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Abstract 
FACTORS CONTROLLING LANDSLIDE INTIATION AS A RESULT OF JULY 
2001 HIGH PRECIPITATION EVENTS IN A SECTION OF THE LOWER NEW 

RIVER GORGE, WEST VIRGINIA 
 

M. Patrick Kish 
 
 Several geologic and physical factors affect the location of landslides associated 
with the July 2001 high precipitation events in Lower New River Gorge, West Virginia.  
The surficial geology of the heavily mined landscape was mapped using ArcGIS 8.3 and 
four specific factors related to the landslides were identified.  Road building was shown 
statistically to have a positive influence on the location of landslides. Slope aspect, slope 
angles, and elevation were also shown to have strong relationships with landslide 
initiation.   
 A landslide initiation risk map was created by overlaying the physical and 
geological factors favorable for landslide initiation.  The risk map outlines areas that may 
be prone to future slope instability as a result of the combination of land use activity, 
slope angles and slope geometry.  It was determined that approximately 10% of the 
slopes of Lower New River Gorge are hazard prone. 
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Introduction 

The rugged topography of the Appalachian Plateau is constantly being sculpted 

and reworked by weathering-processes, colluvial-processes, and fluvial-processes.  In 

addition to these natural processes, the landscape in southern West Virginia has been 

altered by intensive coal mining.  Prior to the Surface Mine Control and Reclamation Act 

(SMCRA) of 1977, the placement of mine spoil material along hillsides was not regulated 

(Skousen, 2001).  Pre-SMCRA mining methods included contour-stripping techniques 

that resulted in over-steepened slopes, drainage disruption, and large amounts of over-

steepened, un-consolidated mine spoil.  The combinations of these processes and their 

effect on the extremely rugged topography of the southern West Virginia Coal fields 

result in mass-wasting events associated with heavy rainfall.  An understanding of 

hillslope processes and characteristics in these areas is imperative when assessing the 

downslope and downstream safety of local inhabitants within areas prone to slope 

failures.  

Two high precipitation events in July 2001 (July 8 and July26) resulted in 

numerous slope failures and extensive flooding in New River Gorge area (Figure 1).  . 

The rainfall total at New River Gorge National Park headquarters in Glen Jean, Fayette 

County, West Virginia, on 8 July 2001 reached 114 millimeters (mm) over 4.5 hours and 

279.4 mm at Upper Arbuckle Creek (National Park Service Resource Assessment Team, 

2001). The data from Arbuckle Creek is questionable doe to the possibility of a 

malfunctioning rain gauge (per conversation with J.S. Kite, 2004). Severe flooding 

affected many tributaries of the New River including Arbuckle Creek, Coal Run, and 

Wolf Creek, all of which transported boulder-size bedload material.  According to initial 

reports by the National Park Service (NPS), 70 to 80 slides and debris flows were visible 

from the air in the lower and middle gorge within the park immediately after the storm 

events (National Park Service Resource Assessment Team, 2001).  Of 27 trails in the 

National Park, 14 were damaged by the heavy precipitation; trail washouts were common 

(National Park Service Resource Assessment Team, 2001).  The Park headquarters had to 

be evacuated due to rising flood waters (National Park Service Resource Assessment 

Team, 2001).  Flood waters damaged the former Bank of Glen Jean, which is listed on  
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Figure 1: National Weather Service total storm precipitation for July 9, 2001 (National 

Oceanographic and Atmospheric Administration, 2002). White rectangle identifies 

general location of the study area.
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the National Register of Historic Places during the July 8 flooding event (National Park 

Service Resource Assessment Team, 2001) (Figure 2).  Loss of life was averted during 

this event by a NPS rescue effort that saved two residents from being washed away from 

their home (National Park Service Resource Assessment Team, 2001).  At the end of July 

2001, 26 West Virginia counties, including Fayette, were declared federal disaster areas.    

The July 26 event produced approximately 100 mm of rain in 5 hours over the 

same area as the July 8 storm (National Oceanographic and Atmospheric Administration, 

2002).  Once again, the park headquarters were flooded and required evacuation.  Aerial 

reconnaissance by NPS staff identified several new and many reactivated slides in the 

gorge (National Park Service Resource Assessment Team, 2001).  Six park facilities were 

damaged by flooding; trails, boat ramps, and retaining walls were impacted by debris 

flows as a result of the two storm events (National Park Service Resource Assessment 

Team, 2001).  Located approximately 5 kilometers (km) south of the gorge, the Oak Hill 

meteorological weather station recorded a +229 mm (170 %) departure from normal 

precipitation for the month of July (National Oceanographic and Atmospheric 

Administration, 2002).   

Purpose 
The importance of rainfall intensity, soil texture, and soil thickness with respect to 

the occurrence of both debris flows and slides are of great interest to geomorphologists 

and engineering geologists.  The desire for protection of life and property has spurred 

increased interest in the mechanisms involved with rapid mass movements.  Wieczorek 

(1987) identified the importance of antecedent rainfall, soil thickness, hillslope concavity, 

and slope steepness in slope-failure initiation on steep, planar hillsides.  Storms of short 

duration and high intensity (similar to the 8 July and 26 July event) can trigger debris 

flows on steep planar hillsides where shallow bedrock acts as a permeability barrier for 

infiltration, resulting in a build-up of high pore-water pressures.  The slopes of New 

River Gorge present a geologic setting within the parameters set forth by Wieczorek 

(1987).  It was the purpose of this study to evaluate the factors identified by Wieczorek 

and additional factors of management related activities; road construction and mining.  
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Figure 2:  Flood waters inundated the former bank of Glen Jean, which is listed on the 
National Register of Historic Places (National Park Service photo, 2001). 
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Objectives 
Work pertaining to recent and historical slope failures has been completed within 

the study area by Remo (1999), Moore (1999), and Kwak (2002).  The economic and 

archaeological impact of landslides and floods has raised questions as to future prediction 

and remediation of high-risk areas in the gorge.  At the present time the NPS does not 

evaluate trail repair issues based on slope stability.  Economically, it would be 

advantageous to identify areas within the gorge that are at a higher risk of future landslide 

initiation, allowing money invested in trail reconstruction to be more wisely allotted 

towards lower risk areas.  The recognition of environmental variables associated with 

landslides and flooding in the gorge may play an integral part in any comprehensive land 

management plans set forth by the NPS. 

The primary goal of this thesis was to identify areas in the gorge that are 

susceptible to mass movements as a result of prior land-use activities.  Another goal was 

to show that certain areas of the gorge are at higher risk for landslide initiation.  If 

mechanisms that initiated the July 2001 landslides were better understood, the future 

prediction of economic loss or loss of human life could be made.  Once high risk areas 

are pinpointed, remediation measures can be undertaken to lessen the risk of future 

landslides or warnings can be made to nearby neighbors. The information from this thesis 

was used to produce a landslide initiation and runout risk map (Plate 2) that outlines areas 

of the gorge prone to repeated landslides.  Potential landslide runout paths were also 

mapped.  This map was produced by analyzing the interactions of several variables 

including slope angle, slope aspect, surficial geology, elevation, and slope geometry.  The 

results of this study may help the NPS to better understand geologic factors involved in 

slope stability within the gorge.   

