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Abstract

A Supervised Low-Rank Matrix Decomposition for Matching

by

Sajid Sharlemin
Master of Science in Computer Science

West Virginia University

Gianfranco Doretto, Ph.D., Chair

Human identification from images captured in unconstrained scenarios is still an unsolved
problem, which finds applications in several areas, ranging from all the settings typical of
video surveillance, to robotics, metadata enrichment of social media content, and mobile
applications. The most recent approaches rely on techniques such as sparse coding and
low-rank matrix decomposition. Those build a generative representation of the data that
on the one hand, attempts capturing all the information descriptive of an identity; on the
other hand, training and testing are complex to allow those algorithms to be robust against
grossly corrupted data, which are typical of unconstrained scenarios.

This thesis introduces a novel low-rank modeling framework for human identification.
The approach is supervised, gives up developing a generative representation, and focuses on
learning the subspace of nuisance factors, responsible for data corruption. The goal of the
model is to learn how to project data onto the orthogonal complement of the nuisance factor
subspace, where data become invariant to nuisance factors, thus enabling the use of simple
geometry to cope with unwanted corruptions and efficiently do classification. The proposed
approach inherently promotes class separation and is computationally efficient, especially
at testing time. It has been evaluated for doing face recognition with grossly corrupted
training and testing data, obtaining very promising results. The approach has also been
challenged with a person re-identification experiment, showing results comparable with the
state-of-the-art.
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Notation

We use the following notation and symbols throughout this thesis.

‖ · ‖∗ : Nuclear Norm
‖ · ‖F : Frobenius Norm
V : Variation Subspace
B : Invariant Subspace
P(·) : Projection Operator
(·)> : Transpose
α : penalty weights
β : penalty weights
γ : penalty weights
X : Input Data
A : Low-Rank Component
B : Invariant Component
E : Sparse Error Component
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Chapter 1

Introduction

Recent research by the Computer Vision community has proven that sparse signal rep-

resentation is an extremely powerful way to represent high dimensional image data. In most

cases an input signal is represented as a linear combination of a few items from a set or

dictionary D. Using sparse representation techniques researchers have achieved significant

results on image classification [1, 2, 3]. For classification methods based on sparse repre-

sentation the dictionary size and quality plays a vital role. Sparse coding algorithms tend

to suffer efficiency when the dictionary size is too large. Well constructed compact dictio-

nary can make sparse coding based image classification algorithms computationally efficient.

However performance of these methods deteriorates drastically in the presence of large er-

ror contamination like occlusion, lighting variations and too much noise were present in the

training dataset.

Low rank representation is an effective method for doing subspace clustering. The main

goal of low rank matrix recovery methods is to determine a low rank matrix approximation

from corrupted input datasets. These methods have been used successfully for object detec-

tion, segmentation, tracking, background subtraction and even image classification. Sparse

representation based classification has shown robustness to high degree of noise and occlusion

in test images. However, the method is sensitive when learning a dictionary from training

samples corrupted from nuisance factors like occlusion, lighting variation and so on. To

tackle this problem, low rank matrix decomposition algorithms have been developed which

can learn a representational dictionary even with input data highly affected by nuisance
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factors.

Human identification is one of the major challenges in Computer Vision. Human iden-

tification is important for security purposes and biometrics. In unconstrained scenarios

identification of a human subject can be done with face images or with full body images. In

this kind of real life scenario, images that will be used for testing or training is expected to be

severely contaminated by nuisance factors. Low rank methods have been used successfully

for face recognition. However, till now these methods haven’t been applied to more com-

plicated scenarios like person re-identification, where there is a lot of pose and illumination

variances to cope with.

Current low rank matrix decomposition algorithms developed for face recognition make

the assumption that the images representing one identify lie in a low dimensional space which

is a subspace of the column spaces spanned from all the images of that identity, and model

the corruption noise as a sparse matrix. We have used a low rank matrix decomposition in

a different way to model the contaminated data. Rather than learning a subspace spanned

by each identity from the data with nuisance factors we try to learn the nuisance subspace

that caused corruption of the data and its orthogonal complement subspace. For learning

this decomposition we use the Augmented Lagrange Multiplier method. We have used our

proposed low rank matrix decomposition for face recognition on a publicly available data

sets and obtained very promising results. We also tried our method on some public person

re-identification data sets which is a very challenging scenario considering that in this case

there is a large amount of image misalignment, compared to face recognition where low rank

methods have been used very successfully. We did find some encouraging results on person

re-identification data sets, which are comparable to the state-of-the art results.
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Chapter 2

Literature Review

Robust PCA has been introduced to solve the shortcomings of classical PCA which mails

to find the right underlying distribution under the presence of gross noise or outliers. A con-

vex optimization problem needs to be solved to solve RPCA. This optimization can be treated

as a general convex optimization problem and solved by any off-the-shelf interior point solver

(e.g, CVX [4]), after being formulated as a semi definite program [5]. Although interior

point methods usually takes few iterations to converge, they have difficulty in handling large

matrices because of the complexity of computing step direction is O
(
m6
)
, where m is the

dimension of the matrix. Due to this computational inefficiency generic interior point solvers

cannot handle matrices with dimensions larger than m = 102. However in Computer Vision

problems it is not uncommon to find matrices with dimension m = 104 to 105; and appli-

cations in web search and bioinformatics can easily involve matrices of dimension m = 106

to 107. So interior point method solvers are too limited for Robust PCA to be practical for

many real world applications.

The interior point solvers do not scale well because they rely on second-order information

of the objective function. To overcome the scalability issue we need to use only first-order

information and make full advantage of the special properties of this class of convex opti-

mization problems.For example , it has been recently shown that the first-order iterative

thresholding(IT) algorithms can be very efficient for `1-norm minimization problems arising

in compressed sensing [6, 7, 8]. It has also be shown in [9, 10] that the same techniques

can be used to minimize the nuclear norm for the matrix completion (MC) problem, namely
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recovering a low-rank matrix from an incomplete but clean subset of its entries [11].

As Robust PCA problem involves minimizing a combination of both the `1-norm and the

nuclear norm in [12] the authors have adopted the iterative thresholding technique to solve

RPCA and obtained similar convergence and scalability properties. However the proposed

iterative thresholding technique to solve RPCA converges extremely slowly. Typically it

needs about 104 iterations to converge while each iteration cost as much as one SVD. Due to

this slow convergence even for matrices with dimension m = 800 the algorithm takes around

8 hour on a typical PC. To alleviate the slow convergence of the iterative thresholding method

[12] two new algorithms were proposed in [13] for solving the optimization problem of RPCA,

which in some sense complementary to each other. The first one is an accelerated proximal

gradient(APG) algorithm applied to the primal, the second one is a gradient-ascent algorithm

applied of the dual of the original problem of RPCA . It has shown from simulations that

both of these methods are at least 50 times faster than the iterative thresholding method

[13].

