSCC cases to identify potentially aggressive or 

invasive tumors in patients containing co-amplification of both genes, which may drive 

increased invadopodia activity and matrix degradation. 
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Similar to fibroblast lamellipodia15, coronin 1B co-localizes with cortactin in HNSCC 

invadopodia (Figure 2B). While coronin 1B does not affect invadopodia formation, optimal 

invadopodia function requires coronin 1B expression (Figure 3B-C). Coronin 1B has been 

previously shown to be necessary for actin network turnover at the leading edge of motile 

cells, through the recruitment of SSH1L and subsequent activation of the actin severing 

protein cofilin14. Cofilin function is necessary for the development of mature invadopodia. 

In breast cancer lines, cofilin is sequestered by cortactin through direct binding.  Cortactin 

tyrosine phosphorylation due to upstream signaling pathway activation releases cofilin, 

allowing increased F-actin severing and turnover needed for invadopodia maturation and 

elongation20. Since coronin 1B binds the cofilin-activating phosphatase SSH1L, it is 

possible that coronin 1B is responsible for recruitment of SSH1L to invadopodia, which in 

turn would dephosphorylate cofilin to initiate F-actin severing activity. Turnover of actin 

and other invadopodia-associated proteins is likely important for invadopodia maturation 

and activity, since loss of cofilin expression results in reduced gelatin degradation levels31, 

similar to coronin 1B knockdown.  

Loss of coronin 1B and invadopodia-mediated ECM degradation ability correlates 

with decreased 3D collagen invasion (Figure 3D-E). The effect of 1B knockdown in 3D 

resulted in different invasive modes for UMSCC1 and OSC19 cell lines. Recent studies 

in cancer cell motility lead to the classification of different types of cell movement. Tumor 

cells are thought to move individually, as single cells with no intercellular attachments, or 

as multicellular groups that maintain cell-cell attachments32. Single-cell migration is 

categorized as being either mesenchymal or ameboid, with mesenchymal cells having an 

elongated shape that utilizes MMPs to facilitate ECM breakdown.  Amoeboid motility 
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utilizes a rounded cell state characterized by a lack of adhesions and increased acto-

myosin contractility to cause cellular deformation, allowing cells to fit through permissive 

spaces within connective tissue32. Mesenchymal motility relies on the expression of the 

small GTPase Rac1, while amoeboid migration involves signaling through another 

GTPase RhoA and the Rho kinase, ROCK33. In addition to single cell migration, cancer 

cells are also capable of multicellular migration, where cell-cell adhesions remain intact, 

and cells invade using collective strands or groups34; this migratory mode is thought to 

require a combination of proteolysis and force-generation for matrix remodeling. Several 

different cancer types rely on collective migration in order to invade, including HNSCC 

(personal observations). Both OSC19 and UMSCC1 lines invade collectively in collagen 

I: OSC19 move as several invasive strands, while UMSCC1 grow expansively outward, 

as one large collective group of cells. We note that coronin 1B knockdown results in a 

complete loss of collective invasive strands in OSC19 cells and a partial loss in the 

UMSCC1 line (Figure 3D). The UMSCC1 line seem to rely more on expansive growth in 

3D collagen, whereas OSC19s lose their ability to produce strands and instead rely on 

this mode only upon loss of coronin 1B. Formation of collective invasive strands requires 

controlled RhoA activation and subsequent actomyosin-based activity35,36. Coronin 1B 

was recently shown to be a negative regulator of ROCK237; therefore it is possible that 

loss of coronin 1B may lead to unregulated ROCK2 activity, promoting increased global 

actomyosin contraction and a switch from collective strands to expansive growth in 

invasion. Verification of a role for coronin 1B in regulating different modes of collective 

invasion utilized in HNSCC is planned for future studies. 
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Another important regulator of RhoA activity is FAK38. Knockdown of coronin 1B 

expression leads to increased cell spreading and adhesion, presumably due to decreased 

FAK expression levels (Figure 4). Rho activity is elevated in FAK-null fibroblasts and 

keratinocytes, resulting in stable focal adhesions38,39. While the mechanism used by 

coronin 1B to regulate FAK expression is unknown, it is most likely indirect since FAK 

mRNA and protein stability appear unaffected (data not shown). Given the results of from 

our 3D collagen invasion assays, it is possible that coronin 1B is affecting HNSCC 

invasive capabilities through multiple pathways. Perturbation of FAK in cells disrupts β1 

integrin signaling, which is necessary for radiotherapy resistance in HNSCC40. FAK is 

also needed for proper activation of Src, another important tyrosine kinase that regulates 

cancer cell invasion41. Downregulation of both of these has been implicated in a loss of 

E-cadherin-dependent collective migration42.     

This study points to a role for coronin 1B in several important aspects of cancer 

cell migration and collective invasion. Cells must be able to adhere to, degrade and move 

through the matrix during invasion and metastasis. Maintaining a proper balance of 

actomyosin contractility and protease secretion is critical for effective collective invasion 

and tumor spread. Loss of coronin 1B disrupts this balance at multiple levels, highlighting 

the need for efficient turnover mechanisms of the different components utilized in tumor 

cell motility and invasion. 
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Figure Legends 

Figure 1. CORO1B is co-amplified and overexpressed with CTTN in HNSCC patient 

samples. A. An HNSCC TMA containing 42 patient tumor samples was analyzed for 

gene copy number with genomic probes for CTTN (Spectrum Red) and CORO1B 

(Spectrum Green). Gene amplification (GA) is defined as > 5 gene signals per cell 

nucleus. Additional information regarding CTTN and CORO1B genomic status is listed to 

the right of the graph. B. Representative FISH and IHC images for listed patients from A. 

Examples shown: Disomic gene copy number for CTTN and CORO1B with low protein 

expression (Patient 10), GA for CTTN, disomic CORO1B (Patient 16) and GA and high 

protein expression (Patients 8 and 37). Coronin 1B and cortactin protein expression is 

consistent with gene amplification in these representative examples. 

Figure 2. Coronin 1B is expressed in HNSCC cell lines and co-localizes with 

cortactin in mature invadopodia. A. HNSCC lines were analyzed by Western blotting 

with antibodies against cortactin, coronin 1B and β-actin. B. UMSCC1 cells plated on 488-

gelatin coated coverslips were fixed and immunostained with anti-cortactin and coronin 

1B antibodies.  Rhodamine-labeled phalloidin was used for visualizing F-actin. Coronin 

1B co-localizes with cortactin and actin to active invadopodia. Scale bar = 10 µm 

Figure 3. Coronin 1B depletion from HNSCC cells disrupts invadopodia function 

and reduces 3D spheroid invasion. A. Western blot analysis demonstrating stable 

coronin 1B depletion from UMSCC1 and OSC19 cells. B. UMSCC1 and OSC19 cells 

stably expressing control or CORO1B shRNA were plated on 488-gelatin and 

immunostained as in Fig 2B. Scale bar = 10 µm. C. Quantitative analysis of coronin 1B 

depletion on HNSCC invadopodia function.  Degradation per cell is shown from 

experiments quantified as displayed in panel B. D. Phase contrast images of 3D collagen 

spheroid invasion assay performed over 48 hours. Control OSC19 cells invade as several 

collective groups of strands, while control UMSCC1 cells expansively grow as one large 

strand. E. Quantitation of invasive distance of spheroids into collagen. p<0.05 for each 

experimental parameter in all assays.  

Figure 4. Coronin 1B knockdown alters cell spreading and FAK expression. A. Area 

analysis of cells used in invadopodia assay in Figure 3. The actin area of each cell was 

measured in ImageJ. B. Measurement of cell volumes in suspension. C. Adhesion assay 

dynamics for UMSCC1 and OSC19 cells with and without coronin 1B knockdown. Data 

is displayed as changes in resistance over 4 (UMSCC1) or 8 (OSC19) hours. D. Western 

blot analysis of coronin 1B and FAK expression in HNSCC lines stably expressing control 

or CORO1B shRNAs.  
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Abstract 

Head and neck squamous cell carcinoma (HNSCC) is characterized by aggressive 

tumors that invade loco-regionally. Genetic alterations resulting in increased cytoskeletal 

protein expression enables tumor motility and invasion. Cortactin overexpression as a 

result of chromosome 11q13 amplification is found in 30% of HNSCC cases, where it is 

associated with enhanced tumor aggressiveness, invasion and poor outcome. While 

utilization of in vitro cell line and xenograft models has shown that cortactin loss 

decreases these neoplastic characteristics in HNSCC and other tumor types, the 

consequential effects of deleting the cortactin locus on tumor behavior using transgenic 

models has not been reported for any cancer type. Here we determine the impact of 

cortactin deletion on oral cancer tumorigenesis and progression in carcinogen-induced 

mouse tumors with oral cavity-specific cortactin knockout. Cortacin-null mice produced 4-

nitroquinoline-1-oxide (4-NQO)-induced invasive tongue tumors that are phenotypically 

indistinguishable from tumors generated in control animals. Expression patterns of the 

epithelial to mesenchymal transition (EMT) markers E-cadhern and vimentin were the 

same in tumors with and without cortactin deletion, indicating cortactin does not influence 

HNSCC EMT in HNSCC. Surprisingly, carcinoma cells in control and cortactin knockout 

tumors do not express the invadopodia proteinase MMP14, with expression restricted to 

cells in the invasive tumor microenvironment. Cortactin knockout tumors had increased 

collagen and vascular content, potentially compensating for loss of cortactin expression 

during invasion.  Invasive tumors in control and cortactin knockout animals had fibroblasts 

and macrophages enriched at the invasive front. These results collectively indicate that 

cortactin is not involved in driving HNSCC invasion in this system, with the tumor 
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microenvironment potentially playing a causative role in promoting carcinogen-induced 

oral cancer invasion. 
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Introduction 

 Head and neck squamous cell carcinoma (HNSCC) is a group of cancers arising 

in the upper aerodigestive tract. Tobacco and alcohol-related HNSCC frequently occur 

due to the accumulation of genetic alterations, resulting in aggressive and locally invasive 

tumors with a high propensity for cervical lymph node metastasis1. Gene amplification 

and overexpression of the actin regulatory protein cortactin is found in approximately 30% 

of HNSCC patients, and is frequently associated with higher grade tumors, lymph node 

metastasis and decreased survival rates2–5. Cortactin is responsible for regulating actin 

related protein (Arp) 2/3 complex-mediated filamentous (F)-actin branchpoints in leading 

edge lamellipodia of motile cells6,7. Cortactin is also a core component of invadopodia, 

actin-based protrusive structures enriched in matrix metalloproteinases (MMPs) that 

confer tumor cells with the ability to breach basement membrane (BM) and stromal 

extracellular matrix (ECM)7–9.  Degradation of the ECM by invadopodia has been 

proposed to enable tumor cell invasion and metastatic dissemination9,10.  Cortactin is 

essential for invadopodia formation and function in HNSCC and other tumor cell types, 

where loss of expression ablates the ability of tumor cells to degrade ECM and decreases 

tumor aggressiveness in xenograft models3,11. 

Several mouse models of HNSCC have emerged that rely on tissue-specific 

knockout or activation of tumor suppressor or dominant-positive oncogenic proteins in the 

oral epithelium to drive tumorigenesis.  Alternatively, exposure of oral tissues in wild-type 

animals to cancer-inducing carcinogens is also a potent method to induce oral tumors 

that recapitulate most stages of human HNSCC12,13  Many recent transgenic models 

exploit the specific activity of the cytokeratin 14 (K14) promoter, with restricted expression 
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in mitotically active cells in the squamous basal layers of skin, oral epithelia and 

esophagus14. Crossing of tamoxifen-inducible K14-Cre mice (K14-CreERT;14) with 

animals harboring flanking loxP (floxed) loci for transforming growth factor beta 1 (Tgfbr1) 

results in oral squamous cell carcinomas in animals exposed to DMBA (7,12-

Dimethylbenz(a)anthracene)15. Another HNSCC model using the K14-CreERT system  

mimicks a two-hit model by simultaneously activating oncogenic K-ras and deleting p53 

to drive oral tumor formation16.  In addition to DMBA, 4-nitroquinoline-1-oxide (4-NQO) 

has also been extensively used in multiple studies as a model for mimicking tobacco-

related oral cancer17–19. Immunocompetent C57BL/6 (B6) mice exposed to 4-NQO in 

drinking water in dose and time-dependent studies reliably form oral tumors that closely 

mimic the etiology and progression of human HNSCC at the phenotypic and genetic 

levels13.  These model systems have tremendously aided in advancing the understanding 

of the key steps involved in HNSCC tumorigenesis18,20. 

There have been few mouse models describing transgenic manipulation of Cttn 

expression reported to date.  Cttn overexpression driven by the MMTV promoter in breast 

tissues did not enhance breast cancer tumorigenesis or invasion, in spite of the frequent 

occurrence of cortactin gene amplification and overexpression in human breast tumors21–

23.   Studies investigating  Cttn-null mouse embryonic fibroblasts (MEFs) determined that 

cortactin was not required for lamellipodia formation or clathrin-mediated endocytosis, but 

demonstrated a role for Cttn in governing Rac and Cdc42-mediated signaling and 

reduced cell speed24. A second study that produced Cttn-null MEFs observed no changes 

in cellular F-actin and actin-binding protein distribution25. Non-inducible gene trapping of 

the Cttn locus indicated that Cttn-/- offspring were not born due to embryonic lethality after 
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fertilization26. However, a later study producing complete Cttn knockout by conventional 

targeting resulted in viable, fertile mice, with enhanced endothelial cell permeability and 

reduced neutrophil recruitment as the only reported defects27. These results suggest that 

cortactin plays a crucial role during early mouse development necessitating the use of a 

conditional knockout approach to evaluate potential roles for cortactin in HNSCC and 

other model tumor systems.  

Given the evidence supporting a critical role for cortactin in HNSCC invasive 

progression, we generated a conditional knockout (cKO) mouse model of cortactin 

deletion using the K14-CreERT inducible system for targeted removal of cortactin from 

oral cavity epithelium.  Surprisingly, 4-NQO-induced tumors in mice lacking cortactin 

expression in the oral cavity resulted in collective oral squamous cell carcinoma invasion, 

with no apparent differences in onset or progression compared to oral tumors in wild-type 

mice.  Cortactin-null tumors did not contain altered EMT or levels of MMP14 expression.  

However, cortactin-null oral tumors had elevated collagen I deposition and increased 

vasculature, potential compensatory measures to maintain invasion.  Cortactin-null and 

wild-type tumors had abundant vimentin and CD68 positive staining at the invasive front, 

indicating fibroblast and macrophage involvement in promoting the collective invasion 

phenotype. Our results suggest that cortactin expression is dispensable for tongue tumor 

invasion in this system, indicating that cortactin influences HNSCC clinical outcome 

through mechanisms other than driving tumor cell loco-regional invasion. 
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Results 

Generation of mice with oral epithelium-specific cortactin knockout 

Cttnflox/flox mice were engineered with loxP sites flanking Cttn exon 4. This exon is 

responsible for encoding part of the Arp2/3 complex binding domain in cortactin28, a 

region important for lamellipodia and invadopodia function7,29. Cre-mediated removal of 

exon 4 creates a frameshift upon exon 3 and 5 splicing ensuring ablation of Arp2/3 binding 

after Cre-mediated excision. Mouse genotyping utilized two different primer sets to verify 

germline transgene incorporation. One set encompassed the entire transgene external to 

the loxP sites, where the second set utilized a 5’ primer homologous to a portion of the 

first loxP site, and a reverse primer complementary to genomic sequence between exons 

3 and 4 (Figure 1a).  This strategy allowed for homozygous floxed animals to be clearly 

identified, since amplification of the entire transgene was difficult due to the large size (> 

3.5kb).  Genotyping of cortactinwt/flox or cortactinflox/flox mice gave the expected banding 

patterns and intensities indicative of the presence of heterozygous or homozygous 

transgene alleles (Figure 1b). Following congenic backcrossing of K14Cre-ERT mice into 

the B6 strain, retention of the K14Cre-ERT allele was validated by PCR (Figure 1b). 

Crossing of K14Cre-ERT B6 mice with the Rosa26 reporter strain verified tissue-specific 

K14Cre-ERT activity following tamoxifen treatment and β-galactosidase activity assays in 

skin, buccal mucosa and tongue (Supplementary Figure 1a). β-galactosidase activity 

patterns in B6 K14Cre-ERT mice were similar to those previously reported for the same 

tissues in other strains16,30.     

Cttnflox/flox and K14Cre-ERT mice were crossed to produce double transgenic mice 

with floxed Cttn and inducible Cre activity (Cttnflox/flox;K14Cre-ERT). The model was tested 
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by orally applying tamoxifen treatment for 5 d, then assaying tissues for cortactin knockout 

by IHC 10 days and 1 mo following tamoxifen-induced Cre activity.  Cortactin knockout in 

the tongue and buccal mucosa was evident at the 10 d (Figure 1c) and one month (data 

not shown) time points, displaying similar reductions in cortactin staining. Cortactin knock 

out was more efficient on the ventral tongue surface (Figure 1c, second panel), whereas 

the dorsal surface displayed a mosaic knockout pattern (Figure 2b, second panel), similar 

to that seen in buccal mucosa (Figure 1c, fourth panel) and with other genes that utilize 

a similar strategy15. Tissues where the epithelium contained cortactin knockout did not 

display any overt abnormalities or phenotypic changes compared to homozygous floxed 

controls (Figure 1c).  This was expected based on the largely benign phenotype observed 

in mice with complete cortactin knockout27. These data demonstrate successful 

construction of an inducible conditional cortactin knockout mouse model targeting the oral 

cavity epithelium. 

Cortactin knockout does not affect development of invasive tongue squamous cell 

carcinoma  

To determine the consequence of cortactin knockout on HNSCC initiation and 

progression, Cttnflox/flox;K14Cre-ERT mice were administered corn oil or tamoxifen, 

followed by 8 wk exposure to either DMSO or 4-NQO and subsequent monitoring of tumor 

formation for 28 wks (see Materials and Methods). Genotyping of tongues from tamoxifen-

treated mice showed a 285 bp PCR-generated DNA band, indicating genomic Cttn 

knockout not present in mice that did not receive tamoxifen (Figure 2a, “T” lanes). The 

majority of tamoxifen treated and untreated mice also had a band corresponding to the 

floxed Cttn allele, possibly due to the mosaic nature of the Cttn knockout in epithelia 
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tissues and/or genomic DNA contamination from non-epithelial stromal cells. Cttn 

knockout was not evident in the kidneys from any group, confirming that tissue-specific 

K14CreTAM expression was limited to squamous epithelia (Figure 2a, “K” lanes). 

Unexpectedly, all mice had cortactin knockout in skin samples from the ear independent 

of tamoxifen exposure (Figure 2a, “S” lanes). Since ear skin samples were used for the 

initial genotyping, a PCR comparison of skin samples from 6 week old mice and the same 

animals at 28 weeks of age was conducted to verify knockout status. K14-CreERT 

demonstrated spontaneous activation in the skin following weaning, resulting in cortactin 

knockout within the skin in all animals used in the study (Supplementary Figure 1b). 

Similar leakiness of K14-CreERT activity has been reported by others31,32, and was 

restricted to the skin in our study.   

 No differences in tumor incidence or progression was observed between the 

Cttnflox/flox and Cttn cKO groups during the 28 wk monitoring period. Mouse tongues at the 

end of the study were analyzed for cortactin knockout and presence of invasive SCC 

(Figure 2a): 78% of Cttnflox/flox mice and 67% of Cttn cKO mice had developed invasive 

SCC, with the remainder containing hyperplastic alterations of the epithelial layer as 

previously reported13,17. Four cortactin-deficient tumors from Cttn cKO mice  displayed 

stromal and intramuscular invasion similar to tumors in tongues of Cttnflox/flox mice (Figure 

2b, 4th column) and cortactin-expressing tumors from Cttn cKO mice (data not shown). 

This was surprising given the established role for cortactin expression in HNSCC 

invadopodia formation8–10,29 and aggressive tumor progression in head and neck and 

esophageal SCC xenograft models3,33.  Careful inspection of the invasive fronts in Cttn 

cKo tumors indicated no cortactin expression in any squamous tumor cell, including 



75 

 

leader cells at the invasive front (Figure 2c).  Cttn cKo and Cttn flox/flox tumors did have 

extensive cortactin labeling of muscle and other stromal cell types as seen before2,34. 

These results indicate that cortactin expression is not required for the development or 

invasion of oral SCC. 

Cortactin knockout in HNSCC does not alter EMT 

Changes in EMT status have been shown to be involved in initiating and maintaining 

collective HNSCC invasion35.  To determine if cortactin knockout altered EMT in HNSCC 

as a compensatory mechanism to drive invasion, tumor sections from Cttnflox/flox and Cttn 

cKO mice were evaluated by IHC for changes in the classical EMT marker proteins E-

cadherin and vimentin. In HNSCC, decreased E-cadherin and increased vimentin 

expression are associated with poor prognosis and increased invasiveness35–37. In 

addition, cortactin expression is required for actin-based E-cadherin localization and 

adherens junction formation in epithelial monolayers38, implying a functional role in 

maintaining cell-cell adhesion during collective movement. E-cadherin expression and 

cortical localization in associated normal tongue epithelium was unaltered in tumors from 

Cttnflox/flox and Cttn cKo mice (Figure 3a, “IE”, boxed areas). E-cadherin expression was 

decreased in invasive tumor regions, as seen in the traditional EMT phenotype (Figure 

3a, “T” and 3b). Little to no vimentin expression was evident in invasive tumor cells from 

Cttnflox/flox and Cttn cKo mice. However, vimentin-positive cells were present within the 

tumor microenvironment, where they outlined invasive tumor cell strands (Figure 3c). 

These results are similar to what have been reported for patient oral SCC samples37. 

Levels of E-cadherin and vimentin expression in cortactinflox/flox and cortactin cKO tumors 

were quantified, with no significant changes observed for either protein (Figures 3d and 
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e). These results suggest cortactin expression levels do not govern the global HNSCC 

EMT program during tumor progression, and indicate that vimentin-positive cells closely 

associate with invasive tumor strands in 4-NQO-induced tongue SCC. 

