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ABSTRACT 

 

Movement ecology of Philippine birds of prey 

 

Camille B. Concepcion 

 

Movement ecology is an emerging paradigm important to conservation biology and 

to the protection of global biodiversity. I used two common, but poorly known 

Philippine birds of prey as study tools in understanding movement ecology. One 

species is the migratory grey-faced buzzard (Butastur indicus), a raptor that which 

visits the islands in large numbers in winter. The other is the resident Philippine 

serpent eagle (Spilornis holospilus) which lives there at relatively high population 

density year-round. I used migration data at two terrestrial hawkwatch sites to 

assess how weather correlates influenced the movement behaviors of grey-faced 

buzzards. The grey-faced buzzard was the second most common raptor migrant 

using the Philippines as part of their migration route. My models show that they are 

more likely observed, either initiating or completing over-water crossings, in 

headwinds. I also created spatial models to understand how grey-faced buzzards 

overcome movement barriers (i.e. ocean). Modeled buzzard routes across the 

Philippines were between 1,582 and 2,970 km, and all repeatedly crossed water. 

Some of the routes overlapped at long and unavoidable over-water crossings. My 

models suggest that the optimal strategy for these birds is to find the shortest route 

to an exit point with the greatest possible access to stopover habitats and fewest 

over-water crossings under wind resistance. Additionally, I used road survey data to 

determine habitat associations of Philippine serpent eagle abundance across central 

and eastern Mindanao. My model showed that detection probability for the 

Philippine serpent eagle is relatively low, and the probability of occupancy was 

highest in near-pristine forests, especially low elevation dipterocarp forests. My 

road surveys helped establish the beginning of the breeding season for the 

Philippine serpent eagle. They also provided initial information on wintering 

habitats for grey-faced buzzards. This work is cutting-edge ecology and also 



 

provided natural history information about species for which there is almost no 

existing knowledge. 
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RATIONALE 

The Philippines is one of the most speciose and most threatened of global 

biodiversity hotspots (Myers et al. 2000, Hannah et al. 2013). However, the 

archipelago has experienced, and continues to experience, high rates of 

deforestation, estimates of which  range from 217 km2 to 2000 km2 of forest loss 

annually (Lasco and Pulhin 2000, Bankoff 2007). The problem is so severe that 

today, only 3% of the Philippines’ original 275,000 km2 primary forest remains 

(Myers et al. 2000, Bankoff 2007). If secondary forests are included, total forest 

cover is estimated at 12% (Catibog-Sinha and Heaney 2006). Consequently, the 

country is recognized as a priority area for reducing decline in agricultural 

productivity and biodiversity loss under projected  climate change (Myers et al. 

2000, Hannah et al. 2013). 

Understanding the impacts of this habitat fragmentation and loss on Philippine 

biodiversity is essential to conserving populations of the species that remain. To do 

this, it is crucial to understand how movement of individuals interacts with 

demography to impact animal ecology and response to habitat change (Nathan 

2008).  

For example, habitat fragmentation can drive spatial and temporal changes in avian 

populations by affecting territory size and dispersal (Rolstad 1991). Raptors may be 

relatively more impacted by habitat change than other birds because they occur at 

relatively low densities and have relatively large home ranges, and because they are 

often persecuted by humans.  

The Philippines has 29 diurnal birds of prey species (Kennedy et al. 2000). With the 

exception of work on the endemic and critically endangered Philippine eagle 

(Pithecophage jefferyi; Gonzales 1968, Kennedy 1981, Salvador and Ibanez 2006) 

and a few other birds of prey, the vast majority of these species have gone largely 

unstudied.  
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The Philippine eagle is a useful umbrella for conservation because survival of its 

population continues to be threatened by habitat loss, decline in prey abundance, 

demographic instability and threat of disease (BirdLife International 2001). These 

threats are mostly driven by human actions and are not necessarily independent of 

each other. Conservation of this iconic species depends on better understanding of 

the processes and conditions that have supported its continued existence. For 

example, although it is known that juveniles will spend more time at the forest edge 

than the adults, the effects of frequent movement outside the forest borders on 

juvenile dispersal and survival is yet to be established (Afan et al. 2000).  

As a rare species of great cultural importance, the Philippine eagle is quite difficult 

to study because there are so few individuals left, encounter rates are low and there 

are massive legal and logistical hurdles to its study. If information is needed about 

this and other endemic Philippine raptors, it would make more sense to focus on 

common species and draw inferences about them that could then be applied to 

harder to study species. With this in mind, this study focused on two common but 

poorly researched Philippine raptors as a mechanism to understand movement 

ecology of Philippine raptors in a heavily fragmented tropical ecosystem. These are 

the migratory, winter resident grey-faced buzzard (Butastur indicus) and the non-

migratory, year-round resident Philippine serpent eagle (Spilornis holospilus).  

I studied two common species because (a) common species should occur in larger 

numbers than rare species, ensuring a good sample size and greater statistical 

power; (b) by studying two species with different ecologies, I can more fully 

understand how habitat change impacts the suite of local raptors; and (c) the rarity 

and legal protection of the highly-endangered species creates logistical hurdles that 

make research on those taxa nearly impossible. Thus, these two common species are 

intended to serve as both indicators of general trends in biodiversity in the 

Philippines and also proxies for less common but ecologically similar taxa.  

I will adopt the conceptual framework for movement ecology defined by Nathan et 

al. (2008). Movement ecology is a paradigm that provides common context and tools 
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towards a “better understanding of the causes, mechanisms, patterns, and 

consequences of all movement phenomena” (Nathan 2008). This framework is 

based on three basic components that characterize the study individuals (internal 

state, motion capacity and navigation capacity) and a fourth basic component 

related to external factors that affect movement.  

The internal state accounts for the physiological conditions that provides the 

motivation (goal) for an individual to move. Motivations for movement may include 

factors as variable as seeking a safe place to spend winter, reproduce and establish a 

territory. The ability of an individual to move to fulfill these goals is referred to as 

motion capacity, while the ability to orient movement in time or space are related to 

navigation capacity.  

Movement may occur at different spatiotemporal scales – “movement step,” 

“movement phase,” or “lifetime track” (Nathan et al. 2008). A movement step is a 

displacement from one location to another. A movement phase, on the other hand, is 

a sequence of steps and stops associated with fulfilling a particular goal. A complete 

sequence of steps and stops from birth to death is a lifetime track.  

Understanding the movement behavior of an individual is important to understand 

spatial population dynamics (Patterson et al. 2008, Schick et al. 2008). Movement 

behavior also relates to how individuals mix and interact with the population and 

community (Morales et al. 2010) and is influenced by body condition. These in turn 

impact fitness, vital rates, energy balance, and food provisioning. Further, 

movement of individuals shape biodiversity by providing links between habitats or 

ecosystems and by facilitating coexistence in communities (Jeltsch et al. 2013). 

The use of extrinsic or intrinsic markers is a common approach in studying 

movement ecology. Extrinsic markers involve the use of telemetry or individual tags 

which are both direct ways of monitoring movement (Kendall and Nichols 2004). 

Telemetry, for example, has allowed researchers to gather vast amounts of data on 

animal positions that together are used to establish movement phases (Cagnacci et 

al. 2010). These data have also been used to relate movement to external factors 
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such as landscape properties (Bennetts and Kitchens 2000, Cagnacci et al. 2010) and 

meteorological conditions (Mandel et al. 2008, Sunde et al. 2014). Intrinsic markers, 

on the other hand, can either be biological (e.g. morphological and behavioral) or 

biogeochemical (e.g. trace element concentrations and stable isotopes) (Rubenstein 

and Hobson 2004). For example, stable isotope analysis has been used to establish 

foraging preferences and migration connectivity for birds (Inger and Bearhop 

2008). Results from stable isotope analysis could be enhanced by combining it with 

other markers, such as bird banding or telemetry (Van Wilgenburg and Hobson 

2011).  

FOCAL SPECIES 

The grey-faced buzzard is a migratory bird of prey that breeds in eastern mainland 

Asia and winters in Southern China and parts of Pacific Asia (Ferguson-Lees and 

Christie 2001). It regularly engages in over-water travel during migration and is 

considered one of the most oceanic of raptor migrants (Bildstein 2006). Every year, 

more than 10,000 grey-faced buzzards migrate through Taiwan before crossing 180 

kilometers of open ocean to reach the Philippines (Lin and Severinghaus 1998). 

Grey-faced buzzards exhibit high fidelity to both migration route and to stopover 

sites (Shiu et al. 2006) and the species’ passage is a good indicator to identify 

important watchsites (Lin and Severinghaus 1998). 

The grey-faced buzzard is said to occupy open habitat and typically hunts outside 

the forest (Gamauf et al. 1998, Sakai et al. 2011). It favors foraging in wet open 

areas, most commonly cultivated rice paddy fields, where it hunts prey such as 

frogs, lizards and grasshoppers (Matsuura et al. 2005, Wu et al. 2006, Kadowaki et 

al. 2007). The rice fields more often used share edges with forests or wooded areas. 

These are also the characteristic of the preferred migration stop-over sites, and 

wintering and breeding habitats (Matsuura et al. 2005, Ueta et al. 2006, Wu et al. 

2006, Sakai et al. 2011).  The loss of these habitats through the abandonment of 

traditional rice paddy fields has led to the well-documented rapid decline in grey-
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faced buzzard breeding population in Japan (Kawakami and Higuchi 2003, Ueta et 

al. 2006).   

The Philippine serpent eagle is a common resident of the Philippines which is 

endemic to the main islands of the archipelago (Ferguson-Lees and Christie 2001).  

There currently are poor data to support any accurate population estimate for this 

species, but it is believed that there are about 10,000 breeding individuals in the 

country. Movements of these birds are almost completely unknown and it is in fact, 

one of the least known raptors in the world (Meyburg 1986, Ferguson-Lees and 

Christie 2001).  

The Philippine serpent eagle occupies habitat with over 50% canopy cover and 

hunts above the forest (Gamauf et al. 1998). Although primarily found in forests, it 

may also occupy “edge” habitats, wooded foothills and open country with scattered 

trees (Ferguson-Lees and Christie 2001). Foraging ecology of the Philippine serpent 

eagle is believed to be comparable with crested serpent eagle sub-species, preying 

mostly on reptiles, small mammals, and birds.  

OBJECTIVES 

My research objective was to link movement behavior to seasonal movement and 

distribution. Understanding this link will help predict how disturbance and habitat 

change may alter biodiversity and ecology in these heavily fragmented tropical 

ecosystems.  

The main questions my research answered were: 

1. How do external factors shape movement behavior?  

2. How does the inherent capacities of the species to move influence the 

“movement phase” when confronted with ecological barriers? 
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3. How does the individual internal state direct movement steps and associated 

behavior? 

Studying two species of birds of prey whose movement ecology differs allowed me 

to evaluate comprehensively their conservation status as well as the impacts of 

human disturbance and land-use change on these two important components of the 

Philippine raptor community. 

To address my first research question, I specifically aimed (1) to quantify external 

factors (e.g., weather) that influence grey-faced buzzard migratory performance; 

and (2) to identify landcover characteristics that render areas suitable as Philippine 

serpent eagle territory.  

To address my second research question, I built spatial models to predict grey-faced 

buzzard migration routes and bottlenecks across the Philippines. 

To address my third research question, I presented notes on Philippine serpent 

eagle breeding behavior as well as grey-faced buzzard wintering distribution. 

METHODS 

Study area 
My research took me to different islands of the Philippines. I made the remote town 

of Basco in the province of Batanes, and Cape San Agustin in the province of Davao 

Oriental as the center of my grey-faced buzzard research (Figure 1).  Basco is at the 

northernmost tip of the country, perfect for monitoring the passage of birds using 

the East-Asian Oceanic Flyway as they cross 180 km of ocean from Taiwan to the 

Philippines. Cape San Agustin is at the southeastern tip of the island of Mindanao, 

allowing for monitoring of migrant birds as they cross 170 km of ocean to presumed 

destinations in Indonesia.  
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I targeted five sites in the south of the country, on the island of Mindanao, for 

studying the resident Philippine serpent eagle (Figure 1). These areas were 

identified according to their varying habitats (in terms of forest type, disturbance 

and elevation), as follows: 

 Lantapan, Bukidnon (a near-pristine, high elevation montane forest); 

 Arakan, North Cotabato (a severely disturbed, high elevation montane 

forest); 

 Davao City (a moderately disturbed, high elevation montane forest) ; 

 San Isidro, Davao Oriental (a near-pristine, low elevation Dipterocarp forest); 

and  

 Governor Generoso, Davao Oriental (a moderately disturbed low elevation 

Dipterocarp forest)  

These areas belong to different biogeographic regions, but their land cover is 

broadly representative of the Philippines as a whole. In the north, in Batanes, 

habitats are coastal areas and lowland old-growth and secondary evergreen forests. 

The island is dominated by hills and mountains and peaks at around 1,000 meters 

above sea level. The province experiences subtropical, Type II climate, with no dry 

season and a marked rainy season peak from December to February (DOST-PAGASA 

2004). 

Mindanao habitat ranges from lowland rainforests to high elevation montane 

forests. Lowland rainforests has been highly degraded by logging. The highest point 

on the island of Mindanao reaches 2,954 meters.  The study sites range from coastal 

hills to inland mountain ranges. Mindanao has mostly Type IV tropical climate with 

rainfall more or less evenly distributed through the year (DOST-PAGASA 2004). 
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Data collection 

Question 1. How do external factors shape movement behavior? 

I answered this question by assessing how the grey-faced buzzard’s migratory 

movement phase was influenced by external factors. A migratory movement phase 

for the grey-faced buzzard is a sequence of steps and stops in seeking a safe place to 

spend winter. External factors expected to influence movement phases of Philippine 

birds of prey are landscape properties and meteorological agents. Landscape 

properties were defined by combining land cover and land use information.  

I used the established technique of monitoring the visible migration of birds at 

migration watchsites to study how the grey-faced buzzard used the Philippine 

landscape. My project was the first to use full-season, bird of prey migration 

monitoring in autumn in the Philippines. Movement data collected via direct 

observation was then connected to datasets on weather (wind speed and direction 

are critical to ocean crossings by most species) and on land-use.  

Counts at a single watchsite occurred from August through November, during 

daylight hours from 0600 to 1700h, as weather permitted (Bildstein et al. 2007). I 

stopped data collection in the event of strong rains or typhoon. Locations and 

directions of flight were determined using a GPS and compass. 

I spotted migrating raptors by methodically using binoculars, field scopes and the 

unaided eye to scan the sky in the direction the migrants were expected. Single 

individuals or flocks were followed until identified and, for each group of birds, I 

recorded the time, counted the number and established the species and direction of 

travel. I recorded migration and weather data on datasheets I patterned after the 

Hawk Migration Association of North America. Weather data were logged hourly 

and recorded using a handheld anemometer or weather station. 

I used migration data to assess how weather influenced the grey-faced buzzard’s 

movement phase. The decision to migrate, and to cross open ocean, were then 

statistically correlated to weather conditions that the birds encounter. This allowed 
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me to predict expected migration flights given a set of weather conditions as I 

establish and assess other hawkwatches in the future. 

Similarly, I answered this question by assessing how the Philippine serpent eagle’s 

movement phases are influenced by the Philippine landscape. A movement phase of 

an adult serpent eagle is a sequence of steps and stops in seeking either a safe place 

to reproduce or, in the case of immatures, a safe place to establish a territory for 

immature birds. To understand distribution and habitat associations, I successively 

visited each of the five study sites at the beginning of the breeding season 

(November) and conducted time constrained surveys. With the aid of binoculars, I 

conducted road transects to census for bird abundance, counting from a vehicle at 

an approximate speed between 25 to 40 km/h (Andersen et al. 1985, Viñuela 1997). 

I covered 10 km in each site, looping through habitat types (forests and open areas). 

For one of my survey years, I supplemented this with surveys from fixed 

observation posts located on ridge tops, cleared hills and near logging roads that 

would offer a vantage of the forest and forest edges. Locations of the road transects 

and observation posts were determined using a GPS. I recorded observations on 

datasheet I patterned after the Hawk Migration Association of North America. 

I used population survey and mark-resight analysis to estimate occupancy and 

detection. I linked these with movement behavior based on habitat associations.   

Question 2: How does the inherent capacities of the species to move influence the 

“movement phase” when confronted with ecological barriers? 

I established how the ocean, an important ecological barrier, influenced movement 

phases by studying the grey-faced buzzard, one of the world’s most oceanic raptor 

migrants. As previously mentioned, to reach the Philippines, the grey-faced buzzard 

crosses the Bashi Channel, a 180-km stretch of the Pacific Ocean found between 

Taiwan and the Philippines. 

Ecological barriers considered in this study are not necessarily complete barriers to 

movement. Instead, I define them as landscape features that penalize movement 
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duration and/or incur an additional risk of mortality once crossed (Bélisle and St. 

Clair 2001, Alerstam 2001).  

The ocean has largely been thought of as a physical and ecology barrier to 

movement that causes detours in migration routes and carries an added energy cost 

(Alerstam 2011). However, recent studies of ocean raptor migration suggest that the 

ocean may instead be an ecological corridor (López-López et al. 2010) that is shaped 

by the flexible response of migrants to wind and ocean currents (Klaassen et al. 

2011, Mellone et al. 2011). 

I created spatially explicit models to compare how the grey-faced buzzard’s 

movement varies in response to environmental parameters. I started by establishing 

the spatial temporal distribution of wind variables that provide better support for 

grey-faced buzzard motion capacities. I also established potential movement stops. 

Based on this, I built spatially explicit models comparing cost distances to address 

how movement phases were adjusted according to the ocean as a barrier.  

Question 3: How does the individual internal state direct movement steps and 

associated behavior? 

One internal state is finding a safe place to spend winter. I used my population 

surveys to present some initial observations regarding the winter distribution of 

grey-faced buzzards around central and eastern Mindanao.  

Another internal state is establishing a new territory and reproduction. I similarly 

used my population surveys, to present natural history information for the 

Philippine serpent eagles.  

LIMITATIONS OF THE STUDY 

Most of my results are based on data collected using direct observation. For this 

reason, most of my research on grey-faced buzzards are on the visible migration of 

raptors. I was also only able to do single season migration counts for each of my 

watchsites. These counts were completed in different years. My observations 
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though, remain particularly important because so few over-water crossings have 

been studied outside of Europe. 

I was able to establish a fruitful relationship with indigenous trappers, experienced 

in capturing grey-faced buzzards. However, the birds we got in hand had 

compromised wings, and were not fit for telemetry. This prevented me from testing 

hypotheses from my spatial models.  

Further, all my attempts at capturing Philippine serpent eagles failed. Despite this, I 

conducted three years of road surveys along the same transects. This provided me 

with good quality data that was useful for answering one of my research questions. 

The road surveys were also useful in helping build natural history information for 

the Philippine serpent eagle.  

NATURAL HISTORY INFORMATION 

As mentioned, there have been few attempts at studying birds of prey in the 

Philippines. Even basic natural history information is lacking for most of these 

species. For example, it was my road surveys that established the beginning of the 

breeding season for Philippine serpent eagles (question # 3). I first observed 

Philippine serpent eagles in courtship display in October of 2014. The following 

year, in November, I observed a pair in mutual flight, with one adult carrying nesting 

material. This information is new to science. Unfortunately, I had limited field time 

and was not able to find an active Philippine serpent eagle nest. 

Road surveys were also useful for gathering initial information on wintering 

habitats for grey-faced buzzards (questions # 3). I found grey-faced buzzards to 

occupy a wide range of habitats, both open areas and forests, and near-pristine to 

severely disturbed landcover. Grey-faced buzzards were also found in both low 

elevation and high elevation forests. Unfortunately, I did not have enough 

observations of grey-faced buzzards to estimate either wintering survival or 

occupancy correlates.  
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CONTENTS OF THE DISSERTATION 

My dissertation comprises five chapters. This first chapter provides a brief 

introduction to the study, goals and objectives, research approach and limitations. It 

also provides notes from observations in the field that do not completely answer 

any of my research questions but are relevant towards answering them in the future 

with further investigation.   

Chapter 2 provides the context for studying birds of prey in the Philippines by 

examining the conservation threats and status of birds of prey found in Asia first. In 

this chapter, I describe how birds of prey in Asia are faring relative than birds of 

prey elsewhere in the world. I identified the Philippines as one of the most speciose 

countries and one of the countries that has the most threatened species.  

In Chapter 3, I use hawk migration data to assess how external factors (i.e. weather 

correlates) influence the movement behaviors of grey-faced buzzards (question # 

1). I first described the overall patterns of migration as hawks complete and begin 

their oceanic crossings in the Philippines. I then compared migration behavior of 

grey-faced buzzards with migration behavior of Accipiters. These two species were 

the most common migrants observed using the East Asian Oceanic Flyway. 

In Chapter 4, I used road survey data to determine habitat associations of Philippine 

serpent eagle distribution across central and eastern Mindanao (question #1). I put 

my findings in context by looking at raptor abundance, and comparing the 

correlates of Philippines serpent eagle distribution (habitat specialist) with the 

correlates of distribution of a habitat generalist. 

