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ABSTRACT

Foundations of Object-Based
Specification Design

By David March Fleming, B.S., M.S.

To enhance applicability and encourage its use, a component or a component-

based system must have a well-designed set of interface features as well as a proper

explanation of these features.  The dual problem of designing a suitable set of interface

features in addition to properly explaining its behavior is termed the specification design

problem.  This dissertation identifies observability, controllability, and a performance-

motivated pragmatic criterion as essential properties of desirable formal specifications

for reusable object-based software components.  The pragmatic criterion guides the

design of component interfaces and component libraries to a suitable set of features so

that they are widely applicable, both in terms of functionality and performance, yet

minimal in size, whereas observability and controllability considerations lead to most

suitable formal explanations of the interfaces.

This dissertation formally defines the principles of observability and

controllability for object-based software specifications, including those with relational

behavior.  These principles, in addition to the minimality and performance considerations

embodied in the pragmatic criterion, lead to the unique collection of concepts in the

RESOLVE component specification library.  These principles form a basis for evaluation

of existing object-based software specifications, and also lead to designs of new

specifications that are among the most desirable in terms of understandability and utility.
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Introduction I
To enhance applicability and encourage its use, a component or a component-based

system must have a well-designed set of interface features as well as a proper explanation

of these features.  If the interface does not include suitable operations for effective

manipulation of objects defined by that interface, then it might compromise functional

and/or performance flexibility, thereby inhibiting its reuse.  Alternatively, poor

explanations of an otherwise well-conceived interface might make it impossible to

understand its objects and operations, and also inhibit its use.  This interconnected

problem of designing an interface that provides a suitable set of features along with an

appropriate formal explanation is termed the specification design problem, and it is the

focus of this dissertation.

For a given problem, the specification design space is vast, and only a few of the designs

simultaneously facilitate understanding and reasoning at the right level of abstraction,

provide widely applicable functionality, and encourage performance flexibility through

alternative implementations.  The objective of this dissertation is to identify and describe

a formal basis for evaluating alternative specifications of the same problem to narrow the

design space to contain only the best ones.  This objective, in the context of component-

based software systems, is complementary to yet distinguished from much of the design

work in the software engineering literature, where the principal focus is on

implementations.

1.1 Fundamental Properties Underlying Good
Specification Designs

To understand and motivate what might be, for any component-based device or system,

potentially fundamental properties of good specifications, we consider the specification

design problem for two physical devices:  a water faucet and a stove burner [Norman 90].

In each case, we explain that there is something intuitively wrong about the initial designs

with respect to how we use and reason about them.  We are able to make explicit the
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problems in each case, and in the process, some of the essential properties of interface

designs and explanations come into focus.

Figure 1.1 shows a design of an interface for a

water faucet that is completely inflexible.  In

this design, the water can be turned on and off,

but the lever cannot be moved left or right;

i.e., the water faucet provides water of only

one temperature.  Clearly, this design is not

widely usable or pragmatic.

While Figure 1.2 shows an interface for a

water faucet in which the lever can now be

moved left or right, it provides no visible

relationship between the lever’s position and

the water’s temperature.  That is, this interface

provides flexibility, but it does not include an

explanation of how to use the lever to benefit

from the flexibility.  Stated in control

engineering terms, this interface lacks

observability.  The lack of observability in this

case forces a user to try to move the lever both

ways to get water of the desired temperature (though in the real world, this problem is

often avoided by the convention that “left is cold” and “right is hot”).

Water Faucet

Off

On

Only has one temperature.

Figure 1.1 - Not Pragmatic

Water Faucet

Off

On

Is the water hot or cold?

Figure 1.2 - Not Observable
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The “normal” design in Figure 1.3 is both

observable and pragmatic, because it

provides means and instruction for hot and

cold water.  This discussion suggests that

good interfaces for (software) components

and systems should be both flexible and

well-explained to be widely applicable and

usable.

Figure 1.4 illustrates another example.  This

interface for a stove burner allows the burner

to be turned on or off, but otherwise offers no

finer control of the burner’s temperature.  This

interface, again, is not widely usable or

pragmatic.

Figure 1.5 contains an alternative interface for

the stove burner that apparently provides finer

control of the burner’s temperature.  However,

suppose that only “off” and “medium” can

actually be selected.  In other words, the

explanation of the interface and the provided

features of the interface do not match, since

there are states in the explanation that cannot

be reached.  Stated in control engineering

terms, this interface design is not controllable.