Study Area 
The study area for this thesis was located within the boundaries of New River 

Gorge National Scenic River in Fayette County, West Virginia (Figure 3). All of the 

work was completed from the town of Thurmond downstream (northward) to the U.S.  
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Figure 3:  Lower New River Gorge, West Virginia, study area location map. (Modified 
from National Park Service Resource Assessment Team, 2001) 
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Route 19 Bridge near Fayette Station: approximately 8 straight-line km and 15 river km 

apart. 

Background 
 New River is commonly referred to as one of the oldest rivers in the world 

(Morgan and Mayfield, 1994).  New River is thought by some to have originated in the 

Mesozoic Era, when it acted as the headwaters for the ancient westward flowing Teays 

River system, and has remained more or less on its present course since the Jurassic 

Period (140 ma) (Morgan and Mayfield, 1994).  Although no conclusive evidence is 

available to prove or refute these age claims, the 547 km long river has incised an 

impressive gorge through the Appalachian Plateau’s.  The maximum depth of the gorge is 

about 500m just north of Hinton (Mills, 1990).  The 106 km stretch of river from Hinton, 

West Virginia to Gauley Bridge, West Virginia, has a gradient of approximately 0.002.  

The low-sulfur coal in New River Gorge was heavily mined in the late 1800’s to 

middle 1900’s.  Mining techniques included underground and strip mining and resulted in 

large portions of the gorge being disturbed.  One of the first mines in the study area was 

the Sewell Top Mine, established in 1873 just south of Mann’s Creek (Lane and Schnepf, 

1999).   

 New River flows northwest from its headwaters in North Carolina to Gauley 

Bridge, West Virginia, where it merges with the Gauley River, where the river is 

renamed the Kanawha River.  The average discharge of New River as measured at the 

Hinton USGS gauging station is 224 m3/s (Ward et al., 1999). The highest gauged flow at 

Hinton was 6,967 m3/s and occurred as a result of a hurricane in 1940 (Ward et al., 

1999). A flow of this magnitude is unlikely in the future due to runoff storage upstream 

behind the Bluestone Dam, completed in 1949 (National Park Service Resource 

Assessment Team, 2001).  

The climate of the middle and upper gorge produces average mean rainfall totals 

between 1140 and 1170 mm/yr (Gorman and Espy, 1975).  Flash flooding of small 

streams in New River Gorge results from intense widespread rainfall and is generally not 

attributed to the gradual spring snow pack melt (Gorman and Espy, 1975).  

On 10 November 1978, 85 km of New River Gorge between Hinton and 

Fayetteville were designated as a National Scenic River, “for the purpose of conserving 
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and interpreting outstanding natural, scenic, and historic values and objects in and around 

New River Gorge and preserving as a free-flowing stream an important segment of New 

River in West Virginia for the benefit and enjoyment of present and future generations 

(National Park Service Resource Assessment Team, 2001).  The designation resulted in 

approximately 28,300 hectares of National parkland.  

Stratigraphy  
Four major stratigraphic units occur within the study area and have a regional dip 

of less than 2o to the northwest (Englund et al., 1977) (Figure 4 and 5).  The upper three 

lie within the Pennsylvanian Pottsville Group: the Kanawha, New River, and Pocahontas 

formations.  The oldest formation in the study area is the Bluestone Formation within the 

uppermost Mississippian Mauch Chunk Group (Englund et al., 1977).   

The Kanawha Formation is approximately 90 m thick and is the uppermost 

bedrock unit within the study area (Figure 4 and 5).  It is comprised mainly (65 %) of 

easily weathered siltstone and shale (Englund et al., 1977).  This formation contains the 

Gilbert and Eagle coal seams which were not mined within the study area.  

The New River Formation occurs immediately below the Kanwaha Formation 

(Figure 4 and 5).  This extremely resistant unit is dominated by sandstone (50 to 60 %), 

with lesser amounts siltstone, shale, coal, and fireclay.  The New River Formation ranges 

between 215 and 305 m in thickness and contains the upper and lower Nuttall sandstones, 

which act as the resistant capstone within the study area (Englund et al., 1977).  Coal 

from the New River Formation has been extensively mined within the study area, most 

notably the Sewell coal bed (Figure 5).  The Fire Creek coal is stratigraphically lower 

than the Sewell coal and was mined within the study area, but not as extensively.  The 

New River Formation unconformably lies over the Pocahontas Formation.  

The 130 m thick Pocahontas Formation is largely comprised of sandstone (70 %) 

and shale (28 %) with minor amounts of coal and fireclay (Englund et al., 1977) (Figure 

4 and 5).  The Pocahontas coal seams are located within this formation, but are not within 

the study area.   

The Pennsylvanian Bluestone Formation is located at river level at the southern 

extent of the study area (Figure 4 and 5).  The Bluestone consists of shale and siltstone  
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Figure 4:  Pennsylvanian and Mississippian aged bedrock geology of the study area 
in Lower New River Gorge National Scenic River. (Modified from Englund et al, 
1977)   
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Figure 5:  Stratigraphy of Lower New River Gorge study area.  Stratigraphic column’s 
not to scale. (Modified from Remo, 1999, and Englund et al., 1977
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with minor amounts of sandstone and limestone, but no mineable coal seams occur within 

this unit in the study area.   

Surficial Geology 
The surficial deposits of Lower New River Gorge are dominated by colluvium 

(Remo, 1999).  Small areas of residuum occur above the rim of the gorge and result from 

the in-situ weathering of the upper Nuttall sandstone and overlying units (Remo, 1999). 

Small areas of alluvium occur at the base of the gorge adjacent to New River and its 

larger tributaries (Moore, 1999).  The remainder of the surficial deposits can be attributed 

to land use practices including years of coal mining throughout the gorge (Yuill, 1988).  

The topography of the lower gorge consists of planar slopes, hollows, and nose 

slopes (Moore, 1999).  Planar slopes are areas in which topographic contours continue 

straight across the slope (Hack and Goodlett, 1960).  Nose slopes are delineated by 

convex contour lines (Hack and Goodlett, 1960).  Nose slopes tend to be the driest slope 

landform because runoff tends to diverge as it moves downslope (Moore, 1999).  

Hollows are sites of colluvium accumulation and subsurface water concentration 

(Kochel, 1987), resulting in an increased risk of debris-flow initiation during high 

precipitation events (Hack and Goodlett, 1960).    