Finally, in Chapter 5, I created spatial models to understand how grey-faced 

buzzards overcome movement barriers (question # 2). I created models to explain 

the optimal migration strategy of hypothetical grey-faced buzzards as they 

repeatedly face the decision of completing, delaying, or foregoing over-water travel.  
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Figure 1. Geographic locations of study areas around the Philippines. Left inset shows the entire Philippines. Figure part (A) 
shows the location of the watchsite () at Basco and part of Taiwan, which is 180 km north, and mainland Luzon of the 
Philippines, 280 km south. Top right map (B) shows the location of the watchsite () at Cape San Agustin found in the island 
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of Mindanao, as well as the northernmost islands of Indonesia (Sulawesi), 170 km south. Bottom inset (C) shows the 
distribution of areas where 10-km road transects ( ) where surveyed. Areas shaded grey in c have at least 50% tree cover 
and are from Bartholomé and Belward  (2005) and Hansen et al (2013). Outlines in c show town boundaries of study sites.  
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ABSTRACT 

Asia is the largest and most populous continent in the world and features one of the 

world’s greatest assemblages of raptors. Here, we summarize Asian raptor diversity, 

along with the threats that many of these species face across their annual lifecycle, 

and identify key conservation priorities. Asia has 105 species of hawks, eagles and 

vultures, 22 falcon species and 108 owl species. Of these, 81 are globally Threatened 

and Near-Threatened; with 8 listed as Critically Endangered, 11 as Endangered, and 

22 as Vulnerable, and 40 as Near-Threatened. Among 150 non-threatened raptor 

species, populations of 39% are decreasing. Agriculture and aquaculture, biological 

resource extraction and pollution are the most significant threats. Forests and 

anthropogenic terrestrial areas are most commonly occupied by Asian raptors and 

are the most used land-use types for Threatened and Near-Threatened species. 

Within the continent, south and southeast Asia have comparatively greater raptor 

diversity and the highest endemism than do any other continental region. Eight of 

the ten countries that have the greatest number of Threatened and Near-Threatened 

species are found in south and southeast Asia. Our review of the literature indicates 

that raptors in Asia are relatively more at risk than elsewhere in the world.   
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INTRODUCTION  

With long coastlines and some of the world’s most important rivers, mountain 

ranges, high-altitude plateaus, and islands, Asia is the largest and most populous 

continent in the world  (Lyde 1904, Spencer 1954, Population Reference Bureau 

2016). Asia supports all major terrestrial ecosystems and all major climatic types 

(Galloway et al. 1998, Braimoh and Huang 2015). These include barren icefields and 

taigas in north Asia, boreal forests and cold deserts in west, central and east Asia, 

temperate and tropical forests (wet and dry) in east and southeast Asia, and 

grasslands in central and south Asia (Udvardy 1975, Braimoh and Huang 2015). 

Together, the ecoregions of Asia foster some of the greatest biodiversity on Earth, 

including six (24%) of 25 global biodiversity hotspots (Myers et al. 2000).  

With 47% of the world’s Threatened and Near-Threatened raptor species (Table 1), 

Asia is home to 42% of the world’s diurnal and nocturnal raptor species, including 

30% of all migratory species, and 51% of all endemic species. With the exception of 

work on raptors in tropical Asia (i.e. southeast Asia; Thiollay 1985, 1998, Bildstein 

1998), the Gyps vultures of south Asia (Prakash et al. 2003, 2012, Gilbert et al. 2004, 

Shultz et al. 2004, Acharya et al. 2009, Hall et al. 2011, 2015) and a few other 

country-level studies, the population status of the vast majority of these species has 

gone largely unstudied. The raptors of south and southeast Asia provide a useful 

umbrella for conservation because the survival of their populations continue to be 

threatened by land-use change, direct human persecution and environmental 

contaminants (Bildstein 1998, Thiollay 1998). These threats rarely act in isolation 

and are directly or indirectly caused by human activities. Raptors are especially 

vulnerable to these threats because of their life history traits, and because they 

occur at relatively low population densities and in relatively large home ranges 

(Newton 1979, 1998, Real and Mañosa 1997, Hall et al. 2015). 
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Threats to Asian raptors 
Of the threats that Asia’s raptors face, land-use change is most significant. 

Agriculture has modified natural landscapes more than any other human activity 

and among the most rapidly expanding agricultural industries are oil palm Elaeis 

guineensis and rubber Hevea brasiliensis (Clay 2004). The conversion of natural 

landscapes greatly reduces species richness and diversity (Aratrakorn et al. 2006, 

Beukema et al. 2007, Fitzherbert et al. 2008, Sodhi et al. 2010). Loss of raptor 

habitats can also drive spatial and temporal changes in avian populations by 

affecting territory size and dispersal (Rolstad 1991).  

Land-use change also can carry over to loss of habitat of prey species and the 

consequent reduction in prey abundance. Declines in prey abundance could result in 

decreases in nesting density and reproductive success of predatory avian 

populations (Andersson 1978, Newton 1980, Terraube et al. 2011). Decline in prey 

abundance also can cause conflict with humans if domestic animals are taken as 

alternative prey (Carrete et al. 2007).  

Land-use change magnifies the threat of human persecution as encounters with 

people increase in fragmented and human-impacted landscapes. Humans have long 

intentionally destroyed nests, and shot and poisoned raptors they consider as pests 

(Newton 1979, 1998, Bildstein 2001). Human persecution has resulted in raptor 

population declines by reducing reproductive rates and pre-adult and adult survival 

(Whitfield et al. 2004a, 2004b, Tenan et al. 2012), and has  caused range retractions 

and local extinctions of raptor populations (Newton 1998, Smart et al. 2010).  

Environmental contaminants and secondary poisoning  also severely impact Asian 

raptor populations (Newton 1979, 1998, Sheffield 1997, Oaks et al. 2004a, Shultz et 

al. 2004). Pesticides (Ratcliffe 1970, Mineau et al. 1999, Jagannath et al. 2008), and 

heavy metals (Solonen and Lodenius 1984, Wallin 1984, Lourenço et al. 2011) are 

known to reduce survivorship or impair raptor reproductive success. Anticoagulant 

rodenticides (Stone et al. 2003, Lambert et al. 2007), pharmaceuticals (Oaks et al. 

2004a), and lead (Kramer and Redig 1997, Fisher et al. 2006, Gangoso et al. 2009) 

can weaken or directly kill individuals.  
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Below we summarize raptor diversity in mainland and oceanic Asia. We then 

describe the threats that many of these species face, and identify priority species 

and essential steps for their conservation. We close with a section on poorly known 

species in Asia and opportunities to fill knowledge gaps that will benefit 

conservation of raptors in this immense but poorly studied continent.  

METHODS 

We define Asia as the area that includes Asiatic Russia in the north, Indonesia in the 

south (including West Papua, although the avifauna of New Guinea is predominantly 

Australasian) and from Japan in the east to Uzbekistan, Turkmenistan, Afghanistan 

and Pakistan in the west (Figure 1). Although the Middle East is, geographically, part 

of Asia, its avifauna is composed predominantly of European and African species, 

and we do not consider this area in our treatment of Asian raptors.  

Distributions, conservation statuses, threats, raptor habitat and taxonomy were  

based on BirdLife International (BirldLife International 2017). BirdLife 

International provides the most extensive data on the world’s bird species and has 

been compiling data on threatened bird species since 1966. They are the designated 

Red List Authority for birds (IUCN 2017). BirdLife regularly assess species at a 

global level and update their database based on published information and data 

collected by 120 partner organizations worldwide (one partner for each country). 

BirdLife provided us with a database of Asian raptor species including information 

on Red list category, migratory status, and current population trend. The database 

also includes country of occurrence and land cover types occupied (13 categories). 

Threats (11 classifications) to globally threatened and near-threatened species are 

also available.  

We summarize the overall Asian raptor diversity and break down the information 

according to threats, regions, and countries. Regions are also based on BirdLife 

International (BirldLife International 2017). We look at overall population trends 

and population trends per land cover type, again using BirdLife International (2017) 
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data. Subspecies are not differentiated in our summaries. We also consulted 

Ferguson-Lees and Christie (2001) for distribution and population trends but 

followed BirdLife’s taxonomic convention.  

RESULTS  

Asia is home to 235 raptor species (Table 1). In total, Asia has 8 Critically 

Endangered raptor species (Table 2), 11 Endangered, 22 Vulnerable, and 40 Near-

Threatened species, with a majority of species (64%) listed as Least Concern. 

Twenty-six percent of Asia’s raptors are migratory and 31% are endemic to a single 

country (Table 1).  

Of Asia’s raptors, 105 are hawks, eagles and vultures (Accipitriformes), distributed 

among 30 genera (Table 1). Of these, 19% (n = 20) are globally Threatened and 13% 

(n = 13) are Near-Threatened. Forty percent of Asia’s hawks, eagles and vultures are 

migratory, and 18% are endemic to a single country. The continent is home to 22 

falcon species, in 3 genera. Of these, 5% (n = 1) are globally Threatened and 23% (n 

= 5) are Near-Threatened. Forty-five percent are migratory and 41% are endemic to 

a single country. Asia is also home to 108 owl species, in 14 genera. Of these, 19% (n 

= 20) are globally Threatened and 19% (n = 21) are Near-Threatened. About 7% are 

migratory and 48% are endemic to a single country.  

Overall, Asia’s raptors are faring slightly worse than average raptors elsewhere in 

the world (Table 1). A greater proportion of Asia’s owls (19%) and migratory 

species (12%) are Threatened compared to similar species elsewhere in the world 

(owls: 18%, migratory species: 8%). There is also a greater proportion of Asia’s 

owls (19%) and migratory species (8%) that are Near-Threatened compared to 

species elsewhere in the world (owls: 11%, migratory species: 6%). Additionally, a 

greater proportion of Asia’s falcons (23%) and endemic species (31%) are Near-

Threatened compared with falcons and endemic species elsewhere in the world 

(falcons: 14%, endemic species: 22%).  
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Of the threats to Asian raptors, agriculture and aquaculture (e.g. livestock, wood and 

non-timber crops, and freshwater and marine aquaculture) and biological resource 

extraction (logging, hunting) are thought to be the greatest threats to Asia’s eagle, 

hawk, vulture and owl species (Table 3). Pollution and biological resource 

extraction are thought to be the greatest threats to Asian falcons. Secondary threats 

to these taxa include these same forces as well as changes to land cover, 

urbanization, and energy production.  

Of Asia’s 235 raptor species, populations of 57% (n = 133) are decreasing (Figure 2). 

This includes 97% (n = 33) of globally Threatened and Near-Threatened species of 

hawks, eagles and vultures, all 6 globally Threatened and Near-Threatened falcon 

species, and 88% (n = 36) of globally Threatened and Near-Threatened owl species. 

Among the 150 non-threatened raptor species, populations of 46% (n = 32) eagles, 

hawks and vultures, 31% (n = 5) of falcon species, and 33% (n = 21) of owl species 

are decreasing.  

Among the 13 land-use types, forest, man-made or anthropogenic terrestrial (e.g. 

degraded forests, plantations, arable land, rural gardens and urban areas), 

shrubland, grassland and wetlands were the most commonly occupied by Asian 

raptors (Figure 3). Forests are most important for 86% (n = 202) of Asia’s raptor 

species, and a disproportionately high number (36 of 41) of Asia’s globally 

Threatened raptor species are found in forests. Additionally, although 

anthropogenic terrestrial land use appears to be acceptable habitat for Least 

Concern species, 44% (n = 18) of globally Threatened, and 54% (n =22) of Near-

Threatened species are found here as well. Finally, 21% (n = 17) of globally 

Threatened and Near-Threatened species occupy shrubland, 20% (n = 16) occupy 

grassland, and 16% (n = 13) occupy wetlands.    

At a sub-continental (regional) scale, north Asia (Figure 1) has 61 raptor species, 

80% of which migrate (Table 4). Although the region has no endemic raptors, its 

ecosystems are important breeding areas for globally threatened species including 

Steller’s Sea Eagle Haliaeetus pelagicus and Blakiston's Fish-owl Bubo blakistoni. 
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North Asia has no Critically Endangered species (Table 2), 4 Endangered, 4 

Vulnerable, and 4 Near-Threatened species.  

West and central Asia (Figure 1) have 59 raptor species, 75% of which migrate 

(Table 4). The region has no endemic raptors, but includes important areas for 

globally threatened and rare species, including Eastern Imperial Eagle Aquila 

heliaca, Steppe Eagle Aquila nipalensis, Red-footed Falcon Falco vespertinus and 

Saker Falcon Falco cherrug. West and central Asia has 2 Critically Endangered 

species (Table 2), 3 Endangered, 3 Vulnerable, and 7 Near-Threatened species.  

East Asia (Figure 1) has 96 raptor species (Table 4). There are no endemic species in 

this region, and 59% of its raptors migrate. All of Asia’s migratory owls are in east 

Asia. The region’s notable raptors include Steppe Eagle, Pallas’s Fish-eagle 

Haliaeetus leucoryphus, Saker Falcon and Amur Falcon Falco amurensis. East Asia 

has 2 Critically Endangered species (Table 2), 4 Endangered, 5 Vulnerable, and 7 

Near-Threatened species.  

South and southeast Asia has the greatest raptor diversity, with 219 species, only 

20% of which migrate. Endemism is also highest in this region: 74 species are found 

only in Asia. South and southeast Asia also has the highest number of globally 

Threatened and Near-threatened species, including 8 Critically Endangered (Table 

2), 10 Endangered, 21 Vulnerable and 39 Near-Threatened. Important species in 

this region include the critically threatened vultures of the Indian subcontinent, as 

well as two of the most evolutionarily distinct and globally threatened raptors in the 

world, the Forest Owlet and the Philippine Eagle.  

We identified ten Asian countries that have the most Threatened and Near-

Threatened species (Table 5). Among these countries, eight are in south and 

southeast Asia and the remaining are in north and east Asia. These ten countries 

have 231 of the 235 raptor species of Asia, including 72 of the 74 Asian endemics. 

Because of the inclusion of China, Russia and India, they also include the vast 

majority of the land mass of the continent. China, Russia and India also have the 

highest number of migratory species (51, 48 and 46 species, respectively). 
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Indonesia and the Philippines have the highest number of endemics – 39 and 23, 

respectively – 54% and 74% of which are globally Threatened and Near-

Threatened. Additionally, Indonesia (29%) and the Philippines (38%) also have the 

highest proportion of globally Threatened and Near-Threatened species.  

DISCUSSION 

Overview 
Our review indicates that Asia’s raptors are faring slightly worse than average 

raptors elsewhere in the world. Asia’s owls and migratory species are at greater risk 

than similar raptors elsewhere in the world. Additionally, more falcons and endemic 

species are close to qualifying for a threatened category in the near future than 

falcons or endemic species elsewhere in the world.  

Perhaps not surprisingly, forest is the most frequently used land type and a vast 

majority of Threatened and Near-Threatened species are found here. What is 

surprising is that anthropogenic landscapes such as degraded forests and forest 

plantations appear to be the second most frequently used land type for Threatened 

and Near-Threatened species. Forests are also the most used by most of Asia’s 

endemic species, and once again artificial landscapes, the second most important. 

Largely treeless ecosystems, like shrublands and grasslands, and inland wetlands 

are also frequently used by Asia’s raptors. However, only a small proportion of 

Threatened and Near-Threatened species are found in each of these land cover 

types. Out of Asia’s endemic species, only four endemic owls are found here.  

In all likelihood, this does not mean that degraded forests or plantations, for 

example, are of equal quality to natural landscapes, such as forests. These 

anthropogenic land-use types may be used, but are still of low quality for 

reproduction or survival (Watson 1992, Donovan and Thompson 2001, Battin 2004, 

Carrete et al. 2009). It is therefore important for researchers and conservation 

practitioners to not just determine occupancy of individuals in different land cover 

types, but to evaluate population structure as well, in order to ascertain whether the 
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use of these altered areas is a result of optimized selection or lack of choice (Van 

Horne 1983).  

Threats 
Agriculture and aquaculture, biological resource extraction, and pollution are the 

most common threats to Asia’s raptors. Combined, the threats that raptors in Asia 

face can be grouped into indirect effects and two kinds of direct effects on raptor 

populations (threats that lead to unintentional fatalities and those that lead to 

targeted removal of individuals from a population).  

Indirect effects 

Indirect effects of land-use change and disturbance are the most significant threat to 

Asia’s raptors. Raptors may be relatively more impacted by habitat change than 

other birds because they occur at relatively low densities,  have relatively large 

home ranges, and because they are often persecuted by humans (Newton 1979, 

1998). For example, land use change reduces available suitable space and might 

alter home range sizes (Andersson 1978). If degradation occurs on a large enough 

scale, it can reduce breeding densities by birds that are forced to occupy larger 

home ranges (Newton 1980, Amar et al. 2011). Fragmentation additionally creates 

movement barriers for individuals and affect the movement of individuals among 

suitable areas (Harrison and Emilio 1999, Bélisle and Desrochers 2002, Harris and 

Reed 2002).  

The effects of land-use change are likely to grow as Asia’s economy and 

infrastructure grows, and those effects are difficult to reverse, especially in tropical 

areas (Brooks et al. 2006). Agriculture, specifically, has been responsible for 

converting ~13 million hectares of previously untouched forests to croplands 

globally every year over the past 30 years (Clay 2004). Agriculture also remains the 

most widespread occupation for Asian people and agricultural production has been 

growing alongside industrial production (Galloway et al. 1998, The Association of 

Academies of Sciences in Asia 2011). Looking forward, it is estimated that between 
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2000 and 2050, 10 billion hectares of natural landscapes in the world will be 

converted to agriculture (Tilman et al. 2001).  

In tropical Asia, for example, in the past 40 years oil palm plantations have 

expanded faster than any other type of food or industrial agricultural crop (Clay 

2004). Malaysia and Indonesia currently have over half of the world’s total oil palm 

plantation area. In these two countries, although pre-existing croplands were 

converted to oil palm plantations, over half of oil palm cultivated areas replaced 

native forests (Koh and Wilcove 2008). Further, between 1910 and 1940, rubber 

plantations in Indonesia increased ten-fold (Burger and Smit 2001). Seventy percent 

of all rubber tree plantations are currently in Malaysia, Indonesia and Thailand 

(Clay 2004). By the year 2024, the expansion of rubber plantations is expected to 

continue and it is estimated that 4.3 to 8.5 million hectares of forests and swidden 

land would be needed to answer the global rubber demand (Warren-Thomas et al. 

2015).  

The expansion of agriculture has also impacted natural grasslands. Grasslands are 

heavily used by certain raptor speciesand are one of the most endangered 

terrestrial ecosystems (Hoekstra et al. 2005). West and central Asia, in particular, is 

a global stronghold for natural grasslands (Hoekstra et al. 2005), and, as a result of 

the region’s low densities of human populations, until the mid-1900s central Asian 

ecosystems were largely pristine (Zlotin 2002). However, steppe was targeted by 

the Virgin Lands project of the USSR and between 1953 and 1963 an estimated 23 to 

25 million hectares of semi-desert grasslands were ploughed and converted to 

agriculture (Kamp et al. 2011, Kraemer et al. 2015) which has had negative 

consequences for raptor populations (BirdLife International 2001, Sánchez-Zapata 

et al. 2003).  

Direct effects – Targeted removal of individuals 

Consumptive uses of a few species, particularly falconry and the pet trade, are 

thought to drive trajectories of some raptor populations. For example, Saker Falcons 

are an Endangered species whose population has been reduced to a tenth of its 
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former abundance (BirdLife International 2001, Kenward 2009). As many as 1,000 

Saker individuals (~8% of global population) were estimated to have been taken 

illegally from west and central Asia, particularly Kazakhstan, between 1994 and 

1996 (Levin 2011). Small numbers of Sakers have always been traded in west and 

central Asia, but illegal trading only flourished in 1992 after the fall of the Soviet 

Union. This geopolitical event opened west and central Asia’s borders and increased 

foreign access to its Saker population (Kenward 2009). In east Asia, especially 

Mongolia, populations of the Endangered Saker Falcon are over-trapped (Fox 2001, 

Zahler et al. 2004). Between 1997 and 2010 alone, an average of 286 Saker Falcons 

were traded annually (Dixon et al. 2011). Unfortunately, although local policies are 

in place to protect Saker Falcons, it is often difficult to enforce those regulations.  

Steppe Eagles, Imperial Eagles, and 27 other species, are also sold in markets in 

China (Yi-Ming et al. 2000, Zhang et al. 2008). Most are taken from the wild during 

migration (Kenward 2009). More recently, birds are being traded online in south 

and southeast Asia. In 2015 alone, over 7,500 individuals from 22 diurnal raptor 

species and 11 owl species were traded online in southeast Asia (Iqbal 2016). 

There are also unique forms of consumptive uses in south and southeast Asia. In 

India, for example, owls are important in witchcraft and believed to bring gambling 

luck (Ahmed 2010, Jathar and Rahmani 2013). To answer the demand for 

witchcraft, between 1992 to 2008, >1,000 individuals of 15 species of owls were 

traded (Ahmed 2010). Another consumptive use occured in the Doyang Reservoir 

region of Nagaland, northwestern India, where the mass killing of Amur Falcons for 

human consumption was a major threat (Symes 2012, Dalvi and Haralu 2014). 

