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ABSTRACT

A Unified Poisson-Cahn Methodology for Defect Segregation Near Grain
Boundaries in Oxygen-Conducting Solid Electrolytes

Xiaorui Tong

In the Poisson-Cahn theory, the incorporation of defect interactions and the gradient

effects has made it possible to model interfaces in solid solutions of high concentrations.

This study aimed at building a unified Poisson-Cahn methodology capable of conforming to

physically reasonable parameter spaces and incorporating potentially complex concentration-

dependences of model parameters to enable broader future applications in various material

systems.

The first development established a kinetic model to predict defect segregation during

thermal annealing of these systems. The complete process of dopant segregation from the

initial flat distribution all the way to the equilibrium was firstly revealed, and the amount

of equilibration time for dopant ions was obtained at different temperatures. Secondly, the

Poisson-Cahn theory was applied to a two-step restricted equilibrium model in estimating

the conductivity behavior of gadolinium-doped-ceria over a broad range of dopant concen-

trations. The consistency between the model predicted conductivity data and experimental

measurement has demonstrated the effectiveness of this scheme.

In order to specify parameter ranges with higher confidence and to gauge potential pa-

rameter dependences on defect concentrations, it is necessary to calibrate model parameters

with direct grain boundary measurements. We fit the atom probe data of Nd-doped ceria

with 10% and 30% dopant respectively to a restricted Poisson-Cahn equilibrium model with

added polaron species but found the values for the gradient energy coefficients weren’t in

agreement with what are reported in literature. This led to the formulation and implemen-

tation of a data-driven approach.

Within the framework of a unified Poisson-Cahn methodology, a series of models are

then designed through systematically incorporating different interaction energies and gra-



dient energy effects in the form of discrepancy functions. Bayesian calibration is employed

for each model using grain boundary compositions of Ca-doped ceria with 2%, 5% and 10%

dopant concentrations. The development of this model framework has shown how the model

capability improves by including key model parameters and revealed the concentration de-

pendences of model parameters through quantitatively evaluating the calibration results. An

optimal model structure was obtained with the guidance of the Bayes factor.
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CHAPTER 1

INTRODUCTION

With the ever increasing energy demand and the limited resources of fossil fuels,

efficient energy sources have long been a focused area of research. At the same time, it is

now well known that global warming is continuing unabated due to effluent gas emission,

mainly CO2 [3]. According to the Goddard Institute for Space Studies (GISS) analysis of

global surface temperature change, the annual mean land-ocean temperature has increased

from -0.3 ◦C in 1910 to near 0.6◦C in 2010 [4] and this trend has dramatically increased

during the past decades. Issues associated with energy supply and uses are related not

only to global warming, but also to other environmental concerns such as air pollution, acid

precipitation, ozone depletion, forest destruction, and emission of radioactive substances.

Therefore, these energy and environment related challenges call for the generation of energy

by clean, efficient and environmental-friendly means.

Solid Oxide Fuel Cells (SOFCs) have attracted much attention as promising candi-

dates for future energy solutions owing to their high efficiency, low environmental impact,

fuel flexibility and low cost. A SOFC is an all-solid-state energy conversion device that

converts the chemical energy of a fuel gas directly to electrical energy without the need for

combustion. It consists of two electrodes sandwiched around a hard ceramic electrolyte such

as yttrium-stabilized-zirconia (YSZ) or gadolinium doped ceria (GDC) etc. Gaseous fuel,

such as H2, CH4 and CO, is fed into the anode of SOFC and oxygen from the air enters

the cell through cathode. Through the fuel reaction with oxygen ions at the anode side,

the concentration of oxygen is dramatically reduced. Since the cathode is exposed to air,

an oxygen concentration gradient is thus created across the electrolyte, attracting oxygen

ions from the cathode side to the anode side. Providing an electrical connection between
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the cathode and the anode, electrons will flow from the anode to the cathode. As long as a

continuous supply of oxygen ions for the electrolyte is maintained, electrical power will be

generated through oxidation of the fuel gas. The reactions at both electrodes are expressed

below(taking H2 as the fuel):

Anode : H2 + O x
O H2O + 2 e– + VO (1.1)

Cathode : O2 + 4 e– + 2 VO 2 O x
O (1.2)

where VO and O x
O represent doubly charged oxygen vacancies and oxygen ions at the normal

lattice sites in the crystal structure, respectively. The solid electrolyte is the central part

of a SOFC that allows the flow of oxygen ions from the cathode to the anode to maintain

the overall charge balance. Its ability to conduct oxygen ions and block electrons is crit-

ical for the overall performance of the SOFC system. Oxygen ion conducting electrolytes

cover a wide range of materials which basically include fluorite-, perovskite, brownmillerite-

structured materials. Fluorite-structured materials, a representative system is rare-earth

doped ceria, have drawn much attention during the past decades since the discovery of their

high ionic conductivity under intermediate temperature (500 - 750 ◦C). In response to the

demand of reducing the operating temperature of SOFC for better thermal management

and easier maintenance, intermediate temperature solid oxide fuel cell (IT-SOFC) has be-

come a favorable choice and more research is therefore focused on oxygen conducting solid

electrolytes that exhibit high ionic conductivity in this temperature regime.

Cerium oxide, when doped with acceptor cations, exhibits high ionic conductivity due

to extrinsic oxygen vacancies, which are generated for charge compensation. On the other

hand, the loss of oxygen to the gas phase can result in the increase of electronic conductivity,

making ceria a mixed ionic-electronic conductor (MIEC). While the mixing of electronic and

ionic conductivity may be desirable for certain applications (e.g. oxygen membranes, elec-

trodes), the use of cerium oxide as solid electrolyte requires that the electronic contribution

2



being negligible compared with the ionic partial conductivity.

Research evidence has shown that the existence of interfaces, e.g. grain boundaries,

are key factors that affect the ionic conductivity of these materials possibly due to the forma-

tion of second phases caused by impurity silicon [5, 6], and dopant segregation and oxygen

vacancy depletion near the grain boundary core [7, 8]. For materials of high purity, the space

charge effect at the grain boundaries becomes the dominating factor [9, 10]. Solute segrega-

tion and the formation of space charge zones near the interfaces of solid electrolytes exert a

significant effect on the conductivity as well as other properties of these materials, resulted

in deleterious consequences in real-world applications. Researchers have been studying the

mechanisms behind the formation of space charge zones and theories have been proposed to

model this phenomenon. With the advancement of microscopy techniques, experimentalists

have been able to probe fine details of the interface structures and reveal information that

was once unavailable. These observations have further facilitated the development of space

charge theories and thus manifested flaws of certain assumptions adopted in the current

space charge model, as certain experimentally observed evidence can not be predicted by the

current theory.

Continuum space-charge models in Gouy-Chapman or Mott-Schottky approximations

can be employed in dilute systems to estimate defect profiles near GBs [8]. For highly-doped

systems the application of these models becomes problematic, as segregation layers extending

several nm where the Debye length is less than an angstrom [11], cannot be predicted. It

is the purpose of this Ph.D. study to model defect segregation near grain boundaries for

oxygen-conducting solid electrolytes across the concentration range, searching for a uniform

theory that can predict defect behaviors in both dilute and concentrated systems.

A generalized space-charge theory, based on the Cahn-Hilliard theory for the ther-

modynamics of solute segregation in alloys, has been developed to incorporate defect in-

teractions and effects of gradient energy which become significant in concentrated systems

[12, 13]. This “Poisson-Cahn” approach has been previously employed in a surface model

3



for mixed ionic-electronic conductors (MIEC) [13], and in predicting the ionic conductivity

of the CeO2 Gd2O3 at 440 ◦C. The main contribution of this theory is that by including

defect interactions and the gradient energy effects, it can be readily applicable to model de-

fect re-distribution near interfaces over the entire concentration range, from dilutely doped

systems to solid solutions.

The main mission of this research is to build a unified methodology based on the

Poisson-Cahn theory in order to model defect profiles near the interface within a consistent

model parameter space for doped materials of any dopant concentration. Knowledge from

these developments will establish a theoretical pathway to effectively model the interface

effects in oxygen-ion conducting solid electrolytes and thus contribute to tailoring current

material structures and proposing new material systems. For broader applications, this

methodology can be employed to treat a variety of solid ionic systems, not limited to oxygen-

ion conductors.
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CHAPTER 2

LITERATURE BACKGROUND

2.1 Experimental Findings on Grain Boundaries in Solid Electrolyte

With the rapid technical advancement in solid oxide fuel cells, oxygen-ion conduct-

ing solid electrolyte has attracted significant research interest. Interfaces, such as surfaces,

grain boundaries, sensitively affects multiple macroscopic properties of these materials, in-

cluding the electrical property, mechanical property and optical properties etc. Therefore,

many theoretical and experimental studies have been done on the effect of interfaces in

solid electrolytes, especially on the grain boundary effect. Fluorite-structured ceramics are

excellent candidates for solid electrolyte due to the long-term stability and high ionic con-

ductivity under elevated temperatures. One material system that has been widely employed

is CeO2−M2O3. The total conductivity of doped ceria is sufficiently high, making it suitable

for applications as oxygen-ion conducting electrolytes in intermediate temperature solid ox-

ide fuel cells (IT-SOFC). One technological limitation that comes along is that cost-effective

production result in polycrystalline materials. The resistivity of these materials are there-

fore largely affected by the extensive existence of grain boundaries. This section reviews

the state-of-the-art on grain boundaries in fluorite-structured ceramics in terms of grain

boundary microstructure, composition and electrical conductivity.

2.1.1 Microstructure and Composition

In polycrystalline samples of fluorite-structured solid electrolytes, silicon based second

phases separating individual grains were observed, which largely hinders the ionic conduc-

tivity of grain boundaries.

Using highly pure precursors can result in single-phase structure and thus largely

5



reduce this negative effect. Thermogravimetry/differential thermal analysis (TG/DTA) and

XRD have been used to study the calcination results of CGO and indicated a single-phase

fluorite structure. TEM characterization revealed GDC samples exhibit a clean microstruc-

ture with grain boundaries free of detectable glassy phases. However, low GB conductivity

still remains an issue upon the removal of second phases. This demands a further study of

the grain boundary effect of materials with high purity. Investigating the composition near

GB is therefore necessary.

Over the past several decades, dopant segregation has been widely observed/deduced

through various experiments. Scanlon et al. used Low Energy Ion Scattering (LEIS) to

determine the atomic composition of the outermost layers of CGO and found the near surface

layers to be heavily Gd enriched [14]. This Gd enrichment decreased from Ce/Gd=1 to

the bulk value of Ce/Gd=4.2 over five monolayers. Energy-loss spectra of GDC from a

scanning transmission electron microscope (STEM) showed a marked increase in the Gd

edge integrated intensity ratio at the GB core, indicating Gd concentration enhancement

at the GB [15]. Lei et al. [16] confirmed Gd-segregation using a combination of Z-contrast

imaging and electron energy-loss spectroscopy (EELS) and the width of the segregation

region was measured to be approximately 2 nm to 2.5 nm for a Gd0.2Ce0.8O2−σ electrolyte.

As the only carrier for conducting oxygen-ions, oxygen vacancies play a key role in

the GB structure. Hojo et al. conducted EELS measurement to confirm the presence of

oxygen vacancies at the GB [17]. Lee et al. [18] used the energy dispersive spectroscopy

in scanning transmission electron microscopy (STEM-EDS) to acquire a set of STEM-EDS

spectra in an area of 20 × 20nm2 near a grain boundary. The conversion from the spec-

tra to atomic ratio as a function of position, indicated intensive segregation of both Gd3+

ions and oxygen vacancies segregated toward the GB within 2-3 nm. The composition at

the bulk and the grain boundary were thus calculated to be Gd0.30±0.02Ce0.70±0.02O1.82±0.11

and Gd0.36±0.06Ce0.64±0.05O1.41±0.17 respectively. Besides the segregation of these two defect

species, the EELS spectrum from the GB region in [17] is slightly broader than that from the
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grain interior (GI) region, which suggests the presence of Ce3+. This agrees with the finding

in [15] that the energy-loss spectra of GDC show that Ce edge is much more rounded at the

GB indicating a significant change in local Ce bonding in the GB core. From the extended

X-ray absorption fine structure (EXAFS) analysis, energy shift of the Ce edge ∆E0 is found

to decrease systematically with increasing doping level, also indicate a partially reduced

character of the Ce4+ sites [19]. More studies have also found a large percentage of Ce3+

at GBs and interfaces [17, 16, 20]. A more complete experimental study of doped ceria is

conducted in [21]. Here, the three-dimensional compositions at individual grain boundaries

were quantified using atom probe tomography(APT) for NDC10 and NDC30. Quantified

profiles revealed segregation of dopant and decrease of oxygen concentration near GB.

2.1.2 Electrical conductivity

The conductivity of a polycrystalline fluorite-structured oxide arises from conductivity

through grains and across GBs. GBs are typically orders of magnitude less conducting than

the GI at low and intermediate temperatures. Apart from the presence of impurity phases,

space-charge effects are widely accepted as the culprit of decreased conductivity of GBs

[22, 23, 24]. Impedance spectroscopy is most commonly employed to study the electrical

conductivity of solid electrolytes. Zhou et al. [25] analyzed the impedance spectra of GDC

as a function of temperature and grain size. Results reveal that samples with fine grain sizes

have higher overall GB resistance. Increasing the temperature to 600◦C, however, eliminates

this contribution. In [26], the electronic conductivity of GDC as a function of oxygen partial

pressure is investigated to estimate the thermodynamic conditions for the application of GDC

as solid electrolyte in IT-SOFCs. The experimental data from both impedance spectroscopy

and dc-polarization agrees well. PO2 dependence of the electronic conductivity can be

described by log σe ∝ −1
4

log p(O2). The ionic conductivity is almost independent of p(O2)

with typical values around 0.04 S/cm at 700 ◦C. In the past, researchers have found the GDC

conductivity to be ionic under non-reducing conditions. The GB conductivity at 200◦ C is
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5×104 times lower than the grain interior conductivity in GDC [15], clearly demonstrating the

deleterious effect of grain boundaries on ionic conductivity especially at low temperatures.

This also illustrates the need to develop a fundamental understanding of the relationship

between charge transport, GB structure and composition. Such an understanding may allow

GB tailoring to be accomplished, leading to substantial improvements in ionic conductivity

in polycrystalline electrolytes.

2.2 Space Charge Theory in Ionic Solids

The space charge theory in ionic solids has been proposed over 60 years ago [27]. This

theory models the GB region as a GB core with specific charge being sandwiched between

two space charge regions of opposite charge, which is known as a GB core-space-charge

layer model. In oxygen ion conducting solid electrolytes, the positively charged GB core

is attributed to accumulation of positively charged oxygen vacancies while the depletion of

oxygen vacancies in the space charge region accounts for the negatively charged space charge

region. Over the years, researchers have applied various forms of this theory to explain the

fact that GB region is orders of magnitude less conductive than the bulk region. For doped

systems that consider two species: dopant and one charge-compensating defect (eg., oxygen

vacancy), the Gouy-Chapman and Mott-Schottky case are two commonly adopted forms of

the space charge theory.

As we shall see from the derivations below, these two varieties of the space charge

theory provide analytical solutions for certain characteristic variables of the space charge

region, such as the electrostatic potential, the space charge width etc. These analytical tools

have been used by researchers to study the conductivity behaviors of doped systems of various

dopant concentrations, despite the fact that these models are based on the assumption of only

dilute systems. Moreover, derivation of these analytical forms involve several assumptions,

including the mobility of charge carriers and the charges of defect species(z1 = −z2), which

might not hold for all doped systems.
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The space charge models bridge quantities such as the space-charge potential (the

degree to which point defects are depleted or accumulated) and the space-charge screening

length (the length scale over which defect profile changes occur) with measurable physical

quantities, such as the grain boundary resistance. The charge carrier profile and the space

charge potential is linked through the standard Poisson’s equation.