Cortactin cKO tumors have increased collagen and CD31 positive vessels 

While many reports support a role for cortactin in Arp2/3-mediated lamellipodia extension, 

conflicting studies have shown cortactin expression is not essential for lamellipodial 

protrusion24. Recently, lamellipodial defects resulting from cortactin knockdown in 

fibrosarcoma cells have been shown to be rescued by plating cortactin-deficient cells on 

high levels of ECM proteins, including collagen I39. To determine if cortactin deletion in 

HNSCC alters tumor collagen levels, collagen composition in invasive tumors from 

Cttnflox/flox and Cttn cKO mice were stained with Masson’s Trichrome (Figure 4a-b). 

Tumors form Cttn cKO mice contained an average of 53% more collagen than tumors 

from Cttnflox/flox animals (Figure 4c).  

In addition to ECM levels, tumor vascularity has previously been shown to be 

influenced by cortactin knockdown in a semi-orthotopic HNSCC xenografts3. To 

determine the amount of vascular content, tumors from Cttnflox/flox and Cttn cKO mice were 

analyzed for changes in angiogenesis by IHC for the endothelial cell marker CD31 (Figure 

4d). Tumors from Cttn cKO mice had a 64% increase in vessel density compared to 

tumors from Cttnflox/flox animals (Figure 4e). The observed increase in collagen in Cttn cKo 

tumors may be due to increased collagen deposition associated with increased 

angiogenesis. These data suggest that the tumor microenvironment is responsible for 

rescuing motility defects typically associated with loss of cortactin expression in in vitro 

and xenograft HNSCC experimental systems. 
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Cortactin knockout does not influence MMP14 expression in 4-NQO-induced 

HNSCC tumors  

In vitro studies have shown that cortactin expression levels regulate HNSCC invadopodia 

ECM degradation activity through recruitment of MMP14 and subsequent activation of 

secreted MMP2 and MMP99,10,40. We therefore evaluated the levels of MMP14 in tongue 

tumors from Cttnflox/flox and Cttn cKO mice. Surprisingly, MMP14 expression was not 

detected in Cttnflox/flox or Cttn cKO tumor cells. (Figure 5a). MMP14 expression was seen 

in the stroma between tumor cell groups and at the invasive front (Figure 5a, arrows). 

MMP14 expression levels did not significantly vary between Cttnflox/flox or Cttn cKO tumors 

(Figure 5b).  

 Finally, the observation that MMP14 expression is found in the stroma surrounding 

invasive tumor strands, and not the tumor cells per se, suggests that non-tumor cells in 

the microenvironment are responsible for stromal ECM degradation. Cancer-associated 

fibroblasts and macrophages have both been implicated in promoting invasion in 

HNSCC41,42 and other tumor types43–45. Labeling of invasive tongue tumor sections from 

Cttnflox/flox and Cttn cKO animals with the monocyte-specific marker CD68 identified 

macrophages in close apposition to the invasive front of Cttnflox/flox and Cttn cKO tumors 

(Figure 5c, arrows). No significant differences in the number of CD68-positive cells were 

observed between Cttnflox/flox and cortactin cKO tumors (2.49% vs 2.62%, Figure 5d).  

Given the presence of vimentin-positive cells in these same stroma regions (Figure 3c), 

these results suggest that macrophages and fibroblasts are the sources of MMP14 

expression within the invasive microenvironment, where they potentially contribute to 
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stromal proteolysis to enable invasion and migration of HNSCC tumors that lack cortactin 

expression. 
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Discussion 

Cortactin has been traditionally identified as a driver of tumor invasion, where it is required 

for formation and function of invadopodia-mediated ECM breakdown, enabling tumor cells 

to move through the basement membrane into surrounding tissues. These past studies 

have evaluated the effects of cortactin loss using 2D and 3D in vitro and xenograft models, 

but no studies have investigated the impact of cortactin knockout in a genetically 

engineered mouse model with an intact immune system in the appropriate anatomic site. 

Here we describe the first genetic mouse model of cortactin deletion in any cancer type, 

evaluating the role of cortactin in carcinogen-induced tongue SCC development and 

invasion.  Surprisingly, we show that cortactin plays a non-essential role in tongue SCC 

invasion. Tumors lacking cortactin were still able to breach the basement membrane and 

invade between muscle strands within the tongue. Cortactin-deficient tumors had 

increased collagen and CD31+ vessels, which provide a means to compensate for 

cortactin loss to promote and maintain invasion. Additionally, although loss of E-cadherin 

expression traditionally seen during EMT remained unchanged in cortactin cKO tumors, 

tumor cells did not have concomitant upregulation of vimentin expression.  Instead, 

vimentin was found in cells within the tumor microenvironment near the invasive front. 

Another atypical finding was the lack of MMP14 in control Cttnflox/flox and Cttn cKO tumors, 

with expression also restricted to cells within the microenvironment stroma, along with 

tumor-associated macrophages identified by anti-CD68 labeling. The lack of invadopodia 

MMP14 in tongue SCC, combined with the presence of multiple cell types in the tumor 

stroma that possess the ability to degrade matrix, indicates that the tongue SCC 
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microenvironment and not the carcinoma cells are responsible for driving SCC invasion 

in our model system. 

 The effect of complete knockout of cortactin in mice has been somewhat 

controversial. Despite the contribution of cortactin to actin branchpoint stability and cell 

motility, studies using Cttn-null MEFs failed to show any major migratory defects24,25. 

Additionally, viable Cttn-KO mice have been generated that only display minor defects 

related to endothelial cell leakiness and the ability of neutrophils to form attachments 

within vessels27. These results imply cortactin is expendable during mouse development 

and for fibroblast cell motility. However, a gene trap model of cortactin deletion failed to 

produce homozygous mice due to incomplete asymmetric division oocytes during meiotic 

metaphase II, leading to a lethal phenotype26. Given these inconsistent findings, we chose 

to develop a conditional mouse model of cortactin knockout in order to specifically remove 

cortactin from squamous epithelium of mature animals. By combining our floxed cortactin 

model with K14-CreERT-inducible mice, we were able to conditionally delete cortactin 

from epithelial tissue in the oral cavity and skin (Figure 1c, 2b). The main caveats with 

this system were that it resulted in an incomplete knockout, leading to a mosaic pattern 

of cortactin expression in some instances (Figure 1c), as well as the inherent leakiness 

of K14-CreERT activity within the skin in older animals (Supplementary Figure 1b). In 

spite of these potential pitfalls, neither issue detracted from the results obtained in the 

rest of the study.  

 There is an abundance of information linking cortactin to tumor cell invasion and 

metastasis. The cortactin gene is located within chromosomal region 11q13, an area 

amplified in breast, head and neck cancers and other cancer types46. Due to its 
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amplification and overexpression in HNSCC, cortactin is frequently associated with more 

aggressive tumors and cervical lymph node metastasis in patients5,33. 2D and 3D in 

HNSCC in vitro lead to the conclusion that cortactin is important for the organization of 

many associated proteins necessary for efficient migration and ECM degradation. In vivo 

models of cortactin in head and neck cancer have mainly been limited to xenografts, 

where cortactin expression leads to larger, well-vascularized tumors3.  Contrary to these 

data, we find that cortactin is expendable for HNSCC tumor invasion. Tumors lacking 

cortactin are as competent of invading the surround stroma as tumors with normal 

cortactin expression, suggesting that they are also capable of degrading basement 

membrane to enable stromal spread (Figure 2b,c). These results are corroborated by 

studies in breast cancer. Transgenic mice with mammary-targeted cortactin 

overexpression do not develop pre-malignant lesions or enhance cyclin D1-induced 

breast carcinoma21. Additionally, the actin bundling protein, fascin, a vital invadopodia 

protein in breast cancer and melanoma in 2D and 3D invasion assays47, does not drive  

invasion in a transgenic knockout model of pancreatic cancer48. Collectively, these results 

suggest in vivo transgenic models may be more faithful of the human disease than in vitro 

or orthotopic systems.  

 The EMT program is thought to facilitate invasion, where epithelial cells suppress 

expression of cell-cell and cell-matrix adhesion genes in favor of genes that drive motility 

and the mesenchymal phenotype49. Traditionally, EMT results in the loss of the adherens 

junction protein E-cadherin and increased expression of the intermediate filament protein 

vimentin. Consistent with this, E-cadherin levels decreased when tumors became 

invasive, with intact normal epithelial retaining the typical peripheral membrane 
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expression pattern. However, no vimentin expression was found in any tumor; instead 

vimentin positivity was found in cells between tumor strands and in cells lining the invasive 

front. These results suggest that cancer-associated fibroblasts (CAFs) or myofibroblasts 

are the source of vimentin expression. In HNSCC, the presence of CAFs are linked to 

poor prognosis50,51. In addition, fibroblast expression of MMPs confer growth and invasion 

advantages in 2D, 3D and orthotopic SCC models52–54. These studies are in agreement 

with our data, where cells with MMP14 expression are interspersed between tumors and 

at the tips of invasive strands.  MMP14, in spite of its presence in cultured HNSCC 

cells9,10, was not found in tumor cells in our model system, regardless of cortactin 

expression. Instead, evidence from our study supports a role for microenvironment 

MMP14 in enabling invasion.  

 We also identified tumor-associated macrophages (TAMs) as another 

potential source of MMP14 within the stroma at the invasive front. TAMs secrete many 

factors that influence both the tumor itself and other cells in the surrounding tissue, and 

have been connected with enhanced vascularization in HNSCC41,55. While we found no 

difference in macrophage levels in Cttnflox/flox and Cttn cKO tumors, TAM localization 

occurred in a pattern reminiscent to vimentin and MMP14. While MMP expression has 

generally been thought of as an activity of tumor cells to promote matrix reorganization 

and efficient invasion, the majority of this supporting work was performed in vitro, using 

cancer cell lines that have long been removed from extracellular influences9,10,40. Our 

study uses in vivo carcinogen-induced oral tumors that have developed within in a natural 

environment, allowing for the tumor-microenvironment crosstalk which normally occurs in 

patients.  The role of cortactin in promoting MMP14 localization to invadopodia may 
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therefore be an artifact of culturing in a 2D environment.  In the in vivo setting, CAFs 

and/or TAMs are likely responsible for matrix-degrading proteinase activity in the stroma. 

Fibroblasts and macrophages remodel ECM during as a function of normal tissue 

maintenance; these systems are hijacked by the developing tumor through secretion of 

various cytokines which alter their functions to become pro-tumorigenic56. 

One area we did see a difference was in the amount of CD31-staining blood 

vessels. Though there were no differences in macrophage expression, we saw higher 

levels of CD31 within cortactin-negative tumors, suggesting these tumors are 

compensating for cortactin knockdown. How these tumors enhance vessel formation is 

unknown; however, why cortactin cKO cancer cells require increased vascularity may be 

related to the amount of collagen within the tumor. We also noted increased collagen 

within microenvironment of cortactin-deficient tumors. Endothelial cells utilize collagen as 

support for maintaining vessel structure. Cortactin functions as a regulator of ECM 

secretion in vitro; this activity is thought to be important in regulating cell motility39. High 

amounts of collagen rescues cortactin motility defects39. It is possible cortactin-deficient 

tumors are less motile; however compensation by the microenvironment may negate this 

defect. Alternative pathways are used for secretion of angiogenic factors (e.g. through 

diffusion57), giving the tumor another mechanism for rescue of motility defects. High 

VEGF expression in HNSCC enhances metastatic dissemination and is associated with 

poor outcomes58. This combination of enhanced vascularity and collagen deposition may 

serve to provide a mechanism for non-cortactin-expressing tumors retain migratory 

functions.  
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 We describe here the first oral cancer model of cortactin knockout, where we have 

determined that it is dispensable for HNSCC invasion. Our data suggests that 

microenvironment contributions are likely more important for early tongue tumor invasion, 

and are able to compensate for the loss of cortactin. Both cancer-associated fibroblasts 

and macrophages may play synergistic roles through secretion of growth signals and 

ECM reorganization. Additionally, cortactin-deficient tumors display plasticity in their 

ability to counter the effects of cortactin deletion.  These results emphasize the 

importance of accurate in vivo modeling of head and neck cancer when studying the actin 

cytoskeleton. 
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Materials and Methods 

Generation of Cttnflox/flox mice 

All animal procedures were conducted under institutional protocols (08-0502 and 11-

0412) approved by animal care and use committees. Cttnwt/flox B6 mice engineered with 

loxP sites flanking exon 4 were generated by Ozgene (Bentley DC, WA, Australia).  A 

targeting vector was designed to replace exon 4 of murine Cttn through homologous 

recombination. PCR amplification of B6 genomic DNA produced 2 homology arms and a 

loxP fragment that were ligated into the FLSniper vector backbone (Ozgene). The final 

targeting vector sequentially contained a 5’ homologous arm, followed by a 5’ loxP site 

upstream of exon 4, the exon 4 sequence, a PGK (Phosphoglycerate kinase)-Neo 

selection cassette site flanked by Flippase Recognition Target (FRT) sites,  an additional 

loxP site located after the cassette and a 3’ homologous arm. The complete vector was 

linearized and electroporated into B6 embryonic stem (ES) cells and after confirmation of 

the targeting vector by PCR. ES cells containing the genomically incorporated targeting 

vector were expanded in culture, injected into blastocysts and implanted into 129 

pseudopregnant females to produce chimeric offspring.  Chimeras were mated to B6 or 

albino B6 (AlbB6) mice to obtain germline transmission of the transgene. Confirmation of 

transgene incorporation was determined by Southern blotting using probes 

corresponding to the 5’ or 3’ homology arms or the middle of the construct. Resulting 

Cttnwt/flox breeding pairs were crossed to produce Cttnflox/flox mice. 

Generation of B6 K14Cre-ERT mice 

Tg(KRT14-cre/ERT)20Efu/J (K14Cre-ERT) CD-1 mice were purchased from The 

Jackson Laboratories (Bar Harbor, ME).  K14Cre-ERT mice were backcrossed with wild-
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type B6 mice for five successive generations to achieve B6 congenic synchrony before 

breeding with Cttn floxed mice for experimentation. 

Tamoxifen application 

Tamoxifen (Sigma, St Louis, MO) was dissolved at 20 mg/mL concentration in corn oil 

(Sigma) by constantly rocking overnight at 37°C and dissolved stocks stored at 4°C. For 

induction of K14Cre-ERT activity, 200 uL of tamoxifen stock or corn oil was administered 

into the oral cavity with a feeding needle.  In some instances, mice had either tamoxifen 

or corn oil painted onto the dorsal surface of the anterior tongue as well as had water 

withheld for an hour after application to increase potency of K14Cre-ERT activity.  Mice 

were dosed once a day for 5 consecutive days.   

Evaluation of Cre activity in B6 K14-CreERT mice  

B6.129S4-Gt(ROSA)26Sortm1Sor/J (R26R) mice59 were a generous gift from J. Michael 

Ruppert (West Virginia University). R26R mice were crossed with B6 K14-CreERT mice 

and Cre expression was induced by oral cavity tamoxifen application.  One month after 

induction, oral cavity tissues dissected from euthanized mice were fixed in 4% 

paraformaldehyde (Electron Microscopy Sciences, Hatfield, PA) and analyzed for β-

galactosidase activity after overnight incubation with X-gal (Life Technologies, Grand 

Island, NY).  

DNA isolation and genotyping 

DNA was isolated from ear notch samples by boiling for 20 minutes at 95°C in NaOH 

buffer followed by neutralization with HCl. PCR primers used for identifying Cttnflox/flox mice 

were synthesized by Integrated DNA Technologies (Coralville, IA) and used as follows: 

full-length cortactin exon 4 forward (Cttn-F) 5’-TGCCAGGTGTACTGTTTAGGTCTC-3’ 
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and reverse (Cttn-R) 5’- TCCAAGTTACTCAAAGCCATCCCACA-3’; for the 5’ loxP 

(loxP1) site, forward (lp1F) 5’- CGCGCCATCGATAACTTCGTATAGCATACA-3’ and 

reverse (lp1R) 5’- TCTACCCTGGAAGAGCCAGTGG-3’. Primer sequences for identifying 

Cre expressing mice were obtained from The Jackson Laboratories website: forward 

(Cre-F) 5’- GCGGTCTGGCAGTAAAAACTATC-3’ and reverse (Cre-R) 5’- 

GTGAAACAGCATTGCTGTCACTT-3’. Genomic DNA was isolated from dissected 

kidney, skin and tongue tissues (Qiagen DNeasy; Qiagen, Germantown, MD). 

Carcinogenic induction of oral tumors 

A total of 79 mice with were divided into 4 study arms: Oil + DMSO, Tamoxifen + DMSO, 

Oil + 4-NQO and Tamoxifen + DMSO. Mice selected for the 4-NQO groups were given 

100 µg/mL 4-NQO (Sigma) in their drinking water ad libitum for eight weeks, with water 

changed at weekly intervals.  Normal drinking water was resumed at the end of the eight-

week treatment. Tumor formation was monitored for the following 28 weeks. Mice were 

weighed and oral cavity examinations were performed starting at the end of 4-NQO 

application and conducted out monthly until 17 weeks, then weekly afterwards. Upon 

visual confirmation of tumor, individual mice were given a soft transgenic dough diet (Bio-

Serv, Flemington, NJ) along with moistened dry food and were monitored daily. Mice were 

euthanized according to Institutional Animal Care and Use Committee guidelines. Two of 

mice in each study arm were analyzed by H&E and IHC at the end of the 4-NQO 

application and 14 weeks later. DNA from kidney, skin, and tongue tissue was isolated 

from two mouse per group at 3 weeks following the end of 4-NQO treatment.  
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Immunohistochemistry 

Tongues from control and tumor-bearing mice were dissected, rinsed in PBS, fixed in 

10% neutral buffered formalin (Fisher, Pittsburgh, PA) and embedded in paraffin.  Five-

micrometer sections from tissue blocks were stained with hematoxylin and eosin (H&E), 

Masson’s Trichrome or immunolabeled with prediluted cytokeratin 14 antibody (Abcam, 

Cambridge, MA), cortactin (Novus Biologicals, Littleton, CO), E-cadherin (Cell Signaling 

Technology, Danvers, MA), vimentin (Cell Signaling Technology), CD31, MMP14 

(GeneTex, Irvine, CA) and CD68 (Abcam) using a Discovery XT automated staining 

system (Ventana Medical Systems, Tucson, AZ).  Tissues analyzed for β-galactosidase 

activity were counterstained with nuclear fast red.   

Microscopy 

Histological images were obtained using an Olympus AX70 Provis microscope (Center 

Valley, PA) as previously described2.  5-12 images per tumor were analyzed for 

expression per tumor field. Images were subjected to color deconvolution and analyzed 

in ImageJ and Adobe Photoshop C6. 

Statistical analysis 

Differences between groups were evaluated using student’s t-test with significance 

determined at p<0.05. 
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Figure Legends 

Figure 1. Generation of mice with oral epithelium-specific cortactin knockout. (a) 

PCR genotyping strategy for identifying Cttnflox/flox mice. Two primer sets were used to 

determine presence of floxed or deleted exon 4 (red half-arrows) and loxP site (black half-

arrows). (b) Sample results for each primer set in a, including primers to detect presence 

of cre gene. Typical genotyping results are shown, with a 100 bp band for the cre 

fragment, a 691 bp band for the WT Cttn fragment, and a 320 bp fragment that 

demonstrates the presence of loxP site. The 2973 bp fragment representing the entire 

selection cassette is not shown. (c) Histology and IHC of tongue and buccal mucosa of 

Cttnflox/flox and cKO mice. Tongues and mucosa were stained for cortactin, cytokeratin 14 

(CK 14) and H&E. Loss of cortactin staining demonstrates cortactin knockout in the 

second and fourth panels of the top row. Cytokeratin 14 and H&E stains display normal 

tongue and buccal epithelium, despite cortactin knockout. Scale = 50 µm 

Figure 2. Cortactin knockout does not affect development of invasive tongue 

squamous cell carcinoma. (a) Tongue, skin and kidney DNA samples from Cttnflox/flox 

and cKO mice were genotyped using primers described in figure 1a (red half-arrows). 

Mice given oil in their oral cavity displayed the 2973 bp fragment representing the 

selection cassette in the tongue and kidney samples. Application of tamoxifen in the oral 

cavity resulted in the appearance of the 285 bp knockout fragment in the tongue. This 

fragment also was seen in skin in both floxed and cKO mice, implying active cre in this 

tissue. Kidney samples from Cttn cKO mice had the expected floxed fragment. (b) 

Representative IHC and H&E images from cortactinflox/flox and cKO animals given either 

DMSO or 4-NQO in the oral cavity. Normal cortactin expression was seen in 

cortactinflox/flox mice with oral tumors (3rd panel). Mice in the 4-NQO/cKO group still 

developed invasive SCC, despite lacking cortactin (4th panel). Scale = 100 µm (c) Higher 

magnification of invasive tumors with and without cortactin expression. Tumor strands 

invaded collectively between tongue muscle fibers. Dotted yellow lines outline tumor 

strands. Scales = 100 µm (low magnification) and 50 µm (high magnification). 

Figure 3. Cortactin knockout in HNSCC does not alter EMT (a) Representative images 

of E-cadherin staining of tumors (T) next to intact epithelium (IE). Intact epithelium 

displayed traditional E-cadherin staining at cell membranes (box, zoomed image), while 

tumors expressed little to no E-cadherin. No differences were seen between mice with or 

without cortactin expression. Scales = 100 µm (low magnification) and 50 µm (high 

magnification). (b&c) High magnification of e-cadherin expression in tumor strands at 

invasive front. Both floxed and cKO tumors expressed low levels of E-cadherin (b) while 

vimentin (c) stained around strands and in between tumors in the microenvironment. 

Dotted yellow lines outline tumor regions. Scale = 25 µm (d&e) Quantitation of e-cadherin 

(d) and vimentin (e) levels within tumors. 5-12 images per tumor were analyzed for 

expression per tumor field. NS = not significant. 