These long-distance migrants form large communal roosts while migrating. During 

peak migration, as many as 15,000 falcons were taken daily with mist nest, and 

120,000—140,000 falcons were killed annually. Fortunately, since 2013, the killings 

of Amur Falcons have been halted as a result of education campaigns and continued 

population monitoring (NWBCT 2017). 
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Direct effects – Unintentional fatalities 

The catastrophic collapse of the Gyps population in India is well documented, with 

an estimated 92% population decline between 1993 and 2000 (Prakash et al. 2003) 

and further declines since that time. As of 2012 only 0.1 – 3.2% of original 

populations remained (Prakash et al. 2012). Similar declines were also recorded for 

vulture populations in Nepal (Baral et al. 2004, Shultz et al. 2004) and in Pakistan 

(Gilbert et al. 2004, Oaks et al. 2004b). The decline of Gyps vulture was put into 

spotlight not just for its magnitude but also for the severe economic, cultural and 

human health effects that followed (Prakash et al. 2004, Markandya et al. 2008). 

This cataclysmic phenomenon was attributed to contamination of carcasses with the 

veterinary drug, Diclofenac, that causes vultures to develop visceral gout and acute 

kidney failure leading to death (Oaks et al. 2004a, 2004b).  

In 2006, following the identification of the role of Diclofenac, India consequently 

banned the drug from veterinary use (Taggart et al. 2007). Nepal and Pakistan 

declared similar bans in 2006, and in 2010 while Bangladesh followed in 2010 

(Prakash et al. 2012). This ban and the promotion of the Diclofenac-alternative, 

Meloxicam (Swarup et al. 2007, Pain et al. 2008),  has lowered, but not eliminated, 

the Diclofenac’s impact (Prakash et al. 2012, Cuthbert et al. 2014, 2016, Galligan et 

al. 2014). Captive care and breeding of Indian vultures, with a goal of eventual 

release into the wild, is also currently ongoing (Prakash et al. 2004, Markandya et al. 

2008). Vulture restaurants providing clean food likewise are a strategy used to 

reduce the impacts of Diclofenac (Gilbert et al. 2007).  

Migratory species may also encounter environmental contaminants in their 

stopover and wintering areas. For example, Lake Baikal basin, a large steppe area, 

once had the highest known north Asian concentration of Eastern Imperial Eagles 

(Ryabtsev and Katzner 2007, Ryabtsev 2011). The population here has declined by 

at least 80% in the past few decades possibly due to fatalities caused by 

environmental contaminants in tropical wintering grounds in southeast Asia (Ueta 

and Ryabtsev 2001, Ryabtsev and Katzner 2007). Unfortunately, the extent and 

effects of environmental contaminants are not well studied in the tropics (Lacher 
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and Goldstein 1997). However, this is a highly plausible cause of population decline 

given the potential environmental impacts of intensified agriculture in southeast 

Asian countries (Tinker 1997, Mineau and Whiteside 2013). Another example is the 

threat of contaminants to Steller’s Sea Eagles that breed on Sakhalin Island and 

winter in Japan. In summer, Steller’s Sea Eagles typically feed on fish. However, 

during harsh winters or during periods of overfishing, these birds shift feeding 

habits and scavenge on sika deer Cervus nippon (Shiraki 2001). This has led to 

increasing incidences of lead poisoning, when birds feed on hunter-killed, but 

unrecovered, deer or offal (Urosawa 2000, Saito 2009).  

Finally, Asia’s long-distance migratory species also may face pressures outside of 

Asia. For example, Pallid Harriers Circus macrourus and Red-footed Falcons Falco 

vespertinus breed in central Asia and their populations are complete migrants 

(Galushin et al. 2003, Panuccio 2007, Brochet et al. 2016, Katzner et al. 2016). On 

migration, far from their breeding or wintering grounds, these species pass through 

geographic bottlenecks in Europe where shooting birds of prey is common. 

Priority species 
Asia holds a third of the world’s Critically Endangered raptors, including two of the 

most genetically distinct birds of prey, the Philippine Eagle and the Forest Owlet 

(Jetz et al. 2014). These species, along with the Endangered Gyps species, are 

endemic to the Asian continent and have undergone drastic population declines 

making them among the highest regional priorities for conservation  (BirdLife 

International 2001).  

The Philippine Eagle, whose wild population is estimated at 82 to 250 pairs (Bueser 

et al. 2003, BirldLife International 2017), is emblematic of Asia’s raptor 

conservation problems. The species is endemic to the Philippine archipelago 

(Kennedy 1981, Kennedy et al. 2000) and occupies Philippine tropical forests 

(Bueser et al. 2001), of which only 3% now remains (Myers et al. 2000). Beyond 

land-use change, it faces threats from shooting, trade, electrocution, and 

environmental contaminants. Extensive deforestation also reduced space for the 
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Philippine Eagle’s prey base (Kennedy 1985, Concepcion et al. 2006) and has 

increased opportunities for human persecution. Although the Philippine Eagle 

receives legislative protection (Salvador and Ibanez 2006), its current estimated  

population decline remains at 2 — 10% per year (Ibañez et al. 2016).  

Globally, no other continent has a higher proportion of migratory raptor species 

than Asia (Bildstein 2006). Forty percent of all migratory raptors of Asia are 

endemic to the Asian continent; these endemics include Pallas’s Fish-eagle, Steller’s 

Sea Eagle and the Himalayan Griffon. Although a majority of Asia’s most threatened 

raptors are not migratory, 15% are full migrants. Migratory raptors of Asia are also 

faring considerably worse than average migratory raptors elsewhere. Further, 

compared to their European and African counterparts, Asian populations of cross-

continental migrant species are largely unstudied (Kirby et al. 2008). As an example, 

migrants using Asia’s Oceanic and Continental Flyways are poorly known and only 

recently have studies been published on this flyway (Concepcion et al. in press, 

Bildstein 2006). All of these factors make Asia’s migratory raptors high priority for 

conservation and research.  

Migratory species face unique threats in their breeding, stopover and wintering 

habitats (Webster et al. 2002). For such species, especially species with large home 

ranges, creation of protected areas for breeding sites alone often is not an efficient 

conservation approach (BirdLife International 2001, Finch et al. 2017).  

Comprehensive and actionable management plans would allow identification of 

these unique threats across all these habitats and provide a framework for 

addressing those threats.  

Priority regions and countries 
Among regions, south and southeast Asia have the highest number of species 

overall, the highest number of endemic species, and the highest number of globally 

Threatened and Near-Threatened species. Sixty-two percent of Threatened species 

and 56% of Near-Threatened are island endemics. As a result, raptors of south and 

southeast Asia are more at risk than elsewhere in the continent. Eight of the 10 most 
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speciose Asian countries that also have the most Threatened and Near-Threatened 

species are also found in this region. This diversity of raptors can be partly 

attributed to the extent of tropical forests that once covered most of the region 

(Olson and Dinerstein 2002, Laurance 2007). Unfortunately, tropical forests are 

extremely vulnerable landscapes (Brooks et al. 2006) and those in southeast Asia 

have experienced, and continue to experience, higher rates of conversion than 

elsewhere in the world (Laurance 1999, Sodhi et al. 2004). This is to the detriment 

of south and southeast Asia’s raptors that heavily use these forests.  

There is  a significant lack of information for tropical Asia’s raptors, especially of 

island endemics (Thiollay 1985, McGowan et al. 1998, BirdLife International 2001). 

With the exception of work on a few charismatic species such as the Philippine Eagle 

and the Javan Hawk-eagle, most of the region’s raptors continue to be largely 

unstudied. South and southeast Asia is a conservation and research priority region. 

Protection of the region’s raptor species, especially of island endemics, intrinsically 

has a disproportionately large impact on the global raptor population. There is 

therefore a need to collect ecologically sound information to enable their protection.   

Priority topics for research 
Without basic information on species biology and demography, it can be difficult to 

properly direct conservation and management strategies for raptors (Collar 1997, 

Van Balen et al. 2000, BirdLife International 2001, Mace and Collar 2002, Sutherland 

et al. 2004, Katzner et al. 2011). For example, Pallas’s Fish-eagle  is probably the 

world’s most poorly studied Northern Hemisphere eagle (Katzner and Tingay 

2010). It is classified as Vulnerable on the basis of reported population declines 

(BirdLife International 2001, Ferguson-Lees and Christie 2005). Although its precise 

distribution is poorly known, the main breeding populations of Pallas’s Fish-eagle 

are thought to be in China, Mongolia and India (Ferguson-Lees and Christie 2005, 

BirldLife International 2017), with lower-density populations in surrounding 

countries. However, recent field work  suggests that Mongolia never was a breeding 

stronghold for the species (Gilbert et al. 2014), the implication being that 

conservation action directed there may have little impact for this species. This 
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finding illustrates how a lack of knowledge can confound potential conservation 

programs.  

Apart from research on species biology and demography, there are other 

overlapping research needs for Asia’s Threatened and Near-Threatened species 

(BirdLife International 2001). There is also a need to identify specific threats to 

populations and reasons for population declines. For migratory species, this extends 

to describing the different pressures faced in summer, migratory and wintering 

areas (Webster et al. 2002). Likewise, there is a need to study biology, demography 

and threats of prey species on which raptors depend (BirdLife International 2001). 

Finally, laboratory studies may also be important to identify disease and the 

physiological effects of environmental contaminants (Lacher and Goldstein 1997, 

BirdLife International 2001).    

The effects to raptors of renewable energy and electrocution are also priority topics 

for research, especially in Asian grassland and treeless ecosystems. As energy 

development has rapidly grown in west and central Asia, electrocution has become 

a growing concern for raptor populations (Kamp et al. 2016). Separate surveys in 

Kazakhstan documented that as many as 21 raptor species died from electrocution, 

including eight threatened and near-threatened species such as the Saker Falcon, 

the Egyptian Vulture Neophron percnopterus and the Steppe Eagle (Karyakin 2008, 

Lasch et al. 2010, Levin and Kurkin 2013, Pestov et al. 2015).  In east Asia, 

particularly in Mongolia, older, wood pole electrical structures are being replaced 

with concrete poles with grounded metal crossarms. The energized parts of these 

newer, concrete poles are closer to the ground than the older wood poles, which in 

turn have increased electrocution of raptors (Harness et al. 2008). As many as 13 

species, including 4 migrants, have been documented dying from electrocution in 

this region (Dixon et al. 2013). 

Research elsewhere suggests that new threats may emerge from development of 

wind and solar energy. Collision with wind turbine blades, for example, can cause 

trauma or death (Madders and Whitfield 2006, Smith and Dwyer 2016). Trauma and 
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death could also come from solar tower facilities as a result of collision with 

infrastructure or exposure to concentrated solar energy or solar flux (Smith and 

Dwyer 2016, Walston et al. 2016). There also are threats of collision, disturbance 

and land use change even before these facilities are completed (Tsoutsos et al. 2005, 

Smith and Dwyer 2016). Wind energy is particularly interesting because its direct 

and indirect effects on raptor populations can alter demography (Katzner et al. 

2013). 

Poorly known species 

Poorly known species are an important priority for research. Four out of six (67%) 

of the world’s Data Deficient raptor species occur in Asia (Table 1; BirdLife 

International 2017). These are the Chestnut-shouldered Goshawk Erythrotriorchis 

buergersi, Papuan Boobook Uroglax dimorpha,  Seram Masked Owl Tyto almae, and 

the Nicobar Scops-Owl Otus alius of south and southeast Asia. All three owls are 

island endemics.  

Modern and updated identification literature is also key to the quality and reliability 

of ecological studies (BirdLife International 2001). Establishing identification 

literature is made more challenging because some Asian species are only now being 

recognized (eg. Spizaetus philippinesis complex: Gamauf et al. 2005, Ninox 

philippensis complex: Rasmussen et al. 2012). Accurate identification of species is 

obviously crucial to conservation as unrecognized species may be lost due to lack of 

protection (Gamauf et al. 2005). This is of particular concern in south and southeast 

Asia where the range of landscapes available, the isolation of some of these 

landscapes, and the geography of the region (i.e. islands of varying sizes and 

distances to the mainland) contribute to a high level of endemism (Gentry 1992, 

White and Kiff 2000).  

CONCLUSIONS 
Raptors are more at risk in Asia than elsewhere in the world. Our summary of Asia’s 

raptor diversity and human threats supports the need to continue cataloguing the 

status, threats and needs, and understanding conservation priorities for these 
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species. Holding almost half of all the world’s raptor species, and half of all the 

endemic species, the continued decline and potential loss of raptors in this region is 

truly a global concern.  

One of the things highlighted in our summary is the lack of information on Asia’s 

raptor species. This lack of information is exemplified in the scarce literature 

available for raptors of Asia. For example, compared to raptors of other tropical 

regions, tropical Asia has the least published information (Kiff et al. 2007). There 

also are instances when information is available but unavailable in international 

abstracting services or unavailable in English (Kiff et al. 2007, Clavero 2010). 

Similarly, researchers in Asia may have limited access to published information or 

limited opportunities to publish in English journals (Salager-Meyer 2008).  

Lack of information may also mean that actions will not be taken until some species 

are lost. For example, data from long-term migration monitoring informed of the 

population decline of several species in North America due to organochlorides 

(Bednarz et al. 1990). The relatively early-warning provided ample time to 

determine the cause of decline and to respond appropriately (eg. Bald Eagle: Grier 

1982, Fraser et al. 1996, Watts et al. 2008). This and other types of monitoring are 

lacking for most, if not all, of Asian species. 

Conservation urgency presents opportunities for future work. The establishment of 

the Asian Raptor Research Network (ARRCN) in 1998 has created a community for 

researchers of Asian raptors (Kiff et al. 2007). The ARRCN is vital in sharing valuable 

information through organizing symposia, promoting communication among 

researchers and disseminating published abstracts. With access to training, 

mentoring and funding, it is possible for current and rising raptor researchers in 

Asia to begin systematically addressing threats and knowledge gaps. Like most 

things in these contemporary times, international collaboration would be vital in 

achieving these goals.  

Simply put, much work remains to be done to elevate conservation efforts in the 

continent to at least those of elsewhere in the world. The time to start is now, before 
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many common species decline to the status of conservation priority, and before less 

common species become extinct. 
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Table 1. Distribution and conservation status of raptors in the world and in Asia based on BirdLife International (2017). 
Migratory species include species with a significant portion of populations that make seasonal, cyclical and predictable 
movements. Endemic species are species that breed in a single country.  

 Accipitriformes Falconiformes Strigiformes 

 World Asia World Asia World Asia 

Total 251 105 66 22 241 108 

Migratory 165 42 15 10 17 8 

Endemic 52 20 8 2 86 52 

       
Extinct 1 0 2 0 5 0 
Critically 
Endangered 14 6 0 0 7 2 

Endangered 14 5 2 1 9 5 

Vulnerable 25 9 4 0 27 13 

Near Threatened 33 14 9 5 27 21 

Least Concern 163 70 49 16 161 64 

Data Deficient 1 1 0 0 5 3 
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Table 2. Asia’s Critically Endangered (CR) and Endangered (EN) raptor species based on BirdLife International (2017). 
Migratory species include species with a significant portion of populations that make seasonal, cyclical and predictable 
movements. Endemic species are species that breed in a single country.  

  
   Asian Region 

Species Common Name Category Migratory Endemic North 
West &  
Central East 

South &  
Southeast 

Accipitriformes     
    

Aquila nipalensis Steppe Eagle EN Y N x x x x 

Gyps bengalensis 
White-rumped 
Vulture 

CR N N   x x 

Gyps indicus Indian Vulture CR N N    x 

Gyps tenuirostris 
Slender-billed 
Vulture 

CR N N    x 

Neophron 
percnopterus 

Egyptian Vulture EN Y N    x 

Nisaetus bartelsi Javan Hawk-eagle EN N Y    x 
Nisaetus floris Flores Hawk-eagle CR N Y    x 

Nisaetus philippensis 
North Philippine 
Hawk-eagle 

EN N Y    x 

Nisaetus pinskeri 
South Philippine 
Hawk-eagle 

EN N Y    x 

Pithecophaga jefferyi Philippine Eagle CR N Y    x 
Sarcogyps calvus Red-headed Vulture CR N N   x x 
         

Falconiformes         

Falco cherrug Saker Falcon EN Y N x x x x 
         

Strigiformes         

Bubo blakistoni Blakiston's Fish-owl EN N N x  x  

Heteroglaux blewitti Forest Owlet CR N Y    x 
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   Asian Region 

Species Common Name Category Migratory Endemic North 
West &  
Central East 

South &  
Southeast 

Ninox leventisi Camiguin Boobook EN N Y    x 
Ninox rumseyi Cebu Boobook EN N Y    x 
Otus alfredi Flores Scops-owl EN N Y    x 
Otus siaoensis Siau Scops-owl CR N Y    x 
Otus thilohoffmanni Serendib Scops-owl EN N Y    x 
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Table 3. Summary of ongoing threats to globally Threatened and Near-Threatened diurnal and nocturnal raptor species of 
Asia. Threats are based on BirdLife International (2017). Percentages represent proportions of Threatened and Near-
Threatened species in Asia.  

  Accipitriformes Falconiformes Strigiformes 
Agriculture and aquaculture 27 (79%) 2 (33%) 39 (95%) 
Biological resource extraction 29 (85%) 5 (83%) 39 (95%) 
Climate change and severe weather 3 (9%) 0 0 
Energy production and mining 8 (24%) 0 11 (27%) 
Human intrusions and disturbance 4 (12%) 0 1 (2%) 
Invasive and other problematic species, genes and 
diseases 10 (29%) 0 1 (2%) 
Natural system modifications 11 (32%) 2 (33%) 12 (29%) 
Pollution 16 (47%) 4 (67%) 0 
Residential & commercial development 7 (21%) 2 (33%) 15 (5%) 
Transportation & service corridors 7 (21%) 0 4 (37%) 
Total number of species 34 6 41 
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Table 4. Summary of distribution and conservation status of raptors in according to 
regions of Asia based on BirdLife International (2017). Migratory species include 
species with a significant portion of populations that make seasonal, cyclical and 
predictable movements. Endemic species are species that breed in a single country. 
Percentages indicate proportion of Threatened and Near-Threatened migratory and 
endemic species. 

  
North Asia 

West and 
Central Asia 

East Asia 
South and 
Southeast 

Asia 
Total 61 59 96 219 
Migratory 49 (20%) 44 (25%) 52 (21%) 51 (20%) 
Endemic 0 0 0 74 (64%) 
     
Critically 
Endangered 0 2 2 8 
Endangered 4 3 4 10 
Vulnerable 4 3 5 21 
Near Threatened 4 7 7 39 
Least Concern 49 44 78 137 
Data Deficient 0 0 0 4 
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Table 5. Summary of distribution and conservation status of raptors in ten Asian countries with the most Threatened and 
Near-Threatened raptor species based on BirdLife International (2017). Migratory species include species with a significant 
portion of populations that make seasonal, cyclical and predictable movements. Endemic species are species that breed in a 
single country. Percentages indicate proportion of Threatened and Near-Threatened migratory and endemic species. 

  
Indonesia India 

Russian  
Federation 

Philippines Myanmar 

Total 133 102 102 55 88 

Migratory 24 (4%) 
46 

(22%) 48 (21%) 14 (0%) 39 (21%) 
Endemic 39 (54%) 9 (67%) 0 23 (74%) 0 
      
Critically 

Endangered 
3 5 0 1 3 

Endangered 3 3 6 4 2 
Vulnerable 12 5 7 6 6 
Near Threatened 20 13 8 10 8 
Least Concern 92 75 81 34 69 
Data Deficient 3 1 0 0 0 

 
  Nepal Bangladesh Malaysia China Thailand 

Total 83 77 67 94 76 

Migratory 
39 

(26%) 33 (27%) 
28 

(21%) 
51 

(22%) 
32 

(19%) 

Endemic 0 0 
1 

(100%) 0 0 
      
Critically 

Endangered 
3 3 3 2 3 

Endangered 3 3 1 4 1 
Vulnerable 4 4 5 4 5 
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  Nepal Bangladesh Malaysia China Thailand 
Near Threatened 9 8 8 6 6 
Least Concern 64 59 50 78 61 
Data Deficient 0 0 0 0 0 
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Figure 1. Regional Asia. Country boundaries are from the Global Administrative Areas database (www.dabm.org) and, in some 
regions (e.g., borders of India with Pakistan and China), are not fixed owing to on-going territorial disputes (Fravel 2015). The 
Middle East is not included.  

http://www.dabm.org/
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Figure 2. Population trends of Asian raptors. Population trends are based on 
BirdLife International (2017). Population trend is either directly estimated or 
suspected based on existing threats and other factors. Population estimates were 
not taken in the same year and global population sizes have been estimated 
between 1999 to 2016.
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Figure 3. Species status of Asian raptors found in the five most occupied land types. 
Conservation status and land types are based on BirdLife International (2017). 
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ABSTRACT. --Raptor migration rarely involves long-distance movements across open 

oceans. One exception occurs along the East-Asian Oceanic Flyway. We collected 

migration data at two terrestrial hawkwatch sites along this flyway to better understand 

open-ocean movements along this largely overwater corridor. At the northern end of the 

Philippines, at Basco on the island of Batan, we recorded 7587 migratory raptors in 

autumn 2014. Near the southern end of the Philippines, at Cape San Agustin on the island 

of Mindanao, we recorded 27,399 raptors migrating in autumn 2012. Chinese 

Sparrowhawks (Accipiter soloensis) were the most common species observed, making up 

approximately 89% and 92% of total records for Basco and Cape San Agustin, 

respectively. The Grey-faced Buzzard (Butastur indicus) was the second most common 

raptor migrant, accounting for 8% of the total counts at both watch sites. The migration 

period was about 1–2 wk earlier at Basco, the more northerly site, than at Cape San 

Agustin.  Overwater flights at Basco peaked in both the morning and late afternoon, 

whereas at Cape San Agustin there was only a morning peak. In general, the rate of 

migration passage at both sites was highest with clear skies when winds were blowing 

from the northwest. However, we observed interspecific differences in migration 

behavior at both sites, with Accipiters more likely to be observed with tailwinds and 

eastward winds and Grey-faced Buzzards more likely observed with headwinds. These 

results help to characterize poorly known aspects of raptor biology and to identify 

potential migratory bottlenecks or key sites for raptor conservation in little-studied 

Philippine tropical ecosystems.  