Soils 
  Soils within the study area consist of residual material, gravity transported 

material, water transported material and anthropogenically transported material (Gorman 

and Espy, 1975).     

• Residual soils located above the rim of the gorge are classified as Dekalb fine, 

sandy loams that occur and gentle slopes (10-20%). 

• Soils directly below the rim of the gorge generally fall within Steep rock land 

which includes rough, broken sandstone cliffs and rock outcrops on uplands.  This 

land is most extensive in the gorge (Gorman and Espy, 1975). 

• Dekalb-Gilpin very stony soils located downslope from the rim are moderately 

deep, well-drained soils having moderately coarse to medium textures and 

occurring on very steep slopes (40-70 %). 
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• Soils directly adjacent to New River and at the footslope of the gorge have been 

mapped as the Ernest and Shelocta very stony silt loams, moderately deep, well-

drained, and moderately coarse to medium textured on moderate slopes (20-40%). 

• Strip-mine spoil consists of overburden material left upon the surface as a result 

of surface coal mining and accounts for approximately 10 to 15 % of the total area 

within Fayette County  

• Mine-refuse soils were produced during underground mining activity and are 

generally less voluminous than the mine spoil (Yuill, 1988).   

The mine-refuse soils and strip-mine spoil generally follow the Sewell coal seam 

throughout the study area, although significant refuse and spoil are associated with other 

coal seams within the gorge.  Updated soil mapping and re-naming of soils within the 

field area will be taking place in the near future (Jenkins, 2002). 

Methodology 
The data collection and organization for this thesis entailed several different 

stages.  First, background information dealing with New River Gorge was collected in the 

form of historical aerial photos, digital data, and regional maps.  Second, after landslide 

data sheets were created, intensive fieldwork occurred between March 2002 and August 

2003.  Finally, data collected during fieldwork and various other sources were then 

entered into Microsoft Excel and ArcGIS 8.3 for data management and analysis.  The 

combination of the data collection and organization phases resulted in a data set suitable 

for final analysis. 

Background Data 

Background information was collected from several different sources.  Bedrock 

geology was obtained from geologic maps by Englund et al. (1977). In the summer of 

2003, aerial photos from 1957 and 1970 were viewed stereoscopically to assist in 

mapping historically disturbed areas.  The heavily mined landscape made it difficult to 

delineate denuded landscape resulting from landslides versus that associated with mining.    

Possible slide locations were transferred to the Fayetteville or Thurmond topographic 

quadrangles and an attempt to visit each of these locations was made during fieldwork.  

In the summer and fall of 2003, aerial photographs from 1957 provided by the West 
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Virginia Geologic and Economic Society (WVGES) were reviewed in a similar fashion.  

Historic photographs provided by the West Virginia Collection section of the West 

Virginia University main library and Lane and Schempf (1999) were used to help 

reconstruct the cultural history.  Several attempts to contact the CSX Corporation failed 

to attain documentation detailing slide-damaged tracks located within the gorge.   

Aerial photography that would have been useful for this thesis was scheduled to 

be flown in the spring of 2002.  Miscommunication between the NPS and their contractor 

resulted in the photography being delayed until the spring of 2003 (Steele, 2003).  

Therefore, landslides associated with the July 2001 rain events could not be mapped with 

the use of aerial photographs.  The 2003 air photo mosaic for the park is currently 

available through the NPS.  This mosaic was not obtained until fall 2004 and, thus, was 

not utilized for this thesis. 

The landslides that occurred as a result of the July 8 event were captured using an 

handheld GPS unit from a helicopter on days following the rain events.  On July 11 and 

July 24, NPS GIS Technician Andrew Steel captured approximately 80 landslide 

coordinates from the air.  Several of the large landslides had multiple GPS points 

associated with them in an attempt to show their full spatial extent.  A total of 36 NPS 

landslide points were used during analyses.  An additional 17 NPS landslide coordinates 

were located during field work.      

Field Data 

Landslide data were gathered during visits to the study area between March 2002 

and August 2003.  Thirty-one landslides were visited, Global Positioning System (GPS) 

point locations were acquired, and landslide inventory sheets were completed (Figure 6).  

Field identified landslide locations overlapped with 17 NPS GPS coordinates indicating a 

generally good match between the two data sets.  The types of failures were determined 

using field evidence and guidelines described in Campbell et al. (1985) and Hungr et al. 

(2001). Detailed cross sections of the headscarp areas were performed in the field in 

order to determine area, volume, slope, and aspect associated with the each visited 

landslide.  Volumetric estimates of the material mobilized were determined by length, 

width, and depth measurements (from vertical faces within the scarp) from the source  



 

WVU Landslide Inventory Sheet (Version 1.0, Fall 2002)                         Date: _____________   Researcher: _________   
     
I.  Site Information 
 Quadrangle____________  GPS Coordinates _________________ mE  Site Number________ Watershed_________ 
                  Zone ____           _________________  mN Datum _______ 
II. Description of Site and Slope Failure 
Type of Feature:                                      Active?___   Dormant?___   Relict?____ 
 Deep-seated rotational  Deep-seated translational Translational/Rotational  Earth Flow 
 Debris Slide   Debris Flow   Debris Avalanche  Debris Flood 
Comments:  
 
Size of Feature: (Metric Units, Unless Noted) 
 A.  Initiation zone:  Length____ Width____ Depth____  =Volume _______ 
 B.  Event-Related Scour: Length____ Width____ Depth____  =Volume _______ 
 C.            Total Material Mobilized: (A+B)   _______ 
 
 D. Depositional Volume  Length____ Width____ Depth____  =Volume _______ 
 
Geomorphic Setting: 
Ridgetop Upper Slope Mid-Slope Foot Slope Stream Bank Failure 
Elevation:________  Slope Aspect:________ Horizontal Curvature: Concave___    Convex___   Planar___ 
Slope: (gradient in %)  Above Feature:____  Below Feature:____ Adjacent Slopes:____   Within Feature:___ 
 
Site Conditions: (Fill in as Appropriate) 
Bedrock Formation:_________ Bedding Attitude: Strike____   Dip____ Joint/Shear orientation:_______ 
Soil Thickness:_________      Soil Series:_________________ Munsell Color:_____/___    Field Texture:_________   Dry/Moist?:______ 
Groundwater (Springs, seeps, piping?):_______________ 
 
Timing of Failure: 
 Date(s) Failure Occurred (approximate):__________ 
 Recurrent Failure? Yes____  No____  Evidence:______________________________________________________________________ 
 