Figure 4. Cortactin cKO tumors have increased collagen and CD31 positive 

vessels. Masson’s trichrome stain of cortactin-expressing (a) and cortactin cKO (b) 
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tumors. Top images are entire tumors, with box highlighting area displayed in zoomed 

image. Scales = 250 µm (low magnification) and 100 µm (high magnification). Percentage 

of tumor area with collagen was quantitated in (c). (d) Representative images of CD31 

staining of cortactin-expressing and cKO tumors. Scale bar = 100 µm (e) Quantitation of 

CD31 in tumors revealed cortactin cKO tumors had increased amounts of CD31-positive 

vessels. ** p<0.01 

Figure 5. Cortactin knockout does not influence MMP14 expression in 4-NQO-

induced HNSCC tumors. (a) Cortactin-expressing and cKO tumors were stained by IHC 

using anti-MMP14. Arrows denote cells within the microenvironment positive for MMP14. 

Percentage of tumor area with MMP14 expression was quantitated in (b).(c) Serial 

sections of tongue tumors were analyzed for macrophage-specific marker CD68. Arrows 

point to CD68+ macrophages within and at the front of invasive strands, (d). Quantitation 

of CD68 expression per tumor field. Scale = 100 µm. NS = not significant. 
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Supplemental Figure Legends 

Supplementary Figure 1. Confirmation of cre activity. (a) K14-CreERT mice were 

crossed with R26R mice that express β-galactosidase when cre recombinase is 

active.Tongue, buccal mucosa and skin tissue were stained with X-gal (blue) to detect 

the presence of β-galactosidase, and counterstained with nuclear fast red for contrast, 1 

month after induction of cre activity using tamoxifen. Recombination occurred as seen in 

previous studies in each of these tissues, with the highest activity in the skin. Scale = 100 

µm (b) PCR analysis of DNA from tongue (T), kidney (K), skin from when the mouse was 

weaned (Sy) and skin from the same mouse 8 months later, in Cttnflox/flox and cKO mice. 

Primers used were described in Figure 1a (red half-arrows). Cre recombination can be 

detected in the cKO mice, but also in older mice, suggesting cre activity becomes leaky 

as the mice age. 
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Abstract 

Cervical lymph node evaluation by clinical ultrasound is a non-invasive procedure used 

in diagnosing nodal status, and when combined with fine-needle aspiration cytology 

(FNAC), provides an effective method to assess nodal pathologies.  Development of high-

frequency ultrasound (HF US) allows real-time monitoring of lymph node alterations in 

animal models.  While HF US is frequently used in animal models of tumor biology, use 

of HF US for studying cervical lymph node alterations associated with murine models of 

head and neck cancer, or any other model of lymphadenopathy, is lacking.  Here we 

utilize HF US to monitor cervical lymph node changes in mice following exposure to the 

oral cancer-inducing carcinogen 4-nitroquinoline-1-oxide (4-NQO) and in mice with 

systemic autoimmunity.  4-NQO induces tumors within the mouse oral cavity as early as 

19 wks that recapitulate HNSCC.  Monitoring of cervical (mandibular) lymph nodes by 

gray scale and power Doppler sonography revealed changes in lymph node size eight 

weeks after 4-NQO treatment, prior to tumor formation.  4-NQO causes changes in 

cervical node blood flow resulting from oral tumor progression.  Histological evaluation 

indicated that the early 4-NQO induced changes in lymph node volume were due to 

specific hyperproliferation of T-cell enriched zones in the paracortex.    We also show that 

HF US can be used to perform image-guided fine needle aspirate (FNA) biopsies on mice 

with enlarged mandibular lymph nodes due to genetic mutation of Fas ligand (Fasl).  

Collectively these studies indicate that HF US is an effective technique for the non-

invasive study of cervical lymph node alterations in live mouse models of oral cancer and 

other mouse models containing cervical lymphadenopathy.  
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Introduction 

The most common route of dissemination for head and neck cancers is via the local 

lymphatic system, where patient prognosis relies heavily on the ability to detect cervical 

lymph node involvement [1-3].  Several different imaging modalities are currently used to 

enhance pretreatment staging of patients with head and neck squamous cell carcinoma 

(HNSCC), including computed tomography (CT), positron emission tomography (PET)-

CT, magnetic resonance imaging (MRI) and ultrasonography [4-7].  Of these, ultrasound 

has greater clinic availability and is easiest to employ [6].  When combined with FNAC, 

ultrasound provides a highly accurate, sensitive and selective means to assess lymph 

node alterations in patients, including tumor cell metastasis [4,6,8].  

The development of high-frequency ultrasound (HF US) technology has allowed 

sonography to be performed on rodent and other small animal disease models.  HF US 

is a noninvasive, real-time technique that allows imaging of internal structures down to 30 

microns using gray scale or brightness (B)-mode [9].  This resolution allows for real-time 

monitoring of tumor formation and progression in vivo in a variety of animal model 

systems.  3D reconstructions of HF US 2D images allows for the calculation of highly 

accurate tumor and lymph node volumes.  In addition, power Doppler sonography is 

commonly used to assess and quantify blood flow velocities in tumors and lymph nodes.  

The combination of these two modalities is useful in quantifying tumor-induced alterations 

of circulatory flow [10-13].  

Several mouse models of HNSCC have been generated that recapitulate important 

aspects of the human disease.  These include orthotopic xenografts, genetically 

engineered mouse models and carcinogen-initiated tumors [14,15].  Common 
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carcinogens used to spontaneously generate rodent HNSCC include 7,12-

dimethylbenz(a)anthracene or 9,10-dimethyl-1,2-benzanthracene (DMBA) and 4-

nitroquinoline-1-oxide (4-NQO) [16].  The 4-NQO oral cancer model is a prevalent method 

to induce HNSCC in mice, as it closely mimics the oncogenic effect of tobacco 

carcinogens and copies many key molecular alterations that occur during human HNSCC 

development [17,18], including lymph node metastasis [19].  Tumor induction is achieved 

by the addition of 4-NQO to the drinking water of immunocompetent mice, with tumor 

development followed over a period of several weeks to months.  The degree and 

swiftness of carcinogenesis is dependent on the exposure time and 4-NQO dosage [20-

22].  While many studies have investigated the effects of 4-NQO on multiple aspects of 

rodent oral cancer [20,21,23-28], reports examining the impact of 4-NQO exposure on 

murine lymph node biology are lacking [19]. 

While diagnostic ultrasound affords practical utility in evaluating pre- and cancerous 

changes within patient cervical lymph nodes, adapting HF US to evaluate cervical nodal 

alterations in mouse HNSCC or other model systems has not been reported.  Here we 

show that HF US can be utilized for monitoring changes in cervical lymph nodes in 4-

NQO-treated mice during the course of oral cancer progression.  C57BL/6 (B6) mice 

treated with 4-NQO for eight weeks displayed increased lymph node volume and vascular 

flow prior to oral tumor development.  Histological evaluation determined that pre-

cancerous elevation of lymph node volume was specifically due to increased proliferation 

of intranodal T-cell zones. Furthermore, we show that HF US can be utilized to obtain 

image-guided FNA biopsy material from Fasl mice that contain chronically enlarged 

cervical nodes.  The ability of HF US to conduct real time monitoring of murine cervical 
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lymph node dynamics allows for the practical detection of neck node changes in mice that 

cannot be accomplished by conventional histology.  This technique ultimately provides 

increased utility and accuracy for studies involving live rodent models of HNSCC and 

other rodent systems that model cervical node lymphadenopathy. 
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Materials and Methods       

Mice 

B6 and CPt.C3-Faslgld/J (Fasl) mice were purchased from the Jackson Laboratory (Bar 

Harbor, ME).  FVB mice were a generous gift from John Hollander (West Virginia 

University).  All animal studies were approved by the WVU Institutional Animal Care and 

Use Committee (protocol 11-0412) and conducted in accordance with the principles and 

procedures outlined in the NIH Guide for the Care and Use of Animals. 

4-NQO administration 

22-24 week old B6 mice were given 50-100 µg/mL 4-NQO (Sigma, St Louis, MO) in their 

drinking water ad libitum for eight weeks, with water changed at weekly intervals.  Normal 

drinking water was resumed at the end of the eight-week treatment. 

High-frequency ultrasonography and image analysis 

Ultrasound imaging was performed using a VisualSonics Vevo 2100 micro-ultrasound 

system (Toronto, Ontario, Canada) on control (n=4) and 4-NQO-treated (n=3) mice. Mice 

were initially anesthetized with 3% isoflurane with oxygen and maintained at 1-2% 

isoflurane with oxygen during imaging.  Anesthetized mice were positioned in dorsal 

recumbancy on a heated imaging platform and paws taped to electrocardiograph (ECG) 

leads to monitor heart and respiration rates.  Body temperature was maintained at 37°C 

and monitored with a rectal probe thermometer.  Hair was removed from the neck region 

using a chemical depilatory (Nair, Church & Dwight, NJ).  A 40 MHz transducer was used 

for lower resolution overview imaging of the neck region from the thyroid gland through 

to the posterior tongue.  All other images were acquired using a 50 MHz transducer. 

Images were taken in 3D-mode using combined B- and power Doppler mode.  Lymph 

node volume and percent blood flow were determined using Vevo 2100 software after 
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drawing regions of interest within each sequential 2D image.  On average, each mouse 

took approximately 15 minutes to prepare and image. 

Image-guided fine needle biopsy 

Enlarged mandibular cervical nodes in anesthetized Fasl mice were identified using the 

50 MHz transducer focused at the lymph node center. A 27 ½ gauge needle attached to 

a 1 ml syringe was inserted into the micro-injector, consisting of an adjustable needle 

holder with micro-manipulation controls.  The needle was positioned bevel side up and 

inserted through the skin into the mandibular node.  After ~100 µl of lymph tissue was 

extracted, the needle was removed and the syringe placed in a 2 µL microcentrifuge tube. 

The syringe was filled with 1 mL of ThinPrep media and reattached to the needle. The 

media was dispensed for rinsing and processed by Cytospin using a blue filter in a 

Thinprep 2000 processor (Cytyc, Marlborough, MA).  

Immunohistochemical analysis 

Whole necks, cervical lymph nodes and tongues were dissected, rinsed in PBS, fixed in 

10% neutral buffered formalin (Fisher, Pittsburgh, PA) and embedded in paraffin.  Whole 

neck sections required decalcification using Rapid-Cal•Immuno decalcification solution 

(BBC Biochemical, Seattle, WA) after fixation. Five-micrometer sections from tissue 

blocks were stained with hematoxylin and eosin (H&E) or immunolabeled with prediluted 

cytokeratin 14 antibody (Abcam, Cambridge, MA) using a Discovery XT automated 

staining system (Ventana Medical Systems, Tucson, AZ).  Lymph node paracortical T-

cell zone expansion analysis was performed by pathological evaluation on H&E stained 

sections after grouping nodes by right or left side.  Individual nodes were scored as having 
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none, moderate or robust enlargement.  Histological images were obtained using an 

Olympus AX70 Provis microscope (Center Valley, PA).  

Statistical analysis 

Differences between groups were evaluated using Student’s t-test with significance 

determined at p<0.05.  
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Results 

High-frequency ultrasound detection of mouse cervical lymph nodes  

Cervical ultrasound is a commonly utilized tool for non-invasive imaging of lymph nodes 

in the patient neck, where it is frequently combined with MRI and PET/CT to determine 

patient staging in HNSCC and other diseases. While several publications describe the 

features of benign and malignant cervical lymph nodes in humans [29-33], studies 

detailing the suitability and use of US to image normal or diseased mouse cervical nodes 

are lacking.   We initially conducted HF US on untreated B6 mice to identify and map the 

three supraclavicular (mandibular, accessory mandibular and superficial parotid [34]) 

cervical lymph nodes in the murine neck that drain the oral cavity tissues.  Anesthetized 

mice were imaged on a heated platform with the Vevo 3D-mode scanner in order to 

automate the process (Figure 1A).  For point of reference, the transducer was first focused 

on the thyroid gland, where it is well-defined as a hyperechoic solid structure when 

imaged by gray scale sonography (Figure 1B and C) [35-38].  Subsequent serial HF US 

images were taken of the entire neck region, starting at the jaw base and moving 

proximally to the thyroid (diagramed in Figure 1B).  Corresponding HF US images 

identified each cervical node as hypoechoic oval structures within dense hyperechoic 

regions (Figure 1C).  These hyperechoic areas primarily contain adipose, salivary gland 

and skeletal muscle tissue adjacent to the cervical lymph nodes, with the nodes 

positioned just below the integument when identified by histological analysis of parallel 

tissue sections (Figure 1D).  The superficial nature of the cervical nodes increased their 

mobility due to the pressure placed by the transducer on the neck, resulting in equivalent 

right and left nodes appearing in different imaging planes. This was countered by making 

compensatory adjustments to the imaging stand while maintaining the transducer in a 
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stationary position.  Insertion of a metal feeder needle into the oral cavity during imaging 

ablated the ultrasound signal, allowing additional imaging of buccal regions and 

esophagus to provide a more comprehensive sonographic depiction of the murine oral 

cavity (Figure S1). 

  

Since FNAC of lymph nodes is used to determine patient tumor staging and for other 

diagnostic purposes, we determined the feasibility of conducting HF US image-guided 

FNAC analysis on live mice.  The cervical nodes in B6 mice proved too small and mobile 

obtain a FNA.  We therefore used Fasl mice that contain enlarged lymph nodes due to 

systemic autoimmunity [39,40] that mimic the size of human lymph nodes (Figure 2A).  

FNAC of Fasl cervical mandibular nodes was performed using an image-guided 

microinjection system with the 50 MHz transducer focused at the presumed lymph node 

center (Figure 2B; Video S1).  The entire biopsy can be seen in Video S1. Analysis of the 

aspirated material following Cytospin concentration exclusively revealed cellular and 

extracellular lymph node components, including large clumps of lymph tissue, individual 

lymphocytes and reticular fibers (Figure 2C).  These results indicate that HF US can be 

successfully adapted for FNA analysis on enlarged cervical lymph nodes in mice. 

  

4-NQO induces pre-cancerous enlargement of mouse submandibular lymph nodes  

We next used HF US to monitor cervical lymph node changes in mice following oral 4-

NQO exposure designed to induce tumorigenesis.  B6 mice were selected since this 

strain exhibits near complete penetrance and predictable oral tumor course in response 

to 4-NQO treatment [28,29].  Mice were given 4-NQO continuously for eight weeks as 
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previously reported [20-22].  For clarity, the end of the eight week treatment period is 

denoted as the zero week time point in the study.  Mice formed oral lesions similar to 

those reported in previous studies, starting as early as 19 weeks post-treatment [20,22] 

(Figure S2A).  The neck region in control and 4-NQO treated mice was imaged every four 

weeks by HF US for an additional 28 weeks after the zero week time point.   B-mode 

imaging of the mandibular and accessory mandibular lymph nodes in 4-NQO treated mice 

at the end of the entire 36 week study period indicated slight increases in lymph node 

size compared to nodes from age-matched control animals (Figure 3A and B, Videos S2-

S3).  In a separate study, 4-NQO-treated B6 mice developed lymph node metastasis by 

33 weeks post-4-NQO treatment (41 weeks total), demonstrating that 4-NQO-induced 

tumors are capable of undergoing lymph node metastasis during the later stages of oral 

cancer progression (Figure S2B). 

 

The increased mandibular node size in 4-NQO treated mice at the end of 36 weeks was 

comparable to the mandibular node size in Fasl mice in many instances (Figure 3C, Video 

S4).  Three dimensional volume measurements revealed median mandibular nodal 

volumes of 3.1 mm3 in control mice and 4.4 mm3 in 4-NQO treated mice 28 weeks after 

cessation of 4-NQO treatment (Figure 3D).  Interestingly, mandibular node volume 

measured by HF US at the end of the initial eight-week 4-NQO treatment period (prior to 

tumor onset) was significantly greater than nodes in control mice (Figure 3D; 1.3 mm3 vs 

4.9 mm3, respectively).  This finding was surprising since there was no evidence of tumor 

onset in 4-NQO treated mice at this time, suggesting an early inflammatory response in 

these nodes, potentially due to hyperkeratosis present on the tongues of these animals 
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(Figure S2A, 0 weeks post-4-NQO).  Power Doppler analysis of the mandibular nodes 

indicated that while intranodal median vascular flow rates were comparable within nodes 

in age-matched control and 4-NQO treated mice immediately following 4-NQO treatment, 

median vascular flow in 4-NQO exposed nodes was increased by close to 15% in mice 

28 weeks after the end of 4-NQO exposure (Figure 3E).  Although median blood flow 

percentages were largely different between age-matched control and 4-NQO treated mice 

at 28 weeks (7.4% vs 17.83%, Figure 3E), the overall change did not reach statistical 

significance.  Blood flow between age-matched non-treated controls at 0 and 28 weeks 

also did not increase significantly.  The increased nodal blood flow in 28 wk animals was 

not due to the increase in lymph node volume in these mice, since the amount of vascular 

flow in Fasl mandibular nodes was comparable to the flow percentages in control and 4-

NQO treated mice at the zero week time point (Figure 3E).  Collectively these results 

suggest that 4-NQO treatment in B6 mice results in precancerous mandibular lymph node 

enlargement accompanied by increased intranodal blood flow during tumor onset and 

progression.   

 

Acute 4-NQO exposure in B6 mice enhances expansion of the mandibular lymph 

node paracortical/T-cell zone 

Mandibular lymph nodes from 4-NQO exposed mice 28 weeks post-treatment displayed 

areas of increased lymphocyte density compared to age-matched controls (Figure 3B 

versus Figure 3A), suggesting that lymphocyte proliferation could be responsible for the 

increased submandibular nodal volume observed by HF US.  Pathological evaluation of 

H&E-stained sections containing all cervical lymph nodes from both sides of the neck 
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revealed varying degrees of enlargement of the T-cell enriched paracortical zones in 

control and 4-NQO exposed mice (Figure 4A and 4B).  However, lymph nodes in 4-NQO 

exposed mice had a greater degree of paracortical T-cell enlargement, with over 80% of 

the nodes scored as containing robust expansion of this region (Figure 4C).  In contrast, 

none of the paracortical regions in control nodes displayed more than moderate T-cell 

expansion (Figure 4C).  These results suggest that 4-NQO exposure induces increased 

cervical lymph node volume attributable to specific hyperproliferation of the nodal T-cell 

population.   

    



117 

 

Discussion 

Clinical sonography has emerged as an important means of monitoring cervical lymph 

node changes in HNSCC and other oral diseases.  In this study, we show that cervical 

lymph nodes in mouse can be effectively identified and imaged by HF US.   Combined 

gray scale and power Doppler sonography revealed increased nodal volume and blood 

flow in mice treated with 4-NQO prior to tumor formation.  The increase in overall pre-

cancerous cervical node size in 4-NQO exposed mice can be attributed to expansion of 

the paracortical/T-cell zone within the node.  We also demonstrate that HF US image-

guided biopsies can be successfully conducted on live mice using a mutant Fasl strain 

that displays chronic cervical lymphadenopathy.  Collectively these results support the 

application and utility of HF US for the minimally invasive study of cervical lymph nodes 

in mouse models of HNSCC and other diseases. 

   

Examination of the mouse cervical region by HF US provides an in vivo map of cervical 

lymph node position that closely matches node location in histological sections.  This 

mapping is in agreement with previous studies of the thyroid and tongue that charted 

these regions on a more limited level [36,41].  Due to their inherent small size, an 

accurate, comprehensive in situ portrayal of mouse cervical lymph nodes is useful not 

only to mouse models of HNSCC, but other systems pertaining to illness causing cervical 

lymphadenopathy, including thyroid cancer [37,38] and bacterial infection [42].  HF US 

can also be applied to study cervical organs other than lymph nodes.  Salivary gland 

diseases such as salivary gland tumors, sialolithiasis, sialodenitis and Sjogren’s 

syndrome [43] all have the potential to have organ-induced alterations visualized by HF 

US in rodent models.  
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FNAC is an important technique used to aid in diagnosing nodal involvement in HNSCC 

and other diseases.  Here we demonstrate that image-guided FNAC can be successfully 

utilized to obtain biopsy material from Fasl mice with systemic lymphadenopathy. These 

mice have lymph node sizes similar to humans [44,45], with volumes comparable to 

enlarged cervical nodes due to 4-NQO exposure and subsequent HNSCC tumor 

progression (Figure 3D).  This implies that successful biopsies can be performed on any 

enlarged mouse lymph with similar volume.   HF US-guided FNAC therefore has the 

potential to detect lymph node metastases in HNSCC mouse models, and is planned for 

future studies where longer term HF US monitoring of animals from pre-cancerous stages 

through tumor development and progression is achieved.  The ability to conduct image-

guided FNAC on cervical lymph nodes imparts translational impact on such mouse model 

studies, where tumor staging is typically based on the degree of nodal metastases 

[46,47]. 

  

Mice orally treated with 4-NQO displayed several different changes in cervical lymph node 

biology unrelated to metastatic involvement that can be overlooked if not for the real-time 

capabilities of ultrasonography.  4-NQO-treated mice develop enlarged lymph nodes that 

correspond with early alterations to the tongue epithelium, where enlargement is 

maintained during tumor onset and progression.  While enlarged nodes can be expected 

in response to neoplastic development, growth and/or metastasis, our findings indicate 

that significant lymph node enlargement occurs before tumor formation occurs in the oral 

cavity.  The increased node size can be explained by paracortical/T-cell zone hyperplasia 
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within the cervical nodes (Figure 4).   Similar findings of paracorticial T-cell expansion 

have been observed in patients with oral cavity or oropharynx tumors [48,49], but the 

underlying mechanism for this is unclear.  Patient intranodal paracortical expansion is 

more pronounced in nodes without tumor infiltration [48,49], in agreement with our data, 

as we did not observe metastasis in any analyzed cervical lymph node in this study 

(Figure 4).  However, since 4-NQO-treated mice develop cervical node metastases at 

time points later than what were monitored in the present study (Figure S2B), it is 

conceivable that HF US can be employed to analyze volume changes in cervical nodes 

containing tumor metastases, as noted above.  

  

In addition to increased cervical lymph node volume, power Doppler HF US demonstrated 

that 4-NQO treated mice have greater median blood flow in their mandibular node after 

tumor onset (Figure 3E).  Primary tumors have been shown to induce vasculature 

reorganization within downstream lymph nodes, preparing the nodal microenvironment 

(“soil”) prior to tumor cell arrival (“seed”) in order to better support metastatic colonization 

[50]. This is achieved by angiogenic induction of microvasculature, including high 

endothelial venules, within lymph nodes before tumor cell arrival [50-52].  However, we 

did not observe changes in cervical node microvessel density or size in 4-NQO treated 

mice (data not shown).  The systemic cause for the 4-NQO-mediated increase in cervical 

nodal blood flow is currently under investigation. 