KEY WORDS: Chinese Sparrowhawk; Accipiter soloensis; Grey-faced Buzzard; Butastur 

indicus;  East-Asian Oceanic Flyway; migration; overwater crossing; Philippines
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Understanding animal movement is central to conservation planning and 

ecological knowledge (Nathan 2008). For migratory birds, determining patterns of 

migratory connectivity and identifying flyway bottlenecks are important parts of 

interpreting animal movement. For raptors, counts at migration watchsites globally have 

documented these patterns, especially over land (Bildstein 2006). Oceanic crossings by 

raptors are less well studied, but they do have important effects of funneling populations 

(Meyer et al. 2000, 2003, Panuccio et al. 2005), limiting demography (Germi et al. 2009, 

Panuccio et al. 2012, Oppel et al. 2015) and affecting ecology (Kerlinger 1985, Panuccio 

et al. 2005, Bildstein 2006, López-López et al. 2010).    

In spite of the potential negative consequences of ocean crossings for raptors, 

recent studies indicate that for some species, oceans also may be significant ecological 

corridors (López-López et al. 2010), the forms of which are shaped by the flexible 

response of migrants to predominant wind and water currents (Klaassen et al. 2011, 

Mellone et al. 2011). In some cases, overwater crossings may even have benefits for 

raptors. In particular, they can provide both shorter and more direct routes to destinations 

(Meyer et al. 2003), and they can offer the potential to avoid unfavorable weather 

conditions (Yamaguchi et al. 2011), pathogens, and parasites (Gill et al. 2009). However, 

environmental correlates of oceanic crossings are generally poorly understood, making it 

difficult to identify why some birds may choose to cross the open ocean.  

The East-Asian Oceanic Flyway is the world’s most heavily travelled oceanic 

raptor migration corridor (Bildstein 2006). Birds traveling this route use seasonal 

monsoon winds, trade winds, and sea thermals (sensu Augstein 1980) to complete their 

migration. During autumn, raptors leave southern Taiwan and cross at least 180 km of 



 65 

ocean to reach the northernmost islands of the Philippines. Most of these birds then 

island-hop across the Philippines, with some wintering in-country and others continuing 

their journeys further south. Those that continue south often depart from the southern 

Philippine island of Mindanao to presumed destinations in Indonesia that are at least 170 

km away (Fig. 1). 

We conducted exploratory migration research along the East-Asian Oceanic 

Flyway to quantify the magnitudes of the flights along this corridor. We then used these 

data to assess correlates of migration behavior as a basis for an initial attempt at 

understanding the factors associated with ocean crossings. We focused our effort on birds 

entering and exiting the Philippine archipelago, between Taiwan and Luzon in the north 

and between Mindanao and the Sulawesi archipelago of Indonesia in the south (Fig. 1). 

We used data collected during two full-season counts (one count for each of two sites) to 

evaluate four questions about raptor migration into and out of the Philippines:  (1) when, 

during the migration season and during the day, do oceanic crossings occur?; (2) in what 

directions do observed migrants fly?; (3) what are the weather conditions under which 

birds initiate and complete oceanic crossings?; and (4) are there among-species 

differences in timing and meteorological correlates of oceanic crossings along this route? 

We interpret these findings in the context of hypotheses describing the potential value of 

the oceanic crossings birds make and the evolutionary forces that may shape these 

behavioral patterns.  
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METHODS 

Study Areas.  We counted migrating hawks at a northern entry point to the 

Philippines (Basco) and a southern exit from the archipelago (Cape San Agustin). Basco 

is on Batan Island, at the northernmost tip of the Philippines (Fig. 1). The island belongs 

to a small archipelago located between the Bashi Channel, south of Taiwan, and the 

Balintang Channel north of Luzon Island. Grasslands dominate the local ground cover. 

Batan has subtropical climate, with average monthly temperatures of 22–28°C. Rainfall 

averages 2.8 m annually and is uniformly distributed among months. Cool winds are 

characteristic, especially during December, January and February, when the northeasterly 

trade winds pass through the islands.  

Cape San Agustin on the island of Mindanao separates the Celebes Sea to the east 

from the Davao Gulf to the west (Fig. 1). Land cover in the region includes natural forest, 

primarily mangrove (Rhizopora spp.), along the intertidal zone, and coconut (Cocos 

nucifera) plantations and farmlands in the coastal plain and upland hillsides. The climate 

of the peninsula is greatly influenced by monsoonal and trade winds. From June to 

October a monsoonal wind blows from the southwest. Starting in November, that 

southwest monsoon transitions into a northeast monsoon. The average monthly 

temperature is 22–33°C with little seasonal variation. Average rainfall is about 1.2 m 

annually. 

We conducted counts from locations with good views on both islands. At Basco 

this was the 20-m-tall Naidi Lighthouse (20°27’5”N 121°57’51”E). The lighthouse has a 

panoramic view of the northern part of Batan Island, as well as of parts of several islands 

directly adjacent to Batan Island. We conducted the count at Cape San Agustin 
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approximately 2 km north of the tip of the peninsula (6°16’47”N 126°11’30”E). The 

count site was a 4.5-m-tall bamboo tower we built in a coconut plantation.  Despite the 

elevated post, coconut trees partially obstructed our view to the south.  

Survey Techniques.  Counts at Basco were conducted by two or three observers 

(CBC, PTD, and MRS) working together between 25 August and 19 October 2014.  The 

period during which we conducted counts was based on reported dates of departure of 

Grey-faced Buzzards (Butastur indicus) and Chinese Sparrowhawks (Accipiter soloensis) 

from southern Taiwan (Lin and Severinghaus 1998). Counts at Cape San Agustin were 

conducted by one observer (CBC) between 12 September and 30 October 2012. Timing 

of this count was estimated based on known arrivals of birds for the Indonesian island of 

Sangihe 280 km to the south (Germi et al. 2009).   

We recorded migration and weather data hourly on a daily data sheet derived 

from a template produced by the Hawk Migration Association of North America (see 

Bildstein et al. 2007). We counted migrating raptors according to standardized migration 

watchsite count protocols (Bildstein et al. 2007). We conducted observations from 0530 

H to 1730 H (Basco) and from 0600 H to 1530 H (Cape San Agustin). We methodically 

scanned the horizon using binoculars (10×) and unaided eyes to ensure consistent 

coverage, and visually tracked single individuals or flocks until we identified them and 

were able to determine their direction of travel. We classified flight direction as either 

expected flight direction (i.e., passage on a northern to southern axis) or unexpected flight 

direction (i.e., passage on a southern to northern axis or to a west to east axis). We 

classified altitude of flight as either low (i.e. below eye level to about 30 meters above 

ground) or high (i.e. more than 30 meters above ground). We counted most passing 
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migrants individually but, in instances of large flocks (>100 individuals) or when the 

birds had already passed us, we counted birds in groups of 2, 5 or 10. If the birds were 

first spotted soaring in groups, we waited until we could count them individually or as 

groups streamed north-to-south across the count site. To ensure accuracy, we repeated 

and averaged counts of groups whenever possible, especially when flocks were larger 

than 100. 

We measured temperature and wind speed at Basco using a Kestrel 4000 Weather 

Meter (The Nielsen-Kellerman Company, Birmingham, MI 48009 USA) and at Cape San 

Agustin using an Anemometer HT816 (Long Term Inc., Ningbo Shi, Zhejiang Sheng 

315000, China). Wind speed was recorded in m/s and converted into U and V 

components using the following equations (Wallace and Hobbs 2006):  

𝑈 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 =  −𝑤𝑖𝑛𝑑 𝑠𝑝𝑒𝑒𝑑 ∗ sin (𝑤𝑖𝑛𝑑 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 ∗  
𝜋

180
) 

𝑉 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 =  −𝑤𝑖𝑛𝑑 𝑠𝑝𝑒𝑒𝑑 ∗ cos (𝑤𝑖𝑛𝑑 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 ∗  
𝜋

180
) 

We used a compass to determine wind direction (i.e., N, SE, NE) and converted estimates 

into azimuth degrees for these equations, for example where south wind was 180° and 

west wind was 270°. We estimated cloud cover as the percent of sky with background 

cloud cover.  

Data Analysis.  We used a paired Wilcoxon signed-rank test to compare within-

season timing of flights at the northernmost and southernmost extent of the Philippines 

(question #1). The input data for these tests were the proportion of total flights observed 

on each observation day (proportion of the total number of birds counted for the season 

on Day 1, Day 2, etc.). For analytical purposes we designated Day 1 as 25 August for 

both years. We used the Fligner-Killeen (median) test to evaluate variability of the 
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number of birds observed per day between the sites (Fligner and Killeen 1976). To 

evaluate within-day patterns between the two count sites, we used another Wilcoxon 

signed-rank test to compare the proportion of flights per hour, from 0600 H to 15000 H. 

We used Nemenyi test for post-hoc analyses (Nemenyi 1969).    

We described the most commonly observed migration characteristics 

(directionality, flight altitude) of raptors at each watch site (question # 2). We evaluated, 

with a binomial generalized linear model, the association of weather parameters (U wind, 

V wind and percent cloud cover) with the likelihood of observing either a large (≥ 100 

migrants/hr) or a small flock (<100 migrants/hr; i.e., the weather conditions under which 

birds initiate or complete oceanic crossings; question #3). Finally, we used paired 

Wilcoxon signed-rank tests and Kruskal-Wallis tests to compare timing of passage of the 

two principal species at each site, by day of year and by hour of day, and binomial 

generalized linear models (as before) to compare meteorological covariates of their 

oceanic crossings (question #4). We again used a Nemenyi test for post-hoc analyses. We 

conducted statistical analyses with R statistical software, using the ‘stats’ package 

(wilcox.test, kruskal.test, posthoc.kruskal.nemenyi.test, fligner.test and glm (R 

Development Core Team 2013).  

 

RESULTS 

Timing of Migration. We observed 7587 migratory raptors of seven species 

during 50 d of counting at Basco (Fig. 2a, Table 1). Chinese Sparrowhawk was the most 

common species recorded, representing 88.8% of the total count. Grey-faced Buzzard 

was the second most common species at 7.5%, and the remaining migrants were Osprey 

(Pandion haliaetus), Japanese Sparrowhawk (A. gularis), Eurasian Kestrel (Falco 
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tinnunculus), Peregrine Falcon (F. peregrinus calidus) and Common Buzzard (Buteo 

buteo; Table 1). Unidentified raptors made up 2.9% of the total. We observed the largest 

flight of 3653 individuals, which consisted only of Accipiter spp., on 9 September 2014 

(Fig. 2a). The count from this single day made up 48.1% of the season total. We counted 

at least 100 raptors on 18% of the count days, but we observed no birds on 24% of the 

days.   

We observed 27,399 migratory raptors of seven species during 47 d of count at 

Cape San Agustin (Fig. 2b, Table 1). As at Basco, the Chinese Sparrowhawk was the 

most common species recorded, representing 91.7% of the total count. The Grey-faced 

Buzzard was the second most common at 7.9%; the remaining migrants were Osprey, 

Pied Harrier (Circus melanoleucos), Japanese Sparrowhawk, Eurasian Kestrel, and 

Peregrine Falcon (Table 1). Unidentified raptors made up 0.2% of the total. We observed 

a maximum flight of 2588 individuals, consisting only of Accipiter spp., on 28 September 

2012 (Fig. 2b), a count that made up 9.4% of the season total. We counted at least 100 

birds were counted on 70.2% of the days, with counts of more than 1000 raptors on 5 d. 

There were no days on which we observed no birds.  

Within-season distribution of flights. There was a statistical difference in the 

within-season distribution of migration, with the majority of individuals passing Basco 

earlier in the year than that at Cape San Agustin (V = 1165.5, P < 0.001; Fig. 2). 

Although the average daily proportion of flights was the same in Basco (2% of total 

flights a day) and at Cape San Agustin (2%), the variability in number of birds observed 

per day was much greater at Basco (SD = 7.42%) than at Cape San Agustin (SD = 2.16%; 

χ2 = 12.76, P < 0.0001).  
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Within-day distribution of flights. Migration at Basco began as early as 0530 H, 

just after local sunrise (Fig. 3). Although we saw sizeable flights between 0700 H to 0800 

H (n = 1095 individuals), daily passage rates peaked much later in the day, between 1600 

H and 1700 H (n = 1676) and 1700 H and 1800 H (n = 1895), about 30 – 90 min before 

local sundown. We commonly observed Grey-faced Buzzards searching for and landing 

at roosting sites during late afternoon.  

On most days at Cape San Agustin, migration began at 0700 H –0800 H (Fig. 3), 

or about 90 min after local sunrise. Flights then peaked between 0800 H to 0900 H (n = 

4334) and 0900 H to 1000 H (n = 4531). Few birds were tallied after 1500 H, and 

departures from the Cape generally ended before 1430 H, or 180 min before local 

sundown. Differences in within-day timing of flights between Basco (later in the day) and 

Cape San Agustin (earlier in the day) were statistically significant (V = 45, P = 0.042). 

Direction of Migration. Most raptors, 94.5%, passed through Basco in a 

southerly direction.  The majority of birds at Basco (72.3%) approached the coastline at a 

low altitude.    

At Cape San Agustin, 99.6% of birds passed in a southerly direction. Most of the 

birds migrating past Cape San Agustin (94.6%) departed the coastline at a high altitude   

Migration and Weather. At Basco, the winds were from the northeast 41.6% of 

the time, with hourly wind speeds averaging 4.6 m/sec and reaching a maximum of up to 

15.3 m/sec. It was typical to experience such winds in September and October, especially 

as trade winds and cool northeasterly winds, replaced the southwesterly monsoonal 

winds. However, passage rate was highest on northwest winds, during which 57.9% of 

the flights occurred (Fig. 4a).  About 9.8% of the flights were into headwinds (southerly 
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winds), and the only species that we observed flying into headwinds were Accipiters. 

Likewise, 10.9% of flights were in northeast winds, 10.8% in westerly winds, 8.5% in 

easterly winds, 0.8% in north winds, 1% with no wind and 0.2% in variable winds.  

At Cape San Agustin, winds were predominantly from the northwest (44.7% of 

the time) with average hourly wind speeds of 2.5 m/sec and reaching a maximum of 7.8 

m/sec. As at Basco, the passage rate at the Cape was highest with northwest winds, when 

56.3% of the flights occurred (Fig. 4a). About 11.2% of the flights were into headwinds 

(southerly winds), nearly all by Accipiters; 13.4% of flights occurred with no wind, 

11.2% in north winds, 7.2% in variable winds, and 0.2% each in northeast winds, west 

winds and east winds. 

At both sites, passage rate was highest when winds were relatively low. At Basco, 

winds were usually breezes of 3.4 – 5.5 m/sec (26.6% of the time), but 65.3% of the 

flights occurred with lighter breezes of 1.6–3.3 m/sec (Fig. 4b). Thus, migration occurred 

at below-average wind speeds at Basco. At the Cape, hourly wind speeds were mostly 

very light at 0.3–1.5 m/sec (46.0% of the time) and 42.8% of flights occurred with these 

winds. Thus, response to wind speed differed between the two sites (W = 2, P = 0.008). 

The odds of observing a large migratory flock (≥ 100 migrants in an hour) of 

birds into and out of the Philippines decreased with increasing north winds and, to a small 

degree, with increasing cloud cover.  When all other predictors were held constant, the 

odds of observing large flocks migrating into Basco changed by a factor of 0.65 (i.e., the 

odds decreased) for every 1 m/sec increase in V winds (a 1 m/sec increase in V wind is a 

headwind; Fig. 5). Likewise, the odds of observing large flocks changed by a factor of 

0.96 for every 1% increase in cloud cover. As at Basco, when all other predictors were 
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held constant, the odds of observing large flocks departing Cape San Agustin changed by 

a factor of 0.57 for every 1 m/sec increase of V winds; they changed by a factor of 0.99 

for every 1% increase in cloud cover (Fig. 5).  

Among-species Differences in Behavior. Seasonality of the flights. At Basco, we 

observed Accipiters on 36% of the count days, and Grey-faced Buzzards on 32% of the 

count days. Accipiters and Grey-faced Buzzards had statistically different within-season 

timing of flights (V = 136, P = 0.017) but similar within-day timing of flights (V = 23, P 

= 0.233). Further, Accipiter passage (Kruskal-Wallis, χ2 = 49.02, df = 12, P < 0.001) and 

Grey-faced Buzzard passage (Kruskal-Wallis, χ2 = 44.71, df = 12, P < 0.001) were not 

evenly distributed throughout all hours of the day. Post-hoc tests showed that Accipiters 

and Grey-faced Buzzards were more likely to pass by the count site in the early morning 

or afternoon than during mid-day. 

At Cape San Agustin, we observed Accipiters on 91.5% of the count days, and 

Grey-faced Buzzards on 42.5% of the count days.  Accipiters and Grey-faced Buzzards 

had statistically different within-season timings (V = 694, P = 0.047) and within-day 

timings (V = 0, P = 0.002). Additionally, Accipiter passage (Kruskal-Wallis, χ2 = 75.75, 

df = 9, P < 0.001) and Grey-faced Buzzard passage (Kruskal-Wallis, χ2 = 44.71, df = 12, 

P < 0.001) were not evenly distributed throughout all hours of the day.  Post-hoc tests 

showed that Accipiters were more likely to pass in early morning or midday than in the 

afternoon. Grey-faced Buzzards were more likely to pass during midday or afternoon 

than in early morning. 

Weather. There were among-species differences in correlations of wind speed 

with migration at both sites. At Basco, 70.6% of Accipiters observed passed during light 
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breezes of 1.6–3.3 m/sec, but 66.4% of Grey-faced Buzzard flights occurred during much 

stronger winds of 3.4–10.7 m/sec. In contrast, at the Cape, 69.2% of Accipiters passed 

during light wind of 0.3–3.3 m/sec, but 82.1% of Grey-faced Buzzards migrated during 

calmer conditions with winds of <0.3–1.5 m/sec.  

At Basco, the odds of observing Accipiters increased with tailwinds and eastward 

winds (Fig. 6a). In contrast, the odds of observing Grey-faced Buzzards increased with 

headwinds and westward winds (Fig. 6a).  

At Cape San Agustin, the odds of observing Accipiters increased with tailwinds 

and eastward winds, and decreased with cloud cover (Fig. 6b).  In contrast, the odds of 

observing Grey-faced Buzzard passage increased with headwinds and cloud cover (Fig. 

6b). 

 

DISCUSSION 

Our analysis characterizes overwater flight behavior as birds approached and 

departed coastal areas along an oceanic migration route. Although our data did not allow 

us to separate year and site effects, the environmental correlates of migration we identify 

are a useful starting point for understanding the context for open-water crossing by these 

birds and as a framework for generating hypotheses testable with more detailed count 

data.  

Timing of Flights. Overwater flights started in mornings or midday and ended 

either early in the morning or late in the day. Although our two seasonal counts were not 

conducted during exactly the same periods, the pattern we observed was consistent with 

previous data suggesting that the within-day distribution of raptor flights overwater 
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responds to hourly thermal availability and atmospheric conditions (Spaar 1997, 1999, 

Meyer et al. 2000, Bildstein et al. 2009, Panuccio et al. 2013). We observed some 

evidence of successful nighttime migration with a few birds arriving at Basco before or 

just after local sunrise. Likewise, Germi et al. (2009) and Sun et al. (2010) found little 

evidence of night flights and believed nocturnal migration to be uncommon along this 

oceanic route.  

 Migrants are thought to choose carefully when to initiate overwater crossings and 

ideally to wait for favorable conditions (Meyer et al. 2000, Liechti 2006, Bildstein et al. 