Although somewhat simplistic, the above examples show the intuitive nature of three

arguably fundamental (and formalizable) properties of specification design:

Water Faucet

Off

On

Hot is left, Cold is right.

Hot

Cold

Figure 1.3 - A Good Design

Stove Burner

Both positions are selectable.

On

Off

Figure 1.4 - Not Pragmatic

Stove Burner

Only two positions available.

Lo

Med

Hi

Off

Figure 1.5 - Not Controllable
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observability, controllability, and the pragmatic criterion.  While not obvious, similar

considerations have influenced the interface design of every physical device from

batteries to cars and planes.

For ease of use and practicality, a software component interface should also be

observable, controllable, and satisfy a version of the pragmatic criterion concerned with

functional and performance flexibility.  Additionally, a library of software components

for some problem domain should also satisfy the pragmatic criterion.  Here, we explore

the meaning of these terms for software and argue that they are fundamental for designing

formal model-based specifications for object-based software components.  When

designing an interface for a single software component, observability and controllability

ensure the development of an operation set no smaller than is sufficient to express

computations on the entire model space, whereas the pragmatic criterion ensures the

development of an operation set no larger than is necessary to be efficient for all

intended functional variations of the component.  In other words, observability and

controllability approach the design of a suitable specification “from the bottom”, whereas

the pragmatic criterion approaches the design “from the top”.  Additionally, when

designing a library of components for some problem domain, the pragmatic criterion

ensures that the library is no larger than necessary for this purpose.  Understanding and

applying these terms and principles for behavioral specifications of software components

and systems is the central topic of this dissertation.

 

1.2 Software Specification Design

For precisely explaining behaviors of software components, there are a number of formal

specification notations (VDM, Larch, RESOLVE, and Z, among others).  However, few

of these notations include techniques, principles, and guidelines for specifiers to use in

developing high-quality interface specifications [Wing 90, Sitaraman 93].  Without such

guidance, even the best notations cannot compensate for poorly conceived specification

designs.  For example, while it can be argued that programming language notations can

be used to formally describe the behavior of software, such “specifications” are often very

complex and too detailed.  The promise and attraction of formal specification notations

for describing software components and systems comes from the ability to describe the

behavior of software at the right level of abstraction for understanding and reasoning, and

this is where more than just a formal notation is needed.
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In addition to the design of a clear and precise explanation of behavior, the interface

specification design process for a given problem involves the design of a suitable set of

operations for manipulating objects provided by the specification.  Unfortunately, in the

formal specification community, the focus is mostly on precise notation.  Likewise, and

equally unfortunate, issues surrounding the clear and precise explanation of interface

behavior are rarely the focus in the practicing object-oriented community.  This

dissertation fills this gap by providing a foundation for the formal specification design

problem.

Some Desirable Properties

In one of the earlier characterizations of desirable specifications, Liskov and Guttag

identify three key properties: clarity, restrictiveness, and generality [Liskov 86].  Here,

clarity means that a specification should be understandable; restrictiveness means that a

specification should express all that a designer intends, and nothing more; and generality

means that a specification should be sufficiently abstract so as not to preclude any

suitable implementation strategy.  Weide et al. summarize these and other good

characteristics of object-based software component specifications as listed below [Weide

91]:

• Clarity  - a specification should be clear and understandable.

• Restrictiveness - a specification should state everything a designer wishes to state

about the behavior that is expected of a correct implementation, and nothing more.

• Generality - a specification should support a variety of implementations,

especially efficient ones.

• Primitiveness - a specification should export operations whose functionality is

orthogonal and whose totality is minimal.

• Sufficiency - a specification should export operations that collectively offer

enough functionality for a wide class of computations.

• Potential completeness - a specification should not export operations that can be

layered using the primitive operations.

• Low coupling - a specification should be explained completely locally, not

depending on the explanations of other components (unless it is an extension of

another component).

