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Abstract 

Culvert Inventory and Effects on Fish Assemblages in a Central Appalachian 
Watershed 

 
Ira Poplar-Jeffers 

 
We surveyed 120 state-owned culverts within the upper Cheat River basin, West Virginia, and 

used a fish passage evaluation filter to quantify passage barriers.  We quantified the length of 

stream and weighted potential brook trout recruitment area isolated by each culvert.  We also 

sampled fish communities upstream and downstream of 24 culverts to quantify the impacts of 

culvert-related isolation on fish assemblages.  We found 69 % of culverts to be completely 

impassable.  We determined that 17 % of the stream length and 23 % of weighted potential 

recruitment area in the study area were isolated by impassable culverts.  We found that 

impassable culverts are more likely to occur on small, steep, streams.  We found that species 

richness and blacknose dace densities were negatively impacted upstream of culverts and 

culverts are more likely to impact species that are limited to larger streams, although culvert-

related impacts are more pronounced on small streams. 
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Executive Summary 

As fish passage barriers, culverts can isolate critical habitats and hold the potential to 

severely impact fish populations.  Streams are particularly vulnerable to fragmentation and there 

is growing concern that culverts may alter stream ecosystems by disrupting connectivity within 

drainage networks.  The improvement or replacement of barrier culverts has the potential to 

restore access to critical habitats for various stream-dwelling organisms.  There is a need for 

further inventory of culverts in West Virginia, as well as a general need for further research into 

the impacts of culverts on stream fish populations and assemblages.  Our research was divided 

into five main objectives.  First, we conducted an inventory of culvert road crossings on state 

roads located within a portion of the upper Cheat River basin, West Virginia, crossing high 

quality streams to summarize culvert barrier conditions.  The second objective was to develop an 

ArcGIS model to quantify the proportion of stream length and potential brook trout recruitment 

area that was isolated by barrier culverts on state roads within the study area.  The third objective 

was to present a prioritized list of stream restoration opportunities at culvert road crossings to the 

West Virginia Division of Highways.  Fourth, we investigated culvert-related impacts on fish 

assemblages within an overlapping portion of the upper basin to assess whether culverts impact 

fish diversity or population densities.  Our final objective was to identify whether culvert-related 

impacts were related to any physical stream characteristics (e.g. channel slope or basin area). 

We surveyed 120 state road culverts within a portion of the upper Cheat River basin, 

West Virginia during the summer of 2003.  At each culvert we measured a number of structural 

variables, including residual inlet and outlet depth, inlet width-average active channel width 

ratio, outlet hang height, and culvert slope. We also noted whether a continuous layer of 

streambed substrate was present and whether baffles or weirs were placed within the culvert for 

fish passage.   We then used a fish passage evaluation filter from Love and Taylor (2003) to 
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characterize the relative passability of each culvert: completely impassable, partially impassable, 

or completely passable.  Finally, we built an ArcGIS model to quantify the length of stream and 

weighted potential brook trout recruitment area (WPRA) isolated by each culvert.  We then 

prioritized each culvert based upon its passage rating and the amount of isolated WPRA.   

During the summer of 2004, we sampled fish assemblages and several habitat variables 

within 150 m stream reaches both above and below 24 culvert road crossings within small 

streams of the upper Cheat River Basin.  We used pairwise Wilcoxon Signed Ranks tests as well 

as stepwise multiple regression analysis to test whether species richness or species densities were 

different upstream of culverts compared to downstream and whether differences could be 

attributed to population isolation upstream of culverts. 

Overall, 69 % of culverts were categorized as completely impassable, 28 % were partially 

impassable, and 3 % were completely passable.  Culvert slope and outlet hang were the main 

determinants of impassable culverts and the likelihood that a culvert was impassable increased 

with increasing stream channel slope.  We determined that 144 km of stream (17 % of study 

area) and 130 km of WPRA (23 % of study area) were isolated by impassable culverts.  We 

found that Shavers Fork section of the upper Cheat basin had the highest extent and intensity of 

habitat isolation.  We found that mean species richness was significantly lower upstream of 

culverts (2.0) than downstream (2.6) (p = 0.014) and no richness effect was observed on any 

stream draining over 3.5 km2.  We found that blacknose dace (Rhinichthys atratulus) densities 

were significantly lower upstream of culverts (8.2 individuals/100 m) than downstream (12.1 

individuals/100 m) (p = 0.011).  The difference in richness could be attributed to either the 

isolation of populations above culverts or a combined isolation-channel gradient effect where 

culvert isolation had more impact where stream slopes are higher upstream of the culvert.  

Differences in blacknose dace densities could be attributed to a culvert-isolation effect only.  
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Moreover, we found that pairwise differences in richness (downstream-upstream) were 

positively correlated with stream distance of the culvert from the mainstem (nearest point 

draining 15 km2) and negatively correlated with longitudinal variation in average flow velocity.  

Finally, we found that culvert effects are more pronounced on species whose core ranges are 

limited to larger streams compared to species that range into smaller streams. 

The upper Cheat River basin is characterized by a high proportion of barrier culverts that 

cause discontinuities within the stream network.  This problem has significant negative impacts 

on stream ecosystems by isolating small streams from larger mainstem rivers.  These findings 

underscore the importance and vulnerability of headwater stream ecosystems and show that 

culvert isolation, among other impacts, has negatively impacted fish assemblages within the 

basin.  However, because culvert-related impacts are most pronounced on ubiquitous species (i.e. 

blacknose dace) and large stream species but greatest on small, steep, streams, we feel that 

culvert-related restoration efforts will not have as much overall benefit to fish assemblages in 

this basin as the remediation of more extensive problems, such as acid deposition.  Additionally, 

these results show that fish passage standards should consider whole communities. 
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Chapter 1  

Literature Review and Objectives. 

Abstract 

Gerking (1959) proposed a theory now known as the 'restricted movement paradigm' that states 

that adult stream-resident fish are sedentary.  However, much of the research that has supported 

this paradigm has been prone to bias against the detection of movement, and we know that fish 

movement is more common than previously thought.  Fish movement is considered to be an 

adaptive response to changing habitat needs and conditions.  Movement is important for the 

location of habitats at the watershed scale and the maintenance of genetic diversity.  Fish move 

in response to variable food availability or to locate spawning habitat, thermal refuge, 

overwintering habitat, or nursery habitat.  There are five common conditions at culverts that 

create movement barriers: excess drop at the culvert outlet, high velocity within the culvert 

barrel, inadequate depth within the barrel, turbulence within the culvert, and debris and sediment 

accumulation at the culvert inlet or internally.  As passage barriers, culverts can isolate critical 

habitats and hold the potential to severely impact fish populations.  Warren and Pardew (1998) 

found that overall fish movement was an order of magnitude lower through culverts than through 

other crossings or natural reaches.  Additionally, numbers of species that traversed crossings and 

movement within three of four dominant fish families (Centrarchidae, Cyprinidae, and 

Fundulidae) were reduced at culverts relative to fords, open-box crossings, and natural reaches 

(Warren and Pardew 1998).  The traditional view was that culverts primarily caused problems 

with anadromous fish populations.  A majority of fish passage research and culvert inventories 

have been conducted in western states with large anadromous fish populations.  There is a need 

for further inventory of culverts in West Virginia, as well as a general need for further research 
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into the impacts of culverts on stream fish populations and assemblages.  The goal of this study 

was to develop culvert replacement prioritization criteria for the West Virginia Division of 

Highways as well as to investigate the impacts of culvert crossings on stream fish communities 

within the upper Cheat River basin, West Virginia.    

Literature Review 

Gerking (1959) proposed a theory about the restricted movement of stream fishes that has 

been considered a paradigm in stream fish biology and is referred to as the ‘restricted movement 

paradigm (RMP).’   This theory stated that adult fish in streams are sedentary and spend most of 

their lives within short reaches of stream, or within a restricted home range (Rodriguez 2002).  

Gerking (1953) defined the term ‘home range’ as the area over which an animal normally travels. 

The RMP guided much of the research into the dynamics of stream fish populations for the next 

30 years and many studies in the past have supported it (Gowan et al. 1994).  However, many of 

the studies that have supported the RMP or have noted the existence of only a small mobile 

population component in the past have employed methods that may be seriously biased against 

detecting fish movement.  These studies have relied on the recapture of marked fish from the 

same areas in which they were released (Gowan et al. 1994; Gowan and Fausch 1996).  Most of 

these analyses were based solely on the portion of originally marked fish that were recaptured 

within the study area or within a close vicinity, and this was often times well under 50 percent of 

the originally marked fish (e.g. Stefanich 1952; Gerking 1953; Shetter 1968; Moore et al. 1985; 

Nakamura et al. 2002).  Using these methods analyses did not include the large proportion of fish 

not recaptured that could have moved very long distances outside of the study area.  In most 

cases, this proportion was too large to be explained simply by mortality.   

 For example, Moore et al. (1985) found that in one stream in the Great Smokey 

Mountains National Park 56.2 % of recaptured adult stream-resident brook trout (Salvelinus 
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fontinalis) were located in the same 300 m sections in which they were released and 83.3 % 

either remained home or moved only one section upstream or downstream.  Preliminarily, this 

would indicate a relatively sedentary population of brook trout, however, of the initial 1,702 

trout originally marked only 24.8 % were actually ever recaptured (Moore et al. 1985).  Nothing 

was, nor could have been concluded about the 75.2 % of trout that were not recaptured.  

Similarly, Nakamura et al. (2002) studied the residency and movement of stream-dwelling 

Japanese charr (Salvelinus leucomaenis) in a central Japanese stream from 1986 to 1989.  The 

researchers in this study found that 31.3-58.3 % of the fish recaptured were located in pools 

where they were originally captured and concluded that the results indicated a large sedentary 

proportion of the population.  However, in this study only 697 of 2,103 fish were ever recaptured 

and, again, those fish which were not recaptured (a majority) were not considered.  Based upon 

this sampling scheme, if there are fish that do display long-distance movements they are much 

less likely to be recaptured because they are more likely to have moved outside of sampled 

sections of stream than sedentary fish.  Any study using this sampling scheme has the potential 

to bias results against movement.   

 On the contrary, some recent literature on stream resident salmonid movement has 

pointed out this bias and has suggested the re-evaluation of this paradigm (Gowan and Fausch 

1996) or that the RMP is incomplete (Rodriguez 2002) or even lost (Gowan et al. 1994).  

Researchers in recent years have found that stream-resident fish movement may be much more 

common than previously thought.  Many researchers have noted a pattern of movement by 

resident stream fish (both cold- and warmwater species) that suggests that there is a large static 

fraction that does not leave a restricted home range and a small mobile fraction of individuals 

that make up a population (Stefanich 1952; Funk 1955; Gerking 1959; Stott 1967; Flick and 

Webster 1975; Solomon and Templeton 1976; Hesthagen 1988; Heggenes et al. 1991).  Burrell 
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et al. (2000) observed upstream spawning migrations by stream-resident brown trout (Salmo 

trutta) in the Chattanooga River during a two-week period in November 1996.  The maximum 

upstream movement during spawning was 7.65 km, which indicated the ability of the brown 

trout in this river to move long distances.  Gowan and Fausch (1996) found that brook trout in 

two high-elevation Colorado streams were highly mobile with movement most common in the 

upstream direction during summer, and about equal upstream and downstream between 

summers. These researchers found that the highest rates of movement occurred during and just 

after runoff and before spawning. They reported that long-range movements were relatively 

common and suggested that movement may be more widespread than currently recognized in 

resident stream salmonids.  Similarly, Riley et al. (1992) studied the movement of brook trout in 

four small streams in Northern Colorado and also found that a large proportion of the brook trout 

sampled were mobile with movement occurring predominantly in the upstream direction. 

Upstream moving fish were also significantly larger than downstream migrants suggesting the 

upstream movement of larger adult fish to spawning areas. These researchers suggested that the 

high degree of movement that was observed could have been an adaptive response by brook trout 

to the heterogeneous nature of small mountain streams (Riley et al. 1992).  Adams et al. (2000) 

also found that upstream movements were more common than downstream movements for brook 

trout during the summer.  They found that marked brook trout ascended stream slopes up to 13% 

for more than 67 meters (Adams et al. 2000).   

Because brown trout are not native to North America and brook trout are not native to the 

Rocky Mountains region, a legitimate argument is that the movements observed in the previously 

mentioned studies might be due to the lack of adaptation by these species to the unique dynamics 

of habitats and flows in these systems.  However, native stream salmonids are also known to 

display substantial movement (Fausch and Young 1995).  Petty et al. (2005) studied native brook 

 7



trout population dynamics in Second Fork, a somewhat acid impacted and physically 

heterogeneous 3rd order tributary to the Upper Shavers Fork of the Cheat River, West Virginia.  

These researchers found that nearly 80 % of native brook trout spawning occurred in tributaries 

with a basin area of less than 3 km
2
 and that spawning intensity was basin-area dependent. 

Furthermore, despite spawning intensity being basin-area dependent, the distribution of large 

spawning adults in subsequent seasons was not associated with spawning intensity.  These results 

were indicative of highly mobile large adults that shifted their distribution seasonally in response 

to shifting habitat requirements and local habitat suitability.  Similarly, Hunt (1974) recorded the 

upstream movement of adult brook trout to spawning grounds in the autumn in Lawrence Creek, 

Wisconsin.   

 Theories of fish dispersal hold that movement is adaptive, conferring advantages to 

individuals in terms of their lifetime fitness (Northcote 1978; Gross 1987).  If the benefits of 

moving to one or more new habitats outweigh the energetic costs of movement and the risk of 

predation, life history types that move should be favored (Gross et al. 1988).  Furthermore, 

because streams are linear systems in which habitat is inherently patchy in space (Pringle et al. 

1988; Scarsbrook and Townsend 1993) and dynamic through time (Poff and Ward 1989), stream 

fishes often must move to find habitats needed to maximize fitness (Fausch and Young 1995).  In 

streams, habitat patches may be distributed at the watershed scale and the importance and 

distribution of habitat patches changes over time due to changes in the needs of fish and temporal 

variation in the physical characteristics of the stream.  Consequently, fish often move long 

distances at the watershed scale to locate suitable habitats.  For example, brook trout have been 

shown to select spawning sites where upwelling groundwater occurs through stream bed 

substrate and substratum particle size and compactness allows redd construction (Bridges 1958; 

Power 1980). These fish may have to move different directions and distances to locate 
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groundwater influenced spawning sites (Power et al. 1999). 

 Although the location of suitable spawning habitat is the most obvious motivation for 

stream-resident fish movement (Kahler and Quinn 1998) there are other factors that influence 

movement.  Fish may move in response to changing water temperatures (e.g. Kaeding 1996) or 

stream discharge, in response to variable food availability (e.g. Petty and Grossman 2004), to 

locate refuge from predators (e.g. Harvey 1991), or in search of habitat suitable for the 

completion of certain life-history stages (e.g. nursery habitat for juveniles, Johnston 1997).    

 Both Clapp et al. (1990) and Meyers et al. (1992) found that habitats used by brown trout 

in the winter were not suitable during the summer due to high water temperatures.  Kaeding 

(1996) studied the use of coolwater tributaries by brown trout and rainbow trout (Oncorhynchus 

mykiss) in the Firehole River, a geothermally heated stream in Yellowstone National Park, 

Wyoming.  The Firehole receives substantial amounts of geothermally heated, mineralized water 

from hot springs and geysers.  In the summer, both species moved to coolwater tributaries and 

mainstem areas upstream from the major sources of geothermal effluents and used these areas as 

refuges from elevated water temperatures (Kaeding 1996).  Several studies have noted the 

movement of trout to suitable overwintering sites.  For example, Brown and Mackay (1995) 

studied the fall and winter movements of stream-resident cutthroat trout (Oncorhynchus clarki) 

in the Ram River, Alberta.  These researchers found that these fish moved out of summer 

habitats in mid-September, and many made a dramatic shift in habitat use from summer to winter 

that was associated with anchor ice formation.  When the fish were excluded from fall habitats 

by anchor ice, they moved to overwintering areas less likely to be influenced by frazil and 

anchor ice: deep pools with ice cover or areas where water temperatures were higher than the rest 

of the stream because of springs or upwelling warm groundwater (Brown and Mackay 1995).  

Bjornn and Mallet (1964) noted a pattern of downstream movement in the fall and winter 
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following upstream movement to spawning areas in the spring for stream-resident cutthroat trout.  

Several studies have noted the downstream movement of brook trout during the winter from fall 

habitats to reach overwintering areas.  These areas include lower gradient reaches with dense 

cover or surface ice, deeper pools, and slower current velocities (Cooper 1953; Logan 1963; 

Hunt 1974; Chisholm et al. 1987).  Petty and Grossman (2004) found that juvenile mottled 

sculpin (Cottus bairdi) in Shope Fork, North Carolina, exhibited higher growth rates among 

groups of ‘movers’ (individuals that moved more than 2 m between seasonal captures) than 

among ‘stayers’ (individuals that moved less than 2 m).  This result indicated that ‘movers’ were 

better able to garner scarce resources by moving. 

Movement is important, especially in physically heterogeneous habitats, to many stream-

resident fish populations in order to locate thermal refugia and refuge from predators, locate 

suitable spawning and foraging habitats, recolonize decimated stream reaches, maintain genetic 

diversity between subpopulations, and locate habitats suitable for the completion of various life-

history stages.  Additionally, fish movement and influences on movement (e.g. population size 

structure, stream flow, distribution of critical habitats) hold important consequences for 

population regulation and dynamics.  For example, Petty and Grossman (2004) found that 

juvenile mottled sculpin had faster growth rates when movement rates were high, but exhibit less 

movement when large adult densities are high.  Additionally, sedentary adults exhibited higher 

growth rates than mobile adults.  So when adult densities were low, juveniles moved more and 

grew at faster rates and adults moved less and also grew faster, probably facilitating rapid 

population growth.  When adult densities were high, the opposite effect probably took place, 

facilitating population decline (Petty and Grossman 2004).  It is clear that barriers to movement 

can have drastic effects on stream-resident fish populations, communities, and the ecosystems to 

which they belong.  There are many structures, both natural and anthropogenic, that can act as 

 10



fish passage barriers [e.g. natural waterfalls, beaver (Castor canadensis) dams, man-made dams, 

road crossings, etc] and this list includes culvert road crossings.   

The primary literature concerning culverts as barriers to stream resident fish movement is 

relatively limited, however there have been several studies (e.g. Belford and Gould 1989; 

Thompson and Rahel 1998; Warren and Pardew 1998; Wellman et al. 2000; Gibson et al. 2005).  

Warren and Pardew (1998) used mark-recapture techniques to examine the effects of four types 

of road crossings (culvert, slab, open-box, and ford) on fish movement in small streams of the 

Ouachita Mountains.  These researchers found that ford and open-box crossings showed little 

difference from natural reaches in overall movement of fishes.  However, overall fish movement 

was an order of magnitude lower through culverts than through other crossings or natural 

reaches.  The numbers of species that traversed crossings and movement within three dominant 

fish families (Centrarchidae, Cyprinidae, and Fundulidae) were also reduced at culverts relative 

to ford and open-box crossings and natural reaches.  They found that water velocity at crossings 

was inversely related to fish movement and culvert crossings consistently had the highest 

velocities (Warren and Pardew 1998).   Thompson and Rahel (1998) evaluated the effectiveness 

of two gabion and two culvert barriers in preventing the upstream movement of non-native brook 

trout which were competing with and encroaching upon native Colorado River cutthroat trout 

(Oncorhynchus clarki pleuriticus) in four small Rocky Mountain streams in Colorado.  Culverts 

in this study were found to be effective barriers as only one brook trout out of 118 that were 

marked and released downstream of culverts was subsequently found upstream.  The researchers 

postulated that this single trout was probably transported by an angler (Thompson and Rahel 

1998).  Belford and Gould (1989) studied culvert water velocities critical to the passage of four 

species of non-anadromous trout (rainbow trout, brown trout, cutthroat trout, and brook trout) 

through six highway culverts 45-93 m in length.  Because of the similarity of the strenuous 
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passage relations among species, they concluded that the spawning rainbow trout criterion could 

be used as the general criterion for passage of all species studied concluded that these trout could 

swim distances of 10, 30, 50, 70, and 90 m through culverts with mean bottom velocities up to 

0.96, 0.80, 0.74, 0.70, 0.67 m/s, respectively (Belford and Gould 1989).  

It is obvious from the literature that barrier culverts can create problems for upstream 

moving fish.  Moreover, culverts may not need to be complete barriers to drastically affect fish 

populations.  Even if stronger adult fish can obtain passage, juveniles might not be able to.  

Passage may only be possible at high or low flows or only physically possible for stronger 

individuals (USFS 2002).  Additionally, pre-spawn fish may deplete vital energy stores critical to 

spawning while attempting to successfully traverse a barrier or delay spawning later than optimal 

for egg survival (USFS 2002).  The overall result may be the under-utilization of available 

habitat by all or a portion of the population, the isolation of critical seasonal habitats (i.e. 

overwintering habitats or thermal refuge during the summer), or the isolation of habitats critical 

to certain life-stages (i.e. nursery habitat for juvenile fish or spawning habitat for adult fish).  

These results have the potential to negatively impact population size and range.  Moreover, the 

failure to provide fish passage at road crossings can reduce the genetic diversity of isolated 

resident fish populations or cause their complete loss after catastrophic events (USFS 2002).   

There are five common conditions at culverts that create migration barriers: excess drop 

at the culvert outlet, high water velocity within the culvert barrel, inadequate water depth within 

the culvert barrel, turbulence within the culvert, and debris and sediment accumulation at the 

culvert inlet or internally.  The interior surface of a culvert is usually designed to optimize water 

passage and it does not have the necessary roughness and complexity needed to slow down the 

flow. Instead, culverts tend to concentrate and dissipate energy in the form of increased velocity.  

Turbulence or downstream channel scour are the most prevalent blockages at culverts (Bates 
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2003).  

The impacts of culverts could possibly extend further than fish.  Culverts also can impact 

the ecosystems to which fish belong.  For example, the parasitic larval stage (glochidia) of 

freshwater mussels depends upon the movement of host organisms, fish, to disperse upstream.  

Any culvert blocking the upstream passage of fish hosts also will prevent mussels from 

colonizing habitat within their ranges (Vaughan 2002).  Additionally, fish are keystone predators 

in most small streams and probably act to regulate populations of several species of prey.  The 

exclusion of fish predators from these ecosystems could potentially have drastic top-down effects 

on entire food webs, releasing predation pressure from some members and allowing them to 

unnaturally thrive. 

The traditional view was that culverts primarily caused problems with anadromous fish 

populations.  So a majority of fish passage research and culvert inventories have been conducted 

in western states, such as Washington and Oregon, with large anadromous fish populations 

(Baggett et al. 2001).  Evidence shows, in most states, that a large proportion of culverts act as 

passage barriers and these culverts probably have a large impact on mobile fish populations.  

Furthermore, there is growing evidence that we should be concerned with culvert effects on 

stream-resident fish in addition to anadromous fish (e.g. Warren and Pardew 1998).  Clearly 

there is a need for further inventory and barrier assessment of culverts in West Virginia, as well 

as a general need for further research into the effects of culverts on stream-resident fish 

populations and communities.  

Goals and Objectives 

The two research goals of this study were to develop ranking criteria for the West 

Virginia Division of Highways for use as a prioritization tool for stream restoration sites at 

culvert crossings on state roads and to investigate the impacts of culvert crossings on stream fish 
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assemblages within the upper Cheat River basin of West Virginia.  These two goals are separated 

into two separate chapters.   

The first objective within the first research goal (chapter 1) was to conduct an inventory 

of culvert road crossings on state roads located within a portion of the upper Cheat River basin, 

West Virginia, crossing high quality streams to summarize culvert barrier conditions.  The 

second objective was to develop an ArcGIS model to quantify the proportion of stream length 

and potential brook trout recruitment area that was isolated by barrier culverts on state roads 

within the study area.  And the final objective was to present a prioritized list of stream 

restoration opportunities at culvert road crossings to the West Virginia Division of Highways.  

This list was prioritized by the amount of potential brook trout recruitment area isolated by 

barrier culverts.    