 

In summary, we demonstrate the benefits of using HF US technology to monitor cervical 

lymph node alterations in a mouse model of oral cancer.  Real-time monitoring of lymph 
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node biological responses is an important aspect in therapeutic and biomarker 

development.  Detection of lymph node metastasis without the need for immediate 

sacrifice allows for more comprehensive and long-term study of animal disease models. 

In addition to HNSCC, other disease models that induce murine cervical 

lymphadenopathy may benefit from the application of HF US, allowing improved 

evaluation of cervical nodes in a variety of experimental prognostic and diagnostic 

settings.  
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 Figure Legends 

Figure 1. Mapping of mouse cervical lymph nodes by high frequency ultrasound. 

A. Overview image of the HF US platform for cervical lymph node evaluation.  An 

anesthetized B6 mouse is shown positioned on the Vevo 2100 heated imaging platform 

with the ventral side exposed.  Each paw is tapped to a monitoring electrode and the 

rectal probe (blue) secured to the stage.  The transducer (white) is positioned over the 

ventral neck area.  B. Diagram showing relative locations of murine cervical lymph nodes.  

Individual neck sections visualized by HF US imaging and histology are indicated by 

dashed lines. Arrows denote specific positions of each mapped section relative to 

corresponding ultrasound and histology images.  Each imaged anatomical location is 

numbered. M, mandibular node. AM, accessory mandibular node. SP, superficial parotid 

node.   C.  Serial transverse sections of the mouse neck imaged by HF US corresponding 

to the indicated anatomic regions in (B). D. Transverse cervical H&E stained histological 

sections corresponding to the HF US sections in (C). Arrows labeled “2” denote 

mandibular node as diagrammed in B. Scale bar = 1 mm. CP, cheek pouch. VT, ventral 

tongue. DT, dorsal tongue. E, esophagus. 

Figure 2. Image-guided fine needle biopsy of Fasl mandibular lymph nodes. A. 

Transverse section of a Fasl mouse neck imaged with HF US.  The enlarged cervical 

mandibular node is evident as an oval hypoechoic region near the skin surface 

(circumscribed in yellow).  Scale bar = 1 mm.  B. Frames from fine needle biopsy of a 

Fasl mandibular node guided by HF US.  Images show the position of the sampling 

hyperechoic needle tip prior to cervical skin penetration (left), position of the needle during 

tissue removal (middle), and following needle withdrawal (right).  Note the break in the 
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skin following needle withdrawal (arrow).  The angle and trajectory of the dorsal needle 

surface is denoted by the yellow dotted line. Scale bar = 1 mm. The entire procedure is 

shown in Video S1.  C. Examples of lymph tissue obtained by HF US guided FNA of a 

Fasl cervical mandibular node following staining and processing by cytospin. Scale bar = 

100 µm. LT; lymph tissue, RF; reticular fibers, L; individual lymphocytes. 

Figure 3. 4-NQO exposure induces precancerous alterations in mouse mandibular 

lymph nodes. A-C. Images of dissected H&E and whole animal HF US (ultrasound) 

mandibular lymph nodes from representative age-matched (AM) control (A), 4-NQO-

treated (28wk) (B) and Fasl (C) mice.  Lymph node borders in the HF US images are 

indicated in yellow.  Vascular flow identified by power Doppler imaging is shown in red.  

Power Doppler flow dynamics for each condition are visualized in Video S2-S4.  H&E 

scale bar = 250 µm, ultrasound scale bar = 1 mm. CP, Cheek Pouch.  D&E.  Analysis of 

lymph nodes by HF US.  4-NQO treated mice at 0 and 28 wk were imaged after 8 week 

4-NQO treatment and study end point.  B6 age-matched (AM) Ctl 0 and 28 wk mice were 

imaged at the same age as 4-NQO treated mice. The Fasl lymph node data is included 

for comparison.  D.  4-NQO exposure induces increased mandibular lymph node volume.  

E.  4-NQO exposure increases vascular flow in mandibular nodes.  N = 6 lymph nodes 

from 3 mice per group, except for the controls, where N = 8 lymph nodes were analyzed 

from 4 mice.  Box and whisker plots show minimum, 25th, median, 75th and maximum 

values, respectively. *, p<0.05. 

Figure 4. 4-NQO treatment induces paracortical/T-cell zone hyperplasia in 

mandibular lymph nodes. Representative examples of H&E stained, dissected 

mandibular lymph nodes from age-matched (A) control and  (B) 4-NQO-treated (28 wk) 
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mice.  T-cell zone expansions in each node are circumscribed in yellow.  Scale bar = 250 

µm.  C. Distribution of nodal paracortical/T-cell zone hyperplasia.  Mandibular lymph 

nodes were pathologically scored and grouped according to relative scale of T-cell zone 

involvement, using the following scale: None, absent to focal limited expansion; Modest, 

multifocal or focal up to moderate expansion; Robust, multifocal moderate expansion 

and/or confluence of paracortical subregions 
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Supplemental Figure Legends 

Figure S1. Visualization of regions within the mouse neck by high-frequency 

ultrasound.  HF US imaging of the mouse oral cavity following placement of an oral 

gavage needle in mouth to dampen the US signal, aiding with identification of different 

sections during imaging.  Arrows point to area probed with needle, which can be seen in 

each image blocking ultrasound signal. Scale bar = 1 mm. 

Figure S2. 4-NQO exposure induces changes in mouse tongue epithelium similar 

to human HNSCC and results in cervical lymph node metastasis. A. H&E and 

cytokeratin 14 staining of representative mouse tongues: control untreated, after 8 weeks 

of treatment, and after termination at 19 weeks due to tumor burden as an example to 

validate the ability of 4-NQO to induce oral tumors. Scale bar = 100 µm. B. Cytokeratin 

14 staining of mouse mandibular node from 4-NQO-treated animal 33 weeks after the 

end of 4-NQO treatment.  Inset demonstrates cytokeratin 14-positive cells indicating 

epithelial origin, confirming tumor metastasis.  

Video S1. Image-guided fine needle biopsy of Fasl mouse lymph node.  

Video S2. HF US and Power Doppler of age-matched control mouse cervical lymph 

node. Representative video of 3D scan of control mandibular node using combined B-

mode and power Doppler imaging modalities. The red areas within the video represent 

blood flow. 

Video S3. HF US and Power Doppler of 4-NQO-treated (28 wk) mouse cervical lymph 

node. Representative video of 3D scan of 4-NQO-treated mandibular node using 
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combined B-mode and power Doppler imaging modalities. The red areas within the video 

represent blood flow. 

Video S4. HF US and Power Doppler of Fasl mouse cervical lymph node. 

Representative video of 3D scan of Fasl mandibular node using combined B-mode and 

power Doppler imaging modalities. The red areas within the video represent blood flow. 
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GENERAL DISCUSSION 

This dissertation describes studies that use both 2D/3D in vitro modeling and 

transgenic mouse models to determine the contributions of different actin binding proteins 

to HNSCC invasion, and describes efforts to produce more physiologically relevant oral 

cancer models and techniques for studying HNSCC progression in mice. Collectively, 

these studies give insight into another potential actin cytoskeleton regulator of HNSCC 

and shed light on how microenvironment alterations can contribute to tumor development 

and invasion. Additionally, we present surprising data relating to the role of cortactin 

during oral tongue cancer invasion, which challenges current dogma that cortactin 

functions as a driver of HNSCC invasion, highlighting the critical role of the tumor 

microenvironment in promoting and supporting collective carcinoma invasion. 

Traditionally, solid tumors have been viewed as a collection of cells that have 

accumulated genetic alterations, resulting in defects in growth arrest and the ability to 

move from the primary site of origin. This has resulted in drug development efforts to 

focus only on the tumor itself, without taking into consideration the contributions of the 

surrounding stroma. In recent years, this view has altered, with the realization that not 

only do the cells comprising the tumor contribute to progression, but the extracellular 

environment in which the tumor resides also plays a major role in tumor development1. 

The tumor microenvironment is made up of a host of other elements, including fibroblasts, 

myofibroblasts, smooth muscle cells, endothelial cells, pericytes, mast cells, B and T 

lymphocytes, natural killer cells, macrophages, dendritic cells and numerous extracellular 

matrix components2. A number of these cell and matrix components have been found to 

promote carcinogenesis in HNSCC and other cancer types. 
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The earliest evidence of microenvironmental influence on tumor progression 

comes from the inflammation field3. Dr. Rudolf Virchow first noted the presence of 

leukocytes in neoplastic tissue in 1863, and theorized they were the cause of cancer at 

sites of chronic inflammation3. Since then, there is considerable evidence that the innate 

and adaptive immune systems play a contributing role in many cancer types, including 

HNSCC. Inflammatory reactions occur prior to the onset of tumor formation, as we 

describe in Study 34, which showed that lymph node enlargement in mice given 4-NQO 

is due to a paracortical/T-cell zone hyperproliferation prior to tumor onset. The effects of 

immune cells on tumors is somewhat paradoxical. Anti-tumor immunity is provided by 

cytotoxic CD8+ T cells and CD4+ Th1 cells activated by type M1 macrophages. M2 

macrophages can stimulate differentiation of Th2 and T regulatory cells, responsible for 

secreting cytokines that suppress CD8+ T cells and CD4+ Th1 cells, as well as promote 

angiogenesis and stromal reorganization5. Indeed, high levels of M2 macrophages have 

been associated with the metastatic phenotype and decreased survival in patients with 

oral SCC6. In Study 2, we provide evidence that macrophages associate with tongue SCC 

invasion in mice, based on aggregated cells expressing the macrophage marker CD68 

found with invasive tumors and at the tumor invasive front. Additionally, evidence of 

macrophage stimulation of angiogenesis in HNSCC was shown in a study involving 

paracrine signaling to macrophages by HNSCC cells7. Secretion of monocyte 

chemotactic protein-1 and TGF-β1 by tumor cells resulted in macrophage activation, 

causing secretion of TNF-α and IL-1. This signals to HNSCC cells to produce IL-8 and 

VEGF, increasing neovascularization in a rat corneal angiogenesis assay7. 
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Tumor vascularization is another important factor in driving neoplasia. As 

described above, stimulation of immune components can lead to secretion of pro-

angiogenic factors such as VEGF. Growing tumors require an adequate blood supply to 

provide the necessary nutrients and waste removal required for continued proliferation 

and eventual metastasis. Hypoxia within larger tumor masses triggers cells to release a 

number of factors that encourage angiogenesis8. The primary factors are VEGF/VEGF-

A, however other proangiogenic factors include fibroblast growth factor (FGF), platelet-

derived growth factor (PDGF) and EGF8,9. VEGF expression has been associated with 

tumor progression and documented as a predictor of poor outcomes in several HNSCC 

studies10–13. Increased microvessel density within tumors, as measured by markers such 

as CD31, CD34 or CD105 has also been linked to more aggressive tumors in 

humans10,14–16. Our own results in mice imply a compensatory role for angiogenesis in 

tumors lacking cortactin, as evidenced by the increased intratumoral CD31 staining 

(Study 2). 

A third increasingly important mediator of invasion in the tumor microenvironment 

are cancer-associated fibroblasts (CAFs)9,17. Co-culture experiments with mammary 

carcinoma cells and fibroblasts first showed their impact by demonstrating that senescent 

or irradiated fibroblasts could stimulate normal mammary cell proliferation and induce 

tumors in mice18,19. 3D organotypic modeling of SCC showed that collective invasion, a 

common invasion mode utilized by HNSCC, required path generation by CAFs in order 

to efficiently migrate within the collagen20. CAFs are responsible for reorganization of the 

ECM, through physical engagement and secretion of MMPs20. They can be identified by 

markers such as α-smooth muscle actin (SMA), S100A4, vimentin, MMP2 and PDGFR 



139 

 

α/β; however most of these markers are also expressed by other cell types21–23. In one 

study profiling fibroblast gene expression in oral cancer, fibroblasts were found to express 

α-SMA and integrin β6, and high levels of these genes correlated to shortened survival 

rates24. Another study found high stromal expression of α-SMA to be the best predictor 

of decreased survival in OSCC patients25. We provide evidence of the contribution of 

fibroblasts to invasion in a mouse model of oral cancer in Study 2, where we show 

expression of vimentin between tumor cells and at the invasive front, similar to both 

MMP14 and CD68 expression. Fibroblasts evolve into cancer-associated fibroblasts as 

tumor progression occurs, and are known to secrete various cytokines and other growth 

factors that contribute to invasion26. Preclinical models of oral cancer demonstrated 

enhancement of HNSCC invasion with CAF-conditioned media and in an orthotopic floor-

of-mouth model27. 2D/3D invasion assays provided evidence of CAF-secreted interleukin-

33 contributing to invasion, through promotion of EMT in HNSCC cell lines28. 

 

The cost to bring a new drug to market is substantial, with approximately 90% of 

compounds failing to reach FDA (Federal Drug Administration) approval29. In fact, when 

comparing the success rates of oncology drugs from phase I trials to drugs for all other 

diseases, the likelihood of approval is cut in half for cancer-related therapeutics, with the 

majority of failures due to lack of efficacy29,30. Clearly, in order to develop drugs with a 

higher chance of success in clinical trials, improved cancer models need to be developed 

that more accurately reflect human tumors, and which includes allowing for the influence 

of the tumor microenvironment. 
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Mouse models are generally employed to validate the in vitro effects of potential 

tumor suppressors or promoters in vivo. The simplest way to do this is by using a 

xenograft transplant, whereby human cancer cell lines are subcutaneously or 

orthotopically implanted into immunodeficient mice. While xenograft studies have some 

predictive value31, and may be useful for predicting clinical outcomes of cytotoxic drugs, 

they may not be as informative when investigating the effects of targeted agents, 

especially those that directly influence the microenvironment. The main issues with 

xenografts are that they use cell lines, which give only a “snapshot” of a tumor in time, 

rather than its heterogeneous nature, and that the lack of a complete immune system in 

nude or NOD/SCID mice leaves out important regulators such at T-cells (nude) or 

macrophages (NOD/SCID). One way to compensate for the lack of heterogeneity in tumor 

lines is to use patient-derived xenografts (PDX), which are taken directly from patients 

and cultured in mice32. However, this model still omits a fully functional immune system. 

The next step in modeling involves the creation of mice harboring genetic alterations that 

predispose them to cancer. This solves the problem of the incomplete microenvironment, 

although differences still arise due to variations between mouse and human biology. 

These models can be engineered to have genetic instability and result in tumors that are 

much more heterogeneous in nature than cell line xenografts, especially with the addition 

of carcinogens. Carcinogen-induced tumor models may even be more relevant, as a 

model for tobacco-related cancers, such as HNSCC and lung cancer or for modeling sun-

exposure-induced skin cancers. 

There are numerous instances of xenograft models failing to predict drug 

outcomes in humans. One interesting example involves activity of thiazolidinediones 
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(TZDs), which bind to the peroxisome proliferator-activated receptor-γ (PPARγ). These 

agonists were shown to inhibit growth in colon cancer cells and transplanted tumors33; 

however a phase II study found progressive disease as the best outcome for patients 

treated with the drug34. Testing of this drug using a GEM model confirmed the phase II 

trial results35. A second important example of inconsistencies between preclinical and 

clinical trials are MMP inhibitors. Broad-spectrum MMP inhibitors were found to reduce 

metastasis and prevent regrowth in surgically resected mouse mammary tumors36, but 

once moved to the clinic, the results were disappointing36. It was later found that different 

MMPs played different roles during tumor progression, and are more important during 

early stages; this is not easily tested in humans, who are usually diagnosed and treated 

at later stages36. Additionally, there are a multitude of MMPs expressed by numerous cell 

types, and they are responsible for more than just degrading matrix37. These are just two 

examples where more rigorous testing in early preclinical models may have avoided the 

costs involved with late stage drug failures. 

  

As for actin regulatory proteins, how do they fit in as therapeutic targets? Their 

contributions to cancer cell invasion are largely due to their roles in regulating cell motility 

and their association with invadopodia. Many studies in multiple cancer types have 

focused on the tumor cells themselves, relying on 2D, 3D and xenograft models to 

extrapolate the contributions of these proteins to invasion.  While this has been 

acceptable in the past, it has become apparent, especially from work described in this 

dissertation, that better models are needed for more accurate determination of their 

function in humans. There has been substantial evidence for the importance of these 
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proteins in vitro and xenograft models38–42, including our characterization of a novel 

function for the actin binding protein coronin 1B (Study 1), but how well does this hold up 

in GEM models? In Study 2, we describe the first instance of a transgenic model of 

cortactin knockout during carcinogen-induced tumorigenesis, and we found cortactin to 

be unnecessary for tongue cancer invasion, despite the extensive studies describing its 

importance in HNSCC invasion in vitro and in vivo38,43,44. The actin bundling protein fascin 

was found to be dispensable for pancreatic invasion and loss was only responsible for 

delaying onset in a GEM model45, even though its needed for proper invadopodia 

function42. Therefore, it would not be surprising to see future studies that determine other 

actin binding proteins thought to be critical to cancer invasion end up having little or no 

impact on tumor invasion as more specific GEM models are tested. Given that the main 

purpose of actin-binding proteins are to direct cells to interact with the microenvironment, 

using cancer models without a proper and complete stroma context may be contributing 

to inaccurate conclusions within the field.  

However, the study of actin regulatory proteins as contributors to metastasis is still 

likely to be highly relevant. There has been little headway made in the production of anti-

metastatic drugs. Considering metastasis is the main cause of patient death, finding 

acceptable druggable targets that blunt or ablate metastasis should continue to be a 

priority. There is increasing evidence that cortactin plays a role in metastatic 

colonization46–48, which is an aspect of metastasis we were unable to study in our own 

oral cancer model.  Similiarly, expression of fascin is associated with vascular invasion in 

patient pancreatic cancer samples, and is needed for peritoneal metastasis in a mouse 

model of PDAC45. As better cancer models involving metastasis are generated, it will be 
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interesting to see how many actin-associated proteins become important targets for 

prevention of metastasis. 

In the future, studies should be designed to take into account tumor heterogeneity, 

the cell and site of origin, and the many different cellular and matrix components of the 

microenvironment in order to resolve whether certain proteins are truly important targets 

in cancer progression. Initial studies in 2D would benefit from further confirmation using 

genetically engineered and carcinogen-induced tumor models, especially in the case of 

actin regulatory proteins. The use of GEM models in drug development would allow mice 

to be treated more like patients, especially once more advanced stage modeling becomes 

available. Techniques such as those described in Study 3, where HF US is implemented 

to study lymph node alterations in mice with tongue cancer, will become increasingly 

useful in such model systems. Combining the use of a metastatic GEM models of cancer, 

which faithfully recapitulate human disease, with small animal imaging for tracking tumor 

progression and drug efficacy would create a powerful tool for better drug development 

and ultimately patient treatment. 
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Abstract: Head and neck squamous cell carcinoma (HNSCC) is a heterogeneous cancer that 

arises in the upper aerodigestive tract. Despite advances in knowledge and treatment of this 

disease, the five-year survival rate after diagnosis of advanced (stage 3 and 4) HNSCC remains 

approximately 50%. One reason for the large degree of mortality associated with late stage 

HNSCC is the intrinsic ability of tumor cells to undergo locoregional invasion. Lymph nodes 

in the cervical region are the primary sites of metastasis for HNSCC, occurring before the 

formation of distant metastases. The presence of lymph node metastases is strongly associated 

with poor patient outcome, resulting in increased consideration being given to the development 

and implementation of anti-invasive strategies. In this review, we focus on select proteins that 

have been recently identified as promoters of lymph node metastasis in HNSCC. The discussed 

proteins are involved in a wide range of critical cellular functions, and offer a more 

comprehensive understanding of the factors involved in HNSCC metastasis while additionally 

providing increased options for consideration in the design of future therapeutic intervention 

strategies. 
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1. Introduction 
 

 

The main cause of cancer-related death is due to metastasis of primary tumors to secondary 

sites within the body. Advanced cases of head and neck squamous carcinoma (HNSCC) 

primarily spread locoregionally, where tumor cells infiltrate the lymphatic drainage and travel 

into cervical lymph nodes [1]. While incidence rates and overall disease-related deaths have 

dropped over recent years [2], the five-year survival rate for patients presenting with clinically 

advanced disease remains around 55% [3]. Predicting the inherent metastatic potential of primary 

HNSCC tumors would serve to aid in enhancing approaches to treatment that would improve 

patient management. However, current diagnosing strategies  rely  in  part  on  histological  

analyses  of  biopsy  samples,  which  have  largely  proven inadequate due to the high frequency 

of patients with recurrent disease [4]. The presence of lymph node metastasis in HNSCC 

patients has long been established as a poor prognostic indicator [5-7], making earlier 

detection of tumors with the propensity to invade and spread through local lymphatics an 

important step in patient management towards a more promising outcome. The stepwise model 

of carcinoma progression involves changes at the molecular level that ultimately provide normal 

epithelia cells with the ability to invade surrounding tissue [8]. In HNSCC, efforts at 

identifying molecules associated with and responsible for driving nodal metastasis has revealed 

many potential biomarkers for this process over the past decade [4,9-11]. Some of the more 

notable markers associated with nodal metastasis are cell cycle and proliferation regulators 

such as p53, epidermal growth factor receptor (EGFR), p16, and cyclin D1. The roles of these 

proteins in HNSCC development and progression are well documented [4,11-13,13]. More 

recently, expression profiling through DNA microarray technology  has  been  useful  in  

identifying  genes  previously  unrecognized  in  the  field  that  also contribute to or are associated 

with lymph node metastasis [14-16]. In this review, we focus on various studies conducted 

within the past four years that have linked overexpression of specific proteins in HNSCC to 

lymph node metastasis, highlighting several new potential candidates (Table 1) that could prove 

useful in the prediction, detection and treatment determination of metastatic disease. 

 
2. Proteins Involved in Cell Cycle Regulation, Proliferation and Apoptosis 

 

 

Regulation of the cell cycle requires the coordination of many protein classes, creating a 

system of checks and balances that when dysregulated results in either cell proliferation or death. 