Geological   Morphological   Physical   Human   Coal Mining 
Weak Materials   Fluvial Erosion of Slope Toe Intense Rainfall  Excavation of Slope  Mine Spoil 
Weathered Materials  Erosion of Lateral Margins Rapid Snow Melt  Loading of Slope                  Overburden Dump 
Sheared Materials                  Subterranean Erosion Prolonged Rainfall  Deforestation  High Wall 
Jointed or Fissured Materials                 Deposition Loading Slope Rapid Flood Drawdown Stream Disruption  Strip Mine Bench 
Adverse Mass Discontinuity                Vegetation Removal  Freeze/Thaw Weathering Road Related  AOC Reclaimed Surface 
Contrast in Permeability  Other:_______________ Shrink/Swell Weathering Mining   Mtn-Top/Valley Fill 
  

Figure 6:  West Virginia University landslide inventory sheet developed by M. Patrick Kish and J. Steven Kite, 2002. 
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area using a 100-meter tape.  Slope gradients above, below, and directly adjacent to each 

landslide were measured using a handheld Suunto inclinometer; horizontal slope 

geometry was noted in the field.  Slope aspect for hillsides directly associated with each 

landslide was measured in degrees using a Suunto compass.  A handheld Garmin 12 XL 

GPS unit was used to collect location data in the field, generally within + or –10 m 

accuracy.  Photographs of landslides were taken to supplement field descriptions.   

Digital data in the form of Geographic Information Systems (GIS) shapefiles were 

obtained from the NPS New River Gorge GIS Center. These data included updated park 

boundaries, transportation networks within the park, and GPS positions of some July 

2001 landslide locations.  The GPS points had been taken by NPS Technician Andrew 

Steele on two separate dates, 11 July 2001 and 24 July 2001, in a helicopter using 

handheld Garmin GPS unit.  Many landslides associated with the July 2001 event were 

located through the use of these points.  GPS points recorded by Dr. Steven Kite during 

several visits to the gorge after July 2001 were collected and imported in to ArcGIS for 

analysis.  Landslide data involving location and volumetric estimates in Kwak (2002) 

were added to digital data for the July 2001 events.  Although the lack of post July 2001 

aerial photographs initially hampered efforts to identify and locate landslides, abundant 

GPS location data available through several outlets made identification possible. 

Surficial Geology Map 

A surficial geology map of the study area was produced at a scale of 1:15,000 

(Plate1) using ArcGIS 8.3.  Only landslide initiation zones with area greater the 10 m2 

were taken into consideration during mapping.  The map contains several commonly used 

surficial geology mapping units along with several map units designed for heavily mined 

landscapes (Yuill, 1988; Kite, 2001) (Table 1). 

 Data used for generation of the surficial geology map were derived from 

fieldwork and existing maps for the area.  Map units for the mined landscape where 

developed with the help of mine and well inventory maps produced for the area by Yuill 

(1988).  These maps outlined several mined landscape features including mine 

boundaries, spoil and refuse locations, and mining highwalls.  ArcGIS shapefiles were 

produced using heads up digitizing of the map units from Yuill (1988) and field data.  All  



 

Table 1: Surficial geology units for Lower New River Gorge study area. 

Residuum- Material resulting from in-place weathering of underlying bedrock. 
 
Colluvium- Unconsolidated rock and soil transported downslope as a direct result of gravity. 
 
Alluvium- Material deposited as a result of fluvial processes. 
 
Transportation Network- Material that has been disturbed by road building.   
 
Bedrock outcrops- Very resistant sandstone that results in vertical outcrop faces. Primarily the upper and lower Nuttall 
sandstone of the New River Formation. 
 
Mine spoil- Material resulting from surface mining.  Mine spoil material is generally poorly sorted (well-graded) material 
in which texture is related to the lithology of local bedrock. 
 
Mine refuse- Waste material resulting from underground mine.  Mine refuse is associated with discrete mine openings 
and typically is more geographically concentrated than mine spoil. 
 
Peripheral Mine Disturbance- Areas that are not directly adjacent to coal seams but define the spatial extent of 
disturbance due to coal mining activities.  This unit does not include mine spoil or mine refuse but may totally surround 
them.     
 
Highwalls- Linear, nearly vertical slopes produced by overburden removal during surface mining.   
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of the ArcGIS data (surficial geology units, landslide locations and transportation 

networks) were compiled to produce the final surficial geology map. 

Ten Meter Digital Elevation Models (DEMs) 

The 10 meter DEMs used for analysis were obtained for New River Gorge study 

area through the West Virginia GIS Technical Center (www.wvgis.wvu.edu).  The 7.5 

minute DEM data contain 10 m square pixels that are digital representations of 

topographic information in raster form.  DEMs contain locational data, elevations, slope 

aspects, and slope angles.  All data used for the analysis are Universal Trans Mercator 

(UTM) coordinate system in zone 17, referenced to North American Datum 1983. 

Statistics 

Landslide data were compiled in 14 Excel worksheets for further data reduction and 

statistical tests.  X-Y scatter plots were constructed in Excel to show relationships 

between landslide variables: slope angle, slope aspect, slope geometry, and elevation. 

Excel was used to calculate r2 values for linear and polynomial trendlines.  The r2 value is 

coefficient of determination, which is useful in estimating the strength of the linear 

relationship between two variables (Weimer, 1993).  Bar graphs and pie charts were 

constructed in Excel to show differences in the landslide data.   

The chi-square (goodness of fit) test was performed on several data subsets to show 

relationships between expected and observed variables (Weimer, 1993).  The following 

equation for chi-square was used: 

           X2 = Σ[(Observed – Expected)2 / Expected] 

An independent two-sample t-test was used to compare sample means from 

independent populations (indicated below by the subscript 1 or 2), such as field data and 

DEM generated data (Weimer, 1993).  The following equation was used for the t-test: 

 t = (X1 – X2) / sqrt o1/n1 + sqrt o2 /n2     

where: 

     X = population mean 

                      o= sample standard deviation 

                                                  n = sample size 
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Results 
Analyses were performed upon data collected in the field, data previously 

collected from various sources, data generated from the surficial geology map, and data 

generated from GIS digital elevation models (DEMs). Landslide data were compiled into 

groups based on completeness of data.  

The first group consisted of landslide data generated primarily from field 

observations.  Field-visited landslide sites allowed more complete evaluation of site 

specifics and landslide characteristics such as landslide lengths, widths, and depths.  Data 

compiled during field visits to 29 landslide locations, combined with data collected from 

Kwak (2002) and Kite (unpublished data), resulted in a total of 36 landslides in the first 

population. 

Data in the second population were derived from GPS coordinates of landslides 

not visited in the field.  Geographic coordinate data received from the NPS and Kite 

(unpublished data) were analyzed spatially with ArcGIS 8.3 to produce a digitally 

derived data set of 34 more locations.  The amount of data derived digitally is less than 

that available from fieldwork, but the10 m DEM were utilized to generate slope gradient, 

slope aspect, and elevation.  The combined landslide data consists of 70 individual 

landslide points that were used for analysis. 