The first objective of the second research goal (chapter 3) was to investigate culvert-

related impacts on fish assemblages within a portion of the upper Cheat River basin, West 

Virginia to assess whether culverts impact fish diversity or population densities.  A secondary 

objective was to identify whether culvert-related impacts were related to any physical stream 

characteristics (e.g. channel slope, basin area, or median substrate size). 
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Chapter 2 

Survey and Prioritization of Fish Passage Restoration Opportunities at State-

Owned Culvert Road Crossings in the Upper Cheat River Basin, West 

Virginia. 

Abstract 

Streams are heterogeneous ecosystems and fishes often need to move to locate habitats at the 

watershed scale.  Consequently, streams are particularly vulnerable to fragmentation and there is 

growing concern that culverts and other road crossings may alter stream ecosystems by 

disrupting connectivity within drainage networks.  The improvement or replacement of barrier 

culverts has the potential to restore access to critical habitats for various stream-dwelling 

organisms.  However, before such a management action is taken, it is necessary to inventory 

potential culvert barriers and develop a system of prioritization.  We surveyed 120 state road 

culverts within a portion of the upper Cheat River basin, West Virginia during the summer of 

2003.  At each culvert we measured a number of structural variables, including residual inlet and 

outlet depth, inlet width-average active channel width ratio, outlet hang height, and culvert slope. 

We also noted whether a continuous layer of streambed substrate was present and whether 

baffles or weirs were placed within the culvert for fish passage.   We then used a fish passage 

evaluation filter from Love and Taylor (2003) to characterize the relative passability of each 

culvert: completely impassable, partially impassable, or completely passable.  Finally, we built 

an ArcGIS model to quantify the length of stream and weighted potential brook trout recruitment 

area (WPRA) isolated by each culvert.  We then prioritized each culvert based upon its passage 

rating and the amount of isolated WPRA.  We observed the following characteristics at survey 

culverts: 93 % of culverts did not have a continuous layer of streambed substrate, 98 % did not 
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have residual inlet and outlet depths of over 0.15 m, 77 % had inlets that were narrower than the 

average active channel width, 61 % were hanging at the outlet (13 % were hanging over 0.61 m), 

and 68 % had slopes of over 3 %.  No culverts contained baffles or weirs.  Overall, a majority 

(69 %) of culverts were categorized as completely impassable, 28 % were partially impassable, 

and 3 % were completely passable.  We determined that culvert slope and outlet hang were the 

main determinants of impassable culverts and that the likelihood that a culvert was impassable 

increased with increasing stream channel slope.  We determined that 144 km of stream (17 % of 

study area) and 130 km of WPRA (23 % of study area) were isolated by impassable culverts.  

We found that Shavers Fork section of the upper Cheat basin had the highest extent and intensity 

of habitat isolation and we suggest that initial restoration efforts be concentrated in this 

watershed.  The upper Cheat River basin is characterized by a high proportion of barrier culverts 

that cause discontinuities within the stream network.  In addition to other factors, this problem 

has significant negative impacts on stream ecosystems by isolating small streams from larger 

mainstem rivers.   

  Introduction 

 There is growing recognition within the scientific community that aquatic ecosystems 

that are functionally intact and biologically complex provide valuable benefits to human society.  

These benefits are termed ecological services and they include flood control, transportation, 

recreation, purification of wastes, production of foods and other marketable goods, and habitat 

for plants and animals.  Healthy aquatic ecosystems are more likely to sustain these services over 

the long-term (Baron et al. 2003).  Anthropogenic activities that negatively impact an aquatic 

ecosystem can reduce that ecosystem’s structural integrity, ability to function naturally and 

ability to provide ecological services.  These services are costly and often impossible to replace 

after degredation (Baron et al. 2003).  More often than not, ecosystem values are ignored and 
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long-term harm to an ecosystem is poorly quantified.  This harm is often perceived to be 

outweighed by short-term gain when political and bureaucratic decisions are made regarding 

resource use (Dodds 2002).  The maintenance of aquatic ecosystem integrity is a legitimate goal 

that must be considered among the competing demands on water resources (Baron et al. 2003). 

 Stream ecosystems are patchy in space (Pringle et al. 1988; Scarsbrook and Townsend 

1993) and dynamic through time (Poff and Ward 1989).  Consequently, stream fishes often must 

move to find habitats needed to maximize fitness (Fausch and Young 1995). Streams are 

particularly vulnerable to fragmentation, and there is growing concern about the role of culverts 

and other road crossings in altering habitats and disrupting stream continuity (Jackson 2003).  

The replacement of natural streambed substrate with an artificial crossing usually results in the 

loss of habitat value at some scale.  Even if a culvert is not a fish migration barrier at the 

watershed scale, it can still impact habitat at the micro-scale by creating a discontinuity in the 

natural streambed substrate.  In general, culvert crossings provide little habitat.  This habitat loss 

can sometimes be partially avoided if the culvert is sufficiently embedded such that the substrate 

in the culvert resembles the natural streambed substrate or if open-bottom culverts or bridge 

crossings are installed (Jackson 2003).  However, installing open bottom culverts and bridges is 

much more expensive than installing typical circular culverts in most cases.  Additionally, while 

open-bottom culverts are the preferred type of culvert for allowing fish passage and providing 

adequate in-stream habitat, they may not always be the most advantageous from hydraulic, 

structural, or foundations points of view (McClellan 1970).   

 Common culvert types include circular, open-bottom arch, pipe arch, and box culverts.  

The most popular construction materials are corrugated steel pipe and concrete but other 

construction materials include structural steel plate, aluminum, and wood (Love and Taylor 

2003).  As a result of these popular designs and construction materials, culverts typically lack the 
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roughness and complexity associated with stream channels and can constrict flow and increase 

water velocities if not properly sized or sloped.  Culverts can, therefore, cause various 

geomorphic problems within stream channels.  For example, White (2004) found that three-

quarters of the culverts surveyed within the upper Cheat River basin were undersized and could 

not convey bankfull discharge.  Culverts that cannot convey bankfull discharges can cause 

streams to impinge the floodplain, add shear stress at the inlet, cause aggradation, and promote 

scouring (White 2004).  Moreover, White (2004) found that culverts were not installed at the 

same gradient as upstream, downstream, or overall reach gradients.  Generally geomorphic 

impacts are directly linked to the ecological impacts that culverts have on streams.  Culvert 

crossings can constrict streamflows and water can pond upstream resulting in the accumulation 

of sediment above culverts as well as excess scour directly downstream due to increased water 

velocities inside culvert barrels.  Such scouring below culverts may cause undermining or result 

in excess hang at culvert outlets that function as fish migration barriers (Jackson 2003).  

Additionally, high water velocities within the culvert barrel, inadequate depth within the culvert 

barrel, the deposition and aggradation of fine sediments not suitable for fish resting spots above 

the culvert, and debris blockages at the inlet may impede fish passage (Baggett et al. 2001).  

As migration barriers, culverts can isolate potentially critical habitat to fish and various 

other organisms within the associated stream ecosystem, including mobile stream-resident fish 

such as brook trout (Salvelinus fontinalis).  Through habitat fragmentation, culverts and other 

road crossings have the potential to alter important ecosystem functions (e.g. providing quality 

spawning habitat to migratory fish populations) and degrade ecosystem integrity.  

Although native brook trout have suffered declines in the central and southern 

Appalachian mountains (Nagel 1991; Flebbe 1994; Marschall and Crowder 1996) strong 

populations remain within the upper Cheat River basin.  However, these remnant populations are 
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often isolated in small tributaries.  Within this watershed adult brook trout prefer to spawn in 

small tributaries (basin area < 3 km2) regardless of their distribution in subsequent seasons, 

resulting in seasonal shifting of distributional patterns (Petty et al. 2005).  This distributional 

shifting, or movement, to critical areas as habitat requirements change clearly emphasizes the 

importance of watershed connectivity to brook trout and their associated stream ecosystem.  

Several other researchers have shown that stream-resident salmonids are highly mobile (e.g. 

Riley et al. 1992; Gowan and Fausch 1996; Burrell et al. 2000).  Kahler and Quinn (1998) 

concluded that resident and anadromous juveniles, as well as resident adult salmonids, are often 

highly mobile with upstream movement occurring in nearly all studies that were designed to 

detect it.  It was suggested that a prudent assumption is that if salmonids are present within the 

system, they will likely move upstream and the timing and extent of that movement may vary on 

a stream by stream basis (Kahler and Quinn 1998).   

Culverts can act as movement barriers to stream fish (e.g. Thompson and Rahel 1998; 

Warren and Pardew 1998) and therefore act as discontinuities within the stream network.  As 

road-building continues, culverts are increasingly placed in streams causing the additive isolation 

of potentially critical habitat to stream fish and other organisms that could benefit from access to 

this habitat.  Therefore, the improvement or replacement of barrier culverts with non-barrier 

culverts or bridges in watersheds with high road densities has the potential to restore access to 

critical habitats for various stream-dwelling organisms.  By taking these actions a considerable 

amount of ecological function could be recovered within associated aquatic ecosystems.   

Before such a management action is taken, however, it is necessary to inventory potential 

culvert barriers and develop a system of replacement prioritization.  Consequently, the objectives 

of this research were three-fold: 1) survey all state-owned culverts within a portion of the Cheat 

River Basin, West Virginia, and quantify structural features as they relate to fish passage 
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barriers, 2) quantify the proportion of culverts that are likely barriers to fish passage and the 

length of stream habitat isolated upstream of passage barriers, and 3) develop a functional 

measure of brook trout spawning habitat and use it to identify specific restoration priorities 

within the upper Cheat River basin.   

Study Area 

The upper Cheat River basin is located in Pocahontas, Randolph and Tucker Counties, 

West Virginia, and consists of all water draining to the confluence of Black Fork and Shavers 

Fork near the town of Parsons (Figure 1).  These two rivers form the Cheat River, a major 

tributary to the Monongahela River.  Black Fork is formed at the confluence of Dry Fork and the 

Blackwater River 6.4 km upstream of the Shavers Fork-Black Fork confluence.  Both Dry Fork 

(6th order) and Shavers Fork (5th order) support cool-water fisheries and drain coldwater 

tributaries characterized by low overall productivity and simple biological communities.   

The Dry Fork and Shavers Fork drainages were the main focus of this project.  

Specifically, the study area included the following streams and their tributaries that were referred 

to as sections.  Sections were not referred to as watersheds because, in several cases, large 

portions of the drainage were excluded from the study due to water quality impairment or lack of 

roads.  The study sections included lower Dry Fork (downstream of the Gandy Creek confluence 

and excluding Red Creek, Glady Fork, Otter Creek, and Laurel Fork), upper Dry Fork (Gandy 

Creek, 4th order; and Dry Fork upstream of Gandy Creek confluence, 3rd order), and Shavers 

Fork.  These four sections were chosen due to their abundance of relatively high quality 

tributaries and high road densities.  It will be important to note that Dry Fork, especially in upper 

sections, is characterized by geology such that flow tends to go subsurface during the summer 

months and the stream channel turns dry in many areas.  Consequently, many relatively large 

tributaries are ephemeral in the Dry Fork watershed. 
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The upper Cheat River basin ranges in elevation from 494 to 1,476 m.  Other general 

physical characteristics are listed in Table 1 and are divided by section.  Both Randolph and 

Tucker Counties are characterized by humid-temperate climates.  Winters are cold and snowy at 

high elevations and valleys also are cold and snowy but have intermittent thaws.  Summers are 

mildly warm at high elevations and very warm with the occasional very hot day in the valleys.  

The average annual temperature is 9.7o C in Randolph County (Pyle et al. 1982) and 9.4o C in 

Tucker County (Losche and Beverage 1967).  Mean annual precipitation in Randolph County is 

107 cm and 55 % of this precipitation usually falls between April and September (Pyle et al. 

1982).  Mean annual precipitation in Tucker County is 135 cm (Losche and Beverage 1967).  

Methods 

Culvert Survey 

We first identified all road-stream intersections within the study area in ESRI ArcGIS 

v8.3.  A digital 1:24,000 scale topographic layer, as well as linear road and 1:24,000-scale linear 

stream shapefiles were used for this task.  We opted not to survey culverts crossing highly 

degraded streams [2002 West Virginia Impaired Waters and Impairments List] or culverts 

crossing streams draining less than 0.44 km2 (100 acres).  This decision was based on the fact 

that restoring connectivity to these streams would likely have relatively little benefit to fish 

populations compared to larger streams with good water quality.  We also opted not to survey 

culverts on private drives or forest service roads (state routes only), or culverts under busy 

highways that were deemed to dangerous to survey.   

An exhaustive survey of 120 culverts was performed throughout the three study sections 

during the summer and fall of 2003 (June-November).  This project was part of a broader project 

looking at stream stability, geomorphology, in-stream and riparian habitat, and amphibian and 

fish passage at road crossings (White 2004; Ward 2005).  A full list of parameters surveyed at 
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each culvert is given in Table 2.  However, in this paper we focus only on those variables known 

to influence fish passage. 

Culvert surveys were conducted in seven separate steps.  In step one, we documented a 

variety of site-descriptive information at each culvert including road number, road type (e.g. 

paved or gravel, one-lane or two-lane), watershed (e.g. Shavers Fork, lower Dry Fork, or upper 

Dry Fork), stream name, USGS quagrangle, county, and global positioning system coordinates.   

In step two, we documented a variety of site conditions including flow level (e.g. low, 

isolated pools, low, moderate, high, very high), and whether there was any obvious water quality 

impairment (e.g. iron floculant from acid mine drainage or high levels of algae growth) or 

channel relocation.  We additionally recorded adjacent land-use conditions (e.g. pristine, low 

impact, moderate impact, severe impact) and whether we observed aquatic organisms.   

In step three, we measured specific aspects of each culvert, such as the diameter of the 

culvert barrel (m), culvert length (m), and culvert hang height at the outlet (m).  We also 

recorded the culvert type (circular, pipe arch, or box), construction material (corrugated steel, 

aluminum, concrete, stone, or wood), sediment thickness (cm) at both the inlet and outlet, 

whether the bottom of the culvert was embedded in the streambed, and whether the culvert 

contained baffles or weirs for fish passage. 

In step four, we measured a variety of channel dimensions including bankfull depth (m), 

bankfull width (m), and active channel width (ACW) (m).  Bankfull and active channel widths 

were the mean of four measurements taken at representative riffle sections located upstream of 

the culvert.  To calculate bankfull width, we stretched a meter tape across the channel in the 

riffle location where the bankfull level was easiest to identify.  We then measured bankfull depth 

at four evenly spaced intervals across this transect and took the mean of these measurements.   

A variety of geologic, soils, and geomorphic data were measured and recorded in step 
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five.  These data were used in the geomorphic and channel stability assessment section of this 

project (White 2004).  This step included observational data (e.g. bedrock unit, valley type, and 

rosgen stream classification) as well as measurements (e.g. bank scour dimension above and 

below the culvert and aggradation dimensions above the culvert).  

In step six, we recorded a variety of information regarding in-stream habitat and riparian 

corridor conditions including an EPA Rapid Visual Habitat Assessment (Barbour et al. 1999) 

upstream and downstream of the culvert, an estimate of the percent of forested canopy cover in 

the riparian zone (above, below, left and right of the culvert), an estimate of the percent canopy 

cover of vegetation altered by the road crossing (above, below, left and right of the culvert), an 

estimate distance from the culvert to riparian trees or shrubs (above, below, left and right of the 

culvert), and whether or not the crossing appeared to be a barrier to riparian species movement 

(left and right of the culvert).  Moreover, we noted whether there was a continuous layer of 

streambed substrate located within the culvert. 

In step seven of each survey, we conducted a longitudinal topographic survey of reaches 

upstream and downstream of each culvert.  Reach length was set equal to 30 x ACW with the 

culvert placed at the center of the reach.  These surveys were performed with a Leica Rugby 

100LR laser level and a Leica Rod-Eye Pro sensor.  We recorded streambed elevations (m) at the 

following points in this order: head of the riffle nearest the upstream end of the reach, culvert 

inlet elevation and water depth (m), culvert outlet elevation and water depth (m), elevation and 

water depth (m) at the deepest point within 2 m downstream of the outlet, elevation and water 

depth (m) at the point of maximum depth within the outlet pool, elevation and water depth (m) at 

the tailwater control of the outlet pool (i.e. point where the outlet pool transitions into riffle), 

elevation of the active channel margin at the point of tailwater control, and elevation at the head 

of the riffle nearest the downstream end of the reach.  In addition to these elevations, elevations 
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at major changes in channel slope were taken during most surveys. 

Culvert Classification   

After surveys were complete, data were compiled and we used the stream-resident 

salmonid passage protocol of Love and Taylor (2003) to estimate the relative “passability” of 

each surveyed culvert.  We had planned, originally, to use USDA Forest Service software, 

FishXing, to estimate the passability.  However, we found that this software rated all of our 

culverts impassable for even the strongest-swimming species, including culverts that were 

obviously not fish passage barriers.  Consequently, we opted to use the passage filter from Love 

and Taylor (2003).  Even though this filter was developed in California, we felt that it was 

appropriate for use in our West Virginia study because it was developed for stream-resident 

trout.  Passage standards for stream resident trout in California are adequate for stream-resident 

trout in West Virginia and, if anything, are conservative due to the extremely steep nature of 

most of the streams in our study area.  We believe that any culvert that was classified as a fish 

passage barrier using this filter within our study area, was classified conservatively.  This 

protocol incorporates six criteria into a filter to classify culverts into one of three types (Figure 

2).  Type one culverts (also known as “green” by Love and Taylor 2003) are considered 

completely passable to all salmonid species (Love and Taylor 2003).  Type two (“gray”) culverts 

are considered partially impassable.  Type three (“red”) culverts are considered completely 

impassable.  The six criteria that determine this classification include: the presence of a 

continuous layer of streambed substrate, residual inlet and outlet depths, inlet width-ACW ratio, 

outlet hang height (vertical distance from the culvert outlet elevation to the outlet pool water 

surface elevation), culvert slope, and the presence of baffles or weirs within the culvert for fish 

passage (Figure 3).   

 28



Residual inlet and outlet depths, as well as culvert slope, were calculated from 

longitudinal survey data.  Residual inlet depth is the difference in elevation between the tailwater 

control and the inlet and residual outlet depth is the difference in elevation between the tailwater 

control and the oulet.  Culvert slope was calculated by dividing the difference between the inlet 

and outlet elevations by the length of the culvert and multiplying by 100, resulting in a percent 

gradient.  Inlet width-ACW ratio was calculated by dividing culvert inlet width (measured in 

survey step 3) by ACW (measured in survey step 4).     

A point to note is that Love and Taylor (2003) used a critical culvert slope value of 3 % 

as a cutoff value for “red”, or barrier, culverts.  At first, a 3 % slope seemed conservative for 

culverts crossing mountain streams where it is not uncommon to find brook trout in stream 

reaches steeper than 3 %.  In fact, Adams et al. (2000) found that brook trout in several 

headwater streams in Idaho ascended stream channels with slopes of 13 % for more than 67 m 

and 22 % for more than 14 m.  However, high gradient streams and culverts do not behave 

similarly.  In streams, flow is typically not as constricted as it is in culverts and the natural 

streambed substrate usually has a certain amount of associated roughness that creates resting 

habitat and slows down flow.  All culverts we surveyed were made of either corrugated steel or 

concrete and these materials do not slow down flow.  Moreover, most streams of this nature 

usually consist of step pools where trout can rest and culverts do not typically contain step pools.  

Culverts installed at greater than a 3 % grade are probably “high-velocity” barriers at least part of 

the time and even partial barriers have the potential to impact fish communities (USFS 2002).  

For these reasons we decided to keep the value of 3 % used by Love and Taylor (2003).  

In our second objective, we quantified the proportion of road crossings that are likely 

barriers to fish passage.  We also sought to determine the most common features of culverts 

(hang height, culvert slope, inlet width-ACW ratio, lack of continuous substrate within the 
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culvert, or lack of residual inlet and outlet depth) that make them barriers and to determine 

whether certain physical stream features differed greatly between barrier culverts and partial or 

non-barrier culverts.  The stream features we analyzed include: basin area at the culvert (km2), 

ACW, and channel slope (%).  Channel slope was calculated by dividing the difference in 

elevation at the upstream and downstream ends of the reach by the reach length and multiplying 

this value by 100, resulting in a percentage.   

Quantifying the Amount of Habitat Isolated by Culverts  

We used ArcGIS v8.3 to model and quantify the total length of stream in the study area 

that is isolated from downstream reaches by impassable culverts and to quantify a functional 

measure of brook trout spawning habitat isolated upstream of impassable culverts.  For this 

functional measure of brook trout spawning habitat we used the weighted potential recruitment 

area (WPRA) index published in Petty and Thorne (2005).  This index reflects both the length of 

stream as well as the relative ecological value of stream habitat located above each culvert.  

Weighted potential recruitment area was first used by Petty and Thorne (2005) to identify acid 

precipation-impacted stream restoration priorities in the Shavers Fork Watershed. 

The WPRA for a given 1:24,000-scale stream segment was calculated by multiplying the 

length of the segment (km) by the expected spawning intensity for that segment.  Expected 

spawning intensity is a value ranging from 0 to 1 and is a measure of the expected level of brook 

trout spawning intensity given the basin area at the base of the stream segment.  To predict 

spawning intensity, we used data from an earlier study that examined a variety of 

physicochemical factors influencing brook trout spawning intensity (Petty et al. 2005).  This 

study found that among many other factors basin area alone explained nearly 80 % of variation 

in brook trout spawning and that spawning intensity was highest in streams draining less that 1 

km2 and decreased rapidly with increasing basin area (Petty et al. 2005).  Weighted potential 
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recruitment area is also a product of an expected juvenile survivorship value.  This value ranges 

from 0 to 1 given the alkalinity within the segment (high alkalinity reaches have higher juvenile 

survivorship).  We assumed that all reaches in our study area had high alkalinity because our 

culvert inventory was conducted only in streams possessing relatively good water quality.   

Therefore, we assumed that expected juvenile survivorship was not a factor limiting brook trout 

recruitment in these reaches and values of 1 were assigned to all reaches. 

Using ArcGIS v8.3, we first calculated the length of each stream segment within the 

study area using a 1:24,000-scale linear shapefile.  We then summed the lengths of all segments 

within the study area as well as the lengths of all segments located above each culvert.  Basin 

area was modeled using a filled 10 m digital elevation model (DEM) developed by the West 

Virginia University Natural Resource Analysis Center (NRAC) for the entire Cheat River Basin.  

We used the hydrology model sample extension 1.1 of ArcMap to derive a flow accumulation 

grid from the DEM.  Using the flow accumulation grid the drainage area at any point within the 

basin could be calculated.  We then attributed the basin area at the base of the segment to each 

stream segment as well as a basin area value to each culvert.  We then derived expected 

spawning intensity from the basin area value for each segment.   

After calculating WPRA for each segment, we summed the WPRA for all stream 

segments within the study area and for all segments located above each culvert.  If there was a 

known impassable or partially impassable culvert located upstream we only summed the WPRA 

of segments upstream to, and not isolated by, that culvert.  We used this total WPRA as an 

estimate of the relative extent of ecological loss that could be attributed to each culvert.   

Culvert Replacement Priorities 

After the culverts were assigned into passage categories using the fish passage evaluation 

filter (Figure 2) they were sorted by category.  “Red” culverts were placed at the highest priority 
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for replacement, followed by “gray” culverts, and “green” culverts were the lowest priority.  We 

then sorted all of the culverts within each category by decreasing WPSA.  This procedure 

resulted in a list of prioritized culvert replacement priorities to be presented to the West Virginia 

Division of Highways (WVDOH). 

We then summed the WPRA loss extent above “red” culverts within each section and 

calculated the habitat loss intensity for each study section.  Loss intensity is the total loss extent 

by “red” culverts divided by the total ideal WPRA for the study section given no disconnectivity 

within the stream network.  We multiplied this value by 100, resulting in a percentage.  We then 

plotted loss intensity against loss extent and were able to identify one study section as the highest 

restoration priority.  

Results 

A majority (55 %) of culverts were circular and most (79 %) were constructed of 

corrugated steel pipe.  Other culvert types included pipe arch culverts (30 %), box culverts (11 

%), and circular/box culvert combinations (4 %).  Other construction materials included concrete 

(17 %), combinations of corrugated steel and stone (3 %), and combinations of concrete and 

stone (1 %).  For a full set of culvert inventory data refer to White (2004).  