Mutations or altered expression of proteins important for proper governing of cell cycle 

initiation and coordination can set the system off balance, providing tumor cells with means to 

bypass normal cell cycle check points, evade apoptosis and over-proliferate. Several proteins 

involved in cell cycle regulation have recently been identified as markers with increased 

expression in HNSCC that correspond with lymph node metastasis. 
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Table 1. Recently identified biomarkers involved in lymph node metastasis. 
 

Biomarker Cellular Function Relevant References 

c-Met Proliferation [23] 

CEP55 Cell cycle regulation, cytokinesis [39,40] 

NBS1 Cell cycle regulation, DNA double-strand break repair [43,45] 

Survivin Inhibitor of apoptosis [51,55,61] 

RSK2 Cell cycle regulation, proliferation, apoptosis [65] 

Cortactin Cell motility and invasion [74-76,79] 

CD44 Cell-cell and cell-matrix adhesions [81-83] 

MMP-9 ECM degradation [81,88] 

MT1-MMP ECM degradation [90] 

CXCR4 SDF-1 chemokine receptor, chemoattraction [98-101] 

CCR7 Chemokine receptor, chemoattraction [100,101,103] 

VEGF/R Angiogenesis [110,115,117,119] 

NFκB Proinflammatory TF [126,127] 

Twist TF, regulator of EMT [101,138] 

Snail TF, regulator of EMT [138,141,142] 

Hif-1α TF, hypoxia [138,146] 

p21
WAF1/Cip1 

Cell cycle regulation, proliferation, apoptosis [154,155] 

MMP: matrix metalloproteinase; ECM: extracellular matrix; TF: 

transcription factor; EMT: epithelial-mesenchymal transition. 

 
2.1. c-Met 

 

 

The receptor tyrosine kinase c-Met is normally active during embryonic development and 

wound healing [17]. Activated c-Met promotes cellular proliferation by organizing an “invasive 

growth” program by which normal cells migrate to new sites to form polarized cells and 

functional 3D structures. [18]. The ligand for c-Met is hepatocyte growth factor (HGF). HGF is 

secreted by mesenchymal cells and upon binding to c-Met causes receptor homodimerization 

and phosphorylation/activation of the catalytic site, resulting in downstream signaling events 

that lead to cell transformation and invasion [17,19]. Expression of c-Met on epithelial cells 

enables them to receive signals from surrounding stromal cells through stromal cell HGF 

secretion. In transformed cells, c-Met activity is enhanced through several mechanisms, 

including increased ligand-based stimulation via elevated autocrine or paracrine HGF secretion, 

receptor overexpression or mutational activation of the c-Met kinase domain [17,19]. One 

notable function of c-Met is its interaction with the oncogenic tyrosine kinase c-Src, creating a 
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mechanism to bypass inhibited EGFR signaling in breast cancer cell lines [20] as well as 

increasing resistance to c-Src inhibitory drugs in HNSCC [21]. Both c-Src and EGFR are 

overexpressed in HNSCC and are important in head and neck cancer development and 

progression [22]. A retrospective analysis of 61 surgically treated cases of HNSCC showed 

frequent expression of c-Met in tumors with higher T-stage classification [23]. Patients with 

lymph node metastasis have a significant increase in c-Met expression when compared with 

indolent cases 
 
 

lacking metastasis. While HGF was found at elevated levels in over 60% of the cases, it was 

not a significant factor in this study; however when combined with c-Met overexpression there 

was a correlation with lymph node metastasis. Being a paracrine factor secreted by cells of 

mesenchymal origin, HGF may be more relevant as a serum biomarker, as shown in previous 

studies [24-26]. In these prospective studies, serum cytokine levels were measured in patients 

before and after treatment. High levels of serum HGF were found in patients before treatment, 

decreased after treatment, and were found to increase again with recurrence. These results 

suggest monitoring HGF levels may prove useful in determining response to treatment and 

recurrence. The HGF/c-Met pathway has been implicated in invasion and metastasis in HNSCC 

and other cancers, both in vitro and in vivo [27-31] and has been linked to resistance of EGFR 

inhibitors and cisplatin [20,32-35], making both c-Met and HGF attractive drug targets as well 

as determinants of treatment. Currently there are several clinical trials involving drugs that target 

c-Met or HGF specifically, although these trials have not gone past phase I/II [36]. 

 
2.2. CEP55 (FLJ10540) 

 

 

The cytokinesis regulator CEP55, also known as FLJ10540, is a 55 kDa protein that localizes 

to the centrosome of chromosomes in interphase and the midbody during cytokinesis, where it 

mediates the final stages of mitotic division into two daughter cells [37]. CEP55 is a recently 

identified downstream target of the oncogene FOXM1, which has been shown to be upregulated 

in pre-malignant HNSCC lesions [38]. Subsequently, CEP55 overexpression has been directly 

correlated with an increase in tumor aggressiveness in oral squamous cell carcinoma (OSCC) 

[39]. Retrospective immunohistochemistry (IHC) analysis revealed overexpression in patient 

tumor samples, which was linked to tumor and nodal stage as well as a poor prognosis [39]. 

There was also significantly higher expression in patients with advanced T stage (3 and 4) 

with lymph node metastasis when compared with node negative and stage 1-2 tumors. In vitro 

work has linked CEP55 expression to increased cell motility and invasion through regulation of 

FOXM1 and MMP-2 [39]. In another report, while CEP55 was shown to be significantly 

upregulated in dysplasias and HNSCC, upregulation within lymph node metastases was not 

significant, which the authors cite as being due to tissue heterogeneity [40]. Taken together, 
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these results suggest CEP55 may prove useful in predicting disease progression. As cytokinesis 

is of obvious importance to highly proliferative cells, overexpression of CEP55 is therefore a 

logical candidate for potential use as an HNSCC metastatic biomarker in clinical settings. 

 
2.3. NBS1 

 

 

Nijmegen breakage syndrome (NBS) is a syndrome characterized by growth retardation, 

immunodeficiencies and predisposition to malignancies [41]. The only gene associated with 

this syndrome is NBS1, and its gene product plays an important cell cycle checkpoint role in 

double strand DNA break repair [41]. NBS1 is part of a complex including Mre11 and Rad5 

(MRN complex) that is central to detection of DNA breakage, coordinating response programs 

for and catalyzing repair mechanisms of double-strand breaks [42]. A study analyzing OSCC 

samples revealed an increase in NBS1 mRNA expression that correlated to increased protein 

expression [43]. NBS1 overexpression was associated with advanced disease and 

recurrence/metastasis in OSCC, while non-oral HNSCC 

 

samples with the same levels of expression were only associated with recurrence. An increase in 

NBS1 expression in HNSCC regardless of origin site was additionally associated with lymph 

node involvement [43]. In this same study, NBS1 was found to be a prognostic marker even 

with samples divided into subgroups based on tumor and nodal stage or treatment type. Earlier 

studies by the authors had linked NBS1 overexpression to more aggressive disease and worse 

prognosis in advanced HNSCC [44], and to lymph node and distant metastasis [45]. These studies 

also determined NBS1 expression to be involved in cellular transformation through activation 

of the PI3K/Akt pathway and induction of EMT [44,45]. One explanation for this association 

could be due to single nucleotide polymorphisms (SNPs) within the NBS1 gene. Several 

studies have linked genetic variations to development of cancers   of   the   breast,   lung,   

esophagus,   non-Hodgkin’s   lymphoma  and   upper   aerodigestive tract [46-48]. Identifying 

high risk patients through detection of NBS1 SNPs may be a useful tool in predicting patient 

outcome in OSCC and other HNSCC subtypes. 

 
2.4. Survivin 

 

 

An inhibitor of apoptosis (IAP) family member, survivin, suppresses apoptosis by directly 

binding to and inhibiting caspase family members, typically caspase 3 and caspase 7, or by 

indirectly suppressing apoptosis through activation of caspase-associated cofactors [49,50]. 

Survivin overexpression has been identified in different cancer types, suggesting it may be a 

tumor marker and possible drug target [49,50]. There have been multiple studies linking survivin 

expression to HNSCC progression in recent years. In a retrospective study of 42 OSCC cases, 

individuals with lymph node metastasis had significantly high survivin expression compared to 
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non-metastatic cases [51]. A correlation between expression and low survival rate was also 

concluded in this study. A significantly higher expression of survivin was found in another 

study of OSCC cases [52]. Premalignant lesions were also included, and survivin expression 

was elevated in these regions when compared to normal tissue. Survivin has been found to play 

different roles depending on location within the cell [49]. In the nucleus, survivin controls cell 

division by functioning as a subunit of the chromosomal passenger complex (CPC), while 

cytoplasmic survivin is cytoprotective, providing the cell with protection from cell death 

induced by radiation or chemotherapeutic drugs [53].  An examination of normal and HNSCC 

tissues by IHC showed nuclear and cytoplasmic staining, both which were significantly 

correlated to poor differentiation and lymph node metastasis [54]. There have been several 

other studies that investigated the prognostic role of cytoplasmic and nuclear survivin. Although 

no general consensus was found based on subcellular location, survivin expression has 

consistently been linked to unfavorable outcome and reduced disease-free survival. [55-57]. The 

anti-apoptotic effects of survivin may be linked to treatment failure as some in vitro studies have 

suggested [58-60]. In one particular model, HNSCC cells that escaped cellular senescence after 

treatment with the chemotherapeutic drug camptothecin were unable to escape senescence upon 

knockdown of survivin [61]. Another retrospective study analyzed OSCC cases and correlated 

survivin mRNA expression to tumor differentiation, stage and lymph node involvement. This 

study also found that down-regulation of survivin increased sensitivity of HNSCC cells to 

cisplatin [62]. While more studies are needed to firmly link survivin overexpression to lymph 

node metastasis, its role as a prognostic and drug resistance marker warrants further investigation 

as a potential therapeutic target. 

2.5. RSK2 
 

 

p90 ribosomal S6 kinase 2 (RSK2) is a serine/threonine kinase activated downstream in the 

MAPK pathway [63,64].  Numerous substrates have been identified for RSK2, including 

GSK3β, c-Fos, p27
kip1

, e1F4B, and p65, a subunit of NF-B. These substrates link RSK2 activity 

in mediating pathways  central  to  cell  proliferation,  transcriptional  and  translational  

regulation,  survival  and apoptosis [63,64]. Retrospective IHC analysis has identified RSK2 

overexpression in HNSCC tumor and lymph node patient samples [65]. Primary tumors from 

patients with lymph node metastases and matched lymph node specimens had a significantly 

higher expression of RSK2 than patients with non-metastatic primary HNSCC. Manipulation 

of RSK2 levels by RNA interference demonstrates a clear dependence of RSK2 expression 

levels in modulating invasion in Matrigel transwell assays. Similar results were obtained in a 

xenograft mouse model, where cells with stable knockdown of RSK2 had less metastatic 

potential than controls [65]. Previous in vitro work identified RSK2 as a critical regulator in 

cellular transformation [66] and though not extensively studied in head and neck cancer, the 

versatility of RSK2 makes it a worthwhile target for additional investigation. Multiple small 
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molecule inhibitors specific to RSK family members have been identified [67] that may serve as 

viable platforms for further development of potential targeted anti-RSK2 therapeutic compounds. 

 
3. Cell Motility, Adhesion and Extracellular Matrix 

Degradation 
 

 

Without the ability to modify their surroundings and move to new areas, tumor cells would 

remain in their primary location, making them more manageable by conventional surgical and 

radiation-based treatment regimes. Overexpression of proteins involved in cell motility and 

extracellular matrix remodeling equips primary HNSCC cells with the ability to degrade and 

escape an encapsulating extracellular matrix and penetrate through the surrounding stroma, 

ultimately resulting in lymphatic intravasation and spread into regional lymph nodes. 

 
3.1. Cortactin 

 

 

Cortactin is an actin binding protein that plays roles in cell motility and invasion by 

promoting Arp2/3 complex actin nucleation and by stabilizing the newly formed actin 

branchpoints [68]. Located at chromosomal region 11q13, an area frequently amplified in 

HNSCC, cortactin has consistently been associated  with  more  aggressive and  invasive  

tumors,  lymph  node  metastasis  and  poor  clinical outcome in HNSCC [69-73]. Yamada et al. 

analyzed a series of OSCC patient biopsy samples, finding overexpression of cortactin more 

often in OSCC than in normal epithelium, as well as localization of cortactin at the invasive 

front [74]. Cortactin overexpression was also found more frequently in tumors with high T and 

N classification and significantly correlated to regional invasion in these patients [74]. A separate 

study looked at the relationship between CTTN gene amplification status, mRNA and protein 

expression in patients with pharyngeal or laryngeal SCC [75]. This study found that gene 

amplification correlated significantly to mRNA and protein expression, with cases containing 

strong cortactin staining significantly associated with lymph node metastasis. This group 

conducted an analysis of CTTN gene amplification, comparing amplification within epithelial 

hyperplastic/dysplastic lesions and high-grade dysplasias/carcinoma in situ, to determine 

timing of amplification. Consistent with studies of 11q13 gene amplification being a later 

stage event [4], CTTN was only detected in the higher grade lesions [75]. Cortactin expression 

was also studied along with EGFR status in a series of HNSCC samples of different origins 

[76]. Cortactin overexpression correlated to higher TNM stage, histologic grade and was 

associated with decreased overall survival and increased local recurrence. However, patients 

that had both cortactin and EGFR overexpression did not have a different survival rate than 

those with cortactin only. This is surprising due to evidence that cortactin overexpression 

contributes to sustained EGFR surface expression by preventing ligand-mediated receptor 

downregulation [77] suggesting cortactin overexpression can be uncoupled from EGFR as 
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reported in a subsequent study [78]. Cortactin overexpression in HNSCC does enhance c-Met 

surface expression, providing an additional mechanism for sustained c-Met signaling [77]. 

Another study focusing on laryngeal SCC found cortactin expression to be linked to both lymph 

node and distant metastases, and was identified as a predictor of poor prognosis in this HNSCC 

subtype [79]. The collective results from these recent studies strongly indicate that cortactin 

gene amplification and/or protein overexpression increases HNSCC aggressiveness. Although a 

late stage player in HNSCC progression, monitoring cortactin expression in HNSCC may also 

be useful in predicting invasive carcinoma and tumor recurrence. 

 
3.2. CD44 

 

 

Cell adhesion molecules (CAMs) are necessary for cell-cell or cell-extracellular matrix 

(ECM) contacts. The transmembrane glycoprotein CD44 is a CAM that binds hyaluronan (HA), 

a glycosaminoglycan component of the ECM and the primary ligand for CD44. The CD44 

protein family consists of various isoforms that are the result of alternative splicing of exons 6-

14 [80]. CD44 variants are often overexpressed in different cancer types, with overexpression 

correlating to poor patient outcome [80]. Standard CD44 (CD44s) and three variants, v3, v6 and 

v10, are overexpressed in HNSCC [81]. CD44s was overexpressed at a higher frequency in 

supraglottic laryngeal carcinomas of patients that were lymph node positive, although no 

significant differences were found between tumor stages and differentiation and CD44 

expression [82].  The CD44 variants v3, v6 and v10 were identified in HNSCC samples from 

the oral cavity, oropharynx or larynx, with strong staining by IHC in both primary and lymph 

node metastases [81]. CD44 v3 and v6 were both associated with advanced T stage, while a 

strong v3 expression within primary tumors was related to lymph node metastasis and v10 

expression related to distant metastases [81].  The same study also found CD44 mediated 

sensitivity to cisplatin in vitro and CD44 knockdown increased HNSCC cell death. Another 

interesting study analyzed blood for CD44 mRNA from patients with advanced HNSCC who 

had been treated with chemotherapy and radiotherapy to determine if there the presence of 

CD44 mRNA correlated with prognosis during the patient follow up period [83]. Quantitative 

RT-PCR detected mRNA in peripheral blood from patients and healthy volunteers, and elevated 

levels of CD44 mRNA in HNSCC patients correlated with the degree of lymph node 

involvement and recurrence. IHC analysis of tumor samples confirmed CD44 protein expression 

for all patients. These studies suggest a role for CD44 and specific splice variant isoforms in 

the regional and distant spread of HNSCC, with evidence for pre-treatment screening of 

CD44 being beneficial to determining prognosis and drug response. 
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3.3. Matrix Metalloproteinases 

 
Invasion and metastasis of tumor cells requires proteolysis of the basement membrane and 

surrounding ECM. Matrix metalloproteinases (MMPs) provide cells with a mechanism to 

modulate the microenvironment through the breakdown of ECM molecules present in 

basement membranes and stroma [84]. Twenty three different MMPs are expressed in 

humans, with MMP-9 and MMP-14 (MT1-MMP) accepted as playing critical roles in 

HNSCC invasion and metastasis. MMP-9 is a secreted  proteinase  that  utilizes  CD44  as  a  

docking  site,  allowing  for  its  retention  on  the  cell surface [84,85]. CD44s expression in 

supraglottic laryngeal carcinoma samples correlates with MMP-9 expression in lymph node 

positive patients [82]. Similar results were obtained in a second study of OSCC, linking 

MMP-9 expression to lymph node metastasis [86]. Expression of MMP-9 was also found to 

co-localize to the invasive front with CD44 of HNSCC patient samples, while normal mucosa 

showed little to no MMP-9 labeling [87]. A prospective study investigated whether serum 

MMP-9 levels  of  161  patients  with  OSCC  could  be  correlated  to  clinicopathological  

parameters  [88]. Pre-treatment serum MMP-9 levels correlated to clinical stage and were also 

significantly higher in patients with lymph node metastasis, while a significant decrease in 

levels was seen after surgery. Presurgery levels of MMP-9 in patients who died during the 

study were found to be significantly higher than those who survived, linking serum MMP-9 

to patient outcome [88]. The results of this study are comparable to an earlier study from 2005, 

which also investigated serum levels of MMP-9 in HNSCC patients before surgery [89]. 

Transmembrane MMPs are also important for the activation of secreted MMPs through the 

cleavage of secreted MMP proforms to generate a functional extracellular enzyme. Studies on 

supraglottic HNSCC patients demonstrate increased MT1-MMP expression compared to 

normal tissue. In this study, the level of MT1-MMP overexpression correlated to the depth 

of invasion, presence of lymph node metastasis and advanced clinical stage [90]. Patients with 

high MT1-MMP expression also had a poor prognosis. Interestingly, cortactin overexpression 

has been reported to enhance MMP-9 secretion and promote MT1-MMP surface expression 

in HNSCC cell lines,   resulting   in   enhanced   ECM   degradation   at   plasma   membrane   

structures   known   as invadopodia [91,92]. The pro-invasive function of combined MMP 

activity in HNSCC and other tumor types makes them useful as prognostic markers as well as 

attractive and important therapeutic targets. Despite previous failed attempts at targeted drug 

therapy [93,94], development of new generation MMP inhibitors is being pursued, where 

improved drug and trial design may yet result in the production of selective and effective anti-

invasive drugs [94]. 

 
4. Tumor Microenvironment and Angiogenesis 
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HNSCC and other tumor types frequently exploit signals generated from cellular and non-

cellular ECM components to promote tumor growth and dissemination. The process of new 

blood vessel formation (angiogenesis) is initiated in order to provide tumors with the means to 

supply nutrients to facilitate their growth, as well providing avenues for eventual metastasis 

through the vascular system. 

 
4.1. Chemokines 

 

 

Chemokines are small peptides that upon receptor binding act as chemoattractants, homing 

leukocytes to areas of inflammation [95,96]. Their roles in cell trafficking and angiogenesis 

help promote tumor growth, as evidenced by their overexpression in several different human 

cancers. The receptor CXCR4 and its ligand CXCL12 (also called SDF-1) is one chemokine 

pathway exploited by metastatic HNSCC [97]. A retrospective analysis by IHC of 30 patients 

with laryngeal and hypopharyngeal SCC showed a significant increase in CXCR4 expression 

in patients with positive lymph node and distant metastases compared to patients lacking 

metastatic disease [98]. This study also looked at CXCL12 expression and while higher in 

patients with metastasis, it was not statistically significant. Two other studies assessing the 

prognostic value of CXCR4 in OSCC also drew similar conclusions, finding a significant 

association of expression with lymph node metastasis [86,99]. One study examined expression 

of CXCR4 and another chemokine receptor, CCR7, which has been shown to activate the 

PI3K/Akt pathway in HNSCC, a pathway involved in cell growth, differentiation and survival 

[100]. Both chemokines were expressed at significantly higher levels in those patients with 

positive lymph node involvement compared with lymph node negative cases [100]. One notable 

difference was that CCR7 expression correlated to cases with advanced tumor stage, while 

CXCR4 was significantly higher in patients with distant metastases.  A similar study also 

significantly associated CCR7 expression with lymph node metastasis, while CXCR4 

expression was associated but not statistically significant [101]. CCR7 also positively associated 

with lymph node metastasis in patients with tonsillar SCC [102] and OSCC [103]. The influence 

of autocrine/paracrine activation of CCR7 was examined in another retrospective study of 

HNSCC and found higher mRNA expression of CCR7 and its ligands CCL19 and CCL21 in 

metastatic lymph nodes [104]. This study further concluded from additional in vitro and orthotopic 

mouse model studies that blockage of CCR7 impaired tumor cell proliferation and decreased 

resistance to cisplatin-induced apoptosis. The impact of chemokines and their receptors on  

HNSCC  may  be  explained in  part  by  their  influence on  MMPs  [95,105].  CXCR4 increased 

HNSCC cellular invasion in vitro by upregulating expression of MMP-9 and MMP-13 [98,106]. 

High CXCR4 levels also correlate with high MMP-9 in OSCC patient samples [86]. CCR7 is 

typically involved in directing dendritic cells to peripheral lymph nodes [105]. The frequent 

expression of CCR7 in HNSCC and association with lymph node metastasis suggests that CCR7 
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expression provides tumor cells with a mechanism for direct lymph node infiltration 

[95,96,107,108]. These results suggest overlapping roles for chemokine receptors in HNSCC 

progression to metastatic disease, a consideration that may need to be taken into account for any 

future therapeutic targeting strategies. 