2009, Sjöberg et al. 2015). With favorable conditions (i.e., strong tailwinds or weak 

headwinds) birds traveling in the Philippines likely start migration early in the day and 

take about 3 hr to cross the ocean. We suspect that afternoon arrivals into Basco were 

probably of migrants that were delayed in leaving the southern tip of Taiwan or took 

longer than anticipated to cross the ocean. Kerlinger and Gauthreaux. (1984) and 

Panuccio et al. (2013) suggest that afternoon completion of water crossings may be 

intentional behavior by migrants that intend to roost on the islands. On Basco, this 

appears to be the case as we observed large roosting assemblages on the island (C 

Concepcion and K. Bildstein unpubl. data).  

Meteorological and Behavioral Correlates of Ocean Crossing Flights. The 

migration we observed by birds approaching and departing the Philippines was generally 

southward (i.e., expected flight direction).  Reversed or unexpected flight directions were 

uncommon in the Philippines, although it is a common occurrence at many other sites 

(Alerstam 1978, Åkesson et al. 1996, Nilsson and Sjöberg 2015). Migrants may fly in 

other directions when they are hesitant to cross a barrier (such as the open ocean from 
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Cape San Agustin), when fuel reserves are low, or when weather conditions encountered 

are unfavorable.  

The raptor migration we observed through and out of the Philippines coincided 

with certain meteorological patterns. In particular, the odds of observing migrants 

showed a positive relationship to tailwinds (lower headwinds) and were slightly 

negatively correlated to cloud cover. Cloud cover at the coast is likely important because 

it may reduce thermal availability (Spaar 1999). Cloud cover may also have caused us to 

miss birds, especially those flying above the clouds (Richardson 1978, Kahlert et al. 

2012). Tailwinds are likely to speed up overwater crossings (Alerstam 1990, Meyer et al. 

2000, 2003). In the Philippines (see Fig. 1), migrants undertaking lengthy overwater 

crossings are believed to use northeasterly Trade Wind Zone tail winds to help complete 

their passage (Bildstein 2006). Northeasterly winds along this flyway peak between July 

and October and extend from 5° to 30° N. However, these winds are particularly strong 

between 15° and 20° N, a latitudinal band that includes the Basco watchsite but not the 

Cape San Agustin watch site (Wyrtki and Meyers 1975). Thus the migrants we observed 

at Basco likely benefitted more from trade tail winds than the migrants we observed at 

Cape San Agustin. The migrants we counted at Cape San Agustin instead may rely on 

seasonal winds and sea thermals to subsidize their overwater migratory flights (Bildstein 

2006). Sea thermals, in particular, occur in tropical and subtropical waters between 5° to 

30° north and south of the equator (Augstein 1980) and would be available for migrants 

observed at both Basco and at Cape San Agustin. 

Although tailwinds favored migration at our sites and also in Sangihe, Sulawesi, 

Indonesia (Germi et al. 2009), Grey-faced Buzzards we observed often flew into 
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headwinds. The decision to fly into headwinds may result in higher-than-normal 

energetic expenditures (Meyer et al. 2000). Thus, it may be that these Grey-faced 

Buzzards may have been forced to migrate to avoid still worse weather conditions (cf. 

Liechti et al. 2013) or they may be travelling short enough distances that the additional 

energy expended in headwinds may be of relatively little consequence (Germi et al. 

2009).  

Species Differences in Flight Behavior. We recorded interspecific differences in 

timing and weather correlates of overwater crossings. Explanations for among-species 

differences such as these include variation in flight mechanics (Mendelsohn et al. 1989, 

Hedenström 1993) and individually based strategies in response to the environment 

(Spaar 1997, 1999, Meyer et al. 2000). In general, smaller raptors with longer, narrower 

wings are more adapted to flapping flight than are larger raptors. Such birds are also more 

likely to cross large water bodies (Kerlinger 1985, Meyer et al. 2000).  This difference 

might explain why the relatively small, and long, narrow-winged Accipiters and Grey-

faced Buzzards we observed make up the bulk of migrants using the East-Asian Oceanic 

Flyway. Individuals of these species would be able to easily switch between soaring and 

flapping flights in response to local variation in weather. 

Overwater Crossing as an Influence on Raptor Migration. When birds make 

mistakes overwater, they often  are not easily corrected and many times are  fatal 

(Bildstein 2006, Bildstein et al. 2009, Oppel et al. 2015). Young birds are relatively more 

likely to make such mistakes and so survival of their maiden voyages across the ocean 

may depend on following the lead of experienced adults (Agostini et al. 2010, Panuccio 

et al. 2012, Oppel et al. 2015). For example, when the number of adults in the population 
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declined, only 1 in 10 young Egyptian Vultures (Neophron percnopterus) survived their 

first migration across the Mediterranean Sea  (Oppel et al. 2015).  We frequently 

observed large flocks of migrants and it may be that these were composed of 

knowledgeable adults being followed by inexperienced juveniles. Further insight into this 

question may come from comparison of flock size and adult: subadult ratios among 

populations of raptors that do and do not make oceanic crossings.   

Our study is one of a few that has focused on understanding migratory strategies 

across the world’s only “true” large-scale oceanic flyway (Bildstein 2006). Our findings 

are preliminary and suggest the hypothesis that similar general meteorological conditions 

favor initiation and completion of overwater crossings during autumn migration. These 

observations are particularly important because so few overwater crossings have been 

studied, especially outside the European Baltic and Mediterranean regions and more data 

would be valuable to more fully test these initial hypotheses.  

In addition, it would be useful to replicate our study during spring migration along 

this corridor. In spring, northeast trade winds remain strong north of the equator, starting 

from about 5° N. However, south from 5° N, southeast trade winds are strong (Wyrtki 

and Meyers 1975). This means migrants would face strong headwinds as they cross from 

Indonesia to the south of the Philippines and would likely encounter such headwinds until 

they pass the southern tip of the Ryukyu Islands of Japan, roughly around 30° N.  Given 

these realities, migrants may therefore abandon the oceanic flyway and instead follow a 

loop migration pattern via the East-Asian Continental Flyway, where the southeast trade 

winds would actually assist their return migration. Count data from southern Taiwan 
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seem to support this prediction (Lin and Severinghaus 1998). Future studies using 

telemetry will be important for understanding these patterns. 
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Table 1. Migratory raptors counted at Basco (25 August – 19 October 2014) and Cape San Agustin (12 September – 30 October 

2012), Philippines. 

COMMON NAME SCIENTIFIC NAME BASCO CAPE SAN AGUSTIN 

Osprey Pandion haliaetus 7 2 

Pied Harrier Circus melanoleucos  1 

Japanese Sparrowhawk Accipiter gularis 14 17 

Chinese Sparrowhawk A. soloensis 6737 25,126 

Grey-faced Buzzard Butastur indicus 571 2176 

Eurasian Kestrel Falco tinnunculus 18 6 

Peregrine Falcon F. peregrinus calidus 9 16 

Common Buzzard Buteo buteo 5  

Unidentified accipiter Accipiter spp. 178 24 

Unidentified falcon Falco spp. 1 2 

Unidentified raptors  47 29 

TOTAL 7587 27,399 
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Figure 1. Geographic locations of watchsites in the Philippines where migration counts were conducted in 2012 (Cape San Agustin) 

and 2014 (Basco). Map on the left shows the entire Philippines with the location of watchsites (). The top right inset (a) shows the 

location of the watchsite at Basco and part of Taiwan, which is 180 km north, and mainland Luzon of the Philippines, 280 km south. 

The bottom right map (b) shows the location of the watchsite at Cape San Agustin found in the island of Mindanao, as well as the 

northernmost islands of Indonesia (Sulawesi), 170 km south.
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Figure 2. Within-season distribution of autumn migration flights observed at (a) Basco 

(25 August – 19 October 2014) and (b) Cape San Agustin (12 September – 30 October 

2012), Philippines. Vertical dashed line shows the first day that migration was observed. 

Asterisks show the first and last days of count. These data did not allow us to assess 

interannual variation in migration behavior. Because sampling periods were not identical, 

the start and end of some seasonal distributions may not be represented in these data.   
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Figure 3. Time of day of autumn migration flights observed at Basco (25 August – 19 

October 2014) and Cape San Agustin (12 September – 30 October 2012), Philippines. 

Migration flights were observed from 0530 H to 1730 H (Basco) and 0600 H to 1530 H 

(Cape San Agustin).  
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Figure 4. Average passage rates of all raptors counted per hour during different (a) wind 

directions and (b) wind speeds (m/sec) during autumn migration at Basco (25 August – 

19 October 2014) and Cape San Agustin (12 September – 30 October 2012), Philippines. 

Standardized categories for wind speeds were based on the Beaufort scale (Hasse 2015).  
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Figure 5. Coefficient estimates for generalized linear mixed models for weather 

conditions associated with hourly autumn passage rates for Basco (25 August – 19 

October 2014) and Cape San Agustin (12 September – 30 October 2014), Philippines. U 

and V wind components were measured using handheld, digital anemometer. Cloud 

cover was the estimated percent of sky with background cloud cover. Bars represent 95% 

confidence intervals. Statistical significance indicated by number of asterisks: * indicates 

P <0.05, ** indicates P <0.01, *** indicates P <0.001)  
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Figure 6. Coefficient estimates for generalized linear model for weather conditions 

associated with Accipiter and Grey-faced Buzzard hourly autumn passage rates for (a) 

Basco (25 August – 19 October 2014) and (b) Cape San Agustin (12 September – 30 

October 2012), Philippines. U and v wind components were measured using handheld, 

digital anemometer. Cloud cover was the estimated percent of sky with background cloud 

cover. Bars represent 95% confidence intervals. Statistical significance indicated by 

number of asterisks: * indicates P <0.05, ** indicates P <0.01, *** indicates P <0.001).   
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ABSTRACT 

Anthropogenic land cover change is among the largest threats to biodiversity, and island 

endemics and habitat specialists are especially vulnerable to these changes. We used 

road surveys and occupancy modeling to determine the distribution of birds of prey in 

the southern Philippine island of Mindanao and to assess the land cover characteristics 

that influence this distribution. During winter field surveys between 2014 and 2016, we 

observed 13 of the 27 birds of prey species present on Mindanao and we counted 1,656 

individuals. The Brahminy Kite (Haliastur indus) and the Philippine Serpent Eagle 

(Spilornis holospilus) were the most commonly observed species. Our models suggest 

that on average, detection probability was 86% for all raptors combined, 50% for 

Brahminy Kites, and 35% for Philippine Serpent Eagles. Our models also predict that the 

probability of occupancy by Brahminy Kites (a purported habitat generalist with a large 

distribution) was positively correlated with forest disturbance while probability of 

occupancy by Philippine Serpent Eagles (an endemic and purported forest specialist) 

was highest in near-pristine forests. Further, we observed fewer island endemics and 

more non-endemic residents than predicted by our models. These suggest that the 

anthropogenic changes in central and eastern Mindanao are more consequential to 

endemics than expected and that endemics are more vulnerable to these changes than 

are more widespread species.  
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INTRODUCTION 

Anthropogenic landscape change is among the greatest threats to global 

biodiversity. The expansion and intensification of agriculture, in particular, have 

been predominant drivers of this process (Matson et al. 1997, Clay 2004). Land 

cover change leads to the loss of natural environments, alters structure and function 

of ecosystems (Vitousek et al. 1997, Foley et al. 2005), and removes, reduces, or 

isolates suitable habitats (Fahrig 2003). Altogether, these changes can decrease the 

capacity of the environment to support biodiversity (Gaston et al. 2003). As a result, 

although species and community response to land cover change is highly context-

specific (Hansen et al. 2001), human-modified environments almost always support 

smaller populations of lower species diversity than do unmodified environments 

(Rapport et al. 1985, Gardner et al. 2008).  

For birds, habitat fragmentation can influence spatial and temporal changes in 

populations by affecting territory size and dispersal (Rolstad 1991). As predators, 

raptors have smaller populations than most other avian species, they occur at lower 

densities, they are dependent on movements of their prey, and they are often a focus 

of persecution by humans (Newton 1979, 1998, Thiollay and Meyburg 1988, Hall et 

al. 2015). As a consequence, raptors, particularly forest raptors, often are especially 

vulnerable to landscape changes (Jullien and Thiollay 1996, Thiollay 2007).  

These patterns are especially true for raptor communities in islands, where 

endemism is high (Gentry 1992, White and Kiff 2000), and species occur in naturally 

constrained ranges (i.e. limited to the size of the island) and have restricted 

potential to disperse (Thiollay and Meyburg 1988, Virani and Watson 1998, 

Blackburn and Gaston 2002). As a result of anthropogenic landscape changes, 

tropical island endemics are among the most globally threatened raptors in the 

world (Concepcion et al. 2017). 

The Philippines has one of the planet’s richest and most threatened areas of 

biodiversity (Myers et al. 2000, Hannah et al. 2013). The archipelago has such high 

rates of deforestation (Lasco and Pulhin 2000, Bankoff 2007) that only 3% of its 
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original primary forest remains (Myers et al. 2000). Deforestation affects many of 

the country’s 29 species of diurnal birds of prey, 15 of which tend to occupy habitats 

with more than 50% forest cover (Gamauf et al. 1998, Kennedy et al. 2000). Among 

Asian countries, the Philippines also has among the highest number of endemics and 

globally threatened species make up a disproportionately large proportion of the 

species present (Concepcion et al. 2017).    

To understand the effects of changes in land cover on tropical raptor communities 

and species, we surveyed raptors and land cover types in central and eastern areas 

of the Philippine island of Mindanao. We used these data to identify the distribution 

of birds of prey present and to assess how land cover characteristics has influenced 

this distribution. Our specific objectives were to (1) evaluate patterns in raw count 

data to understand how road surveys compare to other survey techniques that have 

been used, (2) describe the abundance of raptor and habitat relationships of raptor 

communities within central and eastern Mindanao, and (3) characterize among-

species (forest specialist vs habitat generalist) differences in landcover correlates of 

occupancy.  

METHODS 

Study area 

The Philippines is a tropical, southeast Asian archipelago made up of over 7,000 

islands with an area of 300,000 km2. Its land cover is a mosaic of rainforests, 

croplands and plantations (Catibog-Sinha and Heaney 2006). The few remaining 

forests that have not been cleared for agriculture are found mostly on the islands of 

Palawan, Mindanao, and the northern and southern parts of Luzon. These forests 

are one of three types, low-elevation dipterocarp, high elevation montane, or 

mangrove. Low elevation dipterocarp forests are usually found from sea level up to 

700 meters above sea level (ASL; Heaney 1998, Catibog-Sinha and Heaney 2006), 

although in Mindanao, dipterocarp forests sometimes extend up to 1,500 meters 

ASL. Dipterocarp forests are dominated by large trees in the family 



 96 

Dipterocarpaceae that have massive supporting buttresses, and can grow up to 

three meters in diameter and 60 meters tall. Lianas (woody vines), other vines and 

strangler fig trees (Ficus spp.) are common. High elevation montane forests on 

Mindanao are usually found at 700 - 2,300 meters ASL.  Montane forests are 

dominated by oak (Quercus spp.) and laurels (Lauraceae family) that grow up to 25 

meters tall. These trees are covered in moss and epiphytes, such as pitcher plants 

(Nepenthes spp.), orchids (Orchidaceae family), and palm (Freycinetia spp.). 

Mangrove forests are exclusively coastal in distribution.  

We surveyed for raptors in representative portions of land controlled by five towns 

of the island of Mindanao (Figure 1). These areas were selected because they were 

accessible (parts of Mindanao are contested and not safe for travel) and represented 

a diversity of forest types, disturbance regimes, and elevations (Ong et al. 2002, 

Conservation International - Philippines et al. 2006). They are:  

 Lantapan, in the Province of Bukidnon, has near-pristine, high elevation 

montane forests located within the Mount Kitanglad Range (312 km2). The 

forests there are surrounded by a matrix of agricultural and open lands. 

Mount Kitangland Range has national protected status.  

 Arakan, in the Province of North Cotabato, has severely disturbed, high 

elevation montane forest, confined to the slopes of Mt. Sinaka (17 km2). 

Similar to Lantapan, the forest in Arakan is surrounded by a matrix of 

agricultural and open lands.  

 Davao City, in the Province of Davao del Sur, has moderately disturbed, high 

elevation montane forest. The 41 km2 of forests here are surrounded by open 

and agricultural lands and are located within the Marilog Forest Reserve.  

 San Isidro and Governor Generoso, both in the Province of Davao Oriental, are 

neighboring towns and share 319 km2 of contiguous, low elevation 

Dipterocarp forests found within the protected Mt. Hamiguitan Range 

Wildlife Sanctuary. The forest we surveyed near San Isidro is near-pristine, 



 97 

while the forest we surveyed near Governor Generoso is moderately 

disturbed.  

Survey techniques 

In each town, we surveyed for raptors at 11 point counts distributed at 1-km 

intervals along a fixed, 10-km transect. Each transect was established along existing 

roads and we used GoogleEarth and local information to select those roads that 

crossed or ran adjacent to forest for the longest distance. We began the transect 

where the road dead-ended.  

Surveys were completed in November to December of 2014, 2015, and 2016. Each 

year, the five routes were sampled five times over a three-day period. Surveys 

occurred up to twice per day, starting as early as 0900H and finishing at or before 

1600H, approximately the period during the day when rain forest birds are most 

likely to soar and perform territorial or display flights (Thiollay 1989). Due to 

logistical constraints, we did not have equal numbers of morning and afternoon 

surveys. We drove each of the five 10-km transects five times in each of three years, 

covering a total of 750 km.  

At each point count location, four observers exited the car, fanned out along the 

point, and surveyed for raptors for 10 minutes. We spotted raptors by using 

binoculars, field scopes and the unaided eye to methodically scan the sky and trees. 

For each bird sighted, we recorded the route, observer location, species, time of 

sighting, straight line distance from observers, activity (flighted, perching) and the 

land cover type where the bird was detected (forest, forest edge, open, agricultural). 

We assumed that flight activity was for territorial display. Whenever possible, we 

estimated the age of the individual as either immature or adult. Observers shared 

information and any bird spotted was only recorded once. 

Finally, at each point count, we noted the forest type (dipterocarp or montane), and 

level of disturbance (low, moderate, severe).  Disturbance was characterized based 

on logging history, area of forest remaining, and human activity surrounding the 

remaining forest. In general, low disturbance sites were unlogged and were rarely 
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used by humans. Moderately disturbed sites had been logged on the periphery and 

had some agricultural activity around the remaining forest. Severely disturbed sites 

had been heavily logged and remaining forest fragments were surrounded by 

extensive agriculture. We did not have access to a severely disturbed, dipterocarp 

forest. 

Data analysis 

We used our observations at point counts to build year-specific encounter histories. 

We then used N-mixture models for spatially repeated counts (Royle 2004) within 

Program MARK (Version 6.2, Dec. 2016; White and Burnham 1999) to estimate 

detection and occupancy probabilities of the raptors we counted. These models 

estimate, through a logit likelihood function, the binomial sampling probability that 

a particular individual is detected (r), and the Poisson intensity parameter of 

occupancy (λ) at each point (Royle and Nichols 2003, Royle 2004). Intensity 

parameter estimates the number of individuals at each point count. Global detection 

and transect-specific occupancy probabilities were calculated from these 

parameters. 

In our models, we set the intensity (λ) and individual detection probability (r) 

parameters to be either constant or we allowed them to vary among the three 

survey years. Our model set included four models, with all possible combinations of 

individual detection and intensity parameters, as follows:  

 r and λ constant over time 

 r constant over time and λ time-varying 

 r time-varying and λ constant over time; and  

 r and λ time-varying. 

In all our models, we allowed λ to be influenced by forest type and level of 

disturbance. To reduce deviances, we applied a global optimization with simulated 

annealing (Goffe et al. 1992). We model averaged across all models in each set 
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(Doherty et al. 2012) to estimate model parameters (Buckland et al. 1997, Burnham 

and Anderson 2002). 

To evaluate patterns in raw count data (for objective #1), we used Kruskal-Wallis 

test and Wilcoxon signed-rank tests, within R statistical software (R Development 

Core Team 2013) to compare between years, times of day (0900—1200H vs 1300—

1400H), and forest types, the raw count data on numbers of raptors counted on 

surveys at each survey point. To describe where we detected raptors and how those 

detections were distributed in our survey areas (objective #2), we adjusted those 

raw count data with region-specific model averaged detection and occupancy 

probabilities. Because we observed relatively few birds of most species, we could 

not model detection and occupancy probabilities for each species individually. 

Instead, to describe the general patterns for this guild, we estimated detection and 

occupancy probabilities (as described above) for all raptors combined (Duerr et al. 

2015). We then use these detection and occupancy estimates to evaluate among-

forest differences in patterns of raptor occupancy.  

To identify differences among occupancy patterns for the two most-commonly 

observed species (objective #3), again we first used Wilcoxon signed-rank tests to 

compare between survey years, time of day (AM vs PM), and forest types, the raw 

count data on numbers of individuals. We then again adjusted those raw count data 

with model averaged detection and occupancy probabilities. Finally, we used these 

detection and occupancy estimates to evaluate among-forest differences in patterns 

of occupancy of those two species.  