Overall, we surveyed only 3 culverts that were classified as completely passable (green).  

Thirty-four culverts were partially impassable (gray) and a majority of culverts surveyed (83 

culverts) were categorized as completely impassable (red) (Figure 4).   By study section, the 

proportion of red culverts to all culverts surveyed ranged from 63 % to 75 % and Shavers Fork 

contained the most red culverts (Figure 5).  All 120 culverts surveyed violated at least two of the 

critical criteria within the Love and Taylor (2003) filter and a majority (54 %) violated at least 

five (Figure 6).  The most common violations involved a combination of low residual inlet or 
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outlet depth, lack of streambed substrate within the culvert, high culvert slope, and inlet-ACW 

ratios of less than one (Figure 7). 

Only 7 % of culverts contained continuous streambed substrate along the culvert barrel 

(Figure 8).  All 83 impassable culverts lacked a continuous layer of streambed substrate, while 

79 % of partially impassable culverts lacked a continuous layer of substrate, and only two out of 

three completely passable culverts lacked streambed substrate (Figure 9).  Ninety-eight percent 

of culverts had a residual inlet or outlet residual depth less than 0.15 m (Figure 10).  We found 

that proportions of impassable and partially passable culverts with a residual inlet or outlet depth 

of less than 0.15 m were 100 % for both groups, while one out of the three passable culverts had 

a residual inlet or outlet depth of less than 0.15 m (Figure 11).  Inlet-ACW ratio ranged from 

0.13 to 1.85 with a mean of 0.77 among all culverts.  Seventy-seven percent of culverts had an 

inlet width that was narrower than the mean active channel (Figures 12a and 12b).  Outlet hang 

height ranged from 0 m to 1.75 m with a mean of 0.29 m among all culverts.  Fifty-one percent 

of culverts were perched at the outlet and 13 % had a hang height of over 0.61 m, the critical 

outlet height in the fish passage filter (Figures 13a and 13b).  Culvert slope ranged from -0.1 % 

to 16.5 % with a mean of 5.11 % and 68 % of culverts had a slope of over 3 % (Figures 14a and 

14b).   

Outlet hang and culvert slope were the two most important culvert characteristics creating 

barriers (Figures 15 and 16).  The mean hang height was much higher among impassable culverts 

(0.40 m) than among partially impassable or completely passable culverts (0.05 m and 0 m, 

respectively) (Figure 15b).  Additionally, the cumulative occurrence of red culverts increased 

with increasing hang height at a greater rate than the cumulative occurrence of all culverts at 

hang heights greater than zero, and especially at hang heights greater than 0.44 m (Figure 16b). 

Mean culvert slope was much higher among impassable culverts (7.0 %) than among partially 
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impassable and completely passable culverts (1.4 % and 2.4 %, respectively) (Figure 15c).  The 

cumulative occurrence of red culverts increased at a greater rate than the cumulative occurrence 

of all culverts as culvert slopes increased over 3.0 % (Figure 16c).   

Survey reach channel slopes ranged from 0.1 % to 30.8 % with a mean of 7.6 % among 

all culverts.  Basin area at the culvert ranged from 0.45 km2 to 7.89 km2 with a mean of 1.62 km2 

among all culverts.  Active channel width ranged from 0.60 m to 5.89 m with a mean of 2.28 m 

among all culverts (Figure 15).  Channel slope was, by far, the most important stream 

characteristic in determining the passability of culverts.  Mean channel slope was much higher 

among impassable culverts (9.4 %) than among partially impassable and completely passable 

culverts (4.0 % and 2.5 %, respectively) (Figure15d).  Additionally, the cumulative occurrence of 

“red” culverts tended to increase with increasing channel slope at a greater rate than the 

cumulative occurrence of all culverts at slopes greater than 3 % (Figure 16d).  Basin area may 

also have influenced whether culverts were barriers.  Mean basin area was slightly lower among 

impassable culverts (1.49 km2) than among partially impassable or completely passable culverts 

(1.91 km2 and 1.99 km2, respectively) (Figure 13e).   

At the culvert scale, we found that connectivity is recoverable to 10 % of WPRA in our 

study area with the replacement of the top 17 impassable culverts with passable road crossing 

structures (Table 3).  The final prioritized list of culvert replacement opportunities is located in 

Appendix I.  Overall, 869 km of stream were located within the study area and a total of 207 km 

(24 %) were located above culverts.  There were 575 km of WPRA within the study area and a 

total of 187 km (33 %) were located above culverts (Table 4).  Completely impassable (red) 

culverts isolated 144 km (17 %) of stream length and 130 km (23 %) of WPRA within the study 

area (Figures 17 and 18).  Shavers Fork had the highest WPRA loss extent (59 km) and intensity 

(26 %) within the study area due to habitat isolation by barrier culverts (Figure 19). 
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Discussion 

 The requirement and direction to provide fish passage at road crossings is found in 

several documents (USFS 2002).  The Clean Water Act [section 33, Code of Federal Regulations 

323.3 (B)] states that “the design, construction and maintenance of the road crossing shall not 

disrupt the migration or other movement of those species of aquatic life inhabiting the 

waterbody.” Additionally, provisions of the Intermodal Surface Transportation Efficiency Act of 

1991 (ISTEA) require that transportation planners, highway officials, and transit interests 

recognize environmental values and enhancement measures in transportation development 

programs (Bank 1996).   

 Given these provisions culverts should be installed so that they do not impede movement 

of fish or any other aquatic organism.  However, the results presented here show that an 

overwhelming majority (69 %) of state-owned culverts within our study area did not meet fish 

passage standards and an additional 28 % are at least partial barriers that may still impede natural 

fish movements (Figure 4).  In fact, only 3 culverts met fish passage standards.  Clearly habitat 

loss and fragmentation due to culverting have the potential to greatly impact fish communities 

within the Cheat River Basin.  Gibson et al. (2005) suggests that habitat loss and fragmentation 

should be considered as seriously as other perceived negative factors such as fisheries 

overexploitation or forestry and aquaculture practices.   

 The most common fish passage problems at culverts within our study area were inlet or 

outlet residual depths of less than 0.15 m (Figure 10) and the lack of continuous streambed 

substrate along the culvert barrel (Figure 8).  However, a relatively similar proportion of 

impassable culverts violated these criteria compared to proportions of partially impassable and 

passable culverts (Figures 9 and 11).  Although fewer culverts violated hang height and culvert 

slope criteria (Figures 13 and 14), it is apparent that these were the two major causes of 
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impassable culverts within our study area.  First, both mean hang height and mean culvert slope 

were much higher among red culverts than among gray or green culverts (Figures 15b and 15c).  

Second, the accumulation of red culverts increased at a much faster rate than the accumulation of 

all culverts along both increasing culvert slope and increasing hang height axes above respective 

filter criteria cutoff values (0.61 m for hang height and 3 % for culvert slope) (Figures 16b and 

16c).  Similarly, Fitch (1995) found that two most significant fish passage problems occurring at 

six culverts in Bath, Alleghany, and Floyd counties, VA, were shallow flow depths (probably 

due to culverts that were placed at steeper gradients than the stream channel) and large outlet 

hang heights.  Gibson et al. (2005) also found that the two most common fish passage problems 

at culverts were insufficient water depth and outlet hang. 

 We also found that culverts placed in streams with steep gradients are more prone to 

becoming barriers.  Our reasoning is two-fold.  First, mean channel slope was much higher 

among impassable culverts than among partially impassable or passable culverts (Figure 15d).  

In fact, it appears that culverts placed in streams with gradients over 5 % are much more likely to 

be barrier culverts.  Only 34 % of culverts placed in streams with gradients less than 5 % were 

classified as red compared to 87 % of culverts placed in streams with gradients greater than 5 %.  

Second, the cumulative occurrence of red culverts increased at a much greater rate than the 

cumulative occurrence of all culverts with increasing channel slope (at channel slopes over 13 

%) (Figure 16d).  This probably occured because many culverts were purposefully placed at less 

than stream-grade (personal observation), as has been suggested by some literature (e.g. Baker 

and Votapka 1990).  The rationale for this common occurrence is that fish can negotiate 

substantially steeper streambeds than culverts (Baker and Votapka 1990).  The problem is that 

when a culvert is placed at less than stream-grade then it is likely to become perched at the outlet 

if it is not countersunk sufficiently for the entire length of the barrel.  Otherwise, a hydraulic 
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jump is likely to occur at the inlet if the culvert is countersunk properly (Fitch 1995).  The 

likelihood that the outlet will become perched increases greatly in steeper streams because it 

becomes substantially more difficult to properly countersink a culvert.  Alternatively, culverts 

that are placed at stream-grade within steeper streams probably produce water velocities that are 

too extreme for fish passage.  The final result is that any culvert placed in a steep stream will 

become a fish passage barrier, either because of outlet hang or because of high water velocities 

within the culvert barrel. 

 This result will hopefully aid engineers and environmental managers in predicting where 

fish passage problems are most likely to occur prior to future road building efforts.  We know 

that culverts crossing streams with slopes over 5 % are highly likely to become fish passage 

barriers.  Stream slopes are easily modeled remotely in ArcGIS using a digital elevation model.  

By modeling stream slopes and identifying those streams with slopes greater than 5 % crossing 

planned right-of-ways, it will be extremely easy to predict where barriers are likely to occur 

before road building begins and engineers will be able to design passable stream crossings 

accordingly.  

 The failure to properly design or install culverts within our study area probably exists for 

several reasons.  First, many of these culverts are old and were installed before fish passage 

requirements were set.  This failure could also be related to the large number of crossings, each 

one requiring a separate decision by the Division of Highways regarding the trade-off between 

cost and environmental considerations (Gibson et al. 2005).  Often, environmental considerations 

are compromised because budgets are limited.  For example, round corrugated steel pipe culverts 

were by far the most common road crossing within our study area even though they are the least 

ecologically-sound option.  But round pipe is stronger than any other pipe and the most cost 

 37



effective (Gibson et al. 2005), so it is often used instead of more expensive bridges or bottomless 

arch culverts that are better for fish passage.   

 Given the state of culvert crossings within this study area, the potential exists to restore 

connectivity to a large amount of stream habitat for native aquatic biota, including brook trout.  

In fact, approximately 17 % of streams within the watershed are isolated by impassable culverts.  

Arguably, 17 % of streams within the study area may experience some sort of ecological benefit 

through barrier replacement.  Additionally, access to approximately 23 % of critical spawning 

habitat (WPRA) within the watershed could potentially be restored to local brook trout 

populations upon impassable culvert replacement.   

 It should also be noted that we only surveyed state-owned culverts and there are many 

more private and US Forest Service culverts acting as fish movement barriers within the study 

area.  Additionally, there are many natural barriers such as waterfalls.  Consequently, the 

proportions of isolated habitat that we have presented are conservative estimates.  There is 

probably much more habitat isolation within the upper Cheat River basin than we have 

measured.   

 Obviously the replacement of every barrier culvert cannot happen at once.  However, the 

prioritized list of fish passage restoration opportunities at culvert crossings (Table 3) is a great 

starting point for culvert replacement decisions.  But this is not a final replacement list.  Further 

site visits will be necessary at potential restoration sites to assess additional factors and further 

rank culvert crossings accordingly.  Love and Taylor (2003) suggest the following ranking 

criteria be assessed before final replacement decisions are made.  Species diversity should be 

considered and the most speciose streams should be higher priorities.  Habitat quality within the 

culverted stream reach should be quantified and higher quality streams should be higher 

priorities.  Sizing of the culvert and flow capacity should be considered in tandem and culverts 
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that are not adequately sized should be higher priorities.  The physical condition of the culvert 

also is important and those culverts that are rusting through or smashed should be of a higher 

replacement priority than culverts that are in good condition.  Finally, the presence or absence of 

other stream crossings is also important and, in many cases, a single stream may be crossed at 

multiple locations.  If movement barriers exist at multiple crossings, a coordinated effort is 

required to identify and treat them in a logical manner, generally starting with the lowest 

crossing in the stream and working upstream (Love and Taylor 2003).   

 In addition to these general prioritization suggestions, we also suggest that barrier 

culverts within the upper Dry Fork study section (excluding Gandy Creek) and culverts crossing 

upper tributaries of the lower Dry Fork study section be placed at a lower priority than barrier 

culverts within Shavers Fork, Gandy Creek, or lower tributaries of lower Dry Fork.  Flow within 

upper sections of Dry Fork often goes subsurface during the summer and many tributaries are 

ephemeral.  Because of this, habitat within this section of the watershed is probably not as 

important to brook trout populations.  Therefore, restoring connectivity here is likely not to have 

as much benefit to the regional fishery as restoring connectivity to perennial streams.  

Specifically, we suggest that the highest culvert replacement priority be placed on Shavers Fork 

because this was the study section with the greatest extent and intensity of brook trout spawning 

habitat isolation by impassable culverts. 

 When replacement priorities are finalized the next step will be to decide what type of 

stream crossing to install to maximize ecological benefit.  Gibson et al. (2005) suggests that clear 

span, open-bottom, structures should be installed on all fish bearing streams.  While this would 

maximize ecological benefit, it also would maximize costs, and minimize hydraulic and 

structural integrity, and is probably not necessary in all cases.  Fitch (1995) concluded that 

culverts can be considered the primary option for crossing trout streams if the following criteria 
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are met: the culvert can be placed on the same slope as that of the streambed, the slope of the 

stream is less than 3 %, the flow velocity does not exceed 1.2 m/s under normal flow conditions, 

and the barrel of the culvert can be properly countersunk at the outlet to prevent perching.  If 

these criteria are not met then bridges should be used (Fitch 1995).  We agree with this 

suggestion, but unfortunately there are few streams that would allow a culvert to meet these 

criteria within our study area.  Few of the streams surveyed have gradients under 3 % due to the 

steep nature of the landscape of our study area, and those that do are not of the highest priority 

for replacement.  The most common solution to fish passage problems in this basin will be to use 

bridges or open bottom arch crossings.    

 In conclusion, we find that the upper Cheat River basin is characterized by a high 

proportion of barrier culverts that cause discontinuities within the stream network and that this 

problem is, in addition to various other factors, sacrificing ecosystem health within the upper 

Cheat River basin.  The most common causes of fish passage barriers were culvert slopes of over 

3 % and culvert hang heights over 0.61 m.  Moreover, culverts located in steeply sloped streams 

(> 5 %) are likely to act as fish passage barriers.  We also found that the potential exists to 

restore connectivity to 17 % of total stream length within the study area and 23 % of critical 

brook trout spawning habitat through culvert barrier replacement.  We developed a valid culvert 

replacement prioritization method.  Although we performed this procedure only in one major 

basin, we believe it is applicable to other watersheds and can be implemented in any basin with 

culverted streams that support brook trout.  It is feasible that this prioritization procedure could 

be used to prioritize restoration efforts at the large basin scale.  We provided a prioritized list of 

fish passage restoration opportunities at culvert crossings for culvert replacement decisions by 

the West Virginia Division of Highways under the assumption that further evaluation is needed 

at all culverts being considered for replacement before final replacement decisions are made.  
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We suggest that replacement work be performed in Shavers Fork first because this study section 

had both the highest extent and intensity of brook trout habitat loss.  We suggest that culverts can 

be used at stream crossings if certain criteria are met, but the most common solution to fish 

passage problems in the upper Cheat River basin will be to install bottomless arch culverts or 

bridges due to the fact that most streams are steeply sloped.  In these streams, culverts will 

inevitably become barriers to fish passage. 

 Finally, we successfully applied weighted potential recruitment area (WPRA) as a 

functional index of ecological loss due to culvert isolation.  We feel that this unit of measure will 

be extremely useful within the central Appalachian region for several reasons.  First, it will be an 

easy way to estimate ecological losses from new road development.  Second, we feel that WPRA 

will be useful as a mitigation credit currency and for calculating the benefits of culvert 

replacement programs in the central Appalachians.  Additionally, since WPRA was originally 

created as a functional measure of ecological loss due to acid precipitation (Petty and Thorne 

2005), it stands as a potential currency for combining culvert replacement efforts with acid 

precipitation remediation.  For example, a road-building agency could possibly receive 

mitigation credit for restoring acidified streams in roadless areas, using WPRA as currency.  This 

credit could then be directly applied toward mitigation required because of culvert barrier effects 

at road crossings. 
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Tables 
 
Table 1:  Physical characteristics of the three sections of study during summer 2003 culvert 
surveys within the upper Cheat River basin including boundary area, minimum elevation, 
maximum elevation, area of forested land-cover, dominant soil associations (Pyle et al. 1982; 
Losche and Beverage 1967), and the top three surficial geological units within each watershed 
ordered by surface area (km2). 
       

section 
area 
(km2) 

min. 
elev. 
(m) 

max. 
elev. 
(m) 

forested 
area 
(km2) 

surficial geology: 
area (km2) 

      

upper 
Dry Fork 143.6 806 1,416 113.9 

 
 
 
 
 
 Hampshire: 58.1          

Mauch Chunk: 43.1  
 Chemung: 12.8 

      

lower 
Dry Fork 311.2 494 1,496 263.9 

Mauch Chunk: 88.1     
Pottsville: 86.9             
Hampshire: 55.1 

      

Shavers 
Fork 554.3 518 1,472 518.5 

Pottsville: 248.8           
Mauch Chunk: 147.9   
Chemung: 114.5 
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Table 2: List of the data collected at 120 culvert locations during culvert surveys, summer 2003. 

 

  

culvert survey step data collected 
  

Step 1: Descriptive 
Information 

Road.Number 
Road Type (Unimproved, Gravel, Paved; 1-lane, 2-lane, 4-lane) 
Basin/Watershed 
Stream Name 
USGS 1:24,000 Quadrangle 
County 
UTM Coordinates 
Datum (NAD27, NAD83, WGS84) 
GPS Accuracy (m) 

  
Step 2: Site 
Conditions 

Flow (Dry, Isolated Pools, Low, Moderate, High, Very High) 
Severe Water Quality Impairment (Y/N)  
Channel Relocation (Y/N) 
Adjacent Land Use Conditions (Nearly Pristine, Low Impact Wooded, Low Impact Open, 
Moderate Impact,  
    Severe Impact) 
Aquatic Organisms Observed (Salamanders, Fish, Crayfish, Benthic Invertebrates) 

  
Step 3: Culvert 
Aspects 

Inlet Type (Projecting, Headwall, Wingwall, Mitered, Flared) 
Stream-Inlet Alignment Angle (degrees) 
Stream-Outlet Alignment Angle (degrees) 
Outlet Configuration (Stream Grade, Free-Fall Into Pool, Cascade Over Rip-Rap) 
Tailwater Control (Pool Tailout, Debris Jam, Concrete Weir, Log Weir, Boulder Weir, No 
Control) 
Culvert Type (Circular, Pipe Arch, Box) 
Culvert Material (Corrugated Steel Pipe, Aluminum Pipe, Stone, Concrete, Wood, Other) 
Culvert Diameter (m) 
Culvert Length (m) 
Corrugations (Width x Depth, m) 
Pipe Condition (Good, Fair, Poor) 
Percent Blockage at Inlet (% Sediment, % Large Woody Debris) 
Embedded (Y/N) 
Sediment Thickness (At Inlet, At Outlet) 
Culvert Substrate Description 
Outlet Hang (Y/N) 
Height of Hang (m) 
Presence of Baffles or Weirs for Fish Passage (Y/N) 
Adult Fish Migration Barrier (Complete, Partial, None) 
Juvenile Fish Migration Barrier (Complete, Partial, None) 
Salamander Migration Barrier (Complete, Partial, None) 
Roadway Impacts (Excessive Runoff, Expanded Basin Area, Road Bed Scour, Road Bed     
    Gullying) 

  
Step 4: Channel 
and Reach 
Dimensions 

Mean Bankfull Width (Mean of Four Measurements, m) 
Mean Bankfull Depth (Mean of Four Measurements, m) 
Mean Active Channel Width (Mean of Four Measurements, m) 
Reach Length (30 x Mean Active Channel Width, Min=30m, Max=100m) 
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Table 2 continued 

 
 
 
 
 
 
 
 

  
culvert survey step data collected 
  
Step 5: Geology, 
Soils, and 
Geomorphology 
Information 
 
 

Bedrock Unit 
Distance to Nearest Outcrop (m) 
Lithology 
Surficial Geology Observations 
Valley Type (Unconfined Alluvial, Confined Colluvial, Confined Bedrock) 
Estimated Rosgen Stream Classification 
Introduced Anthropogenic Materials 
Soil Series 
Soil Texture 
Stable Reach (Y/N, Evidence) 
Above Culvert Bank Scour (Y/N, dimensions) 
Below Culvert Bank Scour (Y/N, dimensions) 
Aggradation (Y/N, dimensions) 

  
Step 6: In-stream 
Habitat and 
Riparian Corridor 
Condition 

EPA RVHA Score (Above, Below, Mean) 
Continuous Substrate for Salamander Cover (Y/N; Above, Below, Under/Adjacent) 
Distance to Suitable Substrate Size (Above, Below, m) 
Estimated Percent Canopy Cover of Established Forest Vegetation (Above, Below; Left, 
Right; Trees,   
    Shrubs, Herbs) 
Estimated Percent Canopy Cover of “Altered” Vegetation (Above, Below; Left, Right; 
Trees, Shrubs, Herbs) 
Distance from Culvert to Riparian Trees/Shrubs (Above, Below; Left, Right) 
Barrier to Riparian Species Movement (Y/N; Left, Right) 

  

Step 7: 
Longitudinal 
Stream Survey 

Elevation at the Head of the Riffle Nearest the Upstream End of the Survey Reach (m) 
Inlet Elevation (m) 
Inlet Water Depth (m) 
Outlet Elevation (m) 
Oulet Water Depth (m) 
Elevation at the Deepest Point within the Outlet Pool (m) 
Water Depth at the Deepest Point within the Outlet Pool (m) 
Elevation at the Deepest Point within 2 m of the Outlet (m) 
Water Depth at the Deepest Point within 2 m of the Outlet (m) 
Elevation at the Tailwater Control (m) 
Water Depth at the Tailwater Control (m) 
Elevation of the Active Channel Margin at the Tailwater Control (m) 
Elevation at the Head of the Riffle Nearest the Downstream End of the Survey Reach (m) 
Elevations at Major Slope Breaks (m) 



Table 3:  The top 20 culvert replacement priorities within our study area ranked by weighted potential recruitment area (WPRA) located 
upstream of each culvert. 
                        

