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ABSTRACT

Variable Data Collection Rate System for a
Wildlife Behavior Monitor

Sheldon Blackshire

Behavior monitors typically collect data, and consequently spend energy, at fixed intervals. For

devices that utilize energy harvesting, a fixed data collection interval may result in inefficient

battery usage due to variability in available solar radiation. Work was performed for a system

capable of adjusting a data collection rate, proportional to changes in battery charge, such

that data obtained was maximized without sacrificing battery energy sustainability. Energy

consumption, of an actual behavior monitor, was modeled to aid in design and evaluation

of a changeable data collection rate system. Model validation was performed by comparing

simulated to empirical data for battery charge over time. Proportional Integral Derivative

(PID) control was used that changed the rate at which data was collected such that error was

minimized between battery State Of Charge (SOC) and a reference point. Gain scheduling was

incorporated as a mechanism to resist change in data collection rate caused by fluctuation in

available SOC. Gain parameters for a discrete, time domain, PID controller were tuned using

a manual, trial and error method. Results of tuning showed improved performance with the

absence of Integral control. The system was evaluated by performing simulations for change

in available solar energy. Results showed that data collection adjusted to changes in available

energy and as a consequence, SOC remained within ±5% of a reference point.
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Chapter 1

Problem Statement

1.1 Introduction

1.1.1 Behavior Monitor

Wildlife behavior monitors are sensor systems used by biologists for collecting data relevant to

animal activity and remotely studying free roaming animals. Migration, foraging patterns, and

physiology can be examined using sensor data for purposes such as conservation, environmental

monitoring, and ecological behavior. Animal-wearable behavior monitors generally fall under

three categories: (a) data loggers, (b) same message transmitters, and (c) data transceivers.

Data loggers are lightweight devices that collect and store sensor data to be manually retrieved

at a later time by bird recapture or time release triggers where the device detaches itself from

the animal. Same message devices wirelessly transmit identification information that requires

many base stations to identify behavior. Base stations are electronic devices capable of wirelessly

receiving data collected from one or more behavior monitors. Behavior monitors can be equipped

with wireless data transceivers that allow two way communication over long distances and are

advantageous for immediate retrieval of collected data.

1.1.2 Energy Constraints

Battery powered behavior monitors have limited potential for collecting data based on a finite

amount of stored energy. Energy harvesting is commonly used to capture energy from an

external source, such as solar radiation, through use of a Photo-Voltaic Cell (PVC). Data
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collection potential could be extended as a result of replenishing previously-exhausted battery

charge through energy harvesting techniques. One option is to increase battery size proportional

to data collection needs, except many devices are designed to minimize weight since a load

(>5% body mass) inhibits movement and natural behaviors such as foraging and reproduction

[2]. Instead of ever increasing battery capacities, energy harvesting could be used to satisfy

weight requirements, without sacrificing available energy for data collection, due to continuous

solar radiation being harvested from the environment.

1.2 Problem Statement

Behavior monitors typically collect data, and consequently spend energy, at fixed intervals.

Devices that utilize energy harvesting with fixed data collection intervals may result in inefficient

battery usage due to variability in available solar radiation. Operation with energy harvesting

and battery storage may occur in three different ways: (1) Battery charge may become depleted

over time due to energy consumed by data collection being greater than energy harvested. Data

collection must then stop until enough energy has been harvested to continue. (2) Energy may

be harvested faster than it can be consumed (at a given data collection rate). Solar energy

typically goes unharvested for a fully charged battery, therefore opportunities for collecting

additional data are missed. (3) Energy spent on data collection may be balanced with energy

harvested and therefore battery depletion doesn’t occur and missed data collection opportunities

are minimized.

Balance of harvested and consumed energy was identified as the preferred method of operating

a behavior monitor. Operation of a balanced system requires adapting collection rate based

on available solar energy therefore, a system was sought to control a data collection rate, pro-

portional to changes in battery charge, to maximize data obtained without sacrificing battery

energy sustainability.

1.3 Method

Research is presented for developing a system that could be capable of changing a data col-

lection rate, for a behavior monitor, based on available energy. Potential methods for system

development, as well as the type of behavior monitor that would most benefit from a changeable
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data collection rate, will be evaluated in a literature review. Effects of modifying data collection

on battery charge will be simulated by a software model of a behavior monitor. Energy con-

sumption will be modeled based on GPS data collection, energy harvested, and microcontroller

operation. Empirical data from a field deployed behavior will be used as input to the model for

validation of accuracy. GPS data collection rate and energy harvested would be input to the

model and battery charge will be compared to determine model accuracy. Battery charge will

be used as input to a controller and will return an adjustment to data collection rate such that

battery charge is maintained at a selected point. In addition, gain scheduling may be necessary

to maintain a consistent data collection rate that may otherwise vary due to small fluctuation

in battery charge.
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Chapter 2

Literature Review

2.1 Chapter Overview

Literature is presented that is relevant to development of a system capable of adjusting a

data collection rate, proportional to changes in battery charge, for a wildlife behavior monitor.

Wildlife tracking, its relevance, limitations, and techniques are investigated followed by selection

of a type of behavior monitor that could most benefit from a variable data collection rate.

Techniques that could be used for the system are evaluated based on a set of design requirements.

Methods for modeling a behavior monitor for system development are presented, and the chapter

concludes with a summary of findings.

2.2 Wildlife Behavior Monitoring

Behavior monitoring is over-viewed to obtain fundamental knowledge of how electronic tracking

devices are used, their strengths, and limitations. Many methods exist for obtaining and retriev-

ing wildlife data therefore some of the major techniques will be evaluated to determine which

could most benefit from a system that controls a data collection rate. The study of wildlife be-

havior has been beneficial for identifying causes of a species population decline [3]. Factors that

influence population dynamics such as habitat modification were studied by tracking wildlife

movement [4, 5]. Reduction in size and mass of electronic components have increased the pop-

ularity of using animal wearable devices for studying behavior [6]. Embedded sensor systems
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are commonly used for remotely monitoring wildlife behavior by collecting sensor data such as

position, temperature, heart rate, and movement [7, 8].

2.2.1 Constraints

According to literature, two major limitations of behavior monitors exist: size and energy.

Wildlife behavior monitors vary in size and can be equipped with sensor systems tailored to

meet research objectives. Size and weight of most behavior monitors make placing them on

some species detrimental to the animal’s movement. Researchers suggest, as a rule of thumb,

that behavior monitors should be no greater than 3% to 5% of the bird’s weight [2]. According

to [8] the majority of all bird species are under 30 grams, therefore only behavior monitors less

than 1.5 grams could be used without causing injury to the animal. Overall device weight comes

primarily from its battery [9] therefore lighter batteries are often chosen, resulting in further

energy constraint.

Unlike continuously powered systems, behavior monitors use batteries and therefore have limited

energy due to storage limitations [10, 11]. Due to finite battery capacity, a trade off exists

between the rate at which data can be collected and the amount of time a device can remain

powered [12]. When battery supply has been exhausted, no additional data can be collected.

Replacing batteries for a wildlife behavior monitor may not be practical as it would require

animal recapture [13]. Energy harvesting is a commonly used method for extending operational

life by providing device power and battery charging [10, 11, 13–18]. Many behavior monitors

incorporate photo-voltaic cells that convert solar radiation to energy for battery charging [6, 19–

21]. Indefinite amounts of energy could be harvested for powering sensors [15], however only

so much can be stored by a battery at a given time [13]. Behavior monitors typically collect

data at a conservative fixed interval to ensure a device remains powered [6, 7, 19, 22, 23] and

as a result, energy that could have been harvested may be forgone due to storage limitation.

Data collection can be performed by many different sensors, where typically the collection rate

is selectable.

2.2.2 Sensing Techniques

Electronic sensor systems have aided in wildlife monitoring by allowing 24 hour observation, long

term data collection over months and years, and reduction in researcher bias due to interference



Chapter 2. Literature Review 6

with an animal during study [24]. Sensors used for data collection vary based on researcher’s

need, size, and cost. Three commonly used methods of data collection are used: radio tracking,

light level, and GPS.

2.2.2.1 Radio Tracking

Radio tracking can be used to electronically study wildlife, where an animal-worn radio trans-

mitter is typically worn that emits a signal which can be interpreted by one or more receivers to

determine animal location and activity [25–27]. Radio transmitters can be less than a gram and

have been used to study location, heart rate, wing-beat frequency, and respiration [28]. Trans-

mitters typically consist of a power supply, radio, antenna, and optionally a microcontroller.

Radios can emit a signal periodically, or in bursts, that contain information necessary for an-

imal identification [29]. Radio transmitter signals can be coded to include sensor data, such

as temperature, by altering the signal pulse interval relative to a measured sensor value [24].

Similarly, radio receivers can differentiate between multiple transmitters based on frequency.

For example, by assigning each radio transmitter a unique frequency between a range of 148 to

220 MHz, where each device differs by at least 10 kHz, a transmitter can be identified based on

the radio frequency alone [30].

Use of a radio receiver is necessary for retrieving signal data related to animal location and

behavior. Transmitted signals can be received and interpreted manually by using radio demod-

ulation [24, 26], or automatically where each signal is logged to be retrieved at a later time

[29, 31]. Receivers determine location by presence or absence of the RF signal, and in some

cases measure signal strength [31, 32]. Depending on the type of receiver (automatic or man-

ual), these devices can include an antenna, radio receiver, amplifier, and data logger. Three

commonly used methods for obtaining transmitter location: proximity [24], homing [30, 32],

and triangulation [27, 30].

2.2.2.2 Light Level

Light level sensing, also known as solar geolocation, is a method for determining animal position

based on light intensity. Solar geolocation uses a light intensity sensor and a real time clock

to acquire the time of dawn, dusk, and solar noon [33]. Intensity of solar radiation and the

corresponding day of year could be used with solar navigational equations to determine position
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in terms of longitude and latitude [34]. Solar geolocation may be susceptible to inaccurately

measuring time of dusk when measured light intensity varies from an expected value such as in

forests or canyons. Location inaccuracy can be minimized through calibration of light intensity

thresholds, such as dusk and dawn, for areas where tracking will occur [35]. Position data was

acquired from solar geolocators placed in fixed locations within an 800 km wide location in

Western Europe, as well as on native non-migratory songbirds [36]. Data was collected over 12

months, where an average position error was determined to be 201 ± 43 km in latitude and 12

± 3 km in longitude. Error in position could have been caused by shading, animal behavior,

moving to an area where a pre-calibrated threshold no longer applies, or low variation in day

length around the equinoxes. While accuracy of light intensity can be questioned, they are

currently the only devices capable of tracking small birds on a continental scale [37].

2.2.2.3 Global Positioning Systems

Global Positioning Systems (GPS) are popularly used in wildlife behavior monitoring for study-

ing foraging [6], migration [19, 23], and general movement behavior [7]. According to [38],

GPS has benefited the study of ecology in five major ways: (1) It has improved understanding

of wildlife habitats and conservation, (2) provided insight into mechanisms of migration, (3)

allowed observation for difficult to study species, (4) provided feedback of animal response to

human disturbance, and (5) projects impact of climate change. Satellite navigation is used by a

GPS receiver to determine position, altitude, speed, and time to name a few [39]. 2/3D position

of a globally located receiver can be calculated by acquiring distance measurements from orbital

satellites. Distance from a receiver to a satellite can be estimated by measuring signal travel

time [40]. Using trilateration [41], distance measurements from multiple satellites can be used

to calculate receiver position accurately within 5 meters [42]. Power requirements are a primary

constraint for GPS tracking. According to [42] a GPS position fix can require approximately

0.15 watts over 30 seconds (Time necessary to determine position), which places constraint on

the amount of GPS data that can be collected given limited available energy. Due to energy

constraint associated with GPS receiver operation, most behavior monitors conserve battery life

by turning GPS off when not collecting data [24].
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2.2.3 Classification of Behavior Monitors Based on Data Retrieval

Behavior monitors are designed differently based on many variables such as length of time a

device will be deployed, cost, ease of data retrieval, and animal size. Classes of wildlife behavior

monitors are introduced based on the method used for data retrieval [8]: loggers, same-message

transmitters, and data transceivers. Each class is introduced, pros and cons are evaluated, and

an assessment is made for which device classification would most benefit from a changeable data

collection rate system.

2.2.3.1 Same-Message Transmitter

Same-message transmitters are devices that uses a radio to continuously broadcast identifica-

tion information, but require one or more receivers to obtain information about animal behavior

[9, 26]. Some same-message transmitters weigh as little as 0.2 grams and can be used for many

species including insects and small birds [27, 29, 43]. Limited transmission range, operational

life, and additional human labor are disadvantages of same message transmitters [24, 31, 44].

Researchers use receiver units with hand-held antennas to collect signals sent by the transmit-

ters. Detection can be automated using base station receivers equipped with rotating or arrays

of antennas [27]. The number of receivers needed for acquiring transmitter signal depends on the

method of processing data. Receivers are typically be used in three ways: Proximity detection,

homing, and triangulation.

Proximity detection is the process where a receiver scans a range of frequencies that are used

by a wildlife transmitter. Scans can be performed for signal transmission and information of

animal presence of absence can be logged [45]. By placing the receiver near places of interest

such as nests or known foraging areas, animal proximity with respect to places of interest can

be studied [24]. Only one receiver is typically required and retrieving transmitter location can

be automated, however position of a transmitter can only be determined to be within proximity

of the receiver.

Homing is the process where a user manually locates an animal of interest by receiving transmit-

ted signals by rotating a Yagi antenna until a maximum signal level is detected [24, 30]. Signal

strength is constantly monitored as the researcher moves in the direction corresponding to the

maximum signal strength until the animal is seen, or until signal strength is at a desired level
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[32]. Two disadvantages of homing are human labor costs associated with locating an animal

and the introduction of bias because the animal may be disturbed by the researcher.

Triangulation is a method for determining position of a same-message transmitter where the

direction of a transmission signal is acquired by a receiver from two or more locations [29, 30].

The intersection of these directions from each receiver location corresponds to the position of

the transmitter. Triangulation consists one or more researchers locating a signal direction using

an antenna from different positions [9]. Position error can be created during measurement if the

animal moves between measurements. Automatic triangulation can be performed using fixed

receiver stations with rotating or multiple antennas [27].

Same-message transmitters provide a low complexity method for wildlife tracking. Transmit-

ters are typically smaller and less expensive than other behavior monitors, however receivers

must also be factored into the overall cost. Transmission power required for same-message

transmitters allow lightweight batteries to be used, but at the expense of transmitter lifetime.

Same-message transmitters require researcher labor for manual triangulation and homing, how-

ever automatic receivers exist at additional upfront cost. Range of signal transmission is a

major limitation, therefore additional receivers may be needed to monitor animals that migrate

or have large foraging areas.

2.2.3.2 Data Loggers

Logging devices collect and store data to be retried at a later time [8, 36, 46]. Many of these

devices are designed to minimize size and weight such that animals can be tracked without

inhibiting their natural behavior [37]. Solar geolocation data loggers, which approximate posi-

tion by measuring light intensity of sunrise/set, have recently been developed for birds weighing

less than 30 grams [46]. Data loggers (sometimes called archivers) typically have no method

for transmitting information, therefore unknown data recovery time or a complete loss of data

due to the device never being found exists [24, 47]. One study retrieved 26.3% of the tagged

birds [35] and 61.8% in another [48]. Some collars are equipped with automatic detachment

mechanisms that make the collar fall off after a period of time then a radio transmitter emits a

signal to assist researchers in recovering the device [24]. Solar geolocation and global positioning

systems are two commonly used position sensors for data loggers [8, 37, 46, 47].
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GPS data was archived to study social structure and movement of 14 Parrot’s in the Southern

Alps over 11 days [47]. The GPS loggers consisted of a commercially available GPS receiver

powered by a 380 mA-hr, 3.7V lithium ion battery, which was encased within two layers of heat-

shrink wrap to prevent damage from weather or attacks. Each was configured to continuously

record position fixes over a 24 hour period at intervals of 1 fix every 3 minutes. The devices

and harness weight ranged from 1.9 to 2.6% of the selected Parrot’s body weight. Twelve of

the 14 loggers were recovered from the field testing site with recapture times ranging from one

hour to five days. Periods of activity and rest were clearly identifiable and unusual flight habits

were observed. GPS loggers were shown to be viable for tracking Parrot’s due to acquiring an

average of 55 fixes per day however, a downside of loggers is that they must first be retrieved.

Data loggers are advantageous for monitoring small animals and are cheaper than devices with

radio transceivers [8]. Some disadvantages of data loggers are they can be prone to inaccuracy

[35], have finite battery life without energy harvesting, and typically require animal recapture to

retrieve data [47]. Due to size and weight restriction, data communication such as short range

radio or cellular transmission, are typically not present on loggers. Researchers must recapture

an animal to acquire sensor data from a logging behavior monitor.