 
4.2. VEGF/R 

 

 

Vascular endothelial growth factor (VEGF) is a cytokine expressed by tumors that plays a 

key role in angiogenesis. VEGF performs its function through binding to one of the VEGF 

receptor family members, with VEGFR2 serving as the major receptor subtype in several 

different neoplasms [109]. The importance of VEGF in cancer progression has been well 

documented [110-114], and recent studies further demonstrate VEGF as a valuable prognostic 

marker for HNSCC. As a growth factor, circulating VEGF can be a useful marker for detecting 

advanced disease since circulating serum levels of  VEGF  in  HNSCC  patients  before  treatment  

was  significantly  higher  when  compared  with non-cancerous individuals [115]. Patients with 

advanced T stage, lymph node metastasis and advanced disease stage also had significantly 

higher serum VEGF levels [115]. Another study involving the prognostic value of serum VEGF 

levels in nasopharyngeal carcinoma found a significant relationship between higher levels of 

VEGF and several clinicopathologic parameters, including T and N stage and distant metastasis 

[116]. Similar results were obtained in another prospective serum analysis of OSCC patients 

before and after treatment [88]. In a separate retrospective study, OSCC cases were analyzed 

for VEGF-C and VEGF-D expression by IHC [117], where increased staining intensity for 

these ligands significantly corresponded with lymph node involvement. In addition, lymphatic 

vessel density (LVD) was also evaluated in this report, where high LVD correlated with VEGF-

C/VEGF-D expression. Another study evaluated the relationship between lymph node 

metastasis and VEGF. Positive IHC expression of VEGF and Notch1, a receptor capable of 

promoting transcription of genes involved in cellular proliferation [118] was observed in patients 

with early SCC of the tongue. High Notch1 expression was also more frequent in patients with 

lymph node involvement. Another analyzed variable in this study was the distance of tumor cell 

invasion from the surface mucosa. A greater invasion depth was found in patients with elevated 

VEGF expression compared with cases containing normal VEGF levels [110]. In a separate 

study focusing on the role of angiogenesis in early SCC of the tongue, VEGF expression was 

found in 74% of analyzed patient samples, where it correlated with increased tumor size, disease 

stage, lymph node invasion, tumor recurrence and distant metastases [119]. Retrospective mRNA 

analysis of VEGF-C and VEGFR3 in locoregionally relapsed HNSCC revealed a significant 

association of high mRNA levels and relapse beyond the primary tumor [120]. While the 

majority of studies on VEGF expression supports a pro-metastatic role, there have been some 

reports where such a correlation between VEGF expression and advanced tumor stage is not 
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evident [121,122]. However, only laryngeal SCC was analyzed in one of these studies, with the 

data suggesting patients with advanced disease and lower VEGF expression would benefit the 

most from induction chemotherapy [121]. In a separate report, VEGF expression did not predict 

metastasis in early (T1 or 2) stage OSCC [122]. Collectively these studies suggest VEGF 

and/or VEGFR status is useful as a pro-metastatic marker in HNSCC, and may also serve to 

predict relapse and treatment response. 

 
5. Transcription Factors 

 

 

Transcription factors are required for normal cellular homeostasis. Dysregulation of 

transcription factor expression is a major contributor in initiating cancer and driving tumor 

progression. Several transcription factors have been found to regulate expression of target 

genes involved in promoting HNSCC lymph node metastasis. The pleiotropic effect of these 

transcriptional regulators on diverse signaling pathways makes them rational targets for 

therapeutic intervention in HNSCC and other cancer types. 

 
5.1. NF-κB 

 

 

Nuclear factor-kappa B (NF-κB) is part of a family of transcription factors that regulate genes 

needed for most aspects of neoplastic transformation [123,124]. Inflammation has been 

linked to cancer  progression  [125],  and  as  a  proinflammatory  transcription  factor  NF-κB  

is  often  found expressed in most tumor types [124]. Specific to HNSCC, analysis of tumors 

from varying primary sites as well as matched lymph node metastases showed positive nuclear 

NF-κB expression, and was found with a greater significant frequency in primary tumors with 

metastasis [126]. NF-κB expression levels were highest in the nodal metastases evaluated in this 

study. A study of laryngeal cancer patients also reported a connection between NF-κB expression 

and lymph node metastasis, as well as T stage and overall survival [127]. A retrospective study 

of early-stage laryngeal cancer correlated NF-κB expression to local recurrence in patients 

resistant to radiotherapy [128]. In addition, patients with recurrence and positive NF-κB 

expression in pretreatment tumors showed enhanced expression in recurrent  tumors,  while  

those  with  recurrence  but  without  expression  before  treatment  became NF-κB-positive. NF-

κB has been shown to regulate other proteins involved in HNSCC cellular proliferation and 

metastasis, such as survivin [55], Twist1 [129], Snail [130], VEGF and MMP-9 [126], as well as 

other targets in HSNCC [123,124]. It has also been demonstrated that NF-κB expression can be 

regulated by chemokines or interact with other transcriptional regulators (Hif-1α) [131-133], 

making NF-κB a central player in the development and spread of HNSCC. Therapeutic 

targeting of NF-κB would therefore potentially disrupt multiple pathways important in HSNCC. 

 
5.2. Regulators of EMT 
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Epithelial-mesenchymal transition (EMT) is a process in which cells lose epithelial traits and 

obtain a mesenchymal phenotype.  While  a  normal  part  of  embryonic  development,  EMT  

is  a  major mechanism that drives cancer development and progression. Several proteins 

involved in the induction of EMT in cancer have been identified [134,135]. Among these are 

the transcription factors Twist and Snail. Twist belongs to the basic helix-loop-helix family of 

transcriptional regulatory proteins [136]. Upregulation of Twist expression has been shown to 

promote EMT in breast cancer, while downregulation suppresses metastasis [137]. In HNSCC, 

Twist has been correlated to lymph node metastasis through tissue microarray screening [101]. 

Higher Twist expression was also observed in metastatic samples when compared to primary 

tumors, significantly correlating with reduced survival [138]. Another study correlated high tumor 

grade to Twist1 expression in HNSCC cases and while not statistically significant, Twist1 

expression was associated with poor prognosis [139]. Several in vitro studies have implicated 

Twist expression in the acquisition of chemotherapeutic resistance for various cancer types 

[90,129,140]. One of these was nasopharyngeal carcinoma, where decreased Twist expression 

by RNAi enhances sensitivity to chemotherapeutic compounds such as taxol and cisplatin 

[90,129,140]. 

The transcription factor Snail is a zinc-finger transcriptional repressor that induces EMT by 

suppressing expression of E-cadherin, a component of adherens junctions that maintains epithelial 

cell-cell adhesion [136]. Expression of Snail was also found at higher levels in metastatic HNSCC 

samples [138] and was positively associated with higher-grade tumors, lower survival rates 

[141,142], increased invasion depth and development of metastases [142]. Additionally, another 

earlier retrospective study found higher Snail expression correlated with cervical lymph node 

and distant metastasis. When co-expressed with NBS1, Snail expression resulted in higher 

probability of metastasis and shorter survival periods [45].  Like Twist, Snail has also been 

associated with chemoresistance [143]. Snail  promoted  cisplatin  resistance  in  HNSCC  

cell  lines  via  upregulation  of  excision  repair cross-complementation group 1 (ERCC1), a 

protein important in nucleotide excision. IHC analysis of HNSCC patients who had undergone 

cisplatin treatment revealed a higher risk of resistance with Snail expression. Twist1 was also 

evaluated in this study and was correlated with greater resistance [143]. Given their function in 

HNSCC and other tumor types, Twist1 and Snail expression levels are likely good candidates 

for monitoring the invasive and metastatic potential of primary HNSCC, and may be useful in 

predicting patient response to chemotherapy. 

 
5.3. Hif-1α 

 

 

In response to the low oxygen (hypoxic) environment present in primary tumors as they 

proliferate and increase in size, tumor cells activate hypoxia-inducible factor 1 (HIF-1) to 

upregulate proteins necessary for preventing cell death [144,145]. HIF-1 is a heterodimeric 
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protein consisting of an alpha and a beta subunit [144]. The HIF-1 alpha subunit is needed for 

HIF-1 to function as a transcription factor, and responds to cellular oxygen levels by activating 

transcription of genes such as VEGF, platelet-derived growth factor (PDGF) and transforming 

growth factor-α (TGF-α) to survive under hypoxic conditions [144]. In OSCC, high HIF-1 

alpha expression was correlated to worse outcome in metastatic OSCC samples [138,146]. 

Overexpression of HIF-1 alpha was frequently observed in HNSCC patients with lymph node 

metastasis, and was significantly higher when compared with node-negative cases [146]. 

Hypoxic tumor cells are known to influence other factors required for HNSCC cell survival and 

growth including EMT, ECM invasion and angiogenesis [147]. HIF-1 alpha performs  these  

functions  through  regulation  of  expression  and/or  activity  of  multiple  proteins, including 

Twist, MMP-2, MMP-9, VEGF and CXCR4/SDF-1 [147,148]. Hypoxia and HIF-1 alpha 

have been cited as one of the major causes of drug resistance to anti-angiogenic therapies in 

many human cancers [149]. These studies suggest that HIF-1 alpha expression may be a 

potential candidate to serve as a pro-metastatic biomarker in HNSCC and also predict treatment 

response. 

 
6. HPV and HNSCC 

 

 

Increased risk of HNSCC has largely been attributed to tobacco exposure and alcohol use; 

however in recent years, studies have also implicated human papillomavirus (HPV) infection 

as an additional risk [4,150,151]. Approximately 20–25% of HNSCC are HPV-positive, with the 

majority of these cases arising in the oropharynx [4,150,151]. The HPV proteins E6 and E7 are 

key players in carcinogenesis, causing the destabilization and degradation of cell cycle regulators 

p53 and pRb [150,151]. As a result, deregulation of cell cycle checkpoints and downregulation 

of other cell cycle regulatory proteins occurs, leading to genomic instability and uncontrolled 

proliferation [150,151]. There are multiple differences between HPV-positive and HPV-

negative HNSCC, making them clinically distinct and requiring different management 

strategies. In HPV-positive HNSCC cases, genome-wide alterations in DNA copy number that 

are frequent in HPV-negative tumors are fewer in number; there are also fewer 

TP53 mutations, and epigenetic changes such as p16
INK4A  

gene silencing due to downstream 

Rb degradation [4,151]. Another major difference is in cell cycle regulatory pathways, with 

upregulation of cyclins D and E being a common occurrence in HPV-positive tumors. An 

important distinction to note is the expression of p21
WAF1/Cip1

, a cell cycle regulator that normally 

functions to promote cell cycle arrest through binding and interfering with cyclin-dependent 

kinases (CDKs) 1 and 2, as well as proliferating cell nuclear antigen (PCNA) [152] to produce 

cell senescence. p21 
WAF1/Cip1 

also promotes resistance to apoptosis [153] and is either up or 

down regulated depending on cancer type, giving it dual oncogenic and tumor suppressor 

properties [152]. In a retrospective study involving 117 patient samples,  p21
WAF1/Cip1   

was  

overexpressed in  HNSCC  samples  from  pharynx  and  larynx,  and  its increased expression 

was correlated with lymph node metastasis, locoregional relapse and decreased survival rate 
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[154]. HPV status was not determined in this report. In a more definitive study of HPV-

positive HNSCC, p21
WAF1/Cip1 

overexpression was associated with favorable outcome [155]. 

In general, HPV-positive cancers have better prognosis and response to radio- and 

chemotherapies, with fewer distant metastases when there has been no tobacco exposure 

[4,151,156]. For these reasons, HPV-positive HNSCC should be treated as a separate subtype 

with specific biomarkers and warrants determination of HPV as standard practice in order to 

accurately format appropriate treatment strategies. 
 
7. Conclusions 

 

 

Development of  lymph node metastases remains a major prognostic factor in HNSCC.  

Many patients present with clinically advanced disease, where surgery, radiation and 

chemotherapy are the standard of care. Given the highly disfigurative nature of HNSCC 

surgical treatment and typically repeated exposure to high-dose radiation, identification of 

primary HNSCC tumors with enhanced metastatic potential by molecular means can aid 

clinicians in tailoring appropriate treatment strategies, especially in cases that have no apparent 

nodal involvement. Current histological procedures can be limited in their ability to detect nodal 

metastasis, highlighting a need for detailed, accurate molecular analysis of individual HNSCC 

tumors to determine specific deleterious protein expression patterns. Such a molecular analysis 

would theoretically result in an increased ability to identify patients with a greater risk for 

metastasis formation, allowing for rational treatment design to be tailored for the best possible 

patient outcome [157]. 

Early detection of oral premalignant lesions is one route to improving patient prognosis. 

Markers predicting progression of these lesions to cancer have not been extensively studied, 

however a recent gene expression profiling study revealed a signature useful in predicting 

OSCC development [158]. The biomarkers of focus here have been more extensively 

characterized in tumor spread beyond the primary site, however it would be interesting to find 

out if they could also be useful in identifying precancerous lesions at risk for progression to 

carcinoma. Some of these proteins are more useful in later stages of HNSCC. Expression of 

cortactin, CD44, NBS1, CXCR4, Snail and VEGF in patients with metastatic disease has been 

correlated to the development of distant metastases. These patients may benefit from induction 

and maintenance therapy in order to prevent spread below the clavicles. Monitoring serum levels 

of HGF, MMPs and VEGF has also been shown to be beneficial in predicting patient outcome, 

and further studies involving prospective analyses could provide an easier route to identification 

of patients at higher risk for metastasis. 

HNSCC invasion and nodal metastasis is a complex process involving multiple signaling 

pathways and protein components. As reviewed here, several proteins have recently been 

characterized that give insight  into  HNSCC  progression  that  have  been  documented  to  

interact  in  signaling  pathways ultimately resulting in lymph node metastasis. Figure 1 

summarizes the potential interactions between these  signaling  pathways.  Combinations  of  
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multiple  protein  expression  patterns  may  potentially produce an accurate lymph node 

metastasis signature that could serve as a predictive tool for analyzing patient tumors. While the 

implementation of such a signature would require further validation in both experimental and 

clinical settings, the outcome of such work would provide an improved understanding of HNSCC 

as a disease, with the combined goal of enhancing overall patient quality of life. 
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Figure   1.  Potential   interactions   between   recently   identified   biomarkers   involved   in 

HNSCC lymph node metastasis. (A) Putative interactions between proteins involved in cell cycle 

regulation, cell proliferation and apoptosis.  (B) Potential interactions highlighted for mediators of 

cell motility, adhesion, ECM degradation and tumor microenvironment. 
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Abstract 

 
Cellular invasion into local tissues is a process important in development and homeostasis. Malregulated invasion and 

subsequent cell movement is characteristic of multiple pathological processes, including inflammation, cardiovascular 

disease and tumor cell metastasis
1
. Focalized proteolytic degradation of extracellular matrix (ECM) components in the 

epithelial or endothelial basement membrane is a critical step in initiating cellular invasion. In tumor cells, extensive in vitro 

analysis has determined that ECM degradation is accomplished by ventral actin-richmembrane protrusive structures 

termed invadopodia
2,3

. Invadopodia form in close apposition to the ECM, where they moderate ECM breakdown through 

the action of matrix metalloproteinases (MMPs). The ability of tumor cells to form invadopodia directly correlates with the 

ability to invade into local stroma and associated vascular components
3
. 

 
Visualization of invadopodia-mediated ECM degradation of cells by fluorescent microscopy using dye-labeled matrix 

proteins coated onto glass coverslips has emerged as the most prevalent technique for evaluating the degree of matrix 

proteolysis and cellular invasive potential
4,5

. Here we describe a version of the standard method for generating 

fluorescently-labeled glass coverslips utilizing a commercially available Oregon Green-488 gelatin conjugate. This method 

is easily scaled to rapidly produce large numbers of coated coverslips. We show some of the common microscopic artifacts 

that are often encountered during this procedure and how these can be avoided. Finally, we describe standardized 

methods using readily available computer software to allow quantification of labeled gelatin matrix degradation mediated 

by individual cells and by entire cellular populations. The described procedures provide the ability to accurately and 

reproducibly monitor invadopodia activity, and can also serve as a platform for evaluating the efficacy of modulating protein 

expression or testing of anti-invasive compounds on extracellular matrix degradation in single and multicellular settings. 

 
Video Link 

 
The video component of this article can be found at http://www.jove.com/video/4119/ 

 
Protocol 

 

1. Production of Oregon Green 488-gelatin Coated Coverslips 
 

1.   Prepare an unlabeled 5% (w/w) stock gelatin/sucrose solution by adding 1.25 g gelatin and 1.25 g sucrose in PBS to a 
final volume of 50 ml. 

Warm the stock gelatin solution to 37 °C and ensure it is entirely melted before use. Store the final mixture at 4 °C. 

2.   Clean 13 mm diameter #1 glass coverslips by placing an individual coverslip into each well of a 24 well plastic tissue 

culture plate. Add 500 μl of 20% nitric acid to each well and incubate for 30 min. Aspirate the nitric acid solution and wash 

coverslips three times with deionized water. 

http://www.jove.com/
http://www.jove.com/
mailto:scweed@hsc.wvu.edu
http://www.jove.com/video/4119/
http://www.jove.com/video/4119/
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3.   Coat coverslips with 500 μl of 50 μg/ml poly-L-lysine (prepared from 0.1% stock solution and diluted in deionized water) 

to each well for 20 min at room temperature. Aspirate the solution and wash three times with PBS. Poly-L-lysine coating 

facilitates even coating and bonding of the overlying labeled gelatin. 

4.   Add 500 μl of 0.5% glutaraldehyde (made fresh before use) to each well and incubate the 24 well plates on ice for 15 min. 

Aspirate and wash three times with cold PBS. Be sure to remove all traces of PBS prior to gelatin coating. Keep plates on 

ice during all washes until gelatin is added. 

5.   Reconstitute the Oregon Green 488-conjugated gelatin as per manufacturer's protocol and warm it and the unlabeled 5% 

gelatin/sucrose solution from (1.1) to 37 °C. Dilute one part Oregon Green 488 gelatin into eight parts of unlabeled 

gelatin/sucrose (i.e.; 500 μl of Oregon Green 488 gelatin into 4 ml of 5% gelatin mixture). Pipet 100 μl of the diluted 488-

gelatin mixture (kept at 37 °C) onto each coverslip, using enough gelatin to coat the coverslip without manual spreading 

(which can lead to uneven coverslip coating as shown in Figure 3B). It is important to keep the diluted 488-gelatin mixture 

at 37 °C during the coating procedure to prevent premature solidification. From this step forward the coverslips should be 

kept in the dark as much as possible to avoid potential photobleaching. Other ECM proteins conjugated to different 

fluorophores can be substituted for Oregon Green 488 gelatin (see Discussion). 
 

6.   Once all coverslips are coated in a single plate, hold the 24 well plate at an angle and remove excess gelatin from each 

well by vacuum aspiration. Incubate coated coverslips in the dark for 10 min at room temperature. 

7.   Wash the coverslips three times with PBS, then add 500 μl of freshly made 5 mg/ml sodium borohydride (NaBH4) for 15 

min at room temperature to reduce and inactivate residual glutaraldehyde. Sodium borohydride is effervescent, and small 

bubbles will be evident on and around each coverslip. 

8.   Remove the NaBH4 solution by vacuum aspiration with a quick sweeping motion around the outside of each well. Take 

care not to pick up any floating coverslips that became detached from the bottom of the tissue culture plate during NaBH4 

treatment. Detached coverslips that float to the top may be gently pushed back down to the well bottom, but care must 

be taken to avoid damaging the protein coating. Wash each well three times with PBS and then incubate coverslips in 

70% ethanol for 30 min at room temperature. 

9.   Using sterile technique, transfer the coverslip-containing plates to a type IIA/B cell culture laminar flow hood and rinse 

coverslips three times with sterile PBS. At this point coverslips can be stored in PBS protected from light at 4 °C for at 

least two months. 

10. Transfer coverslips to be used for degradation assays to an empty well of a new 24 well plate by careful removal using a 

sterile needle and forceps. Equilibrate coverslips for 1-24 hr with complete media appropriate to the specific cell type 

being assayed. Care must be taken not to invert the coverslip or scratch the gelatin coating (see Figure 3B). 
 

2. Plating and Processing of Cells on Oregon Green 488-gelatin Coated 
Coverslips to Assay ECM Degradation 

 
1.   Seed 3-5x10

4 
cells onto a coverslip within each well of the 24 well plate. 

2.  Conduct a time course study to determine optimal times required for invadopodia degradation activity for the particular cell 

line/type of interest. Most invasive cells require a time between 4-24 h for degradation to become apparent, although this 

range can vary widely and should be empirically determined. To synchronize invadopodia activity, cells can be treated 

with MMP inhibitors (e.g., GM 6001) for a desired time period, then wash out the inhibitor to allow invadopodia activity to 

proceed (for example, see
6
). 

3.  Rinse coverslips three times with PBS, then fix cells with 500 μl of 10% buffered formalin phosphate for 15 min. Rinse three 
times with PBS and permeabilize for 4 min with 0.4% Triton X-100 in PBS. Rinse three times with PBS to remove the Triton 
X 100. 

4.   Label cells using any standard protocol for immunofluorescence staining (see 
7 

for example) by co-labeling cells with 

fluorescent conjugated phalloidin to visualize actin filaments (F-actin) and for a known marker protein that localizes to 

invadopodia (e.g; cortactin
5
, TKS5

8
, or N- WASp

9
).Remember to avoid using 488-labeled secondary antibodies or GFP-

labeled proteins if using Oregon Green 488 or FITC-labeled gelatin to prevent signal interference. 

5.   Mount stained coverslips onto glass microscope slides by carefully inverting the coverslip and placing it on a drop of 
ProLong Gold antifade or similar reagent. 

6.  To assess matrix degradation, image cells in appropriate channels using a conventional fluorescent or confocal microscope. 

Gelatin degradation is visualized as darker areas on the coverslip due to proteolytic removal of the fluorescent gelatin 

(Figure 4A). Labeling of cells for actin and an invadopodia marker protein allows for confirmation of invadopodia at sites 

of matrix degradation in merged images (Figure 4A). 

7.  Degradation activity can also be monitored in real time by live cell imaging with fluorescent-tagged recombinant proteins 

to track invadopodia formation and matrix degradation
5,10,11

. 
 