In the paper [14] authors presented an algorithm for matrix decomposition that utilize

techniques of augmented Lagrangian multipliers (ALM). The exact ALM (EALM) method

proposed is shown to have a Q-linear convergence speed, while the APG is in theory only

sub-linear. A slight improvement over the exact ALM (EALM) leads to the inexact ALM

(IALM) method which converges practically as fast as the exact ALM, however the required

partial SVDs is significantly lower. Simulations show that IALM is at least five times faster

than APG, and its precision is alos higher. In particular, the number of non-zeros in E

computed by IALM is much more accurate than the APG, which tends to leave many small

non-zero terms in E.

Low-rank methods have been applied and extended in many image processing and Com-

puter Vision applications with promising outcome [1, 15, 16, 17, 18, 19]. There are some

interesting works that show how the combination of low-rank method and sparse modeling

of the pixels in an image with parametric transformations of the image domain can be used

for holistic symmetry detection and rectification, In [20] the authors used lo-rank matrix

decomposition to learn intrinsic invariant low-rank texture of objects and extract linear trans-

formation of the 3-D scene over associated planar region. Using this new proposed method
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the authors were able to overcome the lack of invariant image features under protective

transformation, where it enables to recover the exact low-rank structure by simultaneously

discarding sparse noise and transforming the feature space.The resulting algorithm, called

transformation-invariant low-rank texture (TILT), has been successfully applied to practical

problems such as urban 3D reconstruction, calibration and optical character recognition.

In [21] TILT has been extended to deal with low-rank textures on generalized cylindrical

surfaces in 3D space and thus is naturally robust to occlusion and other corruptions.

In photo metric stereo problem the goal is to estimate the normal map of a scene given

multiple 2D images taken under the same viewpoint but different lighting conditions. The au-

thors in [22] used recent ideas from the theory of sparse and low-rank matrix decomposition

formulated a convex optimization problem and were able to recover the low-rank structure

from the input matrix despite the presence of large, sparse errors. Once the low-rank matrix

is recovered, the normal map was easily computed.

Low-rank method has also been applied to pixel wise image alignment where the problem

is to align multiple images of an object to a fixed canonical template in [23] because the

images of same object if represented as a matrix where each image is a column vector, the

matrix is expected to have low-rank.

[24] introduced low-rank subspace clustering (LRSC) in a convex formulation using the

idea of adding the self expressiveness constraint into low rank decomposition. They were

able to decompose subspace clusters in an unsupervised manner from noisy data. [25] added

a fixed rank constraint to the problem of low-rank representation and showed that it can be

used for feature extraction. [26] has described theory and applications for sparse subspace

clustering. [27] introduced a dimension reduction method where it learns a projection matrix

and a sparse coefficients matrix to jointly reduce the dimensions of the data points and does

the unsupervised clustering in a single objective function. [24] used an structured matrix

to do supervised clustering of data points, where with a new goal function the authors

decomposed the data points to low-rank and sparse noise where the low-rank matrix is the

linear combination of the basis in a dictionary and using a structured matrix they force

subjects from the same class lie on the same subspace.

Low-rank matrix decomposition has also been used in face recognition recently and very
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promising results has been obtained. Earlier it was common to apply existing techniques

such as Eigenfaces [28], Fisherfaces [29], or Laplacian faces [30] to reduce dimension of

face images. As a result the derived subspace was expected to achieve improved recognition

performance. These methods however are not robust to outliers or gross noise. Recently

Robust PCA has been proposed to alleviate these shortcomings [31, 32, 33].

Sparse representation based classification (SRC) [2] has shown very promising results

on face recognition. It considers each test image as a sparse linear combination of the

training samples by solving an l1 minimization problem. If the test image is corrupted, SRC

exhibits robustness to face occlusion and corruption. As SRC requires the training images

to be well aligned for reconstruction purposes, in [34] the authors further extends it to

deal with face misalignment and illumination variations. Yang et. al [3, 35] also modified

SRC based method to tackle occlusions in face images. One shorting of the method is that

it might not generalize well if both training and test images are corrupted. In [1] the

authors addressed the problem of robust face recognition by low-rank approximation with

structural incoherence where both training and test image data are corrupted and there is

no prior knowledge about the type of corruption. This method has very large computational

cost in the presence of large number of classes as denoising is done class by class. [36]

enhances a sparse coding dictionary’s by learning a low-rank sub-dictionary for each class.

This method is time consuming and might increase the redundancy in each sub-dictionary

thus not guaranteeing consistency of sparse codes for signals from same class. [17] presents

an image classification framework by using non-negative sparse-coding, low-rank and sparse

matrix decomposition. A linear SVM classifier is used for the final classification. In [18] the

authors effectively constructs a reconstructive and discriminative dictionary. Based on this

dictionary structured low-rank and sparse representations are learned for classification.

In Computer-Vision research community there has been increasing interest in matching

people across disjoint camera views in a multi-camera system, commonly known as person

re-identification problem [37, 38, 39, 40]. Most existing studies have tried to solve person

re-identification problem by seeking a more distinctive and stable representation of people’s

appearance ranging widely from color histogram [37, 39], graph model [41], spatial co-

occurance [40] representaion model [40], principal axis histogram [38], rectangle region
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histogram [42] to combination of multiple features [39, 43]. After the feature extraction

stage many existing methods simply choose a standard distance measure such as l1 norm

[40], l2 norm based distance [38] or Bhattacharyya distance [39]. Unfortunately under severe

change of viewing condition such as different pose, occlusion and illumination computing a

set of distinctive and stable feature is extremely hard if not impossible in realistic scenarios.

Machine learning approaches for solving perosn re-identification has been proposed for salient

feature learning [44], attributes [45] and ranking functions [46]. Metric learning methods are

more recent approaches and include methods like Large Margin Nearest Neighbors (LMNN)

[47], Metric Learning by Collasping Classes [48], Probabilistic Relative Distance Comparison

[49] , Pairwise Constrained Component Analysis (PCCA) [50]. There is not any literature

on applying low-rank method to solve person re-identification problem. This is a much more

difficult scenario compared to face recognition as the degree of alignment is typically much

less compared to the face recognition problem settings. In our experiments we challenge our

approach by comparing it against one metric learning method, despite the fact that we have

not exploited the possibility to use a dedicated descriptor, or to do an extensive learning with

a dedicated dataset and our approach has to deal to with the huge amount of misalignment.
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Chapter 3

Robust Principal Component Analysis

Principal Component Analysis (PCA) is a statistical technique that is widely used for

applications such as dimensionality reduction, lossy data compression, feature extraction

and data visualization.It is also known as it is also named the discrete Karhunen-Loève

transform (KLT) in signal processing. Among many destinations two are commonly used

that boil down to the same algorithm. PCA can be defined as the orthogonal projection

of the data onto a lower dimensional linear space, known as the principal subspace, such

that the variance of the projected data is maximized [51]. It can also be defined as the

linear projection that minimizes the average projection cost, defined as the mean squared

distance between the data points and their projections. Basically PCA uses an orthogonal

transformation to convert a set of possibly correlated variables into a set of values that are

called principal components. The number of principal components is less than number of

original variables. The transformation is such that the first principal component has the

largest possible variance (that is, accounts for as much of the variability as possible) and

each succeeding components in turn has the highest possible variance under the constraint

that it is orthogonal i.e , uncorrelated with the previous components. The subspace that is

spanned by all the principal component make the principal subspace.