Rank 
Stream 
Name 

Study 
Section 

Inlet 
Width-
ACW 
Ratio 

Outlet 
Hang 

Height(m) 

Culvert 
Slope 
(%) 

Channel 
Slope 
(%) 

Basin 
Area 
(km2) 

Active 
Channel 

Width 
(m) 

Upstream 
WPRA 
(km) 

Recoverable 
WPRA (% of 
study area) 

Cumulative
Recoverable 
WPRA (% of 
Study Area) 

            

1 Elk Lick 
Run 

lower Dry 
Fork 0.62 1.20 3.4 7.2 5.23 3.27 8.68 1.51 1.51 

            

2 Big Run lower Dry 
Fork 1.85 0.48 3.2 5.3 4.05 1.66 5.13 0.89 2.40 

            

3 Little Laurel 
Run 

Shavers 
Fork 0.64 0.13 4.9 5.1 0.60 1.00 4.66 0.81 3.21 

            

4 unnamed 
tributary 

Shavers 
Fork 0.51 0.55 7.0 17.3 1.53 3.30 3.67 0.64 3.85 

            

5 unnamed 
tributary 

upper 
Dry Fork 0.34 0.00 3.4 5.3 3.91 4.36 3.41 0.59 4.44 

            

6 Lower Two 
Spring Run 

upper 
Dry Fork 0.68 1.35 15.9 7.9 4.86 5.28 3.35 0.58 5.02 

            

7 Warner 
Run 

upper 
Dry Fork 0.63 0.20 3.4 4.8 2.82 2.25 3.07 0.54 5.56 

            

8 Sugar 
Camp Run 

Shavers 
Fork 0.60 0.23 13.3 15.4 1.29 3.48 3.03 0.52 6.08 

            

9 unnamed 
tributary 

Shavers 
Fork 0.91 0.06 3.2 3.0 3.16 2.70 3.00 0.52 6.60 

            

10 Grants 
Branch 

upper 
Dry Fork 0.39 0.00 8.2 6.2 3.81 2.55 2.82 0.50 7.10 
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Table 3 continued 
 
            

Rank 
Stream 
Name 

Study 
Section 

Inlet 
Width-
ACW 
Ratio 

Outlet 
Hang 

Height(m) 

Culvert 
Slope 
(%) 

Channel 
Slope 
(%) 

Basin 
Area 
(km2) 

Active 
Channel 

Width 
(m) 

Upstream 
WPRA 
(km) 

Recoverable 
WPRA (% of 
study area) 

Accumulation 
of Recoverable 

WPRA (% of 
Study Area) 

            

11 Wamsley 
Run 

Shavers 
Fork 0.33 0.52 5.4 6.9 1.30 2.17 2.81 0.49 7.58 

            

12 Walker 
Run 

Shavers 
Fork 0.31 0.07 7.8 5.7 2.54 3.70 2.80 0.49 8.07 

            

13 Stonelick 
Run 

Shavers 
Fork 0.49 0.42 3.8 4.6 2.55 3.30 2.74 0.48 8.55 

            

14 Wolf Run Shavers 
Fork 1.76 0.50 7.5 7.6 2.17 1.90 2.64 0.45 9.00 

            

15 Little Laurel 
Run 

Shavers 
Fork 0.77 0.45 7.7 5.4 1.60 2.88 2.46 0.43 9.43 

            

16 Pond 
Creek 

lower Dry 
Fork 0.53 0.00 8.5 9.6 1.77 1.97 2.35 0.41 9.84 

            

17 Upper Two 
Spring Run 

upper 
Dry Fork 1.19 0.50 7.1 9.8 4.51 5.89 2.23 0.39 10.23 

            

18 Spruce 
Run 

Shavers 
Fork 0.65 0.00 4.7 14.9 1.56 2.72 2.20 0.38 10.61 

            

19 unnamed 
tributary 

lower Dry 
Fork 0.89 0.50 9.7 8.8 1.60 1.20 2.20 0.38 10.99 

            

20 Natt Run Shavers 
Fork 0.41 0.00 12.3 6.4 2.62 2.83 1.89 0.33 11.32 
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Table 4: Length of stream and weighted potential recruitment area (WPRA) located above all culverts, red and gray culverts only, red 
culverts only, as well as total available within each section.  Both study section and study area totals are given. 
 

                      
 all culverts  red and gray culverts  red culverts  total available 
            

study section total length 
(km) WPRA (km)   total length 

(km) WPRA (km)   total length 
(km) WPRA (km)  total length 

(km) WPRA (km) 

            
upper Dry Fork 51.1 42.3  46.8 38.0  32.2 25.8  182.0 117.7 

            
lower Dry Fork 69.8 65.9  68.6 65.2  46.5 42.9  334.9 228.7 

            
Shavers Fork 86.5 79.2  86.5 79.2  65.5 60.8  351.7 228.9 

                      
total 207.4 187.4   201.9 182.4  144.2 129.5  575.3 868.7 

 
 

 



Figures 
 
Figure 1: Map of the upper Cheat River basin, West Virginia, except the Blackwater River, with 
the three study area sections outlined in bold.  Culverts surveyed during the summer of 2003 are 
represented as black dots.  Specifically, the study area consists of the following study sections: 
upper Dry Fork (above the Gandy Creek confluence), Lower Dry Fork, and Shavers Fork. 
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Figure 2: Green-Gray-Red fish passage evaluation filter from Love and Taylor (2003).  We 
adopted the fish passage ranking criteria from this filter for use in our analysis. 
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Figure 3: Residual inlet and outlet depth equations as well as other critical measurements used in 
fish passage evaluation filter (Love and Taylor 2003). 
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Figure 4:  One-hundred and twenty culverts were evaluated using the fish passage evaluation 
filter from Love and Taylor (2003).  This histogram displays the relative frequency of culverts 
within each filter category.  Green culverts are completely passable, gray culverts are partially 
impassable, and red culverts are completely impassable. 
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Figure 5: Proportion of culverts within each study section and proportion of all culverts surveyed 
(n = 120) that were categorized as “red” culverts. 
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Figure 6: Proportion of total culverts surveyed that violated 0, 1, 2, 3, 4, and 5 of the major 
criteria from the fish passage evaluation filter of Love and Taylor (2003). 
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Figure 7:  Combinations of violations of the five major criteria (C = no continuous substrate 
through the culvert barrel, Ra = active channel width greater than inlet width, Re = residual inlet 
and outlet depths under 0.15 m, S = culvert slope over 3 %, H = outlet hang over 0.61 m) used in 
the fish passage evaluation filter of Love and Taylor (2003).  Displayed are the proportion of 
total culverts surveyed that were characterized by each violation combination. 
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Figure 8: Proportion of all culverts (n = 120) that contained continuous streambed substrate 
versus the proportion that did not.  A majority of culverts (93 %) did not have a continuous layer 
of streambed substrate. 
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Figure 9:  Proportion of culverts within each fish passage category that did not contain a 
continuous layer of streambed substrate.  Green culverts are completely passable, gray culverts 
are partially impassable, and red culverts are completely impassable. 
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Figure 10: Proportion of culverts that had residual inlet and outlet depths greater than 0.15 m 
versus the proportion did not.  A majority of culverts (98 %) did not have residual inlet and 
outlet depths of over 0.15 m. 
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Figure 11: Proportion of culverts within each fish passage category that had a residual inlet or 
outlet depth of less than 0.15 m.  Green culverts are completely passable, gray culverts are 
partially impassable, and red culverts are completely impassable. 
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Figure 12: a) Histogram showing inlet width-average active channel width ratio for all culverts 
surveyed (n = 120). b) Relative cumulative frequency of inlet width-active channel width ratios 
for all culverts surveyed.  A majority of culverts (77 %) had inlets that were narrower than the 
average active channel width. 
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Figure 13: a) Histogram showing outlet hang height (m) for all culverts surveyed (n = 120).  b) 
Relative cumulative frequency of outlet hang height (m) for all culverts surveyed.  A majority of 
culverts (61%) were hanging and 13 % were hanging over 0.61 m. 
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Figure 14: a) Histogram showing culvert slope (%) for all culverts surveyed (n = 120).  b) 
Relative cumulative frequency of culvert slope (%) for all culverts surveyed. A majority of 
culverts (68 %) had slopes of over 3 %. 
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Figure 15: Box plots comparing the following variables between groups of red (completely 
impassable), gray (partially impassable), and green (completely passable) culverts: a) inlet 
width-active channel width ratio, b) outlet hang height (m), c) culvert slope (%), d) survey 
channel slope (%), e) basin area at the culvert (km2), and f) active channel width (m). 
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Figure 16: Cumulative proportional occurrence of all culverts as well as red (completely 
impassable) culverts versus the following variables: a) inlet width-active channel width ratio, b) 
outlet hang height (m), c) culvert slope (%), d) survey channel slope (%), e) basin area at the 
culvert (km2), and f) active channel width (m). 
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Figure 17:  Map of study area highlighting stream segments located upstream of red (completely 
impassable) culverts.  Overall, 144 km of stream length and 130 km of weighted potential 
recruitment area are located above impassable culverts. 
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Figure 18: Proportion of the length of stream and weighted potential recruitment area located 
upstream of red (completely impassable) culverts within each study section as well as within the 
entire study area. 
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Figure 19: Weighted potential recruitment area (WPRA) loss extent vs. loss intensity due to 
habitat isolation by red (completely impassable) culverts for each study section within the study 
area.  Shavers Fork had both the highest loss extent and intensity. 
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Chapter 3 

Culvert Effects on Fish Assemblages in a Central Appalachian Watershed. 

Abstract 

Stream crossings have adverse impacts on aquatic ecosystems through habitat loss and 

degradation, alteration of ecological processes, and effects on individual animals and 

populations.  Culverts, in particular, can act as barriers to the movement of many stream-

dwelling organisms, including fishes.  Movement is particularly important to stream-dwelling 

fish that often must move to locate habitats needed to maximize fitness.  Many past fish passage 

studies have focused on the most economically important species, typically the strongest 

swimmers.  Community-based approaches to research addressing culvert impacts are needed.  

We sampled fish assemblages and several habitat variables within 150 m stream reaches both 

above and below 24 culvert road crossings within small streams of the upper Cheat River Basin, 

West Virginia.  We used pairwise Wilcoxon Signed Ranks tests as well as stepwise multiple 

regression analysis to test whether species richness or species densities were different upstream 

of culverts compared to downstream and whether differences could be attributed to population 

isolation upstream of culverts.  Overall, we found that mean species richness was significantly 

lower upstream of culverts (2.0) than downstream (2.6) (p = 0.014) and no richness effect was 

observed on any stream draining over 3.5 km2.  Additionally, we found that blacknose dace 

(Rhinichthys atratulus) densities were significantly lower upstream of culverts (8.2 

individuals/100 m) than downstream (12.1 individuals/100 m) (p = 0.011).  Brook trout 

(Salvelinus fontinalis) were apparently unimpacted by culverts at the scale of our study.  The 

difference in richness could be attributed to either the isolation of populations above culverts or a 

combined isolation-channel gradient effect where culvert isolation had more impact where 
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stream slopes are higher upstream of the culvert.  Differences in blacknose dace densities could 

be attributed to a culvert-isolation effect only.  Moreover, we found that pairwise differences in 

richness (downstream-upstream) were positively correlated with stream distance of the culvert 

from the mainstem (nearest point draining 15 km2) and negatively correlated with longitudinal 

variation in average flow velocity.  Finally, we found that culvert effects are more pronounced 

on species whose core ranges are limited to larger streams compared to species who range into 

smaller streams.  These findings underscore the importance and vulnerability of headwater 

stream ecosystems and show that culvert isolation, among other impacts, has negatively 

impacted fish communities within the Cheat River basin.  However, because impacts are greatest 

on ubiquitous species and large stream species but culvert effects are greatest on small, steep, 

streams, we feel that culvert-related restoration efforts will not have as much overall benefit to 

fish assemblages in the Cheat River basin as the remediation of more extensive problems, such 

as acid deposition.  Additionally, these results show that fish passage standards should consider 

whole communities.  

Introduction 

 The U.S. Department of Transportation (2003) reported that 13,435,118 km of road lanes 

permeate the United States and Puerto Rico.  According to Forman (2000), roads and roadsides 

cover about 1 % of the land in the U.S., an area equivalent in size to South Carolina (Forman 

1995).  In general, biotic integrity in both terrestrial and aquatic ecosystems is negatively 

affected by roads (Trombulak and Frissell 2000).  The ecological effects of roads vary in 

distance outward from meters to kilometers (Forman 1995).  Forman (2000) estimated that 19 % 

of the total area of the United States is directly affected ecologically by roads and vehicular 

traffic.  There are seven general ways that roads can affect terrestrial and aquatic ecosystems: (1) 
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increased mortality from road construction, (2) increased mortality from collision with vehicles, 

(3) modification of animal behavior, (4) alteration of the physical environment, (5) alteration of 

the chemical environment, (6) spread of exotic species, and (7) increased alteration and use of 

habitats by humans (Trombulak and Frissell 2000). 

 Stream crossings, including culverts, have particularly adverse impacts on aquatic 

ecosystems through habitat loss and degradation, alteration of ecological processes, and effects 

on individual animals and populations.  In general, culvert crossings provide little habitat for 

stream-dwelling organisms.  The replacement of natural streambed and banks with road crossing 

structures usually results in the loss of habitat value.  Various benthic organisms are confined to 

the streambed and can only move through these substrates.  Discontinuities in the streambed can 

fragment populations and potentially reduce genetic diversity, limit access to critical habitats, 

and prevent recolonization of habitats after catastrophic events.  These effects may be avoided if 

culverts are sufficiently embedded under the natural substrate or if open-bottom or arch culverts 

are used.  These types of culverts often maintain natural substrate (Jackson 2003).  However, 

studies show that most culverts do not contain natural streambed substrate resulting in the 

upstream isolation of habitat.  For example Ward (2005) found that over 84 % of culverts 

surveyed in the Dry Fork and Shavers Fork drainages within the upper Cheat River basin did not 

contain continuous streambed substrate.  Additionally, 20.6% of the total stream length in the 

Dry Fork watershed and 18.4% in the Shavers Fork watershed were isolated to salamanders by 

culvert barriers (Ward 2005).    

 Stream crossings may have adverse impacts on the hydrology and geomorphology of the 

stream channel.  Culverts often constrict the stream channel causing ponding upstream.  This 

may result in the aggradation of stream bed material above the culvert.  Moreover, water 

 67



velocities may increase within the culvert barrel resulting in downstream channel scour.  This 

scour often results in a perched culvert that functions as a barrier to animal movement (Jackson 

2003).  White (2004) found that three-quarters of culverts surveyed within the upper Cheat River 

basin were undersized and could not convey a bankfull discharge.  Culverts that lack conveyance 

may develop problems with aggradation, blockage, scouring, inlet slackwater and large woody 

debris blockage (White 2004).  Artificial crossing structures also may prevent the transport of 

woody debris downstream and inhibit the formation of natural debris dams that are important 

habitat features for many organisms.  These features also play a role in shaping channel 

characteristics (Jackson 2003).   

 Excess erosion and sedimentation also can occur at artificial crossing structures.  High 

levels of sedimentation may enter the stream through runoff during road construction and can 

continue over the long term through the erosion of embankments, the road surface, and drainage 

ways (Beschta 1978; Reid and Dunne 1984; Jackson 2003).  Wellman et al. (2000) found that 

sediment depth and silt-clay percentages were significantly higher directly below recently 

constructed culverts than in stream reaches upstream of culverts.   Both sediment depth and silt-

clay percentages were higher at culverted streams than at bridged streams (Wellman et al. 2000).  

There are several ways that sedimentation can impair aquatic ecosystems.  Fine sediments can 

fill interstitial spaces within the streambed substrate and impact populations of 

macroinvertebrates and other benthic organisms that depend on these interstitial spaces for 

habitat (Wood and Armitage 1997).  Increased sediment loading can negatively impact fish 

populations through reductions in the availability and permeability of suitable spawning gravel 

(Davies and Nelson 1993; Hartman et al. 1996) and the reduction of predation success of visual 

predators due to increases in turbidity (e.g. Sweka and Hartman 2001).  In addition to sediment, 
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stormwater runoff from roads also may contain toxic contaminants that alter the chemical 

environment (Trombulak and Frissell 2000; Jackson 2003). 

 Additionally, culverts can act as barriers to the movement of many stream-dwelling 

organisms, including fish (e.g. Warren and Pardew 1998).  These movements are important 

ecological processes in most systems.  Movement is particularly important to stream dwelling 

fish populations, especially in physically heterogeneous streams, where fish must often move to 

locate habitats needed to maximize fitness (Faush and Young 1995).  Such movements are often 

critical for individuals to complete their life cycles and for metapopulations to remain viable 

(Schlosser and Angermeier 1995).  Many stream-resident fish need to move in order to locate 

suitable spawning areas (e.g. Hunt 1974; Petty et al. 2005), thermal refugia (e.g. Kaeding 1996), 

refuge from predators (e.g. Harvey 1991), foraging areas (e.g. Clapp et al. 1990), and habitats 

suitable for the completion of various life-history stages (e.g. nursery habitat for juveniles, 

Johnston 1997).  At the population level movement is critical to the recolonization of decimated 

stream reaches and the maintenance of genetic diversity between subpopulations (Jackson 2003).  

Additionally, fish movement and influences on movement (e.g. population size structure, stream 

flow, distribution of critical habitats) hold important consequences for population regulation and 

dynamics (e.g. Petty and Grossman 2004).   

 Culverts act as barriers to fish movement in the following ways: excess drop at the 

culvert outlet, high water velocity within the culvert barrel, inadequate water depth within the 

culvert barrel, turbulence within the culvert, and debris and sediment accumulation at the culvert 

inlet or internally.  Culvert barrels are usually designed to optimize water passage and they do 

not have the necessary roughness and complexity needed to reduce flow velocity.  Instead, 

culverts tend to concentrate and dissipate energy in the form of increased velocity beyond the 
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swimming capabilities of most fish species.  Turbulence or downstream channel scour are the 

most prevalent blockages at culverts (Bates et al. 2003). 

 Angermeier et al. (2004) proposed a conceptual framework for assessing the impacts of 

roads on aquatic biota.  This framework was developed to aid environmental managers in 

assessing the full range of environmental impacts of road building projects on aquatic 

ecosystems.  Most conventional environmental assessments of roads focus on construction 

impacts but overlook subsequent impacts.  These authors suggested that there are three main 

phases of road development, each with a distinctive suite of environmental impacts: road 

construction, road presence, and urbanization (Angermeier et al. 2004).   

 The environmental impacts of road construction (phase 1) are characterized by relatively 

small temporal and spatial frames.  These impacts largely stem from direct, localized, and acute 

alterations of physical conditions (e.g. fluxes of fine sediments, stream channelization, and 

disruption of groundwater flow) (Angermeier et al. 2004).  Phase 2, road presence, affects 

aquatic systems over similar spatial frames but across larger temporal frames compared to road 

construction.  These longer timeframes stem from the fact that roads are rarely restored to natural 

habitat.  Environmental impacts of road presence are physical (e.g. short-term effects of 

intermittent road maintenance and long-term alterations in hydrology and geomorphology), 

chemical (e.g. toxic runoff from road surfaces and toxic spills), and biological (e.g. the spread of 

invasive species and fragmentation of aquatic habitats).  These authors stated that the biological 

consequences of road presence, including culvert barrier effects on fish populations and 

communities, are poorly documented (Angermeier et al. 2004).   

 Urbanization (phase 3) affects aquatic ecosystems over large spatial and temporal frames 

and may lag behind road construction for decades.  Due to this lag, urbanization is often 
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excluded from environmental impact assessments (Angermeier et al. 2004) even though it is the 

second-leading cause of species imperilment in the U.S., next to non-native species (Czech et al. 

2000).  Physical and chemical effects of urbanization overlap those of construction and presence, 

but are more severe because of greater road densities, more construction, more vehicular traffic, 

proliferation of impervious surfaces, removal of woody debris and riparian vegetation, and 

stream channelization.  These changes strongly influence aquatic biota (Angermeier et al. 2004).   

 Moreover, in recent years there has been a call for holistic, interdisciplinary approaches 

to culvert design and replacement that focus on community and ecosystem-oriented goals (Sylte 

2002; Jackson 2003).  In the past, fish passage concerns tended to focus on adult salmon and 

trout (Sylte 2002), and typically the most attention was given to the passage of migratory species 

(Jackson 2003).  In most ecosystems these migratory species are the strongest swimmers.  Even 

if culverts are adequate for the passage of these species they may not be adequate for the passage 

of other species within the community.  Therefore, community-based approaches to fish passage 

design and research addressing culvert effects are needed.  Angermeier et al. (2004) called to 

ecologists to conduct and publish studies that demonstrate road impacts on aquatic biota at the 

individual, population, and community levels of organization.   

 Fish communties in the Cheat River Basin are impacted by various anthropogenic factors.  

The northern (downstream) end of the watershed is extensively impaired by acid mine drainage 

(WV DEP 1996; Petty and Barker 2004) which is believed to be the largest water quality 

problem in the watershed (WV DEP 1996).  Additionally, within the Northern half of the 

watershed there is a power plant located on the mainstem of the river which raises water 

temperatures an average of 17° F.  There is also a 17 km long impoundment, Cheat Lake.  The 

Southern half of the watershed is considered to be healthy, although there are some tributaries 
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that are impacted by sediment, fecal coliform, acid mine drainage, and acid precipitation.  These 

conditions impact both the diversity and abundance of fish communities throughout the basin 

(WV DEP 1996).  Brook trout, in particular, have suffered marked declines within sections of the 

basin, most notably in Shavers Fork, and represent an economically important regional fishery.  

Acidification, fishing pressure, sedimentation, and loss of riparian vegetation have all 

contributed to this fisheries’ decline (Petty et al. 2001; Petty and Thorne 2005; Petty et al. 2005).  

In addition to these factors, the Cheat River basin is characterized by a dense network of roads 

and culvert road crossings are a common occurrence.  It is likely that the presence of culvert 

crossings have negatively impacted stream fish communities within the Cheat River basin.  

 The first objective of this study was to assess the impact of long-term culvert presence on 

stream-fish communities within the upper Cheat River basin, West Virginia.  We hypothesized 

that species diversity and population densities of weaker swimming species would be reduced 

above culverts due to the long-term isolation of stream habitat.  Moreover, we expected that 

species whose core distributions extended upstream to small streams would be less impacted by 

culverts than species whose core distributions are limited to larger streams.  Our second 

objective was to identify any physical characteristics (e.g. basin area or channel slope) within our 

study streams that might be related to culvert barrier effects.   

Study Area 

 The upper Cheat River basin is located in Randolph and Tucker Counties, West Virginia, 

and consists of all water draining to the confluence of Black Fork and Shavers Fork near the 

town of Parsons.  These two rivers form the Cheat River, a major tributary to the Monongahela 

River.  Black Fork is formed at the confluence of Dry Fork and the Blackwater River 6.4 km 

upstream of the Shavers Fork-Black Fork confluence.  We studied 47 culverts located within 
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three watersheds of this basin: lower Dry Fork (6th order), Glady Fork, and upper Dry Fork 

(Figure 20).  Glady Fork is a 4th order stream that empties into Dry Fork 16.4 km upstream of 

the Blackwater River.  The upper Dry Fork includes all water draining to the confluence of 

Gandy Creek (4th order) and Dry Fork, above Gandy Creek, (3th order) located 33.0 km upstream 

the Blackwater River confluence.    

 The upper Cheat River basin ranges in elevation from 494 to 1476 m.  Other general 

physical characteristics are listed by watershed in Table 5.  Both Randolph and Tucker Counties 

are characterized by humid-temperate climates.  Winters are cold and snowy at high elevations 

and valleys also are cold and snowy but have intermittent thaws.  Summers are mildly warm at 

high elevations and very warm with the occasional very hot day in the valleys.  The average 

annual temperature is 9.7o C in Randolph County (Pyle et al. 1982) and 9.4o C in Tucker County 

(Losche and Beverage 1967).  Mean annual precipitation in Randolph County is 107 cm and 55 

% of this precipitation usually falls between April and September (Pyle et al. 1982).  Mean 

annual precipitation in Tucker County is 135 cm (Losche and Beverage 1967). 

Methods   

Site Selection 

 We used a stratified random sampling method for culvert site selection.  Forty-seven 

culverts (Figure 20) located on streams ranging in basin area from 0.4 to 12.5 km2 were assigned 

random numbers, sorted, and chosen evenly across stream sizes.  Culverts sites were not sampled 

if: 1) the stream was degraded by poor water quality (2002 West Virginia 303d List of Impaired 

Waters), 2) the stream drained less than 0.44 km2 (100 acres), 3) there was an insufficient stream 

length upstream of the culvert for a sample reach because of a major confluence or the presence 

of another culvert, 4) the culvert was located on private property (we sampled only state and 
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forest service culverts), or 5) landowner permission was not acquired for stream access.  

Additionally, sampling was not performed downstream of the culvert in the case that there was 

insufficient stream length to sample at least 50 m of stream before a major confluence.  In the 

end, we sampled both upstream (above the culvert) and downstream (i.e. below the culvert) of 24 

culverts (above-below sites) and upstream-only at 23 culverts (i.e. above-only sites).   

Data collection 

 Water quality, habitat, and fish abundance data were collected within 150 m reaches 

located 50 m above and 50 m below (where applicable) each culvert (Figure 21).  Initially, we 

set reach lengths at 35 times mean stream width (MSW) according to the recommendations of 

Simonson et al. (1994).  However, many of the streams sampled were so narrow that we believed 

the reaches would have been too small to adequately represent all habitats, so we set a minimum 

reach length of 150 m.  Upstream and downstream reaches at the same culvert were always 

sampled on the same day. 