∇2ϕ = −ρ/ε (2.1)

where ρ denotes the charge density, which is obtained from the defect concentration using

ΣiziFci, ε is the dielectric constant and its spatial variations are ignored.

For dilute systems, the Boltzmann distribution is adopted for ion densities near the

interface. This gives the probability of a certain state as a function of that state’s energy

and temperature of the system. The probability of state i is given in 2.2.

pi =
e−εi/kT∑M
j=1 e

−εj/kT
(2.2)

where pi is the probability of state i, εi the energy of state i, k the Boltzmann constant,

T the temperature of the system and M the number of all states accessible to the system.

Applying to defect concentrations at equilibrium gives the form

ci(x) = ci∞e
−∆Ei(x)/kT (2.3)

where ci∞ is the bulk defect concentration, and ∆Ei(x) is the energy of defect species i with

reference to the bulk energy.

Combining the above equations with the condition of the constant electrochemical

potential leads to the classic Poisson-Boltzmann mode. The one-dimensional form gives

[28]:

d2(ϕ− ϕ∞)

dx2
= −F

ε
Σici∞zi exp (−ziF

ϕ− ϕ∞
RT

) (2.4)
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Here zi is the net charge, ci∞ is the bulk concentration, ε is the dielectric constant, k

is the Boltzmann constant and T is the absolute temperature. The concentration profile for

the i species between two locations can be determined by solving the spatial variation of the

electrical potential. The current model of space-charge theories assumes that point defects

behave as dilute, non-interacting defects. Therefore, the electrochemical potentials of the

mobile defects in the bulk and in the GB core take the standard Maxwell-Boltzmann form,

µ̃def = µodef +RT ln ndef + zdefFϕ (2.5)

The second assumption is that material parameters, such as standard defect chemical poten-

tials and charge carrier mobilities, exhibit step functions when traversing from bulk, through

the GB, to the bulk. In this case, it is the difference in the standard chemical potential of oxy-

gen vacancies that drives the formation of space-charge zones. The two commonly adopted

varieties of traditional space-charge theories are the Gouy-Chapman and Mott-Schottky that

have been widely successful in relatively dilute systems.

2.2.1 Gouy-Chapman

The Gouy-Chapman case assumes all defect species to be mobile, therefore they are

free to redistribute in the space charge regions. Applying appropriate boundary conditions

and a reference point for the electrostatic potential (commonly set to be 0 in the bulk), yields

the spatial variation of the electrostatic potential under Gouy-Chapman conditions [29]:

ϕ(x) =
2kT

zie
ln
(1 + Θ exp(−x/λ)

1−Θ exp(−x/λ)

)
(2.6)

where λ is the Debye length:

λ =

√
ε0εrkT

2z2
i e2ci∞

(2.7)
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and Θ is the profile parameter:

Θ = tanh (
zie∆ϕ

4kT
) (2.8)

where ∆ϕ = ϕ(0)−ϕ(∞) is the space charge potential, ϕ(0) is the potential at the interface

and ϕ(∞) is the reference value in the bulk. Combining equation 2.3 and 2.6 gives the spatial

profiles of defects in the space charge region:

ci(x)

ci∞
=
(1 + Θ exp(−x/λ)

1−Θ exp(−x/λ)

)2zi
(2.9)

Using these analytical derivations, researchers can estimate defect distributions and

interface resistivity for dilute systems under temperatures where all defect species are mobile.

Shen et al. implemented a Gouy-Chapman model to investigate the distribution of the

accumulated oxygen vacancies in the space charge regions of pure CeO2 [30]. Gregori et al.

calculated the concentration of the protons in nanocrystalline ceria thin film right below the

water/ceria interface using this approximation [31]. Assuming a Gouy-Chapman situation,

Fromling et al. obtained estimations from finite element calculations that approximate

experimental results of tracer diffusion profiles of single grains for PZTSr/Nb with different

annealing temperatures [32]. Guo et al. applied a Gouy-Chapman situation to a CaF2/BaF2

heterolayer structure under 773K and used the results to qualitively explain its mesoscopic

ion conduction behavior [33]. The Gouy-Chapman case is valid only when all defect species

can redistribute in the space charge region. This situation, however, changes under reduced

temperatures.

2.2.2 Mott-Schottky

At reduced temperatures, oftentimes, the defect species controlling the Debye length

is insufficiently mobile to redistribute in response to the excess grain boundary charge. In

this situation, the Gouy-Chapman case reduces to the Mott-Schottky variety and results

in significantly reduced screening. The Mott-Schottky case assumes a flat dopant profile,
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meaning the derivative of dopant (defect species i) concentration is 0 throughout the system,

while the other defect species (oxygen vacancy for example), is highly mobile and depleted.

In this case, the charge density in Poisson’s equation is determined only by the dopant

content. If we again neglect the depleted charge carrier, Poisson’s equation is simplified and

becomes [29]

d2ϕ

dx2
= −zieci∞

εrε0

(2.10)

Combining with boundary conditions ϕ′(λ∗) = 0 and ϕ(∞) = 0, it yields:

∆ϕ(x) = −zieci∞
εrε0

(x− λ∗)2 (2.11)

where λ∗ is the depletion(space charge) width:

λ∗ =

√
2ε0εr∆ϕ(0)

zieci∞
= λ

√
4zie

kT
∆ϕ(0) (2.12)

The relationship between λ and λ∗ reveals the difference in space charge width in the Mott-

Schottky case and the Gouy-Chapman case. When the dopant cations cannot redistribute,

the space charge width is dependent on the space charge potential, and the depletion width

is greater in spatial extent due to a reduced charge screening ability. Combining equation

2.11 with 2.3 for carrier (defect species j) enhancement or depletion gives the concentration

dependence:

cj(x)

cj∞
= exp [−zj

zi
(
x− λ∗

2λ
)2] (2.13)

In the past, researchers have used Mott-Schottky approximation to estimate interfacial

properties and compare with experimental observations. Kim and Maier successfully ex-

plained the impedance responses of Gd-doped(0.15 mol%) and nominally pure nanocrys-

talline CeO2−x and quantitatively analyzed the oxygen partial pressure and temperature

dependencies of bulk and boundary conductivities [34, 35]. Guo et al. simulated the meso-
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scopic ion conduction behavior of the BaF2 layer model according to the Mott-Schottky

defect concentration profiles under 593K [33]. Shirpour et al. analyzed the GB regions of 6

at % Y- and 6 at % Sc- doped BaZrO3 prepared by as-sintered Spark Plasma Sintering [36].

The observed dopant concentration approximates the Mott-Schottky situation, however, the

calculated GB core charge density largely deviates from the value of a similar low-angle GB

in Fe-doped StTiO3 bicrystals although still in the range of physically plausible values.

2.3 Gap between Experimental Observations and Space Charge Theories

Past experimental studies have confirmed dopant accumulation near GB but mostly

lacked a clear presentation of the anion profiles due to characterization challenges. Theoret-

ical studies using Mott-Schottky or Gouy-Chapman models treated concentrated systems as

dilute solutions and draw conclusions with indirect conductivity measurements.

Meijer et al. investigated the local GB composition of polycrystalline ceramics in-

cluding Y- and Sc- doped BaZrO3 with 6 at% dopant. The dopant profiles suggests that

the accumulation occurs in a region larger than the GB core but the exact location cannot

be measured because of the broadening of the electron beam in the specimen. The authors

did a rather qualitative explanation of the GB conductivity using the Mott-Schottky and

Gouy-Chapman models combined with the dopant profiles, both of which models cannot

produce a segregation zone of >5nm as reported and the vacancies are treated as depleted in

the GB region [37]. Bowman et al. estimated the GB core cation composition of ceria elec-

trolytes using electron energy-loss spectroscopy( (EELS) in a scanning transmission electron

microscope (STEM) and concluded the role of Pr segregation as a co-dopant in enhancing

the conductivity [38]. Another experimental study conducted by the same group provided

dopant profiles near individual grain boundaries of Ca doped ceria with 2%, 5% and 10%

dopant concentrations [2].

Experimental and theoretical studies that discussed oxygen vacancy distributions near

the GB are gradually appearing in literature, and mostly confined to atomistic length scale
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to start with. Lei et al. characterized GBs of fluorite-structured ceramic materials by a com-

bination of Z-contrast imaging and electron energy-loss spectroscopy (EELS) and concluded

an indication of increased oxygen vacancies in the grain boundary core [39]. Browning et al.

used the same technique with atomic resolution for a direct observation of the GB region of

perovskite structured SrTiO3 and fluorite structured Yttria Stabilized Zirconia (YSZ) and

found an excess of oxygen vacancies [39]. Lee at al. used the energy dispersive spectroscopy

in scanning transmission electron microscopy (STEM-EDS) to conduct atomic-scale charac-

terization of the microstructure and chemical composition near the GBs of GDC thin films.

The segregation of dopants and oxygen vacancies along the GBs are observed [40].

Atomic scale characterization of GB defect structure in a YSZ bicrystal using aberration-

corrected TEM also showed significant oxygen deficiency due to segregation of oxygen vacan-

cies near the GB core [41]. Lee at al. developed a hybrid Monte Carlo-molecular dynamics

algorithm to simulation the segregation near the surface of YSZ and GDC, resulted in a

prediction of dopant segregation near the surface and oxygen vacancy segregation in the

first layer beneath the surface and depletion in the subsequent layers [42].The simulation

range is within 3nm near the surface. While the prediction for dopants are in accord with

experimental results, the profiles of vacancies lacked experimental verification.

In 2016, Diercks et al. performed a three-dimensional quantification of elemental

composition for NDC of 10% and 30% dopant concentration using atom probe tomography

(APT) [43]. This study clearly revealed, for the very first time, the co-accumulation of

dopant and oxygen vacancies within an extended region near the GBe.The on-going progress

in characterization capabilities has begun to reveal clearer details of defect profiles from near

the GB to the bulk, this confirms the fact that dilute theories of Mott-Schottky and Gouy-

Chapman cannot treat concentrated systems. Given the limitation of simulation length

scale of atomistic simulations, there is a growing demand for a thermodynamic theory that

is applicable in concentrated systems.
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2.4 Variational Phase Field Models

The phase field method has become a powerful tool to solve interfacial problems at

the mesoscale level, where the phase field variable, such as order parameters, can take two

distinct values in each of the phases, with a continuous change between values around the

interface. Therefore, instead of assuming a sharp interface-properties being discontinuous at

the interface, the phase field method accounts for properties evolving continuously around

the interface, which is also termed as the diffuse-interface model historically. In the phase

field method, the microstructural evolution is modeled using a set of phase-field variables

that are continuous functions of time and spatial coordinates [44]. The phase field variables

can be conserved or non-conserved. Typical examples of conserved variables are composi-

tion variables like molar fractions or concentrations. Such representations have been widely

used for spinodal decomposition [45, 46], phase separation of the decomposed structure

[47, 48, 49, 50] and precipitation and growth of precipitates [51, 52]. Order parameters and

phase-fields are examples of non-conserved variables that are used to distinguish coexisting

phases with different structures. A set of order parameters combined with a molar fraction

variable, has been frequently adopted to simulate the evolution of ordered precipitates in

Ni-based superalloys [53, 54, 55, 56]. Generalizing to multi-domain structures, the approach

has been used extensively for the study of grain growth [57, 58, 59] and the coarsening of

two-phase structures [60, 61]. After the introduction of the phase-field concept by Langer

[62], the single-phase-field representation combined with a temperature and/or composition

field was oftentimes employed to study free dentritic growth [63, 64, 65] in an undercooled

melt, cellullar pattern formation during solidification [66, 67] and eutectic growth [68, 69].

Extending the single-phase-field formalism to multiphase systems by Steinbach et al.[70], so-

lidification reactions involving multiple phases, such as eutectic and peritectic solidification

[71, 72, 73] can be modeled. In the phase field method, the equations for the evolution of the

phase-field variables are formulated based on general thermodynamic and kinetic principles,

therefore, they are distinctly different from first-principle and atomistic studies that deal
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with the behavior of the individual atoms explicitly. This explains the phenomenological

characteristic of the phase-field method. Material specific properties are introduced into the

model through phenomenological parameters that can be determined based on experimental

or theoretical knowledge.

The variational formulations of phase-field models constructs an explicit expression

for the free energy of a system. Approximately 60 years ago, Cahn and Hilliard derived a

thermodynamic formulation for the free energy of a non-uniform system having a spatial

variation in one of its intensive scalar properties, such as composition or density. The free

energy is expressed as the sum of two contributions which are functions of the local composi-

tion and the composition gradients [74]. Application of variational phase field methods have

been employed to model electrochemical systems. In 2003, Bishop et al. conducted a stabil-

ity analysis of phase separation by spinodal decomposition in ionic solid systems, adopting a

Cahn-Hilliard representation for the system free energy [75]. In the following year, a similar

thermodynamic approach was proposed by Garćıa et al. to derive equilibrium equations

and kinetic driving forces for electrically and magnetically active materials [76]. Han et al.

descibed Li diffusion in secondary battery electrode, where Li ions reside in interstitial sites

of a two-phase topotactic intercalation compound, using a Cahn-Hilliard formulation [77].

Guyer et al. treated an electrochemical interface considering a set of components including

cations, anions and electrons and the phase field model successfully captured the charge sepa-

ration associated with the equilibrium double layer at the interface [78]. The authors further

expanded the same phase field model to consider electromigration of electrons and diffusion

of cations with time variation, in order to apply for electrodeposition and electrodissolution

conditions [79]. This work is an initial demonstration of exploring relationship between dou-

ble layer structure and interfacial kinetics using variational phase field methods. In [80],

Liang et al. introduced a nonlinear phase-field model for modeling electrochemical reactions

during nonequilibrium processes at electrode-electrolyte interfaces where the rate of tem-

poral phase-field evolution and the interface motion is considered nonlinear with respect to

16



the thermodynamic driving forces. This class of methods also find applications in modeling

intercalation processes. In [81], a mathematical model is proposed for ion intercalation in

a single crystal of rechargeable-battery composite electrode material LiFePO4. This model

incorporated ionic mobility and surface reactions governing ion flux into an existing phase-

field formulation and has been utilized to show the spinodal and miscibility gap shrinkage for

intercalation in nanoparticles. Combing the Cahn-Hilliard equation with a boundary con-

dition for insertion/extraction kinetics, the general mechanism for the suppression of phase

separation in nanoparticles was predicted, including concentration-gradient contributions

[82].

2.5 Nakayama-Martin Oxygen ion conductivity model

An analytical model for the ionic conductivity of a strongly acceptor doped, fluorite-

type oxygen ion conductor was introduced by Martin in 2006 [83]. This model considers

the following aspects : 1)the distributions of different cation tetrahedra sites and of oxy-

gen vacancies; 2)the effect of dopant-vacancy interactions on the mobility; 3) the effects

of dopants on the activation barriers for ion migration. The interactions are restricted to

only nearest-neighbour and next-nearest-neighbour, and vacancy-vacancy interactions are

not considered.