Let us consider a data set of observation X = [x1, x2, . . . , xn] where xm is a column vector

with dimensionality m. PCA assumes that the given data was generated by perturbing a

matrix A ∈ Rm×n whose columns lie on a subspace of dimension r << m. The goal of PCA

is to project the data onto a space with lower dimension r << m while maximizing the
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variance of the projected data. In other words, X = A+N where A is the low rank matrix

with rank r and N is the matrix whose entries are i.i.d Gaussian random variables. In this

setting, PCA seeks an optimal estimate of A via the following constrained optimization.

minimize ‖X − A‖

subject to rank (A) ≤ rank (X) . (3.1)

We assume for the moment that we know the value of r. PCA involves finding the

mean X̄ and the covariance matrix S and then finding r eigenvectors u1, u2, . . . , um of S

corresponding to the m largest eigenvalues λ1, λ2, . . . , λm. Then we project the original data

of dimension m to the principal subspace spanned by the r eigenvectors where r << m to

obtain the reduced dimensional data.

The possibility of efficient computation along with optimality properties in the presence of

Gaussian noise has made PCA as one of the most popular algorithms used in data analysis,

compression among other things. However in today’s world data is more often than not

corrupted by large errors or can even be incomplete. In the presence of large noise corrupting

some of the data PCA estimate can be far from the underlying true distribution of the

data owing to the fact that classical PCA is very sensitive to gross errors and there is no

theoretical framework to deal with incomplete missing data. In fact even if only one entry

of X is arbitrarily corrupted then estimated A obtained by classical PCA can be far from

the true A we are seeking. Another adversary is that rank m of the data matrix X needs to

known beforehand, which is seldom the case in real world problems.

Unfortunately gross errors are not very uncommon in modern applications such as image

processing, web data analysis, bioinformatics, where some measurements can be arbitrarily

corrupted due to occlusions, malicious tampering, sensor failure or simply irrelevant to the

low rank structure we seek to identify. A number of natural approaches to robustifying PCA

have been explored in the literature over the decades. The representative approaches include

influence function techniques, multivariate trimming, alternating minimization and random

sampling technique. Unfortunately none of these techniques yield polynomial time algorithm

with strong performance guarantee under broad conditions. The new problem that we are
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considering here can be considered as an idealized version of Robust PCA in which we aim

to recover a low-rank matrix A from highly corrupted measurements X = A + E. Unlike

small noise term N in classical PCA the entries in E can have arbitrarily high magnitude.

At first sight, the separation problem seems really hard to solve since the number of

unknowns to infer A and E is twice as many as the given data input X ∈ R. Furthermore

it looks even more challenging that we expect to reliably obtain the low-rank matrix A with

errors in E of arbitrarily large magnitude.

However in RPCA paper the authors showed that this problem can not only be solved

but it can be solved by tractable convex optimization. Let ‖D‖∗ =
∑

i σi(D) denote the

nuclear norm of matrix X ,i.e, the sum of the singular values of X and let ‖X‖1 =
∑

ij |Xij|

denote the l1 norm of X seen as a long vector in R. The authors showed that under rather

weak assumptions, the Principal Component Pursuit (PCP) estimate solving

minimize ‖A‖∗ + λ‖E‖1

subject to A+ E = X . (3.2)

(3.2) exactly recovers the low-rank A and the sparse E. Theoretically this is shown to

work even if the rank of A grows almost linearly in the dimension of the matrix and the

errors in E are up to a constant fraction of all entries.Algorithmically, it can be shown that

the above problem can be solved by efficient and scalable algorithms at a cost not too much

higher than the cost of solving the classical PCA.

It is not always that the matrix decomposition works. There are instances when it is

not possible to make the decomposition work. If the matrix X is both sparse and low-rank

then it is hard to decide whether it is a low-rank matrix or a sparse matrix. So to make

the problem of robust PCA meaningful we do need to impose that the low-rank component

A is not sparse. Another identifiability issue arises if the sparse matrix has low-rank. This

is the case if suppose all the non zero entries of E occur in a column or in a few columns

only. Suppose for instance, that the first column of E is the opposite of that of A and that

all other columns of E vanishes. Then it is certain that we would not be able to recover A

and E by any method whatsoever since X = A+E would have a column space equal to, or
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included in that of A. To avoid such meaningless scenarios we make the assumptions that

the sparsity pattern of the sparse component is selected uniformly at random.
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Chapter 4

Model

4.1 Invariant Subspace Representation

We assume that a data point x ∈ Rm, representing an entity (e.g., the vectorized version

of the image pixels of a face), can be modeled by two additive components. The first one,

s ∈ Rm, represents all the information necessary to recognize the entity (e.g., everything

that describes the specific identity of the individual depicted by the face image). From a

statistical point of view, we can imagine s to be the equivalent of a sufficient statistic for

recognition, and we refer to it as the sufficient component. The second component, v ∈ Rm,

is meant to represent how the data of a generic entity might change by the effect of nuisance

factors, which are not descriptive of any specific entity. For instance, the image of a face

might be modified by different lighting conditions, facial expressions, occlusions, etc. It is

assumed that all the changes inducible by nuisance factors form a variation subspace V ,

where the variation component v is defined. Therefore, a data point is modeled as

x
.
= s+ v . (4.1)

If PV : Rm → V is the projection operator mapping an m-dimensional vector onto V , x can

be further decomposed as x = (PVs + v) + (s − PVs). In particular, the first component

a
.
= PVs + v, is defined in V , whereas the second component b

.
= s − PVs, is defined in the

orthogonal complement of the variation space, V⊥.

The decomposition x = a + b has the following property. Let us assume that x1 and x2
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are two different points representing the same entity. According to (4.1), it must be that

x1 = s + v1 and x2 = s + v2, because they have been affected by different nuisance factors.