3. Quantification of Fluorescent Gelatin Degradation by Measuring Normalized 
Matrix Degradation 

 
This analysis provides the normalized area of matrix degradation relative to the area of the cells or the number of cells. It 

is useful for analyzing entire microscopic fields of view where multiple cells are present that have been collectively treated 

with siRNA, growth factors or therapeutic agents. For this analysis, images collected at lower magnification are sufficient 

to efficiently collect information about populations of cells. 

http://www.jove.com/
http://www.jove.com/


Journal of Visualized Experiments www.jove.com 

 

183 
 

 
1.  Open the images in ImageJ

12
. ImageJ for microscopy can be downloaded from http://www.macbiophotonics.ca/imagej/. 

2.  Check the scale information by choosing the menu command "Analyze/Set Scale." This information will import automatically 

with many file formats, but can be entered manually if required. Proper scaling is necessary to report measurements in 

microns rather than pixels. 

3.   Select the appropriate measurements to track by choosing "Analyze/Set Measurements." Check Area and Limit to 

Threshold. 

4.   Calculate the area of degradation using the fluorescent gelatin image (Figure 5A). 

5.  Threshold the image ("Image/Adjust/Threshold") to set the upper and lower pixel intensity values to select the areas of 

degradation (highlighted in red; Figure 5B). In subsequent images, use the Set button in the Threshold window to set the 

same threshold for all images as an objective means to select degradation area. 

6.   In some cases, the coverslip may not be perfectly flat when images are acquired. This causes the intensity of the gelatin to 

change across the image. If this variation creates problems when thresholding the image, correct for uneven illumination 

across the gelatin by subtracting the background ("Process/Subtract Background") or by filtering with a bandpass filter 

("Process/FFT/Bandpass Filter") or a pseudo flatfield filter ("Process/Filters/Pseudo Flatfield") until the background intensity 

is uniform. 

7.   Measure the area of matrix degradation ("Analyze/Analyze Particles"). In the Analyze Particles window, choose a particle 

size > 0 to remove noise from the selection. Show Outlines to identify regions of interest (ROIs). Check Display Results and 

Summarize to show measurements. If the drawing has specifically outlined all of the areas of degradation (Figure 5C), copy 

the Total Area measurement into a spreadsheet. If other objects were selected (such as debris), record only the areas of 

the relevant ROIs. 

8.   Calculate the cell area using the phalloidin stained (F-actin) image (Figure 5D). 
9.   Threshold the image ("Image/Adjust/Threshold") to set the upper and lower pixel intensity values so that the edges of the 

cells are selected (highlighted in red; Figure 5E). In subsequent images, use the Set button in the Threshold window to set 

the same threshold for all images as an objective means to select cell area. 

10. Measure the area of the cells ("Analyze/Analyze Particles"). In the Analyze Particles window, choose a particle size > 0 to 

remove noise from the selection. Show Outlines to identify regions for analysis (Figure 5F). Check Display Results and 

Summarize to show area measurements. Do not check Include Holes if there are spaces between cells in a cluster so the 

non-selected pixels within the cluster will not be included in the cell area calculation. Choose OK. 

11. Copy the Area results for relevant ROIs into a spreadsheet. 

12. Calculate the area of gelatin degradation per total area of cells
13

. 

13. An alternative approach would be to report the area of degradation per number of cells from counting nuclei (Figure 5G). 

This is necessary if manipulations alter the cell area between different compared treatment groups. Automatic counting 
works best if nuclei are well separated, uniform in intensity and round. Automatically count nuclei ("Plugins/Particle 
Analysis/Nucleus Counter"). Choose Smallest and Largest Particle Size, a Threshold Method and a Smoothing Method. 
Check Subtract Background, Watershed Filter, Add Particles to ROI Manager and Show Summary (Figure 5H). 

14. If nuclei overlap extensively or have an irregular shape or texture, automatic counting may not produce an accurate count 

(Figure 5H, arrows on right). In this case, manual counting can be facilitated using the cell counter tool ("Plugins/Particle 

Analysis/Cell Counter"). This will keep count as cells are marked during a manual count (Figure 5I). 

15. Copy the number of cells (nuclei) into a spreadsheet. Calculate the area of gelatin degradation per total number of cells. 
 

4. Quantification of Fluorescent Gelatin Degradation by Individual Cells in a 
Mixed Cellular 

Population 
 

To evaluate matrix degradation resulting from specific cells in a population apart from other cells within the field (e.g., 

transfected versus non- transfected cells), the procedure in section 3 can be modified to measure the area of degradation 

under individual cells. An additional fluorescent channel is needed to mark transfected cells. In this instance, higher 

magnification images and well-separated cells are easier to quantitate. 
 

1.   Check the scale information by choosing the menu command "Analyze/Set Scale." Select the appropriate measurements 

to track by choosing "Analyze/Set Measurements." Check Area and Limit to Threshold. 

2.   For individual cells that are not touching, identify each cell using the F-actin image (Figure 6A). Threshold the image (see 

3.9) (Figure 6B). It is important to capture the edges of the cells, but there can be holes inside that are not included in the 

threshold. Use the same intensity values across images to select cell boundaries. 

3.   To measure the area of the cells, use "Analyze/Analyze Particles." In the Analyze Particles window, choose a Size >0 (to 

eliminate noise), Show Outlines, and check Display Results, Add to Manager and Include Holes (to record the entire area 

inside the outline). Choose OK and record the Area for each cell from the Results window. 

4.   Identify which cells are transfected (Figure 6C). 

5.   Identify the areas of degradation using the fluorescent gelatin image (Figure 6D). If needed, filter the gelatin image to 

even background intensity (see 3.6). Threshold to select the areas of degradation, making note of the threshold settings 

(Figure 6E). On subsequent images, use these same upper and lower intensity values (using the Set button in the 

Threshold window) for an objective selection of areas of degradation. 

6.   Measure the areas of degradation under the cells. On the thresholded fluorescent gelatin image, show an outline of the 

cells by selecting ROIs in the ROI Manager window and selecting Measure (Figure 6F). Record the results and calculate 

the normalized area of degradation/ cell or cell area. 
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5. Representative Results 
 

The overall schematic for the procedure is shown in Figure 1. The procedure entails preparation of glass coverslips and 

coating with fluorescently-conjugated gelatin, plating of cells onto the coated coverslips to allow cells to degrade the gelatin, 

fixing and labeling of cells for fluorescence microscopic analysis, imaging the fluorescent matrix to assess the matrix integrity, 

and objectively quantifying the degree of gelatin matrix degradation using computer software. 
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Figure 1. Overall schematic highlighting the key steps involved in fluorescent gelatin coating, cell plating, fixing and 

immunolabeling, and evaluating matrix proteolysis. 
 

The key procedural steps involved in preparing and coating glass coverslips are outlined in Figure 2. 

 

 
 

Figure 2. Schematic demonstrating the individual steps involved in preparing glass coverslips for gelatin matrix coating. 

Steps conducted in the light (lit bulb), on ice (cubes) and in the dark (non-illuminated bulb) are cartoon indicated. Steps 

conducted in the dark help prevent photobleaching of the fluorescent matrices. 
 

When properly performed, coverslips are evenly coated with Oregon Green 488-conjugated gelatin, displaying homogenous 

fluorescence when visualized by microscopy (Figure 3A). Typical artifacts that can arise due to improper coating, handling, 

storage and usage of coated coverslips are shown in Figure 3B. 
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Figure 3. Examples of artifacts encountered during gelatin coated coverslip preparation and handling. A. Orthogonal view of 

a confocal z-stack showing the typical color and consistency of an Oregon Green 488-conjugated gelatin coated coverslip 

produced using the prescribed protocol. Coverslips should have a homogenous coating ~1-2 μm thick as shown in the X-Z 

(bottom) and Y-Z (right) confocal planes. B. Artifacts that 

can occur during the coating and processing of gelatin-coated coverslips include: Improper covering of the coverslip during 

the coating process due to poor mixing, manual spreading or partial solidification of the gelatin mixture (uneven coating), 

removal of the coated matrix by scoring with needles or forceps during handling (scrape), drying of the coverslip surface 

during prolonged storage periods, resulting in a "cobblestone" appearance (dehydrated) and photobleaching of the 

fluorescent gelatin surface during imaging due to prolonged or high intensity light exposure (bleaching). White arrow indicates 

bleached area encompassing a plated OSC19 head and neck squamous carcinoma cell. The Oregon Green 

488-conjugated gelatin is pseudocolored white to enhance image contrast. Bar, 10 μm. 
 

The resulting thin matrices produced during this procedure provide a sensitive means to evaluate the ability of cells to 

degrade ECM. Figure 4 demonstrates an example of invadopodia activity from an OSC19 cell plated on an Oregon Green-

488 conjugated gelatin coverslip and imaged by conventional confocal microscopy as well as by volume-fill image rendering 

following three dimensional deconvolution.
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Figure 4. Representative examples of invadopodia matrix degradation activity. A. Visualization of invadopodia and 

corresponding gelatin matrix proteolysis. OSC19 cells plated on Oregon Green 488-conjugated gelatin coverslips for 10 hr 

were fixed and labeled with rhodamine-conjugated phalloidin (F-actin) and anti-cortactin antibodies (visualized with an Alexa 

Fluor 647 secondary antibody and pseudocolored green). Invadopodia are evident as focal cytoplasmic concentrations of 

F-actin and cortactin that overlap with areas of gelatin clearing (dark holes in the matrix) within the merged image. Boxed 

regions containing arrowheads indicate individual invadopodia and areas of focal matrix proteolysis as shown in the 

enlarged regions below. Bar, 10 μm. B. Volume fill visualization of invadopodia penetration into the ECM. OSC19 cells plated 

and stained as in (A) were visually rendered by obtaining 23 successive 0.32 μm optical z-slices totaling 7.04 μm for 

rhodamine-conjugated phalloidin and Oregon Green 488-conjugated gelatin. The native LSM file set for each channel was 

opened in AutoQuant X2.2 software and a 3D blind deconvolution 

of each image stack was performed using the recommended settings (10 iterations, medium noise). The processed images 

were saved as TIFF stacks that were then opened in NIS Elements and rendered as a volume view with alpha blending. 

The LUTs were adjusted, and a subvolume was created to show an edge inside the cell where invadopodia are present. 

Dorsal-edge view demonstrates invadopodia (red, arrows) inserted into the underlying gelatin (green). Ventral-edge view 

shows protrusive invadopodia and areas of gelatin degradation underneath the coverslip as regions of red present in the 

green matrix (arrowheads). The total image field presented is cropped to 77 x 65 μm; the cell is~ 60 x 40 μm. 
 

Figure 5 shows some of the important steps for quantification of normalized gelatin matrix degradation as described in 

step 3 of the protocol. This procedure is designed to allow for unbiased quantitation of gelatin degradation in an entire 

field of view, and is suitable for matrix degradation attributed to many cells within the field. 
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Figure 5. Screen capture images demonstrating key steps in computational-assisted quantification of normalized gelatin 

degradation for cells within an entire microscopic image as described in protocol step 3. All fluorescent images have been 

converted to grayscale to better display the red thresholding and ROI markings. A. Image of Oregon Green 488-conjugated 

gelatin, showing dark areas ("holes") where degradation has occurred (step 3.4). B. Thresholded gelatin image highlighting 

areas of degradation in red (step 3.5). C. Drawing showing ROIs measured for area of degradation (step 3.7). D. Rhodamine 

phalloidin staining of F-actin (step 3.8). E. Thresholded actin image highlighting total cell area in red (step 3.9). F. Drawing 

showing cell areas to be measured (step 3.10). G. Image of DAPI-stained cell nuclei (step 3.13). H. Red outlines show results 

from automatic nuclei counting (step 3.13). The Watershed filter has the potential to separate nuclei that are touching (white 

arrow). If nuclei overlap extensively, they may not be separated into individual objects (red arrow). If a nucleus has an irregular 

shape, it may be separated into multiple objects (yellow arrow). I. Results from marking nuclei during a manual count using 

the cell counter tool (step 3.14). 
 

Figure 6. demonstrates select steps involved in quantifying fluorescent gelatin degradation by individual cells within a mixed 

cellular population as described in protocol step 4. Here, matrix degradation by transfected cells can be analyzed within a 

mixed population of transfected and non- transfected cells. 
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Figure 6. Screen capture images of steps involved in quantifying gelatin degradation from individual transfected cells within a cell 

population. Quantification of a single transfected OSC19 cell overexpressing recombinant cortactin fused to the FLAG epitope tag 

is shown as an example. All fluorescent images have been converted to grayscale to better display the red thresholding and 

yellow ROI markings. A. Confocal image 

of three cells labeled with rhodamine-phalloidin (step 4.2). B. Drawing of total cell area based on F-actin staining following 

application of the Threshold and Analyze Particles functions (step 4.2-3). C. Confocal image of anti-FLAG immunolabeling of the 

cell population demonstrating a single cell expressing FLAG-tagged cortactin (marked with *) (step 4.4). D. Image of Oregon 

Green 488-conjugated gelatin, showing dark areas ("holes") where degradation has occurred (step 4.5) E. Thresholded gelatin 

image highlighting dark areas of degradation in red (step 4.5). F. Thresholded gelatin image overlaid with cell outlines from panel 

B (step 4.6). Note that only the thresholded pixels within the cell outlines are counted in the analysis. Areas of degradation outside 

the current cell location (white arrow) result from cell migration across the gelatin over time and are not included in the analysis. 

 
Discussion 

 
The ability to visualize cells degrading the extracellular matrix has aided in discovering the molecular mechanisms employed in 

the early steps 

of cell invasion. Pioneered by Wen-Tien Chen in the early 1980's
4,14,15

, coating fluorescently labeled extracellular proteins on glass 

coverslips for subsequent microscopic analysis has emerged as the primary technique in evaluating invadopodia function across 

a wide range of cell types. The prescribed protocol demonstrates the basic method used for preparing gelatin-coated coverslips 

that form a collagenous layer less than 

2 μm thick suitable for detection of extracellular matrix degradation by cells in most conventional fluorescent and confocal 

microscopes
11,16-18

, similar to what has been previously described
19-21

. These properties allow for rapid production of coated 

coverslips capable of detecting the initial onset of matrix degradation. The sensitivity afforded by the resulting thin gelatin matrix 

on the underlying hard glass surface likely aids in promoting invadopodia formation as a response to the high inherent stiffness 

of the overall matrix environment
22

. However, these matrices are not well suited for analysis of invadopodia elongation or 

additional morphological evaluation that has been achieved using thicker (30-100 μm) gelatin layers with similar methodology, 

coated transwells or electron microscopy
20,23,24

. 
 

We have found that pre-conjugated commercially produced Oregon Green 488 gelatin allows for rapid experimental set up and 

consistent, reproducible results. However, alkaline borate conjugation of fluorescein isothiocyanate (FITC) to unlabeled gelatin 

remains a popular and inexpensive method for producing fluorescent gelatin conjugates
20

. Fibronectin is also used as an 

alternative matrix protein for labeling and coverslip coating
4,9

, and in some cases investigators have used labeled fibronectin 

layered onto unlabeled gelatin coated coverslips to create denser matrices
11,25

. Other matrices could be used, depending on the 

specifics of the cell type. In addition to dyes in the green 488 nm spectrum, a wide range of fluorophores have also been used 

with manual coupling methods to generate coverslips with different fluorescence spectra, including rhodamine
21,26

, Alexa Fluor 
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350
24

, 546
21

, 568
5,11

, 594
27 

and 647
5 

dyes. Such conjugates are easily adaptable for use in the prescribed protocol, providing the 

flexibility for utilizing specific ECM protein-dye combinations suitable for most any imaging filter set. 
 

The techniques described herein provide the necessary detailed steps for utilizing ImageJ to quantify gelatin matrix degradation 

attributed to individual cells in a heterogeneous population or to entire cell groups as published previously
6,28

. Proprietary software 

has also been successfully employed for the same purpose
5,25

. In this protocol, the area of matrix degradation is normalized to 

either the total area of the cells or the 

total number of cells (nuclei) in the field. Generally, both options for normalization will give the same result (ELW, data not shown). 
However, if 

different cell lines having different sized cells are being compared or if the experimental treatment causes cells to change size, 

then it may be 
 

more accurate to normalize to cell number. On the other hand, many cancer cell lines have a high percentage of multi-nucleated 

cells, in which case total cell area may be a more accurate parameter for normalization. Also, if only part of a cell is captured in 

an image (Figure 6), it may 

be better to normalize to cell area rather than underestimate the degradation potential for an individual cell. It is important to 

optimize the image analysis to best suit the characteristics and nuances of the specific experimental setup. 
 

For determining cell numbers in a crowded field, counting nuclei is often the method of choice. ImageJ has a nucleus counter 

plugin for automatic counting. One option in this tool is the Watershed filter. This filter will help separate nuclei that are touching 

by segregating them into individual objects (Figure 5H, white arrow). However, this filter may not be able to separate nuclei that 

overlap extensively (Figure 5H, red arrow). In addition, if a nucleus has an irregular shape and large variations in intensity, the 

filter may separate a single nucleus into multiple objects (Figure 5H, yellow arrow). Therefore, it is important to try different 

thresholding and smoothing methods in this plugin to determine the 

best parameters for analysis. If the automatic counting does not produce accurate numbers, the cell counter plugin can facilitate 

manual counting of cells or nuclei. 
 

In cases utilizing transient transfection, images will often contain a mixture of cells expressing or not expressing a protein of 
interest (Figure 

6). In this scenario, it is not always apparent which cells were responsible for creating areas of matrix degradation. This is 

especially true if the cells are migrating across the gelatin. To be consistent in the analysis, it is important to only measure the 

degraded areas directly underneath each cell. By thresholding to select the dark areas in the matrix and using the actin to generate 

cell outlines, only the degraded areas under the cells will be quantitated. This procedure will exclude degraded areas outside of 

cell boundaries from analysis (Figure 6F, arrow). The assay may require optimization to select a time point that allows sufficient 

time for degradation before the cells have had a chance to move. 
 

Numerous methods have been developed to quantitate invadopodia formation and function. In addition to matrix degradation, 

other frequently reported parameters include determining the number of invadopodia per cell, the percentage of cells displaying 

invadopodia within a given population, and the number of "immature" or "pre" non-degrading invadopodia compared to "mature" 

invadopodia capable of degrading the ECM
11,13,25,26

. The method(s) of choice for invadopodia evaluation depend on inherent 

characteristics of each cell type. For instance, counting the number of invadopodia per cell or determining the percentage of cells 

containing invadopodia is a straightforward approach that works well if the analyzed cells contain just a few prominent 

invadopodia, but becomes more difficult in cells that have dozens of invadopodia or where invadopodia may be small and difficult 

to detect. Using the degradation assay makes it possible to calculate the percentage of pre-invadopodia vs. mature invadopodia 

in single cells or in a population by comparing the total number of cells with invadopodia to the percentage that are 

degrading matrix. If there is a discrepancy where fewer cells are degrading matrix compared to cells displaying invadopodia, it 
may indicate that 

these cells are forming pre-invadopodia that were incapable of matrix degradation at the time the cells were fixed. 
 

Whatever method combination is chosen for analysis, it is important to quantify the desired invadopodia characteristics as 

objectively as possible. When collecting images on the microscope, choose fields by looking at cells (actin), rather than the 

fluorescent matrix, to avoid bias from preferentially selecting areas with high levels of degradation. Multiple images should be 

acquired to ensure a fair representation of the cell population. Images should also be acquired at an appropriate magnification. 

For uniform populations of cells, lower magnification can be used to collect more cells as long as the areas of degradation can 

still be resolved. Higher magnification images are preferred to measure areas under individual cells and to resolve individual 

invadopodia. When areas are being quantitated, thresholding images based on intensity 

is more objective than manually choosing the area of the matrix to measure. In all cases, a sufficient number of cells from multiple 

independent experiments should be analyzed to give statistically meaningful, reproducible results. 
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Short Abstract 

 
This protocol describes the application of high frequency ultrasound (HF US) for imaging 
mouse cervical lymph nodes.  This technique optimizes visualization and quantification 
of cervical lymph node morphology, volume and blood flow.   Image-guided biopsy of 
cervical lymph nodes and processing of lymph tissue for histological evaluation is also 
demonstrated. 
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Long Abstract 

 
High frequency ultrasound (HF US) is widely employed as a non-invasive method for 
imaging internal anatomic structures in experimental animal systems.  HF US has the 

ability to detect structures as small as 30 m, a property that has been exploited for 
visualizing  superficial  lymph  nodes  in  rodents  in  brightness  (B)-mode.    Combining 
power Doppler with B-mode imaging allows for measuring circulatory blood flow within 
lymph nodes and other vessel-containing organs.  While HF US has been utilized for 
lymph  node  imaging  in  a  number  of  mouse  model  systems,  a  detailed  protocol 
describing HF US imaging and characterization of the supraclavicular lymph nodes in 
mice has not been reported.  Here, we show that HF US can be adapted to detect and 
characterize cervical lymph nodes in mice.  Combined B-mode and power Doppler 
imaging can be used to detect increases in blood flow in immunologically-enlarged 
cervical nodes.  We also describe the use of B-mode imaging to conduct fine needle 
biopsies  of  cervical  lymph  nodes  to  retrieve  lymph  tissue for  histological  analysis. 
Finally, software-aided steps are described to calculate changes in lymph node volume 
and to visualize changes in lymph node morphology following image reconstruction. 
The ability to visually monitor changes in cervical lymph node biology over time provides 
a simple and powerful technique for the non-invasive monitoring of cervical lymph node 
alterations in preclinical mouse models of oral cavity disease. 
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Introduction 

 
Lymph drainage of interstitial tissue fluid is the main method of dissemination for infectious 
microorganisms and cancers arising in the oral and maxillofacial region1,2. Clinical 
evaluation of cervical lymph nodes is a common diagnostic practice used to determine 
the presence or progression of diseases that originate in the oral cavity.  This underscores 
the importance of the collecting supraclavicular lymph nodes as valuable anatomic sites 
for oral disease diagnosis3.  Several specialized imaging methodologies are clinically 
utilized for identifying diseased cervical lymph nodes. These include positron emission 
tomography (PET), computed tomography (CT) and magnetic resonance imaging (MRI).  
While highly valuable, these methods all require extensive patient preparation, highly 
specialized equipment and/or chemical infusion into the circulation to enable or enhance 
the imaging process. 