Consider a concentrated solution of host cations A, and dopant cations B . For a statis-

tical cation distribution, the fractions fn(xB) of tetrahedra containing n B-cations(n=0,1,2,3,4)

can be calculated from combinatorics :

fn(xB) = 2

(
4

n

)
xB

n(1− xB)4−n (2.14)

[84] where xB is the site fraction of dopant cations B. Oxygen ions and vacancies can occupy

the 2N tetrahedra formed by the N cations. Assuming only nearest neighbor interactions

between VO and B, the oxygen vacancies can exist with five different tetrahedral cation
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configurations, which are AAAA, AAAB, AABB, ABBB and BBBB. Using quasi-chemical

reactions, the corresponding fractions of those different oxygen vacancies can be expressed

as a function of the fraction VAAAA:

[VAAAB] =
K1 · [AAAB] · [VAAAA]

[AAAA] + (K1 − 1) · [VAAAA]
(2.15)

[VAABB] =
K2 · [AABB] · [VAAAA]

[AAAA] + (K2 − 1) · [VAAAA]
(2.16)

[VABBB] =
K3 · [ABBB] · [VAAAA]

[AAAA] + (K3 − 1) · [VAAAA]
(2.17)

[VBBBB] =
K4 · [BBBB] · [VAAAA]

[AAAA] + (K4 − 1) · [VAAAA]
(2.18)

where K1,K2,K3,K4 are the mass action constants of the four quasi-chemical reactions below:

VAAAA +OAAAB ←−→ OAAAA + VAAAB, K1 =
[OAAAA] · [VAAAB]

[VAAAA] · [OAAAB]
= exp(−∆E1

kT
) (2.19)

VAAAA +OAABB ←−→ OAAAA + VAABB, K2 =
[OAAAA] · [VAABB]

[VAAAA] · [OAABB]
= exp(−∆E2

kT
) (2.20)

VAAAA +OABBB ←−→ OAAAA + VAAAB, K3 =
[OAAAA] · [VABBB]

[VAAAA] · [OABBB]
= exp(−∆E3

kT
) (2.21)

VAAAA +OBBBB ←−→ OAAAA + VBBBB, K4 =
[OAAAA] · [VBBBB]

[VAAAA] · [OBBBB]
= exp(−∆E4

kT
) (2.22)

(2.23)

Here ∆En(n=1,2,3,4) is the ”binding energy” of a vacancy inside a tetrahedron consisting

of n B-cations. This is given by the energy difference between a vacancy in that tetrahedron

and a vacancy in an AAAA-tetrahedron.

In order to explain the experimentally observed maximum conductivity and the de-

pendence of the conductivity on the dopant, this model considers the microscopic jump

processes of vacancies and their jump rates in detail. Since the B-V interactions have been

restricted to nearest-neighbor and next-nearest-neighbor interactions, the vacancy jump rate

depends only on the NN/NNN cation configuration of the vacancy before jump and the na-
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ture of the edge to be crossed (A-A, A-B or B-B). The jump frequencies are denoted by wn,m

where n and m are the numbers of B-cations in the tetrahedron before the jump and in the

edge to be crossed.

An oxygen vacancy inside an AAAB-tetrahedron can perform 3 jumps through the

three edges with a jump frequency w1,0 and 3 jumps through 3 edges with a jump frequency of

w1,1. The destination tetrahedron must be of the type AAAA,AAAB,AABB or ABBB. So the

probability for the destination tetrahedrons to be accessible are [OAAAA]+[OAAAB]+[OAABB]

and [OAAAB] + [OAABB] + [OABBB] respectively, and the partial ionic conductivity owing to

vacancies of type VAAAB is given by:

σVAAAB = [VAAAB]·{3·w1,0·(OAAAA]+[OAAAB]+[OAABB])+3·w1,0·([OAAAB]+[OAABB]+[OABBB])}

(2.24)

The contributions of the other vacancies are counted for in a similar way.

2.6 Bayesian Framework for Model Parameterization

Firstly introduced by Kennedy and O’Hagan, the Bayesian approach was then widely

used in calibration and validation of computational models. The general idea of the Bayesian

framework can be represented in Equation 2.25. Here z represents experimental observations,

y(x, θ) is the model output as a function of model parameters θ and the model input x, δ(x)

represent model discrepancy and ε is the observation error.

z = y(x, θ) + δ(x) + ε (2.25)

Model discrepancy comes from the abstraction and simplification of model structures from

the real-world situation, the assumptions involved and the insufficient representation of phys-

ical or chemical effects etc. δ(x) is a nonparametric Gaussian process, which can be estimated
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with the BSS-ANOVA framework.

2.6.1 Parameter Calibration

Bayesian calibration is a method of drawing conclusions about model parameter dis-

tribution or unobserved data through probability statements [85]. Given model parameters

and data y, a joint probability distribution for θ and y is defined as the multiplication of the

prior distribution p(θ) and the sampling distribution or data distribution p(y|θ):

p(θ, y) = p(θ)p(y|θ) (2.26)

According to the basic property of conditional probability known as Bayes’ rule, the posterior

density is:

p(θ|y) =
p(θ, y)

p(y)
=
p(θ)p(y|θ)
p(y)

(2.27)

where p(y)=
∑

θ p(θ)p(y|θ). Since p(y) does not depend on θ given the data y, it can be

treated as a constant.This treatment yields:

p(θ|y) ∝ p(θ)p(y|θ) (2.28)

where p(y|θ) is called the likelihood function as a function of θ for fixed data y. The likelihood

function can be constructed by computing the product of the probabilities for each data point:

L(θ) =
N∏
i=1

p(xi|θ) =
N∏
i=1

p(xi|θ) (2.29)

Oftentimes, it is more convenient to compute this on log scale.

logL(θ) =
N∑
i=1

log p(xi|θ) (2.30)
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θ can be determined by solving the equation d logL/dθ = 0 so that the likelihood is maxi-

mized. The estimation of θ is based on the observation data. During the calibration process,

a sampling strategy is adopted to explore the prior distribution of the parameter space.

Markov chain simulation, also known as Markov chain Monte Carlo, or MCMC, is a general

method based on drawing values of θ from appropriate distributions and then correcting

those draws to better approximate the target posterior distribution p(θ|y) [86]. The samples

are sequentially drawn, with the distribution of the sampled draws depending on the last

value drawn. A particular Markov chain algorithm that has been effective for multidimen-

sional problems is the Gibbs sampler, where subvectors of parameter θ are drawn during

each iteration. After a new parameter set is drawn, the corresponding likelihood L1 is cal-

culated and compared with likelihood function L0. If L1 > L0, the new value drawn will be

accepted. This process is iterated until the criteria for posterior distribution convergence is

satisfied. At this point, the posterior distribution of all parameters are obtained.

Statistically, the Batch Means test is used to judge whether the calibration has reached

convergence or not by evaluating the difference between the sample distribution and the

target distribution. In the test, after cutting out the samples before burining-in, the total

number of left-over samples N, is divided by the number of bins, a, so that each bin has an

euqal number of data points b = N/a. Then, the mean value for each bin was calculated as

below:

Ȳj :=
1

b

jb−1∑
l=(j−1)b

Xi forj = 1, ..., a (2.31)

With the number of samples being large enough, the variance of the target distribution can

be estimated with the variance of the batch means in Equation 2.32.

σ̂2
BM :=

b

a− 1

a∑
j=1

(Ȳj − X̄N)2 (2.32)

The half-width confidence interval is given in Equation 2.33. A student’s T-test on batch

means with a 95% confidence interval is used to test the convergence: the preferred interval
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is 5% or less of the sample mean for each estimated parameter.

taN−1
σ̂BM√
N

(2.33)

where taN−1 is an appropriate quantile from Student’s t distribution with aN − 1 degrees of

freedom.

2.6.2 Gaussian Processes

A Gaussian process is a distribution over functions where the mean function is a

vector and the covariance function is a matrix. It is a stochastic process that governs the

properties of functions. In a GP, for every input x, there is an associated function value f(x)

which is a random variable. Defining f to be a GP with mean function m and covariance

function c, we can represent it as:

f ∼ GP (m, c) (2.34)

The GP can define a prior of function f given its function values at finite set of points

x1, x2, ..., xn being f(x1), f(x2), ..., f(xn). The joint distribution of this set of f(x1), f(x2),...,f(xn)

is multivariate normal distribution. The covariance matrix c is given by:

cij = k(xi, xj) (2.35)

where k is a positive definite kernel function that defines the correlation between two function

valus f(x1), f(x2) given the input x1, x2. Specifically, cij can be written as:

cij = σ2 exp [−(xi − xj)2

φ2
] (2.36)

Where φ controls the extent of the correlation between two points, and σ2 controls the

scale of the variance of the function from its mean [85]. The Gaussian process is thus a
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convenient way to represent unknown functions. In a Bayesian framework, the discrepancy

functions, being random functions in nature, can be realized through Gaussian processes.

Using Gaussian processes to incorporate assumed distributions for discrepancy functions,

the posterior distributions of these functions at known input values can be obtained when

provided with data for Bayesian calibration [87]. The inversion of the covariance matrix

requires the computational complexity of O(N3), where N is the number of data points as

the input to the GP. This would exert a challenge for applying Gaussian processes in a

complex model.

2.6.3 The BSS-ANOVA Framework

Smoothing refers to the estimation of nonparametric functions with stochastic data.

The smoothing spline ANOVA models are a class of smoothing methods derived through

roughness penalties. This class of methods decomposes the regression function into inter-

pretable main effect and interaction functions. Incorporating the Bayesian method, MCMC

sampling can be used to search for models that fit the data well. In this study, the Bayesian

Smoothing Spline ANOVA framework is therefore proposed to formulate the discrepancy

functions having the properties of traditional Gaussian processes. The covariance function

is built from the function components of a functional ANOVA decomposition [88, 89]. By

providing a parametric form to estimate nonparametric functions, this approach helps to re-

duce the stochastic differential equations (SDE) into ordinary differential equations (ODE),

which are easier for calibration and uncertainty quantification. It also solves the computa-

tional efficiency issue associated with traditional GPs by scaling linearly with the number of

data points [90, 91, 92].

Let’s denote the input to the BSS-ANOVA model as ζ with dimension R. The dis-
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crepancy function can be represented as:

δ(ζ) = β0 +
R∑
r=1

δr(ζr) +
R∑
r<r′

δr,r′(ζr, ζr′) + · · · (2.37)

It is assumed that β0 ∼ N(0, ς2
0 ). The main effect functional component is δr ∼

GP (0, ς2
rK1)(r = 0, . . . , R), with the variance parameter ς2

r and the BSS-ANOVA

covariance function K1 described as below [92]:

K1(u, u′) = B1(u)B1(u′) +B2(u)B2(u′)− 1

24
B4(|u− u′|) (2.38)

where Bl is the lth Bernoulli polynomial. The inputs must be scaled to [0,1] since the

covariance function operates in the region of [0,1]. Two way interaction functions are assumed

to be δr,r′ ∼ GP (0, ς2
rK2), where the covariance function K2 is the product of the first order

kernels, as represented in equation 2.39.

K2((u, v), (u′, v′)) = K1((u, u′), (v, v′)) (2.39)

Similarly, three-way or higher order interaction functional components can be defined. Ac-

cording to Storlie et al.[1], each functional component in 2.37 can be decomposed using

Karhunen-Loéve (KL) into an orthogonal basis expansion. Therefore, δr(ζr) can be written

as below:

δr(ζr) =
∞∑
i=1

βr,iφi(ζr), βr,i
iid∼ N(0, τ 2

r ) (2.40)

τr is the typical prior standard deviation of δr corresponding to a particular variance ς2
r .

The φi terms are the eigenfunctions in the KL expansion. As the order of eigenfunction

increases, the frequency of the eigenfunction becomes higher and the magnitude decreases.

Therefore, it is expected that the terms after some value L are less important and thus can

be truncated. The first nine eigenfunctions of the KL expansion for a main effect function
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of the BSS-ANOVA framework are shown in Figure 2.1.

Figure 2.1: Example set of basis functions from [1]

Similarly, the decomposition in Equation 2.40 can be used for two-way and high

interactions. The expansion terms for higher-order interactions are the products of the

corresponding main effect eigenfunctions. As suggested by Storlie et al., it is sufficient

to include only main effects and two-way interactions for many problems. Higher-order

interactions can be included if there is lack of fit. Therefore, the overall model in 2.37 can

be represented as:

δ(ζ) =
J∑
j=1

Iδi∑
i=1

βj,iφj,i(ζ) (2.41)

βj,i
iid∼ N(0, τ 2

j ) (2.42)

where j indexes over the J functional components included in the discrepancy function, and

i indexes over the number of basis function Iδi used for the jth functional component of

the discrepancy representation. The βj,i, φj,i, and τj have corresponding meanings as in the

expansion of (2.40) for the jth functional component.
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CHAPTER 3

A GENERALIZED SPACE CHARGE THEORY: POISSON-CAHN

Conventional space charge calculations such as Gouy-Chapman or Mott-Schottky vari-

ety, although being successfully applied in relatively dilute systems, have shown inadequacy

when considering highly-doped systems. For example, co-accumulation of dopant cations

and oxygen vacancies which has been experimentally observed, cannot be modeled with the

traditional space charge theory. Segregation layers on the orders of 10 nm in a concen-

trated solution also cannot be explained. Despite these theoretical limitations, highly-doped

systems are more related to industrial applications. Therefore, a new thermodynamic frame-

work that is applicable to systems with high solute concentrations must take its place. Past

research findings have shown the non-negligible influences of defect interactions and gradient

energy in highly concentrated systems, this framework therefore should incorporate effects

of these factors.

3.1 Defect Interactions

Moving from dilute systems to concentrated solid solutions, defect interactions includ-

ing self-interactions and across-species interactions can no longer be ignored. The importance

of defect interactions can be inferred from the behavior of ionic conductivity in these doped

systems. It is widely known that the ionic conductivity σ of CeO2−M2O3, does not increase

monotonically with increasing the concentration of charge carrier, i.e. oxygen vacancy. For

example, Yahiro et al. found a maximum in ionic conductivity of samarium doped ceria

(SDC) at approximately 20atom% [93]. A lot of experimental and theoretical research was

conducted in recent years to reveal the exact reason. One explanation for the conductivity

decrease after the early peak, is the attraction of oxygen vacancies to the dopant ions which
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leads to the trapping of oxygen vacancies and thus lowered oxygen ion mobility. Further-

more, the repulsion and ordering of the oxygen vacancies can contribute to the reasoning

[94, 95]. Another possible explanation is the increased energy barrier of migration for oxygen

vacancies adjacent to neighboring M3+ [96, 97, 98, 99]. For example, rare earth ions with

larger ionic radii can result in a higher jump barrier for oxygen ions. The occupation of

the ”migration edge” formed by these neighboring cations increases the edge energy for the

respective jump.

Therefore, the Poisson-Cahn theory incorporates defect interactions to the overall

free energy of the system, in the form of excess free energy. From the standpoint of electro-

chemical potential, these local terms together add an excess chemical potential term to the

electrochemical potential of each species.

Taking rare-earth doped ceria as a model system, defect interactions to be incorpo-

rated are dopant self-interaction (fyy), vacancy self-interaction (fvv) and dopant-vacancy in-

teraction (fyv). Considering the existence of polarons in doped ceria, electron self-interaction

(fqq), dopant-electron interaction (fyq) and vacancy-electron interaction (fvq) also need to

be included in the free energy formalism.