• High cohesion - a specification should specify a component that cannot be further

decomposed; e.g., a single data type.
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While properties such as the ones above are important design goals for specifiers, it is not

obvious how to formalize these properties so that they can provide a suitable basis for the

evaluation of specification designs.  In addition, since the specification design task needs

to be performed by humans, the large number of inter-related properties makes it hard to

apply them carefully and deliberately to specification designs.  What is needed are more

fundamental notions that will largely imply the above desirable properties, but that lend

themselves to more formal definition and application.  Essentially, such notions should be

inherently easy to understand and be attractive for use in a variety of situations.  In

principle, they would apply to any interface, not necessarily to software component

interfaces alone.  It turns out that the notions of observability, controllability, and the

pragmatic criterion can deliver on these points.

How do the three properties of observability, controllability, and the pragmatic criterion

encompass or subsume the more general software engineering properties such as clarity,

restrictiveness, and others mentioned above?  In other words, what are the relationships in

Figure 1.6?  In answering these and related questions, we formalize the basic principles

and validate their utility by applying them to a collection of specifications.

Clarity Restrictiveness Generality

PrimitivenessSufficiency

Potential Completeness

Low Coupling High Cohesion

Observability Controllability The Pragmatic Criterion

?

?

Figure 1.6 - What are the Relationships?

1.3 Exemplifying the Ideas in Software Component
Specification Design

The purpose of this section is to illustrate the influences of observability, controllability,

and the pragmatic criterion on formal specifications of object-based software

components.  Figure 1.7 below shows a common generic queue specification, or concept,
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in the RESOLVE notation [SIGSOFT 94] .  There are other formal specification notations

that would be equally appropriate for the purpose [Wing 90].

 concept  Bounded_Queue_Template ( type  Entry,
 constant  Max_Length: Integer)
 requires  Max_Length > 0
 uses  Standard_Integer_Facility
 
 type  family  Queue is  modeled  by  string  of  Entry
 exemplar  q
 initialization  ensures
 |q| = 0
 constraints
 |q| <= Max_Length
 
 operation  Enqueue ( alters  q: Queue, preserves  x: Entry)
 requires |q| < Max_Length
 ensures q = #q * <#x>
 
 operation  Dequeue ( alters  q: Queue, produces  x: Entry)
 requires |q| > 0
 ensures #q = <x> * q
 
 operation  Length_Of ( preserves  q: Queue): Integer
 ensures Length_Of = |q|
 
 operation  Allowed_Max_Length (): Integer
 ensures Allowed_Max_Length = Max_Length
 
 end  Bounded_Queue_Template

 Figure 1.7 - A Common Design of a Queue Specification

 

 The concept in Figure 1.7 is parameterized by Entry, which is the type of entries that a

Queue object contains, and Max_Length, which is the upper bound on the lengths of

Queue objects.  These parameters are supplied at instantiation time by a client.

 

 The exported type family of Queue objects are modeled by mathematical strings of

(mathematical models of) type Entry.  The initialization ensures clause states that

initially, every queue corresponds to an empty string.  The interface exports Enqueue,

Dequeue, Length_Of, and Allowed_Max_Length operations to manipulate queues.  The

mode of the parameter q in the Enqueue operation is alters, which indicates that q is

changed as specified in the ensures clause.  The requires clause for Enqueue states that

the length of the queue must be less than Max_Length.  The ensures clause for Enqueue

states that the resulting value for the queue object q will be the incoming value of the

queue (#q) concatenated with the incoming value of the entry (#x); i.e., x will be placed

on the right end of the string that models the incoming q.  The parameter ‘x’ is preserved;
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i.e., its outgoing value will be the same as its incoming value.  The requires clause for

Dequeue states that it must not be called on an empty queue.  The parameter mode for x is

produces, which indicates that the incoming value of x is not of interest (nor can it be

used) in the specification of Dequeue.  The ensures clause states that the resulting value

for the queue will be the incoming value (#q) less the leftmost element, which is returned

in x.  The Length_Of operation returns the number of elements in the queue.  The

Allowed_Max_Length operation returns the value of the generic Max_Length parameter

used in instantiation.

 

 In RESOLVE, every object-based concept is designed to include the operations Swap and

Clear.  The motivation for including the Swap operation is one of efficient data

movement, and it is discussed in detail elsewhere [Harms 91].  It allows a client to

exchange two (queue) values.  The Clear operation resets a (queue) value to its initial

value as specified in the initialization ensures clause.

 

 Observability and Controllability  Considerations
 

 The interface design and explanation used in the specification of bounded queues in

Figure 1.7 above are good in many respects1.  The specification is clear and

understandable (clarity), utilizing simple string theory to explain its actions.  It abstractly

states everything about a queue, and nothing more, that is expected for proper usage

(restrictiveness).  The exported operations are orthogonal and minimal (primitiveness).