2.2.3.3 Data Transceiver

Data transceivers are an extension of loggers [24, 49] with the ability to transmit collected data,

receive program updates, or change device properties through radio communication [50]. Ping

transceivers are logging devices equipped with short range radios capable of uploading collected

data wirelessly to stationary [6] or mobile [51] base stations within close proximity. Transceivers

with short range radios typically rely on close proximity (< 10 km) to a base stations for data

transmission [8]. When foreknowledge of an wildlife’s migration/roosting area’s are not known,

behavior monitors are typically designed to hold data for weeks or months before encountering

a base station [20].

Data transceivers can be equipped with cellular modems [19, 23, 50] that allow two way com-

munication through a cellular network infrastructure [52]. Data transceivers are advantageous

for shortening time between data collection and retrieval [19], performing firmware updates,

and monitoring device operation such as data collection rate, battery health, and energy [50].

Communication may require more power consumption than other transceivers (up to 1W peak)
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and typically require additional batteries capacity or energy harvesting [19, 24]. Two examples

of wildlife data transceivers are presented as follows:

Example 1 GPS was utilized on a wildlife data transceiver to acquire location data for the

Lesser Black-backed Sea Gull (bird) [6]. Body movements were monitored using an accelerom-

eter and environmental monitoring was performed using temperature and barometric pressure

sensors. Solar harvested energy was used to charge a battery and power the behavior monitor.

Search signals, known as pings, were emitted by a radio transmitter to search for base stations.

Multiple base stations were deployed in a network, each having a maximum radio receiver range

of 8.5 km. If a base station was within range, a response was sent to initiate communication,

transfer collected data, and make modifications to the rate at which data was collected.

Example 2 CraneTracker was created to monitor the endangered Whooping Crane, which

migrates 4000 km annually between Texas and Canada and is capable of traveling 900 km

per day [19]. Hybrid architecture was used for transmitting sensor data that relied on cellular

networks during migration, and short range radio to base stations for breeding and nesting

grounds. Scheduled tasks were as follows: the device woke up, attempted to collect a GPS fix,

gathered 10 compass samples over 10 seconds, and then attempted to communicate with both

the radio and GSM, before sleeping for 4 hours. CraneTracker was designed for operational life

of 7 years by incorporating solar energy harvesting for battery charging. Preliminary testing

showed for GPS fixes acquired, 81% had a position error less than 25 meters. For field deployed

devices, 94% of all GSM check-in delays were less than 24 hours which signified that GSM

technology was capable of reliably transmitting tracking data.

Data transceivers are typically used for reducing time necessary for a researcher to obtain

collected data at a cost of increased power consumption. Operational life could potentially be

extended by using some form of energy harvesting. Some cellular based data transceivers have

been developed that weigh 35 grams [8, 53]. Behavior monitors that use VHF/UHF for data

transmission can weigh 15 grams [6, 8], which is critical since an estimated 66% of mammals

and 81% of birds were too small to be tracked by the smallest GPS based devices [54].
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2.2.4 Behavior Monitor Selection

Of the three types of behavior monitors (Data loggers, Burst-message transmitters, and data

transceivers), the data transceiver was selected for the design of a variable data collection rate

system because of its ability to harvest energy and transmit collected data using cellular net-

works. Power consumption from the monitoring device can sometimes be negated by harvesting

energy from the environment. Data can be transmitted to a researcher through use of a modem.

Conservative data collection rates are often selected to ensure the battery remains charged. De-

velopment of a system capable of adjusting the data collection rate to prevent battery depletion

could benefit data transceivers in three ways: (1) data can be collected at an adaptable rate,

(2) time to complete battery depletion is extended, and (3) a light-weight battery may be used

because power consumption would be more tightly regulated.

2.2.5 Behavior Monitoring Conclusion

Behavior monitors were introduced for studying wildlife for reasons such as conservation, im-

pacts of climate change, and habitat modification. Radio tracking, solar geolocation, and GPS

were determined to be three popular methods of obtaining animal behavior information. Anal-

ysis of literature revealed that behavior monitors could be categorized in three ways: Data

loggers, same-message transmitters, and data transceivers. Behavior monitors were researched

to determine what device classification would most benefit from a system that modified data

collection based on available energy. Data logging devices reduce weight and power consumption

by not using wireless data transmission, but at the expense of manual data retrieval. Due to

absence of energy harvesting, conservative data collection rates are commonly used to maximize

operational life of data loggers.

Same-message transmitters have low complexity, size, and cost, but suffer from limited trans-

mission range, require significant labor to acquire data, and trade operational life for size.

Transceivers typically use GPS to acquire fine-scale location data and can provide rapid feed-

back for animal behavior using wireless modems, all at the cost of additional power consumption.

Energy harvesting can typically be used to extend operational life of a data transceiver but their

size makes using them on some animals impossible.

The data transceiver classification was selected because it was considered to most benefit from

changeable data collection rate system. Battery charge may be maintained at a safe level by
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matching the rate at which data is collected with the amount of energy being harvested. Overall

device weight could potentially be reduced by a combination of substituting a smaller battery

and more efficiently utilizing available energy.

2.3 System Development

Techniques are presented that may be used for development of a variable data collection rate

system as well as three requirements to achieve energy equilibrium: (1) Maintain a fully charged

battery. (2) Solar energy that goes unharvested due to a fully charged battery should be

minimized. (3) Data collection rate should be resistant to change. Data collection methods

commonly used by behavior monitors, as well as dynamic techniques are presented. Finally,

methods for collecting data at consistent intervals are shown.

2.3.1 Data Collection Techniques

Methods for collecting data at a variable rate are reviewed, as well as for maintaining a consistent

data collection rate. Techniques were compared and evaluated to determine which may be the

most suitable for a variable data collection rate system.

2.3.1.1 Constant Rate Data Collection

One of the most common methods for managing data collection is to use a conservative, fixed

collection rate based on expected available energy [6, 7, 19, 22, 23]. If a device needs to perform

for a short time such as days or weeks, a fixed data collection rate can be determined based

on battery size, deployment time, expected solar energy, and average energy consumption for

sensor measurements [50]. Other devices that will be deployed for extended periods of time

(years) may collect data only a few times a day because data resolution is less critical than

longevity [19]. Some devices can have their data collection rate modified remotely via wireless

modem based on researcher observation of battery level. Fixed data collection is advantageous

because, when set conservatively, typically results in battery charge remaining full; however, it

may result in activities of interest being missed when they occur between measurements [19].
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2.3.1.2 Data Collection based on Activity

Activity based data collection reduces redundant data collected as a means to conserve battery

energy [21, 55]. For sensors that contribute to a large portion of a device energy budget, a

reduction in unnecessary sensor use can prolong battery life [20]. Two examples of activity

based data collection are accelerometer-informed telemetry and Camazotz.

Accelerometer-informed telemetry used an accelerometer to reduce power consumption, of a

behavior monitor, by minimizing redundant GPS measurements associated with animal inac-

tivity [21]. GPS data collection switched between one of three rates (5 min, 15 min, and 60

min) based on the number of sequential accelerometer measurements that were above or below

an activity threshold. Compared against a device with a fixed 15 minute GPS data collection

rate, activity based sensing attempted 73.6% more locations per day and made 67.4% fewer

redundant location attempts for inactive animals.

Camazotz, a multi-modal, activity-based localization method, was developed for studying fruit

bats [20]. Behaviors of interest were detected by using low power consumption sensors, relative

to GPS. When an event of interest was detected, such as flying, defecation, urination, grooming,

or rest, a GPS location fix was acquired. Activity-based sensing reduced power consumption of

periodic GPS and single-sensor triggered GPS by up to 77% and 14% respectively while also

providing a method to collect GPS data for specific behaviors. Reduced energy consumption

could be possible with activity-based localization however, battery depletion could occur during

periods of high animal movement or detected behaviors.

2.3.1.3 Dynamic data collection based on Energy Neutral Operation

The concept of energy neutral operation has been used in developing methods to dynamically

determine data collection rates based energy equilibrium [10, 15, 18, 56, 57]. Energy neutral

operation was first defined by [15]. Eq. 2.1 shows the conditions for achieving energy neutral

operation for a system with energy harvesting and an ideal energy buffer. B0 is the initial

energy stored in an ideal with no charge leakage or inefficiency. Power consumed PC(t) by the

device at a specific point in time can be integrated over a time window W to determine overall

energy consumption. Similarly, power harvested by the device PS(t) can also be integrated

to determine the overall energy generated. Energy neutral operation was originally defined as

overall energy consumed being less than or equal to energy harvested plus initially stored energy
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however, a more general definition is that energy consumed should not exceed energy harvested

[56].

∫ W

0
Pc(t) dt ≤

∫ W

0
PS(t) dt+B0 ∀ W ε [0,∞) (2.1)

One of the first methods for meeting energy neutral operation adjusted data collection based

on a prediction model of harvested solar energy [15]. Deviation from predicted and actual

energy harvested may result in a sub-optimal data collection rate, leading to periods of de-

pleted or unused battery potential. In addition, computational overhead associated with a

solar prediction model is typically undesirable as resources for an embedded system are already

constrained. Another method used an adaptive control algorithm to modify data collection,

based on available battery energy, to meet the following metrics: energy neutral operation,

performance maximization, and duty cycle stability [56]. Selecting a data collection rate that

balanced energy consumed and harvested was formatted as a linear-quadratic tracking problem

where control laws were developed to minimize the difference between battery charge and a

target value. Through use of a moving average, variance in a sensor duty cycle could be reduced

to 5%. Finally, Proportional, Integral, and Derivative (PID) feedback control has been shown

to make adjustments to the duration of time a device was in a low power state based on the

magnitude of a lighting condition and as a result, energy equilibrium was obtained [57].

Dynamic data collection techniques are advantageous because of their ability to adapt to changes

in available energy, which could increase device life. Complexity of accurately estimating battery

charge due to factors such as temperature sensitivity, rate of charge/discharge, and battery age

make applying techniques such as PID and adaptive control challenging [58, 59].

2.3.1.4 Summary

Research was presented on methods for collecting data that could be useful for developing a

system capable of changing a data collection rate based on available energy. Fixed data collection

rates are commonly used by wildlife behavior monitors. Based on the unpredictable nature of

energy harvested, a fixed data collection rate could result in a sub-optimal amount of data

collected. Some behavior monitors collect data based on animal activity, however battery life

may be reduced for active animals. Dynamic data collection, based on energy neutral operation,

shows promise in achieving energy equilibrium for variable data collection rate system. Early
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work used prediction models of energy harvested that were prone to inaccuracy to determine a

data collection rate. However, recent work used techniques that implicitly account for energy

harvested by measuring available battery energy. Use of battery energy as a controlled parameter

could be complex due to several factors associated with accurately estimating charge.

2.3.2 PID Control for Energy Equilibrium

Proportional, Integral, Derivative (PID) control is introduced as a potential method for mod-

ifying a data collection rate of a behavior monitor to achieve energy equilibrium. Methods of

using PID as the mechanism for varying a data collection rate are presented and the feasibility

of using PID is evaluated for monitoring a consistent data collection rate.

2.3.2.1 PID Description

PID is a control technique commonly used within industrial controller systems [60, 61]. Control

of a desired parameter is achieved by first generating an error function ε(k), where k represents

discrete sampling. As seen in Eq. 2.2, ε(k) was a difference in a desired set point SP and process

variable PV (k).

ε(k) = SP − PV (k) (2.2)

The objective of a PID controller is to minimize an error function, thus driving a process

variable to a desired state [62]. Figure 2.1 shows a block diagram for a discrete, time-domain

PID controller that applies proportional, integral, and derivative action to ε(k) in order to

generate a change in a control variable u(k). Proportional action was applied by multiplying

a gain KP by the current error ε(k). The use of Integral action reduces a steady state error

by adjusting u(k) based on a summation of ε past and scaling the sum by an integral gain KI

and the time between successive samples T . Derivative action contributes to u(k) based on a

prediction of future error. Inspection of the rate of change of ε could be accomplished by using

a backward difference between current ε(k) and previous ε(k − 1) error over the sampling time

T , which could then be scaled by a derivative gain KD [63].

u(k) = KP ε(k) +KIT

k∑
i=0

ε(i) +KD
ε(k)− ε(k − 1)

T
(2.3)
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The variable being controlled u(k) can be adjusted at each time stop by summation of the

proportional, derivative, and integral terms. Each additional call to the PID function requires

recalculation of u(k). Therefore a change in PV will cause a corresponding change in u(k) until

PV converges to SP.

Figure 2.1: Block diagram for PID feedback control.

2.3.2.2 Application of PID to Data Collection Rate

PID control could be used to develop a variable data collection rate system, for achieving

energy neutral operation, by the following method: (1) an error signal ε (Eq. 2.2) could be

generated by taking the difference between battery charge and a designated reference charge.

(2) Using Eq. 2.3, ε could be converted to an adjustment in data collection rate such that

future error signals are minimized. (3) The rate at which data collect is collected is adjusted

such that battery charge approaches a reference. Periodic repetition of steps (1-3) could result

in a battery level approaching a designated reference state with time. Changing in the rate at

which data is collected could cause a behavior monitor to experience a corresponding change in

battery charge. Figure 2.2 shows a visual illustration of how PID could modify a data collection

rate.
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Figure 2.2: Block diagram of potential implementation of PID.

2.3.2.3 Requirement Fulfillment

PID control could potentially be used in a variable data collection rate system. In order for

PID to be viable, the following requirements must be met: (1) Maintain a fully charged battery.

(2) Solar energy that goes unharvested due to a fully charged battery should be minimized. (3)

Data collection rate should be resistant to change.

Requirement 1 PID control could use battery charge as the variable to be controlled and

data collection rate as the variable to be manipulated. If a decrease in energy harvested occurs,

the battery will consequently drop in charge. By assigning a set point for which to maintain

battery charge, any change in available energy would result in a change in the controller error

function ε. PID action would then attempt to correct the error by adjusting a data collection

rate.

Requirement 2 Through minimization of an error function, a PID controller could maintain

a constant battery charge. In order to ensure that available solar radiation gets harvested, a set

point for battery charge could be used that is not close to 100% (fully charged).

Requirement 3 Based on (1) and (2), any positive or negative fluctuation in energy harvested

would result in a corresponding change in the controller error function. Maintaining a consistent

data collection rate may not be possible when a PID controller experiences fluctuation in its

error function due to control action being applied to the error.
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2.3.3 Improving Data Collection Rate Consistency

Behavior monitors are often used for studying movement patterns of an animal over extended

periods of time. If a researcher is equally interested in animal activity and rest, sampling at a

consistent rate may be advantageous over activity based techniques such as [20] or [21]. PID is a

promising method for modifying data collection rate based on available energy, however it may

be unable to maintain a consistent data collection rate due to a solar diurnal cycle or adverse

weather causing fluctuation in the process variable (Battery charge). The solar diurnal cycle

is a pattern of solar radiation that recurs every 24 hours based on a full rotation of the earth

[15, 64]. Figure 2.3 shows current measurements from a solar cell sampled every 10 seconds for

70 days [1]. The plot on the left shows current over each day, and the right plot shows each

day overlapped on a diurnal scale. By inspecting the diurnal plot, it can be seen that current

generated by a solar cell varies based on time of day, which may cause a corresponding change

in battery charge. Two methods are presented that may be used by a PID controller such that

diurnal changes in battery charge don’t result in corresponding change in data collection rate.

Figure 2.3: Current generation profile (Left: Continuous, Right: Diurnal overlapped) [1]
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2.3.3.1 Moving Average

One method that has been used for smoothing smaller-than-signal noise values is a moving

average [16]. Data collection rate u(k), as seen in Eq. 2.4, was smoothed to ut using an

exponentially-weighted moving average by summing the previously averaged data collection

rate ut−1 with u(t), scaling the sum by a smoothing parameter α, then adding to ut−1 to

acquire ut.

ut = ut−1 + α(ut − ut−1) (2.4)

α could be modified between 0 and 1, where values closer to 0 increased smoothing and values

near 1 reduced it. Selection of an optimal α may not be possible for a wildlife behavior monitor

as too much smoothing could result in device failure because data collection rate cannot change

fast enough when solar energy available strongly diminishes. Similarly, too little smoothing may

cause fluctuation proportional to the solar diurnal cycle. Potential causes of a fluctuating data

collection rate include variation in solar radiation or animal relocation to an area with less solar

radiation. The exponentially weighted average could be used to smooth a data collection rate,

but α would need to be evaluated such that battery life is prolonged, otherwise a different type

of moving average could be used.

2.3.3.2 Gain Scheduling

PID is typically used for controlling systems that have linear relationships between the output

and control variable [60]. The concept of gain scheduling can be used for nonlinear systems

where different sets of PID gains are used at various operating points for the output variable

[62, 65]. Gain scheduling can refer to predefined sets of PID gains KP , KI , and KD being

changed based on some condition. Design of a gain scheduled controller was presented in [66]

as a four step procedure. (1) Develop a model for the system and identify an input parameter.