This means that a1 = PVs + v1, and a2 = PVs + v2; however, b1 = s − PVs = b2, which

highlights that the component b is invariant to the changes induced by the nuisance factors.

We refer to the subspace where b is defined as the invariant subspace B, which will be a

subspace of V⊥.

4.2 Recognition Based on the Invariant Subspace

We assume that a set of n training data samples from N different entities, or object classes

(e.g. images of people faces, or people whole body appearances), are given, where each class

i has ni samples. Every sample xj is modeled according to (4.1), and we concatenate the

data into a matrix X = [x1, x2, · · · , xN ] ∈ Rm×n, where xi ∈ Rm×ni is the training data

matrix obtained by lining up the samples for class i.

Model (4.1) has been implicitly adopted by the most successful recent approaches to the

face recognition problem. In particular, the SRC method [2] aims at “carefully” composing

each of the Xi’s in such a way that the selected samples are able to represent the salient

components si’s in the best possible way. The matching between a test point x = s + v,

and a salient component si (i.e. the classification), is based on sparse coding and residual

computation, and has demonstrated a remarkable robustness against the variation compo-

nent v, leading to high recognition rates. The SRC approach has been further improved

against potential corruptions of the test data point. For instance, [3] improves upon oc-

clusions and computational cost, [35] robustifies the sparse coding problem by computing

a sparsity-constrained maximum likelihood solution, [34] simultaneously handles the mis-

alignment, pose and illumination invariance, and [52] addresses the problem of reducing the

large amount of training data needed by SRC to be effective.

To address the more general case where also the training data is highly affected by

nuisance factors, and a “careful” composition ofX is not possible, the SRC approach has been

augmented in different ways. In [1] a low-rank matrix recovery [33] approach is designed for

pre-processing the corrupted training data. After this step, the SRC method can be applied
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more effectively. Another approach, [53], proposes to apply sparse coding for modeling the

sufficient component by learning a dictionary of prototypes, each of which, given by the

average of the data in Xi, is meant to approximate si. In addition, sparse coding is also

used for modeling the variation subspace. The concatenation of the prototype and the

variation dictionaries form a new dictionary with which the SRC method can be applied

more effectively.

In this work we propose to address the recognition problem with highly corrupted training

and testing data by exploiting model (4.1) in a very different way than previous work. The

idea is based on a simple observation. Suppose that the projection operator PV was available.

Then, a test sample x could be processed by computing x − PVx = b. Similarly, for the

training dataset, following the property of the invariant subspace, computing X − PVX

produces [b11
>
n1
, b21

>
n2
, · · · , bN1>nN

], where bi is the invariant of class i, and 1ni
is a column

vector of ones with length ni. Therefore, recognition could be done by a simple matching

between b and the set of bi’s. This means that corruption (or intra-class variability) in

training and testing data, as well as recognition could be handled in a very easy, and efficient

way with simple geometry tools.

One major challenge of the proposed approach is posed by the case when two different

sufficient components s1 6= s2, are such that s1 − PVs1 = s2 − PVs2. This means it would

be impossible to discriminate between the corresponding classes. The supervised learning

approach introduced in the following sections will: (1) allow to learn the invariant subspace,

and (2) inherently address the challenge just outlined by promoting a uniform inter-class

separability.

4.3 Robust PCA and Low-Rank Matrix Recovery

Principal Component Analysis is arguably the most widely used statistical method for

data analysis and dimensionality reduction. However it is not without its weakness. PCA

has been shown to be sensitive to grossly corrupted input data. Unfortunately gross errors

are very common in many modern applications like image processing , web data analysis

where some measurements may be arbitrarily corrupted or may be irrelevant to the low



CHAPTER 4. MODEL 15

rank structure we wish to identify. To make PCA robust and to mitigate the effect of sparse

noise, a lot of approaches have been proposed in the literature , including the introduction of

influence functions, alternating minimizing techniques, and low-rank matrix recovery. Low-

rank method has been shown to be very efficient and can be solved in polynomial time.

Low-rank matrix recovery seeks to decompose a data matrix X into A + E, where A

has rank which is much lower than rank of X and E is the associated sparse error. To be

precise, given the input data X, low-rank method minimizes the the rank of the matrix A

while reducing ‖E‖0 to derive the low-rank approximation of X. Since the aforementioned

optimization problem is NP-hard, proposed to relax the original problem into the following

tractable formulation.

min
A,E
‖A‖∗ + α‖E‖1 s.t. X = A+ E . (4.2)

In (4.2), the nuclear norm ‖A‖∗ ( i.e. the sum of the singular values ) approximates

the rank of A, and the `0-norm ‖E‖0 is replaced by the `1-norm ‖E‖1, which sums up the

absolute values of the entries of E. It is shown in [33] that solving the relaxed version of the

problem (4.2) is equivalent to solving the original low-rank matrix approximation problem,

as long as the rank of A to be recovered is not too large and the number of errors in E is

small (sparse). To solve the optimization problem (4.2) it is possible to apply the efficient

method of augmented Lagrangian multipliers (ALM).

4.4 Face recognition by low-rank matrix recovery

For real-world face recognition problems it is expected that training data cannot always

be acquired under a controlled settings. Besides illumination, pose, expression variations

face image taken by the camera can vary due to the presence of sun-glass, scarf, mask or any

such garments. When a image like this is used training the learned face data might over fit

the extreme variations in the face images and not model the face of the subjects and thus

degrade the performance of recognition process.

Standard LR method processes original data X and produces a low rank matrix A for bet-
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ter representation with sparse noise removed. In incoherence paper the authors have argued

that face images from different subjects typically share common features (e.g the location

of eyes, noses, mouth etc.) and as a result the derived matrix A might not be discriminat-

ing. So they proposed to promote the incoherence between low-rank matrices. Introducing

such incoherence would prefer the low-rank matrices to be independent as possible. As a

result commonly shared features among classes will be suppressed and the discriminating

features will be preserved. The authors in the paper added a regularization term to the

object function to 4.2 enforce the incoherence between low-rank matrices.

min
Ai,Ei

N∑
i=1

{‖Ai‖∗ + α‖Ei‖1}+ η
∑
j 6=i

|ATj Ai‖2F s.t. Xi = Ai + Ei . (4.3)

In 4.3, the first term performs standard low-rank decomposition for data matrix X. The

new term that is added here sums up the Frobenius term between each pair of the low-rank

matrices Ai and Aj, which is penalized by the η which balances the low-rank approximation

and matrix incoherence. The authors have referred to 4.3 to as low-rank matrix recovery

with structural incoherence, aiming to provide improved discrimination ability to the original

low- rank decomposition method.

In a newer approach the authors have taken a different route at solving the problem.