RESULTS 

Raptor communities within central and eastern Mindanao  

Between 2014 and 2016, we observed 13 species of birds of prey and 1,656 

individual raptors (Table 1). Four species were Philippine endemics, three were 

migrants that do not breed in the Philippines, five species were habitat generalists, 
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and five were forest specialists (Table 1). The Brahminy Kite (Haliastur indus) and 

Philippine Serpent Eagle (Spilornis holospilus) were the most common species 

observed.  The majority (95%; n = 1,567) of raptors observed were in flight. We 

observed no inter-annual variation in the number of birds we detected (Kruskal-

Wallis, χ2 = 0.57, df = 2, p = 0.75), but we observed more raptors during morning 

surveys (x ̅ = 3.03, SD = 1.03) than during afternoon surveys on the same routes (x ̅ = 

2.42, SD = 0.94; W = 930, p = 0.01). Further, we observed no variation in the number 

of raptors we counted among the different forest types (Figure 2, W = 731, p = 0.55).  

In general, individual detection probabilities for all raptors were low and intensity 

of occupancy parameters were high. Global detection probabilities were generally 

high (0.84 – 0.87) and occupancy probabilities always were approximately 1. For all 

raptors considered together, there was less support for models that described 

detection and occupancy probabilities varying among the three survey years 

(detection: ΣAICc weight = 0.36, occupancy: ΣAICc weight = 0.24) than for models 

where these remained constant among the years (detection: ΣAICc weight = 0.64, 

occupancy: ΣAICc weight = 0.76; Table 2, Table 3). 

Our model estimated that for every point count within the landcover type the model 

used as reference (dipterocarp forest with low to moderate disturbance), 12 raptors 

were present and average detection rates for those raptors were 86%. These models 

also suggested that within both forest types, disturbance reduced abundance of 

raptors within forests (Table 4). That said, when disturbance was similar, 

abundance of raptors was greatest in high elevation montane forests and lower in 

low elevation dipterocarp forest. 

Among-species differences in detection and occupancy 

We observed no inter-annual or diel variation in the numbers of Brahminy Kites 

(year: Kruskal-Wallis, χ2 = 0.67, df = 2, p = 0.73; time of day: W = 744, p = 0.46) and 

Philippine Serpent Eagles (year: Kruskal-Wallis, χ2 = 2.41, df = 2, p = 0.33; time of 

day: W = 585.5, p = 0.37) that we counted. We observed more Brahminy Kites 

during surveys around montane forests (x ̅ = 2.38, SD = 0.97) than during surveys 
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around dipterocarp forests (x ̅ = 1.47, SD = 0.37; W = 224, p < 0.001, Figure 2). On 

the other hand, we observed more serpent eagles during surveys around 

dipterocarp forests (x ̅ = 2.09, SD = 0.88) than during surveys around montane 

forests (x ̅ = 1.50, SD = 0.58; W = 732.5, p = 0.004, Figure 2). 

Our model estimated that at every point count around the reference landcover, 

there were 6 Brahminy Kites of which 60% were detected. For Brahminy Kites, 

detection probabilities were relatively high and there was more support for models 

where this varied among survey years (ΣAICc weight = 0.73) than for models where 

detection was constant (ΣAICc weight = 0.27; Table 2, Table 3). There was more 

support for models that described occupancy probability as constant across years 

(ΣAICc weight = 0.62) than for models where it varied among the years (ΣAICc 

weight = 0.38;). If disturbance was similar, kites were more likely to occupy 

dipterocarp forests, than montane forests (Table 4). However, within both forest 

types, there were 2-3 times more kites in moderately disturbed forests than the 

other sites.   

For Philippine Serpent Eagles, detection probabilities were relatively low and there 

was more support for models where detection varied among survey years (ΣAICc 

weight = 0.54) than for models where it was constant among years (ΣAICc weight = 

0.46; Table 2, Table 3). There was more support for models where occupancy was 

constant (ΣAICc weight = 0.57) than models where occupancy varied among the 

years (ΣAICc weight = 0.43). Based on our model, when disturbance is similar, 

serpent eagles were more likely to occupy low elevation dipterocarp forests, than 

montane forests (Table 4).  That said, within both forest types, disturbance reduced 

abundance of serpent eagles within forests. Our model estimated that at every point 

count around the reference landcover, 8 Philippine serpent eagles were present of 

which 35% were detected.  
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DISCUSSION 

Understanding the impacts of habitat fragmentation and loss on biodiversity is 

essential to conserving wildlife populations. To do this, it is crucial to understand 

how species respond to landscape changes. Our study is among the first to use the 

combination of road surveys and occupancy modeling to describe communities of 

birds of prey in either the tropics or the Philippines. More broadly, it also illustrates 

how island endemics may be relatively more vulnerable to land-use changes than 

more broadly distributed non-endemic species.  

In the course of our surveys, we observed 45% of the total diversity of species of 

diurnal birds of prey regularly observed in the Philippines. Although detection rates 

were high, the majority of the birds we observed were in soaring flight and it is 

likely that we missed species that do not soar. For example, Besras (Accipiter 

virgatus) are known to stay in forests or in the understory and we did not count any 

of them in our surveys (Gamauf et al. 1998). We also observed more birds during 

our morning surveys, possibly demonstrating time-of-day patterns in territorial and 

foraging flight activities (Wakeley 1978, Newton 1979, Ballam 1984). 

In the tropics, there are typically more species found in low elevation than high 

elevation areas (Goodman and Gonzales 1990, Peterson et al. 2000). However, our 

models suggested the opposite - that few birds occupied low elevation forests. 

Human population density in the Philippines is greater at low elevations and the 

patterns we observed likely reflect the greater magnitude of anthropogenic changes 

at low, as opposed to high, elevation forests (Vester et al. 2007, Nogués-Bravo et al. 

2008). In fact, we observed up to 150% more raptors than our model estimated at a 

high elevation field site (i.e. Davao City). This was unexpected because this site was 

not only high elevation, but also had moderately disturbed forests. We encountered 

similar numbers of birds of prey here as we did in a site which had near-pristine, 

low elevation forest (i.e. San Isidro).  

Overall, we observed fewer forest specialists and more habitat generalists than our 

models predicted. In our study, forest specialists were represented by  Philippine 



 103 

Serpent Eagles which typically occupy dipterocarp forests with over 50% canopy 

cover (Gamauf et al. 1998, Kennedy et al. 2000, Ferguson-Lees and Christie 2001). 

Habitat generalists were represented by Brahminy Kites, a species that occupies 

open cover types. The low numbers of forest specialists and high numbers of habitat 

generalists may mean one of at least two things. One, forest specialists are forest 

interior species and road surveys, which use transects that do not always cross the 

forest, are not an appropriate method to survey for them. Two, our road surveys 

accurately captured the status of the raptor population, and the remaining forests 

are highly degraded and therefore, less suitable for forest specialists.  

We can test the first of these two hypotheses (that our results are driven by bias 

induced by the type of survey we conducted) by comparing trends in our data with 

those from other surveys conducted differently. For example, the most commonly 

used method for surveying birds of prey in the Philippines is to count birds from a 

fixed observation point on a ridgetop. Such vantage points provide better views of 

forested areas than do road surveys. If our survey methods are driving our results, 

we would expect to observe relatively more forest specialists during surveys from 

those ridge-top observation posts. However, when concurrent observations from 

fixed posts and road surveys are conducted, fewer raptors, forest specialists or 

otherwise, are observed from fixed observation posts (CBConcepcion unpubl. data). 

Thus, it seems unlikely that survey type is driving the trend we observed. 

We can test the second hypothesis (that remaining forests are less suitable for forest 

specialists) by comparing the numbers of birds of each type that we counted. Based 

on our detection probabilities and the estimated number of individuals present at 

each point, we have recorded only 86% of serpent eagles, but 242% of the Brahminy 

Kites estimated. As these species have opposite landcover needs, these data seem to 

support our second hypothesis. This finding is especially significant because the 

Philippine Serpent Eagle is an endemic species, and our results would coincide with 

Ferrer-Sánchez and Rodríguez-Estrella (2015) who found that “[island] endemics 

do not cope well with habitat changes.” Several other studies have found this to be 

true for island species (Thiollay and Meyburg 1988, Jullien and Thiollay 1996, 
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Bildstein 1998, Thiollay 1998, Virani and Watson 1998, Sodhi et al. 2004, 2008, 

2010). These species may therefore be more vulnerable than are more widespread, 

generalist species and, if deforestation continues at its current rate, their 

conservation status, which is currently “Least Concern”, may need to be 

reconsidered.    

Our study shows that conducting relatively inexpensive, and statistically robust 

surveys can be used to assess the impact of anthropogenic land-use change on 

Philippine wildlife. Although responses to these changes are species-specific 

(Hansen et al. 2001), our data illustrate that loss of natural environments impacts 

endemic species. This is directly relevant not just for the Philippine Serpent Eagle, 

but for the other endemic diurnal raptor species we observed as well. The 

Philippine Eagle (Pithecophaga jefferyi), the Philippine Honey-buzzard (Pernis 

stereei), and the South Philippine Hawk-eagle (Nisaetus pinskeri), are all forest 

specialists. We also found that endemics and habitat specialists, no matter how 

common, became limited to natural or less disturbed areas. Further investigation 

will help identify the demographic responses of these species to the continued 

landscape changes occurring in an already degraded forest areas.  
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Table 1. Number of birds of prey observed around central and eastern Mindanao, 2014-2016. Surveys were conducted 
between November and December each year. Standard deviations are provided. Conservation status are based on IUCN 
(BirldLife International 2017) and are either Least Concern (LC), Endangered (EN) or Critically Endangered (CR). Migratory 
status is either resident (R) or Migratory (M). Habitat specialists (S), habitat generalists (G), and “intermediate” species (I) are 
also identified. 
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 Status Distribution 

Migratory 
status 

Habitat 
use 

patterns 

Number of individuals 

2014 2015 2016 Total Mean 
Black-winged Kite 
Elanus caeruleus 

LC Global R G 1 0 1 2 0.002 (0.001) 

Brahminy Kite 
Haliastur indus 

LC Asia R G 240 258 359 857 1.04 (1.68) 

Chinese Sparrowhawk 
Accipiter soloensis 

LC Asia M I 2 6 2 10 0.01 (0.12) 

Crested Goshawk 
Accipiter trivirgatus 

LC Asia R S 0 2 0 2 0.002 (0.05) 

Grey-faced Buzzard 
Butastur indicus 

LC Asia M G 34 48 26 108 0.13 (0.45) 

Oriental Honey-buzzard 
Pernis ptilorhynchus 

LC Asia M/R I 12 17 17 46 0.06 (0.34) 

Osprey 
Pandion haliaetus 

LC Global M G 0 2 2 4 0.005 (0.07) 

Peregrine Falcon 
Falco peregrinus  

LC Global M/R I 2 4 2 8 0.01 (0.10) 

Philippine Eagle 
Pithecophaga jefferyi 

CR Endemic R S 4 1 2 7 0.01 (0.09) 

Philippine Honey-buzzard 
Pernis stereei 

LC Endemic R S 0 4 18 22 0.03 (0.46) 

Philippine Serpent Eagle 
Spilornis holospilus 

LC Endemic R S 160 143 117 420 0.51 (1.05) 

South Philippine Hawk-eagle 
Nisaetus pinskeri 

EN Endemic R S 8 10 0 18 0.02 (0.20) 

White-bellied Sea Eagle 
Haliaeetus leucogaster 

LC Asia R G 4 4 14 22 0.03 (0.21) 

Unidentified raptor     42 51 25 118  

Totals     509 550 585 1644  
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Table 2. Model selection table describing detection probability and occupancy of 
birds of prey around central and eastern Mindanao. These models estimate intensity 
(λ) and individual detection probability (r) parameters. We set individual detection 
probability and occupancy to be either constant (rconstant or λconstant) or to vary 
among the three survey years (rtime or λtime). We allowed the intensity parameter to 
be influenced by forest type and level of disturbance. Models are ranked according 
to increasing AICc values. For all raptors, lowest AIC = 3421.65, for Brahminy Kites, 
AIC = 2397.66, and for Philippine Serpent Eagles, AIC = 1503.08. 
 

Model ΔAICc 
AICc 

Weights 
All raptors   
rconstant λconstant 0 0.45 
rtime λconstant 0.72 0.31 
rconstant λtime 1.69 0.19 
rtime λtime 4.60 0.05 

   
Brahminy Kite   
rtime λconstant 0 0.62 
rconstant λtime 1.68 0.27 
rtime λtime 3.46 0.11 
rtime λconstant 13.20 0.00 

   
Philippine Serpent Eagles 

rtime λconstant 0 0.49 
rconstant λtime 0.51 0.38 
rconstant λconstant 3.69 0.08 
rtime λtime 4.35 0.06 
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Table 3. Model averaged parameter estimates for models describing detection and occupancy probabilities of Brahminy Kites, 
Philippine Serpent Eagles and all raptors considered together. Our models estimated the binomial sampling probability that a 
particular individual is detected (r), and the Poisson intensity parameter of occupancy (λ) at each point. Global detection and 
transect-specific occupancy probability parameters were calculated from r and λ. Standard errors are provided.  
 

 Modeled individual parameter estimates 

 2014 2015 2016 

 

Individual  
detection (r) 

Intensity  
parameter 

(λ) 
Individual  

detection (r) 

Intensity  
parameter 

(λ) 
Individual  

detection (r) 

Intensity  
parameter 

(λ) 
All raptors 0.15 (0.02) 12.09 (1.27) 0.16 (0.01) 12.15 (1.06) 0.17 (0.02) 12.17 (1.00) 
Brahminy Kite 0.14 (0.02) 5.6 (0.03) 0.13 (0.03) 6.20 (1.38) 0.18 (0.03) 6.35 (1.02) 
Philippine Serpent Eagle 0.06 (0.02) 8.50 (2.68) 0.06 (0.02) 8.12 (2.43) 0.05 (0.02) 7.52 (2.78) 

       

 Derived global detection and habitat-specific occupancy parameter estimates 

 2014 2015 2016 

 

Detection  
probability 

Occupancy  
probability 

Detection  
probability 

Occupancy  
probability 

Detection  
probability 

Occupancy  
probability 

All raptors 
0.84 (0.02) 

1.00 
(<0.001) 

0.86 (0.01) 
1.00 

(<0.001) 
0.87 (0.02) 

1.00 
(<0.001) 

Brahminy Kite 0.54 (0.03) 1.00 (0.004) 0.56 (0.03) 1.00 (0.002) 0.68 (0.03) 1.00 (0.002) 
Philippine Serpent Eagle 0.40 (0.03) 1.00 (0.001) 0.36 (0.03) 1.00 (0.001) 0.30 (0.03) 1.00 (0.002) 
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Table 4. Study site-specific modeled estimates of numbers of Brahminy Kites, 
Philippine Serpent Eagles, and all raptors combined. We used the beta coefficients of 
intensity parameter (λ), and the influence of forest type and level of disturbance to 
estimate abundance or raptors in each location.  
 
 

 Estimated abundance or numbers of raptors 

 High elevation montane 
Low elevation 
dipterocarp 

 

Near-
pristine 

Moderately 
disturbed 

Severely 
disturbed 

Near-
pristine 

Moderately 
disturbed 

All raptors 16.49 12.84 8.03 13.92 10.83 
Brahminy Kite 0.29 0.74 0.36 0.21 0.74 
Philippine Serpent 
eagle 7.60 11.28 4.47 21.09 11.28 
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Figure 1. Distribution of areas surveyed around central and eastern Mindanao, Philippines. Inset on the top left shows the 
entire Philippines; island of Mindanao is shaded. Enlarged map of Mindanao shows the locations of the 5 study areas. Figure 
part (a) shows the fixed 10-km transect ( ) surveyed in Lantapan. Middle map (b) shows the fixed 10-km transect surveyed 
in Davao City and Arakan. Right map (c) shows the fixed 10-km transect surveyed in San Isidro and Governor Generoso. Areas 
shaded grey in a, b, and c have at least 50% tree cover and are from Bartholomé and Belward  (2005) and Hansen et al (2013). 
Outlines in a, b and c show town boundaries. Forests nearest to study areas are identified.  

Polylines
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Figure 2. Number of individuals counted of Brahminy Kites, Philippine Serpent 
Eagles and all raptors combined according to forest type and level of disturbance. 
Forest type is either high elevation montane or low elevation dipterocarp forest. 
Level of disturbance is categorized as near-pristine (or low disturbance), moderate 
or severe.  
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SUMMARY 
Capsule: Modeling trans-oceanic migration pathways demonstrates that birds face 

trade-offs among use of stopover sites, duration of over-water travel, and wind 

direction, and generates testable hypotheses for future study.  

Aims: We evaluated the potential migratory responses of “oceanic”, island-hopping 

Grey-faced Buzzards that encounter variation in landscape parameters and weather 

as they move through and out of the Philippine archipelago. 

Methods: We created spatial models and constrained the modeled routes to enter 

the Philippine island chain at a single northern island, Batan, and to use one of 4 

potential exits in the south, either Balabac Island, Bongao Island, Balut Island, or 

Cape San Agustin on Mindanao Island. We included costs of all possible 

combinations of our three external parameters (stopover sites, water and wind 

direction) to model alternative migratory routes for each of the four exit points (n = 

20 migratory routes) and we validated modeled routes with published migration 

data. 

Results: Modeled Grey-faced Buzzard migration routes were between 1,582 and 

2,970 km and all repeatedly crossed water. Routes overlapped over eastern and 

central Luzon, along a leading line created by the Sierra Madre Mountains and at 

long and unavoidable over-water crossings between the islands of Mindoro and 

Palawan, Negros and Zamboanga del Norte, and Leyte and Mindanao. Observational 

data were closer than random points to modeled routes for two of the four possible 

exit points.  

Conclusion: Our models suggest that the optimal migratory strategy for these birds 

is to find the shortest route to an exit point with the greatest possible access to 

stopover habitats and fewest open-water crossings under wind resistance.  

Understanding how each of the external factors affected the geography and 

characteristics of the migratory routes generates testable hypotheses to evaluate 

strategies of birds that face dangerous open-water crossings on migration.  
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INTRODUCTION 
Migration can be a costly period that can influence regulation of bird populations 

through its consequences to survival and, in some cases, to reproduction (Newton 

1998, 2004). Survival is lower during migration than during non-migratory periods 

(Sillett and Holmes 2002, Klaassen et al. 2014) and may vary by sex (Sillett and 

Holmes 2002) or age (Oppel et al. 2015). The consequences of low survival and 

individual decisions made during migration and wintering in turn have important 

carry over effects on sex ratio dynamics and reproductive success (Sillett et al. 2000, 

Norris et al. 2004, Norris and Marra 2007, Dale and Leonard 2011). These effects of 

migration often are influenced by the range of external conditions that migrants 

encounter as they move back and forth between breeding grounds and wintering 

grounds (Runge and Marra 2005, Newton 2006). 

To account for these consequences, there is selective pressure to minimize costs 

associated with energy, time and risk on migration (Alerstam and Hedenström 

1998, Henningsson and Alerstam 2005). For example, although migration influences 

the energy balance of birds (Tucker 1975, Alerstam et al. 2003), migrating raptors 

are able to reduce energetic costs by using soaring flight (Bildstein 2006). Soaring is 

fast (Duerr et al. 2012) and so energy efficient (Mandel et al. 2008) that soaring 

migrants can cover long distances with little or no need to refuel (Kerlinger 1989, 

Bildstein 2006).  

Although soaring can help minimize energy and time, it does not however, reduce 

safety costs, or risks, associated with over-water travel. When making over-water 

crossings, the odds of success are much higher when weather conditions are 

favorable (Meyer et al. 2000, Liechti 2006). Decision lapses over-water are highly 

consequential because they may lead to fatigue and ultimately death (Bildstein et al. 

2009, Oppel et al. 2015). Decision lapses also are especially common for young, 

inexperienced birds who are still honing navigation and orientation abilities 

(Thorup et al. 2003, Agostini 2004) and learning appropriate migratory responses 

to weather and the landscape they encounter (Fagan et al. 2013, Harel et al. 2016). 

As such, if young, inexperienced birds survive their first over-water crossings, they 
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sometimes do so in spite of being blown off course by wind drift (Thorup et al. 2003, 

Agostini 2004), and following longer migration routes over extended migration 

periods (Mellone et al. 2011, Crysler et al. 2016).  Despite these challenges, over-

water routes are often shorter and, with the assistance of supporting winds and 

appropriate soaring conditions (Alerstam 1979, Meyer et al. 2000, 2003), may be a 

significant ecological corridor for birds adapted for such flight (Gill et al. 2009, 

López-López et al. 2010). 

The Grey-faced Buzzard, Butastur indicus,  regularly completes long-distance, over-

water travel and is considered to be one of the most “oceanic” of raptor migrants 

(Bildstein 2006). Every year, more than 10,000 Grey-faced Buzzards migrate across 

Taiwan before crossing at least 180 km of open ocean to reach the Philippines (Lin 

and Severinghaus 1998). Once within the Philippine Archipelago, nearly all of them 

make multiple, short oceanic crossings while island-hopping through the country. 