The exported operations are sufficient to allow any interesting computations involving

queues (sufficiency).  The concept does not export operations that can be layered on the

others (potential completeness).  Nor does it depend on the explanation of any other data

structures (low coupling).

 

 The specification in Figure 1.7 is also observable and controllable.  It is observable since

it is possible to distinguish between different abstract (string) values using the provided

operations.  Specifically, the operations Length_Of and Dequeue can be used to detect a

difference between two values.  It is controllable since it is possible to generate any

abstract (string) value using the provided operations; i.e., through repeated calls to

Enqueue.

                                                
1 It does have problems with generality and high cohesion, which are addressed in the context of the
pragmatic criterion in the next subsection.
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 The fact that the specification in Figure 1.7 is observable and controllable, and

simultaneously fulfills many of the basic properties, is not coincidental.  For example, if

we removed the Dequeue operation, it would not be possible to distinguish between

dissimilar queues of the same length and hence, the specification would become non-

observable.  If we instead removed the Enqueue operation, it would not be possible to

generate every abstract value and hence, the specification would become non-

controllable.  In either case, the specification would also fail the property of sufficiency,

as it would no longer be capable of performing many computations on queue values.  In

other words, it is reasonable to make the following observation:

 

1. There is a strong connection between sufficiency, and observability and

controllability.

2. The set of operations provided by a specification at least in part determines

whether a specification is observable and controllable.

 

 More importantly, however, observability and controllability have more to do with the

development of good formal specifications than just the selection of a suitable set of

operations.  For example, consider the alternative queue specification in Figure 1.8

below.

 
 concept  Bounded_Queue_Template ( type  Entry,
 constant  Max_Length: Integer)
 requires  Max_Length > 0
 uses  Standard_Integer_Facility
 
 type  family  Queue is  modeled  by  (
 contents : function  from  integer  to  Entry,
 front : integer,
 length : integer
  )
 exemplar q
 constraints
 0 <= q.front < Max_Length and
 0 <= q.length <= Max_Length
 
 initialization  ensures
 q.front = 0 and  q.length = 0
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operation  Enqueue ( alters  q: Queue, preserves  x: Entry)
 requires q.length < Max_Length
 ensures q.contents(#q.front) = #x and
 q.front = (#q.front + 1) mod Max_Length and
 q.length = #q.length + 1 and
 
 for  all  i: integer ,
 (i >= 0 and  i <= #q.length-1) implies
 
 q.contents( (i + #q.front - #q.length + Max_Length)
 mod Max_Length
 ) =
 #q.contents((i + #q.front - #q.length + Max_Length)
 mod Max_Length
 )
 
 operation  Dequeue ( alters  q: Queue, produces  x: Entry)
 requires q.length > 0
 ensures
 x = #q.contents(
 (#q.front-#q.length+Max_Length) mod Max_Length
 ) and
 q.front = #q.front and  q.length = #q.length-1 and
 
 for  all  i: integer ,
 (i >= 1 and  i <= #q.length-1) implies
 
 q.contents( (i + #q.front - #q.length + Max_Length)
 mod Max_Length
 ) =
 #q.contents((i + #q.front - #q.length + Max_Length)
 mod Max_Length
 )
 
 operation  Length_Of ( preserves  q: Queue) : Integer
 ensures Length_Of = q.length
 
 operation  Allowed_Max_Length (): Integer
 ensures Allowed_Max_Length = Max_Length
 
 end   Bounded_Queue_Template

 Figure 1.8 - An Insufficiently  Abstract Queue Specification

 

 The specification in Figure 1.8 above has precisely the same operation set as that in

Figure 1.7, and every valid implementation of the design in Figure 1.7 is also a valid

implementation of the one in Figure 1.8 and vice versa.  However, it is neither observable

nor controllable.  The generic queue specification in Figure 1.8 attempts to explain the

behavior of a queue as it would be seen when viewed as a circular array implementation.

Unfortunately, this is the common informal view of queues that freshmen students grasp

from typical data structures texts.  Stated more formally here, a queue is viewed as a

mathematical tuple:  a function mapping an integer (index) to an entry (it models an

“array” of the contents), an integer representing the front of the queue (in the “array”),
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and an integer representing the length of the queue.  The descriptions of the operations

essentially mirror the workings of a circular array implementation for queues.