They argued that [1] performs low-rank recovery using class by class during training which

is computationally expensive considering the presence of a large number of classes. They

effectively construct a reconstructive and discriminating dictionary from corrupted training

data. They show that an efficient representation can be obtained with respect to well-

structured dictionary. Associating label information in the training process a discriminate

dictionary can be learned from all training samples simultaneously. The learned dictionary

encourages images from same subject to lie in the same low-dimensional subspace while

different classes lie on different low-dimensional subspace. This boosts the classification

result significantly.

For Face recognition the data set consists of many subjects and images of one subject

tends to be drawn from the same subspace while samples of different subjects are drawn

from different subspace. [24] proves that there is a lowest-rank representation that reveals
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the membership of samples. They formulate the low-rank decomposition as follows

min
Z,E
|Z‖∗ + α‖Ei‖2,1 s.t. X = DZ + E . (4.4)

Here the data matrix X = [X1, X2, · · · , XN ] contains images of N classes where Xi corre-

sponds to class i. E is the sparse noise component With respect to semantic dictionary D,

the optimal representation matrix Z for X should be block diagonal.

Z =


Z∗1 0 · · · 0

0 Z∗2 0
...

... 0
. . . 0

0 · · · 0 Z∗N


Here the low-rank reveals the structure information and sparsity identifies which class

an image belongs to. Given a dictionary D , the objective function can be written as,

min
Z,E
|Z‖∗ + α‖E‖1 + β‖Z‖1 s.t. X = DZ + E . (4.5)

Here α and β controls the sparsity of the noise matrix E and the representation matrix

Z. The dictionary D = [D1, D2, · · · , DN ] contains N sub dictionaries where Di corresponds

to class i. Let Zi = [Zi,1, Zi,2, · · · , Zi,N ] be representative of Xi with D being the dictionary.

Then Zi,j denotes coefficient s for Dj. For low-rank and sparse representation of data Di

should ideally to exclusive to each subject i. This means that different classes will have

different representations. Also every class i should be well represented by its sub dictionary

such that Xi = DiZi,1 + Ei.Zi, where the coefficients for Dj(i 6= j) are nearly all zero.

Q is said to an ideal representation if Q = [q1, q2, · · · , qT ] ∈ RK×T where qi the code for

sample Xi, is of the form of [0 · · · 1, 1, 1, , · · · ]t ∈ RK where K is the size of the dictionary

and T is the total number of samples. If xi belongs to class C then the coefficients of qi for

DC are all 1’s where the remaining entries are all 0. Although this decomposition might not

result in minimal reconstruction error, low-rank and sparse.

With these formulations the authors propose to learn a semantic structured dictionary

by supervised learning. Based on the label information we construct Q in block diagonal

fashion for training data. A regulation term is added in the form of ‖Z − Q‖2F to include
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structure information in the dictionary learning process. A dictionary that encourages Z to

be close to Q is preferred. The objective function to learn the dictionary is formulated as

follows

min
Z,E,D

|Z‖∗ + α‖E‖1 + β‖Z‖1 + γ‖Z −Q‖2F s.t. X = DZ + E . (4.6)



19

Chapter 5

Model Formulation and

Supervised-Learning

5.1 Invariant Subspace Learning

We look at the problem from a completely different perspective to solve the problem of

identity recognition using low-rank decomposition.

We begin by observing that since every data point is modeled as xj = aj+bj, the training

data set X, can be decomposed by X
.
= A + B, where A ∈ Rm×n collects all the aj’s, and

B ∈ Rm×n collects all the invariant components, bj’s. We assume that the variation subspace

V has a finite dimension, which is lower than min{m,n}. This is reasonable because it states

that there are enough data for learning the variation subspace of interest, it allows avoiding

overfitting, and it makes the problem tractable. Therefore, attempting to recover A, which

in turn allows recovering B, entails solving a low-rank matrix recovery problem.

In practice, the training data will also be affected by noise. Rather than modeling small

Gaussian deviations, we admit that a small percentage of the entries of X are corrupted by

values not modeled by the variation and invariant components, which means that such noise

should be sparse. This will account for data deviations unlikely to be captured by a finite

dimensional linear subspace, such as those induced by image saturations, like image glare,

or the presence of strong edges. Therefore, if E ∈ Rm×n is the matrix of sparse noise, the
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model for the training dataset is given by

X
.
= A+B + E . (5.1)

Contrary to previous work we do not attempt to learn a dictionary , and the columns

of the low-rank matrix A are meant to span the variation subspace V not the space of the

sufficient components. Discriminability comes from learning the invariant components B,

which leads to a very simple rule for classification and can promote class separation approach

described next.

To learn model (5.1), standard LR (4.2) is insufficient because we also need to learn

the invariant components B. To do so, we need to take into account the geometric, and

invariance constraints of (5.1).

5.1.1 Geometric constraint.

In particular, the invariant subspace should be included in the orthogonal complement

of the variation subspace V⊥. Therefore, A and B should satisfy the relationship

B>A = 0 . (5.2)

5.1.2 Invariance constraint.

In addition, given two data points x1 = a1 + b1 + e1 and x2 = a2 + b2 + e2, if they

are representative of the same class i, the invariant components should be the same, i.e.

b1 = b2. To express this in an algebraic form, b1 and b2 should be the solution to the linear

system given by the equations b1 = 1
2
(b1 + b2), and b2 = 1

2
(b1 + b2). For n data points, where

B = [B1, B2, · · · , BN ], the constraint on the invariant components would be b1 = b2 · · · = bn1 ,

for B1, · · · , and bn−nN+1 = bn−nN+2 = · · · = bn, for BN . This can still be expressed in an

algebraic form, by generalizing the system of two linear equations to the following expression.

B(I −Q) = 0 , (5.3)

where I is the identity matrix, and Q is a block-diagonal matrix, given by
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Q =


1
n1

1n11
>
n1

0 · · · 0

0 1
n2

1n21
>
n2

0 0
... 0

. . . 0

0 · · · 0 1
nN

1nN
1>nN


In order to learn A and B, we propose to augment problem (4.2) with model (5.1), the

geometric constraint (5.2), and the invariance (5.3). In particular, to make the problem

more tractable, the geometric and invariance constraints are relaxed to the penalty terms

‖B>A‖2F , and ‖B(I −Q)‖2F in the following optimization problem

min
A,B,E

‖A‖∗ + α‖E‖1 + β‖B(I −Q)‖2F + γ‖B>A‖2F s.t. X = A+B + E , (5.4)

where ‖·‖F indicates the Frobenius norm, and α, β, and γ are penalty weights. Note that the

addition of the invariance constraint (5.3) as a penalty, through Q injects the training dataset

labeling information inside the learning problem, turning it into a supervised approach.