Surficial Geology 

The surficial geology map (Plate 1) for the Lower New River Gorge was used to 

test whether certain surficial units are prone to landslide initiation.  The areas covered by 

each surficial geology unit and the percentage of each surficial unit within the gorge were 

calculated using ArcGIS.  The percentages of the individual surficial geology units were 

compared to the total number of landslides to calculate an expected number of landslides 

for each surficial geology unit.  A series of chi-square goodness of fit tests were 

performed on the surficial geology and landslide location data.  The first chi-square test 

compared the randomness of landslide locations for all surficial geology units (Table 2).  

The null hypothesis for this test states that there was randomness in landslide locations 

with respect to the surficial geology.  The null hypothesis was rejected at a significance 

level of 0.005, indicating landslide locations were not randomly distributed with respect  
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Table 2:  Chi-square goodness of fit table for landslide locations compared to surficial geology units.  The null hypothesis 
stating that landslide locations were randomly distributed with respect to surficial geology units was rejected at a 99.5% 
confidence interval. The observed number of landslides indicated that the peripheral mine disturbance, colluvium, and mine
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to surficial geology. 

A chi-square analysis was run for each individual surficial geology unit that was 

associated with at least one landslide.  The null hypotheses for these tests were that 

landslide locations may be randomly associated with respect to surficial geology.  The 

null hypotheses were not rejected at the .005 significance for the peripheral mine 

disturbance zones (Table 3) and alluvium (Table 4) surficial geology units.  These results 

indicate that the landslides are randomly distributed with respect to these surficial 

geology units.  The null hypothesis was rejected at the 0.005 significance level for the 

mine spoil (Table 5) and colluvium (Table 6) surficial units.  Landslides were statistically 

shown to be preferentially initiated within the colluvium and mine spoil surficial units.  

The transportation network includes road and trails and covers a small (6%) portion the 

study area.  Of the landslides used in this study, 46 of the 70 originated on or adjacent to 

the transportation network.  A chi-square goodness of fit test had a null hypothesis that 

there was a random spatial association between landslide locations and the transportation 

networks (Table 7).  The null hypothesis was rejected using a confidence interval of 

0.005.  The chi-square analyses for each of the surficial geology units suggest that 

transportation networks were the most important surficial unit for determining landslide 

sites associated with the July 2001 storm events. 

Slope Aspect 

Slope aspect data derived during field visits were plotted against DEM-generated 

aspect data for the same locations (n = 29) on an XY scatter plot using Microsoft Excel 

(Figure 7).  The r2 coefficient was 0.9715, showing a strong linear relationship between 

slope aspects measured in the field and DEM generated slope aspects for the same 

locations.  These results support the hypothesis that the slope aspects associated with the 

41 landslides without slope aspect data could be accurately derived using DEMs. 

 Slope aspects were divided up in to 8 groups for analysis: north (327.5o-22.5o), 

northeast (22.5o-67.5o), west (67.5o-112.5o), southeast (112.5o-157.5o), south (157.5o-

202.5o), southwest (202.5o-247.5o), west (247.5o-292.5o), and northwest (292.5o-327.5o).  

DEM-generated slope aspects for all 70 landslide locations were calculated (Figure 8), 

showing that landslide initiation zones are preferentially located on eastern facing slopes,  
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Peripheral Mine 

Disturbance 

Sites Outside of 
Peripheral Mine 

Disturbance 

Number of Expected 
Landslides 

11.54 58.46 

Number of Observed 
Landslides 

16 54 
      

Chi-Square Calculation for Landslides and Mine boundaries 

 
Degrees of 
Freedom 1 

 Chi-square value 2.07 
 Significance level 0.005 
 Critical Value 7.88 
 Null Hypothesis Failure to reject 

 
 
Table 3:  Chi-square goodness of fit table for landslide locations compared to location of 
peripheral mine disturbance areas.  The null hypothesis that landslide locations were 
random with respect to mine boundaries could not be rejected at a 99.5% confidence 
level.  July 2001 landslides did not preferentially initiate within peripheral mine 
disturbance areas. 
   
 Alluvium non- alluvium 
Number of Expected 
Landslides 2.29 67.71 
Number of Observed 
Landslides 1 69 
      
Chi-Square Calculation for Landslides and Alluvium 

 
Degrees of 
Freedom 1 

 Chi-square value 0.75 
 Significance level 0.005 
 Critical Value 7.88 
 Null Hypothesis Failure to reject 

 
 
Table 4:  Chi-square goodness of fit table for landslide locations compared to the 
location of alluvium.  The null hypothesis that landslide locations were random with 
respect to alluvium could not be rejected at a 99.5% confidence level. July 2001 
landslides did not preferentially initiate within alluvium. 
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 Mine Spoil Non-Mine Spoil 
Number of Expected 
Landslides 1.89 68.11 
Number of Observed 
Landslides 8 62 
      
Chi-Square Calculation for Landslides and Mine Spoil 

 
Degrees of 
Freedom 1 

 Chi-square value 20.3 
 Significance level 0.005 
 Critical Value 7.879 
 Null Hypothesis Reject 

 
Table 5: Chi-square goodness of fit table for landslide locations compared to mine spoil.  
The null hypothesis that landslide locations were random with respect to mine spoil can 
be rejected at a 99.5% confidence level. July 2001 landslides preferentially initiated in 
mine spoil.   
 
 Colluvium Non-Colluvium 

Number of Expected 
Landslides 

32.263 37.737 
Number of Observed 
Landslides 45 25 
      
Chi-Square Calculation for Landslides and Colluvium 

 
Degrees of 
Freedom 1 

 Chi-square value 9.72 
 Significance level 0.005 
 Critical Value 7.879 
 Null Hypothesis Reject 

 
Table 6: Chi-square goodness of fit table for landslide locations compared to colluvium.  
The null hypothesis that landslide locations were random with respect to mine spoil could 
be rejected at a 99.5% confidence level. As expected, July 2001 landslides preferentially 
initiated in colluvium.   
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Transportation 

Network 
Non-transportation 

Network 

Number of Expected 
Landslides 

4.08 65.919 

Number of Observed 
Landslides 

46 24 
      
Chi-Square Calculation for Landslides and Mine boundaries 

 
Degrees of 
Freedom 1 

 Chi-square value 456.66 
 Significance level 0.005 
 Critical Value 7.879 
 Null Hypothesis Strongly Reject 

 
Table 7:  Chi-square goodness of fit table for landslides associated with transportation 
networks within Lower New River Gorge. The null hypothesis that landslide locations 
were random with respect to transportation networks could be strongly rejected at a 
99.5% confidence level.  The strongest relationship between landslide initiation and 
surficial geology was the positive association with transportation networks. 
 