Experimental measurements of defect association energies have been done for a few

rare earth oxides. Gerhardt-Anderson and Nowick [94] determined the association energies

of several RE-V pairs from conductivity data: -0.67 eV for Sc-V pair, -0.21 eV for Y-V

pair, -0.12 eV for Gd-V pair and -0.14 eV for La-V pair. In another study conducted by

Wang et al. [100], the associate energy of the Y-V pair was calculated using impedance

spectroscopy to be -0.43 eV. Computational calculations based on DFT were obtained by

Grieshammer et al [101]. : -0.75 eV for Sc-V pair, -0.35 eV for Y-V pair, -0.29 eV for

Gd-V pair and -0.12 eV for La-V pair. These energies were calculated for various supercells

considering the nearest (1NN) and next nearest neighbour (2NN), and extrapolated to infinite

dilution.Therefore, discrepancies between experimental and computation results are expected

due to the concentration difference involved in each case. These interaction energies of RE-
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V pair are strictly negative indicating an attractive interaction between the rare earth ions

and the vacancies as expected from the corresponding electrostatics due to the opposite

relative charges of rare earth ions and oxygen vacancies. Andersson et al. have also found

the influence on the association energy by elastic effects as the attraction of the RE-V pair

decreases with increasing radius. Grieshammer et al. [101] also calculated the Coulomb

energy for the RE-V interaction in 1NN and 2NN positions for various systems. The results

showed large energy differences in 1NN positions and about the energy level at about -0.2

eV(close to the Coulomb energy of -0.25 eV) for all rare earth ions, suggesting that the

elastic effect is more profound only for the 1NN position and rapidly decays with distance.

The nearest neighbor association of oxygen vacancies was calculated to be 0.77 eV

by Nakayama and Martin [96], and 0.90 eV by Grieshammer et al. [101] The difference can

be explained by the finite-size correction adopted in the DFT simulations. The association

energies of two oxygen vacancies in ceria depending on the distance displayed a decreasing

trend from the 1NN to 5NN in the range of 1.2 eV to 0.3 eV [101]. This is in agreement with

the general trend found by Ismail et al in investigating the defect interactions in samarium

doped ceria using DFT+U methods [102]. However, in the later study, they found a more

rapid decrease of the interaction energy after the 1NN, an equal value for 2NN and 4NN and

an near-zero energy minimum for the 5NN position. Positive values here imply the repulsive

interaction between oxygen vacancies. The association energies of two rare-earth ions (RE-

RE) calculated for the first coordination shell is around 0.10 eV for a few rare-earth oxides

[101]. This implies that the interaction is mainly due to Coulomb repulsion between dopant

ions and contribution from elastic effects is minimal.

3.2 Gradient Energy Contribution

The concept of gradient energy was first introduced by John W. Cahn and John E.

Hilliard in 1958 [74] in deriving the free energy of a nonuniform system. The system possesses

the property of having a spatial variation in one of its intensive scalar properties, such as
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composition or density. Considering a binary solution system and the nonuniform property

being c, the mole fraction of the B component, the local free energy per molecule, f , in

a region of nonuniform composition will depend both on the local composition and on the

composition of the immediate environment. Therefore, f can be expressed as the sum of

two contributions, which are functions of the local composition and the local composition

derivatives, respectively. Providing f is a continuous function of these variables, it can

be expanded in a gradient expansion about f0, where the coefficients of the expansion are

derivatives of f with respect to increasing orders of derivatives of c. Here f0 is the free energy

per molecule of a solution of uniform composition. Assuming that the local free energy f

is a function only of f0, the composition and its derivatives, then since f must be a scalar

invariant with respect to the direction of the gradient, only terms in even powers of the

operator ∇ can appear. The leading terms of f must therefore be of the form:

f(c,∇c,∇2c, ...) = f0(c) + k1∇2c+ k2(∇c)2 + ... (3.1)

Integrating over a volume V of the solution gives the total free energy F of this volume:

F = Nv

∫
V

fdV = Nv

∫
V

[f0(c) + k1∇2c+ k2(∇c)2 + ...]dV (3.2)

where Nv is the number of molecules per unit volume. Applying the divergence theorem

gives: ∫
V

(k1∇2c)dV = −
∫
V

(dk1/dc)(∇c)2dV +

∫
S

(k1∇c · n)dS (3.3)

Not concerning with effects at the external surface, a boundary condition of integration in

Equation 3.2 can be chosen so that ∇c ·n is zero at the boundary. The surface integral then

vanishes and Equation 3.3 can be used to eliminate the term ∇2c from Equation 3.2 to yield

[74]:

F = Nv

∫
V

fdV = Nv

∫
V

[f0(c) + k(∇c)2 + ...]dV (3.4)
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where

k = −dk1/dc+ k2 (3.5)

Equation 3.4 is the central form of the nonuniform system treatment. It shows that the

free energy of a small volume of nonuniform solution can be expressed as the sum of two

contributions, one being the free energy that this volume would have in a homogeneous

solution and the other a “gradient energy”which is related to the derivatives of the local

composition.

The gradient energy contribution comes from breaking of symmetry relative to the

spatially homogeneous case. This is a key concept in the Cahn-Hilliard theory for inho-

mogeneous systems and past research using variational phase field models have manifested

the significance of gradient energy contributions. When solute concentrations are no longer

spatially uniform, a gradient in the concentration is associated with a strictly positive con-

tribution to the free energy.

To describe the dynamics of surface enrichment in binary mixtures, Binder and Frisch

developed a mean-field theory in the framework of a lattice model, where a gradient expansion

was used to derive the nonlinear differential equation for the Kawasaki spin-exchange model

[103]. In analyzing the surface effect and the interplay between wetting and finite-size effect

in binary systems of confined geometries, Binder et al. concluded that the chemical-potential

gradient drives one component into the bulk whether phase separation is present or not [104].

Puri and Binder have employed a phenomenological theory for surface effects in mixtures

combining the Cahn-Hilliard equation and appropriate boundary conditions considering the

one-sided gradient effect [105]. This theory has been applied to binary mixtures including

solid binary mixtures to study surface effects on spinodal decomposition and its interplay

with wetting phenomena [106]. Binder et al. have also shown that the gradient energy in

the Cahn-Hilliard formalism can be related to lattice models such as the Kawasaki spin-

exchange kinetic Ising model [107]. These works have provided valuable insights on the

critical role of gradient effects in non homogeneous systems. The gradient energy coefficient
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that determines the surface enrichment layer is analogous to its effect in controlling the ion

segregation layer near the interface of doped systems.

Cahn-Hilliard derived an expression for a composition-independent gradient energy

coefficient (κ) applicable to a cubic system [74]. This has provided a basis for estimating the

gradient energy coefficient from thermodynamic data of homogeneous systems.

Han et al. applied a phase field model to describe Li diffusion in secondary battery

electrodes, where a value of 2.48 × 10−11 J/m is derived for a one-dimensional lattice of

LiFePO4 [108]. The authors did use two other values an order of magnitude smaller and

larger than the base value to evaluate the effect on diffusion coefficient, showing that both

these values didn’t cause significant deviation between measured diffusion constant and the

effective chemical diffusion coefficient when the gradient energy is not zero . Lass et al.

derived an expression of κ for a binary, face-centered cubic crystal considering pair-wise,

three-body and four-body nearest neighbor interactions. Their calculated values of (k) are

within the range between 1.20×10−11 and 1.02×10−10 J/m for a Al-Zn system [109]. Their

reported values are in agreement with the theoretical calculations of 1.8 ± 0.3 × 10−11 by

Rundman and Hilliard [110], while differs from the measured value of 16 ± 3 × 10−11. In

[111], a first-principle study based on the cluster variation method is used to compute κ

for interface boundaries in Ag-Al. The calculated value decreases from 6.1 × 10−11 J/m to

4.5 × 10−11 for an Al concentration of 81 at. % when temperature increases from 500K to

900K. At temperature of 600K, the value of κ increases from 2.5× 10−11 to 21× 10−11 with

the increase of Al concentration from 0.55 to 0.99. Hoyt did a molecular dynamics study for

an embedded atom method model of Cu-Pb in 5.3nm liquid droplet, and found that κ lies

in the range of (1.0− 1.4× 10−10 J/m) for three different temperatures evaluated [112].

3.3 Derivation of the Poisson-Cahn Model

Taking inspiration from the Cahn-Hilliard theory for the solute segregation in alloys

and the Cahn theory of wetting a solid-liquid interface, a generalized space charge theory is
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proposed as the ”Posson-Cahn” theory. The Poisson-Cahn theory replaces the Boltzmann

model for the local ion density with the Cahn-Hilliard theory of inhomogeneous systems, and

includes defect interactions and gradient energy contribution to the free energy of systems:

two factors that are particularly influential in non-dilute systems. This makes it possible for

this theory to be applied to doped systems of all levels of concentrations.

The global approach of thermodynamic treatment, employed by many authors, con-

structs an expression for the free energy of the entire system and then minimizes to yield

equations for the local concentrations of the various defects. Taking a grain boundary model

system of CeO2−M2O3 with dopant ions, oxygen vacancies and electrons, the free energy

function of the system can be formulated as below:

Ω[y, v, q, ϕ;T ] = Φ(y(0), v(0), q(0), T ) +

∫ L

0

(W (y, v, q, T ) +
1

2
cy(

dy

dx
)2 +

1

2
cv(

dv

dx
)2

+
1

2
cq(

dq

dx
)2 − 1

2
εrε0(

dϕ

dx
)2 + Fϕ(2nosv − ncsy − ncsq))dx

(3.6)

Here we consider a one-dimensional symmetric grain model where x=0 represents the

grain boundary position, and x=L represents the position of the half grain domain. For

example, if the whole grain has a size of 800 nm, L would be 400 nm given the symmetric

grain approximation. The free energy density W is a double-well potential in y,v, and q

arising from excess free energy terms combined with site-limited entropy. Self-interactions

and interactions between different types of defects are included:

W (y, v, q, T ) = ncsfyyy
2 + nosfvvv

2 + ncsfqqq
2 + fyvyv + fyqyq + fvqvq

+f 0
vv + f 0

qq + ncsRT [y log(y) + (1− y − q) log(1− y − q)]

+nosRT [v log(v) + (1− v) log(1− v)] + ncsRT [q log(q) + (1− y − q) log(1− y − q)]

(3.7)

The interface free energy density includes terms pertaining to the preference for dopant
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cations, oxygen vacancies and electrons to reside at the grain boundary:

Φ(y(0), v(0), q(0), T ) = nofov(0) +
1

2
nofdsy(0) +

1

2
nofqsq(0) (3.8)

where no is the number of oxygen sites per unit area at the interface, fo is the vacancy

segregation energy, fds and fqs are the affinities for dopants and electrons for the interface,

respectively. Minimization of the system free energy function Ω involves taking variational

differentiation of the functional with respect to y, v, q, and ϕ subjecting to the constraints

of mass conservation and electroneutrality condition in the bulk. Thus, the Euler-Lagrange

equations can be obtained as below:

ncsFϕ+ 2ncsfyyy + fyvv + fyqq + ncsRT log
y

1− y − q
− 2cy

d2y

dx2
= 0 (3.9)

nosFϕ+ 2nosfvvv + fyvy + fvqq + nosRT log
v

1− v
− 2cv

d2v

dx2
= 0 (3.10)

ncsFϕ+ 2ncsfqqq + fvqv + fyqy + ncsRT log
q

1− y − q
− 2cq

d2q

dx2
= 0 (3.11)

d2ϕ

dx2
=
−F
ε0εr

(2nosv − ncsy − ncsq) (3.12)

The boundary conditions arising naturally from the variational analysis are:

ncscy
dy

dx

∣∣∣
x=0

=
1

2
nofds (3.13)

noscv
dv

dx

∣∣∣
x=0

= nofo (3.14)

ncscq
dq

dx

∣∣∣
x=0

=
1

2
nofqs (3.15)

dϕ

dx

∣∣∣
x=0

= 0 (3.16)

Another equivalent route to this is to directly define suitable electrochemical poten-

tials for the defect species and then require proper behavior of these potentials in thermody-

namic equilibrium or kinetic situations [113]. Adopting this approach, the electrochemical
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potentials of the defect species in the ”Posson-Cahn” form are thus formulated as:

µ̃y = µoy + fyy + fyvv + fyqq +RTln(
y

1− y − q
)− Fϕ− cy

d2y

dx2
(3.17)

µ̃v = µov + fvv + fyvy + fvqq +RTln(
v

1− v
) + 2Fϕ− cv

d2v

dx2
(3.18)

µ̃q = µoq + fqq + fyqy + fvqv +RTln(
q

1− y − q
)− Fϕ− cq

d2q

dx2
(3.19)

Here the formulation of the electrochemical potential includes the standard electrochemical

potential, terms for interaction energies (f terms), terms associated with gradient effects

(c terms), configurational and electrostatic terms. The local (f) and non-local (c) terms

together comprise an excess chemical potential contributing to the electrochemical potential

formulation. In equilibrium, the electrochemical potentials remain constant throughout the

system. Thus, setting the corresponding derivatives to zero gives rise to the same set of

equations as obtained through the variational analysis.
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CHAPTER 4

KINETIC MODELING FOR DOPANT SEGREGATION

4.1 Kinetic Model Development

In the aliovalently doped ceria system, dopant cations and oxygen vacancies approach

equilibrium state at vastly different speed due to the large difference in diffusivity. It is

widely known that anion diffusivity is orders of magnitude faster than cations, therefore

dopant profile is expected to go through a kinetic process while oxygen vacancy has already

established its equilibrium profile. There is currently no available experimental or theoretical

studies that can be used to describe the kinetic process of dopant segregation. Therefore, a

kinetic model is needed to reveal the dopant profile development before reaching equilibrium.

The kinetic model originates from the flux equation where the flux J is assumed to be

proportional to the gradient of the electrochemical potential,∇µ, as is usually done in kinetic

theory, then the flux of species i, Ji, can be written as:

Ji = −uc̄∇µ (4.1)

Where u is the mobility of species i, c̄ is the average concentration. Given the flux term, the

continuity equation expressing the conservation of diffusing species becomes

dc

dt
= −∇ · Ji (4.2)

The expression for electrochemical potential µ here follows the Poisson-Cahn formation in

Equation 3.17. In this model development, we consider the mobility of the dopant cations,
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therefore the governing equation for the non-equilibrium state is

dy

dt
= ȳuy(

d2µ̃y

dx2
− cy

d4y

dx4
) (4.3)

where y is the site fraction of dopant cations, uy is the cation mobility, ȳ is the average

site fraction of cation sites in the bulk (an approximation adopted for the flux term), cy is

the gradient energy coefficient and µ̃y the electrochemical potential of dopant cations, minus

gradient effects. For oxygen vacancies, following the assumption that this species remains

constantly in equilibrium, the governing equation becomes

µ̃v − cv
d2v

dx2
= 0 (4.4)

where µ̃v is the electrochemical potential of oxygen vacancies, minus gradient effects, cv is

the gradient energy coefficient, and v is the vacancy site fraction. In Equation 4.3 and 4.4,

electrochemical potentials of defect species are

µ̃y = µoy + fyy + fyvv +RT ln (
y

1− y
)− Fϕ (4.5)

µ̃v = µov + fvv + fyvy +RT ln (
v

1− v
) + 2Fϕ (4.6)

where the subscript y stands for dopant cations and v stands for oxygen vacancies. A

complete description of the parameters appeared in the formulation can be found in Table

4.1. The electrostatic potential is governed by Poisson’s equation:

d2ϕ

dx2
= − F

εrε0

(2nvv − nyy) (4.7)

where εr is the relative permittivity, ε0 the permittivity of free space, nv and ny are the

concentrations of oxygen sites in the bulk, and cation sites in the bulk, respectively.
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In solving this system of equations the following boundary conditions apply:

dy

dx

∣∣∣
x=0

=
dy

dx

∣∣∣
x=L

= 0 (4.8)

dwy
dx

∣∣∣
x=0

=
dwy
dx

∣∣∣
x=L

= 0 (4.9)

cv
dv

dx
|x=0 = n0f0 (4.10)

cv
dv

dx
|x=L = 0 (4.11)

dϕ

dx

∣∣∣
x=0

= 0 (4.12)

ϕ(L) = 0 (4.13)

where x = 0 pertains to the interface and x = L the grain center, which is 400 nm in this

study. n0 is the concentration of oxygen sites at the interface, wy is the test function used

for the finite element discretization of the dopant equation, and f0 is the segregation energy

for vacancies.