5.1.3 Optimization

In order to solve problem (5.4), we use the exact ALM method [14], and start by com-

puting the augmented Lagrangian function L(A,B,E, λ), given by

L =‖A‖∗ + α‖E‖1 + β‖B(I −Q)‖2F + γ‖B>A‖2F + 〈λ,X −A−B − E〉+ µ

2
‖X −A−B − E‖2F

=‖A‖∗ + α‖E‖1 + β‖B(I −Q)‖2F + γ‖B>A‖2F +
µ

2
‖X −A−B − E +

λ

µ
‖2F −

1

2µ
‖λ‖2F

=‖A‖∗ + α‖E‖1 + β‖B(I −Q)‖2F + h(A,B,E, λ, µ)− 1

2µ
‖λ‖2F ,

(5.5)

where 〈X, Y 〉 .= trace(X>Y ), µ is a positive scalar, λ is a Lagrange multiplier matrix, and

h(A,B,E, λ, µ) = µ
2
‖X −A−B−E+ λ

µ
‖2F + γ‖B>A‖2F is a quadratic convenience function.

We optimize (5.5) with an alternating direction strategy, and at every outer iteration of

Algorithm 1, A, B, and E are first iteratively updated until convergence; subsequently, λ

and µ are updated. The inner iteration updates of Algorithm 1 are given below.

Updating Ak+1: From the reduced augmented Lagrangian it is convenient to use the

linearization technique of the LADMAP method [54], very effectively used also by other
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approaches [36, 55, 18], and replace the quadratic term h with its first order approximation,

computed at iteration k, and add a proximal term, giving the following update

Ak+1 = arg min
A
‖A‖∗+ < ∇Ah(Ak, Bk, Ek, λk, µk), A− Ak > +

ηµk
2
‖A− Ak‖2F

= arg min
A
‖A‖∗ +

ηµk
2
‖A− (X −Bk − Ek +

λk
µk
− γBkB

>
k Ak)‖2F ,

(5.6)

where η must be greater than ‖A‖2F [54]. The solution to (5.6) is reported in Algorithm 1,

and is obtained by applying the singular value thresholding algorithm [9], with the soft-

thresholding shrinkage operator Sε(x), which is equal to: x− ε if x > ε, x+ ε if x < −ε, and

0 elsewhere.

Updating Ek+1: From (5.5), the augmented Lagrangian reduces to

Ek+1 = arg min
E
α‖E‖1 +

µk
2
‖E − (X − Ak+1 −Bk +

λk
µk

)‖2F , (5.7)

Algorithm 1 Invariant Components Learning via the Exact ALM Method

Require: Observation matrix X, labels Q, and penalty weights α, β, γ

1: k = 0; ρ > 1; µ0 > 0; η = ‖X‖2F ; λ0 = sgn(X)
max(‖sgn(X)‖F ,α−1‖sgn(X)‖∞)

; A0 = 0; B0 =

XQ; E0 = 0

2: while not converged do

3: j = 0; A0
k = Ak; B

0
k = Bk; E

0
k = Ek

4: while not converged do

. Line 5 solves (5.6)

5: (U,Σ, V ) = svd(X −Bj
k − E

j
k + µ−1k λk − γBj

kB
j
k

>
Ajk) ; Aj+1

k = US(ηµk)−1(Σ)V >

. Line 6 solves (5.7)

6: Ej+1
k = Sαµ−1

k
(X − Aj+1

k −Bj
k

>
+ µ−1k λk)

7: Update Bj+1
k by solving (5.9) with Aj+1

k and Ej+1
k

8: j ← j + 1

9: end while

10: Ak+1 = Aj+1
k ; Bk+1 = Bj+1

k ; Ek+1 = Ej+1
k

11: µk+1 = ρµk; λk+1 = λk + µk(X − Ak+1 −Bk+1 − Ek+1)

12: k ← k + 1

13: end while

Ensure: Ak, Bk, Ek
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and the solution, reported in Algorithm 1, is still obtained with an instance of the singular

value thresholding algorithm [9].

Updating Yk+1: This update is computed as

Bk+1 = arg min
B

µk
2
‖X −Ak+1 −Ek+1 −B +

λk
µk
‖2F + β‖B(I −Q)‖2F + γ‖B>Ak+1‖2F . (5.8)

Note that the cost function in (5.8) is quadratic in B. Therefore, the update can be obtained

by computing the partial derivative with respect to B of the cost function, and then setting

it to zero. This leads to a Sylvester equation in B, given by

γAk+1A
>
k+1B +B

(
(β +

µk
2

)I − 2βQ− βQQ>
)

=
µk
2

(
D − Ak+1 − Ek+1 +

λk
µk

)
. (5.9)

Therefore, the update (5.8) can be computed with a standard Sylvester equation solver. The

full optimization procedure is summarized in Algorithm 1.

5.2 Classification

Given a test data point x, the obvious approach to perform classification is to compute

a label via y = arg mini d(x,Bi), where d(·, ·) is a suitable distance between x and the

invariant matrix Bi, representing class i. Following the strategy outlined in Section 4.2,

from the invariant components Bi one can estimate PBi : Rm → Bi, the operator that

projects data points directly onto Bi ⊂ B, the invariant subspace for class i. Doing so has

the advantage that the projection of x onto V⊥ gives b + PV⊥e, whereas the projection of

x onto Bi gives b + PBie, and since Bi ⊂ V⊥, it follows that ‖PBie‖F ≤ ‖PV⊥e‖F , which

means a lower noise corruption. Therefore, we propose to use the following Frobenius norm

dF (x,Bi) = n−1i ‖Bi − PBix 1>ni
‖F . Note that if Bi can be approximated with bi1

>
ni

, as it

normally should, then the distance computation is even faster, because given by

dF (x,Bi) = ‖bi − PBix‖F . (5.10)

We now make the following observation. Without loss of generality, let us assume that

the columns of B are zero mean. The invariance constraint (5.3) can be re-written as
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Q = B>(BB>)+B, where the covariance of B appears under the form of BB> (for a short dis-

cussion there is no need to address the rank deficiency of B, and the use of the pseudoinverse

(BB>)+). Therefore, it is easy to realize that the Mahalanobis distance dM(bi, bj), between

the invariant components bi and bj, for classes i and j is equal to 0 if i = j, and to
√

2N if

i 6= j, where for simplicity we have assumed ni = nj. This means that B is such that two dif-

ferent sufficient components si and sj originate different (i.e., bi = si−PBsi 6= sj−PBsj = bj),

and equidistant (i.e., dM(bi, bj) =
√

2N ∀i 6= j), invariant components, thus promoting a

uniform class separation.