(2) Establish sets of gains (multiple controllers) for operating points of the parameter. (3)

Implement and tune each controller, and (4) test. Gain scheduling could be used with a PID

controller such that data collection rate could be rapidly modified when error in battery charge

(Eq. 2.2) surpassed a threshold, and resist change while within a threshold. Gain scheduling

could also reduce fluctuation in data collection rate, caused by diurnal changes in battery charge,
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based on how close battery charge is to a set point (magnitude of the controller error function

ε). Data collection rate would not be changed as long as ε remained within a set range of

values. One of the major disadvantages of PID gain scheduling is that additional tuning must

be performed for each level of operation.

2.3.4 System Conclusion

Techniques were investigated for developing a system capable of modifying data collection rate

of a transceiver type behavior monitor based on available energy. Three requirements were first

established for use in evaluating data collection techniques found in literature: (1)Maintain a

fully charged battery. (2) Solar energy that goes unharvested due to a fully charged battery

should be minimized. (3) Data collection rate should be resistant to change. An overview of

fixed data collection, activity based data collection, and dynamic data collection were presented.

Dynamic data collection is typically based on energy neutral operation, a potentially useful basis

for system development. The next section outlines a method for modeling a data transceiver

type behavior monitor that could be used for system development and testing.

2.4 Modeling

Research is presented on energy consumption modeling, of an embedded system, that may be

applicable for developing a changeable data collection rate system. Online testing (Testing on

an actual device) could be costly and time intensive. Based on [67], systems can be analyzed

by analytical methods, computer simulation, and device implementation. Analytical methods

could result in inaccuracy due to complexity of device operation and uncertainty of future energy

harvested as in [15]. Simulation is the most widely used method for battery powered wireless

system analysis due to fast development, and the ability to design and modify algorithms based

on simulation feedback [68].

Energy consumption of a wireless sensor node was modeled based on components such as device

hardware, solar energy harvesting, and device operating behavior (Such as data collection rate

or wireless communication). Device hardware within the model platform included operation of

a solar panel, sensors, and supporting electronics, and a battery. In [68] a simulator was devel-

oped to simulate hardware, software, energy consumption and the environment, for designing

and evaluating algorithms. Inaccurate model assumptions or inability to properly predict solar
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radiation are a few reasons model inaccuracy could occur. In order to evaluate model accu-

racy, [15] used actual solar data to validate an energy prediction model. Developing an energy

consumption model could, for a behavior monitor, be used to develop, test, and evaluate per-

formance for a changeable data collection rate system. Due to potential inaccuracy between

modeled and actual energy consumption, actual behavior monitor data would be needed to

validate the model such as empirical battery level, energy harvested from a solar panel, and the

duty cycle of a sensor.

2.4.1 Battery State of Charge

Battery charge may be used as a metric for regulating a data collection rate of a behavior

monitor using a PID controller. Batteries store electrochemical energy that cannot be directly

measured like fuel level remaining in a vehicle [69, 70]. State of Charge (SOC) is a commonly

used term for charge estimation, and considerable research has gone into improving its accuracy

[59, 69–72]. SOC is defined in Eq. 2.5 as the ratio of charge capacity Q to the maximum

capacity Qmax, then expressed as a percentage from 0-100 corresponding to completely empty

or full respectively [73].

SOC =
Q

Qmax
∗ 100 (2.5)

Several methods have been developed for indirect estimation of SOC, where two of these meth-

ods are Coulomb (charge) counting, and measuring battery terminal voltage. Charge counting

estimates SOC (see Eq. 2.6) by summing the charge that enters and leaves a battery. Accumu-

lated charge could be determined by measuring current I(k) entering or leaving a battery at a

discrete sample interval ∆t, and then multiplying them together to obtain charge [58, 73]. An

adjustment value for SOC could then be acquired by dividing by the maximum charge Qmax

that could be held by a battery.

SOC(k) = SOC(k − 1) +
∆t ∗ I(k)

Qmax
∗ 100 (2.6)

Two main drawbacks of charge counting are the need for an initial SOC measurement to estimate

future charge and an accumulation of error that may result from self-discharge. Measuring

voltage between battery terminals is another method of estimating SOC. Voltage can be assumed
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to decrease linearly as the battery is discharged however, a major limitation is that the battery

voltage is also affected by temperature and magnitude of charge/discharge [74]. Relationships

between SOC and voltage can be compensated for by through empirically derived maps between

voltage and SOC at various discharge rates and temperature [73].

2.4.2 Model Summary

Modeling energy consumption could be used for developing and evaluating a changeable data

collection rate system for a wildlife behavior monitor. Model construction based on major energy

consuming or generating components, and net charge flow could be tracked using a battery.

State of Charge is a commonly used indicator for determining the estimating remaining energy

in a battery but can be prone to inaccuracy. Inaccuracy based on modeling assumptions could

propagate to system design therefore some method of validation may be needed.

2.5 Chapter Conclusion

Literature was reviewed to acquire beneficial information to aid in development and testing of

a changeable data collection rate system based on available energy. Behavior monitors were

researched to determine what device classification would most benefit from a system that modi-

fied data collection based on available energy. The data transceiver classification was considered

to most benefit from data collection rate system because battery charge could be maintained

at a safe level by matching the rate at which data is collected with the amount of energy be-

ing harvested. Use of smaller batteries could be possible as a result of more efficient energy

management and ultimately resulting in an overall reduction of device weight.

Techniques were investigated for developing a system capable of modifying data collection rate

of a transceiver type behavior monitor based on available energy. Three requirements were

established for use in evaluating techniques found in literature: (1) Maintain a fully charged

battery. (2) Solar energy that goes unharvested due to a fully charged battery should be

minimized. (3) Data collection rate should be resistant to change. An overview of fixed data

collection, activity based data collection, and dynamic data collection were presented. Dynamic

data collection typically uses the principal of energy neutral operation, a potentially useful

basis for system development. PID control was shown to fulfill all of the requirements when

gain scheduling was used.
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Modeling energy consumption could be used for development and evaluation of a changeable

data collection rate system based on major energy consuming or generating components, and

net charge flow could be tracked using a battery. State of Charge is a commonly used indicator

for determining the estimating remaining energy in a battery but can be prone to inaccuracy.

Inaccuracy based on modeling assumptions could propagate to system design therefore some

method of validation may be needed. The next chapter presents a software model of a wildlife

transceiver-class behavior monitor that will be used for system development.
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Chapter 3

Energy Consumption Model

3.1 Chapter Overview

Design of a software model is presented that represents energy consumption, of a wildlife be-

havior monitor, to be used as a tool for system development and evaluation. The behavior

monitor to be modeled is presented as well as a description of how each component was used

to form a cumulative model of energy consumption. Evaluation of model accuracy is shown by

comparison of simulated energy consumption with empirical data.

3.2 Device Selected to Model Energy

Wildlife behavior monitors can be a complex system consisting of many electrical components

[19, 20, 22]. The CTT-1100 (Cellular Tracking Technologies, LLC) behavior monitor was used

as reference for building a model of energy consumption. Relationships between power and func-

tion, as well as operation behavior, and schedules were gathered for modeling major electronic

tracking device components that consumed energy.

3.2.1 Hardware

Behavior monitors typically consist of a microcontroller, one or more sensors, flash data stor-

age, an energy source, a data communication device, and optionally an energy harvesting device.

Current draw of the CTT-1100’s hardware components were measured by placing a Tektronix
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4040 digital multimeter in series with a XPOWER 305D DC power supply and the behavior

monitor. Current draw of each component’s state (Active or sleep) was then measured individ-

ually. As seen in Table 3.2, an MSP430F5528 microcontroller (Texas Instruments) drew 2.32

mA while active at 8 MHz, and 2.1 uA while sleeping. The position sensor, an ORG447 Global

Positioning System (GPS) receiver, consumed on average 27.5 mA while active and 0.441 mA

while sleeping. An RX-8564LC (Epson Toyocom) real time clock was used to determine when to

wake the device from sleep. It was always active, and consumed 1.5 uA. Data communication

was handled by a GE865-QUAD (Telit) GSM module with average current draw of 825 mA

while active. A Photo-Voltaic Cell (PVC) was capable of generating a maximum 150 mA from

solar radiation. Current consumed by the CTT-1100, while in a low power state, was measured

to be 40 uA. Figure 3.1 shows a general hardware component overview for the CTT-1100.

Figure 3.1: Schematic overview of CTT-1100 behavior monitor hardware components.
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Component Mode Current Units

MSP430F5528
Active 2.32 mA
Sleep 2.1 uA

Origin 447X
Active 27.5 mA
Sleep (Fix) 441 uA

Epson RX-8564LC Active 1.5 uA
Telit 865 QB Active 825 mA
Photo-Voltaic Cell Active 0 - 150 mA

Figure 3.2: Current consumption for behavior monitor hardware components.

3.2.2 Software

In addition to current draw, information related to component operation was obtained for model

construction. GPS sensor data were acquired by a CTT-1100 during periods of sunlight and

stored it in flash memory. Three data collection intervals were available for use: 1 second, 30

seconds, or 15 minutes. For battery preservation, the microcontroller and GPS were placed

in a low power, sleep state when data were not being collected. Data were transmitted to a

remote server once per day via cellular network, then removed from flash memory. If the battery

dropped below the minimum level (30% SOC), all GPS, and uploading via modem, activity was

disabled until the battery was charged to 80%.

3.2.3 Component Selection for Modeling

Energy consumption was modeled based on the CTT-1100 behavior monitor introduced in

Sections 3.2.1-3.2.2. GPS was used by a behavior monitor to acquire location data based on

satellite signals. Solar energy was harvested to power the behavior monitor, as well as charge

its battery, therefore a photo-voltaic cell was included in the model. Control and execution

of behavior monitor tasks were handled by a microcontroller, and a real time clock (hardware

device) was responsible for keeping time. While together the microcontroller and real time

clock accounted for only 8% of the current draw for GPS in the active state, however they were

modeled because over time their energy consumption may be significant. Energy was drawn

from an 800 mA-hr lithium ion battery in the event of solar radiation being insufficient to

power the device, therefore a battery was necessary to model. Wireless data communication



Chapter 3. Energy Consumption Model 28

was handled by a GSM modem which had an average current draw of 825 mA (while active).

Due to the modem only being powered for a few minutes each day, its operation was treated as

a disturbance, presented in Section 4.6.

3.3 Cumulative Energy Model

Energy consumption for a wildlife behavior monitor was modeled through software. Develop-

ment tools and programming methodology for model construction are shown and a convention

for tracking energy consumption between components is introduced. Finally, a description of

each component of the software model is presented followed by a model development summary.

3.3.1 Model Overview

Energy consumption of the CTT-1100 behavior monitor was modeled to be used as a tool for

development and performance evaluation for a variable data collection rate system. The model

operated by determining charge Q(k) entering or leaving a modeled battery at discrete sampling

times k. As seen in Eq. 3.1, net current consumption, at time k, was determined by a cumulative

measurement of current draw Ii(k) for each of the N components in the model. Charge for each

sampled time was then determined by multiplying net current by the time interval ∆t between

measurements.

Q(k) = ∆t ∗
N∑
i=1

Ii(k) (3.1)

The amount of current entering or leaving a battery was determined by models for a global

positioning system, photo-voltaic cell, and combination of microcontroller and real time clock.

Each of these components were modeled to require a certain amount of current to function for

each time step. GPS and the real time clock draw current from the battery, where the battery

draws current from the PVC (See Figure 3.3). Current entering or leaving the battery was

equated to electric charge (mA-hr) by the amount of time ∆t between samples. Cumulative

battery charge was positive for cases when solar energy was more than sufficient for powering

the device, and negative when it was not. For the first case the battery was considered to be

charged, and depleted for the second.
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Figure 3.3: Block Diagram for determining current entering or leaving a battery.

Empirical modeling is a tool for gaining insight, quantifying, or simulating particular aspects of

a system [75]. A software model of energy consumption, for a behavior monitor, was developed

using MATLAB 2014 because of its strength in numerical computing and plot tools for viewing

data. Each of the major hardware components, introduced in Section 3.2.1, were modeled

using Object Oriented Programming (OOP). Software behavior was organized into functions

(Example: Energy consumption for GPS based on data collection) and hardware characteristics

into properties (Example: current draw and measurement duration). Object properties could

be altered in order to better simulate events such as change in solar energy availability. By using

OOP, the model could be broken into smaller modules to be substituted or modified without

having to modify other software components. The remainder of this section introduces each of

the components that make up the cumulative energy consumption model.

3.3.2 GPS

GPS was used by a behavior monitor for acquiring wildlife migration including position, velocity,

altitude, heading, and time.

Precise orbital information, known as ephemeris data, had to be acquired by a GPS receiver,

from a minimum of three satellites, before it could accurately determine its location [40]. En-

ergy consumed by a GPS receiver could not be ignored because time necessary to acquire a

measurement could take anywhere from 30 seconds to minutes based on satellite signal strength

[9]. This section introduces the methodology behind modeling energy consumption of a GPS

receiver based on time to acquire data (fix) and current draw during the active and sleep states.
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3.3.2.1 Current Draw

Three current draw states were used for the GPS data collection cycle: (1) Active, (2) Sleep,

and (3) Off. (1) Active mode was defined as the amount of current drawn by the GPS when

a fix was being acquired. (2) Sleep mode was defined as the current drawn while not attempt

to collect GPS data. (3) Off mode corresponded to no current being drawn because the device

was disabled. The three current draw states were used together to model GPS current draw for

the data collection cycle as follows. Active mode was used between the time the device turned

on until a fix was acquired. Depending on the amount of time until the next fix attempt, sleep

or off mode was then entered. The value used for ’active’ mode was 27.5 mA, ’sleep’ was 0.441

mA, and ’off’ was 0 mA. The next section introduces the amount of time each spent in each

state.

3.3.2.2 Timing

The time to acquire a location fix was determined by relating GPS fix interval (GFI) to the

amount of time between consecutive GPS measurements taken by the behavior monitor. For

example, the device introduced in Section 3.2 had three GFI’s that could be used: 1 second, 30

seconds, or 15 minutes. Time to First Fix (TTFF) was defined as the amount of time necessary

to calculate an accurate location from an initial startup. TTFF was based on factors such as

validity of ephemeris data and satellites in view, both of which change depending on the amount

of time since a GPS measurement was last taken [76]. Three common classifications exist that

can be used for estimating TTFF: (1) Hot start, (2) warm start, and (3) cold start. (1) For a

hot start, conditions for calculating location, from the last measurement, haven’t changed much

and therefore TTFF is small (typically one or two seconds). (2) For a warm start, enough time

was passed since the last fix for a satellite to leave view, or information on last known position

to become invalid. In this case, ephemeris data must be acquired, for the necessary satellite,

which could take up to 30 seconds. (3) For a cold start, the receiver is missing or has inaccurate

information regarding its global position, or has lost satellite visibility. In this case, navigation

data must be acquired for a minimum of three satellites which could take minutes depending

on signal strength. The GPS model was developed by assuming time to acquire a location fix

was related to the amount of time between consecutive GPS measurements, or GPS fix interval

(GFI). Hot, warm, and cold starts were modeled by defining a rule set that assigned a constant

TTFF value based on GFI. For a GFI less than or equal to 10 seconds, TTFF was modeled as
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1 second because GPS had accurate satellite information. For GFI less than 15 minutes but

greater than 10 seconds, TTFF was modeled as 7 seconds to allow for receiver timing, position,

or ephemeris data updates. Finally, if GFI was greater than 15 minutes, or the GPS was being

switched on from the Off state, TTFF was modeled to be 60 seconds because ephemeris data

for multiple satellites needed to be acquired.

Depending on the amount of time between each fix, energy could be saved by switching the GPS

off instead of using sleep mode. Turning the device off would require a cold start (60 second

TTFF) for the next GPS measurement, therefore energy spent sleeping had to exceed energy

consumed acquiring a fix to justify turning the device off. The amount of energy consumed

collecting a GPS measurement was equivalent to TTFF and the level of current draw IActive.

The amount of energy consumed while sleeping was equivalent to the critical sleep time tcritical

for determining if the GPS should be powered off and current consumed while sleeping ISleep.

By combining these energy consumption quantities, as seen in Equation 3.2, tcritical could be

acquired.

TTFF ∗ IActive = tcritical ∗ ISleep (3.2)

Applying Eq. 2.2.4 to a warm start (TTFF between 10 and 900 seconds), tcritical results showed

GPS should be turned off if sleeping for longer than 55 minutes. Because this time exceeded

the 15 minutes threshold (between a warm and cold start) for GFI, it was determined that

the device should not be switched off for a GFI within the warm start region. Critical sleep

time for a cold start was approximately one hour and two minutes, therefore any time GFI was

larger than this time, the device should be turned off instead of put in a sleep mode. For a

GFI less than 10 seconds, GPS was modeled to be continuously powered to ensure a fix could

be acquired before the next scheduled attempt. Current draw for each state, TTFF values, and

GFI thresholds are summarized in Table 3.3.