 There were seven above-below sites where we sampled downstream of the culvert, but 

we were not able to sample the full 150 m.  These reaches were cut short because of a major 

confluence downstream.  We sampled 50 m reaches below three of these culverts, 65 m below 

one, 90 m below one, 125 m below one, and 130 m below one.  We do not believe that shorter 

downstream reaches biased fish samples toward supporting our hypotheses.  In fact, shorter 

downstream reaches actually should result in conservative estimates of species richness and 

species density data and, if anything, this would bias our results against supporting our 

hypotheses. 

 Fish sampling was conducted once per reach between June 1 and July 31, 2004.  We used 

single-pass electrofishing with a seine as a blocknet to sample fish communities.  We used 
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single-pass sampling instead of triple-pass sampling to maximize the number of sites we were 

able to sample and to follow standard community sampling procedures used by the EPA (e.g. 

McCormick et al. 2001).  However, to ensure constant sampling efficiency, triple-pass sampling 

was performed on a subset of stream reaches.  This subset included nine reaches from this study 

and many others within our study area.  We found that in Cheat River basin streams draining 

under 8 km2 (major majority of streams in this study were under this size), capture probabilities 

on the first pass were high for all fish species (Table 6).  Mottled sculpin had the lowest capture 

probability (p = 0.53).  However in streams draining under 1.5 km2 (still a majority of streams in 

this study) mottled sculpin capture probability increased to 0.60.  Futhermore, we were careful to 

use the same amount of sampling effort on every stream reach and capture probabilities did not 

differ between above culvert and below culvert reaches (Petty, J.T., unpublished data).   

 We used a Smith-Root (Vancouver, Washington) electrofishing unit (DC current, 60 hz, 

400-600 V) to perform all electrofishing.  Each fish was identified to species and measured for 

standard length (mm) and weight (g).  Several individuals of each species sampled were 

preserved as reference specimens and field-identification accuracy was later confirmed in the 

laboratory.  Species richness was then calculated for each reach and a population density (# 

individuals/100 m2) was calculated for each species sampled within each reach by dividing the 

number of individuals sampled by the area of stream sampled (area = MSW x reach length). 

 We collected water quality data on two separate occasions at each reach, once in April 

and once in September, 2004.  The water quality variables that we collected included pH, 

specific conductivity, total hardness, calcium hardness, and alkalinity.  Both pH and specific 

conductivity were collected with a 600 XL Multi-Parameter Water Quality Monitor (YSI 

Incorporated, Yellow Springs, Ohio).  Alkalinity was measured with a model AL-AP alkalinity 
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test kit and total and calcium hardness were measured with a model HA-4P total and calcium 

hardness test kit (Hach Company, Loveland, CO).  These kits are accurate to the nearest 1 

grain/gallon (g/g) (17 mg/L) for calcium and total hardness and to the nearest 5 g/g (86 mg/L) for 

alkalinity.   

 Stream habitat variables were recorded between April 15 and June 16, 2005 within each 

reach.  Several in-stream habitat variables were recorded at evenly spaced points along the 

thalweg.  Thalweg points were spaced every one mean stream width (MSW; Simonson et al. 

1994) with a minimum limit set at 2 m.  Habitat variables recorded along these transects include 

water depth (cm), average current velocity (velocity measured at 60 % of the water depth, m/s), 

bottom current velocity (velocity measured on the streambed substrate, m/s), distance to fish 

cover (m), and channel unit (riffle, run, pool, or glide).  Water depth was measured within the 

thalweg with a meter stick.  Both average and bottom current velocities were measured with a 

Flo-Mate water velocity meter (Marsh-McBirney Incorporated, Frederick, Maryland).  Fish 

cover was defined as a refuge large enough to hide a 200 mm fish (Simonson et al. 1994).  

Distance to cover was measured from the thalweg point to the cover item with a meter stick.  All 

numerical data recorded at thalweg points were averaged for the entire reach.  We took the 

coefficient of variation (CV) of depth and of average current velocity and used these as measures 

of habitat variability.  We calculated a pool-riffle ratio by dividing the number of thalweg points 

located within a pool section by the number located within a riffle and multiplying by 100, 

resulting in a percentage.  This value was a measure of how much pool habitat was available for 

fish to use, compared to riffle habitat.   

 We also recorded several reach-scale habitat variables on-site that were not part of the 

thalweg profile.  Percent canopy cover was defined as the percentage of sunlight blocked out by 
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the forest canopy covering the stream.  Canopy cover was collected with a spherical densiometer 

at 11 evenly spaced thalweg points within each reach (Barbour et al. 1999).  At each point, four 

measurements (facing upstream, downstream, stream left and stream right) were taken and 

averaged.  Those 11 values were then averaged over the entire reach.  We conducted EPA rapid 

visual habitat assessments for high gradient streams within each reach (Barbour et al. 1999).  The 

rapid visual habitat assessment procedure resulted in a value on a scale from 0 to 200 that 

indicated the relative quality of the stream habitat within a reach.   

 We then performed a pebble count procedure to characterize the streambed substrate.  We 

modeled our pebble count procedure after the procedure described in Bevenger and King (1995).  

This procedure consisted of the researcher walking the length of the reach using a zig-zag pattern 

and selecting pebbles every couple of steps along the way by reaching over the toe of the boot 

with an extended finger and picking up the first rock that is touched.  Pebbles were randomly 

sampled throughout all channel units and habitat types.  Overall, 100 pebbles were sampled over 

the entire reach.  Each pebble was tallied within one of six size classes based upon the diameter 

of the intermediate axis of the pebble.  The size classes were: silt-clay (< 0.062 mm), sand 

(0.062-1.9 mm), gravel (2-64 mm), cobble (65-256 mm), boulder (257-4000 mm), and bedrock 

(> 4000 mm).  Using these data we were able to calculate the percentage of fine sediments (% 

silt/sand) within the streambed substrate.  This was an important factor because fine sediments 

are known to impair aquatic ecosystems and have been associated with road building and 

presence (Wood and Armitage 1997; Wellman et al. 2000).  We also were able to calculate a 

median substrate size (D50) for each reach.  To find the D50 we first calculated the proportion of 

pebbles within each size class to the total number of pebbles sampled within the reach.  We 

multiplied this proportion by the geometric mean of the size range defining its class, resulting in 
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a weighted proportion.  This geometric mean of each size class was defined as the mean of the 

log10 of the lower end of the size range and the log10 of the upper end of the size range.  [e.g. 

geometric mean cobble = (log10 64 + log10 256)/2 = 2.11].  We then took the sum of the weighted 

proportions of all size classes and set D50 equal to 10 raised to the power of that sum. 

 Additionally, we tallied large woody debris located within the active channel.  All pieces 

of wood over 1.0 m in length and 10 cm in diameter were tallied.  Debris under this size are not 

likely to be fish cover and were not counted.  Each piece of debris was tallied within one of 12 

size classes based upon diameter and length.  We divided length classes into four categories: 1-2 

m, > 2-5 m, > 5-10 m, and > 10 m.  The three diameter size classes were: 10-20 cm, > 20-30 cm, 

and > 30 cm.  Using these data we were able to calculate the average volume of woody debris 

per 50 linear meters for each reach.  To find this value we first calculated a wood volume to 

associate with each size class.  This was calculated by squaring the mean radius for the diameter 

size range (e.g. 0.075 m for the 10-20 cm diameter size range) and multiplying by π, resulting in 

the mean cross-sectional area for the size class.  We then multiplied this area by the mean of the 

length size range (e.g. 1.5 m for the 1-2 m size range), resulting in a volume (m3) values that 

were associated with each of the 12 size classes.  Within each size category we multiplied the 

associated volume by the number of pieces of wood tallied to arrive at a total volume within each 

category.  Finally, we summed the total volume across all categories resulting in a total LWD 

volume over the entire reach.  We divided this value by the number of 50 m sections within the 

reach (reach length/50m) to standardize for reaches of all lengths (large woody debris per 50 m 

of stream).   

 We estimated the pool surface area within each reach by walking the channel and 

estimating the area of each pool and summing these estimates.  Estimation accuracy was ensured 
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by actually measuring all of the pools within a subset of reaches and comparing estimated values 

to measured values.  The accuracy of our estimations exceeded 90 %.  We also divided this value 

by every 50 m of reach length to standardize for reaches of all lengths (pool area per 50 m of 

stream). 

 There were a number of variables that we collected within ArcGIS with digital elevation 

models and linear shapefiles.  Basin area at the culvert was calculated with a filled 10 m digital 

elevation model developed by the West Virginia University Natural Resource Analysis Center 

for the entire Cheat River Basin.  We used the hydrology model sample extension 1.1 of ArcMap 

to derive a flow accumulation grid from the digital elevation model.  With this flow 

accumulation grid, the drainage area at any point within the basin could be calculated.  We then 

used the same digital elevation model to calculate the channel gradient (slope) of each reach.  

Reaches were modeled as segments on a 1:24,000-scale linear stream shapefile for our study 

area.  We used the digital elevation model to calculate the difference in elevation between 

upstream and downstream ends of each reach.  We then divided this difference by the reach 

length (150 m in most cases), resulting in a percent gradient.  We also calculated the stream 

length from the downstream end of each reach and from each culvert to the nearest point within 

the watershed draining at least 15 km2 (distance to mainstem).  Stream length was measured 

along the 1:24,000-scale linear stream shapefile and the FAC was used to find the nearest point 

draining 15 km2.      

Statistical Analysis 

  We first performed pairwise wilcoxon signed ranks tests (Wilcoxon 1945) on all above-

below sites to test for differences in species richness and species densities between upstream and 

downstream reaches.  We used pairwise testing to eliminate variation among streams.  This non-
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parametric test was specifically chosen because it is nearly as powerful as the pairwise t-test, but 

it does not assume data normality, a key assumption that our richness and population density 

datasets did not meet.  Unless otherwise stated, the alpha level on all statistical tests was set at 

0.05.   

 We then calculated a pairwise difference in species richness between downstream (below 

the culvert) and upstream (above the culvert) reaches for all 24 above-below sites and we plotted 

these differences against basin area.  We used this plot to identify three groups of culverts: group 

1, culverts crossing small streams (basin area < 3.5 km2) where a species richness difference was 

observed; group 2, culverts crossing small streams where no species richness difference or a 

negative difference was observed; and group 3, culverts crossing large streams (basin area > 3.5 

km2) where no species richness difference was observed (see results).  We also identified those 

species that had significant differences in density between upstream and downstream reaches and 

calculated a pairwise density difference (downstream – upstream) for all above-below sites.  We 

then plotted these density differences against basin area and identified 2 groups of culverts.  

Group 1 included sites where a positive difference in density was observed and group 2 included 

sites where no difference or a negative difference in density was observed.    

 Our next task was to identify whether significant effects on fish community variables 

could be attributed to culvert presence or if culvert effects were confounded with habitat effects 

and also detect any habitat-dependency of culvert effects.  To complete this task we built 

multiple regression models to identify which habitat variables were most important to the fish 

community and then identified whether these variables were different between upstream and 

downstream reaches at sites where culvert effects were observed.  We also used principal 
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components analysis to identify habitat trends across stream reaches and to use principal 

components scores representing these habitat trends as variables within our analysis.   

 Before performing these analyses most habitat variables were log10, ln, or arcsin square-

root transformed to ensure data normality.  The arcsin square-root transformation was only used 

on percentage data.  We used the Shapiro-Wilk goodness-of-fit test to assess normality.  Water 

quality variables were excluded from any further analysis since they were not different based 

upon pairwise tests (Table 7).  Additionally, we would not expect water quality to alter 

community composition between above and below culvert sites.  A list of habitat variables and 

the transformations used for each dataset are listed in Table 8. 

 A principal components analysis was performed to identify broad habitat trends across all 

reaches sampled.  Additionally, if the principal components scores were determined to be valid 

and representative, we used them as predictor variables within the multiple regression analysis to 

assess whether fish communities responded differently to these habitat gradients above culverts 

compared to below.  The habitat variables included in the principal components analysis were: 

basin area, depth, pool area per 50 m of stream, slope, CV of depth, distance to cover, large 

woody debris per 50 m of stream, D50, and average current velocity. 

 We performed stepwise multiple linear regressions with species richness and population 

densities of several species as response variables.  We performed two tests each on each response 

variable separately for upstream sets of reaches (n = 47) and downstream sets of reaches (n = 

23), resulting in 16 separate regressions.  For the first regression performed on each set of 

reaches, we used selected stream habitat measures as independent variables and results from 

these regressions were referred to as the “habitat models.” To reduce redundancy and error 

resulting from co-variation, we formed a correlation matrix on transformed habitat variables 
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(Table 9) and threw out any variable that was highly correlated with (r > 0.40), and logically 

related to, a different variable.  The variables selected for habitat model regressions included: 

basin area, slope, pool-riffle ratio, CV of depth, rapid visual habitat assessment, canopy cover, 

distance to mainstem, and D50.   For the second regression performed on each set of reaches, we 

used principal components 1, 2, and 3 as the independent variables as well as three habitat 

variables that were not included within the principal components analysis: canopy cover, rapid 

visual habitat assessment, and distance to mainstem.  The results from these regressions were 

referred to as “principal component models.” For all tests we used a forward stepping procedure 

and set the probability for model entry at 0.15.  The alpha level for final model acceptance was 

set at 0.05.  Only community variables for which significant explanatory models were derived 

were included in further analyses.   

 Next, we wanted to test whether observed community variable values upstream of 

culverts were close to what we would expect given downstream (i.e. control) habitat models and 

habitat characteristics upstream.  On those community variables for which significant models 

were produced, we applied the downstream reach model to upstream reaches to derive these 

expected values.  For each variable, the strongest downstream model (either the habitat or the 

principal components model) was used for this derivation.  We then plotted observed values 

against expected values among downstream reaches and performed a least squares linear 

regression.  On the same graph we plotted upstream observed values against the derived 

upstream expected values (given the downstream model) and performed a second linear 

regression on this plot.  The logic behind this test was that if there was no culvert effect on a 

particular fish community variable, then the upstream trendline should have a slope of close to 

one and be fairly similar to the downstream trendline and the distribution of points should be 
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similar between the two plots.  We performed this analysis only for species with a significant and 

meaningful downstream habitat model. 

 We then performed pairwise Wilcoxon signed ranks tests on those habitat variables that, 

based upon multiple regression analysis, were most influential to fish community variables 

found.  Basin area was not included in this analysis when it was found to be important because it 

was measured at the culvert and would not be very different between upstream and downstream 

reaches.  Distance to mainstem also was excluded for the same reason.  These tests were only 

performed if a culvert effect was detected for a particular fish community variable.  We defined a 

habitat variable as important if the removal of that variable would significantly reduce the 

explanatory power of a particular model (r2 > 0.05, p < 0.05).  Testing was performed separately 

among group 1 culverts and group 2 culverts for each fish community variable affected by 

culverts.   

 Our null hypothesis was that any significant difference in a particular fish community 

variable found between above and below reaches could be attributed to habitat differences 

between above and below reaches and was not a culvert effect.  Our alternative hypothesis was 

that any significant difference in a given fish community variable could be attributed to culvert 

presence alone.  If any single important habitat variable was found to be significantly different 

between above and below reaches among group 1 culverts but not among group 2 culverts, then 

we would accept our null hypothesis.  If any single important habitat variable was found to be 

significantly different between above and below reaches among group 1 culverts as well as 

among group 2 culverts, or if group 1 habitat was insignificant regardless of group 2, than we 

would reject the null hypothesis and accept our alternative hypothesis.  One problem with this 

type of analysis is that by using multiple tests to answer a single question (e.g. tests on multiple 
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habitat variables to answer whether habitat was different between upstream and downstream 

reaches among group 1 sites) the probability for type I error is compounded.  To avoid this 

potential problem we used the bonferroni correction method for each separate set of tests.  This 

method divides the significant alpha level by the number of tests performed to answer the 

question.  The p-value for any single test must then be lower than this corrected alpha level to be 

considered a significant result. 

 Additionally, we hypothesized that culverts have less impact on species whose core 

ranges extend into small streams compared to species whose core ranges do not extend as far 

upstream.  To explore this hypothesis we calculated the proportion of above-below sites where a 

given species was present upstream to the number of above-below sites where that species was 

present.  Our theory was that if a species is usually present upstream of culverts in streams where 

it is found, then culvert effects on that species are probably negligible.  Alternatively, a high 

proportion of sites at which a given species is present only in downstream reaches would indicate 

a greater culvert effect on that species.  We then plotted these proportions against the core range 

upstream extent for each species.  We used core ranges specific to fishes of the Cheat River basin 

that were published in Freund (2004).  The core range upstream extent was defined as the basin 

area (km2) at the 25th percentile of the relative cumulative proportion of individuals of a given 

species (Freund 2004).  This plot included all species that were present at no fewer than 3 above-

below culvert sites, except brown trout (Salmo trutta).  No core range was published for brown 

trout in Freund (2004).  We then performed a least squares linear regression on this plot to find 

out if species-specific culvert effects are related to core range upstream extents. 

 Our final objective was to identify physical aspects of streams that might be related to 

culvert effects on fish communities.  We performed separate linear regressions between habitat 
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variables (independent variables) and pairwise differences in those fish community variables 

affected by culverts (independent variables).  Mean habitat values [(value above + value 

below)/2] were used along with BA at the culvert and distance of the culvert to the mainstem 

(nearest point draining 15 km2) to identify whether culvert barrier effects on fishes within the 

basin were related to certain habitat types or streams of certain sizes or locations.   

 Finally, we plotted cumulative proportional species counts as well as cumulative 

proportional densities of the three most sampled species against both basin area and channel 

slope for all above-below sites.  For both habitat variables two separate plots were performed: 

one for upstream reaches and one for downstream reaches.  We then used Kolmogorov-Smirnov 

tests to identify whether the shapes of upstream curves differed significantly from the shapes of 

downstream curves.  Such an effect would indicate that the culvert effect on that particular fish 

community variable was dependent upon the particular habitat variable being tested. 

Results 

 Overall, fifteen species of fish representing five families were sampled within our study 

streams.  The most represented family was Cyprinidae with seven species.  The most common 

species were brook trout (Salvelinus fontinalis) (33 sites), mottled sculpin (Cottus bairdi) (24 

sites), and blacknose dace (Rhinichthys atratulus) (20 sites) (Table 10).  The maximum richness 

observed within one reach was eleven species at an above-only site.  Several streams had no fish 

(17 reaches at 13 sites).   

 We found that all but one culvert had species richness differences of three or less.  One 

site had a richness difference of seven, so we decided to remove this site from any further 

analysis.  We believe this outlier occurred because of its proximity to the mainstem of Gandy 

Creek.  The downstream reach at this culvert was essentially a backwater to Gandy Creek, so the 
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high richness value (9 species) within the reach was a reflection of species diversity within the 

mainstem of Gandy Creek instead of the true diversity within this particular tributary.   

 Among above-below sites, the mean species richness for downstream reaches was 2.6 

and the mean species richness for upstream reaches was 2.0.  Pairwise testing revealed that 

species richness was significantly higher downstream of culverts than upstream (p = 0.014) 

(Table 11).  Additionally, species richness accumulated with increasing basin area at a much 

faster rate in downstream reaches compared to upstream (Figure 22a).  We also found that 

culverts crossing streams draining under 3.5 km2 had a higher likelihood of impacting species 

richness than culverts crossing larger streams (Figure 23a).   

 We focused our population analyses on the seven species of fish for which multiple 

regression analysis revealed significant explanatory models: mottled sculpin, brook trout, 

blacknose dace, creek chub (Semotilus atromaculatus), white sucker (catostomus commersoni), 

and rosyside dace (Clinostomus funduloides).  Other species were too sparsely sampled to 

produce reliable results.  Among above-below sites, mottled sculpin densities above culverts 

ranged from zero to 37.8 individuals per 100 m2 with a mean of 8.2 individuals per 100 m2.  

Below culverts, sculpin densities ranged from zero to 48.9 individuals per 100 m2 with a mean of 

12.1 individuals per 100 m2.  Brook trout densities above culverts ranged from zero to 44.4 

individuals per 100 m2 with a mean of 6.2 individuals per 100 m2.  Below culverts, brook trout 

densities ranged from zero to 20.0 individuals per 100 m2 with a mean of 5.7 individuals per 100 

m2.  Blacknose dace densities above culverts ranged from zero to 139.0 individuals per 100 m2 

with a mean of 12.8 individuals per 100 m2.  Below culverts, blacknose dace densities ranged 

from zero to 147.1 individuals per 100 m2 with a mean of 19.8 individuals per 100 m2.  Creek 

chub densities above culverts ranged from zero to 62.2 individuals per 100 m2 with a mean of 2.4 
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individuals per 100 m2.  Below culverts, creek chub densities ranged from zero to 54.6 

individuals per 100 m2 with a mean of 3.1 individuals per 100 m2.  White sucker densities above 

culverts ranged from zero to 20.0 individuals per 100 m2 with a mean of 0.5 individuals per 100 

m2.  Below culverts, white sucker densities ranged from zero to 3.4 individuals per 100 m2 with a 

mean of 0.1 individuals per 100 m2.  Rosyside dace densities above culverts ranged from zero to 

14.1 individuals per 100 m2 with a mean of 0.5 individuals per 100 m2.  Below culverts, rosyside 

dace densities ranged from zero to 7.1 individuals per 100 m2 with a mean of 0.4 individuals per 

100 m2.    

 There was a consistent pattern among all species sampled, except for the two salmonid 

species (brook trout and brown trout), of lower mean densities above culverts than below (among 

above-below sites only).  However, the only species present in significantly lower densities 

above culverts was blacknose dace (p = 0.011) (Table 11).  Additionally, blacknose dace 

densities accumulated at a much faster rate in downstream reaches compared to upstream reaches 

with increasing basin area (Figure 24a).  Even though mottled sculpin densities were not found to 

be significantly higher downstream of culverts, they did accumulate at a much faster rate with 

increasing basin area in downstream reaches compared to upstream (Figure 25a), indicating a 

possible culvert effect on this species.  Brook trout densities accumulated at about the same rate 

in downstream reaches compared to upstream with increasing basin area (Figure 26a).  We opted 

not to produce similar curves for other species due to the limited number of sites where these 

species were present. 

 Principal components analysis revealed three significant habitat gradients that explained 

over 74 % of variation among stream habitat variables.  Principal component 1 (PC 1) was a 

stream/habitat size gradient that included basin area, depth, pool area per 50 m of stream, and 
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average current velocity.  Principal component 2 (PC 2) was a cover availability/habitat 

complexity gradient.  PC 2 increased as distance to cover decreased and as large woody debris 

volume per 50 m of stream and D50 increased.  Principal component 3 (PC 3) also was a habitat 

complexity gradient.  The two variables influencing PC 3 were CV of depth (positive factor) and 

distance to cover (positive factor) (Table 12). 

 The downstream habitat model explained 62 % of the variation in species richness among 

downstream reaches and was significant (p < 0.001).  The two factors included in this model 

were slope (negative factor) and basin area (positive factor) (Table 13).  The most important 

habitat factors influencing species richness within the upstream habitat model were slope 

(negative factor), basin area (positive factor), and pool-riffle ratio (positive factor).  Overall, the 

upstream habitat model explained 73 % of the variation in species richness among upstream 

reaches and was significant (p < 0.001) (Table 14).  Slope was more important than basin area in 

determining species richness both upstream and downstream of culverts, however the importance 

of slope was much reduced below culverts compared to above and the importance of basin area 

increased below culverts (Tables 13 and 13). 

 The downstream principal components model explained 68 % of the variation in species 

richness among downstream reaches and was significant (p < 0.001).  The factors influencing 

species richness within this model were PC 1 (positive factor), PC 3 (positive factor), and PC 2 

(negative factor) (Table 15).  The factors influencing species richness within the upstream 

principal component model were PC 1, PC 3, PC 2, and distance to mainstem.  Species richness 

was positively correlated with both PC 1 and PC 3 and negatively correlated with PC 2 and 

distance to mainstem.  The upstream principal component model explained 66 % of the variation 

in species richness among upstream reaches and was significant (p < 0.001) (Table 16).  The 
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importance of both PC 3 and PC 2 increased downstream compared to upstream (Tables 15 and 

16).  