The mobility uy was estimated from experimental data appearing in References [114,

115, 116]. These references contain diffusivity data derived from probing cation transport

directly [114] or examining cation diffusion indirectly (by studying grain-growth kinetics)

[115] in doped ceria. An Arrhenius model for the diffusivity was fitted to the data and the

corresponding parameters for the mobility were found using the Nernst-Einstein relation.

Since the dopant cation in GDC diffuse through a vacancy mechanism, its mobility varies

with local cation concentration. This implementation starts with a simplified treatment

of the mobility parameter being a constant, not to divert attention away from the first

presentation of this kinetic model.

Combining Equation 4.3 with Equation 4.5, the final governing equation for dopant

defect is a 4th order nonlinear equation. Finite element method with cubic basis functions

is applied to represent the spatial domain and Crank-Nicolson scheme is used for time dis-

cretization. Equation 4.4 and 4.7 are linearized using finite difference method with 2nd
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order accuracy,similar to a previous development for the equilibrium case [13]. Newton’s

method is used to solve the final equations for defect site fractions and electrochemical

potential.Parameter values can be found in Table 4.1.

Param. Value Indication

n0 1.0× 10−5 mol/m2 interfacial site density for vacancies

fv 0.9 eV [117] vacancy self-interaction energy

f0 -2.5 eV vacancy segregation energy

fy 0.9 eV dopant self-interaction

fyv -0.07 eV [12] dopant-vacancy interaction

cv 0.124 eV-nm2 vacancy gradient energy coefficient

cy 2.0 eV-nm2 dopant gradient energy coefficient

εr 35.0 relative permittivity

uy 3.15× 10−22 mol-m2/J/s/K cation mobility

Table 4.1: Model parameter values

4.2 Model Results and Discussion

The kinetic model developed based on the Poisson-Cahn theory was applied to GDC

of different dopant concentrations: 20%, 1% and 0.1%. The results for 1300 ◦C, in terms of

the behavior of the defect concentrations and electrostatic potential as a function of time,

are typical of those at other concentrations, with the sole difference being the time scale.

The following results thus pertain to GDC with 20% dopant under at 1300 ◦C.

At 1300 ◦C, and starting from an initial state of a uniform defect concentration, the

model shows that appreciable dopant segregation starts on a surprisingly short time scale

of 10−8 seconds. Dopant first segregates close to the interface, creating a depletion zone as

shown in Figure 4.1. The thickness and depth of the depletion zone both increase with time.
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Figure 4.1: Dopant profile as a function of distance from the interface at 1300 ◦C and 20%
dopant cation site fraction, during the initial 10−7 s of annealing time

A second segregation zone appears as shown in Figure 4.2, the extent of which initially

increases with time. This may be attributed to the fact that the amount of dopant is

relatively high than the dilute case and dopant cations that haven’t segregated to the GB

are likely to temporarily segregate to its vicinity. Shortly after its appearance, however,

the second segregation zone gradually starts diminishing, as shown in Figure 4.3, as more

dopant cations segregate to the interface from its vicinity. This second accumulation region

occurs only in the more concentrated solid solutions, as the second accumulation zone didn’t

manifest itself for the 1% and 0.1% doped GDC.
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Figure 4.2: Dopant profile as a function of distance from the interface at 1300 ◦C and 20%
dopant cation site fraction, during the initial 10−7 s of annealing time (zoomed in to show
the second segregation zone)

Figure 4.3: Dopant profile as a function of distance from the interface at 1300 ◦C and 20%
dopant cation site fraction, after the second segregation zone begins to disappear

The extent of dopant profile change decreases over time, as the system reaches equi-

librium: temporal changes on the time scales greater than 10−7 s are much smaller than

those on the time scale of 10−8 s. The cause of the rapid changes at the beginning of the
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simulation is the accumulation of oxygen vacancies at the interface and correspondingly

high electrostatic driving force for dopant segregation; the segregation that occurs during

the initial annealing period screens the core charge and weakens the driving force for further

segregation. At this point, the main segregation zone near the interface gradually widens

and the depth of dopant depletion decreases as shown in Figure 4.4. Here we also see the

depletion zone thickness gradually extended from less than 2 nm to the around 10 nm at a

time scale of 10−5 s.

Figure 4.4: Dopant profile as a function of distance from the interface at 1300 ◦C and 20%
dopant cation site fraction, between 10−7 and 10−5 s

Figure 4.5 shows the dopant profile between 0.0001 and 0.017 s. The width of the

depletion zone extends to tens of nanometers before gradually disappearing. In less than 0.1

s, the dopant distribution reaches equilibrium as seen by the overlapping profiles in Figure

4.6.
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Figure 4.5: Dopant profile as a function of distance from the interface at 1300 ◦C and 20%
dopant cation site fraction, at t=0.001, 0.0015 and 0.017 s

Figure 4.6: Dopant profile as a function of distance from the interface at 1300 ◦C and 20%
dopant cation site fraction, at t=0.03, 0.07, 0.1 s and at equilibrium

Vacancies equilibrate at every time step with respect to the dopant due to their

relatively high mobility. The vacancy profiles remain close to the profile at the overall

system equilibrium as shown in Figure 4.7. Similar results were obtained for the electrostatic
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potential, as shown in Figure 4.8.

Figure 4.7: Vacancy site fraction as a function of distance from the interface at 1300 ◦C and
20% dopant cation site fraction

Figure 4.8: Electrostatic potential as a function of distance from the interface at 1300 ◦C
and 20% dopant cation site fraction

For 1% dopant concentration, the dopant profile developed in a similar fashion to the

more concentrated case presented above, but without the emergence of a second segregation
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zone. It takes less than 1 s for the dopant profile to approach equilibrium. For 0.1%

dopant concentration, dopant segregation began with the same fast timescale as the more

concentrated cases, followed with a shallow and wide depletion region. Long range effects

were also observed at 0.1% dopant concentration, as the shallow depletion region extends on

the order of tens of nanometers into the bulk prior to equilibration.

The model was also used to calculate equilibration times for GDC with 20% dopant

concentrations when annealing under temperatures less than 1300◦C. Using 99.95% corre-

spondence (in an L2-norm sense) of the equilibrium profile in the first 10 nm region as the

criterion for attaining equilibrium, Figure 4.9, shows the time to reach equilibrium for mul-

tiple temperatures. A quench temperature of the dopant profile of approximately 900 ◦C

– at which it took more than 15 hrs. for dopant profile to approach equilibrium – can be

deduced. Similar trend is expected for different doping levels because cation mobility quickly

decreases, as temperature gets lower.

Figure 4.9: Time to equilibrium as a function of annealing temperature for GDC with 20%
dopant concentration
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CHAPTER 5

POISSON-CAHN MODEL PARAMETERIZATION

5.1 Modeling Grain Boundary Resistance of GDC

In this study, the Poisson-Cahn theory is applied to Ce1−xGdxO2−x/2 of different Gd

dopant concentrations to predict the defect concentrations near GB. With these prediction re-

sults from the Poisson-Cahn model, the bulk and grain boundary resistances were calculated

using the Nakayama-Martin conductivity model. A realistic case of a restricted equilibrium

is considered: the acceptor-dopant profile is frozen-in from the quench temperature identified

with the kinetic model, while the oxygen vacancies are mobile at all temperatures and are

therefore instantly equilibrated at the measurement temperature.

In this study, the bulk and grain boundary conductivity data was used to perform a

particle swarm optimization in search of parameter setting to realize a good fit between the

model predictions and the experimental data. The list of fitted parameters are summarized in

Table 5.1. In Figure 5.1, literature data for measured isothermal bulk and total conductivities

of the CeO2 − Gd2O3 system are compared with the results of Poisson-Cahn calculations.

The PC predictions approximate the conductivity data for both the bulk and the total

conductivity (considering the grain boundary effect) for systems with a wide range of dopant

concentrations. The sudden drop in total conductivity as dopant concentration decreases, is

also successfully predicted.
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Param. Value Indication

n0 1.89× 10−5 mol/m2 interfacial site density for vacancies

fv 0.10 eV vacancy self-interaction energy

f0 -4.70 eV vacancy segregation energy

fy 0.44 eV dopant self-interaction

fyv -0.06 eV [12] dopant-vacancy interaction

cv 1.05 eV-nm2 vacancy gradient energy coefficient

cd 2.30 eV-nm2 dopant gradient energy coefficient

Table 5.1: Fitted parameter values from particle swarm optimization

Figure 5.1: Conductivity σ of the CeO2 Gd2O3 system as a function of na at T=713 K

In Figure 5.1, na denotes Gd site fraction. Data has been taken from experiment

and extrapolated or interpolated where necessary:(A) Tschope et al. [22],(B) Tianshu et al.

[118],(C) Ralph et al. [119], (D) Avila-Paredes et al. [120], (E) Kudo and Obayashi [121], (F)

Kharton et al. [122], (G) Poisson-Cahn analysis, (H) Poisson-Cahn with interaction energies
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set to 0.

When we compare the dopant equilibrium profile from the Poisson-Cahn calcula-

tions with the results from the Gouy-Chapman theory, Figure 5.2 shows a series of selective

comparisons. PC results showed segregation layers of several nanometers especially at high

dopant concentrations. As for the characteristic length, PC results reasonably matched the

GC results at low dopant concentrations while diverged from GC results expectedly at higher

dopant concentrations owing to the limitations in applying GC to highly concentrated sys-

tems as in Figure 5.3. Similar trends are obtained from the space-charge potential, where

PC predictions stayed close to the case of GC and MS and started to diverge as dopant

concentration increases.

Figure 5.2: Dopant concentration profiles, na(x), calculated from Poisson-Cahn theory(red)
and from Gouy-Chapman theory(black) for six values dopant concentrations at T=1223K.
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Figure 5.3: Extent of space-charge layer calculated from Poisson-Cahn theory. Compared
with 3.5lD. Extracted from ϕ(x) = 0.0078ϕ0

5.2 Modeling Grain Boundary Composition in NDC

In this section, the Poisson-Cahn theory is applied to the Nd-doped ceria system with

two different dopant concentrations (10 cat% and 30 cat%) to reproduce the experimental

results of grain boundary compositions measured by atom probe tomography (APT). With

the two-step equilibration strategy, Bayesian calibration was used to estimate the posterior

parameter distributions for these solid solutions. The Poisson-Cahn model was shown to be

able to quantitatively reproduce the experimental results.

The experiment was conducted by Diercks et al. and the results were published in

2016 [21]. In the experiment, samples of Nd0.10Ce0.90O2−σ (NDC10) and Nd0.30Ce0.70O2−σ

(NDC30) were prepared in air through conventional solid state reactions. X-ray diffraction

(XRD) was used to verify dopant incorporation and homogeneous phase formation after

calcination. The final pellets were sintered in air at 1600◦C for 10h. Specimens for APT
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were prepared using a site-specific life-out method targeting grain boundaries in an FEI

Helios 600i DualBeam focused ion beam/scanning electron microscope (FIB/SEM). APT

analysis was accomplished in a Cameca LEAP 4000X Si using a 40 K base temperature,

0.1-0.4 pJ nominal laser pulse energy, a pulse repetition rate of 625 kHz and a detection rate

of 3 ions per 1000 pulses (0.3%). Specimen reconstruction were generated using Cameca’s

IVAS 3.6.4 analysis software. In this data source, the lower dopant concentration (10 cat%)

is selected as it represents compositions typical for electrolytes in solid oxide fuel cells. The

higher dopant concentration is selected as a comparison in the high dopant range while below

the concentration that induces a disorder-order phase transformation. Significant differences

between the compounds were observed experimentally and the Poisson-Cahn model was

shown to be a powerful tool to reproduce the composition profiles for systems of different

concentrations.

The compositions of oxygen, cation and impurities present were simultaneously quan-

tified. To directly compare with these experimental measurements, predictions in terms of

site fraction of dopant and vacancies are converted into elemental compositions. Let no,

nv, nd, nc be the site densities of oxygen ions, oxygen vacancies, dopants and cerium ions

respectively, and rd, ro be the compositional percentage of dopants and oxygen respectively.

Ignoring the small percentage of impurities present, we can establish the following relation-

ship.

no
no + nd + nc

= ro (5.1)

nd
no + nd + nc

= rd (5.2)

Considering the fluorite structure of the doped system, the relationship below stands.

nv + no = nos (5.3)

nc + nd = ncs (5.4)
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Where nos and ncs are anion and cation site density in the cubic fluorite structure, respec-

tively.

ncs =
4

NA ∗ λ3
(5.5)

nos = 2ncs =
8

NA ∗ λ3
(5.6)

Therefore, site fractions of dopant and vacancies, denoted by y and v respectively, are linked

with their corresponding site densities through the equations below.

y =
nd
ncs

(5.7)

v =
nv
nos

(5.8)

Combining equations 5.1 - 5.8, the relationship between site fractions of of dopant and

vacancies and composition percentages of dopant and oxygen can be obtained.

rd =
y · ncs

nos − v · nos + ncs
(5.9)

ro =
nos − v · nos

nos − v · nos + ncs
(5.10)

The above conversions were built into the Poisson-Cahn model so that model predictions

can be directly compared with compositional percentage data measured by APT. Figure 5.4

displays compositional profiels of O, Ce, and Nb averaged over dozens of individual grain

boundaries.
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Figure 5.4: Raw APT data for 10% (left) and 30% samples

Under a Bayesian calibration framework, posterior distributions of the model param-

eters were estimated for NDC10 and NDC30 separately using the same prior distributions.

The Poisson-Cahn model here treat the more realistic case of restricted equilibrium where

dopant ions were equilibrated at 950◦C( a temperature level where equilibration time starts

to exceed cooling rate of the experiment) and the equilibration temperature for vacancies and

polarons were a calibration parameter. Table 5.2 provides a full list of calibration parameters

and their abbreviation forms adopted in the model.
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Param. Indication

T2 equilibration temperature for vacancies and electrons

n0 interfacial site density for vacancies

fyy dopant self-interaction

fvv vacancy self-interaction energy

fqq electron self-interaction energy

fyv dopant-vacancy interaction

fyq dopant-electron interaction

fvq vacancy-electron interaction

cv vacancy gradient energy coefficient

cd dopant gradient energy coefficient

cq electron gradient energy coefficient

fqs electron surface affinity

fds dopant surface affinity

Hr reaction enthalpy for the reduction of ceria

Sr reaction entropy for the reduction of ceria

Table 5.2: Model parameters for Bayesian calibration

A number of MCMC steps have been executed before the calibration converged, mean-

ing the posterior distributions of model parameters are obtained. The logarithm values of

the likelihood as a function of MCMC steps is shown in Figure 5.5. At the start of the cal-

ibration, the likelihood value is relatively small. This value continued to increase while the

calibration is running. Upon burning-in, value of the likelihood bounced within a high-value

region, indicating that the convergency of the routine.