3.3.2.3 Example

Simulation of the GPS model was performed over five minutes where GFI was set to 1 minute

and current draw was measured every second. GPS energy consumption started in the off state

at time zero, and entered active mode in one second, which triggered a cold start GPS fix. GFI

was set to 1 minute therefore the device entered sleep mode until the next fix attempt. The
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Name Value Units

Active Consumption 27.5 mA
Sleep Consumption 0.441 mA
Off Consumption 0 mA
Cold Start GFI t > 15 min
Warm Start GFI 900 > t > 10 s
Hot Start GFI t ≤ 10 s
Cold Start TTFF 60 s
Warm Start TTFF 7 s
Hot Start TTFF 1 s

Table 3.1: GPS model properties.

GPS entered active mode with a TTFF of 7 seconds every minute for the remainder of the

simulation, which can be seen in Figure 3.4.
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Figure 3.4: GPS energy consumption model.
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3.3.3 Microcontroller and Real Time Clock

Behavior monitor functions such as data collection, communication, sleep, and data storage

were facilitated through a microcontroller. Two energy consuming states were available for a

microcontroller: Sleep and active. Sleep mode was modeled to have a constant current draw

of 2.1 uA and was used when a behavior monitor was not collecting data. Alternatively, active

mode was used during data collection with a modeled current draw of 2.32 mA. Accurate system

time and the ability to generate interrupts for scheduled events were handled by a real time

clock. Providing the battery of a behavior monitor was not completely depleted, a real time

clock was modeled to always be active (current draw of 1.5 uA). Because the microcontroller

had two modes of operation behavior (on or sleep), and the real time clock had one state (always

on), they were modeled as one component. State was determined by testing for GPS activity. If

GPS was collecting a fix, current draw from the active microcontroller state was summed with

real time clock current at each sample time. Otherwise, net current draw was modeled as the

sum of real time clock active and microcontroller sleep current.

3.3.4 Photo-Voltaic Cell

An energy generation model was developed based on a Photo-Voltaic Cell (PVC), which gen-

erated power from solar radiation. PVC’s are commonly used by behavior monitors to extend

operational life by charging the battery, however the rate of current generation can vary signif-

icantly based on many factors. An empirical model was developed for energy harvested by a

photo-voltaic cell, in the form of current being generated, at each discrete sample time I(k) of

a solar diurnal cycle. Empirical data were examined for current generated by a PVC over a 30

day period, shown in Figure 3.5. Average daily PVC current was calculated from the 30 days of

data, a simple moving average was used to smooth noise, then a second order polynomial curve

fit was applied, of the form shown in Eq. 3.3. Coefficients a, b, and c were determined using

the MATLAB function polyfit.



Chapter 3. Energy Consumption Model 34

Sunlight Time [Hours]
0 2 4 6 8 10 12

S
o

la
r 

C
u

rr
en

t 
[m

A
]

0

2

4

6

8

10

12
30 Day Average
Smoothed
Curve-Fit

Figure 3.5: Curve fit for empirical PVC data

I(k) = ak2 + bk + c (3.3)

Based on empirical data from multiple PVC devices, an average of 10.5 hours of sunlight duration

occurred for the devices, and the maximum current draw ranged from 10 mA to 40 mA. Energy

harvested by a PVC was modeled based on the following parameters: (1) Current generated by a

PVC at sunrise, (2) PVC current generated at midday, and (3) PVC current generated at sunset.

Daylight was selected to start at 6:00 AM and with a current draw of 0 mA and nighttime was

selected to start at 4:30 PM and also had a current draw of 0 mA. Midday occurred at 10:30

PM and had a current generation of 10 mA. The maximum current at midday can be scaled

to represent anything from 0-150 mA to model different weather patterns or regions. Selected

time and current values were input into the MATLAB function polyfit to generate polynomial

coefficients for a, b, and c. Eq. 3.4 shows the polynomial used for modeling PVC current

generated from 6:00 am to 4:30 pm where a maximum current of 10 mA was drawn at 10:30

pm. The maximum current at midday, as well as sunrise and sunset times, could modified to

model different weather patterns, geographic regions, or levels of shade, however this would

require updating the polynomial coefficients.



Chapter 3. Energy Consumption Model 35

I(k) = −2.711× 10−8k2 + 2.213× 10−3k +−3.514× 101 (3.4)

Noise component for current generated was introduced to model factors such as cloud cover,

partial PVC obstruction, or lack of sunlight due to foliage. This was accomplished by generating

random current values INoise, at time k, between a lower IMin and upper IMax bound, which

represented ±20% of I(k) respectively. Incorporation of noise into the PVC model can be seen

in Eq. 3.5.

INoise(k) = IMin(k) + (IMax(k)− IMin(k)) ∗Rand(0, 1) (3.5)

Figure 3.6 shows current produced by a PVC model over a period of 24 hours at a time step

of 1 second. Times before and after daylight corresponded to zero current generated by the

model. Between the sunrise and midday, the value of current increased parabolically until a

maximum value was reached. From midday to the beginning night, values for current decreased

parabolically until a minimum of 0 mA occurred. Scaling the magnitude of current generated

each day is a unique strength of the model because it allows different scenarios for weather or

bird behavior to be evaluated, while a potential drawback was the limited impact noise played

in determining current generation. During periods of darkness a typical current profile has zero

magnitude then current increases with parabolic behavior when the sun comes up. The amount

of current generated would plateau when the sun was directly overhead then would begin to

decrease until the night.

Time [Hours]
0 4 8 12 16 20 24

C
u

rr
en

t 
[m

A
]

0

2

4

6

8

10

12

Instantaneous Current
Ideal Current

Figure 3.6: Variable PVC current generation model.
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3.3.5 Battery

The CTT-1100 tracking device, selected for modeling, contains a lithium ion battery used when

solar current was insufficient and was modeled by considering two properties: Method for en-

ergy storage, and flow (charge and discharge). The battery model was developed as a storage

container that could hold a minimum and maximum amount of electric charge. Stored battery

energy was expressed in milliampere-hours (mA-hr) which describes how much current (mA)

can be released from the battery in one hour. Maximum capacity was selected to be a commonly

used battery size of 800 mA-hr, however this could be modified based on the application. Level

of energy in the battery could not exceed the maximum capacity in the event of charging, and

was considered completely discharged when at 0 mA-hr. Amount of energy entering or leaving

the modeled battery was measured in discrete time steps. Using Eq. 3.6, net current draw I

required for powering other modeled components (GPS, MCU, RTC, and PVC) was converted

to energy by multiplying by the time step, which depending on the sign, could be added or

subtracted from the battery.

INet(k) = IPV (k)− IGPS(k)− IMCU (k) (3.6)

Lithium ion batteries ideally charge in a two stage process: constant current and saturation

charge [77]. First, charging occurs with constant current until approximately 90% (saturation

point) charge capacity is reached. The battery then continually accepts less current until max

capacity is reached [78]. The first stage of charging was modeled by assuming any positive net

current charges the battery. The second stage was modeled by linearly decreasing the amount

of charge that can enter the battery as the battery charge level exceeds a saturation point QSat.

Eq. 3.7 shows that the current amount of energy stored in the battery Q(k) was equivalent to

the energy from the previous time step Q(k− 1) plus incoming energy I(k)∆t scaled to account

for charge saturation.

Q(k) = Q(k − 1) + I(k)∆t

{
1− Q(k − 1)−QSat

QMax −QSat

}
(3.7)

Battery State of Charge SOC, defined as the ratio between current Q(k) and maximum charge

QMax capacity of the battery, was used for tracking available energy. Coulomb, or charge

counting was used to determined SOC by auditing the amount of current entering or leaving
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the battery [73]. SOC was determined at each time step SOC(k) by dividing the net charge

entering or leaving the system Q(k), then adding it to the previous value SOC(k − 1) (See

Equation 3.8). For the occurrence of the first calculation of SOC, the battery was assumed to

be fully charged therefore having an initial SOC of 100%.

SOC(k) = SOC(k − 1) +
Q(k)

QMax
∗ 100 (3.8)

3.3.6 Simulation of Fixed Data Collection Rate

Simulation of the CTT-1100’s energy consumption was performed using constant GPS fix in-

tervals for a constant amount of energy harvested each day. Solar current generated, see Figure

3.6, was used for all 15 days of the simulation such that differences in SOC could be attributed

to GPS energy consumption. Three GPS fix intervals were evaluated: 1 second, 30 seconds,

and 15 minutes. Based on Plot (b) of Figure 3.7, battery SOC was initially modeled as 100%

to represent a fully charged battery. Battery SOC was completely depleted by day 4, for a GPS

fix interval of 1 second, so GPS data collection stopped until the battery was charged to 80%.

GPS fix interval of 30 seconds showed a linear decrease in SOC over 15 days and 15 minutes

showed battery charge maintained at approximately 97%.
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Figure 3.7: Plot (a) shows PVC modeled current. Plot (b) shows SOC for various GPS fix
intervals.

3.3.7 Model Summary

An energy consumption model of a behavior monitor was needed for development and perfor-

mance prediction of a changeable data collection system. The CTT-1100 tracking device was

analyzed to establish a basis for a software model. Hardware and software for the CTT-1100

were analyzed to determine major energy consumption components as well as how they were

used. GPS was the largest source of current consumption, using 27.5 mA while acquiring a

fix. Time to first fix for GPS was modeled by developing a rule set based on data collection

rate. The photo-voltaic cell was modeled for charging a battery using energy harvested from

solar radiation. Current generation of a PVC was modeled parabolically in proportion to a

solar diurnal cycle. Noise was added to the ideal current generation curve to better simulate

energy harvest for adverse weather or PVC obstruction. Simulation of the CTT-1100’s energy

consumption was performed by summing current consumption from GPS, microcontroller, and

real time clock with current generated by a PVC and applying net current to a lithium ion

battery model using a 1 second time step. Evaluation of SOC for the three GPS fix intervals
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was performed for consistent available solar energy, which showed a system for manipulating

data collection would be beneficial for self regulating SOC.

3.4 Model Verification

The objective of creating an energy consumption model was for use as a tool in developing and

testing a variable data collection rate system. Before design or performance testing, accuracy of

an energy consumption model for a wildlife behavior monitor needed to be determined. Model

validation is presented by comparing simulated to empirical data.

3.4.1 Evaluation Criterion

Validation was performed by adjusting operating parameters for the tracking device energy

consumption model to match empirical data acquired from a wildlife behavior monitor. For a

given level of operation, a comparison was performed between modeled and empirical derived

battery SOC. The following parameters were simulated based on empirical data: (1) The range

of time in a day for which GPS data was collected, (2) Initial battery voltage, (3) Current

generated by a PVC, and (4) the GPS fix rate.

Relating Battery Voltage to SOC The energy consumption model used SOC for deter-

mining available battery charge, however empirical data was measured in volts. On the device,

voltage measurements of an 800 mA-hr battery were taken at regular intervals for a 0.01 C

load. In order to perform a comparison, battery voltage was converted to SOC. A Vencon

UBA5 battery tester was used to determine the relationship between voltage and time. The 800

mA-hr battery was tested at a 0.01C load line, which was the same load applied to the tracking

device when battery voltage measurements were taken. Battery characterization load (Vencon

UBA5) must be equal to the CTT-1100 load when battery measurements were taken, otherwise

the relationship between battery voltage and SOC will be inaccurate. The MATLAB function

for cumulative trapezoidal integration (cumtrapz) was then used to integrate the load current

over time, resulting in a relationship between electrical charge and voltage. Given a maximum

battery capacity QMax = 800 mA-hr, electrical charge over time was converted to SOC with

the ratio of electrical charge Q over QMax from Eq. 2.5. Using the MATLAB curve-fit toolbox

(cftool), the SOC vs. Voltage data set was then modeled into an equation that could be used in
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simulation through a rational polynomial curve-fit. Eq. 3.9 shows SOC(V ) where V is the input

voltage, and p1 - p6 and q1 - q3 are polynomial coefficients (Refer to Table 3.2 for coefficient

values). The polynomial was subtracted from 100 to represent available instead of used SOC.

Eq. 3.9 took a voltage bound between 2.5V and 4.2V and returned a value between 0% and

100% SOC respectively (shown in Figure 3.8).

SOC(V ) = 100− p1V
5 + p2V

4 + p3V
3 + p4V

2 + p5V + p6
q1V 2 + q2V + q3

(3.9)
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Figure 3.8: Relationship between bat-
tery voltage and SOC

Px Value Qx Value

p1 28.43 q1 1
p2 -473.1 q2 -6.669
p3 3080 q3 11.33
p4 -9749
p5 14850
p6 -8526

Table 3.2: Table of
coefficients for voltage

conversion equation
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Operating Condition Model Implementation Operating conditions used to simulate

empirical data were implemented in the model as follows: (1) Solar current generated was

linearly interpolated from 15 minutes to match the model sample period of 1 second. The PVC

model was then replaced with actual solar current data. (2) The fix interval for the GPS model

was set to 15 minutes. (3) Modeled battery capacity was set to 800 mA-hr, and the initial

battery SOC was determined by inputing the initial voltage to Eq. 3.9. (4) The simulation

duration was configured based on the length of time between the first and last empirical data

record for each day.

3.4.2 Validation Method

Validation of the CTT-1100 energy consumption model was performed based on a comparison

between empirically derived and simulated SOC for one day of data collection. An absolute

difference |∆SOC(k)| was used for comparing simulated and empirical battery SOC at each

time step (1 second) of a simulation. |∆SOC(k)| was calculated by taking a difference of actual

SOC(k)Actual and simulated SOC(k)Model SOC then dividing by SOC(k)Actual as seen in Eq.

3.10.

|∆SOC(k)| = |SOC(k)Actual − SOC(k)Model

SOC(k)Actual
| ∗ 100 (3.10)

Eq. 3.11 shows mean absolute difference measurements were taken by summing |∆SOC| over

the course the simulation length L.

|∆SOC| = 1

L

L∑
i=1

|SOC(i)Actual − SOC(i)Model

SOC(i)Actual
| ∗ 100 (3.11)

3.4.3 Validation Results

Mean absolute percent difference between simulated and empirical battery SOC was calculated

for each of the 31 days in January 2015 for four CTT-1100 behavior monitors. The first behavior

monitor was located in Kruger National Park, South Africa during the time data was collected.

Figure 3.9 shows a comparison of modeled and empirical SOC (Plot (A)) for actual PVC data

(Plot(B)) as well as the corresponding absolute difference (Plot(C)) for a period of GPS data

collection. Battery SOC was initially 70% and declined to 68% for hours 11 to 13. A spike in
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PVC current of 11 mA occurred at hour 13 that caused SOC to increase to 71%. For the entire

day the absolute difference in SOC never exceeded 2%.
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Figure 3.9: Plot (A) Empirical PVC current data. Plot (B) Simulated and empirical SOC.
Plot (C) Absolute percent difference between simulated and empirical SOC.

Comparison between simulated SOC and actual showed an average MAPD of 3% over 31 days

where the minimum and maximum were 0.6% and 12% respectively. The second behavior

monitor was also located in Kruger National Park, South Africa, with an average MAPD of

5%, minimum of 1% and maximum of 13%. The remaining devices were located in Michigan,

United States during the time of data collection. Comparison between simulated SOC and

actual showed an average MAPD of 1% over 31 days where the minimum and maximum were

0.3% and 2% respectively. The second behavior monitor was also located in Michigan, United

States with an average MAPD of 1%, minimum of 0.1% and maximum of 5%. The results of

MAPD can be seen in Table 3.3. Based on results of the energy consumption model’s level of

accuracy, a maximum average error of 5% was deemed acceptable for use in a changeable data

collection rate system.
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Absolute Difference

Device Location Minimum Maximum Average

South Africa 0.6% 12% 3%

South Africa 1 % 13% 5%

Northeastern United States 0.3% 2% 1%

Northeastern United States 0.1% 5% 1%

Table 3.3: Mean Absolute Percent Difference between simulated and empirical SOC.

3.5 Chapter Conclusion

Energy consumption of a wildlife behavior monitor was modeled for development and evaluation

of a changeable data collection rate system. Energy consumption was modeled based on the

CTT-1100 tracking device, where a GPS, PVC, microcontroller, and real time clock cumulatively

dictated available battery energy. Software architecture was analyzed for developing behaviors

for each component of the model. Energy consumption of a GPS receiver was modeled based

on a rule set that related time to acquire a measurement to the data collection rate. PVC

current generated from solar energy harvesting was modeled proportionally to a solar diurnal

cycle. Random noise was also incorporated and the magnitude of energy harvested could be

scaled differently for each day. Energy consumption for a microcontroller was represented by

an active and sleep component and a real time clock applied a constant level of consumption.

Finally, a lithium ion battery was modeled as an energy storage device that could be charged

and discharged.