 The downstream habitat model explained 35 % of the variation in mottled sculpin density 

among downstream reaches and was significant (p = 0.011).  The only significant explanatory 

variable in this model was slope (negative factor) (Table 13).  The most important habitat factors 

influencing mottled sculpin density within the upstream habitat model were basin area, CV of 

depth, and rapid visual habitat score.  Mottled sculpin densities upstream of culverts were 

positively correlated with basin area and rapid visual habitat assessment and negatively 

correlated with CV of depth.  Overall, the upstream habitat model explained 43 % of the 

variation in mottled sculpin density among upstream reaches and was significant (p < 0.001) 

(Table 14).   

 The downstream principal components model explained 40 % of the variation in sculpin 

density among downstream reaches and was significant (p = 0.005).  The factors influencing 

sculpin density within this model were PC 3 and PC 1, and both were positive factors (Table 15).  

The factors influencing mottled sculpin density within the upstream principal component model 

were PC 1 and canopy cover, and both were positive factors.  Together these two factors 

explained 38 % of the variation in mottled sculpin density among upstream reaches and resulted 

in a significant model (p < 0.001) (Table 16).   

 The downstream habitat model explained 37 % of the variation in brook trout density 

among downstream reaches and was significant (p = 0.024).  Median substrate size (D50, 

negative factor) and rapid visual habitat assessment (positive factor) were the two most 

important factors within this model (Table 13).  Habitat factors influencing brook trout density 

within the upstream habitat model were rapid visual habitat assessment and CV of depth.  Rapid 
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visual habitat assessment was a positive factor and CV of depth was a negative factor.  Overall, 

the upstream habitat model explained 22 % of the variation in brook trout density among 

upstream reaches and was significant (p = 0.005) (Table 14).   

 No factors were pulled into a downstream principal component model for brook trout 

with the probability for model entry set at 0.15 (Table 15).  The most influential factors on brook 

trout density within the upstream principal component model were rapid visual habitat 

assessment (positive factor) and PC 2 (positive factor).  This model explained 24 % of the 

variation in brook trout density among upstream reaches and was significant (p = 0.007) (Table 

16).   

 The downstream habitat model explained 46 % of the variation in blacknose dace density 

among downstream reaches and was significant (p = 0.006).  Rapid visual habitat assessment 

(positive factor) and canopy cover (negative factor) were the two important factors within this 

model (Table 13).  Influential habitat factors on blacknose dace density within the upstream 

habitat model included canopy cover, basin area, distance to mainstem, and rapid visual habitat 

assessment.  Blacknose dace densities in upstream reaches responded negatively to canopy cover 

and rapid visual habitat assessment and positively to basin area and distance to mainstem.  

Overall, the upstream habitat model explained 57 % of the variation in blacknose dace density 

among upstream reaches and was significant (p < 0.001) (Table 14).  Unlike the upstream habitat 

model, rapid visual habitat assessment was a stronger factor influencing blacknose dace density 

than canopy cover downstream of culverts.  Additionally, the importance of rapid visual habitat 

assessment increased downstream compared to upstream.  The importance of canopy cover was 

much reduced compared to the upstream model, but was still a negative factor (Tables 13 and 

14). 
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 The downstream principal components model explained 49 % of the variation in 

blacknose dace density among downstream reaches and was significant (p = 0.004).  The most 

influential factor in determining blacknose dace density within this model was canopy cover 

(positive factor) (Table 15).  The most influential factors on blacknose dace density within the 

upstream principal component model were canopy cover (negative factor), PC 1 (positive factor), 

and rapid visual habitat assessment (negative factor).  This model explained 54 % of the 

variation in blacknose dace density among upstream reaches and was significant (p < 0.001) 

(Table 16).  Canopy cover decreased in importance downstream of culverts compared to the 

upstream model (Tables 15 and 16).   

 The downstream habitat model explained 71 % of the variation in creek chub density 

among downstream reaches and was significant (p < 0.001).  The most important factors to creek 

chub density were canopy cover (negative factor) and rapid visual habitat assessment (positive 

factor) (Table 13).  The two factors that influenced creek chub densities upstream of culverts 

were canopy cover (negative factor) and slope (negative factor).  The upstream habitat model 

explained 51 % of the variation in creek chub density among upstream reaches and was 

significant (p < 0.001) (Table 14). 

 The downstream principal component model explained 62 % of the variation in creek 

chub density among downstream reaches and was significant (p < 0.001).  The three factors 

included in this model were canopy cover (negative factor), PC3 (negative factor), and rapid 

visual habitat assessment (positive factor) (Table 15).  The upstream principal components 

model explained 50 % of the variation in creek chub density among upstream reaches and was 

significant (p < 0.001).  The only important factor in this model was canopy cover, a positive 

factor (Table 16). 
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 The downstream habitat model explained 28 % of the variation in white sucker density 

among downstream reaches and was significant (p = 0.031).  The only important factor in this 

model was pool-riffle ratio, a positive factor (Table 13).  The upstream habitat model explained 

27 % of the variation in white sucker density among upstream reaches and was significant (p = 

0.003).  The two important factors included within this model were slope and rapid visual habitat 

assessment, both negative factors (Table 14). 

 The downstream principal components model explained 35 % of the variation in white 

sucker density among downstream reaches and was significant (p = 0.011).  The most important 

factor included in this model was PC3, a positive factor (Table 15).  The upstream principal 

components model explained 30 % of the variation in white sucker density among upstream 

reaches and was significant (p = 0.002).  Factors included in this model were PC3 (positive 

factor), PC2 (negative factor), and distance to mainstem (negative factor) (Table 16).   

 The downstream habitat model explained 44 % of the variation in rosyside dace density 

among downstream reaches and was significant (p = 0.002).  The most important factor in this 

model was pool-riffle ratio, a positive factor (Table 13).  The upstream habitat model explained 

40 % of the variation in rosyside dace density among upstream reaches and was significant (p < 

0.001).  The two most important factors influencing rosyside dace density within this model were 

slope (negative factor) and pool-riffle ratio (positive factor) (Table 14).  The importance of slope 

was dramatically reduced in downstream reaches compared to upstream reaches, while the 

importance of pool-riffle ratio increased (Tables 13 and 14). 

 The downstream principal component model explained 36 % of the variation in rosyside 

dace density among downstream reaches and was significant (p = 0.009). The two factors 

included in this model were PC1 and PC3, both positive factors (Table 15).  The upstream 
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principal component model explained 47 % of the variation in rosyside dace density among 

upstream reaches and was significant (p < 0.001).  The four important factors in this model were 

PC3 (positive factor), distance to mainstem (negative factor), PC2 (negative factor), and PC1 

(positive factor) (Table 16).  Additionally, the importance of PC1 was greatly reduced upstream 

of culverts compared to downstream (Tables 15 and 16). 

 Principal components models were the best models for explaining variation among 

downstream reaches in the following fish community variables: species richness, mottled sculpin 

density, blacknose dace density, and white sucker density.  Habitat models were the best models 

for explaining variation among downstream reaches in the following variables: brook trout 

density, creek chub density, and rosyside dace density.  The trendline explaining the relationship 

between expected and observed species richness downstream of culverts had a slope of 1.00, 

while the upstream trendline had a slope of 0.88.  Overall, 56 % of upstream points expected to 

be greater than zero fell below the downstream trendline (Figure 27a).   

 The trendline explaining the relationship between expected and observed mottled sculpin 

density downstream of culverts had a slope of 1.01, while the upstream trendline had a slope of 

0.33.  Overall, 69 % of upstream points expected to be greater than zero fell below the 

downstream trendline (Figure 27b).  The trendline explaining the relationship between expected 

and observed brook trout density downstream of culverts had a slope of 1.00, while the upstream 

trendline had a slope of 0.52.  Overall, 55 % of upstream points expected to be greater than zero 

fell below the downstream trendline (Figure 27c).  The trendline explaining the relationship 

between expected and observed blacknose dace density downstream of culverts had a slope of 

1.00, while the upstream trendline had a slope of 0.42.  Overall, 93 % of upstream points 

expected to be greater than zero fell below the downstream trendline (Figure 27d).  The trendline 
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explaining the relationship between expected and observed creek chub density downstream of 

culverts had a slope of 0.99, while the upstream trendline had a slope of 0.36.  Overall, 93 % of 

upstream points expected to be greater than zero fell below the downstream trendline (Figure 

27e).  The trendline explaining the relationship between expected and observed white sucker 

density downstream of culverts had a slope of 1.15, while the upstream trendline had a slope of 

2.20.  Overall, 90 % of upstream points expected to be greater than zero fell below the 

downstream trendline (Figure 27f).  The trendline explaining the relationship between expected 

and observed rosyside dace density downstream of culverts had a slope of 0.54, while the 

upstream trendline had a slope of 0.65.  Overall, 83 % of upstream points expected to be greater 

than zero fell below the downstream trendline (Figure 27g). 

 The fact that upstream trendlines were less than one for species richness as well as 

mottled sculpin, brook trout, blacknose dace, and creek chub densities indicated that observed 

values were consistently less than what we would expect given the downstream predictive 

model.  Additionally, those species that had upstream trendlines of greater than one had a vast 

majority of points that occurred below the downstream trendline.  These two results indicate 

consistent upstream culvert effects. 

 Because species richness and blacknose dace density were the only two fish community 

variables that differed significantly between upstream and downstream reaches, these were the 

only two variables that were included in post-hoc pairwise testing of habitat variables.  Site 

groupings as they relate to these two variables can be observed in Figures 28 and 29.  The 

variables deemed most important to determining species richness were slope, BA, PC 1, PC 2, 

and PC 3.  Based upon pairwise testing of each of these variables, except BA, habitat was not 

significantly different between upstream and downstream reaches among group 1 sites, nor was 
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it different among group 2 sites (Table 17).  Because we tested four variables within this group 

of tests, our bonferroni-corrected alpha level for significance was 0.01.  Based upon these results, 

we rejected our null hypothesis that culverts do not impact species richness and accepted our 

alternative that reductions in species richness upstream of culverts could be explained by culvert 

presence alone. The habitat variables deemed most important to determining blacknose dace 

density were CC, BA, RVHA, and PC 1.  Based upon pairwise testing of each of these variables, 

except BA, habitat was not significantly different between upstream and downstream reaches 

among group 1 sites, nor among group 2 sites (Table 18).  Because we tested three variables 

within this group of tests, our bonferroni-corrected alpha level for significance was 0.02.  Based 

upon these results, we rejected our null hypothesis that culverts do not impact blacknose dace 

density and accepted our alternative that reductions in blacknose dace densities upstream of 

culverts could be explained by culvert presence alone.   

 Among all above-below sites (sites sampled both upstream and downstream of the 

culvert), species richness differences (downstream-upstream) were found to be positively 

correlated (r = 0.44, p = 0.033) with the distance of the culvert to the nearest point draining 15 

km2 (Table 19, Figure 30) and negatively correlated with CVACV (r = -0.47, p = 0.025) (Table 

19, Figure 31).  Additionally, among above-below sites, blacknose dace density differences 

(downstream – upstream) appeared to be positively correlated with D50 (r = 0.49, p = 0.018) 

(Table 20, Figure 32). However, this correlation was primarily influenced by one site that 

happened to have both a very high median substrate size and a large difference in blacknose dace 

density.  After removal of this outlier we found that blacknose dace densities were not correlated 

with median substrate size at all (r = 0.06) (Figure 33). 
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 All Kolmogrov-Smirnov tests between upstream reach and downstream reach curves of 

cumulative proportional species count, cumulative proportional blacknose dace densities, and 

cumulative proportional mottled sculpin densities turned out to be insignificant (Table 21).  

Regardless of the fact that these tests were insignificant, it still appears that species richness 

accumulates at a much faster rate downstream of culverts located in stream draining under 3.5 

km2 (Figure 22).  Additionally, even though Kolmogorov-Smirnov tests revealed no significant 

differences in cumulative mottled sculpin densities upstream compared to downstream, it appears 

that scuplin densities accumulate at a much faster rate downstream of culverts at smaller sites 

(Figure 25).  No basin area or slope dependencies of the blacknose dace culvert effect were 

found (Figure 24).  Finally, we found that the proportion of culvert sites where a given species 

was present upstream of the culvert to the number of above-below sites where that species was 

found was negatively correlated to the upstream extent of the core range (r = -0.76, p = 0.049) 

(Figure 34).  This result indicates that culverts have a greater impact on species whose core 

ranges do not extend as far upstream. 

Discussion 

 We found that fish communities in streams of the upper Cheat River basin have been 

negatively impacted by the presence of culverts.  Specifically, we found that species richness 

was reduced upstream of culvert crossings and blacknose dace populations were significantly 

reduced upstream of culvert crossings.  To further back up these findings, observed richness and 

blacknose dace density values were typically lower than expected upstream of culverts given 

downstream predictive models as indicated by upstream expected versus observed trendline 

slopes of much less than one.  Additionally, all species except the two salmonid species sampled, 

 96



brook trout and brown trout (Salmo trutta), had lower average densities upstream of culverts 

compared to downstream (Table 11).   

 We attribute these results to habitat isolation.  When an impassable barrier is placed 

within a stream channel, upstream movements are blocked.  For example, Warren and Pardew 

(1998) found that movement of fish was an order of magnitude lower through culverts than 

through natural reaches.  The resulting isolation above a barrier may lead to local extirpation of 

populations above that barrier (Winston et al. 1991; Fausch and Young 1995; Morita and 

Yamamoto 2002) or create small habitat patches that may make populations more susceptible to 

reductions in genetic diversity (Fausch and Young 1995; Donaldson and Nisbet 1999; 

Hilderbrand and Kershner 2000).  Immigration also is an important function that often 

supplements “sink” populations where death rates exceed birth rates.  Isolation of these types of 

populations may lead to their local extirpation (Pulliam 1988).   

 Several studies have noted the extirpation of stream fish populations or a reduction in 

species richness above barriers.  Morita and Yamamoto (2002) found that white-spotted charr 

(Salvelinus leucomaenis) populations were absent from 17 of 52 study sites located above dams 

where populations were predicted to occur.  They found that local population extirpation was 

positively correlated with increasing isolation period and decreasing habitat size above the dam 

(Morita and Yamamoto 2002).  Winston et al. (1991) noted that only 25 fish species were 

collected in the North Fork of the Red River, OK, above Altus dam compared to 33 in a tributary 

that enters below the dam and 34 in the North Fork below the dam.  The speckled chub 

(Macrhybopsis aestivalis) and the chub shiner (Notropis potteri) were extirpated above the dam, 

but were fairly common in similar streams elsewhere.  Additionally, they found that two of the 

most common species found in the southwest region of Oklahoma, the plains minnow 
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(Hybognathus placitus) and the red river shiner (Notropis bairdi) were not collected above the 

dam in a 1989 survey, and were only collected in small numbers intermittently in long-term 

surveys.  The researchers speculated that these two species have been repeatedly extirpated and 

reestablished as “bait-bucket” introductions (Winston et al. 1991).  

 It is possible that the culvert barrier effect on species richness was confounded with 

pairwise differences in channel slope between upstream and downstream sample reaches.  

Among sites where richness was reduced above the culvert (group 1 sites), slope was close to 

being significantly higher upstream. The p-value (0.02) for this test was just higher than the 

bonferroni-corrected alpha level (0.01) for this group of tests (Table 17).  In fact, this probably 

was the case at a few culverts.  But it is unlikely that this happened at all culverts where a 

richness effect was observed.  The simplest interpretation of this result is that the culvert effect 

on species richness was slope-dependent and that slope influenced whether culverts were 

barriers.  In fact, we found that culverts located in streams with slopes over 5 % were much more 

likely to be fish passage barriers than culverts located in streams with slopes under 5 % (see 

chapter 2).  It also may be the case that this was a combined slope-culvert presence effect where 

culvert isolation had a greater impact on fish communities in streams with higher gradients above 

the culvert than below.  High gradient reaches may be less likely to maintain local populations of 

certain species after stochastic events, and are not likely to recolonize afterwards if they are 

isolated from immigration.  Evidence for this theory was observed in the multiple regression 

results.  Slope was much more important in determining richness above the culvert (r2 = 0.58) 

than below (r2 = 0.40).  We believe that this difference in importance was a function of reach 

isolation.  If differences in slope were the only factor affecting species richness, and culvert 
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presence was not a factor, then slope would have been equally as important to determining 

richness downstream of the culvert as it was upstream. 

 Blacknose dace, a species ubiquitous in this basin (Freund 2004), was probably limited 

by barriers due to its poor swimming abilities compared to other species.  Nelson et al. (2003) 

reported critical swimming speeds for adult blacknose dace within the range of 26 and 69 cm/s 

depending on which home-stream they were from, while small adult brook trout (110-116 mm 

standard length), for example, have been reported to have critical swimming speeds of 68 to 93 

cm/s (Wolter and Arlinghaus 2003) and white sucker (170-370 mm in fork length) have critical 

swimming speeds from 169 to 259 cm/s (Jones et al. 1974).  Our findings agree with Warren and 

Pardew (1998) who found that the numbers of species and movement within the family 

Cyprinidae, the family to which blacknose dace belongs, were reduced at culverts relative to 

natural reaches.  These researchers also found that fish passage through short culverts (< 10 m in 

length), like culverts in our study, was substantially reduced at water velocities above 40 cm/s.  

This result suggesting that flows for small-stream, non-migratory, fishes need to be much lower 

than the maximum suggested crossing flows for migratory fishes (Warren and Pardew 1998).   

 It was of no surprise that blacknose dace and creek chub densities were negatively 

correlated with percent canopy cover.  This was probably a result of increased productivity 

within reaches that receive more sunlight from reduced overhead canopies.  Additionally, both 

species, when present in high numbers, may be indicative of both local and regional impairment 

(Freund 2004) and are typically classified as tolerant species in biomonitoring programs (e.g. 

McCormick et al. 2001).  Low canopy cover within these streams was usually indicative of 

surrounding agricultural land-use (i.e. cow pasture) without a riparian buffer.  Thus, low canopy 
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cover in our study area was indicative of a source of local impairment that these populations 

positively respond to.   

 In general, species richness and populations densities of most species responded 

negatively to stream slope and positively to basin area or stream size (i.e. PC1).  The exception 

to this pattern was brook trout.  Brook trout densities typically responded negatively to slope 

which we would expect considering that brook trout are a small stream core species (Freund 

2004). 

 It is probably case that other species were negatively impacted by culverts as well, but 

our tests were not powerful enough to detect the effect.  As evidence, it was apparent that all 

non-game fish species, except creek chub, had consistently lower densities upstream of the 

culvert compared to below.  In fact, three species (mottled sculpin, white sucker, and longnose 

dace) had upstream densities that were over 30 % lower than downstream densities and two of 

these were over 50 % different (Table 11).  However, pairwise testing on these densities revealed 

no significant difference.  Our simplest explanation is that these species were probably impacted 

by culverts where found, but the general lack of sites where they were sampled reduced the 

power of each pairwise test and we were not able to detect the true culvert effect.  White sucker 

and longnose dace were found at five or fewer sites and sculpin were found at only 13 sites 

(Table 11).  Additionally, mottled sculpin densities accumulated at a much higher rate with 

increasing basin area in downstream reaches compared to upstream (Figure 25).  Further 

evidence that other species were impacted by culverts lies in the fact that a vast majority of 

upstream observed creek chub, white sucker, and rosyside dace density values fell below 

downstream expected-observed trendlines, indicating that culverts often caused density values to 

be much lower than expected given downstream habitat models.  If we were to sample additional 
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culvert sites where these species were present and increase our sample size for each test, we 

would probably detect an effect on several additional species. 

 It also was apparent that populations of brook trout were locally unimpacted by culvert 

presence.  In fact average densities of this species were actually higher above culverts than 

below, but not significantly higher.  However, it is likely that this species was impacted by 

culverts but this effect was not apparent through our sampling design.  This species is a small 

stream core species (Freund 2004) and, in many cases, culverts were located within or 

downstream of core ranges (i.e. source populations), so upstream culvert effects are probably 

rare on brook trout.  In fact, we found that species-specific upstream culvert effects are related to 

the upstream extent of a species core range (Figure 34).  This is probably the case because all of 

our culverts were located in small streams and were further from the core range of species that 

have core ranges located in larger streams.  Thus, if one of these large stream population core 

species was present in a stream we sampled, the culvert probably isolated a small fraction of the 

population periphery making that species more vulnerable to local extirpation above the culvert 

than a species with a larger portion of its core located upstream of the culvert.   

In fact, brook trout probably are actually impacted by culverts, but at the watershed scale, 

through the additive effects of habitat isolation by many culverts.  However, our culverts were 

probably located within or just downstream of these source populations making the detection of 

local effects on brook trout impossible.  Our study was not designed to identify watershed-scale 

impacts.   In fact, it would be difficult to design such a study in the central Appalachian region 

due to the lack of roadless watersheds for use as experimental controls. 

 Several results suggest that culvert effects on fish communities are basin area dependent 

and that culverts located within the smallest fish-bearing streams probably have a stronger effect 
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than culverts crossing the larger streams (Figures 22a and 23a).  For example, we observed no 

difference in species richness between upstream and downstream reaches at sites larger than 3.5 

km2.  Additionally, it appeared that relative species accumulation occurred at a faster rate 

downstream of culverts compared to upstream at sites under 3.5 km2 compared to sites over this 

size.  We also found strong evidence that suggests that culvert effects on mottled sculpin 

densities were basin area-dependent.  It appears that culverts located in streams draining between 

1.0 and 2.0 km2 have the most impact on mottled sculpin (Figure 25b).  Small streams probably 

have a greater effect on fish communities because they are located further from most species 

core ranges and isolate smaller population periphery fragments that are highly vulnerable to local 

extirpation. 

 We attribute the fact that we did not detect a more drastic culvert effect on upper Cheat 

River basin fish assemblages to several situational and biogeographical variables.  First, although 

we suspect that additional species are significantly impacted by culverts and that, by increasing 

the power of our tests, we would probably detect a culvert effect these species, it is probably rare 

that we could find many barrier culverts that overlap the range of these species.  We found that 

culverts on smaller streams with steeper slopes probably have more impact than other culverts 

but these additional species are large stream core species that occur in streams that are larger and 

lower in gradient.  Second, the fact that we chose a watershed with a small species pool limited 

our chances of actually detecting an effect from the start.  Other studies that have detected 

culvert effects have been conducted in much more speciose watersheds.  For example, Warren 

and Pardew (1998) studied culvert effects on 21 fish species in small streams of the Ouichita 

Mountains compared to the 13 species found at sites where we sampled both downstream and 

upstream of the culvert in our study.  Moreover, Warren and Pardew (1998) were working in 
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warmwater streams which were larger and lower in gradient (0.8 % mean gradient among study 

streams).  In our study area, streams of this nature are typically bridged, not culverted.  Finally, it 

is probably true that culvert effects in the Cheat River basin will become more apparent over 

time.  As time goes on and more disturbance events such as debris flows or droughts occur, the 

likelihood that a disturbance will occur upstream of a barrier culvert will only increase.  Such an 

event would cause the decimation of a stream reach isolated to recolonization.  Therefore, as 

time goes on, fish assemblages in these isolated stream reaches become more vulnerable to 

extreme disturbances. 

 In addition to these findings, we found that pairwise richness differences between 

downstream and upstream sites were positively correlated (r = 0.44) with the distance of the 

culvert from the mainstem (i.e. source populations) and negatively correlated (r = -0.47) with 

longitudinal variation in flow velocity within a given reach (i.e. flow complexity).  The positive 

correlation of richness difference with distance to the mainstem seems counter-intuitive.  

However, it is probably a result of the fact that stream slope typically increases and basin area 

typically decreases moving away from the mainstem and culvert effects are associated with small 

steep streams in our study area (see chapter 2).  The negative correlation with variation in flow 

velocity might be a result of the lack of resting habitats near the culvert in streams with less 

variable flow velocity.  This lack of resting habitat approaching the culvert might result in a 

reduction in the probability of successful fish passage when the fish reaches the culvert. 

 Warren and Pardew (1998) found that stream fish movements were an order of 

magnitude lower through culverts than through natural reaches.  Similarly, Thompson and Rahel 

(1998) found that culverts were effective barriers to brook trout.  While our study was not 

designed to measure fish movement, our results are indicative of the expected impacts of reduced 
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fish movement on fish communities upstream of culverts.  Additionally, our result that blacknose 

dace, a member the the Cyprinidae family, support findings by Warren and Pardew (1998) who 

found that the numbers of species and movement within the family Cyprinidae were reduced at 

culverts relative to natural reaches. 