Slope Aspect:
 Field Measured Data vs. Field Visited DEM Data
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Figure 7:  Field measured slope aspect data plotted against DEM derived slope aspect 
data. A linear regression has a coefficient of determination (R2) of 0.97 which shows a 
strong relationship between field measured data and DEM derived data for the same 
points allowing DEM derived slope aspects for all landslides to be used in further 
statistical analyses.  
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Figure 8:  Histogram comparing slope aspect of all July 2001 landslides to all slope aspects for the study area.  
The percentage of landslides occurring on east or northeast-facing slopes outweighed the percentage of east and 
northeast-facing slopes in the study area. 



 25

which characterize 38 percent of the landslides.  

The DEM for the study area is composed of 419,986 pixels that represent 100 m2 

each.  Each pixel and its neighbors relate information about slope angle, slope aspect, and 

elevation.  To find out if the preferential slope aspect of landslides could be explained, a 

chi-square goodness of fit test (Weimer, 1993) was run with a null hypothesis that the 

percentage of slope aspects for landslide locations was significantly different than the 

percentage of slope aspects for the entire study area (Table 8). This test compared the 

observed landslide slope aspects to the expected landslide aspects.  The expected 

landslide aspects were derived by generating aspects for every pixel within the study 

area.  When the expected aspects were compared to the observed aspects, the null 

hypothesis was rejected at a significance level of 0.005.  That is, at a 99.5% confidence 

level, landslide locations were not randomly distributed with respect to slope aspect.  

Northeast and east facing slopes were the only two aspects that favored slope failure 

whereas other aspects were under-represented (Figure 8). 

Slope Angles 

A total of four separate slope angles were measured and recorded during field 

visits to landslide locations.  Slope angles above and below the landslide were measured 

along with angles of both side, adjacent slopes.  These measurements were averaged to 

get a single slope angle value for each field visited landslide in an attempt to reproduce 

the same method used by ArcGIS when calculating slope angles from the DEM.  The 

DEM generated slope angles were calculated by averaging the  by averaging The mean of 

the field-measured slope angles were statistically compared to the mean of the DEM-

generated slope angles for the same landslide position using an independent two-sample 

t-test (Weimer, 1993).  The calculated t-value was 0.43 and the critical value was 2.79, so 

the null hypothesis that both the field measured slopes and the DEM generated slopes 

angles were both drawn from the same population was accepted at significance level of 

0.005 (Table 9).   

To justify using DEM generated slope data for un-visited landslides, the un- 

visited DEM slope angles were statistically tested to see if they were a different 

population than field visited DEM generated slope values.  The mean slope angles for the  
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Table 8:  Chi-square goodness of fit table for landslide slope aspect compared to overall aspects in study area.  
The null hypothesis that landslides occurred in a random fashion compared to slope aspect was rejected at a 
confidence level of 99.5%.  This result indicates that east-facing slopes favored landslide initiation during July 
2001.  
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   Mean
Standard 
deviation n-values 

Field Visited Neighboring Slope Angles (DEM) 28.1 9.4 24 
Field Visited Neighboring Slope Angles (average 
of field data) 30.5 9.3 24 

    

  
t-

value 
Critical 
Value Result 

Field Visited slides (DEM vs. Field data) 0.43 2.79 
Cannot reject null 

hypothesis 
 
Table 9:  Table showing comparison of field measured slopes to DEM generated slopes 

for same locations.  The null hypothesis that DEM derived and field-measured slopes 

angles associated with the landslides were drawn from the same population could not be 

rejected.  These results indicate that DEM generated slope angles for field visited 

landslides could be used for statistical analysis. 
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field visited DEM generated slopes were compared to the mean of the un-visited 

landslide slope angles generated by DEM (Table 10) and a two-sample t-test was used for 

comparison.  The null hypothesis for the two-sample t-test was that the two sets of slope 

angles were drawn from the same population.  The calculated t-value was 1.00 and the 

critical value was 2.79, so the null hypothesis was accepted at a significance level of 

0.005.  These tests indicated that the DEM values for all 70 landslides could be used for 

statistical comparison with the DEM generated slope angles for the study area. 

When DEM-derived slope values for both landslides and the whole study area 

were compared statistically using the two-sample t-test, it was determined that the slope 

angles were derived from two different populations at a significance level of 0.005, with 

a t-value of 11.28 and critical value of 2.64 (Table 11).  The analysis indicates that 

landslide slope angles (mean = 28.5 degrees) differ from slope angles derived for the 

whole study area (mean = 24.1 degrees).   

Over-representation of slope angles associated with DEM measured landslides 

occurs within the 15o-25o range.  This may be the preferred slope angles for road building 

which has resulted in unstable undercut slopes and perched fill material.  An obvious 

spike in the percentage of DEM generated landslide slope angles and field measured 

slope angles compared to total study area slope angles occurred in the 35o-50o range, 

which most likely represents the increased role of physical factors, such as gravity and 

friction, on slope stability (Figure 9).  The general lack of landslides in the 55o-70o range 

may reflect the presence of resistant bedrock outcrops (Figure 9).   

Elevation 

 Elevation data was not collected at landslide locations visited in the field due to 

poor vertical accuracy of the 12 channel handheld GPS units.  All elevation data used in 

landslide elevation analyses were derived from DEM.  Landslide location elevations were 

grouped in 20 m increments and compared to all DEM generated elevations using the chi-

square goodness of fit test (Table 12).  The null hypothesis that landslide elevations are 

random compared to all study area elevations was rejected with a calculated chi-square 

value of 88.05 and critical value of 39.99 (Table 12).  At a 99.5% confidence level, 

landslide elevations were not random.   
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   Mean Standard deviation n-values 
Field Visited Neighboring Slope Angles 
(DEM) 28.1 9.4 24 
Non-field Visited Slides Neighboring 
Slope Angles (DEM) 28.9 12.0 46 

        

  t-value Critical Value Result 

DEM  Slope Angles (Field visited vs. 
Non-field visited) 1 2.79 

Cannot reject null 
hypothesis 

 
Table 10: Table showing DEM generated slope angles for field visited landslides 
locations compared to DEM generated slope angles for un-visited landslides.  The null 
hypothesis was rejected indicating that the two sets of slope angles are statistically 
similar and could be represented as a single population in analysis.  
 