Figure 5.6 and 5.7 shows the selective parameter traces - the value of parameter

as a function of MCMC steps. Typically, from one point in the parameter spaces of the

52



Figure 5.5: Log of Likelihood for model calibration with NDC10

prior distributions, the MCMC routine explores the predefined parameter spaces within the

bounds before settling down at the parameter posterior distributions. After burning-in is

achieved, the parameter traces changes within a relatively small region and the acceptance

rate of the calibration becomes stable.

Figure 5.6: Selected parameters vs. MCMC steps for calibration of NDC10
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Figure 5.7: Selected parameters vs. MCMC steps for calibration of NDC30

For both NDC10 and NDC30, 250000 MCMC steps were acquired during the calibra-

tion and 70000 samples were cut out for burn-in, leaving 180000 samples in the posterior.

Figures 5.6 and 5.7 show selected parameters as a function of MCMC step for NDC10 and

NDC30. The figures show that equilibration/burn-in was achieved after 70000 samples for

both datasets. Student’s t-test results reveal that all 15 estimated parameter means fell

within the preferred interval for the calibration of NDC10 data while three parameters ex-

ceeded the interval for NDC30. Those three parameters were fvv( ±5.8%), βvv( ±6.8%) and

fds( ±6.8%).

Upon convergence of the calibration, distributions of the parameters are shown in

the table below. Results show consistent posterior distributions of NDC10 and NDC 30

for parameters including T2, nos, fqq, fqs, Hr, and Sr. As for defect interaction energies

including fyy, fvv, fyv, fyq and fvq, the posterior distributions of NDC10 are broader than

those of NDC30 and the distribution average of each parameter is in general higher for NDC10

compared with that of NDC30. Similar relationship was also revealed when comparing
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posteriors of gradient energy terms including cv, cy and cq for NDC10 and NDC30. These

findings indicate that defect interactions and the gradient effects are more profound for

NDC10 than NDC30, which might be linked to the fact of possible defect reordering and

phase transformation that takes place upon increasing dopant concentration up to a certain

level.

Table 5.3: Posterior distributions for NDC10 and NDC30

parameter
10% 30%

Mean Std Mean Std

T2(K) 1325 121.0 1132 47.4

nos × 105(mol/m2) 3.5 0.85 1.6 0.5

fyy(eV) 57.5 10.2 22.7 3.1

fvv(eV) 26.8 17.2 5.7 4.8

fqq(eV) 33.3 6.0 21.1 4.4

fyv(eV) 35.3 16.7 35.9 3.4

fyq(eV) 40.6 9.2 34.2 2.7

fvq(eV) 54.3 10.4 34.7 4.3

cv(eV-nm
2) 280.0 80.5 120.4 14.4

cy(eV-nm
2) 380.1 177.8 8.8 8.1

cq(ev-nm
2) 339.2 107.9 206.2 74.8

fqs(eV) -48.0 8.5 -44.6 10.9

fds(eV) -10.9 4.5 -0.6 0.5

Hr(eV) 2.6 0.2 2.6 0.1

Sr(J/mol−K) 108.1 14.8 109.1 11.8

Figure 5.8 and 5.9 show coverages of the experimental data by overlaying on top 50

model realizations calculated from randomly selected parameter sets for NDC10 and NDC30

respectively. Since the anion concentration reported by the experiment may involve a shift
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due to the fact of lacking electric neutrality, the anion concentration calculated from the

calibration model is shifted accordingly considering the discrepancy of average bulk anion

concentration from the experiment and each calibration. The black curve is the elemen-

tal composition as a function of distance from the grain boundary. The blue curves are

randomly selected model results. The experimental data is well-covered by the calibration

results except for the bulk part which is due to the fact that the employed model assumes

uniform concentration in the bulk while there is inevitably experimental error in the actual

measurement.

Figure 5.8: Calibration results for Models of NDC10
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Figure 5.9: Calibration results for Models of NDC30

The model developed in this study has been shown to be able to replicate defect co-

accumulation near the grain boundaries for concentrated systems, as represented by NDC10

and NDC30. The posterior results of Hr, and Sr are consistent for these two systems as

expected, since they are common values associated with the reduction of ceria in both sys-

tems. The mean values of the posterior parameter distributions of these systems are mostly

consistent in terms of defect interaction parameters including fqq, fyv, fyq and fvq, indicat-

ing similar defect interaction effects associated with these terms. The mean values of the

posterior distributions of fyy, fvv and fvq are considerably higher for NDC10 and NDC30,

indicating that the dopant and vacancy self-interactions, as well as the interaction between

vacancies and electrons, are stronger in NDC10. The means values of gradient energy coef-

ficients for the three defect species are also higher for NDC10, showing that the extent of

gradient energy effects are more profound in the NDC10 system. The number of vacancy

segregation sites are also higher for NDC10, indicating the stronger tendency for oxygen

species to segregate to the grain boundary. The surface affinity of electrons are similar

while that of the dopant are higher for NDC10, showing that it might be easier for dopant

ions to segregate towards the interface in NDC10. Despite the fact that both NDC10 and
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NDC30 are concentrated systems, these results of these differed posterior distributions show

that the underlying mechanisms of gradient energy effects and certain defect interactions

might be different for these systems. Possibly, when the concentration increases from 10%

to 30%, defect reordering and phase changes might be present. The calibrated equilibra-

tion temperature for NDC10 are higher than for NDC30. For NDC10, this temperature is

close to the quenching temperature of the dopant, which resembles previous studies where

the Gouy-Chapman form was adopted: dopant and vacancies are equilibrated at the same

temperature. [30, 31, 32, 33] For NDC30, the vacancy equilibration temperature are lower

than the quenching temperature of the dopant, as expected, because of the different mobil-

ities of these species. This, however, indicates that equilibration temperatures might differ

depending on the dopant concentrations.

Parameter correlations were also gauged for each system and the top 3 correlated pa-

rameter pairs were presented here. In Figure 5.10 and Figure 5.11, the posterior distributions

of the selected parameter pairs are presented via bivariate scatter plots. The intensity of the

color in these figures is related to the number of parameters pertaining to the corresponding

region, that is, the parameters are more likely to fall into the yellow color region compared

to the blue color region. For NDC10, the correlations between fvq and fqq, fyq and fyv, and

βq and nos were 0.78, 0.77 and 0.76, respectively. For NDC30, the correlations between fyv

and fyy, fyq and fyy, and fvq and fyq were 0.80, 0.76 and 0.73, respectively. The interactions

between species are shown to be correlated. The number of oxygen sites at the surface is

also shown to be highly correlated with the gradient energy coefficients of electrons since the

positively charged vacancies attract the electrons. This correlation is also relatively high for

NDC30, with a value of 0.62.
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Figure 5.10: Bivariate scatter plots for Models of NDC10

Figure 5.11: Bivariate scatter plots for Models of NDC30

Despite the capability of the developed model in replicating the co-accumulation

phenomenon, differences in the parameter configurations for multiple material systems in

this study demand further development of this Poisson-Cahn model. The functional forms of

the contributions from defect interactions and gradient energy affects the parameter spaces of

model parameters, which might be unified across multiple material systems. Future research

following this direction is then focused on unifying the parameter space under the Poisson-

Cahn theoretical framework through incorporating more flexible statistical functional forms

for the components of the free energy functional, as presented in Chapter 6.
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CHAPTER 6

DEVELOPING A UNIFIED POISSON CAHN FRAMEWORK WITH

BSS-ANOVA METHOD

For the ionic solid electrolyte material systems under study, the gradient and inter-

action energies are related and the exact relationship remains unknown. Therefore, from

a modeling perspective, the best approach is to propose a general schema that covers a

spectrum of potential functional relationships and allow the experimental data to reveal the

underlying relationships through Bayesian calibration. The potential functional relation-

ships are represented as discrepancy functions in the free energy functional of the material

system, which represents the general framework of the unified Poisson-Cahn theory.

6.1 Derivation of a Unified Poisson-Cahn Framework using BSS-ANOVA Dis-

crepancy Functions

To begin with, the model formulation and derivations in this section treat a simplified

case of a pair of defect species, dopant ions and oxygen vacancies. Augmenting the devel-

opment found in [12] with discrepancy functions, the free energy functional of the material

system can be represented

Ω[y, v, q, ϕ;T ] =nofov(0) +
1

2
nofdsy(0) +

∫ L

0

[
δ(v, y, (

dv

dx
)2, (

dy

dx
)2)

+ ncsRT [y log(y) + (1− y) log(1− y)]

+ nosRT [v log(v) + (1− v) log(1− v)]

− 1

2
εrε0(

dϕ

dx
)2 + Fϕ(2nosv − ncsy)

]
dx

(6.1)
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Where δ(v, y, ( dv
dx

)2, ( dy
dx

)2) represents the total sum of the discrepancy functions related with

excess free energy and gradient energy:

δ(v, y, (
dv

dx
)2, (

dy

dx
)2) =Const+

∑
i

βviφi(v) +
∑
i

βyiφi(y) +
∑
i

βvyiφi(v)φi(y)

β0
v′i(

dv

dx
)2 + β0

y′i(
dy

dx
)2 +

∑
i

βv′iφi(v)(
dv

dx
)2 +

∑
i

βy′iφi(y)(
dy

dx
)2

(6.2)

where i indexes over the number of basis functions of the form in 2.1. A constant term

Const is present in δ in order to make sure that the discrepancy functions corresponding to

defect interactions are 0 when defect concentrations are 0. The existence of this constant

term doesn’t affect the variational analysis part.

If we represent the sum of all original terms in the free energy with Ω0 except the

sum of all discrepancy functions in Equation 6.1. Then the conceptual form of the system

free energy becomes:

Ω[y, v, q, φ;T ] = Ω0 +

∫ L

0

δ(v, y, (
dv

dx
)2, (

dy

dx
)2)dx (6.3)

Minimization of the free energy functional is subject to the constraint of the conser-

vation of mass in the system as shown in 6.4 and 6.5.

∫ L

0

(v − v̄)dx = 0 (6.4)∫ L

0

(y − ȳ)dx = 0 (6.5)

where ȳ and v̄ are the average dopant and vacancy site fraction in the material. This

constraints are added to the functional using lagrange multiplier λy and λv.

The minimization starts with taking variational differentiation with respect to v. Let

v = f + εη, where η(x) is an arbitrary function that is at least first-order differentiable and

61



becomes zero at both endpoints of the domain. f is where the functional attains a minimum.

Thus, the functional is minimized when ε = 0. Taking the total derivative of Ω(v, ( dv
dx

)2),

where v = f + εη and v′ = f ′ + εη′ are functions of ε but x is not,

dΩ

dε
=
∂Ω0

∂v

dv

dε
+
∂Ω0

∂v′
dv

dε
+

∫ L

0

[∑
i

βviφ
′
i(v)η + 2β0

v′i

dv

dx
η′ +

∑
i

βv′iφ
′
i(v)(

dv

dx
)2η

+
∑
i

βv′iφi(v)2
dv

dx
η′ +

∑
i

βvyiφ
′
i(v)φi(y)η + λvη

]
dx

(6.6)

Applying integration by parts to the terms containing η′ in the above equation and reorga-

nizing terms related to η yields:

dΩ

dε
=
∂Ω0

∂v

dv

dε
+
∂Ω0

∂v′
dv

dε
+

∫ L

0

[∑
i

βviφ
′
i(v) +

∑
i

βv′iφ
′
i(v)(

dv

dx
)2

− 2β0
v′i

d2v

dx2
−
∑
i

βv′iφ
′
i(v)2

dv

dx
−
∑
i

βv′iφi(v)2
d2v

dx2
+
∑
i

βvyiφ
′
i(v)φi(y) + λv

]
ηdx

+ 2β0
v′i

dv

dx
η
∣∣∣0
L

+
∑
i

βv′iφi(v)2
dv

dx
η
∣∣∣0
L

(6.7)

From Equation 6.7, we obtain the corresponding Euler-Lagrange equation as below:

2nosFϕ+ nosRT log
v

1− v
+
∑
i

βviφ
′
i(v)− 2β0

v′i

d2v

dx2
+
∑
i

βv′iφ
′
i(v)(

dv

dx
)2

−
∑
i

βv′iφ
′
i(v)2

dv

dx
−
∑
i

βv′iφi(v)2
d2v

dx2
+
∑
i

βvyiφ
′
i(v)φi(y) + λv = 0

(6.8)

Accordingly, the boundary condition that naturally arises is:

2β0
v′i

dv

dx

∣∣∣
x=0

+
∑
i

βv′iφi(v)2
dv

dx

∣∣∣
x=0

= nofo (6.9)

Multiplying Equation 6.8 by the weight function w and integrating over the whole
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domain gives:

∫ L

0

2nosFϕwdx+

∫ L

0

nosRT log
v

1− v
wdx

+

∫ L

0

[∑
i

βviφ
′
i(v)− 2β0

v′i

d2v

dx2
+
∑
i

βv′iφ
′
i(v)(

dv

dx
)2

−
∑
i

βv′iφ
′
i(v)2

dv

dx
−
∑
i

βv′iφi(v)2
d2v

dx2
+
∑
i

βvyiφ
′
i(v)φi(y) + λv

]
wdx = 0

(6.10)

The obtained equation can be further simplified because:

∫ L

0

[
− 2β0

v′i

d2v

dx2
−
∑
i

βv′iφ
′
i(v)2

dv

dx
−
∑
i

βv′iφi(v)2
d2v

dx2

]
wdx

=

∫ L

0

d
[
− 2β0

v′i

dv

dx
− 2

∑
i

βv′iφi(v)
dv

dx

]
wdx = −2β0

v′i

dv

dx
w
∣∣∣0
L
− 2

∑
i

βv′iφi(v)
dv

dx
w
∣∣∣0
L

+

∫ L

0

[
2β0

v′i

dv

dx
+ 2

∑
i

βv′iφi(v)
dv

dx

]
dwdx

(6.11)

This yields the boundary condition below:

[
2β0

v′i

dv

dx
+
∑
i

βv′iφi(v)2
dv

dx

]
w
∣∣∣
x=0

= 0 (6.12)

Therefore, Equation 6.10 becomes:

∫ L

0

2nosFϕwdx+

∫ L

0

nosRT log
v

1− v
wdx+

∫ L

0

[∑
i

βviφ
′
i(v) +

∑
i

βv′iφ
′
i(v)(

dv

dx
)2

+
∑
i

βvyiφ
′
i(v)φi(y) + λv

]
wdx+

∫ L

0

[
2β0

v′i

dv

dx
+ 2

∑
i

βv′iφi(v)
dv

dx

]
dwdx = 0

(6.13)
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Using linear basis functions for w, the discretized representation for node j becomes:

∫ xj

xj−1

2nosFϕjwjdx+

∫ xj+1

xj

2nosFϕjwjdx+

∫ xj

xj−1

nosRT log
vj

1− vj
wjdx

+

∫ xj+1

xj

nosRT log
vj

1− vj
wjdx+

∫ xj

xj−1

∑
i

βviφ
′
i(vj)wjdx+

∫ xj+1

xj

∑
i

βviφ
′
i(vj)wjdx

+

∫ xj

xj−1

∑
i

βv′iφ
′
i(vj)(

vj − vj−1

hj−1

)2wjdx+

∫ xj+1

xj

∑
i

βv′iφ
′
i(vj)(

vj+1 − vj
hj

)2wjdx

+

∫ xj

xj−1

∑
i

βvyiφ
′
i(vj)φi(yj)wjdx+

∫ xj+1

xj

∑
i

βvyiφ
′
i(vj)φi(yj)wjdx+

∫ xj+1

xj−1

λvdx

+

∫ xj

xj−1

2β0
v′i

vj − vj−1

hj−1

· 1

hj−1

dx+

∫ xj+1

xj

2β0
v′i

vj+1 − vj
hj

· −1

hj
dx

+

∫ xj

xj−1

2
∑
i

βv′iφi(vj)
vj − vj−1

hj−1

· 1

hj−1

dx+

∫ xj+1

xj

2
∑
i

βv′iφi(vj)
vj+1 − vj

hj
· −1

hj
dx = 0

(6.14)

Utilizing the representation for the linear basis functions and applying the trapezoidal

rule, Equation 6.14 becomes

hj−1 + hj
2

2nosFϕj +
hj−1 + hj

2
nosRT log

vj
1− vj

+
hj−1 + hj

2

∑
i

βviφ
′
i(vj) +

hj−1

2

∑
i

βv′iφ
′
i(vj)(

vj − vj−1

hj−1

)2

+
hj
2

∑
i

βv′iφ
′
i(vj)(

vj+1 − vj
hj

)2 +
hj−1 + hj

2

∑
i

βvyiφ
′
i(vj)φi(yj) +

hj−1 + hj
2

λv

+
[
2β0

v′i +
∑
i

βv′iφi(vj)
]vj − vj−1

hj−1

−
[
2β0

v′i +
∑
i

βv′iφi(vj)
]vj+1 − vj

hj
= 0

(6.15)

Stencil equations for the dopant y can be derived in a similar fashion.