 
Sonographic imaging (ultrasound; US) is a commonly applied technique used to image 
cervical lymph nodes presenting with lymphadenopathy due to infection or metastatic 
involvement4-6.  US is often combined with PET-CT and MRI imaging to provide a 
comprehensive representation of patient lymph node status, helping to determine tumor 
staging and necessity for surgical excision7.  The non-invasive nature of US also has 
additional inherent advantages over other imaging modalities, including ease of use, low 
cost, minimal patient discomfort and preparation.  The superficial subcutaneous location 
of most cervical lymph nodes allows for US to guide minimally invasive fine needle 
aspiration biopsies with increased precision, improving diagnostic accuracy8. 

 
Commercial high frequency (HF) US provides detailed resolution of internal anatomic 

structures to 30 m9.  When combined with suitably sized transducers, HF US has been 
readily applied to a variety of experimental rodent systems to allow real-time imaging of 
internal organs in vivo.  HF US has been adapted for visualization of tumor formation in 
conventional brightness (B)-mode, as well as with a number of general and specialized 

contrast enhancement agents9.  Using power Doppler with HF US provides the ability to 
monitor blood flow within mouse tumors, allowing a comprehensive assessment of 

angiogenic perfusion in live mice10,11.  The resolution capability of HF US has been used 
to visualize diseased mouse lymph nodes within the main body cavity, demonstrating 
parallel utility of this technology to clinical practice. In particular, inflammatory and 
metastatic visceral lymph node alterations have been observed in mouse models of 

cancer harboring breast12,13, pancreatic14, colorectal15 and lung16 tumors, as well as 

fibrous histocytomas17.  These examples solidify the value of HF US as a powerful 
investigative tool for tumor-induced lymphadenopathy in a wide variety of rodent systems. 

 
Several models of bacterial infection18,19 and head and neck squamous cell carcinoma 
(HNSCC)20,21 have been developed to study these diseases in the preclinical setting.  In 
contrast to humans, mice contain three supraclavicular lymph nodes that survey lymph 
from oral cavity tissues (mandibular, accessory mandibular and superficial parotid;22). 
Recently, we reported the use of HF US to map the location and morphology of these 
lymph  nodes,  monitoring  changes  in  lymph  node  volume  and  blood  flow  in  a 
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carcinogen-induced mouse model of HNSCC23.  Here, we provide a detailed protocol for 
the use of HF US for identifying, imaging and analyzing cervical lymph nodes in living 
mice.  This protocol also demonstrates the feasibility of using HF US to conduct image- 
guided fine needle biopsy of enlarged mouse cervical lymph nodes, allowing histological 
monitoring of changes in cervical lymph node content and pathologies over time in the 
same animal.   This protocol is readily adaptable to allow for the detailed study of 
cervical lymph node pathologies resultant from any invasive oral cavity disease in mice. 



 

197 
 

Protocol 

 
All animal procedures demonstrated in this protocol have been reviewed and approved 
by the West Virginia University Animal Care and Use Committee under protocols 11- 
0412 and 14-0514. 

 
1.  Animal Preparation 

 

1.1  Anesthetize a single mouse in an induction chamber using 3% isofluorane mixed 
with 1.5 L/min 100% oxygen.  Remove the animal from the induction chamber and place 
in a  supine  position  on  the  imaging  platform  preheated  to  40  °C  and  maintained 
between 37- 42 °C (Figure 2A). 

 

1.2  Position the mouse snout within the nosecone connected to the anesthesia system. 
Apply anesthesia to maintain steady state sedation (1.5% isofluorane mixed with 1.5 

L/min 100% oxygen). 
 

1.3  Apply eye lubricant the each eye to prevent drying.  Apply electrode gel to the 
electrodes and use tape to secure each of the four paws to the corresponding electrode. 
Lubricate and insert the rectal temperature probe for continuous monitoring of body 
temperature. 

 

1.4  Use depilatory cream to remove the fur from the neck of the mouse.  Rinse the 
neck  region  with  water  to  remove  hair  and  excess  depilatory  cream.   A second 
depilatory application may be needed to remove any remaining body hair (Figure 1B). 

 
2.  Identification and Image Acquisition of Mouse Cervical Lymph Nodes using HF 
US 

 
2.1  To begin, apply a layer of ultrasound gel to the neck area devoid of fur.  A liberal 
application of gel is required for optimal image quality (Figure 1C).  Avoid introducing air 
bubbles in the gel during application, which can interfere with ultrasonic imaging. 

 

2.2  Adjust the imaging platform so the mouse is positioned with the head slightly 
elevated.  Place the 40 MHz transducer in the adjustable clamp and carefully lower it 
until the front of the transducer scanhead is immersed in the ultrasound gel (Figure 1C). 

 

2.3  Adjust the brightness (B-)mode settings to the following parameters: Gain 22 dB, 
depth 10.00 mm, width 14.08 mm. These settings are a suggested starting point, and may 
require slight adjusting for optimal image acquisition between different applications. 
Cervical lymph nodes typically appear as bean-shaped hypoechoic structures near the 
skin surface within a surrounding hyperechoic field.  The following steps are used to 
systematically image all lymph nodes within the neck region: 

 
2.3.1  Use the Y-axis to scan the neck in a cranial to caudal manner towards to 
thoracic region. Use X-axis to center the image. 
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2.3.2  Identify major landmarks: cheek pouch, tongue, and thyroid gland (Figures 
3A, B and C; respectively); tilt the imaging stage to flatten the image, making both 
sides of the neck appear even in the B-mode image.  The amount of tilting depends 
upon the physiology of each individual mouse. 

 
 

2.4  Conduct a 3D scan of the entire neck region 
  

2.4.1 Locate the tongue/cheek pouch region (Figure 3A) and note the numerical 
location on the Y scale. 

 
2.4.2  Locate thyroid gland (Figure 3C) and note the numerical location on 
the Y scale. 

 
2.4.3  Calculate the difference between the obtained values in (2.4.1) and (2.4.2) 
to determine the total length in millimeters for the imaged neck region. 

 
2.4.4  Center the transducer on the midpoint of the determined total length. 

 
2.4.5 Press “3D”.   Enter the total length.   For 3D step size, use 0.076 mm to 
acquire the image series stack for the entire neck region. 

 
2.5  Once scanning is complete, select the right or left side of the neck and center the 
transducer on an individual lymph node of interest, then raise the 40 MHz transducer off 
the mouse.    Remove the 40 MHz transducer and replace with a 50 MHz microscan 
transducer to obtain higher-resolution images.  Replenish the ultrasound gel on the 
mouse neck and lower the 50 MHz transducer into the ultrasound gel. 

 
2.6  Conduct 3D scans of individual cervical lymph nodes as follows: 

 
2.6.1  Press the Power button on the system keyboard to acquire power Dopper 
and adjust the following power-mode settings: PRF 4 KHz, Doppler gain 34 dB, 
2D gain 30 dB, depth 5.00 mm, width 4.73 mm.  As before, these settings are a 
suggested starting point and may need to be modified as needed for optimal image 
acquisition in various models. 

 
2.6.2  Locate the cranial-most point of the lymph node of interest and note the 
location on the Y scale. 

 
2.6.3  Locate the most caudal point of the same node and note the location on 
the Y scale. 

 
2.6.4  Calculate the distance difference to determine the total length of the lymph 
node. 
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2.6.5  Center the transducer on the midpoint of the determined total length. 
 

2.6.6  Press “3D” and enter total lymph node length.  Use 0.051 mm for the step 
size. 

 
2.6.7  Due to the proximity of the transducer to the chest region, the 50 MHz 
transducer may result in an unstable Doppler image due to detection of normal 
respiratory motion.  This can be eliminated by using the “Respiration Gating” option 
available under the “Physiological” tab. 

 
2.6.8  Surround the selected lymph node with the yellow box that designates the 
region to be analyzed by power Doppler and select “3D scan” to acquire images. 
Raise the transducer off of the mouse and move it to the opposite side of the 
neck.   Lower the transducer onto the mouse and repeat the steps described 
above to image lymph nodes on this side of the neck. 

 
2.7 Save image sets for subsequent analysis. 

 

3.  Cervical Lymph Node Biopsy 
 

3.1  Select the desired lymph node for biopsy and maintain HF US imaging with the 50 
MHz transducer.  We chose the largest visible cervical lymph node in each side of the 
mouse neck.  Lymph node enlargement typically indicates an inflammatory response, and 
therefore such nodes are ideal candidates for biopsy.  In addition, we have found it is very 
difficult to conduct biopsies on cervical nodes smaller than 10mm3. Prepare the needle 
and syringe for biopsy by placing a 1 ml syringe with an attached 27 G, 0.5 inch needle 
into the syringe holder.  Adjust the needle holder to orient the needle 90 degrees to the 
mouse neck (Figure 4A). 

 

3.2   Prepare the stage by elevating the entire mouse platform to the level of the needle. 
This can be achieved by removing the 3D motor and switching to a taller platform, or by 
placing a solid object of suitable height under the provided short platform.  A plastic 
microfuge tube rack is suitable for this purpose.  If necessary, rotate the stage 180 
degrees to biopsy nodes located on the side of the neck opposite to the needle apparatus. 

 
3.3  Adjust the acquisition settings by selecting “Preferences”, then choosing “Max & 
Extended buffer”.  Enlarge the field of view to a depth of 8.00 mm and width of 9.73 mm. 
Turn on the needle guide using the Screen Keys dial. 

 
3.4  Ensure that the lymph node remains constantly in view by centering the lymph node 
in the middle or slightly to the left of center in the screen (Figure 4B).  To obtain the entire 
cine loop of the procedure, press Pre-trigger on the system keyboard before beginning 
the biopsy. 

 

3.5  Adjust the needle holder until the needle tip comes into view and contacts the skin 
(Figure 4B).  Advance the needle with a firm, fast push to puncture the skin.  Continue 
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to advance the needle until the tip also punctures the capsule (Figure 4C) and is visible 

within the medulla (Figure 4D). 

 

3.6  Once the needle is properly located within the node, gently pull the syringe plunger 

back between the 200-300 l demarcations to conduct the biopsy (Figure 4D and 4E). 
Note that biopsy material is typically not visible within the syringe. 

 

3.7  Gently remove the needle from the mouse neck.  Expel the syringe contents into 
a1.5 ml microfuge tube.  Remove the needle from the syringe, leaving the needle in the 
tube. Collect 1 mL of biopsy media with the same syringe, and then reattach the needle 
to the syringe while keeping the needle in the tube. Rinse the syringe and needle with the 
biopsy media by expelling the biopsy media into the tube. Do not pull back on the plunger 
while the needle is attached at any point after the biopsy.  This reduces the risk of 
losing the biopsy material due to the small sample size. 

 
3.8  Confirm lymph node content by histological means (Figure 4F) and analyze by 
additional methods (histochemistry, flow cytometry, etc.) as appropriate. 

 
3.9  Once biopsy is complete, turn off the anesthesia and remove the rectal temperature 
probe.   Remove excess ultrasound gel from mouse with gauze and remove the tape 
from each paw. 

 
3.10 Remove the mouse from the imaging platform and return to a cage.  Minimal 
bleeding from injection site will occur, but this stops without intervention.  Monitor the 
mouse during recovery until full activity is resumed. 

 

4.  Image Analysis of Cervical Lymph Nodes 
 
4.1  In the ultrasound software, select the image for analysis and navigate to the “Image 
Processing” tab. Choose “Load into 3D”. 

 
4.2  Select “3D Reconstructed Image” in top left corner, clicking on the “Display Single 
Pane” button.  Use the zoom function to enlarge the image if desired. Toggle “Display 
Layout” to view the image only in B-mode, which removes the power Doppler overlay from 
view. This makes it easier to see the edges of the lymph node during subsequent 
3-D analysis.  Scroll through the image series to locate the beginning of the lymph node. 

 

4.3  To circumscribe the lymph node, navigate to the “3D Settings” tab. Select “volume”, 
then the “Start” button next to “Parallel”. 

 

4.4  Draw contours around the area of interest within each image by scrolling through 
the image stack with the computer mouse wheel.  Continue until the all images that 
encompass the entire lymph node are marked. Choose “Finish” to complete the analysis. 

 

4.5    At the bottom of the image, 3D volume and % vascularity will be automatically 
displayed.   3D volume corresponds to the lymph node volume, and % vascularity 
represents the percentage of the lymph node positive for blood flow by power Doppler. 
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4.6 Toggle “Display Layout” to view the power Doppler imaging as an overlay on the B- 
mode image. The surface view shows a net view of the volume area of interest. 
Images can be exported in tagged image file (TIF) format or 3D scans as movies (.avi) 
for further use. 
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Representative Results 
 

 
 

The overall schematic for the imaging and biopsy procedures is shown in Figure 1. The 

key steps in the procedure include proper preparation of the mouse for imaging, 
identification of the cervical lymph nodes, correct preparation and conducting of the 
needle biopsy, and analysis of B-mode and Doppler images to measure volume and the 
amount of vascularity within each selected node using computer software. 

 
HF US imaging of mouse cervical lymph nodes requires applying and maintaining 
proper anesthesia throughout the imaging period (Figure 2A), as well as complete 
removal of the hair covering the entire neck area (Figure 2B).  The liberal application of 

ultrasound  gel  to  the  depilated  region  ensures  a  clear  HF  US  signal  during  the 
procedure (Figure 2C). 

 
HF US imaging of the neck region is aided by the visualization of cervical anatomical 
landmarks that produce characteristic sonographic images.  Figure 3 shows examples 
of the key organs (Figure 3A-C), imaged cervical lymph nodes in B-mode (Figure 3D) 
and in power Doppler mode (Figure 3E). 

 
Real-time HF US imaging in anesthetized mice allows for guided fine needle biopsy of 
cervical nodes similar to what is conducted in clinical practice.  Placement of the biopsy 
needle and attached collection syringe to the controlling microinjector equipment is shown 
in Figure 4A.  Subsequent B-mode sonographic images show ideal needle placement 
prior to biopsy (Figure 4B), needle tip entry into a cervical lymph node (Figure 4C), and 
needle position during biopsy (Figure 4D).  Close-up image shows the needle tip within 
the medulla of the lymph node (Figure 4E).  Processing of the biopsy components by 
cytospin reveals abundant lymphoid cell clusters and associated connective tissue, 
verifying successful lymph node biopsy (Figure 4F). 

 
Computational-based analysis of HF US images allows for detailed information to be 
obtained regarding lymph node architecture, volume and vascular flow. Using power 
Doppler  mode  and  3D  volume  measurements,  percent  vascularity  (PV)  can  be 
calculated from image series encompassing entire nodes (Figure 5A).  Additionally, 3D 

imaging allows for virtual lymph node reconstruction, revealing overall lymph node 
topography (Figure 5B). 
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Figure Legends 

 
Figure 1.  Overview schematic of the steps involved in diagnostic HF US cervical 
lymph node imaging in mice.  The key steps include 1: Preparing the mouse for HF US 

imaging and obtaining 40 and 50 MHz resolution images of the neck region containing the 
three mouse cervical lymph nodes.  2:  Fine needle image-guided biopsy of cervical lymph 
nodes and subsequent histological analysis of biopsied material and 3: Computer-aided 
image analysis and 3D reconstruction of lymph node images obtained in B-mode and 
Doppler to determine the respective lymph node volume and percent (%) of vascular flow. 

 
Figure 2.  Overview of the high resolution in vivo micro-imaging system for cervical 
lymph node assessment and biopsy. A. The HF US system is shown with an 

anesthetized mouse prepared for cervical lymph node imaging.  Also shown is the 
microinjector (MI) and 3D-motor stage (3D MS) accessory equipment. B.  Close up view 

of an anesthetized mouse prepared for HF US imaging with hair removed in neck region. 
C.  The same mouse with the 50 MHz transducer in place on the neck. Note the extra 

ultrasound gel used to facilitate neck region imaging. 
 
Figure 3. Representative HF US cervical anatomy images in B- mode and power 
Doppler.  A,B.  B-mode images of the oral cavity, showing the cheek pouch (CP) and 
tongue (T) visualized by imaging closest to the mouse snout.  Three cervical lymph 
nodes are found on each side of the neck (LN), occasionally appearing as a group of 
hypoechoic structures in a single imaging plane (B). C. The thyroid gland (Th) is visualized 

in the upper thoracic region, appearing as a solid, echogenic butterfly- shaped structure. 
Images A-C were visualized with a 40 MHz transducer, scale bar = 1 mm.  D,E.  
Representative images of normal (D) and enlarged (E) cervical lymph nodes with B-mode 
and power Doppler (red). Dotted lines outline individual lymph nodes. Scale bar = 0.5 
mm. 

 

Figure 4. Cervical lymph node biopsy set-up, imaging and cytospin analysis of 
biopsy material. A. The imaging platform showing the micro- injector and needle 
placement near the mouse neck. A wide microcentrifuge tube rack is used to slightly raise 
the platform (orange block), enabling proper needle placement while still allowing space 
for the 3D-motor stage.   This arrangement minimizes time spent removing the motor 
stage for each mouse. B-D. Whole neck HF US images taken from a video of a cervical 
lymph node biopsy using the 50 MHz transducer. B. HF US B- mode image showing the 

needle positioned to the side of the neck prior to biopsy. The needle tip is the hyperechoic 
structure just below the position of the needle guide (green dotted line) superimposed 
during imaging to denote the needle trajectory. The lymph node is in the center of the 
image.  Scale bar = 1 mm.  C. Needle entry into the lymph node. D. Biopsy of the cervical 
lymph node.  E. Zoomed biopsy of cervical lymph node. Scale bar = 0.5 mm. F. Cytospin 
analysis of representative biopsy lymph material confirming successful biopsy.  Scale bar 
= 100 µm. 

 
Figure 5. Computer analysis of 3D cervical lymph node images. A. Representative  

screenshot of a lymph node analyzed using computer software.  The node is circumscribed 
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in blue; analysis results show 3D Volume and percent vascularity (PV) as indicated.  B.  A  

surface  view  image  of  the  same  node  after  3D  analysis. Renders entire volume of 
lymph node based on measurements taken in A. 
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Discussion 

 
The described protocol allows for the visualization and in situ evaluation of murine cervical 
lymph nodes using non-invasive HF US imaging.   The use of B-mode and power 
Doppler imaging to visualize cervical lymph node morphology, volume and lymph node 
blood flow provides for an experimental analysis of preclinical mouse model systems 
similar to that used for the characterization of cervical patient nodes in clinical practice.  
The ability to monitor the supraclavicular lymph nodes via fine needle biopsy also 
provides a useful technique for detecting immune cell alterations and the presence of 
foreign cell types or bacteria during oral cavity disease-induced lymphadenopathies in 
mice.  The ease of use of use and low cost associated with HF US allows for the 
rapid screening of cervical lymph node status in a wide variety of animal models. 

 
A critical step in this protocol is the initial successful identification of the cervical lymph 
nodes in HF US images.  Use of oral cavity and thyroid as imaging landmarks greatly 
aids in orienting the user to the proper region where the lymph nodes are localized.  The 
characteristic bean-shape, hypoechoic nature and superficial location close to the skin 
surface allows for rapid confirmatory identification of the cervical lymph nodes within the 
proper neck region. While all three nodes may be visible in a single imaging plane (Figure 
3B), typically one or two nodes are captured during imaging.  Minor adjustments of the 
transducer position can be conducted to render different imaging planes visible, allowing 
visualization of all nodes on a single side of the neck. 

 
The superficial nature of mouse cervical lymph nodes confers excessive mobility when 
even slight pressure is applied to the skin via the transducer head.   This can be 
counteracted by slowly applying the transducer head into the ultrasound gel on the mouse 
neck until the landmark images are identified.   Lymph node mobility can also 
complicate the fine needle biopsy, especially when using transducers in the higher 
resolution (50 MHz) range.  Centered images of lymph nodes for biopsy are typically 
pushed out of the field of view due to the force of the biopsy needle needed to puncture 
the overlying skin and capsule.  This can be remedied by the off-center positioning of 
the lymph node towards the direction of needle entry, providing space for the lymph 
node to be pushed across but still remain within the field of view during biopsy. 

 

HF US has been used to successfully visualize orthotopic HNSCC tumors24, and has 

the potential to monitor cervical node metastasis in mice with oral tumors23.  In addition to 
ultrasound, bioluminescence imaging has also been used to visualize orthotopic oral 

tumor formation and cervical lymph node metastasis in live mice25,26.  Bioluminescence 
imaging has a distinct advantage in being able to directly quantify tumor progression 
and metastatic burden over time in the same animal.   While undeniably useful, 
bioluminescence imaging is unable to measure many of the parameters visualized by 
HF US, including lymph node morphology, nodal volumes or blood flow. Bioluminescence 
imaging also requires specialized dark boxes to maintain mice during imaging,  rendering  
this  technique  unsuitable  for  adaptation  for  fine  needle  biopsy. 
 
Furthermore, bioluminescence imaging requires production of tumor cells that stably 
express the luciferase enzyme, allowing this technique to be used only in cases of 
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orthotopic xenografts with luciferase-transfected tumor cells in immunocompromised 
mice, or with inducible tissue-specific transgenic systems that restrict luciferase 
expression  in  a  spatio-temporal  manner  specific  to  the  tissue  of  tumor  origin.    In 
contrast, HF US can be used in conjunction with bioluminescence images in these 
models,  as  well  as  being  capable  of  imaging  cervical  lymph  nodes  in  models  of 

carcinogen-induced oral tumors in mice with complete immune systems27,28.  While HF 
US may be more adaptable to most mouse models of oral cancer, the combined 
information that can be obtained from bioluminescence and HF US imaging in systems 
where tumor cells express luciferase can provide a more complete picture of cervical 
lymph node involvement than either imaging modality alone. 

 
The ability to identify and detect mouse cervical lymph nodes in real time allows for this 
technique to be used in most models of oral disease that result in inflammatory 
lymphadenopathy where the animal can be maintained in an inverted position under short-
term anesthesia.  Detection of lymph node metastasis or bacterial infection and the 
concomitant impact on lymph node morphology in living animals presents a significant 
benefit over traditional methods that require lymph nodes to be removed from dead 
animals for histological processing.  Combining HF US with fine needle biopsy allows a 
means for conducting routine pathological analysis of cervical lymph nodes, similar to 
what is conducted in the clinic, providing an improved method for monitoring disease 
progression in most current mouse models of oral cavity diseases. 
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