Results from simulating GPS fix rates of 1 second, 30 seconds, and 15 minutes suggest SOC

cannot be regulated using a fixed data collection rate, which could adversely effect the amount of

data collected over time as well as the consistency by which GPS data is collected. Evaluation of

accuracy, relative to an actual device, was performed to determine if the model was suitable for

system development and testing. By performing simulation of operating conditions for an actual

device, a comparison between modeled and calculated (based on measured battery voltage) SOC

was used to evaluate model accuracy. Of the four devices evaluated, each over a period of 30

days, a maximum mean difference of 5% SOC was observed. In addition, none of the simulations

had a deviation greater than 13% from actual data. Based on these findings, error was deemed

within an acceptable range therefore the model may be used for system development and testing.
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Chapter 4

System Development

4.1 Chapter Overview

Metholdology for developing a control system to reduce variation in data collection rate, as

well as maintaining a fully charged battery, is presented. PID control is presented as a method

of adjusting a GPS receiver’s data collection rate, to achieve energy equilibrium for a wildlife

behavior monitor. Gain scheduling is shown to be used for switching between sets of PID gain

values to produce a constant GPS fix interval. Methods for tuning two sets of PID gain values

are shown and system performance based on available energy and disturbances is presented.

4.2 Controller Design

4.2.1 Overview

Application of PID control to change GPS data collection, to achieve energy equilibrium for a

wildlife behavior monitor, is presented. Error ε(k) was generated at discrete time steps based on

a difference in SOC between a set point SOCSetPoint and modeled SOC(k) value. Based on the

magnitude of ε(k), a gain scheduler selected one of two sets of gain values (KP , KI , and KD)

to be used by the controller to serve two purposes: (1) give the controller the ability to resist

changing the GPS fix interval when the magnitude of the error function was within a threshold,

and (2) adjust the GPS fix interval when the magnitude of the error function exceeded a set

point threshold. Selected gain values KP , KI , and KD, as well as ε(k) were taken as inputs to
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the PID controller and an adjustment in GPS fix interval ∆GFI (time, in seconds) was output

as a control signal. Adjustments made to GPS fix interval were then applied to the GPS model

and as a result, the rate at which energy was consumed also changed. Delay time of 5 minutes

was used between subsequent controller calls to allow battery SOC to change in response to the

adjustment in GPS fix interval. Figure 4.1 shows a diagram of the system that was described

above.

Figure 4.1: Diagram for an overview of system implementation.

4.2.2 PID Control

PID control is presented as a method to develop a system for modifying the rate at which data

was collected for a behavior monitor. Eq. 2.2 showed that an error signal ε(k) was generated

at discrete time intervals based on a system output state PV (k) and a set point SP . ε(k) was

applied to energy consumption of a behavior monitor by assigning SOC as an output state

SOC(k) and using a reference battery SOC as a set point SOCSetPoint.

PID control, introduced in Eq. 2.3, was extended for GPS data collection by using ε(k) from Eq.

2.2 as input to a PID controller and GPS fix interval was output. ε(k) was used to generate a

control signal ∆GFI by the sum of three separate terms: proportional, integral, and derivative

action. Proportional action was applied by multiplying a proportional gain constant KP by the

error ε(k) at the current time step. The amount of change in the output signal could be increased

by setting larger values of KP . Integral action contributed to the output signal based on history

of past error by adding error from each sampled time, scaled by KI and the sampling period T .

Derivative action produced a change in output signal based on the slope of error, or derivative,

over time. The use of discrete sampling required a numerical approximation, therefore backward
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difference was used between current ε(k) and previous ε(k−1) error divided by sampling period

T . The degree of contribution of derivative action was weighted by a derivative gain value KD,

and could be tuned to account for future error. Refer to Figure 4.2 for a block diagram of PID

control implemented for GPS data collection.

Figure 4.2: Block diagram of a PID controller.

4.2.3 Gain Scheduler

Two major requirements for system development were to maintain a fully charged battery and

a consistent GPS fix interval for the behavior monitor. Due to variability of energy harvested

from solar radiation, achieving equilibrium may be unlikely through a GPS spending energy,

on data collection, at a constant rate. Two potential solutions for maintaining a fully charged

battery and consistent GPS fix interval are as follows: (1) energy equilibrium was considered to

be met for a range of values instead of a constant for battery SOC and as a result only minor

(±0−5 seconds) modifications to data collection may need to be made. (2) Data collection, and

consequently energy consumption could be modified for a GPS when the battery level drops.

PID controllers are typically used for linear systems and as a result may have unpredictable

behavior for nonlinear systems. Nonlinearity of the PVC model, as well as maintaining both a

consistent GFI and energy equilibrium, makes the use of a single PID controller unsuitable for

achieving system requirements. For these reasons, gain scheduling, or assigning values based on

different operation levels, was chosen by defining two sets of gain parameters (KP1, KI1, KD1

and KP2, KI2, KD2) that could be used by a PID controller. Figure 4.3 shows the block diagram
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for selecting which set to use. Two operation levels were defined based on the magnitude of the

error function from Eq. 2.2: (1) an error magnitude |ε(k)| > 10% considered to be at energy

equilibrium, and (2) |ε(k)| ≥ 10% was outside of equilibrium. Prior to a controller call, the gain

scheduler evaluated |ε(k)| and selected the corresponding set of gains to feed the controller.

Figure 4.3: Block diagram for selecting PID gain values.
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4.3 Controller Gain Tuning

Design methodology is presented for tuning a gain scheduled PID controller capable of main-

taining a consistent GPS data collection rate based on SOC of a lithium ion battery. Selection of

initial gain values is shown, where an energy consumption model was used to determine impact

of gain adjustment on battery SOC and GPS data collection. Tuning is presented as a three

stage process were each set of gains are tuned using a trial and error method. Results of gain

tuning are presented and a comparison of performance is discussed for a scheduled versus a

single set of PID gains.

4.3.1 Tuning Methodology Overview

Parameters of the energy consumption model and methodology used for tuning controller gains

is presented. Tuning was performed in three stages: (1) Gains for a single controller were tuned

for a constant value of a PVC model. (2) Single controller gains were adjusted for a variable

PVC model. (3) Gain parameters for second controller, of a dual system, are tuned for a variable

PVC model. Model parameters used for these three stages is presented below.

The first step for tuning a single set of PID gains was to reduce complexity of the energy

consumption model by generating constant current for PVC model instead of current that varied

based on a solar diurnal cycle. 10 mA was selected (maximum of 150 mA) because it represented

a worst case scenario for the amount current being generated by the PVC. Simulations lasted for

24 hours, where the GPS model operated continuously, and energy consumption was sampled

every second. Reference point for SOC was selected as 80% to keep the battery nearly full (GPS

operation was disabled if SOC dropped below 30%). Finally, Battery capacity was reduced from

800 mA-hr to 100 mA-hr to increase sensitivity of battery SOC to changes in energy consumed

and harvested.

The second step consisted of implementing a variable PVC model and making necessary adjust-

ments to previously acquired gain values. The variable PVC model had a maximum current

generation of 10 ±2 mA at 10:30 (midday), and a minimum value of 0 mA 6:00 am (sunrise) and

4:00 pm (sunset). The same PVC model was used for each day of a simulation to restrict causes

of SOC, and GPS fix interval, change to modification of gain values. Because the PVC model

was time variant, the GPS model was configured to only collect data during the day (between

6:00 am and 4:00 pm). Simulations were initially performed over two and three days to evaluate
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transient response, but were extended to 30 days to measure consistency of GPS fix interval

over time. The last step of tuning involved determining gains for a second controller of a dual

controller system using the same model parameters as the second stage, with the exception of

battery capacity being set to a commonly used value of 800 mA-hr.

4.3.2 Constant PVC model for a single controller

4.3.2.1 Proportional Gain

The first step for tuning a single controller was to initialize KI1 and KD1 to zero. Battery SOC

and GPS fix interval were then evaluated over 24 hours for KP1. Plot (a) of Figure 4.4 shows

that for KP1 values of 1, 0.7, and 0.3, SOC varied ±4% every 3 hours, ±5% every 4 hours, and

±7% every 5 hours (of an 80% reference SOC) respectively. Plot (b) shows that GPS fix interval

varies from 10 to 50 seconds every 3, 4, and 5 hours for KP1 values of 1, 0.7, and 0.3 respectively.

A value of 0.3 was selected for KP1 because it produced the largest period of oscillation for the

GPS fix interval and subsequently the slowest rate of change.
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Figure 4.4: Plot (a) shows SOC with respect to time. Plot (b) shows the GPS fix interval.

4.3.2.2 Derivative Gain

The second step for tuning a single controller was to leave the previously acquired KP1 (0.3)

and KI1 (0) gains unaltered. Battery SOC and GPS fix interval were then evaluated for variable

values of KD1. Plot (a) of Figure 4.5 shows that for KD1 evaluated at 500, 1000, and 2000,
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SOC had an overshoot of 3%, 2%, and 1% with times to reach an 80% reference point of 2, 4,

and 5 hours respectively. Plot (b) shows a steady GPS fix interval of 25 seconds was reached in

6, 4, and 2 hours for KD1 values of 500, 1000, and 2000 respectively. A KD1 value of 500 was

selected because it had a rise/steady state time of 2 hours for GPS fix interval.
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Figure 4.5: Plot (a) shows SOC with respect to time. Plot (b) shows the GPS fix interval.
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4.3.2.3 Integral Gain

KI1 was evaluated for battery SOC and GPS fix interval using KP1 of 0.3 and a KD1 of 2000.

Simulations were performed with KI1 evaluated at 0, 0.001, and 0.01. Plot(a) of Figure 4.6

shows instability for each value except 0; for a KI1 of 0.001, SOC drops from 60% at 3 hours,

50% and 10 hours, and 40% at 24 hours. Plot(b) shows GPS fix interval alternating between

the minimum value of 10 seconds and the maximum of 3600 seconds. Non-zero KI1 values

for integral control caused undesirable oscillation for both SOC and data collection, therefore

a value of 0 was used. Steady state error may be present without integral control, which is

acceptable within a ±5% threshold of a SOC set point.
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Figure 4.6: Plot (a) shows SOC with respect to time. Plot (b) shows the GPS fix interval.
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4.3.2.4 Result

Gain values for a single PID controller were tuned with a constant PVC current of 10 mA and

a 100 mA-hr battery. KP1, KI1, and KD1 were tuned one at a time and evaluated based on

battery SOC and GPS fix interval. KP1 was assigned a value of 0.3, KD1 was assigned 2000, and

KI1 was 0. Plot (a) of Figure 4.7 shows simulation results for SOC that started at 100% SOC

and reached a reference SOC point of 80% in one hour. GPS fix interval reached a steady state

of 25 seconds in 2 hours. SOC didn’t reach a steady value due to the GPS fix interval being

restricted to integer values where the value needed to achieve SOC steady state was between 24

and 25 seconds. Steady state is non-existent when PVC current is no longer constant, therefore

inability to reach steady state for a simplified simulation has minimal impact.
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Figure 4.7: Plot (a) shows SOC with respect to time. Plot (b) shows the GPS fix interval.
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4.3.3 Variable PVC model for a single controller

The second major step of tuning was performed for a PVC model that varied based on a solar

diurnal cycle. Gain parameters for a single controller were re-tuned to account for changes

in energy harvested throughout the day. GPS fixes were acquired during the day, which was

dictated by the PVC model. Battery capacity remained at 100 mA-hr from the previous tuning

step.

4.3.3.1 Proportional Gain

Proportional gain was re-evaluated for battery SOC and GPS fix interval, given a change in the

PVC model. Simulations were performed over two days to distinguish differences in response

for different gains. Plot(a) of Figure 4.8 shows the PVC model which had a maximum current

of 10 ±2 mA at midday. Plot (b) shows battery SOC for KP1 values of 0.3, 0.7, and 1. SOC

varied between 75 and 85 percent for day 1 for all three gains. On day 2, SOC started and ended

at 75% for KP1’s of 0.7 and 1. For a KP1 of 0.3, SOC varied between 73 and 95 percent. Plot

(c) shows that smaller values of KP1 resulted in less change in GPS fix interval. KP1 values of

0.3, 0.7 and 1 resulted in fix interval fluctuations from 10 seconds to 120, 170, and 260 seconds

respectively. As a result, a KP1 value of 0.3 was used because it resulted in the lost magnitude

of GPS fix interval fluctuation.
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Figure 4.8: Plot (a) shows the variable PVC model. Plot(b) shows battery SOC. Plot(c)
shows GPS fix interval.
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4.3.3.2 Derivative Gain

Derivative gain for a single controller was re-evaluated for a variable PVC model. A simulation

length of three days was needed to distinguish differences in SOC and GPS fix interval for

KD1 values of 500, 1000, and 2000. Plot(a) of Figure 4.9 shows the PVC model which had a

maximum current of 10 ±2 mA at midday. Plot(b) for KD1 values of 500, 1000, and 2000, SOC

increased to 95, 90, 85 percent during the day and ended at 71, 75, and 75 percent respectively

for day 3. Plot(c) showed GPS fix interval varied from 10 to 150, 120, and 110 for KD1 values

of 500, 1000, and 2000 respectively. A value of 2000 was selected for KD1 because it resulted in

the least variation in SOC and GPS fix interval for a variable PVC model.
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Figure 4.9: Plot (a) shows the variable PVC model. Plot(b) shows battery SOC. Plot(c)
shows GPS fix interval.
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4.3.3.3 Increased Battery capacity

A single controller with KP1, KD1, and KI1 of 0.3, 2000, and 0 was evaluated based on GPS

fix interval and SOC for a commonly used battery capacity of 800 mA-hr. Simulations were

performed for 30 days, where Plot (a) of Figure 4.10 showed the PVC model for each day which

had a maximum current of 10 ±2 mA at midday. Plot(b) showed SOC which varied periodically

between 77 and 83 percent. Plot (c) showed variability of GPS fix interval between 10 and 60

seconds. After tuning a single controller, GPS fix interval was showed to vary based on a variable

PVC model.
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Figure 4.10: Plot (a) shows modeled PVC current. Plot(b) shows battery SOC. Plot(c)
shows GPS fix interval.
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4.3.4 Variable PVC model for dual controllers

Tuning methodology is shown for two controller (gain scheduled) system. Determining which

controller to use was done by the gain scheduler, introduced in Section 4.2.3. Tuning was

performed by first setting gain values of the second controller KP2, KD2, and KI2, equal to the

first KP1, KD1, and KI1. Simulations were performed for 30 days, battery capacity was 800

mA-hr, and the PVC model was variable.

4.3.4.1 Proportional Gain

Three simulations were performed where KP2 was set to 0.3, 0.2, and 0.1 and SOC and GPS fix

interval was evaluated. A KP2 value of 0.3 was used as a reference for comparison (Equivalent

to KP1) to KP2 values of 0.2 and 0.1 Plot(a) of Figure 4.11 showed a variable PVC model

where the maximum current generated was 10 ±2 mA at midday. Plot (b) showed SOC varied

between 77 and 83 % for each proportional gain. Plot (c) showed for a KP2 value of 0.1, GPS

fix interval reached a value of 38 ±3 percent in 6 days. For a KP2 value of 0.1, the fix interval

reached a value of 38 percent in 25 days. A KP2 value of 0.1 was selected because it reached a

consistent fix interval in 6 days.
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Figure 4.11: Plot (a) shows the variable PVC model. Plot(b) shows battery SOC. Plot(c)
shows GPS fix interval.
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4.3.4.2 Derivative Gain

The next step in tuning the second controller was to select a value for KD2 where KP2 was

previously selected as 0.1. Plot (c) of Figure 4.12 showed GPS fix interval for KD2 evaluated

at 1000, 1500, and 2000. For KD2 set to 100, a GPS fix interval of 38 ±2 seconds was achieved

after 28 days. During this transient period, GFI varied from 30 to 60 seconds. For KD2 set to

1500, a GPS fix interval of 38 ±2 seconds was achieved after 22 days. Ultimately a value of

2000 was used for KD2, the same value as KD1, because the time to reach a GPS fix interval

was 6 days.
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Figure 4.12: Plot (a) shows the variable PVC model. Plot(b) shows battery SOC. Plot(c)
shows GPS fix interval.
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4.3.5 Tuning Results

Tuning was performed for a system that used a discrete PID equation to modify GPS fix

interval based on battery SOC. Gain values KP1, KI1, and KD1 were tuned using a trial and

error method where one gain parameter was tuned at a time given a constant PVC value of

10 mA. KP1 was assigned a value of 0.3, KD1 was assigned 500, and KI1 0 because SOC and

GPS fix interval became unstable for non-zero gain values. Tuning was then performed using a

variable PVC model and an increase in battery capacity from 100 mA-hr to 800 mA-hr. KP1,

KI1, and KD1 were also tuned using trial and error, where one gain parameter was tuned at

a time. KP1 was assigned a value of 0.3 and KD1 was 2000. A second set of PID gains were

added to account for fluctuation in GPS fix interval caused by a variable PVC model. KP2 was

assigned a value of 0.1, KD2 was assigned 2000, and KI2 was 0.