Take variational differentiation of the free energy functional 6.3 with respect to y. Let

y = f + εη, where η(x) is an arbitrary function that is at least first-order differentiable and

becomes zero at both endpoints of the domain. f is where the functional attains a minimum.

Thus, the functional is minimized when ε = 0. Taking the total derivative of Ω(y, ( dy
dx

)2),
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where y = f + εη and y′ = f ′ + εη′ are functions of ε but x is not,

dΩ

dε
=
∂Ω0

∂y

dy

dε
+
∂Ω0

∂y′
dy

dε
+

∫ L

0

[∑
i

βviφ
′
i(v)η + 2β0

v′i

dv

dx
η′ +

∑
i

βv′iφ
′
i(v)(

dv

dx
)2η

+
∑
i

βv′iφi(v)2
dv

dx
η′ +

∑
i

βvyiφ
′
i(v)φi(y)η + λvη

]
dx

(6.16)

Applying integration by parts to the terms containing η′ in the above equation and reorga-

nizing terms related to η yields:

dΩ

dε
=
∂Ω0

∂y

dy

dε
+
∂Ω0

∂y′
dy

dε
+

∫ L

0

[∑
i

βyiφ
′
i(y) +

∑
i

βy′iφ
′
i(y)(

dy

dx
)2

− 2β0
y′i

d2y

dx2
−
∑
i

βy′iφ
′
i(y)2

dy

dx
−
∑
i

βy′iφi(y)2
d2y

dx2
+
∑
i

βvyiφ
′
i(y)φi(v) + λy

]
ηdx

+ 2β0
y′i

dy

dx
η
∣∣∣0
L

+
∑
i

βy′iφi(y)2
dy

dx
η
∣∣∣0
L

(6.17)

From Equation 6.17, we obtain the corresponding Euler-Lagrange equation as below:

− ncsFϕ+ ncsRT log
y

1− y
+
∑
i

βyiφ
′
i(y)− 2β0

y′i

d2y

dx2
+
∑
i

βy′iφ
′
i(y)(

dy

dx
)2

−
∑
i

βy′iφ
′
i(y)2

dy

dx
−
∑
i

βy′iφi(y)2
d2y

dx2
+
∑
i

βvyiφ
′
i(y)φi(v) + λy = 0

(6.18)

Accordingly, the boundary condition that naturally arises is:

2β0
y′i

dy

dx

∣∣∣
x=0

+
∑
i

βy′iφi(y)2
dy

dx

∣∣∣
x=0

= 0 (6.19)

Multiplying Equation 6.18 by the weight function w and integrating over the whole
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domain gives:

∫ L

0

−ncsFϕwdx+

∫ L

0

ncsRT log
y

1− y
wdx

+

∫ L

0

[∑
i

βyiφ
′
i(y)− 2β0

y′i

d2y

dx2
+
∑
i

βy′iφ
′
i(y)(

dy

dx
)2

−
∑
i

βy′iφ
′
i(y)2

dy

dx
−
∑
i

βy′iφi(y)2
d2y

dx2
+
∑
i

βvyiφ
′
i(y)φi(v) + λy

]
wdx = 0

(6.20)

The obtained equation can be further simplified because:

∫ L

0

[
− 2β0

y′i

d2y

dx2
−
∑
i

βy′iφ
′
i(y)2

dy

dx
−
∑
i

βy′iφi(y)2
d2y

dx2

]
wdx

=

∫ L

0

d
[
− 2β0

y′i

dy

dx
− 2

∑
i

βy′iφi(y)
dy

dx

]
wdx = −2β0

y′i

dy

dx
w
∣∣∣0
L
− 2

∑
i

βv′iφi(v)
dv

dx
w
∣∣∣0
L

+

∫ L

0

[
2β0

y′i

dy

dx
+ 2

∑
i

βy′iφi(y)
dy

dx

]
dwdx

(6.21)

This yields the boundary condition below:

[
2β0

y′i

dy

dx
+
∑
i

βy′iφi(y)2
dy

dx

]
w
∣∣∣
x=0

= 0 (6.22)

Therefore, Equation 6.20 becomes:

∫ L

0

−ncsFϕwdx+

∫ L

0

ncsRT log
y

1− y
wdx+

∫ L

0

[∑
i

βyiφ
′
i(y) +

∑
i

βy′iφ
′
i(y)(

dy

dx
)2

+
∑
i

βvyiφ
′
i(y)φi(v) + λy

]
wdx+

∫ L

0

[
2β0

y′i

dy

dx
+ 2

∑
i

βy′iφi(y)
dy

dx

]
dwdx = 0

(6.23)
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Using linear basis functions for w, the discretized representation for node j becomes:

∫ xj

xj−1

−ncsFϕjwjdx−
∫ xj+1

xj

ncsFϕjwjdx+

∫ xj

xj−1

ncsRT log
yj

1− yj
wjdx

+

∫ xj+1

xj

ncsRT log
yj

1− yj
wjdx+

∫ xj

xj−1

∑
i

βyiφ
′
i(yj)wjdx+

∫ xj+1

xj

∑
i

βyiφ
′
i(yj)wjdx

+

∫ xj

xj−1

∑
i

βy′iφ
′
i(yj)(

yj − yj−1

hj−1

)2wjdx+

∫ xj+1

xj

∑
i

βy′iφ
′
i(yj)(

yj+1 − yj
hj

)2wjdx

+

∫ xj

xj−1

∑
i

βvyiφ
′
i(yj)φi(vj)wjdx+

∫ xj+1

xj

∑
i

βvyiφ
′
i(yj)φi(vj)wjdx+

∫ xj+1

xj−1

λydx

+

∫ xj

xj−1

2β0
y′i

yj − yj−1

hj−1

· 1

hj−1

dx+

∫ xj+1

xj

2β0
y′i

yj+1 − yj
hj

· −1

hj
dx

+

∫ xj

xj−1

2
∑
i

βy′iφi(yj)
yj − yj−1

hj−1

· 1

hj−1

dx+

∫ xj+1

xj

2
∑
i

βy′iφi(yj)
yj+1 − yj

hj
· −1

hj
dx = 0

(6.24)

Utilizing the representation for the linear basis functions and applying the trapezoidal

rule, Equation 6.24 becomes

− hj−1 + hj
2

ncsFϕj +
hj−1 + hj

2
ncsRT log

yj
1− yj

+
hj−1 + hj

2

∑
i

βyiφ
′
i(yj) +

hj−1

2

∑
i

βy′iφ
′
i(yj)(

yj − yj−1

hj−1

)2

+
hj
2

∑
i

βy′iφ
′
i(yj)(

yj+1 − yj
hj

)2 +
hj−1 + hj

2

∑
i

βvyiφ
′
i(yj)φi(vj) +

hj−1 + hj
2

λy

+
[
2β0

y′i +
∑
i

βy′iφi(yj)
]yj − yj−1

hj−1

−
[
2β0

y′i +
∑
i

βy′iφi(yj)
]yj+1 − yj

hj
= 0

(6.25)

Variational analysis with respect to ϕ leads to the Euler-Lagrange equation below:

dΩ

dε
=
∂Ω

∂ϕ

dϕ

dε
+
∂Ω

∂ϕ′
dϕ′

dε

=

∫ L

0

[
− εrε0(

dϕ

dx
)η′ + F (2nosv − ncsy)η

]
dx

(6.26)

Applying integration by parts to the terms containing η′ in the above equation and reorga-
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nizing terms related to η yields:

dΩ

dε
=

∫ L

0

[
εrε0(

d2ϕ

dx2
)η + F (2nosv − ncsy)η

]
dx− εrε0

dϕ

dx
η
∣∣∣L
0

(6.27)

The boundary condition arising naturally from the variational analysis is:

dϕ

dx

∣∣∣
0

= 0 (6.28)

Here we obtain the Euler-Lagrange equation for ϕ as below:

εrε0(
d2ϕ

dx2
) + F (2nosv − ncsy) = 0 (6.29)

Multiplying Equation 6.8 by the weight function w and integrating over the whole domain

gives:

∫ L

0

[
εrε0(

d2ϕ

dx2
) + F (2nosv − ncsy)

]
wdx = 0 (6.30)

The first term of the above equation can be further represented as:

∫ L

0

εrε0(
d2ϕ

dx2
)wdx = εrε0(

dϕ

dx
)w
∣∣∣L
0
−
∫ L

0

εrε0(
dϕ

dx
)dwdx = −

∫ L

0

εrε0(
dϕ

dx
)dwdx (6.31)

Therefore Equation 6.30 can be simplified as:

∫ L

0

[
F (2nosv − ncsy)w− εrε0(

dϕ

dx
)dw

]
dx = 0 (6.32)

68



Using linear basis functions for w, the discretized representation for node j becomes:

∫ xj

xj−1

F (2nosvj − ncsyj)wjdx+

∫ xj+1

xj

F (2nosvj − ncsyj)wjdx

−
∫ xj

xj−1

εrε0
ϕj − ϕj−1

hj−1

· 1

hj−1

dx−
∫ xj+1

xj

εrε0
ϕj+1 − ϕj

hj
· −1

hj
dx = 0

(6.33)

Utilizing the representation for the linear basis functions and applying the trapezoidal

rule, Equation 6.33 becomes

hj−1 + hj
2

F (2nosvj − ncsyj) + εrε0
ϕj−1 − ϕj
hj−1

+ εrε0
ϕj+1 − ϕj

hj
= 0 (6.34)

6.2 Systematic Model Building with Bayesian Calibration

A series of models are formulated following the general model derivation in 6.1. The

baseline model is representative of the traditional Gouy-Chapman model, where no defect

interaction or gradient energy terms are considered. With later model versions, defect in-

teractions and gradient energy terms are systematically built into the model structure. The

table below shows the effects included in each model version explicitly.
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Param no fy fyv fv cy cv

V0 X

V1 X X

V2 X X

V3 X X

V4 X X X

V5 X X X

V6 X X X

V7 X X X

V8 X X X

V9 X X X X

V10 X X X X

V11 X X X X

V12 X X X X

V13 X X X X

V14 X X X X X

V15 X X X X X

V16 X X X X X

V17 X X X X X X

V18 X XX X X

V19 X XX X XX X X

V20 X XX X XX XX XX

V21 X XX XX XX XX XX

Table 6.1: Design of Model structures through Systematic Building

In Table 6.1, for each model version, X in the corresponding parameter field means
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that one basis function of the corresponding effect is incorporated into the model, and XX

means that more than one basis function are incorporated.

Applicability of any model has to be validated with experimental data. In this study,

Ca profiles near the GB of CaxCe1-xO2-x measured using electron energy-loss spectroscopy

(EELS) for three different concentrations corresponding to x = 0.02, 0.05, 0.1 [2] are all uti-

lized for model building and validation. In later context, the profiles pertain to three different

concentrations are denoted CCO2, CCO5 and CCO10, respectively. Figure 6.1, 6.2 and 6.3

display dopant concentrations near grain boundaries of different angels for CCO2, CCO5

and CCO10.
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Figure 6.1: Experimental data of CCO2 [2]
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Figure 6.2: Experimental data of CCO5 [2]
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Figure 6.3: Experimental data of CCO10 [2]

For computational use, profiles around the two sides of the GB are treated as two

separate datasets and potential outliers are removed. With these experimental measurement

of Ca profiles near GBs, bayesian calibration is employed to each model in order to identify

parameter posterior distributions. This process enables identification of the optimal model

parameter space and model structure using machine learning method guided by experimental

data. Results from the systematic model building process naturally reveal the significance

74



of different factors in modeling the grain boundary effect.

Bayesian calibration is performed for all model version from V0 to V20 using the

same MCMC routine with block proposal as in Section 5.2. For each calibration, the same

model structure and parameter values are evaluated for bulk Ca concentrations of 2%, 5%

and 10%, respectively. This enables the realization of a unified model for solid solutions of

different concentrations. The MCMC process was cutoff at different steps for each model

calibration depending on when the burning-in took place and when enough posterior samples

were obtained. The amount of model evaluation time also varies for different model version.