 

   Mean 
Standard 
deviation n-values 

All Slide Slope Angles (DEM) 28.5 10.9 70 
All Study area Slope Angles (DEM) 24.1 12.9 419986 

        

  t-value Critical Value Result 

All Slide Slope angles vs. All Study area Slopes 
Angles (DEM) 11.28 2.64 

Strongly reject 
null hypothesis 

 
Table 11: DEM generated slope angles for all landslides compared to DEM generated 
slope angles for all study area. The null hypothesis was rejected indicating that the higher 
mean slope angles associated with the landslides are preferential to slope failure. 
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Figure 9:  DEM generated slope angles for landslides compared to total study area and 
field measured adjacent slope angles.  A spike in landslides in the 35-50 degree range 
most likely results from the increased role of physical factors, such as the angle of repose 
for bouldery, colluvial soils, on slope stability.   
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Table 12:  Chi-square goodness of fit table for landslide elevations and total study area elevations subdivided into 20 m 
increments.  The null hypothesis that landslide elevations were random could be rejected with 99.5% confidence.  The 
July 2001 landslides appear to have initiated in preferred elevations that are related to road locations along the Sewell 
coal seam. 
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After it was determined that the landslide elevations were not randomly distributed in 20 

m increments, an attempt was made to determine which elevation ranges in the gorge 

favor landslide initiation.  Study area elevations were broken down into four 100 m 

increments and compared to the landslide elevations that fell within these increments.  

The chi-square goodness of fit test was used to compare all study area elevations to 

landslide elevations (Table 13).  The null hypothesis that the landslide elevations were 

random compared to the study area elevations was rejected at a significance level of 

0.005, with a calculated chi-square value of 32.4 and a critical value of 12.84 (Table 13).  

At a 99.5% confidence level, that there was no random association between landslide 

elevations and study area elevations for 100 m increments.   

Area vs. Volume and Slope Geometry 

Total areas for the 34 landslides visited ranged from 10 m2 to 9000 m2; estimated 

landslide volumes ranged from 10m3 to 45000 m3.  An area-volume scatterplot (Figure 

10) showed a 0.997 r2 value for the best fit line indicating very strong linear relationship 

between the area and volume for the field visited landslides further indicating that 

volume could be used a proxy for area in further statistical analyses.      

The morphology of New River Gorge slopes is divided into three major classes: 

1. Nose (convex) slopes  

2. Hillside hollow (concave) slopes  

3. Planar (flat) slopes  

 Hillside hollows within the Gorge produced most (63%) landslides, compared to 

nose slopes (13%) and planar slopes (24%).  Landslide area and volume relationships 

vary in strength for the three slope geometries (Figure 11).  The two largest landslides, 

Elverton and Cunard, were not included in the area-volume plot because these large 

slides extended over multiple slope geometries.  Nose slopes had the strongest area-

volume linear relationship, with an r2 value of 0.935, indicating that the soil depths 

associated with nose slopes failures varied the least out of the 3 types of slope 

geometries.  Planar slopes showed a slightly higher variation of area-volume, with an r2 

value of 0.893.  The hillslope hollow geometry had the weakest linear area-volume 

relationship with an r2 value of 0.642.  The low correlation of area-volume may indicate  
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Table 13:  The chi-square goodness of fit test for landslide elevations and total study area 
elevations subdivided into 100m increments resulted in the rejection of the null 
hypothesis.  The 2001 landslides in Lower New River Gorge initiated at preferred 
elevations, possibly as a result of road building and mining.  The low number of 
landslides at higher elevations possibly result from the flatter slopes found at the 550m-
650m elevation range. 
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Figure 10:  X-Y scatter plot showing landslide area versus landslide volume.  The slope 

value of 0.997 indicates that there is a strong relationship between area and volume for 

the July 2001 landslides in Lower New River Gorge.  The results indicated landslide 

areas can be used as a proxy for landslide volume in analyses.

Landslide elevations  250-350m 350-450m 450-550m 550-650m 
expected  14 14 16.1 25.9 
observed 19 21 28 2 
 Degrees of Freedom 3   
 Chi-square value 32.4   
 Significance level 0.005   
 Critical Value 12.84   
 Null Hypothesis Reject   
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Figure 11:  X-Y plots showing landslide area versus landslide volume segregated by slope geometry.  R2 values 
indicate nose slopes had the least volume/area variability, whereas hollow slopes had the largest variability 
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the varying degree to which hillslope hollows were filled with natural or artificial 

material.   

Landslide Hazard Map 

 Selected factors were combined to create a 1:15,000 scale landslide-initiation and 

runout risk map using the Spatial Analyst extension in ArcGIS 8.3 (Plate 2).  The 

physical factors used in delineating landslide hazard risk were  

• transportation networks 

• slopes greater than 35o  

• hillslope hollow geometry.   

A GIS layer was created for each of the three factors, the layers were overlain, and 

relative risk levels were determined by the layer coincidence.  Moderate risk areas occur 

where any two factors were encountered.  High risk areas occur where hillslope hollows 

coincide with transportation networks and slope angles greater than 35o.  Major hillslope 

hollows were delineated as possible runout paths (concave areas that act to funnel 

downslope moving material)(Plate 2).   

Summary: 
 Several factors of New River Gorge play roles in landslide initiation during high 

precipitation events.  Surficial geology of the gorge played a statistically significant role 

in initiation of the 2001 mass movements.  Slope aspect, slope angles, and elevation were 

also shown to have strong relationships with landslide initiation.   

Alluvium units were statistically shown not to favor landslide initiation.  The 

depositional environment and lowland distribution of alluvium explain the lack of 

landslides. Relatively low slope angles are required for alluvial deposition, reducing the 

risk of downslope movement, especially in coarse grained alluvium.  

Mine spoil and transportation networks are management-related surficial geology 

units that appeared to play a statistically significant role in landslides.  Landslides tend to 

initiate on steep slopes with heterogeneous material (such as mine spoil) and high pore 

pressure (Baroni et al., 2000).  Increase of pore pressure can result from high-intensity 

rainfall similar to the July 2001 events coupled with a downslope decrease in hydraulic 
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conductivity in soil and bedrock as a result of compacted road fill material (Reid et al., 

1988).   

Transportation networks were associated with more than half of the 45 landslides 

(Plate 1).  The heavily mined Sewell coal seam has a nearly continuous road network 

connecting its various mines within the gorge.  Road building techniques consisted of 

cutting into the steep hillsides and using the excavated material to make a nearly level 

road surface perched on the steep slopes of the gorge.  The road-fill material generally 

consists of the same constituents as surface mine spoil and created the same landslide-

prone conditions, including high pore pressure during high intensity precipitation events.  

Transportation networks not only resulted in destabilization of slopes, but the slopes 

above the roads were destabilized because of vertical to near-vertical road cuts where 

colluvial toeslopes of hillsides were excavated, resulting in an increased probability of 

failure.     

Slope aspect was shown to play a statistically significant role in landslide 

initiation.  Thirty-eight percent of landslides occurred on east-facing slopes (while the 

remaining sixty-two percent of landslides were divided up among the remaining seven 

slope aspect categories).  A possible explanation for the high percentage of landslides on 

east-facing slopes is that most mined areas and transportation networks occur on the 

western side of the gorge, resulting in east facing slopes.   