Table 4.1 shows the results from tuning for a dual controller system where the controller used

was determined by the gain scheduler. Two controllers were used, where one maintained a

consistent GPS fix interval, and the other drove battery SOC to a reference point. Gain values

denoted with a subscript of 1 refer to the controller used for ε(k) greater than 10%, and a

subscript of 2 represents gain values used that corresponding to ε(k) less than 10%.

Gain Type Set 1 Set 2

Proportional KP1 = 0.3 KP2 = 0.1
Integral KI1 = 0 KI2 = 0
Derivative KD1 = 2000 KD2 = 2000

Table 4.1: Gain values for a dual controller system.
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A comparison of SOC and GPS fix interval consistency was performed for gain scheduled (two

gain set system) and a single controller. Simulations were performed over a period of 30 days and

battery SOC and GPS fix interval were evaluated. Plot (a) of Figure 4.13 showed a variable PVC

model where a maximum current of 10 ±2 mA occurred at each midday. For both controllers,

Plot (b) showed that SOC reached the reference value in one day, and both remained within

4% of the SOC reference. For plot (c), GPS fix interval varied from 20 to 63 seconds over 30

days for a single controller. For the dual controller system, GPS fix interval settled at 38 ±2

seconds after 6.5 days.
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Figure 4.13: Plot (a) shows the variable PVC model. Plot (b) shows battery SOC. Plot (c)
shows GPS fix interval.

4.4 Controller Design Summary

Gain scheduled, PID control was presented for limiting time for which the CTT-1100 tracking

device’s battery energy was unavailable and to maintain a consistent data collection rate. Bat-

tery SOC was a controlled parameter and an adjustment to GPS fix interval was a manipulated

variable. Gain scheduling was used to switch between two controllers based on the difference

between SOC and a reference point to produce a consistent GPS fix interval. Three steps for
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tuning controller gains were presented: (1) A constant PVC model for 24 hours using a single

controller, (2) a variable PVC model for 2 and 3 days using a single controller, and (3) a vari-

able PVC model for a gain scheduled PID controller system. Model parameters for each step

were outlined and a trial and error approach was used for determining proportional, integral,

and derivative gains. Comparison of gain scheduled and standard controller system showed the

use of gain scheduling outperformed a standard controller for maintaining a consistent GPS fix

interval.
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4.5 System Evaluation

Although solar radiation recurs in a pattern every 24 hours on Earth, factors such as weather

changes, time of year, or PVC obstruction may cause changes in the amount of energy harvested

each day. Evaluate is performed of a changeable data collection rate system’s ability to adjust

and maintain a GPS fix interval to maintain battery SOC for a change in available harvested

energy. Design methodology is presented for applying both an increase and decrease in energy

generated by a PVC then a comparison is shown for system performance against a constant

GPS fix interval.

4.5.1 Decrease in Available Harvested Energy

Evaluation of system performance, with respect to battery SOC and GPS fix interval, was done

by scaling energy harvested one half after several days of operation. Simulation was performed

over a period of 40 days where the PVC model varied in proportion to a solar diurnal cycle. For

the first twenty days, a maximum current of 10 ±2 mA occurred at midday then scaled down

by 50% for the next twenty days. The decrease occurred on day 20 to ensure SOC and GPS

fix interval were at a steady state before performing the experiment. The PVC model can be

seen in Plot (a) of Figure 4.14. Plot (b) shows the system controlled SOC started at 100% and

reached the reference point of 80% SOC in 10 hours. On day twenty, SOC dropped from 82%

to a minimum of 75.8% over three days. For a constant GPS fix interval of 30 seconds, SOC

decreased by 2% each day until day 20, then decreased by 6% until day 25 at which point the

GPS was shut off. Plot (c) showed that a GPS fix interval started at 10 seconds to overcome the

initial difference in SOC and settled at 38 seconds with a 16% overshoot that lasted 5 days. For

day 20, the GPS fix interval increased to 110 seconds for 7 days then settled at 78 ±2 seconds

for the remainder of the simulation.
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Figure 4.14: Plot (a) shows the modeled PVC current. Plot (b) shows SOC. Plot (c) shows
GPS fix interval.

4.5.2 Increase in Available Harvested Energy

SOC and GPS fix interval were evaluated for an increase in energy harvested over a period of

40 days, where the PVC model had a current of 5 ±2 mA for the first 20 days, then 10 ±2 mA

for the last 20 days as seen in Plot (a) of Figure 4.15. Plot (b) showed the system controlled

SOC started at 100% and reached the reference point of 80% SOC in 9 hours after starting the

simulation. On day twenty, SOC increased from 83.3% to a maximum value of 83.51% over a

day. SOC for a constant GPS fix interval decreased 5% each day until day 13 when the GPS

was forced off because the 30% threshold was reached. The battery was charged to 80% at day

24 then began decreasing again. Plot (c) shows the GPS fix interval started at 10 seconds to

overcome the initial difference in SOC, due to a fully battery, and settled at 78 ±2 seconds after

being at 120 ±3 seconds until day 13. Due to an increase in energy harvested on day 20, GPS

fix interval decreased to 35 seconds in two days to overcome the rise in SOC. The fix interval

then settled at 38 ±3 seconds for the remainder of the simulation.
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Figure 4.15: Plot (a) shows the modeled PVC current for each day. Plot(b) shows SOC with
respect to time. Plot(c) shows the GPS fix interval over time.

4.5.3 Summary

The impact of modifying energy harvested on SOC and GPS fix interval was introduced and

compared to a constant GPS fix interval. For both an increase and decrease in harvested energy,

SOC remained within a ±10% SOC threshold when controlled by the changeable data collection

rate system. For a constant GPS fix interval, SOC decreased until the GPS was forced off. The

system was shown to adjust GPS fix interval to a constant level (±3 seconds) for changes in

available energy. The next section introduces system performance when exposed to disturbance.
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4.6 Disturbance Handling

Many factors such as cellular data transfer, battery capacity variation due to rapid temperature

change, or inability for a GPS receiver to acquire data may effect the systems ability to adjust

and maintain a consistent data collection rate as well as battery SOC. In order to understand

the impact external disturbances on system performance, two disturbance cases are presented

that may cause uncertain controller behavior. (1) A drop in battery SOC due to cellular data

communication and (2) an unexpected increase in time necessary for a GPS to collect a fix.

4.6.1 Cellular Disturbance

The first disturbance involved instantaneously reducing battery SOC and evaluating the time

necessary for the GPS fix interval to recover to its value before the disturbance. Drop in battery

SOC could result from cellular data transfer due to energy required therefore an evaluation was

performed over 40 days where the PVC model had variable current output proportional to a

solar diurnal cycle. For each day, a maximum current generation of 10 ±2 mA occurred at

midday. The disturbance was performed on day 11 of the simulation to allow SOC and GPS

fix interval to be at a steady state before the evaluation. For day 11, SOC was instantaneously

decreased and the time necessary to recover to the initial GPS fix interval was evaluated. Based

on Figure 4.16, six simulations were performed where the magnitude of SOC drop was varied

from 5% to 30% by increments of 5%. For the smallest drop of 5%, the GPS fix interval returned

to its original value in 5 days, a 10% SOC dropped took 13 days, 15% SOC drop took 15 days,

20% took 17 days, 25% took 19 days, and 30% took 20 days. The amount of recovery time

increased on average by 2 days for each 5% drop in SOC.



Chapter 4. System Development and Evaluation 65

Disturbance [SOC]
5 10 15 20 25 30

T
im

e 
[D

ay
s]

11

12

13

14

15

16

17

18

19

20

Figure 4.16: Disturbance in battery SOC.

4.6.2 GPS Disturbance

The second disturbance case increased the length of time necessary to acquire a GPS fix which

resulted in additional energy consumption due to the GPS receiver being active for an extended

period. Evaluation was performed over 40 days where the PVC model had variable current

output proportional to a solar diurnal cycle. For each day, a maximum current generation of 10

±2 mA occurred at midday. Disturbance increased the time to acquire a GPS fix by a factor of

10, and lasted from one to five days. Figure 4.17 shows recovery time for the GPS fix interval

was 10 days when the disturbance lasted 1 day. For two days, recovery time increased to 12.5

days, 14.2 days for a three day disturbance, 15.5 days for four days, and 15.9 days for a five

day disturbance. GPS disturbance would be typical in densely covered areas such as forests or

cities with large buildings where GPS signal is weak.
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Figure 4.17: Disturbance in time necessary to acquire a GPS fix.

4.6.3 Disturbance Summary

Controller performance was evaluated based on two cases of disturbance. The first case involved

dropping SOC instantaneously by values ranging from 5% to 30% to simulate large current

consumption associated with cellular communication. Recovery time varied from 11 to 20 days

based on the magnitude of drop in battery charge. The second case increased the time necessary

to acquire a GPS fix as a result of poor GPS signal strength. Recovery time ranged from 10 to

16 days. While the system was able to recognize and attempt to correct disturbances in SOC,

it required extensive amounts of time to return to a normal GPS fix interval.

4.7 Chapter Conclusion

Gain scheduling was introduced for a PID controller system to maintain a consistent GPS

fix interval, and limit the amount of time battery charge was unavailable. GPS fix interval,

for a behavior monitor, was manipulated based on an error signal between a measured and
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reference battery SOC. The magnitude of control error was then evaluated by a gain scheduler

to determine which set of gains was to be used. One controller was designed to maintained

a consistent GPS fix interval, and the other for changing the interval to maintain SOC at a

reference point. Three steps for tuning a gain scheduled controller system were presented: (1)

A constant PVC model for 24 hours using a single controller, (2) a variable PVC model for 2 and

3 days using a single controller, and (3) a variable PVC model for a gain scheduled controller

system. Model parameters for each step were outlined and a trial and error approach was used

for determining proportional, integral, and derivative gains. Based on tuning results, it was clear

that non-zero integral gain values had a negative impact on controller performance therefore it

was not used. Comparison was performed for a gain scheduled and standard controller system

that showed that using gain scheduling outperformed a standard PID controller for maintaining

a consistent GPS fix interval.

The impact of modifying energy harvested on SOC and GPS fix interval was introduced and

compared to a constant GPS fix interval. For both an increase and decrease in harvested energy,

SOC remained within a ±10% SOC threshold when system controlled. For a constant GPS fix

interval, SOC decreased until the GPS was forced off. The system was shown to adjust GPS fix

interval to a constant level (±3 seconds) for changes in available energy. System performance

was also evaluated based on two cases of disturbance. The first case involved dropping SOC

instantaneously by values ranging from 5% to 30%. Acute battery SOC disturbance may have

occurred during cellular communication. Recovery time varied linearly from 11 to 20 days

based on the magnitude of drop in battery charge. The second case involved an increase in time

necessary to acquire a GPS fix. Recovery time ranged from 10 to 16 days. While the system was

able to recognize and attempt to correct disturbances in SOC, it required extensive amounts of

time to return to a normal GPS fix interval.
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Chapter 5

Conclusion and Future Work

5.1 Thesis Summary

5.1.1 Problem Overview

Behavior monitors typically collect data, and consequently spend energy, at fixed intervals.

Dependent on the rate at which energy is harvested, impact on battery charge can be classified

in three ways. (1) Battery charge may become depleted over time because energy consumed

by data collection is greater than energy harvested therefore data collection must stop until

enough energy has been harvested to continue. (2) Energy may be harvested faster than it can be

consumed which can result in a battery becoming fully charged and unharvested energy could be

applied to collecting more data. (3) Energy spent on data collection may be balanced with energy

harvested and therefore battery depletion doesn’t occur and data collection continues. The third

case, where energy harvested is balanced with energy consumed, is preferred because data can

continually collected at a maximum level that doesn’t result in battery depletion. Adjusting a

data collection rate, proportional to changes in battery charge, was achieved through analysis

and design of a data collection compensation system such that data obtained was maximized

without sacrificing battery energy sustainability.

5.1.2 Energy Consumption Model

Energy consumption of the CTT-1100 wildlife behavior monitor was modeled for development

and evaluation of a changeable data collection rate system, where GPS, PVC, microcontroller,
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and real time clock cumulatively dictated available battery energy. Software architecture was

analyzed for developing behaviors for each component of the model. The GPS receiver’s energy

consumption was modeled based on a rule set that related time to acquire a measurement to

the data collection rate. PVC current generated from solar energy harvesting was modeled

proportionally to a solar diurnal cycle. Random noise was also incorporated and the magnitude

of energy harvested could be scaled differently for each day. Operation of a microcontroller

was represented by an active and sleep current and a real time clock applied a constant level

of current at all times. Finally, a lithium ion battery was modeled as an energy storage device

that could be charged and discharged.

Results from simulating GPS fix rates of 1 second, 30 seconds, and 15 minutes suggest SOC

cannot be regulated using a fixed data collection rate, which could adversely effect the amount of

data collected over time as well as the consistency by which GPS data is collected. Evaluation of

accuracy, relative to an actual device, was performed to determine if the model was suitable for

system development and testing. By performing simulation of operating conditions for an actual

device, a comparison between modeled and calculated (based on measured battery voltage) SOC

was used to evaluate model accuracy. Of the four devices evaluated, each over a period of 30

days, a maximum mean difference of 5% SOC was observed. In addition, none of the simulations

had a deviation greater than 13% from actual data. Based on these findings, error was deemed

within an acceptable range therefore the model may be used for system development and testing.

5.1.3 System Design and Evaluation

Gain scheduling was used for a PID controller system to maintain a consistent GPS fix interval,

and limit the amount of time battery charge was unavailable. GPS fix interval, for a behavior

monitor, was manipulated based on an error signal between a measured and reference battery

SOC. The magnitude of control error was then evaluated by a gain scheduler to determine

which set of gains was to be used. One controller was designed to maintained a consistent

GPS fix interval, and the other for changing the interval to maintain SOC at a reference point.

Three steps for tuning a gain scheduled controller system were presented: (1) A constant PVC

model for 24 hours using a single controller, (2) a variable PVC model for 2 and 3 days using a

single controller, and (3) a variable PVC model for a gain scheduled controller system. Model

parameters for each step were outlined and a trial and error approach was used for determining

proportional, integral, and derivative gains. Based on tuning results, it was clear that non-zero
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integral gain values had a negative impact on controller performance therefore it was not used.

Comparison was performed for a gain scheduled and standard controller system that showed

that using gain scheduling outperformed a standard PID controller for maintaining a consistent

GPS fix interval.

The impact of modifying energy harvested on SOC and GPS fix interval was introduced and

compared to a constant GPS fix interval. For both an increase and decrease in harvested energy,

SOC remained within a ±10% SOC threshold when system controlled. For a constant GPS fix

interval, SOC decreased until the GPS was forced off. The system was shown to adjust GPS fix

interval to a constant level (±3 seconds) for changes in available energy. System performance

was also evaluated based on two cases of disturbance. The first case involved dropping SOC

instantaneously by values ranging from 5% to 30%. Acute battery SOC disturbance may have

occurred during cellular communication. Recovery time varied linearly from 11 to 20 days

based on the magnitude of drop in battery charge. The second case involved an increase in time

necessary to acquire a GPS fix. Recovery time ranged from 10 to 16 days. While the system was

able to recognize and attempt to correct disturbances in SOC, it required extensive amounts of

time to return to a normal GPS fix interval.

The designed system will have impacts such as: (1) Behavior monitors would automatically

configure their GPS fix interval based on available energy. (2) A consistent data collection

rate, at a given level of harvested energy, could be easily implemented into statistical models

for behavior. (3) By maintaining a fully charged battery, operational life would be extended.

Overall this system could improve functionality, usability, and life expectancy of a wildlife

behavior monitor.

5.2 Discussion

5.2.1 Scientific Contribution

Contribution to the field of engineering was twofold: (1) A software model of a behavior monitor

was developed as a tool for simulating energy consumption of sensors and components, energy

harvested, and battery charge over time. Modules for additional sensors or components could be

added based on future need. (2) Methods for dynamic data collection were developed with the

ability to maintain consistent data collection and limit battery charge depletion. Changeable
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GPS data collection was developed based on research from multiple fields including modeling,

control, and energy management of wireless sensor nodes.

5.2.2 Future Work

Future work may be performed in the following areas:

1. Performance needs to be evaluated on an actual behavior monitor.

2. Empirical data for battery level and solar energy needs to be gathered at a 30 second

sampling period to more accurately validate the model.