This was also taken into consideration when deciding the total number of MCMC steps to

be executed. The total number of MCMC steps and burning-in cutoff steps are summaries

in Table 6.2 for each calibration.
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Model Version Total MCMC Steps Burning-in Cutoff

V0 23701 2000

V1 21301 3000

V2 31501 3000

V3 50101 3000

V4 30901 3000

V5 26101 3000

V6 15301 2000

V7 43801 2000

V8 45901 3000

V9 82501 10000

V10 13501 2000

V11 50101 2000

V12 11101 2000

V13 71401 2000

V14 28501 2000

V15 30901 2000

V16 7861 2000

V17 10801 4000

V18 21001 2000

V19 23101 2000

V20 81601 2000

V21 25501 3000

Table 6.2: Details of MCMC Run for All Calibrations

All calibrations converged based on the aforementioned Batch Means test with a 95%
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confidence interval. Upon convergence, 50 randomly selected converged results are plotted

together with experimental data to gauge how effective a specific model can be used model

the GB effect. Figure 6.4 - Figure 6.8 show results for selective model versions. The semi-

transparent blue curves are randomly selected model results based on posterior parameter

distributions, and the colored curves are experimental measurement from GBs of different

angels. For the profiles above, Model V0 is similar to the Gouy-Chapman case, with no de-

Figure 6.4: Calibration Results for Baseline Model V0
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Figure 6.5: Calibration Results for Model V7

fect interactions or gradient effects. Model V7 includes dopant self-interactions and dopant

gradient energy effect with no concentration dependence.Model V8 includes vacancy self-

interactions and vacancy gradient energy effect with no concentration dependence. Model

V19 includes self-interactions of both dopant and vacancy up to the second order, the inter-

action between the two, and the corresponding gradient energy effects with no concentration

dependence. Model V20 includes more complex gradient energy effects with concentration
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Figure 6.6: Calibration Results for Model V8

dependence for both dopant and vacancy in addition to what model V19 already incorpo-

rated. These results clearly revealed how this general framework becomes more effective

after significant effects have been systematically included. A more quantified and in-depth

model comparison will be done in the next section. For each model version, the posterior

distributions of model parameters are summarized in Table 6.3.
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Figure 6.7: Calibration Results for Model V19
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Figure 6.8: Calibration Results for Model V20
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Param
no × 105(mol/m2) fy(eV) fyv(eV) fv(eV) cy(eV-nm2) cv(eV-nm2)

m s m s m s m s m s m s

V0 0.43 0.02

V1 0.37 0.03 0.54 0.27

V2 0.37 0.03 0.56 0.26

V3 0.35 0.02 -0.43 0.27

V4 0.35 0.02 0.53 0.25 0.54 0.25

V5 0.38 0.02 -0.47 0.26 0.56 0.25

V6 0.37 0.03 0.54 0.24 -0.48 0.27

V7 1.24 0.04 0.55 0.25 1.18 0.12

V8 1.83 0.06 0.55 0.25 0.96 0.03

V9 0.36 0.01 0.55 0.25 -0.46 0.26 0.56 0.25

V10 0.38 0.13 0.55 0.24 0.55 0.25 0.28 0.12

V11 1.77 0.02 0.54 0.25 0.54 0.24 0.98 0.01

V12 0.39 0.13 0.54 0.25 -0.53 0.26 0.28 0.13

V13 1.74 0.03 -0.53 0.27 0.56 0.24 0.98 0.01

V14 0.80 0.11 0.53 0.24 0.54 0.23 0.10 0.003 0.12 0.01

V15 1.36 0.03 0.55 0.25 -0.54 0.27 0.55 0.25 1.40 0.12

V16 2.04 0.03 0.55 0.25 -0.52 0.27 0.55 0.24 0.99 0.01

V17 1.99 0.05 0.55 0.25 -0.44 0.26 0.53 0.24 0.46 0.10 0.57 0.16

V18 1.36 0.03
0.54 0.25

-0.54 0.27 1.41 0.11
0.46 0.23

V19 2.02 0.05
0.55 0.25

-0.44 0.27
0.55 0.25

0.46 0.10 0.58 0.15
0.63 0.24 0.59 0.25

V20 2.29 0.16
0.53 0.25

-0.52 0.27
0.54 0.25 0.63 0.19 0.70 0.19

0.55 0.25 0.53 0.25 0.44 0.32 0.28 0.21

V21 2.23 0.16
0.56 0.25 -0.48 0.26 0.61 0.24 0.57 0.15 0.72 0.16

0.63 0.24 -0.42 0.26 0.53 0.24 0.33 0.24 0.24 0.18

Table 6.3: Statistics of Posterior Distributions
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Where m and s in the table header stands for mean and standard deviation, respec-

tively. fy, fv indicate self-interaction energy of dopant and vacancy respectively, with a unit

of eV, fyv indicates dopant-vacancy interaction in eV. cy,cv represent the gradient energy

coefficient of dopant and vacancy respectively. Multiple rows in one parameter field (for ex-

ample, the field of fy and fv for model V19) represent multiple orders of the corresponding

discrepancy functions in the formulation (row 1 corresponds to the first order, row 2 corre-

sponds to the second order). From the statistics of these posterior distributions summarized

in the table, consistency of distributions for these models and changes in distributions with

the incorporation of gradient energy coefficients are clearly shown. The posterior distribu-

tions of fy for all model versions unified at a distribution with a mean value around 0.54eV

and a standard deviation around 0.25eV. The posterior distributions of fv for all model ver-

sions unified at a distribution with a mean value around 0.55eV and a standard deviation

around 0.25eV. These provide strong evidences for the reference values of fy and fv. The

posterior distributions of no across all model versions differ depending on the incorporation

of gradient energy distributions in the model structure. With no inclusion of gradient energy

contributions, the mean value of its posterior falls on the lower range of around 0.37× 10−5,

as for model V0-V6 and model V9. Once any gradient energy contributions are incorporated,

the mean value of its posterior falls on the higher range of > 1.24×10−5, as for model V7,V8,

V11, V13-V20. Model V10 and V12, however, didn’t conform to this observation.

6.3 Model Comparison Using the Bayes Factor

Bayes factor is a method of hypothesis testing using likelihood probabilities of two

competing models. It quantifies the support of one model M1 over M2 given data y by

evaluating the probability of each model fitting data y. The formulation of Bayes factor for

comparing model M1 and M2 is represented in Equation 6.35[123].

B12 =

∫
p1(y|β)π1(β)dβ∫
p2(y|θ)π2(θ)dθ

(6.35)
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Where β and θ are model parameters, π1 and π2 are the priors of model M1 and M2, re-

spectively. As can be seen, the Bayes factor doesn’t depend on any single set of parameters

as it integrates over the space of all model parameters. Additionally, this enables the con-

sideration of including penalty for too complicated model structures, preventing overfitting.

As a robust and effective way for model comparison, the Bayes factor approach is adopted

to select the optimal model given data in this study. The estimation of the nominator and

denominator is done via posterior simulation using the Laplace method. At every point

θ0, an estimate of the posterior density can be obtained. Thus,
∫
p(y|θ)π(θ)dθ can be esti-

mated with
∫
L(θ)π(θ)dθ, the likelihood L equals p(y|θ). The Laplace method uses a normal

estimate of the posterior density with an adaptive kernel estimate.

The natural logarithms of the Bayes factor values of the afore-mentioned models

relative to the baseline model V0 are represented in Figure 6.9.

Figure 6.9: Model Performance Quantified by the Bayes Factor
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The Bayes factor in the figure provided a rigorous and reliable evaluation of the

effectiveness of these models. In terms of the Bayes factor, model V1-V6 and model V9

showed lower values close to the baseline model V0, indicating that the sole consideration

of defect interactions failed to represent the grain boundary effect. The performances of

these models are even worse than the traditional Gouy-Chapman model when reproducing

the experimental data. The Bayes factor of model V4-V6 and model V9 are higher than

that of model V1-V3, which is reasonable as including multiple interaction energies are more

effective than including just one type of defect interaction.

With the incorporation of gradient energy distribution pertaining to one type of defect

(dopant or vacancy), the model performance significantly improves, proving the necessity of

considering this effect in treating non-dilute systems. These models are model V7,V8,V11,

and V13. The fact that model V7 overperformed model V8 indicates that the dopant gradient

energy is more significant than the vacancy gradient energy.

There are two exceptions for model versions with dopant gradient energy considered:

model V10 and V12. Model V10 included fv while Model V12 included fyv other than the

terms of fy and cy. This dictates that incorporating just one type of defect interaction other

than fy is far less effective compared with models without this defect interaction as far as

cy is considered. This conclusion is drawn as the Bayes factor of model V16 fell at a much

higher value compared with that of the model V10 and V12.

The similar observation is not present for models incorporating fv amd cv. Adding

just one type of defect interaction other than fv doesn’t make the model perform worse,

as model V11 and V13 performed reasonably well comparing with model V8. However,

the Bayes factor of model V8 is indeed higher than that of model V11 and V13, indicating

that adding just one type of defect interaction other than fv is not effective as far as cv

is considered. Since the Bayes factor of model V14 is lower than that of model V11, it

can be concluded that adding more terms to a model is not guaranteed to improve model

performance. As one term of cy is added, if the corresponding interaction between dopant
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ions and oxygen vacancies is not incorporated, the model actually performs worse compared

with a version without cy.

The model performance of model V15 is better than model V7, and that of model

V16 is better than model V8. This verifies the expectation that when multiple defect in-

teractions other than the one related with the gradient energy source are incorporated, the

corresponding model performs better.

The fact that model V7 and V15 performs better than model V8 and model V16

respectively, dictates that the effect of dopant gradient energy contribution is more significant

than that of the vacancy.

Among all the calibrated models, model V19 (as highlighted in Figure 6.9) yields the

highest Bayes factor with 2 orders of discrepancy functions for self-interaction of dopant and

vacancy, 1 order of discrepancy function for dopant-vacancy interaction, and constant coef-

ficient for gradient energies of dopant and vacancies. This structure reveals the significance

of all interactions and gradient energies. The posterior distributions of all corresponding pa-

rameters are within physically reasonable ranges. This makes model V19 the optimal option

for modeling CCO of different concentrations.

Taking Model V19 as an example, setting parameters to the mean value of the pos-

terior distributions, the defect interaction energies with respect to defect composition are

shown in the figures below. For bothfy and fv, there are two orders of function components

as shown in Figure 6.10, as a result of the BSS-ANOVA basis functions being multiplied by

the corresponding coefficients. The total function form of these two are displayed in Figure

6.11. the function forms of fy and fv are very similar as the posteriors of the corresponding

parameters have similar mean values. Figure 6.12 displays the functional form of fyv with

only a first order component for model V19. All these function forms of the defect interac-

tion energies are revealed through calibrating the model with the experimental data. The

defect interaction energies are shifted based on the Const term in Equation 6.2 in order to

maintain zero defect interaction energies given zero defect concentrations.
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Figure 6.10: Function Components of fy and fv
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Figure 6.11: Function form of fy and fv

Figure 6.12: Function form of fyv
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In Figure 6.13, the vacancy profiles of CCO2, CCO5 and CCO10 calculated with

model V19 show accumulation near the GB. The presented figure includes 50 vacancy pro-

files for each concentration, calculated based on randomly selected parameter sets from the

posteriors. This confirms the capability of the model in reproducing co-accumulation of

vacancies and dopants as observed by APT.

Figure 6.13: Vacancy Profiles near the GB as Evaluated with Model V19
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CHAPTER 7

CONCLUSIONS

A kinetic model was developed, based on the generalized Poisson-Cahn theory, to sim-

ulate defect profile development upon thermal annealing of oxygen-conducting electrolytes.

GDC with dopant levels of 20%, 1% and 0.1% were evaluated. At 1300◦C, model results were

able to predict the complex behavior of dopant profile development, from the initial segrega-

tion accompanied by depletion near the GB, followed by broadening of the segregation and

depletion zones – which produced long-range effect reaching more then 10 nm into the bulk

– to the final equilibrium profile of dopant segregation in a region of only a few nanometers.

The kinetic process differed in the details for GDC of different dopant levels, as did the time

to approach equilibrium. Simulations were performed for multiple temperature levels below

1300 ◦C; with slower cation diffusivity, time to equilibrium was significantly longer, reaching

59 hrs. at 850◦C for GDC with 20% dopant concentration. The quench temperature, at

which the dopant profile seems to be frozen on the timescale of typical annealing processes,

was found to be around 900 ◦C.

Using the frozen-in temperature concluded from the kinetic model, a Poisson-Cahn

model treating the realistic case of a restricted equilibrium situation (with dopant profile

frozen at a high temperature and vacancies equilibrated at the measurement temperature)

is constructed. With model results of defect distributions near the GB, the corresponding

bulk and GB conductivities are calculated using the Nakayama-Martin conductivity model.

Particle swarm optimization is used to find a good fit between the model calculated conduc-

tivity data and the experimental data reported in literature. With the same set of physically

reasonable model parameters, conductivity predictions across a broad dopant concentration

range conformed well with experimental data. The drop in total conductivity as dopant
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concentration increases is also reproduced by the model. Furthermore, the defect profiles

predicted by the Poisson-Cahn model showed segregation layers of several nanometers espe-

cially at high dopant concentrations, a feature that can not be obtained with traditional space

charge theories like Gouy-Chapman. The characteristic length from the Poisson-Cahn model

matched that from the Gouy-Chapman model for dilute systems, while diverged from the

GC results for concentrated systems. This provided a strong evidence for the applicability

of Poisson-Cahn models for material systems of all concentrations.

A two-step equilibration model is used to calculated defect profiles near GBs of NDC10

and NDC30. Bayesian calibration is employed to explore the model parameter spaces that

can reproduce defect co-accumulation The model is calibrated with experimental data and

has been shown to be able to reproduce defect co-accumulation near GBs as observed by

APT. The converged posteriors for NDC10 and NDC30 are obtained separately in order to

achieve calibration results that can cover the measurements well, suggesting that concen-

tration dependence of model parameters including defect interactions and gradient energies

existed in this model version. These parameters of NDC10 model show higher averages in

absolute value when compared with those of NDC30, indicating possible phase transforma-

tions as concentration increases from 10% to 30%. The differed posterior distributions of

models pertaining to NDC10 and NDC30 therefore called for the development of a model

framework that can unify parameter spaces across different concentrations.

Therefore, the last part of this dissertation is dedicated to develop a unified Poisson-

Cahn framework capable of modeling complex concentration-dependence of defect interac-

tions and gradient energy coefficients with physically reasonable parameter spaces that are

unified for solutions of different concentrations. This is realized through the adoption of

discrepancy function forms of the BSS-ANOVA framework into the free energy functional

of the material system under study. The basis functions spanning from the main effect to

higher-order interactions provide powerful nonparametric ways to model unknown parame-

ter dependences on defect concentrations. With this framework, a series of models are con-
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structed from the simplistic of Gouy-Chapman case to highly-complicated model structures

that consider two-way interactions of defect interactions and gradient energy contributions.

Bayesian calibration is employed to calibrate each model version with EELS measurements

of dopant profiles near multiple GBs of CCO2, CCO5 and CCO10. This is essentially a

data-driven approach to allow the experimental data dictate what are the model structure

and parameter distributions that can reproduce the experimental measurements. The Bayes

factor is used as a reliable guide to compare model performances. The best model fit and pos-

terior distributions are obtained where that is a peak in the Bayes factor values as the model

structure further complicates. The model structure with all defect interactions (two orders of

basis functions for defect self-interactions and one order of basis function for dopant-vacancy

interaction) and gradient energy contributions (constant gradient energy coefficients for both

defects) are found to the most effective among all for the material system of CCO with 3

different concentrations. This process also helped to reveal the significance of each factor

incorporated into the model. Gradient energy coefficients are found to play a key role in

reproducing defect profiles near GBs, the effect of which is enhanced with the incorporation

of multiple defect interactions.

The Poisson-Cahn methodology developed in this dissertation, through demonstra-

tions with different material systems, has proven its broad applicability in solid ionic mate-

rials with any dopant concentration, especially in concentrated systems. This methodology

revolutionized the application of space charge theories in solid state ionics community by

replacing traditional theories in the regime of concentrated material systems. Key experi-

mental observations such as extended defect segregation zone and defect co-accumulation in

concentrated systems were predicted correctly by this theory, which are impossible for tra-

ditional theories. The final development of the unified Poisson-Cahn framework, has quanti-

tively demonstrated the improvement in model capability when progressing from traditional

Gouy-Chapman theory to Poisson-Cahn formulations. The parameter spaces identified with

Bayesian calibration unify well with ranges found in past literature. This framework also
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serve as the solid ground for further model development to include more species, incorporate

more complex interaction and gradient effects, and to predict properties of more material

systems once more data is available for model building.
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[22] A Tschöpe, S Kilassonia, and R Birringer. The grain boundary effect in heavily doped

cerium oxide. Solid State Ionics, 173(1):57–61, 2004.

[23] D Bingham, PW Tasker, and AN Cormack. Simulated grain-boundary structures and

ionic conductivity in tetragonal zirconia. Philosophical Magazine A, 60(1):1–14, 1989.

96



[24] Hark B Lee, Friedrich B Prinz, and Wei Cai. Atomistic simulations of grain boundary

segregation in nanocrystalline yttria-stabilized zirconia and gadolinia-doped ceria solid

oxide electrolytes. Acta Materialia, 61(10):3872–3887, 2013.

[25] Xiao-Dong Zhou, Wayne Huebner, Igor Kosacki, and Harlan U Anderson. Microstruc-

ture and grain-boundary effect on electrical properties of gadolinium-doped ceria. Jour-

nal of the American Ceramic Society, 85(7):1757–1762, 2002.
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