Although some of them over-winter in the Philippines, others make another large 

ocean crossing, from the southern extent of the archipelago on Palawan and 

Mindanao to Borneo and Indonesia, 120 km further south (Ferguson-Lees and 

Christie 2001). Because their migration is both so oceanic and so observable at 

these few points of land arrival and departure, this species is a good model for 

understanding the causes and consequences of migration behavior over large 

expanses of water.   

We built spatial models to assess costs, consequences and potential migratory 

responses of Grey-faced Buzzards to different external factors (e.g. weather 

conditions and landscape characteristics) and to provide insight into migratory 

strategies individuals may select along this East Asian Oceanic Flyway. Our models 

addressed two specific research questions: (a) how may autumn migration routes 

vary as a result of trade-offs in migratory response; and (b) how the choice of 

migration strategy may influence which potential exit points would be used as 

buzzards depart from the Philippines. We then interpret these outputs to provide 

insight into the relative costs and benefits to each migratory strategy and to other 

migrants that also make substantial ocean crossings.   
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METHODS 
Study area 
The Philippines is a tropical, southeast Asian archipelago made up of over 7,000 

islands with a land area of 300,000 km2 (Fig. 1). Land cover is a mosaic of 

rainforests, croplands and plantations (Catibog-Sinha and Heaney 2006). The 

forests that have not been cleared for agriculture (i.e. lowland dipterocarp, high 

elevation montane, and mangroves) are found mostly in the northern and southern 

parts of the island of Luzon, and on the islands of Palawan and Mindanao. Natural 

grasslands have been converted primarily for agriculture and agro-forestry.  

The Philippines belongs to the “Maritime Continent” (Ramage 1968) and 

experiences a monsoon-type climate, with high temperatures, high humidity and 

abundant rainfall throughout the year (Chang et al. 2004, Saha 2010). Mean annual 

temperature across the country is 25—28°C. Average rainfall is between 1—4 m 

annually. The southwest monsoon and northeast monsoon alternate through the 

region in a seasonal cycle. From May to September, the southwest monsoon brings 

hot and humid weather and frequent rainfall as a result of warm, moist air (PIDS 

2005, Saha 2010). This southwest monsoon brings rains to the western side of the 

Philippines. From October to late March, the northeast monsoon, dominated by 

trade winds, brings moderate temperatures and little or no rainfall as a result of 

cool winds. These minor northeast monsoon rains affect the eastern side of the 

Philippines. The Philippines also experiences cold fronts from November to 

February which increase cloudiness and can produce heavy rains nationwide.  

Focal species 
The Grey-faced Buzzard is a small raptor that breeds in eastern-mainland Asia and 

winters in southern East Asia and parts of Pacific Asia (Ferguson-Lees and Christie 

2001). Some Grey-faced Buzzards migrate to and winter in the Philippines whereas 

others migrate through and continue on to more southerly destinations. Grey-faced 

Buzzards are believed to exhibit high fidelity to both migration routes and to 

stopover sites (Shiu et al. 2006). The species’ passage has been suggested as a good 
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indicator to identify important raptor migration watchsites (Lin and Severinghaus 

1998).  

The Grey-faced Buzzard occupies open habitat (Gamauf et al. 1998, Sakai et al. 

2011), favoring farmlands sharing edges with forests or wooded areas (Matsuura et 

al. 2005, Wu et al. 2006). Although it may use a wide range of farmlands, the Grey-

faced Buzzard prefers to forage for frogs, lizards and grasshoppers in cultivated or 

wet rice paddy fields during both breeding and wintering season (Momose et al. 

2005, Kadowaki et al. 2007, Sakai et al. 2011). The wintering home range of Grey-

faced Buzzards is 0.25 to 0.75 km2 (Wu et al. 2006). Conversion of agricultural lands, 

particularly the abandonment of rice paddy fields, has led to a well-documented and 

rapid decline in Grey-faced Buzzard breeding population in Japan (Kawakami and 

Higuchi 2003, Ueta et al. 2006a).   

Modeling approach  
To provide a framework to understand why Grey-faced Buzzards take particular 

migration routes, we used ArcGIS 10.2.2 (ESRI 2014) to create deterministic models 

of Grey-faced Buzzard autumn migratory routes across the Philippines. We 

completed this in three stages. First, we evaluated the “cost” of movement as a result 

of landscape features (i.e., costs induced by distances between stopover sites on 

land and costs induced by over-water travel) and weather conditions (i.e. costs 

induced by changes in wind direction) buzzards encounter as they migrate through 

the archipelago. These calculations were based on model input data and cost 

estimates described below.  

Second, we used accumulated cost surface methods (the value of a grid cell 

represents the combined energetic and safety cost of moving from that grid cell to 

an exit point; Eastman 1989, Douglas 1994, Collischonn and Pilar 2000) to 

determine likely routes buzzards use to reach logical exit points in the south of the 

country. The four exit points we used were Balabac Island, Bongao Island, Balut 

Island, and Cape San Agustin on Mindanao Island (Fig. 1). Each of these exit points 

are at a southernmost island tip and each is the closest point to either the island of 
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Borneo (shared by the countries of Malaysia, Brunei and Indonesia) or other 

Indonesian islands. Finally, we evaluated characteristics of these potential 

movement trajectories to determine the shortest and least costly routes buzzards 

could follow to move from the northernmost tip of the Philippines (Batan Island) to 

each exit point.  

We used 1-km resolution as the standard processing cell size for our models. 

Because this is close to the known winter home range size of the species, we 

assumed that this would reasonably represent the scale at which Grey-faced 

Buzzards use the landscape, especially during stopovers. We transformed all maps 

from a geographic coordinate system (WGS 1984) to a projected coordinate system 

(WGS 1984 UTM Zone 51N).  

Model input data 
 We used land cover and climate data for Philippine terrestrial habitat and all 

surrounding marine habitat that were within 4°N (southernmost extent of latitude) 

to 22°N (northernmost latitude), and 116°E (westernmost longitude) to 128°E 

(easternmost longitude).  Data sources are described below; all maps were scaled or 

resampled to a 1-km grid cell size for modeling. Our Philippine boundary map was 

downloaded from the Global Administrative Areas website (GADM 2011).  

To describe land cover types that buzzards might encounter on migration, we used 

the Global Land Cover (GLC) 2000 dataset which classified land cover in 17 

categories (GLC 2003). Because Grey-faced Buzzards are known to use rice paddies 

as foraging habitat, we supplemented land cover data with a ‘percent of rice planted 

in an area’ dataset (Ellis et al. 2010).    

To identify potential migration stopover sites for Grey-faced Buzzards, we followed 

a two-step process. First, we used ArcGIS to create binary maps for habitat type. Our 

binary map for rice fields identified all 1 km grid cells with rice fields as 1, and all 

grid cells with other habitats as 0. Similarly, our binary map for wooded areas 

identified all grid cells with closed-canopy forests, open-canopy forests or 

plantations as 1, and all grid cells with other habitats as 0.  
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We then used the ‘Extract raster edge’ tool of the Geospatial Modelling Environment 

(Beyer 2012) to identify rice fields adjacent to wooded areas, thought to be critical 

habitats for Grey-faced Buzzards (Kawakami and Higuchi 2003, Ueta et al. 2006b). 

We selected these areas because previous work  (eg. Matsuura et al. 2005, Momose 

et al. 2005, Wu et al. 2006) suggests that each ‘edge’ could be used as a stopover site. 

We identified 60,442 km2 of rice fields and 79,250 km2 of wooded areas resulting in 

6,567 potential 1- km2 stopover sites across the Philippines. Of these, 2,887 are in 

Luzon, 1,111 in the Visayas and 2,569 in Mindanao. 

To identify areas that would involve over-water travel, we created a binary map 

identifying all grid cells of water bodies as 1, and all landforms as 0. To describe 

weather that buzzards may encounter on migration, we used wind data measured at 

50 m above the surface of the earth from the month of October (the primary month 

of buzzard migration) and averaged over 22 years (1983—2005) (Stackhouse Jr. 

2013).  

Calculating movement costs 
To evaluate the cost of moving between stopover sites, we computed the straight-

line (Euclidian) distance between any given cell to the nearest 1- km2 potential 

stopover site. In the resulting stopover distance cost map, each 1- km2 cell had a 

stopover distance cost value ranging from 0 to 547 km, with mean 130 km (SD = 

121 km).  

To evaluate the cost of moving in winds of different directions, we reclassified wind 

direction to make traveling in winds blowing from the north (tailwinds, 135°—

225°) 1.08x less costly than moving in crosswinds blowing from the northeast or the 

northwest (crossing tailwinds, 90°—135° and 225°—270°) and 1.20x less costly 

than moving in crosswinds blowing from the southeast or southwest (crossing 

headwinds, 45°—90°). Thus, each km traveled with crossing tailwinds was 

equivalent to traveling 1.08 km with tailwinds and each km traveled with crossing 

headwinds was equivalent to traveling 1.2 km with tailwinds. These hypothetical 

costs were based on estimates derived from wandering albatross (Diomedea 
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exulans) heart rates when flying in different wind directions (Weimerskirch et al. 

2000). To our knowledge no similar data exist for Grey-faced Buzzards or for any 

other similarly behaving raptors of any type. In this analysis, costs over land and 

water are considered to be similar.  

The cost of over-water travel for a soaring migrant like the Grey-faced Buzzard is 

low when wind conditions are favorable (i.e., with tailwinds; Meyer et al. 2000, 

Liechti 2006, Panuccio et al. 2016). Under crosswinds or headwinds however, the 

safety costs increase to the point that birds may alter their route to avoid water 

crossing or to reduce time spent under unfavorable wind conditions (Bildstein et al. 

2009, Nourani et al. 2016). To incorporate costs of water crossings with a crosswind 

or headwind, we reclassified our water dataset so that Grey-faced Buzzards would 

never travel over-water under crosswinds or headwinds. Thus, each km traveled 

over water under tailwind was equivalent to traveling 1 km over land under 

tailwind. Cost of traveling with a crossing tailwind over land was equivalent to 

traveling 1.08 km with tailwinds over land. The cost of traveling into a crossing 

headwind over land was equivalent to traveling 1.2 km with tailwinds over land.   

Determining movement possibilities and optimum paths 
To evaluate the potential costs and benefits of different buzzard migration routes, 

we calculated the effective distance (accumulated travel cost) of all possible paths 

from an exit point to every grid cell. We used the ‘Cost distance’ tool in ArcGIS and 

assigned an exit point (the “source data” in the cost distance tool) and a gridded cost 

dataset (see below; the “cost raster” in the cost distance tool). Accumulated travel 

costs were stored in a cost distance dataset and a direction dataset.  

To determine the optimum paths, we identified the paths with the shortest effective 

distance (least-costly) linking an exit point to the entry point. We used the ‘Cost 

path’ tool in ArcGIS and assigned the buzzard’s starting point (Batan; the 

“destination data” in the cost path tool) and the accumulated travel costs (the 

outputs from the cost distance tool; the “cost distance raster” in the cost path tool). 

The GIS then calculates an “optimum path” which is the least costly route relative to 
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the exit point and to the cost dataset (the two inputs into the cost distance tool). The 

cumulative route cost is unitless and thus is directly comparable among different 

exit points that used the same gridded cost dataset. However, these route costs are 

not useful for comparing alternatives when gridded cost datasets are not identical.    

To understand how routes may vary as a result of trade-offs buzzards face (research 

question #1), we prepared different gridded cost datasets based on all possible 

combinations of our 3 parameters (n = 20 migratory routes). We combined cost 

datasets by multiplying them. We could not consider over-water costs without 

incorporating winds and models that required over-water costs only were not 

considered. Our gridded cost datasets were based on the following: 

• Cost of moving between stopover sites only (n = 4 migratory routes, 

one to each endpoint) 

• Cost of wind direction only (n = 4 migratory routes) 

• Combined costs of stopover distances and wind direction ([Stopover 

distances * Wind costs], n = 4 migratory routes) 

• Combined costs of wind direction and over-water travel ([Wind costs 

* Over-water costs], n = 4 migratory routes) 

• Combined costs of stopover distances, over-water travel and wind 

direction ([Wind costs * Over-water costs * Stopover distances], full 

model, n = 4 migratory routes) 

We used descriptive statistics to evaluate the different characteristics (route length, 

distance between stopovers, over-water length, length with specific wind 

directions) of our 20 migratory routes. As a sensitivity analysis, we compared 

distance traveled (total distance, distance between stopovers, distance over water, 

distance with specific wind directions) when we varied the cost datasets used in the 

model. Finally, within each of the five alternatives above, we compared movement 

costs (unitless), to determine which exit point we expected would be used 

depending on the migration strategy the buzzards used (research question #2). 
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Movement cost is a better measure than distance traveled because it also captures 

energetic and safety costs along each route (Etherington and Holland 2013). 

Validation 
To check the viability of our modeled routes, we compared our modeled 

migration routes to published (McClure 1974, 1998) citizen-science (eBird 2012, 

Wild Bird Club of the Philippines 2015), and personal (CBC unpublished data) 

observations of Grey-faced Buzzards during migration season (n = 29 individual 

observations, Fig. 3). We assumed that if our migration routes reasonably represent 

buzzard migration, then observations of buzzards should be located closer to 

modeled migration routes than would random points. To test this assumption, we 

created a distribution map of the 29 “observation points” and 87 random points. We 

used the ‘Near’ tool in ArcGIS to determine the distance of each of our observation 

and random points to each of our modeled route and we used a Mann-Whitney U-

test to compare, for each of the 20 routes, distances from routes to observation and 

random points.  

To test the effectiveness of the routes modeled for each of the 4 exit points, 

we used a Kruskal Wallis test with a Nemenyi test for post-hoc analyses (Nemenyi 

1969) to compare the average difference in observed and random point-to-route 

distances according to exit point. Finally, we used a Kruskal Wallis test to test the 

effectiveness of each of the 5 cost datasets used in modeling our routes by 

comparing observed and random point-to-route distances according to cost dataset. 

All statistical analyses were conducted with R statistical software, using the ‘stats’ 

package (lm, wilcox.test, kruskal.test,) and ‘PMCMR’ package 

(posthoc.kruskal.nemenyi.test) (R Development Core Team 2013). 

RESULTS 
Route variation and trade-offs in migratory response 
Our 20 modeled routes reflect the consequences of a hypothetical buzzard’s 

migratory response to external parameters. These routes varied depending on the 
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strategy a buzzard might choose as it moves through the Philippines (Table 1, Fig. 

2).  

The modeled routes were between 1,582 and 2,970 km in length (𝑥̅ = 2,176, SD = 

373). There were between 0 and 282 stopovers (𝑥̅ = 140, SD = 112) on every route. 

On routes with more than one stopover, the distance between stopovers ranged 

from 40 to 899 km (𝑥̅ = 159, SD = 201). Over-water crossings accounted for 11 to 

99% (𝑥̅ = 33%, SD = 26%) of the total route length. Tailwinds were only present 

along some of the routes leading to Balabac and Bongao and occurred on 0 to 28% 

(𝑥̅ = 7%, SD = 9%) of the route length. Tailwinds were not encountered along any of 

the routes leading to Balut Island and Cape San Agustin. Crossing tailwinds were 

encountered along 38 to 93% (𝑥̅ = 53%, SD = 12%) of the total route lengths, while 

crossing headwinds were encountered along 7 to 61% (𝑥̅ =43%, SD = 12%) of the 

route lengths. 

If a modeled Grey-faced Buzzard was migrating to Balabac, it would always follow a 

route along eastern Philippines. However, if a modeled buzzard was migrating to 

Bongao, Balut Island or Cape San Agustin, it would either travel along a western 

route or an eastern route. 

Single-parameter models. A hypothetical Grey-faced Buzzard that tries to minimize 

distances between stopover sites to reach any of the logical exit points (Fig. 2A) will 

travel along migratory routes that are up to 37% longer (𝑥̅ = 30% difference, SD = 

7%) than the route of a buzzard minimizing only wind resistance (Fig. 2B). 

However, such a buzzard will travel shorter distances between stopover sites (𝑥̅ = 

159% fewer kilometers, SD = 7%) than a buzzard responding only to wind 

resistance. The most likely routes of travel for a buzzard minimizing distances 

between stopover sites to reach either Bongao, Balut Island or Cape San Agustin 

would involve travel along the western side of the country.  

A hypothetical buzzard that tries to minimize wind resistance to reach any of the 

logical exit points (Fig. 2B) will move along ‘straighter’ and shorter routes than a 

buzzard minimizing only stopover distances. Such a buzzard will travel along 
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migratory routes with longer over-water crossings (𝑥̅ = 111%, SD = 9%) than a 

buzzard responding only to stopover distances. A buzzard minimizing wind 

resistance to reach Balabac will not have any access to stopover sites. A buzzard 

minimizing wind resistance to reach either Balabac or Bongao would receive more 

wind assistance from tailwinds than a buzzard heading towards any other exit point.  

Multiple-parameter models. A hypothetical Grey-faced Buzzard that attempts to 

minimize both distances between stopover sites and wind resistance to reach any of 

the logical exit points (Fig. 2C) will travel along migratory routes that are up to 29% 

longer (𝑥̅ = 17%, SD = 9%) than would a buzzard minimizing both wind resistance 

and over-water travel (Fig. 2D). Such a buzzard would travel shorter distances 

between stopover sites (𝑥̅ = 172%, SD = 4%) and encounter less resistance from 

northward crosswinds (𝑥̅ = 23%, SD = 17%) than would a buzzard responding to 

both wind resistance and over-water travel. A buzzard minimizing both stopover 

distances and wind resistance to reach Bongao would receive more wind assistance 

from tailwinds than a buzzard heading towards any other exit point. A buzzard 

minimizing both stopover distances and wind resistance to reach either Bongao, 

Balut Island or Cape San Agustin would most likely migrate along the western part 

of the country. 

A hypothetical buzzard that attempts to minimize both wind resistance and over-

water travel (Fig. 2D) will travel along straighter and shorter routes than a buzzard 

minimizing both stopover distances and wind resistance. Such a buzzard would 

travel along migratory routes with shorter over-water crossings (𝑥̅ = 32%, SD = 

12%) than a buzzard responding to both stopover distances and wind resistance. A 

buzzard minimizing both stopover distances and wind resistance to reach Bongao 

would receive more wind assistance from tailwinds than a buzzard heading towards 

any other exit point. A buzzard minimizing both stopover distances and wind 

resistance to reach either Bongao, Balut Island or Cape San Agustin would migrate 

along the eastern side of the country. 
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A hypothetical buzzard that responds to minimizing stopover distances, over-water 

travel and wind resistance (Fig. 2E) will travel along routes that are up to 16% 

shorter (𝑥̅ = 8%, SD = 5%) than the route of a buzzard minimizing both stopover 

distances and wind resistance (Fig. 2C) and routes that are up to 23% longer (𝑥̅ = 

21%, SD = 2%) than the route of a buzzard minimizing both wind resistance and 

over-water travel (Fig. 2D). Such a buzzard will travel longer distances between 

stopover sites (𝑥̅ = 11%, SD = 8%) than a buzzard responding to stopover distances 

and wind resistance and travel shorter distances between stopover sites (𝑥̅ = 101%, 

SD = 32%) than a buzzard responding to wind resistance and over-water travel. 

Such a buzzard will take shorter over-water crossings (𝑥̅ = 37%, SD = 18%) and 

encounter more resistance from crossing headwinds over land (𝑥̅ = 13%, SD = 16%) 

than a buzzard responding to any other combination of parameters. A buzzard 

minimizing stopover distances, wind resistance and over-water travel to reach 

Bongao would receive more wind assistance from tailwinds than a buzzard heading 

towards any other exit point. A buzzard minimizing stopover distances, wind 

resistance and over-water travel to reach either Bongao, Balut Island or Cape San 

Agustin would migrate along the eastern side of the country.  

Possible autumn migratory routes and movement funnels 
To identify how destinations influenced movement costs, we identified the least 

costly (in terms of movement costs) route alternatives from each of our gridded cost 

datasets. In each case, these comparisons were for each of the five sets of conditions 

laid out in the methods; this method does not allow us to compare costs from 

models that started with different cost datasets. One of our least costly routes led to 

Balabac (Wind costs only, Fig. 3B), two led to Balut Island (Stopover distances only, 

Fig. 3A; and Stopover distances * Wind costs, Fig. 3C), and two led to Cape San 

Agustin (Wind costs * Over-water costs, Fig. 3D; and Wind costs * Over-water costs * 

Stopover distances, Fig. 3E).  

We identified areas where our modeled routes overlapped or suggested relatively 

long and unavoidable over-water crossings. Sixteen out of our 20 modeled routes 

passed over eastern and central Luzon, along a leading line created by the Sierra 
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Madre Mountains, the longest mountain range in the country (Fig. 1.A). At the 

southwest of Luzon, there is an unavoidable 70 km over-water crossing between 

Mindoro and Palawan (Fig. 1.B). Birds migrating to Palawan or exiting the country 

through Balabac would feed through this bottleneck. This crossing was in four of 

five routes leading to Balabac. At the southwest of the Philippines, there is a 50 km 

bottleneck over water between the islands of Negros and Zamboanga del Norte (Fig. 