3. System performance could be tested using actual data for solar energy.

4. Additional controllers could be added, through gain scheduling, to reduce time necessary

for GPS fix interval to recover from disturbance.
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Appendix A

Simulation Script

Functions for performing simulation of energy consumption for a wildlife behavior monitor are

presented. SimulateExecute.m takes simulation setup properties as input and returns useful data

such as battery charge, solar current generation, and GPS data collection rate. Initialization

of various hardware components found on a behavior monitor such as GPS, PVC, MCU, and a

battery are included. The user has the ability to enable an variable data collection rate system

that has a two stage gain schedule. Values for both sets of gains can be passed as input. PVC

current data can be generated based on three modes: Simple mode provides a flat current value

for the entirety of the simulation. Normal mode generates a parabolic profile for current that

is proportional to a daily diurnal cycle. Real mode allows the user to specify a text file that

contains current data. Below is the source code for SimulateExecute.m.

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 %

3 % SimulationExecute.m

4 %

5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

6 function [SOC ,SOC avg ,REALSOC , FR , PV , PVavg ,GPS ] = ...

SimulationExecute(days ,PV MODE,RealDay,bool gps simple,Initial GFI,solar ,...

Battery Properties,USE SOCFilter,GS,Kp,Kd,Ki,Kp2,Kd2,Ki2,Disturb,DisturbMag)

7

8 watchdog = true; % Causes GPS to turn off for SOC < 30%

9 filename = 'EmpiricalData.csv'; % Filename for Data Validation

10 filestart = 2; % First Line of Empirical Data

11 filestop = 1093; % Last Line of Empirical Data
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12

13 days = days ; % Length (days) of Simulation

14 t span = 0:24*3600-1; % Number of Seconds in 1 day

15 Time Absolute = 1; % Initialize index for time variable

16

17 % Controller Properties

18 controller call = 300; % Length of time between Controller Calls [s]

19 threshold = 10; % Threshold for Switching Controller Gains

20 isFirstCall = true; % Initializes Controller Variables

21 Set Point = Battery Properties(3); % Reference State of Charge for Controller

22 State = ones(1,days*24*3600); % Holds Gain Schedule state of Controller

23

24

25 % Battery Properties

26 Batt max = Battery Properties(1); % Capacity of Battery [mA-s]

27 Batt Level = Battery Properties(2); % Battery Charge [mA-s]

28 Battery = BatteryClass(days,Batt Level,Batt max,3600); %% Instantiate Battery

29

30

31

32 %##########################################

33 % Moving Average SOC #

34 %##########################################

35 wind = 0.5*3600; % Window Size for Moving Average

36 inst soc = zeros(2,days*24*3600); % Preallocate Array

37 ind = 1; % First element of Moving Average SOC

38 point soc(1) = Battery.GetBatterySOC(); % Get first element

39 point soc(2,ind) = 0; % Corresponding time

40 ind = ind + 1; % Iterate to second index

41

42 %##########################################

43 % Configure PV #

44 %##########################################

45 DayTime = 6*3600; % Start of Day for Solar Charging 6:00 am

46 NightTime = 16.67*3600; % End of Day for Solar Charging 4:00 pm

47 Max PV = 15; % Maximum amount of current for PVC [mA]

48 PVMaxLen = length(solar ); % Number of elements in Current Array

49

50 % Make sure there are enough Current values in the array for each day

51 assert(PVMaxLen ≥ days,'PVMAX must have at least %d inputs\n',days)

52
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53 %##########################################

54 % PV Mode Config #

55 %##########################################

56 % Value | Description

57 %------------------------------------------

58 % 0 | Simple Mode

59 % 1 | Normal Mode

60 % 2 | Read Mode

61 %------------------------------------------

62

63 % Simple Mode: Constant charge current for 24 hours

64 % Normal Mode: Day/Night cycle. Parabolic charge profile

65 % Real Mode: Day/Night cycle and charge specified by real data

66

67 % Instantiate PhotoVoltaic Cell Object

68 PV = PVClass(PV MODE,days,DayTime,NightTime,0,solar (1),Max PV);

69

70 %##########################################

71 % GPS Config #

72 %##########################################

73 if PV MODE == 2 % If Real Mode

74 FixRate = 15*60; % GPS Fix rate used by Actual Device

75 else

76 FixRate = Initial GFI; % Initialize GPS fix rate

77 end

78

79 FixLength = 60; % Time to First Fix [s]

80 Min FR = 10; % Minimum fix rate GPS can have [s]

81

82 isSOCDisturb = false; % Determines if SOC disturbance is occurring

83 isFLDisturb = false; % Determines if GPS disturbance is occurring

84 % Instantiate GPS Object

85 GPS = GPSClass(bool gps simple,days,FixRate,FixLength,DayTime,NightTime);

86

87 %##########################################

88 % Conservative Enable #

89 %##########################################

90 User Select Conservative = false; % Set true to increase the minimum GPS ...

fix interval

91 if User Select Conservative == true % Increases minimum fix rate
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92 Min FR = GPS.CalculateMinimumFixRate(solar (1),SOC F,Set Point,Batt max,...

DayTime,NightTime);

93 end

94

95 % Instantiate MCU/RTC object

96 MCU = MCUClass();

97

98

99 %% Time Loop for 'd' Days

100 Time = zeros(1,days*24*3600); % Holds Absolute Time

101 avg soc = zeros(1,days*24*3600); % Holds AVG SOC

102 SumofEnergy = zeros(1,length(t span)); % Holds Energy consumed at each time step

103 REAL SOC = []; % Initialize Real SOC array (Model ...

Validation)

104 daylen = length(t span); % Number of seconds in a day

105

106 %##########################################

107 % Main Time Loop [Days] #

108 %##########################################

109 for d = 1:days

110

111 GPS.ClearFixes(); % Clear number of fixes acquired

112 controller call = 0; % Controller Call Variable clear

113

114 if PVMaxLen == 1 % Gets index for PVC profile to use

115 pv pos = 1;

116 else

117 pv pos = d;

118 end

119

120 if PV MODE == 1 % If Normal Mode, Generate PVC profile

121 [PV.SunCycle, PV.AvgSunCycle] = PV.GenerateSunCycle(DayTime,NightTime,...

solar (pv pos));

122 elseif PV MODE == 2 % Acquire Actual PVC data from File

123 clear PV.SunCycle DayTime

124 if days == 1

125 [PV.SunCycle,SOC rtemp,DayTime] = AcquireActualPVCData(RealDay,...

filename,filestart,filestop);

126 lenpv = length(SOC rtemp);

127 temp = isnan(SOC rtemp);

128
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129 for k = 1:lenpv

130 if temp (k) 6= 1

131 start = k;

132 break;

133 end

134 end

135 Batt Level = Batt max*SOC rtemp(start )/100;

136 Battery.Battery Level = Batt Level*3600;

137 else

138 [PV.SunCycle,SOC rtemp,DayTime] = AcquireActualPVCData(d,filename,2,1487)...

;

139 end

140

141 REAL SOC = cat(2,REAL SOC,SOC rtemp);

142 PV.Sun Start = DayTime;

143 GPS.Start Time = DayTime;

144 end

145 %% Time Loop for 24 Hours

146 tic;

147

148 %##########################################

149 % Inner Time Loop [Seconds] #

150 %##########################################

151 for cnt = 1:daylen

152

153 t = t span(cnt);

154 Time(Time Absolute) = Time Absolute;

155

156 if GPS.isActive()

157 SumofEnergy(cnt) = PV.GetUsage(t) - GPS.GetUsage(t) - MCU.MCU Active;

158 else

159 SumofEnergy(cnt) = PV.GetUsage(t) - GPS.GetUsage(t) - MCU.MCU Sleep;

160 end

161

162

163 if Disturb(1) == 1 % GPS Disturbance

164 if (d ≥ Disturb(2) && d ≤ Disturb(3))

165 isFLDisturb = true;

166 else

167 isFLDisturb = false;

168 end
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169 elseif Disturb(1) == 2 % Battery Disturbance

170 if (t == 12*3600) && (d == Disturb(2))

171 isSOCDisturb = true;

172 else

173 isSOCDisturb = false;

174 end

175 end

176

177 Battery.UpdateBattery(Time Absolute,SumofEnergy(cnt),isSOCDisturb,DisturbMag)...

;

178 GPS.UpdateGPS(Time Absolute);

179 PV.UpdatePV(Time Absolute,t);

180

181 %##########################################

182 % SOC Moving Average #

183 %##########################################

184

185 if USE SOCFilter % Implements moving Average SOC if enabled

186

187 inst soc(Time Absolute) = Battery.GetBatterySOC();

188

189 if Time Absolute ≤ wind

190 start = 1;

191 else

192 start = Time Absolute-wind;

193 end

194

195 temp soc = inst soc(start:Time Absolute);

196 avg soc(Time Absolute) = mean(temp soc);

197 SOC FW = avg soc(Time Absolute);

198

199 end

200

201 %##########################################

202 % Controller Call #

203 %##########################################

204

205 if PV.isDayTime(t) && PV MODE 6= 2 % Day Time and not real data use

206 if controller call == 0

207

208 if USE SOCFilter
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209 [FixRate, State(Time Absolute)]= GetFixRate(isFirstCall,FixRate,...

Call Period,SOC FW,Set Point,Min FR,threshold,GS,Kp,Kd,Ki,Kp2,Kd2,Ki2);

210 isFirstCall = false;

211 else

212 [FixRate, State(Time Absolute)]= GetFixRate(isFirstCall,FixRate,...

Call Period,Battery.GetBatterySOC(),Set Point,Min FR,threshold,GS,Kp,Kd,Ki,...

Kp2,Kd2,Ki2);

213 isFirstCall = false;

214 end

215

216 GPS.SetFixInterval(FixRate,isFLDisturb);

217 controller call = Call Period-1;

218

219 else

220 controller call = controller call - 1;

221 end

222

223 GPS.UpdateFixInterval(Time Absolute,true);

224

225 elseif PV MODE == 2

226 GPS.SetFixInterval(FixRate,isFLDisturb);

227 GPS.UpdateFixInterval(Time Absolute,true);

228 else

229 GPS.UpdateFixInterval(Time Absolute,false);

230 end

231

232 % Increment the Absolute Time Index

233 Time Absolute = Time Absolute + 1;

234

235 end % End Inner Loop

236 end % End Outer Loop

237

238 % Return Values from Function to User

239 SOC = (Battery.Battery Array/Battery.Battery Capacity)*100;

240 SOC avg = avg soc;

241 FR = GPS.Fix Interval Array(1,:);

242 PV = PV.PV Array;

243 PVavg = PV.PV AVG Array;

244 GPS = GPS.GPS Usage Array;

245 REALSOC = REAL SOC;

246
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247 end % End Function
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Appendix B

Hardware Classes

Appendix B introduces source code for the GPS, PVC, and battery classes. Each class was

instantiated in SimulateExecute.m and used to generate the net energy applied to the battery.

B.1 Global Positioning System

1 classdef GPSClass < PowerClass & handle

2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

3 % Properties %

4 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

5 properties

6 % Current Properties

7 GPS OFF = 0;

8 GPS Off Sleep = 0.015; % Sleeping, Off [mA]

9 GPS Fix Sleep = 0.441; % Sleeping, Has Fix [mA]

10 GPS Fix Active = 27.5; % Active, Has Fix [mA]

11

12 % Active Times

13 Start Time;

14 End Time;

15

16 % Fix Times

17 TimetoFirstFix = 60;

18 Current Fix Length;

19 Normal Mode Fix Length = 60; % Time to acquire a fix from OFF [s]
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20 Fast Mode Fix Length = 7; % Time to acquire a fix (Fast Mode) [...

s]

21 Continuous Default Fix Length = 10; % Time to acquire a fix (Continuous ...

Mode) [s]

22

23 % Data Storage

24 GPS Usage; % Current GPS State [mA]

25 GPS Usage Array; % Stores GPS Usage data over time [mA]

26 GPS Consumption; % The amount of energy consumed by the ...

GPS module

27

28 % Fixes

29 FixLength; % Time GPS takes to get fix (Varies ...

based on Collection Mode)

30 NumberFixes; % Number of Fixes Acquired [integer]

31 Fix Interval; % Time Between Fixes [s]

32 Fix Interval Array; % Stores the Fix Interval over time [s]

33 SimpleMode;

34

35 ContinuousMode cnt;

36 Operate cnt;

37 Operate state;

38 end

39

40 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

41 % Methods %

42 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

43 methods

44

45 % GPS Class Constructor

46 function obj = GPSClass(SimpleMode,Num Days,Fix Interval,FixLength,Start,Stop...

)

47

48 obj.SimpleMode = SimpleMode;

49

50 obj.Fix Interval = Fix Interval;

51 obj.FixLength = FixLength;

52 obj.SetFixInterval(Fix Interval,false);

53

54 obj.GPS Consumption = 0;

55
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56 % Set Default Values

57 obj.NumberFixes = 0;

58 obj.GPS Usage = obj.GPS Fix Active;

59 obj.GPS Usage Array = zeros(1,Num Days*24*3600);

60 obj.Fix Interval Array = zeros(2,Num Days*24*3600);

61

62 if obj.SimpleMode

63 obj.Start Time = 0;

64 obj.End Time = 24*3600;

65 else

66 obj.Start Time = Start;

67 obj.End Time = Stop;

68 end

69 end % End Constructor

70

71

72 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

73 % Getter/Setters %

74 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

75

76 function out = GetFixes(obj)

77 out = obj.NumberFixes;

78 end

79

80 function ClearFixes(obj)

81 obj.NumberFixes = 0;

82 end

83

84 function out = GetFixInterval(obj)

85 out = obj.Fix Interval;

86 end

87

88 function SetFixInterval(obj,Time,disturb)

89 obj.Fix Interval = round(Time); % Set the Fix Rate to nearest integer ...

value

90

91 % Set the fix length

92 if Time ≥ 15*60

93 obj.Current Fix Length = obj.Normal Mode Fix Length; % Set the ...

time to collect a fix

94 else
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95 obj.Current Fix Length = obj.Fast Mode Fix Length;

96 end

97

98 if disturb

99 obj.Current Fix Length = obj.Current Fix Length*10;

100 end

101 end

102

103 function out = GetFixLength(obj)

104 out = obj.FixLength;

105 end

106

107 function SetFixLength(obj,Time)

108 obj.FixLength = Time;

109 end

110

111 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

112 % End Getter/Setters %

113 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

114

115 function out = GetUsage(obj,Time)

116

117 if Time < obj.Start Time | | obj.Start Time < 0

118 out = obj.Inactive();

119 elseif (Time ≥ obj.Start Time) && (Time < obj.End Time)

120 if Time ≤ (obj.Start Time + obj.TimetoFirstFix + 1)

121 obj.Startup(Time);

122 out = obj.GPS Usage;

123 else

124 if obj.Fix Interval > 10

125 obj.Operate(Time);

126 out = obj.GPS Usage;

127 else

128 out = obj.ContinuousMode(Time);

129 end

130 end

131 else

132 out = obj.Inactive();

133 end

134

135 obj.GPS Consumption = obj.GPS Consumption + out;
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136

137 if Time == 24*3600-1

138 obj.GPS Consumption = 0;

139 end

140 end

141

142 function out = isActive(obj)

143 if obj.GPS Usage == obj.GPS Fix Active

144 out = true;

145 else

146 out = false;

147 end

148 end

149

150 function Startup(obj, Time)

151 if Time ≤ obj.TimetoFirstFix + obj.Start Time

152 obj.GPS Usage = obj.GPS Fix Active;

153 else

154 obj.NumberFixes = obj.NumberFixes + 1;

155 obj.GPS Usage = obj.GPS Fix Sleep;

156 end

157 end

158

159 function out = ContinuousMode(obj,Time)

160

161 if isempty(obj.ContinuousMode cnt) | | Time == obj.TimetoFirstFix + 1

162 obj.ContinuousMode cnt = obj.Fix Interval;

163 end

164

165 obj.GPS Usage = obj.GPS Fix Active;

166 out = obj.GPS Usage;

167 obj.ContinuousMode cnt = obj.ContinuousMode cnt - 1;

168

169 if obj.ContinuousMode cnt == 0

170 obj.ContinuousMode cnt = obj.Fix Interval;

171 obj.NumberFixes = obj.NumberFixes + 1;

172 end

173 end

174

175 function Operate(obj,Time)

176 % Operate state
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177 % true = active

178 % false = sleep

179

180 if isempty(obj.Operate state) | | Time == obj.TimetoFirstFix + 1

181 obj.Operate state = false;

182 obj.Operate cnt = obj.Fix Interval - obj.Current Fix Length-1;

183 end

184

185 if obj.Operate state == false

186 if obj.Operate cnt > 0

187 obj.GPS Usage = obj.GPS Fix Sleep; %GPS Off Sleep;

188 obj.Operate cnt = obj.Operate cnt-1;

189 else

190 obj.GPS Usage = obj.GPS Fix Active;

191 obj.Operate cnt = obj.Current Fix Length;

192 obj.Operate state = true;

193 end

194 else

195 obj.GPS Usage = obj.GPS Fix Active;

196 obj.Operate cnt = obj.Operate cnt - 1;

197

198 if obj.Operate cnt ≤ 0

199 obj.NumberFixes = obj.NumberFixes + 1;

200 obj.Operate cnt = obj.Fix Interval - obj.Current Fix Length-1;

201 obj.Operate state = false;

202 end

203 end

204 end

205

206 function out = Inactive(obj)

207 obj.GPS Usage = obj.GPS OFF;

208 out = obj.GPS Usage;

209 end

210

211 % Update GPS Array

212 function UpdateGPS(obj,time)

213 obj.GPS Usage Array(time) = obj.GPS Usage;

214 end

215

216 function out = CalculateMinimumFixRate(PV,SOC in,SP,Batt cap,DayTime,...