The observation above suggests the use of the Mahalanobis distance for testing, e.g.,

in the form of dM(x,Bi) =
∑

b∈Bi
dM(x, b). However, it is more convenient to use the

corresponding similarity measure κ(bi, bj) = b>i (BB>)+bj, which gives 0 if i 6= j, and 1
ni

if

i = j. Therefore, we propose the similarity measure defined as κ(x,Bi) = 1>ni
B>i (BB>)+x,

and the label assignment is done according to y = arg maxi κ(x,Bi). If Bi = bi1
>
ni

, the

similarity reduces to

κ(x,Bi) = nib
>
i (BB>)+x . (5.11)
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Chapter 6

Experiments and Results

6.1 Experiments

In order to validate the proposed method we have performed experiments on synthetic

data, on two face recognition datasets, and on one person reidentification dataset . All the

results were obtained with a grid search of the parameters α, β, and γ.

6.1.1 Synthetic data.

To empirically verify the convergence of Algorithm 1, we have created a synthetic dataset

made of n = 120 images of 32×28 pixels, with N = 10 invariant components depicting digits,

and with image patterns representing A. The synthetic A and B satisfy the constraints (5.2),

and (5.3), and we have added sparse noise E, corrupting 20% of randomly selected pixels,

with values drawn from a uniform distribution between 0 and the largest possible pixel value

in the image. Figure 6.1(a) shows the decomposition in A, E, and B of 12 synthetic data

points, X (top row), and Figure 6.1(b) shows the estimated decomposition of the same points.

Visually, the recovered decomposition closely resembles the originals, and the coefficients of

variation (i.e., ‖ẑ − z‖F/‖z‖F where ẑ is the estimated quantity), are 9.71%, 8.67%, 37.2%,

for A, B, and E, respectively.
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(a) (b)

Figure 6.1: Synthetic data. (a) Decomposition of 12 synthetic data points. (b) Decompo-
sition of the same 12 points with Algorithm 1. Top row: input points X. Second row: A
components. Third row: Sparse errors E. Bottom row: Invariant components B.

Approach Recognition Rate

2DPCA [57] 96%
SRC [2] 93%

LRC [56] 93.5%
SLR [18] 93.5%

Our Method 95%

Table 6.1: Recognition Rate on AT&T face dataset.

6.1.2 AT&T Database

AT&T dataset is maintained at AT&T laboratories in Cambridge University, the dataset

includes face images of 40 subjects taken in 10 controlled variations, which involves facial

gestures (i.e. smiling and non-smiling) neutral or with glasses, also face rotational in four

direction with no more that 20 degrees. similar to protocol in [56] we pick the first five

images for training and last five images of each individual for testing. Table 6.1 illustrate

the results for AT&T dataset. As it is illustrated in table its performance is in par with well

known methods.

6.1.3 AR Dataset.

For this face recognition dataset [58], we follow a protocol used also by other recent works

[1, 18]. The dataset contains over 4,000 frontal images of 126 people’s faces (70 men and 56

women), images are taken in two sessions and under different facial expressions, illumination

conditions and occlusions. In each session 3 images are occluded by sunglasses, 3 by a scarf,
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Figure 6.2: AR dataset. Decomposition results for the 13 images of one subject taken
in one session. Row meanings are explained in Figure 6.1. Images are rescaled for better
contrast and visualization.

dimention1230
p=1 p=2 p=3

sunglass scarf mixed sunglass scarf mixed sunglass scarf mixed

Our Method 87.3±0.30 83.9±0.52 84.6±0.37 78.2±0.32 77.4±0.35 71.2±0.52 69.6±0.62 66.3±0.53 59.9±0.47
SLR 87.1±0.64 83.0±0.57 81.8±0.70 76.1±0.78 73.8±0.79 66.3±0.98 60.5±0.98 58.2±1.07 51.2±1.26
LR w. Incoh. 86.8±0.40 82.9±0.34 79.1±0.56 73.9±0.49 72.3±0.52 65.4±0.75 58.4±0.72 58.1±0.88 49.9±0.89
SRC 84.9±0.23 76.2±0.42 79.2±0.42 73.2±0.44 70.8±0.30 63.6±0.64 56.2±0.80 60.1±0.75 46.2±1.06

Table 6.2: Recognition Rate Comparison on AR comparison between our methods and
SLR [18], Low rank with incoherence [1] and SRC [2] on AR face dataset using the same
protocol described in experiments under AR subsection

and are taken in different lighting conditions. The images are with 165×120 = 19, 800 pixels,

then converted into gray scale, and down-sampled by 4×4. As other authors did [1, 18, 53],

we select a subset of 50 men and 50 women. Figure 6.2 illustrates 13 images taken from one

subject in one session, along with the decomposition. The proposed algorithm effectively

extracts the invariant component (bottom row), wich is pretty much identical for every

image. The second row from top is a low-rank representation of the face images, and the

second row from bottom is sparse noise.

Following [18, 1] we consider three scenarios, indicated as sunglasses, scarf and

sungasses+scarf, where we do face recognition with highly corrupted training and testing

data. For sunglasses a subject in the training set is composed by p randomly selected face

images occluded with sunglasses, and 8−p neutral, all selected from session 1. The remaining

6 − p images occluded by sunglasses plus 6 + p neutral from both sessions, form 12 testing
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Figure 6.3: AR dataset. Recognition rates versus different numbers p, of corrupted training
images per class for the three scenarios: sunglasses (left), scarf (center), sunglasses and scarf
(right).

images per person. Note that face images with sunglasses are occluded about 20%. For

the scarf scenario, the data subdivision is identical only that we consider the face images

occluded by a scarf, which produces occlusions of about 40%. For the sunglasses+scarf

case, the difference is that for a given person, p images are occluded with sunglasses and p

with the scarf, leaving 17 images for testing per person. Unlike previous work, that have

shown results only for p = 1, here we also test the case for p = 2 and p = 3. The experiment

has been repeated 5 times and the average recognition rates are plotted in Figure 6.3. The

optimal penalty parameters were α = 1.5, β = 1000, γ = 0.9. Unless otherwise specified,

every result obtained in this section is with the distance (5.10). Along with ours, we have

also tested the structured low-rank representation (SLR) approach [18], the low-rank with

incoherence (LRwIn) approach [1], and the SRC [2]. We have reimplemented the SLR

and the LRwIn approaches. For the SRC we have used the code publicly available. Every

approach was tested with input images with the same size, and with other parameters set

at the peak of their performance. From Figure 6.3 it can be appreciated that the proposed

approach demonstrates a superior robustness with respect to corruption in the training set

as p increases. For instance, compared to the overall best competitor, which is SLR, for the

sunglasses+scarf case, for p = 1 the improvement is 2.8%, for p = 2 is 4.9%, and for

p = 3 is 8.7%.
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6.1.4 Extended-Yale B Dataset.