Conclusions and Implications 

 We were able to draw four major conclusions from this research.  First, species richness 

is negatively impacted by culverts.  Second, culvert effects are related to basin area, stream 

slope, distance to the mainstem, and flow variability.  Culverts on small streams with steep 

slopes where fish are present are more likely to have impacts on the fish community.  

Additionally, culvert effects on richness were negatively correlated with flow variability.  Third, 

blacknose dace populations are significantly impacted by culverts.  Other species, other than 

brook trout, appear to impacted as well, but probably were not sampled often enough to be sure.  

Finally, the relationship between species-specific culvert effects was positively correlated with 

the basin area at the upstream extent of a given species core range.   

Our results underline the importance and vulnerability of headwater streams which 

comprise the majority of the total catchment area (70 – 80 %) of most watersheds (Sidle et al. 

2000) and support an important component of biodiversity in watersheds (Gomi et al. 2002).  

Additionally, headwater streams are intimately linked to downstream ecosystems and are 

important to managing and protecting these ecosystems (Gomi et al. 2002).  Our results provide 

further proof that environmental managers and road builders need to pay as much attention to 

headwater streams as they do larger streams during road building and mitigation efforts, because 

headwater streams are essential to healthy stream ecosystems and are vulnerable to culvert-

related impacts. 
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 Additionally, this study opens various research avenues.  There is a need for studies 

addressing genetic variation within small-stream fish populations isolated above barriers.  

Additionally, there is a need for studies addressing the responses of isolated fish communities 

after stochastic events such as large floods and droughts.  There also is a need for studies 

addressing the long-term impacts of various culvert designs in small, high gradient, headwater 

streams and a need to develop an economical road crossing design that has minimal impact on 

stream biota.  Currently bridges and bottomless arch culverts are the most ecologically sound 

stream crossing option, but they also are the most expensive. 

 Our results also hold implications for future culvert design criteria and culvert 

replacement decisions.  In the past, salmonid species have been the main focus of most fish 

passage concern because they are usually the most economically important species (e.g. Fitch 

1995).  These results suggest, perhaps, that we should shift more attention toward weaker 

swimming species and species whose core ranges are located in larger streams when dealing with 

passage concerns and setting fish passage standards.  If passage standards are met for the 

weakest swimmers, or benthic organisms such as salamanders, then standards for all species 

should be met and the whole stream ecosystem should benefit.  This would require a holistic, 

interdisciplinary approach to culvert design, such as that proposed in Sylte (2002) in which 

engineers, hydrologists, and ecologists all agree on mutually beneficial stream crossing designs. 

 This study shows that culvert isolation, in addition to many other anthropogenic impacts, 

does negatively impact fish communities within the Cheat River basin, West Virginia.  However, 

we found that culverts in this basin have the greatest impact on small steep streams, making the 

amount of recoverable upstream habitat negligible in most cases.  Moreover, culvert impacts are 

greatest on ubiquitous species that are in no critical danger within this basin (i.e. blacknose dace) 
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and large stream core species that are not likely to be located in the most impacted streams.  

Therefore, even though it is apparent that culverts negatively impact fish communities in this 

basin, remediation of these impacts is likely not as critical as the remediation of other problems 

such as acid precipation impacts and acid mine drainage impacts.  However, if culvert restoration 

efforts are teamed with acid rain and acid mine remediation, or other restoration efforts, the 

potential exists to maximize the amount of stream habitat and connectivity restored to the basin. 
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Tables  
 
Table 5:  Physical characteristics of the three study sections within the upper Cheat River basin 
study area during summer 2004 fish assemblage sampling including boundary area (km2), 
minimum elevation (m), maximum elevation (m), area of forested land-cover (km2), and the top 
three surficial geological units ordered by surface area (km2). 
 

      

section area 
(km2) 

min. 
elev. 
(m) 

max. 
elev. 
(m) 

 
forested 

area 
(km2) 

 
surficial geology: 

area (km2) 
    

 
 

  

upper 
Dry Fork 143.6 806 

 
Hampshire: 58.1           

1,416 113.9 Mauch Chunk: 43.1  
Chemung: 12.8 

    
 
   

lower 
Dry Fork 311.2 494 1,496 

 
 263.9 

Mauch Chunk: 88.1     
Pottsville: 86.9             
Hampshire: 55.1 

    

 
 

  

Glady 
Fork 164.4 595 

 
 Hampshire: 72.3 
 1,198 149.0 Chemung: 47.3 
 Mauch Chunk: 22.9 
 
 
Table 6: First pass capture probabilities, based upon triple pass collection techniques, on streams 
of the Cheat River basin draining under 8 km2 for the fish species of main focus within this 
study. 

      
species n mean capture probability 
   
Catostomus commersoni 3 0.92 
   
Clinsostomus funduloides 1 0.87 
   
Cottus bairdi 5 0.53 
   
Rhinichthys atratulus 2 0.80 
   
Salvelinus fontinalis 31 0.71 
   
Semotilus atromaculatus 5 0.87 
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Table 7:  Results from pairwise two-tailed Wilcoxon signed ranks tests on water quality variables 
between upstream (US) and downstream (DS) culvert reaches for all above-below sites (n = 24).  
Water quality was no different upstream of culverts than downstream. 
      

 mean(standard error)     

Variable upstream downstream % 
difference 

W 
statistic df p-value 

       
alkalinity (mg/L) 46.7 (8.8) 47.6 (8.6) -1.9 50.5 15 0.639 
       
calcium hardness (mg/L) 3.3 (0.5) 3.2 (0.5) 3.0 40.0 13 0.735 
       
pH 7.18 (0.12) 7.24 (0.12) -0.8 129.0 24 0.565 
       
specific conductivity (μs/cm3) 117.1 (17.7) 115.4 (17.7) 1.5 108.5 22 0.588 
      

 

 
total hardness (mg/L) 4.4 (0.5) 4.3 (0.5) 2.3 33.5 12 0.733 
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Table 8: A list of habitat variables used in multiple regression analysis of fish community data 
and transformations used on each respective dataset.   

   
Variable (X) Transformation 
  
average current velocity none 
  
basin area log (x + 1) 
  
canopy cover arcsin (√X) 
  
CV of average current velocity none 
  
CV of depth none 
  
depth ln (x + 1) 
  
D50 log (x + 1) 
  
distance to cover ln (x + 1) 
  
distance to mainstem ln (x + 1) 
  
large woody debris volume per 50 m of stream log (x + 1) 
  
pool area per 50 m of stream ln (x + 1) 
  
pool-riffle-ratio ln (x + 1) 
  
rapid visual habitat assessment none 
  
percent silt/sand arcsin (√X) 
  
slope arcsin (√X) 



Table 9: Correlation matrix of transformed habitat variables.  Bolded variables were included as independent variables in stepwise 
multiple linear regressions.  BA = basin area; DMS = distance to the mainstem; CC = canopy cover; slope = stream gradient; PA/50m 
= pool area per 50 m of stream; PRR = pool-riffle ratio; D = depth; CVD = coefficient of variation of depth; ACV = average current 
velocity; CVACV = coefficient of variation of average current velocity; RVHA = rapid visual habitat assessment; D-cov = distance to 
fish cover; % silt/sand = percent of substrate classified as silt or sand; LWD-vol/50m = large woody debris volume per 50 m of 
stream; D50 = median substrate size. 
                                

 BA DMS CC slope PA/50m PRR D CVD ACV CVACV RVHA D-cov 
% 

silt/sand
LWD-

vol/50m D50 
                                

BA 1.00 -0.11 -0.12 -0.33 0.67 0.38 0.79 -0.08 0.51 -0.12 0.36 -0.08 -0.05 0.05 0.13 
                

DMS -0.11 1.00 -0.08 -0.11 -0.01 -0.16 -0.16 0.05 0.06 -0.28 0.04 0.31 0.24 -0.04 -0.15 
                

CC -0.12 -0.08 1.00 0.20 -0.03 -0.16 -0.11 -0.04 -0.09 -0.03 0.38 -0.36 -0.08 0.46 0.01 
                

slope -0.33 -0.11 0.20 1.00 -0.44 -0.23 -0.47 0.03 -0.29 0.38 -0.18 -0.27 -0.24 0.31 0.30 
                

PA/50m 0.67 -0.01 -0.03 -0.44 1.00 0.51 0.75 0.22 0.36 0.03 0.51 -0.28 -0.05 0.18 0.23 
                

PRR 0.38 -0.16 -0.16 -0.23 0.51 1.00 0.43 0.36 -0.20 0.41 0.04 -0.03 -0.08 0.18 0.12 
                

D 0.79 -0.16 -0.11 -0.47 0.75 0.43 1.00 -0.12 0.68 -0.26 0.49 -0.22 0.00 -0.03 0.02 
                

CVD -0.08 0.05 -0.04 0.03 0.22 0.36 -0.12 1.00 -0.40 0.56 -0.13 0.07 -0.06 0.29 0.21 
                

ACV 0.51 0.06 -0.09 -0.29 0.36 -0.20 0.68 -0.40 1.00 -0.60 0.47 -0.18 0.10 -0.18 0.01 
                

CVACV -0.12 -0.28 -0.03 0.38 0.03 0.41 -0.26 0.56 -0.60 1.00 -0.24 -0.02 -0.11 0.34 0.30 
                

RVHA 0.36 0.04 0.38 -0.18 0.51 0.04 0.49 -0.13 0.47 -0.24 1.00 -0.49 -0.08 0.20 0.15 
                

D-Cov -0.08 0.31 -0.36 -0.27 -0.28 -0.03 -0.22 0.07 -0.18 -0.02 -0.49 1.00 0.43 -0.30 -0.48 
                

% 
silt/sand -0.05 0.24 -0.08 -0.24 -0.05 -0.08 0.00 -0.06 0.10 -0.11 -0.08 0.43 1.00 -0.21 -0.73 
                

LWD-
vol/50m 0.05 -0.04 0.46 0.31 0.18 0.18 -0.03 0.29 -0.18 0.34 0.20 -0.30 -0.21 1.00 0.25 
              

 

  

D50 0.13 -0.15 0.01 0.30 0.23 0.12 0.02 0.21 0.01 0.30 0.15 -0.48 -0.73 0.25 1.00 
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Table 10: List of fish families (phylogenetic order) and species (alphabetical order) sampled at all sites (above-below as well as above-
only culvert sites; n = 47) including the number of culvert sites where each species was found and the number of below-culvert 
(downstream) and above-culvert (upstream) stream reaches where present.   

         

family Species 

# sites 
where 

present (47 
available) 

# downstream 
reaches where 

present (24 
available) 

# upstream 
reaches where 

present (47 
available) 

     
Cyprinidae Clinostomus funuloides (rosyside dace) 8 5 (21 %) 6 (13 %) 

     
 Nocomis micropogon (river chub) 1 0 1 (2 %) 
     
  Notropis spp. (shiners) 3 1 (4 %) 3 (6 %) 
     
  Pimepheles notatus (bluntnose minnow) 3 2 (8 %) 2 (4 %) 
     
  Rhinichthys atratulus (blacknose dace) 20 13 (54 %) 15 (32 %) 
     
  Rhinichthys cataractae (longnose dace) 7 5 (21 %) 5 (11 %) 
     
 Semotilus atromaculatus (creek chub) 11 7 (29 %) 8 (17 %) 
     
Catostomidae  Catostomus commersoni (white sucker) 6 4 (17 %) 4 (9 %) 

     
  Hypentelium nigricans (northern hog sucker) 2 1 (4 %) 1 (2 %) 
     
Salmonidae  Salmo trutta (brown trout) 6 2 (8 %) 4 (9 %) 

     
  Salvelinus fontinalis (brook trout) 33 14 (58 %) 31 (66 %) 
     
Cottidae  Cottus bairdi (mottled sculpin) 24 14 (58 %) 21 (45 %) 

     
Centrarchidae  Ambloplites rupestris (rock bass) 1 0 1 (2 %) 

     
  Lepomis cyanellus (green sunfish) 1 1 (4 %) 0 
     
  Lepomis macrochirus (bluegill sunfish) 1 1 (4 %) 0 
     
  Micropterus spp. (black bass) - juvenile 1 0 1 (2 %) 
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Table 11: Results from pairwise two-tailed Wilcoxon signed ranks tests on fish species richness and species densities (# 
individuals/100 m2) between upstream (US) and downstream (DS) culvert reaches for all above-below sites except an outlier (n = 23). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

        

 # sites with 
fish present mean(standard error)     

Variable US DS upstream downstream % difference W statistic df p-value 
         
species richness 17 19 2.0 (0.5) 2.6 (0.5) -22.0 3.5 10 0.014 
         
Catostomus commersoni 2 3 0.03 (0.02) 0.06 (0.05) -54.6 1.0 3 0.500 
         
Cottus bairdi 10 13 8.18 (2.51) 12.10 (3.53) -32.4 21.0 13 0.094 
         
Clinostomus funduloides 2 3 0.31 (0.28) 0.38 (0.31) -18.7 1.0 3 0.500 
         
Rhinichtys atratulus 9 12 12.80 (7.32) 19.76 (8.13) -35.2 10.0 13 0.011 
         
Rhinichtys cataractae 3 5 0.16 (0.12) 0.43 (0.27) -62.9 4.0 5 0.438 
         
Semotilus atromaculatus 4 6 3.10 (2.70) 3.08 (2.37) 0.5 8.0 6 0.688 
         
Salvelinus fontinalis 12 13 6.22 (2.32) 5.71 (1.45) 8.9 14 50.0 0.903 

 



Table 12: Results from principal components analysis of in-stream habitat variables.  All stream 
reaches (above and below reaches) were included in this analysis (n = 71) 

    
 Variable Principal Component 1 Principal Component 2 Principal Component 3 
    
eigenvalue 3.24 2.09 1.35 
    
percent 35.98 23.17 15.05 
    
average current velocity 0.41 •  •  
    
basin area 0.47 •  •  
    
CV of depth •  •  0.67 
    
depth 0.53 •  •  
    
D50 •  0.52 •  
    
distance to cover •  -0.47 0.40 
    
large woody debris volume 
per 50 m of stream •  0.49 •  

    
pool area per 50 m of 
stream 0.46 •  •  

    
slope •  •  
 

•  
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Table 13: Results from step-wise multiple linear regression analysis between selected habitat 
variables and fish community variables on stream reaches located downstream of culverts (n = 
24). 

              
y-response habitat variable f-value df r2 direction  p-value 
            
species richness slope 17.85 23 0.40 - <0.001 
       
 basin area 11.85 23 0.22 + 0.002 
       
 model 16.96 23 0.62  <0.001 
       
Cottus bairdii slope 8.84 23 0.27 - 0.007 
       
 pool-riffle ratio 2.58 23 0.08 + 0.123 
       
 model 5.69 23 0.35  0.011 
       
Salvelinus fontinalis D50 7.78 23 0.13 - 0.011 
       
 basin area 4.00 23 0.13 - 0.059 
       

 
rapid visual habitat 
assessment 6.68 23 0.11 + 0.018 

       
 model 3.91 23 0.37  0.024 
       

Rhinichthys atratulus 
rapid visual habitat 
assessment 10.02 23 0.21 + 0.005 

       
 canopy cover 15.81 23 0.18 - 0.001 
       
 slope 2.55 23 0.07 + 0.126 
       
  model 5.63 23 0.46   0.006 
       
Clinostomus funduloides pool-riffle ratio 12.90 23 0.34 + 0.002 
       
 slope 3.63 23 0.10 - 0.071 
       
 model 8.24 23 0.44  0.002 
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Table 13 continued 
 

       
y-response habitat variable f-value df r2 direction p-value 
       
Semotilus atromaculatus canopy cover 44.40 23 0.31 - <0.001 
       

 
rapid visual habitat 
assessment 22.54 23 0.21 + <0.001 

       
 basin area 2.98 23 0.11 - 0.101 
       
 slope 3.73 23 0.05 + 0.070 
       
 pool-riffle ratio 2.62 23 0.04 - 0.123 
       
 model 9.01 23 0.71  <0.001 
       
Catostomus commersoni pool-riffle ratio 4.87 23 0.17 + 0.039 
       
 slope 3.43 23 0.12 - 0.078 
       
 model 4.13 23 0.28  0.031 
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Table 14: Results from step-wise multiple linear regression analysis between selected habitat 
variables and fish community variables on stream reaches located upstream of culverts (n = 47). 

             

y-response habitat variable f-value df r2 direction p-
value 

           
species richness slope 27.03 46 0.58 - <0.001 
       
 basin area 12.67 46 0.10 + 0.001 
       
 pool-riffle ratio 6.55 46 0.03 + 0.014 
       
 CV of depth 2.92 46 0.02 - 0.095 
       
 model 27.75 46 0.73  <0.001 
       
Cottus bairdii basin area 5.44 46 0.20 + 0.025 
       
 CV of depth 9.27 46 0.10 - 0.004 
       

 
rapid visual habitat 
assessment 6.11 46 0.09 + 0.018 

       
 pool-riffle ratio 3.42 46 0.05 + 0.072 
       
 model 7.93 46 0.43  <0.001 
       

Salvelinus fontinalis 
rapid visual habitat 
assessment 7.32 46 0.14 + 0.010 

       
 CV of depth 4.26 46 0.08 - 0.045 
       
 model 6.08 46 0.22  0.005 
       
Rhinichthys atratulus canopy cover 21.31 46 0.41 - <0.001 
       
 basin area 8.2 46 0.06 + 0.007 
       
 distance to the mainstem 4.65 46 0.04 + 0.037 
       

 
rapid visual habitat 
assessment 7.28 46 0.03 - 0.010 

       
 CV of depth 3.07 46 0.03 - 0.087 
       
  model 10.97 46 0.57   <0.001 
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Table 14 continued 
 
       
y-response habitat variable f-value df r2 direction of effect p-value 
       
Clinostomus funduloides slope 12.24 46 0.23 - 0.001 
       
 pool-riffle ratio 4.95 46 0.07 + 0.031 
       
 RVHA 3.72 46 0.05 - 0.060 
       
 model 9.37 46 0.40  <0.001 
       
Semotilus atromaculatus CC 32.77 46 0.46 - <0.001 
       
 slope 4.24 46 0.05 - 0.045 
       
 model 22.93 46 0.51  <0.001 
       
Catostomus commersoni slope 11.41 46 0.13 - 0.002 
       
 RVHA 5.16 46 0.08 - 0.028 
       
 DMS 3.34 46 0.06 - 0.075 
       
 model 5.33 46 0.27  0.003 
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Table 15: Results from step-wise multiple linear regression analysis between three significant 
habitat principal components as well as three habitat variables not included in the principal 
components analysis and fish community variables on stream reaches downstream of culverts (n 
= 24).  Principal component 1 (PC 1) is a positive habitat size component and both principal 
component 2 (PC 2) and principal component 3 (PC 3) are positive habitat complexity gradients. 
 
             
y-response habitat variable f-value df r2 direction p-value 
           
species richness PC 1 32.67 23 0.40 + <0.001 
       
 PC 3 11.30 23 0.18 + 0.003 
       
 PC 2 6.55 23 0.10 - 0.019 
       
 model 14.19 23 0.68  <0.001 
       
Cottus bairdii PC 3 8.09 23 0.23 + 0.010 
       
 PC 1 9.03 23 0.17 + 0.007 
       
 model 6.98 23 0.40  0.005 
       
Salvelinus fontinalis Would not form a model. 
       

Rhinichthys atratulus 
rapid visual habitat 
assessment 4.25 23 0.21 + 0.052 

       
 canopy cover 13.81 23 0.18 - 0.001 
       
 PC 3 3.79 23 0.10 - 0.066 
       
  model 6.30 23 0.49   0.004 
       
Clinostomus funduloides PC1 9.40 23 0.21 + 0.006 
       
 PC3 5.16 23 0.16 + 0.034 
       
 model 6.00 23 0.36  0.009 
       
Semotilus atromaculatus CC 26.52 23 0.31 - <0.001 
       
 PC3 5.72 23 0.21 - 0.027 
       

 
rapid visual habitat 
assessment 5.54 23 0.10 + 0.029 

       
 model 11.09 23 0.62  <0.001 
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Table 15 continued 
 
             
y-response habitat variable f-value df r2 direction p-value 
       
Catostomus commersoni PC3 9.35 23 0.22 + 0.006 
       
 PC1 4.16 23 0.13 + 0.054 
       
 model 5.63 23 0.35  0.011 
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Table 16: Results from step-wise multiple linear regression analysis between three significant 
habitat principal components as well as three habitat variables not included in the principal 
components analysis and fish community variables on stream reaches upstream of culverts (n = 
47).  Principal component 1 (PC 1) is a positive habitat size component and both principal 
component 2 (PC 2) and principal component 3 (PC 3) are positive habitat complexity gradients. 
 
             
y-response habitat variable f-value df r2 direction p-value 
           
species richness PC 1 45.47 46 0.49 + <0.001 
       
 PC 3 14.64 46 0.07 + <0.001 
       
 PC 2 10.37 46 0.05 - 0.003 
       
 distance to the mainstem 6.03 46 0.05 - 0.018 
       
 model 20.82 46 0.66  <0.001 
       
Cottus bairdii PC 1 24.88 46 0.31 + <0.001 
       
 CC 4.77 46 0.07 + 0.034 
       
 model 13.20 46 0.38  <0.001 
       

Salvelinus fontinalis 
rapid visual habitat 
assessment 9.36 46 0.14 + 0.004 

       
 PC 2 5.00 46 0.06 - 0.031 
       
 distance to the mainstem 2.45 46 0.04 - 0.125 
       
 model 4.61 46 0.24  0.007 
       
Rhinichthys atratulus canopy cover 15.85 46 0.41 - <0.001 
       
 PC 1 7.05 46 0.06 + 0.011 
       

 
rapid visual habitat 
assessment 7.62 46 0.03 - 0.009 

       
 distance to the mainstem 3.45 46 0.04 + 0.070 
       
 model 12.24 46 0.54   <0.001 
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Table 16 continued 
 
       
y-response habitat variable f-value df r2 direction p-value 
       
Clinostomus funduloides PC3 14.53 46 0.15 + 0.001 
       
 distance to the mainstem 7.64 46 0.15 - 0.009 
       
 PC2 10.45 46 0.10 - 0.002 
       
 PC1 5.46 46 0.04 + 0.024 
       

 
rapid visual habitat 
assessment 2.44 46 0.03 - 0.126 

       
 model 7.29 46 0.47  <0.001 
       
Semotilus atromaculatus CC 34.44 46 0.46 - <0.001 
       
 PC2 3.06 46 0.03 - 0.087 
       
 model 21.83 46 0.50  <0.001 
       
Catostomus commersoni PC3 8.37 46 0.14 + 0.006 
       
 PC2 10.41 46 0.08 - 0.002 
       
 DMS 8.79 46 0.07 - 0.005 
       
  model 6.02 46 0.30  0.002 
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Table 17: Results from pairwise two-tailed wilcoxon signed ranks tests on stream habitat 
variables for: a) richness group 1  sites (sites where a culvert effect was observed) and b) 
richness group 2 sites (sites where no culvert effect was observed).  The bonferroni-corrected 
alpha level for significance for both groups of tests was 0.01. PC 1 = principal component 1; PC 
2 = principal component 2; PC 3 = principal component 3. 
 
a. 

      

 mean(standard error)     

Variable US DS % difference W statistic df p-value 
       
PC 1 -0.370 (0.458) -0.200 (0.478) n/a 9.0 9 0.13 
       
PC 2 -0.567 (0.327) -0.926 (0.385) n/a 13.0 9 0.30 
       
PC 3 -0.025 (0.315) -0.209 (0.196) n/a 15.0 9 0.43 
       
slope 7.3 (1.0) 4.1 (0.9) 76.5 1.0 8 0.02 

 

 
b. 

     

 mean(standard error)     

Variable US DS % difference W statistic df p-value 
       
PC 1 -0.793 (0.537) -1.015 (0.789) n/a 13.0 8 0.55 
       
PC 2 0.292 (0.435) 0.349 (1.020) n/a 10.0 8 0.31 
       
PC 3 -0.106 (0.128) 0.549 (0.558) n/a 9.0 8 0.25 
       
slope 7.9 (1.9) 8.3 (2.4) -5.7 19.0 8 0.95 
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Table 18: Results from pairwise two-tailed wilcoxon signed ranks tests on stream habitat 
variables for: a) blacknose dace density group 1 sites (sites where a culvert effect was observed) 
and b) blacknose dace density group 2 sites (sites where no culvert effect was observed).  The 
bonferroni-corrected alpha level for significance for both groups of tests is 0.02. PC 1 = principal 
component 1. 
 
a. 