Statistical analysis showed certain slope angles ranges are associated with more 

landslides than others.  Statistical analysis shows that the mean slope angles associated 

with the landslides were different from the mean slope angles for the entire study area.  

Not surprisingly, the largest percentage of landslides occurred at slope angles ranging 

from 35o-50o (Figure 9).  Adjacent slope angles associated with the field visited sites 

where plotted next to the DEM generated values for those sites indicate poor correlation 

between the two data sets (Figure 12).  Although the overall DEM generated landslide 

slope angles were shown to be statistically similar to the field visited landslide slope 

angles, further statistical work comparing DEM generated slope data and actual field 

measured data is suggested.    

Landslide occurrence also clustered around certain elevations in the gorge.  There 

are two prominent ranges associated with the most landslide occurrence, 300 to 380m and  
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Figure 12:  DEM field measured slopes compared to field measured adjacent slopes.  
Future work comparing DEM generated slope angles and field measured slope angle is 
suggested as a result of the lack of correlation between these two data sets.
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420 to 500m.  These clusters may be the result of road building which is found at these 

elevations in the gorge. 

  The slope geometry at the landslide initiation points had different effects on the 

number of landslides and the area-volume relationships for the landslides (Figure11).      

Planar slopes had low area-volume correlation values that indicated a relatively low 

variability of soil depth across planar slopes.  Nose slopes make up the lowest percentage 

of landslides (13%) and have the closest linear relationship of area vs. volume which 

indicated the lack of variability with respect to soil depth in nose slope areas.  This results 

in a lack of surface and ground water buildup that is not conducive to landsliding.  Most 

landslides (63%) occurred within hillslope hollows that concentrate both unconsolidated 

material and water which were favorable conditions for landslide initiation.   

Discussion: 
 The lack of understanding of geomorphologic factors controlling landslides has 

resulted in property damage and loss of life in West Virginia in the past.  The cost of park 

rehabilitation due to the July 2001 rain events was estimated to be over $6.5 million 

dollars (National Park Resource Assessment Team, 2001).  Most landslides resulting 

from the July 2001 events developed in historically disturbed areas.  This study has 

shown that landslides in New River Gorge have several preferential physical factors 

associated with their initiation that are commonly associated with slope failures 

throughout the Appalachian region and elsewhere.    

 The role of high precipitation on the steep slopes of the Appalachian region and 

nearby areas has been documented over the past 50 years.  Central Virginia received a 

maximum of 710 mm of rain as a result of Hurricane Camille in 1969 and suffered loss of 

lives due to flash flooding and landslides (Williams and Guy, 1973).  In 1977, a storm 

system responsible for debris avalanching in the steep terrain of the Pisgah National 

Forest, North Carolina produced 200-340 mm of rainfall (Neary and Swift, 1987).  The 

November 1985 storm that affected West Virginia and Virginia delivered more than 220 

mm to a widespread area (Colucci, et al., 1993).  Devastating debris flows and floods in 

Madison County, Virginia resulted from a series of high precipitation events in June 

1995.  The area received a maximum of 770 mm of total precipitation at rates as high as 

300 mm/h (Wieczorek et al., 2000).  The debris flows that resulted from the 1995 rainfall 
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initiated when local rainfall exceeded 50 to 100 mm/h, a threshold that was not met 

during the July 8 rainfall event..    

 Several principles for the occurrence of debris flows in the central and southern 

Appalachians suggested by Wieczorek et al. (2000) can be applied to New River Gorge.  

Steep slopes combined with continuous high intensity rainfall form suitable conditions 

for slope failures throughout the Appalachian region but when compared to other 

landslide inducing storm events in the region, the July 2001 storm generally had lower 

rainfall totals (100- 280 mm).  Mine spoil and areas affected by building of transportation 

networks fail at much lower precipitation thresholds than natural landslides in lower New 

River Gorge.   

 Several factors controlling the July 2001 landslides are related to the human 

influences on slopes of New River Gorge.  Road building and mining resulted in over-

steepened slopes and perched unconsolidated fill material on already steep slopes.  The 

results of this study agree with Montgomery (1994), who indicated that disturbed slopes 

as a result of road building have much higher rates of erosion than undisturbed slopes.  

Road building and mining also remove well established vegetation rooting systems that 

act to anchor colluvial material to hillslopes (Riestenberg, 1993). 

 Landslide inducing events may only have a recurrence interval of once two 

thousand years for the same area, but the landslide events happen on the scale of once 

every three years somewhere in the central and southern Appalachians (Wieczorek et al., 

2000).  A better understanding of the dynamic interaction of the factors involved with the 

landslides that occur in the Appalachian region would allow federal, state, and private 

landowners to make better land management decisions.  An example of how the 

information derived from the July 2001 landslide study may help in the future can be 

seen on Plate 2, where factors determined to be statistically significant in landslide 

intitation were combined to indicate areas of moderate and high risk. Maps similar to this 

can be used to avert financially unsound decisions pertaining to trail or road repair issues.  

More importantly, possible life-threatening issues below some of the high risk areas may 

be identified before another such storm event.    
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Future research: 
Future research dealing with landslides in New River Gorge is suggested.  The 

role of very detailed rainfall intensity and total thresholds related to landsliding in the 

gorge would be valuable.  Without rainfall gauges and flow stations in the immediate 

study area rainfall variations could not be analyzed.  Thresholds could be used as early 

warning indicators for possible closures or evacuations of areas in the immediate 

proximity during high intensity events.  Sirens and warning signs may help informing the 

public of hazardous conditions. The installation of rainfall gauges and flow stations in 

areas of high risk to landsliding could be instrumental in determining optimum 

meteorological conditions for slope failures but could be costly.   

The role of vegetation and its effect on slope stability would be another valuable 

concept to understand.  Field identification and multi-spectral imaging of plant species in 

landslide prone areas may identify a relationship between vegetation types and landslides.  

It would be of great value to identify plant species that can stabilize slopes, as a result of 

dramatic increases in root strength. Such plants could then be used for remediation or 

precautionary measures in areas prone to slope failures within the gorge.   

Future work should be done on the anthropogenic soil associated with landslide 

prone areas including textural and mineralogical analyses. The understanding of 

management related soil variations may help in the further delineation of landslide prone 

areas in the gorge.  Certain soils may be identified as unstable soils and sampling and 

laboratory analyses may give some indication of which soil forming factors are 

conducive to landsliding.  Local bedrock changes may play a large part in determining 

the physical characteristics of anthropogenic soils and it is suggested that this idea be 

investigated further. 

The presence of disrupted watercourses and an assessment of their role in slope 

failures is suggested for future research.  Disrupted watercourses may result in a 

concentration of water in unstable areas during periods of high precipitation.  Fieldwork 

and the most recent aerial photography could be used to locate disrupted watercourses.  

These areas could then be mapped and various spatial analyses could be performed on 

their physical characteristics.   
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