This face recognition dataset [59] contains tightly cropped face images of 38 subjects.

Each of them has around 59 to 64 images taken under varying lighting conditions, which

in total add up to 2,414 images. The cropped images are with 192 × 168 = 32, 256 pixels.

We randomly select 8, and in a subsequent experiment 32, training images for each person,

and use the rest for testing in a recognition experiment. We repeat this 5 times and report

the average recognition rate for the images down-sampled by a factor of 2, 4, and 8. For

each of those conditions we also compare against the SLR [18], the LRwIn [1], and the

SRC [2] approaches at the peak of their performance. For our approach the optimal penalty

parameters were α = 0.9, β = 1000, γ = 0.01. Figure 6.5 illustrates the comparison between

the recognition rates. For the SRC, we also include what happens when the training set

drops in size from 8 to 5, and from 32 to 20 training images. This experiment highlights

that our approach compares favorably with the others especially when a smaller corrupted

training dataset is available, and works on par with others (SRL and LRwIn) with lots of

training data. This is because our approach inherently attempts learning a global variation

space, shared by all the training data. So, even with fewer training images per person their

aggregation allows learning the variation space better than in other approaches.

Figure 6.5, right, also shows a comparison between the two distances (5.10) and (5.11)

on a subset of the dataset, with 32 training data points per person, against different image

resolutions. Although in our experiments sometimes we found (5.11) to work better, the

Figure 6.4: Extended Yale dataset. Decomposition results for 2 subjects under 8 different
illumination conditions. Row meanings are explained in Figure 6.1. Images are rescaled for
better contrast and visualization.
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Figure 6.5: Extended Yale B dataset. From left to right: Recognition scores at different
image downsampling rates for 8 and 32 training samples per subject; recognition rates ob-
tained with the distance (5.10) (Schema 1) and the distance (5.11) (Schema 2) at various
image resolutions and 32 training samples;

Figure 6.6: Extended Yale B dataset. Running time in seconds of our Matlab implemen-
tations for training and testing.

Frobenius option (5.10), like in this case, appeared more robust.

Running time when doing testing is linear in number of subjects in the training data

and every distance we need to compute is just a dot product. Figure 6.6, shows a running

time comparison between the Matlab implementations of ours, the SLR, and the LRwIn

methods, running on a high-end PC. Our training procedure appears slightly more costly

than the others, but, as anticipated, testing appears faster than SLR by a factor of 10, and

faster than LRwIn by a factor of 25.
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6.1.5 i-LIDS MCTS Dataset.

This dataset [49] contains 476 whole body person images of 119 people captured by

multiple non overlapping surveillance cameras. There are 4 images on average per person.

We excluded subjects who had only 1 or 2 images. All the images are normalized to 128×64

pixels. This dataset is used for person reidentification across camera views. Unlike faces that

can be aligned, people images from unconstrained environments are highly misaligned, and

this dataset pushes the proposed approach beyond limits. Nevertheless, Figure 6.7 shows on

left the decomposition of the 3 training images of two people, and on the right the cumulative

matching curves (CMC) with 30 and with 80 people in the training set. In a CMC curve, a

rank r matching rate indicates the percentage of test (or probe) images with correct matches

found in the top r ranks against the people in the training (or gallery) set. The penalty

parameters were α = 1, β = 100, γ = 1 for 30 subjects, and α = 2, β = 100, γ = 0.1

for 80 subjects. To compare our results with two state-of-the-art approaches, namely the

relative distance comparison (RDC) [49], and SDALF [43], we have used 3 images in the

training set, and 1 image in the testing set per person. We run the experiment four times

to make sure an image is on average part of the probe set once. For SDALF we learned

the signature from 3 images in the training set for fair comparison. Despite the extreme

conditions, to our surprise, from the CMC curves the proposed model is capable of keeping

up with state-of-the-art approaches for higher matching ranks.

6.1.6 CAVIAR4REID

CAVIAR4REID is a new dataset for evaluating person re-identification algorithms. As

the name suggests, the dataset has been extracted from the CAVIAR dataset mostly famous

for person tracking and detection evaluations. It is a challenging dataset because it has

broad changes in resolution and it is extracted from a real scenario where re-identification is

necessary due to the presence of multiple cameras and the pose variations between the im-

ages are severe. For this dataset we carried our experiments in a similar fashion like i-LIDS

dataset.
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Figure 6.7: i-LIDS MCTS dataset. Decomposition results for 2 subjects under 4 different
viewpoints. Row meanings are explained in Figure 6.1. Images are rescaled for better
contrast and visualization.

1 2 3 4 5 6 7 8 9 1011121314151617181920

10

20

30

40

50

60

70

80

90

100

Rank Score

M
a

tc
h

in
g

 R
a

te
(%

)

p=30  ilids Dataset

 

 

Our method
SDALF
RDC
L1
Bhatt

1 2 3 4 5 6 7 8 9 1011121314151617181920

10

20

30

40

50

60

70

80

90

100

Rank Score

M
a

tc
h

in
g

 R
a

te
(%

)

p=50  ilids Dataset

 

 

Our method
SDALF
RDC
L1
Bhatt

1 2 3 4 5 6 7 8 9 1011121314151617181920

10

20

30

40

50

60

70

80

90

100

Rank Score

M
a

tc
h

in
g

 R
a

te
(%

)

p=80  ilids Dataset

 

 

Our method
SDALF
RDC
L1
Bhatt

Figure 6.8: CMC Curve a) p = 30 b) p= 50 c) p =80 Performance comparison using CMC
curves on the i-LIDS MCTS dataset
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Figure 6.9: CMC Curve a) p = 30 b) p= 50 Performance comparison using CMC curves
on the CAVIAR4REID dataset
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Chapter 7

Conclusion

In this work we have introduced a invariance subspace representation. He vae used this

novel representation to address the problem of human identification which contains grossly

corrupted training and testing data. We have formulated our problem by extending the

Robust PCA problem and included label information into the problem to make the learning

a supervised one. Using the techniques of ALM we were able to solve this problem. We

have used our approach to do face recognition and person re-identification. In case of face

recognition we were able to out perform the state-of-the art approaches. Although in case

of person re-identification we were competitive but this is due to the fact the approach is

not designed in a fashion that can cope with huge alignment changes as present in this

problem. One of the main advantages of our approach is that we can use simple geometry

to do recognition. This allows us to improve the running time for doing testing.

We can take this work further ahead. One of the things than can be experimented is

to adapt and extend the problem to do image classification instead of just doing human

identification. Another thing that can be taken care of is that although our approach is

efficient at test time we can try to improve the iterative algorithm to improve the training

time computational complexity.
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