      

 mean(standard error)     

Variable US DS % difference W statistic df p-value 
       
canopy cover 88.5 (2.4) 81.3 (7.7) 8.8 24.0 9 0.77 
       
PC 1 0.988 (0.4) 1.333 (0.3) n/a 10.0 9 0.08 
       
rapid visual habitat 
assessment 156 (4.6) 159 (3.0) -1.8 22.5 9 0.70 

 

 
b. 

     

 mean(standard error)     

Variable US DS % difference W statistic df p-value 
       
canopy cover 82.5 (4.7) 91.1 (1.6) -9.4 25.0 12 0.17 
       
PC 1 -0.665 (0.5) -0.773 (0.5) n/a 41.0 12 0.79 
       
rapid visual habitat 
assessment 150 (3.7) 141 (9.0) 6.0 37.0 12 0.59 
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Table 19: Results from linear regressions between pairwise richness differences (below culvert - 
above culvert) and the listed habitat variables.  Variables with significant correlations are bolded. 

        
variable R2 n p 
    
average current velocity 0.03 23 0.415 
    
basin area 0.06 23 0.273 
    
canopy cover 0.00 23 0.873 
    
CV of average current velocity 0.22 23 0.025 
    
CV of depth 0.12 23 0.114 
    
depth 0.01 23 0.657 
    
D50 0.12 23 0.111 
    
distance to fish cover 0.07 23 0.236 
    
distance to the mainstem 0.20 23 0.033 
    
large woody debris volume per 50 m of stream 0.04 23 0.342 
    
pool area per 50 m of stream 0.03 23 0.407 
    
principal component 1 0.00 23 0.907 
    
principal component 2 0.07 23 0.229 
    
principal component 3 0.09 23 0.156 
    
pool-riffle ratio 0.16 23 0.061 
    
rapid visual habitat assessment 0.08 23 0.191 
    
percent silt/sand 0.01 23 0.680 
    
slope 0.04 23 0.390 
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Table 20: Results from linear regressions between pairwise blacknose dace (Rhinichthys 
atratulus) density differences (below culvert - above culvert) and the listed habitat variables.   
 

        
variable R2 n p 

    
average current velocity 0.06 23 0.279 
    
basin area 0.05 23 0.325 
    
canopy cover 0.00 23 0.920 
    
CV of average current velocity 0.00 23 0.939 
    
CV of depth 0.04 23 0.385 
    
depth 0.05 23 0.325 
    
D50 0.24 23 0.018 
    
distance to fish cover 0.04 23 0.370 
    
distance to the mainstem 0.00 23 0.851 
    
large woody debris volume per 50 m of stream 0.00 23 0.879 
    
pool area per 50 m of stream 0.10 23 0.140 
    
principal component 1 0.11 23 0.126 
    
principal component 2 0.04 23 0.335 
    
principal component 3 0.06 23 0.248 
    
pool-riffle ratio 0.00 23 0.774 
    
rapid visual habitat assessment 0.02 23 0.583 
    
percent silt/sand 0.04 23 0.379 
    
slope 0.01 23 0.731 
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Table 21: Results from Kolmogorov-Smirnov tests comparing upstream and downstream 
cumulative proportional curves for the following combinations of variables. 
 

          
y-variable x-variable D-statistic df p-value 
     
richness basin area 0.12 23 0.708 
     
 slope 0.08 23 0.858 
     
blacknose dace density basin area 0.1 23 0.787 
     
 slope 0.15 23 0.583 
     
mottled sculpin density basin area 0.34 23 0.062 
     
 slope 0.15 23 0.583 
     
brook trout density basin area 0.15 23 0.583 
     
 slope 0.20 23 0.399 
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Figures 
 
Figure 20: Map of the upper Cheat River basin, West Virginia, except the Blackwater River, with 
the three study area sections outlined in bold.  Culverts locations are represented by black dots.  
Specifically, the study area consisted of the following study sections: lower Dry Fork, Glady 
Fork, and upper Dry Fork (including upper Dry Fork and Gandy Creek). 
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Figure 21: Sampling scheme for water quality, habitat, and fish abundance data sampling 
performed at each culvert.  Hypothetical sampling reaches are highlighted shaded light gray. 
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Figure 22:  a) Cumulative species count for both above and below the culvert reaches plotted 
against log-transformed basin area (km2).  Cumulative proportional species count for both above 
and below reaches plotted against: b) basin area (km2) and c) slope (%) for all sites sampled 
upstream and downstream of the culvert, except one outlier (n = 23).  The cumulative species 
count at a given reach is defined as the sum of the species richness at that reach plus the total 
sum of the species richness values at all smaller reaches.  In other words species were counted 
each time they were found at a new reach. 
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Figure 23: Pairwise differences (downstream reach – upstream reach) in a) species richness, b) 
mottled sculpin (Cottus bairdi) density, c) brook trout (Salvelinus fontinalis) density, d) 
blacknose dace (Rhinichthys atratulus) density, e) creek chub (Semotilus atromaculatus) density, 
f) white sucker (Catostomus commersoni) density, and g) rosyside (Clinostomus funduloides) 
dace density plotted against basin area for all sites sampled upstream of and downstream of the 
culvert, except on outlier (n = 23)  
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Figure 24:  a) Cumulative blacknose dace (Rhynichthys atratulus) density plotted separately for 
above and below the culvert reaches against basin area (km2).  Cumulative proportional 
blacknose dace density plotted for both above and below the culvert reaches against: b) basin 
area (km2) and c) slope (%). 
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Figure 25:  a) Cumulative mottled sculpin (Cottus bairdi) density plotted against basin area 
(km2) for both above and below the culvert reaches.  Cumulative proportional mottled sculpin 
density plotted separately for above and below the culvert reaches against: b) basin area (km2) 
and c) slope (%). 
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Figure 26: a) Cumulative brook trout (Salvelinus fontinalis) density plotted separately for above 
and below the culvert reaches against basin area (km2).  Cumulative proportional brook trout 
density plotted separately for above and below the culvert reaches against: b) basin area (km2) 
and c) slope (%). 
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Figure 27: Observed versus expected values, given downstream habitat models and upstream 
habitat values, for the following fish community variables: a) species richness, b) mottled sculpin 
(Cottus bairdi) density, c) brook trout (Salvelinus fontinalis) density, d) blacknose dace 
(Rhinichthys atratulus) density, e) creek chub (Semotilus atromaculatus) density, f) white sucker 
(Catostomus commersoni) density, and g) rosyside (Clinostomus funduloides) dace density.  
Each graph includes separate plots for downstream and upstream reaches. 
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Figure 28: Pairwise species richness differences (downstream of culvert – upstream of culvert) 
divided into three culvert effect groups.  Group 1 includes all small basin area (< 3.5 km2) 
culvert sites where a positive richness difference was observed.  Group 2 includes all small basin 
area culvert sites where no difference or a negative difference was observed.  Group 3 includes 
all large basin area (> 3.5 km2) culvert sites. 
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Figure 29:  Pairwise differences (downstream of culvert – upstream of culvert) in blacknose dace 
(Rhinichthys atratulus) density plotted against basin area.  Group 1 includes culverts with a 
positive difference and group 2 includes culverts with no difference or a negative difference. 
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Figure 30: Richness difference (downstream of culvert-upstream of culvert) plotted against 
stream-distance from the culvert to the nearest mainstem point (nearest point draining over 15 
km2) for all sites sampled both upstream and downstream of the culvert, except one outlier (n = 
23).  Richness difference was positively correlated with stream distance to the mainstem. 
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Figure 31: Richness difference (downstream of culvert– upstream of culvert) plotted against the 
coefficient of variation of average current velocity for all sites sampled both above and below the 
culvert, except on outlier (n = 23).  Richness difference was negatively correlated with 
longitudinal variation in current velocity. 
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Figure 32: Blacknose dace density difference (downstream of culvert – upstream of culvert) 
plotted against median substrate size (D50) for all sites sampled both upstream and downstream 
of the culvert, except one outlier (n = 23).  Differences in blacknose dace density were positively 
correlated with D50. 
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Figure 33: Blacknose dace density difference (downstream of culvert – upstream of culvert) 
plotted against median substrate size (D50) after the removal of an outlier site (n = 22). 
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Figure 34: Percent of culvert sites where a given species was present upstream of the culvert 
versus the upstream extent of the species core range (Freund 2004), in basin area (km2).  
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Appendix I: List of stream restoration opportunities at culvert crossings prioritized for fish 
passage restoration potential.  The culverts are sorted first by salmonid passage category (red, 
gray, green) and then by weighted potential brook trout spawning area (WPRA; km).  The 
abbreviation “CR” stands for “county road” and “UT” stands for “unnamed tributary.” 
                

Site 
# Road # UTM E UTM N 

Stream 
Name 

Study 
Section 

Passage 
Category 

Upstream 
WPRA 
(km) 

        
96 CR 72 0627729 4320101 Elk Lick 

Run 
lower Dry 

Fork Red 8.68 

123 CR 72 0630242 4317829 Big Run lower Dry 
Fork Red 5.13 

144 CR 6 0609990 4315799 Little Laurel 
Run 

Shavers 
Fork Red 4.66 

139 CR 6 0611869 4318712 UT Shavers 
Fork Red 3.67 

361 CR 29-2 0625859 4297562 UT upper Dry 
Fork Red 3.41 

379 CR 29 0626319 4295298 Lower Two 
Spring Run 

upper Dry 
Fork Red 3.35 

452 CR 40 0619183 4286108 Warner 
Run 

upper Dry 
Fork Red 3.07 

28 CR 219 0613528 4327219 Sugar 
Camp Run 

Shavers 
Fork Red 3.03 

140 CR 6 0611677 4318373 UT Shavers 
Fork Red 3.00 

439 CR 29 0620389 4287348 Grants 
Branch 

upper Dry 
Fork Red 2.82 

142 CR 6 0610257 4316730 Wamsley 
Run 

Shavers 
Fork Red 2.81 

218 CR 6 0606940 4310105 Walker 
Run 

Shavers 
Fork Red 2.80 

135 CR 41 0611229 4322162 Stonelick 
Run 

Shavers 
Fork Red 2.74 

240 CR 32-8 0606199 4302758 Wolf Run Shavers 
Fork Red 2.64 

84 CR 47 0607396 4321337 Little Laurel 
Run 

Shavers 
Fork Red 2.46 

114 CR 72 0628958 4318824 Pond 
Creek 

lower Dry 
Fork Red 2.35 

394 CR 29 0625417 4294076 Upper Two 
Spring Run 

upper Dry 
Fork Red 2.23 

262 CR 5-12 0606821 4307407 Spruce 
Run 

Shavers 
Fork Red 2.20 

116 CR 72 0629033 4318822 UT lower Dry 
Fork Red 2.20 

132 CR 7 0610815 4318805 Natt Run Shavers 
Fork Red 1.89 

407 CR 40 0621449 4294629 UT upper Dry 
Fork Red 1.66 

369 CR 22 0608180 UT Shavers 
Fork Red 1.50 4298625 
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130 CR 35-
16 0627393 4316818 UT lower Dry 

Fork Red 1.49 

115 CR 39 0611005 4320053 Laurel Run Shavers 
Fork Red 1.48 

93 CR 72 0624066 4320352 UT lower Dry 
Fork Red 1.46 

95 CR 43-
11 0628051 4320031 UT lower Dry 

Fork Red 1.40 

334 CR 31 0627648 4301415 Stenking 
Creek 

lower Dry 
Fork Red 1.34 

136 CR 41 0611628 4321177 Sugarcamp 
Run 

Shavers 
Fork Red 1.31 

390 CR 29 0626143 4294829 UT upper Dry 
Fork Red 1.31 

267 CR 5-12 0609236 4307504 UT Shavers 
Fork Red 1.27 

138 CR 41 0612396 4319697 Rock 
Camp Run 

Shavers 
Fork Red 1.26 

143 CR 6 0609975 4315999 UT Shavers 
Fork Red 1.25 

73 CR 47 0609648 4322217 Panther 
Fork 

Shavers 
Fork Red 1.24 

264 CR 5-12 0610552 4307334 UT Shavers 
Fork Red 1.21 

91 CR 72 0625945 432164 UT lower Dry 
Fork Red 1.14 

239 CR 6 0607192 4309013 UT Shavers 
Fork Red 1.14 

432 CR 40 0617983 4288960 UT upper Dry 
Fork Red 1.14 

193 CR 9 0606217 4313240 UT Shavers 
Fork Red 1.13 

252 CR 33-8 0607062 4307441 UT Shavers 
Fork Red 1.13 

266 CR 5-12 0609371 4307367 UT Shavers 
Fork Red 1.12 

343 CR 29 0624908 4302041 UT lower Dry 
Fork Red 1.11 

201 CR 32-6 0629898 4311650 UT lower Dry 
Fork Red 1.06 

295 CR 5-17 0631773 4306251
.8 UT lower Dry 

Fork Red 1.04 

97 CR 72 0627492 4320119 UT lower Dry 
Fork Red 1.03 

251 CR 33-8 0608696 4308101 UT Shavers 
Fork Red 1.02 

90 CR 39 0611137 4321447 UT Shavers 
Fork Red 1.00 

297 CR 29 0626259 4307363 UT lower Dry 
Fork Red 0.98 

363 CR 40 0622965 4297719 UT upper Dry 
Fork Red 0.97 

406 CR 40 0622036 4295757 UT upper Dry 
Fork Red 0.97 
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10 CR 219 0607704 4327895 UT Shavers 
Fork Red 0.96 

371 CR 40 0622436 4297353 UT upper Dry 
Fork Red 0.95 

238 CR 6 0607249 4309174 Western 
Run 

Shavers 
Fork Red 0.95 

344 CR 29 0624749 4301468 UT lower Dry 
Fork Red 0.94 

420 CR 29 0621959 4289631 Nans 
Branch 

upper Dry 
Fork Red 0.93 

98 CR 72 0628218 4319698 UT lower Dry 
Fork Red 0.93 

316 CR 29 0624704 4304215 UT lower Dry 
Fork Red 0.92 

86 CR 47 0606343 4321398 Choke 
Trap Run 

Shavers 
Fork Red 0.88 

121 CR 26 0624729 4318741 UT lower Dry 
Fork Red 0.88 

319 CR 29-3 0624927 4303235 UT lower Dry 
Fork Red 0.86 

9 CR 219 0608469 4328027 UT Shavers 
Fork Red 0.82 

194 CR 9 0605970 4312514 UT Shavers 
Fork Red 0.82 

265 CR 5-12 0609733 4307219 UT Shavers 
Fork Red 0.80 

244 CR 33-8 0610236 4307641 UT Shavers 
Fork Red 0.76 

418 CR 29 0622848 4290736 UT upper Dry 
Fork Red 0.71 

24 CR 219 0608878 4327837 UT Shavers 
Fork Red 0.70 

15 CR 219 0605267 4327751 UT Shavers 
Fork Red 0.70 

83 CR 43-6 0626356 4322118 Mill Run lower Dry 
Fork Red 0.69 

107 CR 43-
12 0627157 4319332 Elk Lick 

Run 
lower Dry 

Fork Red 0.66 

206 CR 9-4 0605999 4310807 UT Shavers 
Fork Red 0.64 

268 CR 5-12 0610956 4307260 UT Shavers 
Fork Red 0.64 

109 CR 26 0623919 4319639 UT lower Dry 
Fork Red 0.63 

419 CR 29 0622485 4290551 UT upper Dry 
Fork Red 0.60 

408 CR 40 0621227 4293207 UT upper Dry 
Fork Red 0.59 

106 CR 43-
11 0627641 4319775 UT lower Dry 

Fork Red 0.58 

440 CR 40 0618550 4287467 UT upper Dry 
Fork Red 0.56 

133 CR 7 0609821 4318164 Flatbrush Shavers 
Fork Red 0.51 

360 CR 29-4 0626169 UT upper Dry 
Fork Red 0.51 4297503 
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196 CR 32-7 0628874 4312346 UT lower Dry 
Fork Red 0.48 

72 CR 219-
7 0620423 4323808 UT lower Dry 

Fork Red 0.42 

293 CR 25 0605757 4306211 Wolf Run Shavers 
Fork Red 0.40 

320 CR 31 0624091 4303166 UT lower Dry 
Fork Red 0.22 

187 CR 32-4 0628173 4212528 UT lower Dry 
Fork Red 0.14 

58 CR 39 0612209 4324728 Job Run Shavers 
Fork Red 0.02 

102 CR 47-2 0607424 4320780 Slabcamp 
Run 

Shavers 
Fork Gray 5.02 

85 CR 72 0626265 4321380 Mill Run lower Dry 
Fork Gray 4.48 

170 CR 32-7 0328971 4314610 UT lower Dry 
Fork Gray 4.34 

378 CR 29 0626587 4296053 UT upper Dry 
Fork Gray 3.33 

137 CR 41 0611534 4320995 Canoe Run Shavers 
Fork Gray 3.29 

186 CR 32-4 0628045 4312675 UT lower Dry 
Fork Gray 3.12 

260 CR 5-12 0607096 4307316 UT Shavers 
Fork Gray 2.75 

323 CR 29 0625145 4302622 UT lower Dry 
Fork Gray 2.55 

443 CR 29 0619983 4286494 Narrow 
Ridge Run 

upper Dry 
Fork Gray 2.39 

309 CR 29 0625086 4304884 UT lower Dry 
Fork Gray 2.28 

346 CR 29 0624316 4300107 UT lower Dry 
Fork Gray 2.12 

43 CR 39-1 0611507 4324890 Job Run Shavers 
Fork Gray 1.94 

442 CR 29 0619707 4286548 Devers 
Run 

upper Dry 
Fork Gray 1.74 

127 CR 53-
13 0625985 4318363 UT lower Dry 

Fork Gray 1.69 

134 CR 7 0690938
8 4317015 Boar Run Shavers 

Fork Gray 1.64 

237 CR 6 0606811 4309838 UT Shavers 
Fork Gray 1.62 

366 CR 29 0625897 4297114 UT lower Dry 
Fork Gray 1.33 

298 CR 29 0626118 4306967 UT lower Dry 
Fork Gray 1.20 

37 CR 219 0611155 4326294 Shingle 
Tree Run 

Shavers 
Fork Gray 1.17 

353 CR 40 0623468 4297937 UT lower Dry 
Fork Gray 1.15 

188 CR 32-4 0628225 4312510 UT lower Dry 
Fork Gray 1.05 
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29 CR 219 0612824 4326583 Hawk Run Shavers 
Fork Gray 1.04 

391 CR 29 0626034 4294569 UT upper Dry 
Fork Gray 1.02 

14 CR 219 0605618 4327876 UT Shavers 
Fork Gray 0.99 

421 CR 29 0621666 4289312 UT upper Dry 
Fork Gray 0.97 

404 CR 29 0623434 4291492 Taylor Run upper Dry 
Fork Gray 0.97 

101 CR 67 0608488 4319669 Slabcamp 
Run 

Shavers 
Fork Gray 0.94 

299 CR 29 0626033 4306180 UT lower Dry 
Fork Gray 0.91 

210 CR 32 0628302 4310530 UT lower Dry 
Fork Gray 0.76 

365 CR 29 0625165 4297841 UT upper Dry 
Fork Gray 0.64 

209 CR 32-6 0628349 4310469 UT lower Dry 
Fork Gray 0.61 

44 CR 39-1 0612019 4324907 Job Run Shavers 
Fork Gray 0.21 

45 CR 39-1 0612123 4324830 Job Run Shavers 
Fork Gray 0.04 

100 CR 67 0608486 4319705 Slabcamp 
Run 

Shavers 
Fork Gray 0.01 

377 CR 29 0626562 4296200 UT upper Dry 
Fork Green 2.48 

434 CR 29 0621334 4288585 UT upper Dry 
Fork Green 1.83 

195 CR 32-7 0629393 4312530 UT lower Dry 
Fork Green 0.73 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Appendix II: Site information for culverts studied in chapter 3.  
 
                  

culvert 
number study section 

basin 
area 

(km2) 

reach 
length (m) 
upstream 

reach  
length (m) 

downstream 

mean stream 
width (m) 
upstream 

mean stream 
width (m) 

downstream 

species 
richness 
upstream 

species 
richness 

downstream 
         

412 Glady Fork 0.41 150 50 1 1.2 0 2 

         

447 Glady Fork 0.43 150 - 1 - 2 - 

         

345 Glady Fork 0.48 150 150 2.2 2.2 1 2 

         

383 Glady Fork 0.56 150 50 1.3 1.3 0 0 

         

200 Glady Fork 0.61 150 150 2 2.4 1 2 

         

430 Glady Fork 0.76 150 - 1.3 - 1 - 

         

179 Glady Fork 0.92 150 - 1.7 - 1 - 

         

181 Glady Fork 0.94 150 - 1.6 - 2 - 

         

415 Glady Fork 1.3 150 65 1.9 2.3 2 3 
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448 Glady Fork 1.42 150 150 1.5 1.5 2 5 

         

417 Glady Fork 1.45 150 50 2.5 3 2 4 

         

175 Glady Fork 1.82 150 - 1.9 - 1 - 

         

177 Glady Fork 2.3 150 - 4.1 - 11 - 

         

410 Glady Fork 2.93 150 - 2.7 - 3 - 

         

190 Glady Fork 4.75 150 150 2.6 3.8 3 3 

         

431 Glady Fork 6.15 150 150 3.9 4.6 8 8 

         

416 Glady Fork 12.7 150 150 4.2 3.8 9 9 

         

295 Lower Dry Fork 0.52 150 - 1.3 - 0 - 

         

312 Lower Dry Fork 0.53 150 - 1.7 - 0 - 

         

97 Lower Dry Fork 0.58 150 150 1.6 2.8 0 0 

         

121 Lower Dry Fork 0.61 150 150 1.7 1.4 0 0 

         

 150



 

201 Lower Dry Fork 0.94 150 150 1.7 1.9 0 1 

         

93 Lower Dry Fork 1.18 150 150 1.6 1.9 0 0 

         

130 Lower Dry Fork 1.49 150 - 2.8 - 0 - 

         

186 Lower Dry Fork 1.57 150 150 2.4 2.4 1 1 

         

188 Lower Dry Fork 2.38 150 150 2.4 2.5 1 1 

         

323 Lower Dry Fork 2.53 150 - 3 - 3 - 

         

196 Lower Dry Fork 2.84 150 150 2.9 2.2 3 5 

         

195 Lower Dry Fork 3.11 150 - 2.5 - 9 - 

         

123 Lower Dry Fork 3.73 150 150 2.3 1.9 2 2 

         

96 Lower Dry Fork 4.81 150 150 2.3 3.7 1 1 

         

107 Lower Dry Fork 7.26 150 - 4.1 - 4 - 

         

419 Upper Dry Fork 0.43 150 - 1.7 - 0 - 
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418 Upper Dry Fork 0.47 150 - 1.3 - 0 - 

         

421 Upper Dry Fork 0.85 150 125 1.8 1.3 2 1 

         

420 Upper Dry Fork 0.97 150 90 1.8 2 2 9 

         

434 Upper Dry Fork 1.09 150 - 1.5 - 1 - 

         

442 Upper Dry Fork 1.1 150 - 2.3 - 1 - 

         

377 Upper Dry Fork 1.29 150 - 1.2 - 0 - 

         

432 Upper Dry Fork 1.81 150 150 2.1 1.6 2 2 

         

405 Upper Dry Fork 2.12 150 - 2.6 - 5 - 

         

452 Upper Dry Fork 2.63 150 150 2.2 2.3 3 4 

         

439 Upper Dry Fork 3.5 150 - 2.9 - 2 - 

         

443 Upper Dry Fork 3.5 150 130 3 3.5 3 3 

         

361 Upper Dry Fork 3.6 150 - 1.9 - 5 - 
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394 Upper Dry Fork 4.15 150 - 3 - 2 - 

         

379 Upper Dry Fork 4.47 150 - 3.5 - 2 - 
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