1.C). Birds wintering in Mindanao, or continuing on to presumed destinations in 

Borneo and Indonesia through Bongao, Balut Island or Cape San Agustin would 

encounter this water crossing. To reach this particular bottleneck, buzzards would 

have to island hop across western Visayas, involving over-water crossings ranging 

from 9 to 50 km. This funnel was in 7 of the 15 modeled routes for Bongao, Balut 

Island and Cape San Agustin. Finally, at the southeast of the Philippines, there is an 

unavoidable 20 km over-water crossing between Leyte and Surigao (Fig. 1.D). Birds 

wintering in Mindanao, or continuing on to presumed destinations in Indonesia 

through Bongao, Balut Island or Cape San Agustin would be forced through this 

bottleneck. This water crossing was in six of the modeled routes leading to Bongao, 

Balut and Cape San Agustin.  

Model validation 
Observation points and random points were not randomly distributed with 

regards to five routes modeled for the four exit points (Kruskal-Wallis, χ2 = 16.303, 

df = 3, p = 0.001). Post hoc tests showed that observation points were closer than 

random points to the modeled routes leading to Balut and Cape San Agustin than to 

routes leading to Balabac and Bongao (Fig. 4). In addition, observation points were 

significantly closer than random points to two out of five modeled routes leading to 

Cape San Agustin (Table 2). Observation points and random points had similar 

distances to route alternatives (one for each exit point) modeled according to our 

five gridded cost datasets (Kruskal-Wallis, χ2 = 0.3286, df = 6, p = 0.9879).  
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DISCUSSION 
The spatial models we built assessed costs, consequences and potential migratory 

responses by Grey-faced Buzzards to external factors and provided insight into 

migratory strategies individual birds may select. These models showed how 

migratory routes may vary as calculations for movement costs and targeted exit 

points changed, Finally, they provide insight into trade-offs in migratory responses, 

potential exit points used according to migration strategy, and potential optimal 

migration strategies of buzzards and other birds facing open-water crossings.  

Trade-offs in migratory response 
Our spatial models describe possible variation in migratory routes used by Grey-

faced Buzzards moving across the Philippine archipelago in response to landscape 

parameters (stopover sites and water crossings) and weather conditions (wind 

direction). These modeled routes allow us to examine the costs and consequences of 

different migratory responses in the case when migrants have to repeatedly decide 

between completing, delaying or foregoing over-water travel.  

The general direction in which birds fly is believed to be either genetically inherited 

or culturally learned (Berthold et al. 1992, Sutherland 1998, Gschweng et al. 2008). 

Avian migratory routes are then adjusted by each individual through continual 

assessment and reassessment of habitat and other factors they encounter (Hutto 

1985, Vardanis et al. 2011). The ideal migratory route is thought to be one that 

minimizes the costs of migration, as measured in terms of combinations of energy, 

time, or risk (Hedenström and Alerstam 1997, Liechti and Bruderer 1998, Alerstam 

et al. 2003, Alerstam 2011). The resulting characteristics of these routes thus reflect 

the bird’s assessment of the potential costs and benefits of each route over time 

(Hutto 1985).  

In our models of migration through the Philippines, the cost of movement between 

potential stopover sites was the factor that had the most influence on the 

characteristics of the autumn migratory routes of Grey-faced Buzzards. In response 

to availability of stopover sites, a hypothetical buzzard not only shortened distances 
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traveled between stopovers, it also had potential access to more stopover sites than 

would a buzzard following a different strategy. However, responding to stopovers 

resulted in migratory routes that were longer and more tortuous (less straight) than 

necessary (Hake et al. 2003, Thorup et al. 2003, González-Solís et al. 2009). For a 

buzzard behaving in this manner, an optimal migratory route therefore may be one 

that first maximizes opportunity for stopovers and secondarily minimizes distance 

traveled. The importance of stopover sites corresponds well with the known biology 

of the species. In fact, stopover sites have been found to be important to Grey-faced 

Buzzard migratory routes and buzzards exhibit high fidelity to some of these sites 

(Shiu et al. 2006).   

 As Grey-faced Buzzards migrate, they complete long-distance, over-water travel 

(Bildstein 2006). However, after Grey-faced Buzzards enter the Philippine 

archipelago, they may still tend to select routes with fewer and shorter over-water 

crossings whenever possible (Bildstein 2006, Shiu et al. 2006). Often, there are 

limited options to minimizing the safety costs of over-water travel (i.e., there is only 

one point in an island with the narrowest water crossing) and the routes of 

individual buzzards will geographically converge around a common, population-

level route (La Sorte et al. 2016). This makes unavoidable over-water crossings, 

such as those suggested between Mindoro and Palawan, Negros and Zamboanga del 

Norte and Leyte and Surigao, potentially important funnel points for Grey-faced 

Buzzard migration.  

In our models of migration through the Philippines, minimizing the risks involved 

with over-water travel altered the geography or location of migratory routes. When 

trying to minimize over-water crossings, a hypothetical buzzard would travel 

through an eastern route to reach either Bongao, Balut Island or Cape San Agustin. A 

buzzard who does not respond to risk associated with over-water crossings would 

travel a western route to reach either of these three exit points. This is because 

eastern routes had greater distances with unfavorable, crossing headwinds over 

land than did a western route. This illustrates the broadly-based trade-offs migrants 
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face in favoring minimizing the risks of traveling over-water under wind resistance 

over minimizing the energetic costs associated with unfavorable winds over land.   

Finally, in our models of migration through the Philippines, minimizing the costs of 

wind resistance had the weakest influence on both the characteristics and 

geography of migratory routes. If minimizing wind resistance is the only goal, a 

hypothetical buzzard would travel a short and straight route. A buzzard flying along 

this low-cost migratory route would have limited access to key resources and face 

repeated open-water crossings.  

Exit points according to migration strategy 
The migration strategy of a hypothetical buzzard would influence the exit point 

from which it departs the Philippines. Based on our model of migration through the 

Philippines, Balabac would be the most likely exit point for a buzzard that minimizes 

island hopping and wind resistance. Such a buzzard will have little to no 

opportunity for stopovers but will also migrate less distance from its entry point at 

Batan. A buzzard who began migration later in the season and feels pressure to 

minimize migration time may be most likely to behave this way. Although autumn 

migration has not yet been directly studied at Balabac, autumn migrants have been 

observed from research vessels traveling over the South China Sea between Balabac 

and Borneo (Simpson 1983, Ellis et al. 1990). 

Our models suggest that Bongao is the least likely exit point used during autumn 

regardless of a buzzard’s migration strategy. In fact, this prediction corresponds 

well with known migration patterns through Bongao. For example, telemetered 

Oriental Honey-buzzards Pernis ptilorhyncus that winter in the Philippines are 

known to use Bongao as an entry point into the country during autumn migration 

and an exit point from the country during spring (Higuchi et al. 2005, Yamaguchi et 

al. 2008). However, no tracked honey-buzzards have used Bongao as an exit point in 

autumn. 

Based on our models of migration through the Philippines, Balut Island is the most 

likely exit point for a buzzard that minimizes distances traveled between stopover 
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sites and minimizes wind resistance. Such a buzzard would maximize opportunities 

for stopovers along a western route where wind resistance is less prevalent. A 

buzzard aiming to save energy in migration might behave this way as the wind 

conditions of a western route may facilitate migration. Autumn migration has not 

yet been directly studied at Balut Island although raptor migrants have been 

monitored about 20 km northwest of Balut Island (Tiongco et al. 2014) and in 

Sulawesi, Indonesia, almost 200 km south (Germi et al. 2009). 

Finally, Cape San Agustin is the most likely exit point for a buzzard that minimizes 

distances traveled between stopover sites, minimizes wind resistance, and 

minimizes over-water crossings. Such a buzzard will maximize opportunities for 

stopovers along an eastern route where there are few over-water crossings between 

islands despite great wind resistance over land. A buzzard aiming to minimize risks 

from over-water travel might behave this way. There is evidence that this strategy is 

used and raptor migrants have been directly observed initiating autumn ocean 

crossings from Cape San Agustin, heading towards the direction of Sulawesi-Talaud 

(Indonesia) (Concepcion et al. 2017).  

Optimal migration strategy 
Field data supported our models better when routes were evaluated according to 

the exit point than when evaluated according to costs of movement. Although the 

rate of correspondence between these field data and modeled data was not strong, 

this is not unexpected given the nature of the field data available (there are no 

systematic studies of this problem and only a few anecdotal observations are 

reported in literature). Our modeled routes are similar to migration routes for a 

similarly sized Accipiter using the same flyway. Nevertheless, the two exit points 

that our models predict would be most used (Balut Island and Cape San Agustin) 

had the best correspondence to the validation data and are likely the most used 

routes by migrating raptors.  

Examining specific migratory responses to each external factor allowed us to 

identify possible optimal migration strategies for Grey-faced Buzzards when 
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navigating oceanic flyways through archipelagos. Our models suggest that the 

optimal migratory strategy for these birds is to find the shortest route to an exit 

point with the greatest possible access to stopover habitats and fewest open-water 

crossings under wind resistance. Therefore, an optimally migrating bird might not 

necessarily use the straightest and shortest routes (i.e., the modeled routes 

produced using only the cost of wind direction). In fact, these straightest and 

shortest routes seem unlikely pathways for experienced migrants. If experienced 

buzzards indeed maximize refueling opportunities at stopovers and minimize risks 

through fewer over-water crossings under wind resistance, they may generally be 

energy-minimizers during autumn migration across the Philippines. This hypothesis 

could be tested in two ways, one by evaluating if older, more experienced migrants 

indeed choose these routes, or two, by using telemetry to evaluate if birds conform 

more consistently with these modeled predictions as they gain experience.  

Optimal migration strategies may vary by season. For example, if island crossings 

and wind conditions have a strong influence on spring migratory routes, Grey-faced 

Buzzards may be energy-minimizers during that season as well. In fact, the 

distribution of favorable winds are drastically different between seasons (Wyrtki 

and Meyers 1975) and during spring, strong resistance from southward winds 

would intensify energetic and safety costs of crossing from Indonesian islands to the 

Philippines. To minimize energy expenditure and risk, migrants would have to avoid 

the Philippines during spring and fly northward following the East-Asian 

Continental Flyway. In fact, this is the strategy that Oriental Honey-buzzards use 

(Yamaguchi et al. 2011, Nourani et al. 2016). Using this route greatly reduces over-

water travel and allows migrants to benefit from wind support and convective 

conditions over land. In contrast, Grey-faced Buzzards may be time minimizers 

during spring and return along the same route they traveled southbound. By doing 

this, the birds would expend energy compensating for southward winds but would 

save migration time by avoiding a huge detour around the South China Sea.  

Tracking data of birds captured in Japan and migrating within Japanese islands 

indicates autumn and spring routes remain similar, although stopover sites used 



 

138 

were different (Shiu et al. 2006), suggesting that birds select for time minimization. 

Migration monitoring at the Indonesia island of Sangihe are similarly supportive of a 

time minimization hypothesis, revealing migrants regularly traveling over-water 

under heavy opposing winds in spring (Germi et al. 2009). Likewise, spring 

migration counts conducted in the northern coast of Luzon also support this concept 

of time minimization via reverse migration (Wild Bird Club of the Philippines 2015), 

although less strongly than would tracking data from the Philippines.   

Raptor migration on oceanic flyways in general, through the Philippines in 

particular, remains poorly understood. Our models of migration through the 

Philippines were derived from somewhat limited existing natural history 

information. Although relatively low in complexity, they allow us to better 

understand the potential trade-offs between the costs and consequences of 

migratory responses to landscape and weather conditions along an oceanic flyway. 

They also serve as an important foundation by producing specific and testable 

hypotheses about the evolution of this behavior in general and, specifically to the 

Philippines, locations of potentially good count sites, about potential migration 

tracks of these birds, and about the distribution of exit points birds may use as they 

migrate across the Philippines.  
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Table 1. Characteristics of 20 modeled Grey-faced Buzzard autumn migratory routes leading to four logical exit points in the south 
of the Philippines. These routes were modeled using 5 different cost raster datasets as follows: Stopover distances only; Wind costs 
only; Stopover distances * Wind costs; Wind costs * Over-water costs; and Wind costs * Over-water costs * Stopover distances. See 
text for additional details. 
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Length 
(km) 

Number 
of 

potential  
stopovers 

Average 
distance  
between 

stopovers 

Proportion 
of route 

over  
water, % 

Wind direction, 
Proportion of route, % Movement 

cost 
(unitless) 

Tail-
wind 

Crossing 
tailwind 

Crossing 
headwind 

Stopover distances        
Balabac 1,923 158 90.17 25 1 58 41 36,615,570 
Bongao 2,527 239 90.17 29 15 50 35 49,192,170 
Balut 2,408 270 39.90 21 0 64 36 33,832,480 
Cape San Agustin 2,536 282 42.19 20 0 58 42 34,255,860 

 
       

 
Wind costs 

       
 

Balabac 1,582 0 — 99 0 93 7 1,730 
Bongao 1,798 1 898.95 83 28 38 34 1,945 
Balut 1,810 15 279.65 74 0 52 48 2,043 
Cape San Agustin 1,750 3 437.45 77 0 47 53 1,988 

 
       

 
Stopover distances * Wind costs 

     
 

Balabac 1,923 154 41.68 25 1 58 41 39,960 
Bongao 2,527 243 87.32 29 15 50 35 52,390 
Balut 2,410 270 39.90 21 0 63 37 37,056 
Cape San Agustin 2,535 283 42.06 20 0 58 42 37,544 

 
       

 
Wind costs * Over-water costs 

     
 

Balabac 1,662 13 191.75 22 0 58 42 477,518 
Bongao 2,419 17 152.59 22 15 47 38 478,997 
Balut 1,981 24 163.75 13 0 43 57 428,461 
Cape San Agustin 1,900 18 198.87 13 0 40 60 412,047 
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Length 
(km) 

Number 
of 

potential  
stopovers 

Average 
distance  
between 

stopovers 

Proportion 
of route 

over  
water, % 

Wind direction, 
Proportion of route, % 

Movement 
cost 

(unitless) 
Tail-
wind 

Crossing 
tailwind 

Crossing 
headwind 

Wind costs * Over-water costs * Stopover distances 
Balabac 2,011 158 47.08 18 1 56 43 28,870,950 
Bongao 2,970 223 91.82 17 13 48 39 27,677,460 
Balut 2,506 223 50.89 11 0 42 58 25,996,470 
Cape San Agustin 2,335 211 43.51 11 0 39 61 25,888,830 
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Table 2. Means and standard deviations (SD) of distance from modeled routes to 29 
observations of Grey-faced Buzzards during migration season and to 87 random 
points. Also shown are results of Mann Whitney U tests to compare distances of 
observation points and of random points to each of the 20 modeled migratory 
routes using 5 different cost raster datasets as described in Table 1. Significant p-
values are bold. 
 
 

  
Observation 

points Random points 
Mann Whitney 

U 

 Mean SD Mean SD W p 
Stopover distances 
Balabac 213 304 198 248 1,189 0.6462 
Bongao 108 123 104 104 1,202 0.7068 
Balut 72 93 105 119 1,013 0.1138 
Cape San Agustin 61 94 98 117 921 0.0302 

 
 

     
Wind costs 
Balabac 387 291 376 244 1,337 0.6325 
Bongao 213 218 202 190 1,275 0.9339 
Balut 195 107 226 118 1,031 0.1425 
Cape San Agustin 172 125 219 129 982 0.0753 

 
 

     
Stopover distances * Wind costs 
Balabac 213 304 198 248 1,189 0.6462 
Bongao 108 123 104 104 1,202 0.7068 
Balut 72 93 105 119 1,013 0.1138 
Cape San Agustin 61 94 98 117 921 0.0302 

 
 

     
Wind costs * Over-water costs 
Balabac 219 304 209 249 1,189 0.6462 
Bongao 97 98 93 92 1,276 0.9289 
Balut 77 113 110 144 1,001 0.0974 
Cape San Agustin 77 112 112 147 981 0.0742 

 
 

     
Wind costs * Over-water costs * Stopover distances 
Balabac 200 252 198 250 1,163 0.5321 
Bongao 86 102 76 88 1,239 0.8884 
Balut 65 109 98 140 956 0.0518 
Cape San Agustin 66 108 103 148 955 0.0511 
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Figure 1. Geographic locations of migratory entry () and exit points () in the 
Philippines. The Philippine archipelago is divided into three island groups: Luzon in 
the north, Visayas in the middle, and Mindanao in the south. The entry point of 
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Batan is 180 km south of Taiwan and 280 km north of mainland Luzon. The exit 
point of Balabac is 70 km north of Borneo, while Bongao is 60 km east of Borneo. 
Balut Island is 180 km north of Indonesia, while Cape San Agustin is 200 km north. 
Also shown are four potential migration funnels (shaded gray) that were identified 
based on modeled Grey-faced Buzzard migratory routes. (A) At eastern and central 
Luzon, a bottleneck passes along the Sierra Madre Mountains, the longest mountain 
range in the country. (B) An unavoidable 70 km over-water crossing exists between 
the islands of Mindoro and Palawan. (C) A bottleneck between the islands of Negros 
and Zamboanga del Norte includes a 50 km over-water crossing. (D) An unavoidable 
20 km over-water crossing exists between the island of Leyte and Surigao on 
Mindanao Island.  
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Figure 2. Migratory routes of hypothetical Grey-faced Buzzards migrating through 
the Philippines modeled using 5 different cost of movement datasets and exiting the 
country at Balut Island (because of space considerations, modeled routes to four 
other exit points are shown in the SI). Modeled routes demonstrate trade-offs 
between response to external factors and were modeled using (A) costs of moving 
between stopover sites only (2,408 km); (B) cost of wind direction only (1,810 km); 
(C) combined costs of stopover distances and wind direction (2,410 km); (D) 
combined costs of wind direction and over-water travel (1,981 km); and (E) 
combined costs of distances between stopover sites, costs of wind direction and 
over-water travel (2,506 km). 
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Figure 3. Least costly (in terms of movement costs) migratory route alternatives 
based on different migration strategies of hypothetical Grey-faced Buzzards. 
Migration strategies considered (A) stopover distances only; (B) wind costs only; 
(C) stopover distances * wind costs; (D) wind costs * over-water costs; and (E) wind 
costs * over-water costs * stopover distances. Also shown is the distribution of 
observation points ( ) of Grey-faced Buzzards during migration. Observation points 
(n=29) were compiled from published, citizen-science and personal data and 
illustrate how modeled routes correspond to observed buzzard behavior. 



 

155 

 
Figure 4. Difference in distances of observations of Grey-faced Buzzards and 
random points to modeled routes grouped according to exit point. There are 5 
modeled routes for each exit point. When observation points are closer on average 
to the routes, the difference is positive. When observation points are farther on 
average to the routes, the difference is negative.  
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Table A1. Land cover classifications according to the Global Land Cover (GLC) 2000 
dataset (GLC 2003). 

 

Cell value Description  

0 Sea 

1 Tree cover, broadleaved, evergreen, closed and closed to open 

2 Mosaic: Tree cover / Other natural vegetation or cropland (including 
very degraded and open tree cover) 

3 Tree cover, broadleaved, deciduous, mainly open (including dry 
Dipterocarpus) 

4 Tree cover, regularly flooded; Mangrove 

5 Tree cover, regularly flooded; Swamp 

6 Mosaics and shrub cover, shrub component dominant, mainly 
evergreen 

7 Mosaics and shrub cover, shrub component dominant, mainly 
deciduous 

8 Shrub cover, mainly deciduous (Dry or burnt) 

9 Mosaic of cropland / Other natural vegetation (Shifting cultivation in 
mountains) 

10 Herbaceous cover (including alpine grassland) 

12 Cultivated and managed, non-irrigated (mixed) 

13 Cultivated and managed, irrigated (flooded, rice, shrimp farms) 

15 Snow and ice 

16 Artificial surfaces 

17 Water bodies 

18 No data 
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Figure A1. The five migratory routes of hypothetical Grey-faced Buzzards exiting 
through Balabac modeled using (A) costs of moving between stopover sites only 
(1,923 km); (B) cost of wind direction only (1,582 km); (C) combined costs of 
stopover distances and wind direction (1,923 km); (D) combined costs of wind 
direction and over-water travel (1,662 km); and (E) combined costs of distances 
between stopover sites, costs of wind direction and over-water travel (2,011 km). 
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Figure A2. The five migratory routes of hypothetical Grey-faced Buzzards exiting 
through Bongao modeled using (A) costs of moving between stopover sites only 
(2,527 km); (B) cost of wind direction only (1,798 km); (C) combined costs of 
stopover distances and wind direction (2,517 km); (D) combined costs of wind 
direction and over-water travel (2,419 km); and (E) combined costs of distances 
between stopover sites, costs of wind direction and over-water travel (2,970 km). 
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Figure A3. The five migratory routes of hypothetical Grey-faced Buzzards exiting 
through Cape San Agustin modeled using (A) costs of moving between stopover 
sites only (2,536 km); (B) cost of wind direction only (1,750 km); (C) combined 
costs of stopover distances and wind direction (2,535 km); (D) combined costs of 
wind direction and over-water travel (1,900 km); and (E) combined costs of 
distances between stopover sites, costs of wind direction and over-water travel 
(2,355 km). 
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