NightTime)
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217

218 aprox gps cost = 30*15;

219 aprox pv avg = (NightTime - DayTime)*2/3*PV;

220 diff SP = abs((SP - SOC in)/100*Batt cap*3600);

221

222 % Balance of energy Eavail = Ein + Estored - Eout

223 Eavail = aprox pv avg + diff SP;

224

225 fixes = Eavail/(aprox gps cost);

226

227 out = round((NightTime - DayTime)/fixes);

228

229 if out < 10 % The fix rate cannot go below 10 seconds

230 out = 10;

231 end

232

233 end

234

235 % Update Fix Interval Array

236 function UpdateFixInterval(obj,time,bool)

237 if bool == true % GPS is enabled

238 obj.Fix Interval Array(1,time) = obj.Fix Interval;

239 obj.Fix Interval Array(2,time) = time;

240 else % GPS disabled, max fix interval

241 obj.Fix Interval Array(1,time) = NaN;

242 obj.Fix Interval Array(2,time) = time;

243 end

244 end

245

246 end % End Methods

247 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

248 % End Methods %

249 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

250

251 end % End Classdef

B.2 Photo Voltaic Cell
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1 classdef PVClass < PowerClass

2

3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

4 % Properties %

5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

6 properties

7 % Current

8 SolarMax; % Solar Current [mA]

9 PVMax; % Maximum current that can be harvested by ...

photovoltaic cell.

10

11 % Storage

12 PV Cumulative; % Cumulative PV output [mA]

13 PV Daily Cumulative;

14 PV Level;

15 PV Array; % Array that Holds PV Level with respect to ...

absolute Time [mA-s]

16 PV AVG Array; % Array that holds average PV or each day ...

absolute time [mA-s]

17

18 SunCycle;

19 AvgSunCycle;

20 SunCycleLength;

21 ASCcnt;

22

23 % Time

24 Sun Start; % Starting Sunlight Time [s]

25 Sun Stop; % Stopping Sunlight Time [s]

26 Sun Duration; % Time Interval that Sun Intensity is greater ...

than zero [s]

27

28 PV MODE; % If set true, No day and night cycles

29

30 end

31 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

32 % End Properties %

33 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

34

35

36

37 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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38 % Methods %

39 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

40 methods

41

42 % Constructor

43 function obj = PVClass(PV MODE, Num Days, DayTime, NightTime,PV Level,...

SolarMax,PVMax)

44 obj.PV MODE = PV MODE;

45 obj.mA = 0;

46

47 if obj.PV MODE == 0 % SIMPLE MODE

48 obj.Sun Start = 0;

49 obj.Sun Stop = 24*3600;

50 obj.Sun Duration = 24*3600;

51 obj.SolarMax = SolarMax;

52 elseif obj.PV MODE == 1 % NORMAL MODE

53 obj.Sun Start = DayTime;

54 obj.Sun Stop = NightTime;

55 obj.Sun Duration = NightTime - DayTime;

56 obj.SolarMax = SolarMax;

57 obj.PVMax = PVMax;

58 [obj.SunCycle, obj.AvgSunCycle] = obj.GenerateSunCycle(obj.Sun Start,...

obj.Sun Stop,SolarMax);

59 obj.SunCycleLength = length(obj.AvgSunCycle);

60 else % REAL MODE

61 obj.Sun Start = DayTime;

62 obj.Sun Stop = NightTime;

63 obj.Sun Duration = NightTime - DayTime;

64 end

65

66 obj.PV Array = zeros(1,Num Days*24*3600);

67 obj.PV AVG Array = zeros(1,Num Days*24*3600);

68 obj.PV Level = PV Level;

69 obj.PV Cumulative = 0;

70 obj.PV Daily Cumulative = 0;

71 end %End Constructor

72

73 function [Act, Avg] = GenerateSunCycle(obj,DayTime,NightTime,Solar)

74 PV Min = (1-0.2)*Solar;

75 PV Max = (1+0.2)*Solar;

76
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77 min = generate parabola(DayTime,NightTime,PV Min );

78 max = generate parabola(DayTime,NightTime,PV Max );

79 Solar Ideal = generate parabola(DayTime,NightTime,Solar);

80

81 Act = zeros(1,length(Solar Ideal));

82

83 len = length(Solar Ideal);

84 for i = 1:len

85 Act(i) = min(i) + (max(i)-min(i)).*rand(1,1);

86 if Solar Ideal(i) > obj.PVMax

87 Solar Ideal(i) = obj.PVMax;

88 end

89 end

90 Avg = Solar Ideal;

91 end

92

93 % Get Current PV Level

94 function out = Get PV(obj)

95 out = obj.PV Level;

96 end

97

98 % Set Current PV Level

99 function Set PV(obj,val)

100 obj.PV Level = val;

101 end

102

103 % Set Max Value for solar intensity

104 function Set PVMax(obj,val)

105 obj.SolarMax = val;

106 end

107

108 function out = Get PVCumulative(obj)

109 out = obj.PV Cumulative;

110 end

111

112 function Clear PV Cumulative(obj)

113 obj.PV Daily Cumulative = obj.PV Daily Cumulative + obj.PV Cumulative;

114 obj.PV Cumulative = 0;

115 end

116

117 function out = Get PV Daily Cumulative(obj)



Appendix B. Hardware Classes 90

118 out = obj.PV Daily Cumulative;

119 end

120

121 function Clear PV Daily Cumulative(obj)

122 obj.PV Daily Cumulative = 0;

123 end

124

125 % Update PV Array and PV Cumulative

126 function UpdatePV(obj,t absolute, t relative)

127

128 obj.PV Cumulative = obj.PV Cumulative + obj.PV Level;

129 obj.PV Array(t absolute) = obj.PV Level;

130

131 if obj.PV MODE == 0 | | obj.PV MODE == 2

132 return;

133 end

134

135 if obj.isDayTime(t relative)

136 if isempty(obj.ASCcnt) | | obj.ASCcnt > obj.SunCycleLength

137 obj.ASCcnt = 1;

138 end

139

140 obj.PV AVG Array(t absolute) = obj.AvgSunCycle(obj.ASCcnt);

141 obj.ASCcnt = obj.ASCcnt + 1;

142 else

143 obj.PV AVG Array(t absolute) = 0;

144 end

145 end

146

147 function out = isDayTime(obj,t)

148

149 if obj.PV MODE == 0 % Simple Mode, Always day time

150 out = true;

151 else % Otherwise, compare with start and stop times

152 if t < obj.Sun Start

153 out = false;

154 elseif t > obj.Sun Stop

155 out = false;

156 else

157 out = true;

158 end
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159 end

160 end

161

162 function out = GetUsage(obj,t)

163

164 if obj.PV MODE == 0 % Simple Mode, Always on

165 obj.PV Level = obj.SolarMax;

166 elseif obj.PV MODE == 2 % Real Mode, Data comes from ...

File

167 obj.PV Level = obj.SunCycle(t+1);

168 else % Normal Mode, Data comes ...

from GenerateSunCycle()

169 if t < obj.Sun Start

170 obj.PV Level = 0;

171 elseif t ≥ obj.Sun Start && t < obj.Sun Stop-1

172 index = t - obj.Sun Start+1; % Get index of solar curve

173 obj.PV Level = obj.SunCycle(index);

174 else

175 obj.PV Level = 0;

176 end

177 end

178

179 out = obj.PV Level;

180 end % End GetUsage()

181

182 end % End Methods

183 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

184 % End Methods %

185 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

186 end % End Classdef

B.3 Battery

1

2 classdef BatteryClass < handle

3

4 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

5 % Properties
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6 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

7 properties

8 Battery Capacity; % Maximum Battery Charge [mA-s]

9 Battery Level; % Current Battery Level [mA-s]

10 Battery Array; % Array that Holds Battery Level with respect to Time

11 Battery Average; % Current Average Battery level over 24 hours. [mA-s]

12 Battery Average Array;

13 Average Window;

14

15 Battery Watchdog MinLevel;

16 Battery Watchdog MaxLevel;

17

18 end

19 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

20 % End Properties

21 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

22

23

24 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

25 % Methods

26 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

27 methods

28 % Battery Class Constructor

29 function obj = BatteryClass(Num Days,Batt Level, Batt Cap,Window)

30 obj.Average Window = Window;

31 obj.Battery Capacity = Batt Cap*3600; % Convert...

from [mA-h] to [mA-s]

32 obj.Battery Level = Batt Level*3600; % Convert...

from [mA-h] to [mA-s]

33 obj.Battery Average = obj.Battery Capacity/3600; % [mA-hr]

34 obj.Init WatchDog(30,90); % Set SOC...

ranges for WatchDog

35 obj.Battery Array = zeros(1,Num Days*24*3600);

36 end

37

38 % Calculates Battery State of Charge [%]

39 function SOC = GetBatterySOC(obj)

40 SOC = (obj.Battery Level/obj.Battery Capacity)*100;

41 end

42

43 function out = GetAverageSOC(obj)
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44 out = 100*obj.Battery Average/obj.Battery Capacity;

45 end

46

47 % Update Battery Level and Array

48 function UpdateBattery(obj,time,Input,Disturb,offset)

49 % Account for Battery Saturation and Update Level

50 obj.Battery Level = obj.UpdateBatteryCharge(Input,obj.Battery Level,...

obj.Battery Capacity);

51

52 if Disturb

53 obj.Battery Level = obj.Battery Level + offset;

54 end

55

56 % Update Battery Level Array

57 obj.Battery Array(time) = obj.Battery Level;

58

59 % Update the daily SOC average

60 obj.UpdateAverageSOC(time)

61 end

62

63 function UpdateAverageSOC(obj,time)

64

65 if time < obj.Average Window+1

66 obj.Battery Average = obj.Battery Level;

67 else

68 len batt = length(obj.Battery Array());

69

70 if len batt ≤ obj.Average Window

71 start = 1;

72 else

73 start = len batt-obj.Average Window;

74 end

75

76 temp = obj.Battery Array(start:len batt);

77 obj.Battery Average = mean(temp);

78

79 end

80 obj.Battery Average Array(time) = obj.Battery Average;

81 end

82

83 % If the battery falls below the minimum threshold, return a false
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84 % statement that will indicate that sensor data not be collected

85 % until the battery is charged up past the maximum threshold

86 function bool = WatchDog(obj)

87 persistent result;

88 % If result is empty matrix, populate it to default true.

89 if isempty(result)

90 result = true;

91 % When the max threshold is reached, start returning true

92 elseif obj.GetBatterySOC() ≥ obj.Battery Watchdog MaxLevel

93 result = true;

94 % If the battery falls below threshold, return false until it

95 % rises above maximum threshold

96 elseif obj.GetBatterySOC() ≤ obj.Battery Watchdog MinLevel

97 result = false;

98 end

99

100 bool = result;

101 end

102

103 %***Private Function*** Sets Battery Watchdog limits. Called in constructor

104 function Init WatchDog(obj,SOC Min,SOC Max)

105 obj.Battery Watchdog MinLevel = SOC Min;

106 obj.Battery Watchdog MaxLevel = SOC Max;

107 end

108

109

110 %***Private Function*** Accounts for battery saturation

111 function Battery Level out = UpdateBatteryCharge(obj,Net in,Battery Level in,...

Battery Capacity)

112 % Inputs: InputCharge: Amount of energy available to charge Battery

113 % Output: NONE: Internally adjusts Battery Level Property

114

115 %Define a Saturation Point

116 SaturationLevel = 0.9*Battery Capacity;

117

118 if Net in ≤ 0 %Adjust Battery Level if deficit

119 Battery Level out = Battery Level in + Net in;

120 elseif Net in > 0 % Charge the Battery

121

122 if Battery Level in ≥ SaturationLevel % Charge Saturation exists for ...

all of the input current
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123 Battery Level out = Battery Level in + Net in*(1+(-1)*(...

Battery Level in-SaturationLevel)/(Battery Capacity-SaturationLevel));

124 elseif obj.Battery Level + Net in ≥ SaturationLevel; % Charge ...

Saturation Exists for part of the input current

125 % Charge to Saturation Point

126 ChargeToSat = SaturationLevel - Battery Level in;

127 Battery Level in = Battery Level in + ChargeToSat; % Adjust ...

Input Level

128 Net in = Net in - ChargeToSat; % Adjust Charge Level

129

130 % Take reminaning Charge and apply saturation scaling to get ...

output

131 Battery Level out = Battery Level in + Net in*(1+(-1)*(...

Battery Level in-SaturationLevel)/(Battery Capacity-SaturationLevel));

132

133 else % No Charge Saturation Exists, Simply Add the Charge to the ...

battery

134 Battery Level out = Battery Level in + Net in;

135 end

136 end

137

138 if Battery Level out ≤ 0 % Check for Battery out of lower bound

139 Battery Level out = 0;

140 end

141

142 % Check to make sure MaxLevel isn't exceeded

143 if Battery Level out ≥ Battery Capacity

144 Battery Level out = Battery Capacity;

145 return;

146 end

147 end

148

149 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

150 % End Methods

151 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

152 end % End Methods

153 end % End Classdef
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Appendix C

Controller Script

Appendix C provides source code for a variable data collection rate system that used a discrete,

time domain PID equation to control battery SOC by manipulating a GPS data collection rate.

Gain scheduling is included for two sets of gains that can be specified by the user. Below is the

source code for GetFixRate.m

1 function [New FixRate, state] = GetFixRate(FirstCall, Old FixRate,...

Controller Call Period, SOC F, Set Point,Min Fix Rate,threshold,GS,Kp ,Kd ,...

Ki ,Kp2,Kd2,Ki2)

2

3 persistent integral err;

4 persistent prev err;

5

6 if isempty(integral err) && isempty(prev err) | | FirstCall

7 integral err = 0;

8 prev err = 0;

9 end

10

11 err = (Set Point - SOC F);

12

13 % Gain Scheduling

14

15 % When the error from the sp becomes sufficiently large, the set of

16 % gains for fast tracking to the set point should be used.

17

18 % If the error is sufficiently small (within a threshold) switch to a
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19 % set of conservative gain values in order to still control but

20 % have less of an impact on the Fix rate.

21

22 if GS

23 if abs(err) > threshold

24 state = 1;

25 Kp = Kp ;%0.4;

26 Ki = Ki ;%0;

27 Kd = Kd ;%5000;

28 integral err = 0;

29 else

30 state = 2;

31 Kp = Kp2; %0.1;

32 Ki = Ki2;%0;

33 Kd = Kd2;%2000;

34 integral err = integral err + err;

35 end

36 else

37 state = 1;

38 Kp = Kp ;%0.4;

39 Ki = Ki ;%0;

40 Kd = Kd ;%5000;

41 integral err = integral err + err;

42 end

43

44 dFR = round(Kp*err + Ki*integral err*Controller Call Period + Kd*(err - ...

prev err)/Controller Call Period);

45

46 prev err = err;

47

48 New FixRate = Old FixRate + dFR;

49

50 if New FixRate < Min Fix Rate

51 New FixRate = Min Fix Rate;

52 elseif New FixRate > 3600

53 New FixRate = 3600;

54 end

55

56 end
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diotelemetŕıa automática). Journal of Field Ornithology, pages 59–71, 1996.

[30] L David Mech and Shannon M Barber. A critique of wildlife radio-tracking and its use

in national parks. Biological Resources Management Division, US National Park Service,

Fort Collins, CO Technical Report, 2002.

[31] Charles R Tucker, Thomas A Radzio, Jeramie T Strickland, Ed Britton, David K Delaney,

and Day B Ligon. Use of automated radio telemetry to detect nesting activity in ornate

box turtles, terrapene ornata. The American Midland Naturalist, 171(1):78–89, 2014.

[32] Adam S Hadley and Matthew G Betts. Tropical deforestation alters hummingbird move-

ment patterns. Biology Letters, pages rsbl–2008, 2009.

[33] Melissa S Bowlin, Per Henningsson, Florian T Muijres, Roel HE Vleugels, Felix Liechti,

and Anders Hedenstrom. The effects of geolocator drag and weight on the flight ranges of

small migrants. Methods in Ecology and Evolution, 1(4):398–402, 2010.

[34] Hill RD. Theory of geolocation by light levels. Le Boeuf BJ, Laws RM, eds. Elephant Seals:

Population ecology, behaviour, and physiology, page 227–236, 1994.
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