 

 This specification is not observable since it is possible to have different abstract values

that are not distinguishable through the provided interface.  In particular, two abstract

queue values with the same “contents” but different front indices are indistinguishable.

In this case, for both queues calls to Length_Of or Dequeue would return indifferent

results.  The specification is not controllable since it is impossible to generate a subset of

the abstract values.  For example, while the ensures clause for Dequeue states that all the

entries except the one being dequeued remain unchanged, it does not specify what

happens to the “slot” of the entry being dequeued.  Therefore, it can conceptually take on

any legal abstract entry value, and this gives rise to an exponential set of values that

cannot be deterministically generated through the interface.

 

 Clearly, this specification presents problems in reasoning intuitively about the abstract

behavior of a queue.  Therefore, it fails the property of clarity.  It also fails the property of

restrictiveness, since the designer failed to meet the “…and nothing more” part of the

property by allowing redundant and unreachable abstract values to enter into the

specification.  Based on this example, we make two more observations:

 

3. There is a strong connection between each of clarity and restrictiveness and

each of observability and controllability.

4. A proper set of operations and a proper choice of mathematical modeling are

both essential for designing observable and controllable specifications.

 

 We return our attention to the generic queue specification in Figure 1.7, since it is the

more suitable candidate for further consideration.  It is observable and controllable, thus

satisfying many basic properties as discussed.  However, it does have problems with

generality and high cohesion, as we reveal through the application of the pragmatic

criterion in the next subsection.
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 Pragmatic Considerations
 

 The pragmatic criterion, in the context of software components, is concerned with

functional and performance flexibility; i.e., more general applicability.  This section

focuses on the question of generality in the specification of queues.

 

 The specification in Figure 1.7 first suffers from over-specification, because it demands

that the inserted entry in the Enqueue operation be preserved.  The “preserves” parameter

mode for x, which is simply shorthand for having “x = #x” in the ensures clause, forces

all implementations of Enqueue to enqueue a copy of the entry.  Since

Bounded_Queue_Template is generic, the particular type of entry that is used in

instantiation may be expensive, if not impossible, to replicate.  Forcing the copy results in

an execution time for Enqueue that depends on the size of the entry.  More to the point,

the specification in Figure 1.7 fails to satisfy the property of generality, since it precludes

efficient implementations that do not need to make a copy of the entry during Enqueue.

The solution to this problem is to change the parameter mode for Enqueue’s entry

parameter to consumes [Harms 91], which leaves the outgoing value unspecified so that

an implementation is not required to copy the entry.

 

 Alternatively, the specification in Figure 1.7 can be viewed as failing to satisfy the

property of high cohesion.  This is because, based on the above discussion, it can further

be broken down into a pair of more primitive concepts.  Specifically, the first concept

would be similar to that in Figure 1.7, except that it consumes Enqueue’s entry parameter

(as shown in Figure 1.9), and the second concept would be an enhancement to the first

that provides the operation “Enqueue_a_Copy (q,x)”.  An implementation of

Enqueue_a_Copy could be layered using the Enqueue operation that consumes its entry x,

by first making a copy of x and then calling the Enqueue operation using the copy of x.

This is an important and general realization, since it says that the notion of copying has

nothing to do with the abstract behavior of a queue, or any other object for that matter

[Harms 91].  Since copying has nothing to do with the abstract behaviors of most objects,

it should not be an inherent part of abstract descriptions.  Also, since in general it cannot

be assumed that every type of Entry is copyable, the specification in Figure 1.7 is not

truly generic.

 

 A specification such as the one in Figure 1.7 that fails either generality or high cohesion

also fails the pragmatic criterion, which is essentially concerned with the minimality and
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practicality of a concept.  In this case it fails the pragmatic criterion since it forces the

unnecessary and expensive copy behavior in the Enqueue operation for every client.

 

 There is arguably at least one other problem with the specification in Figure 1.7.  It is not

efficient for applications that need to inspect the next value in a queue before dequeueing

it (e.g., to “look-ahead” in parsing a queue of tokens).  This functionality can be added

through an operation termed Swap_Front.  The Swap_Front operation exchanges a given

entry with the first one in the queue.  For inspecting the first entry of a queue before

dequeueing it, a client can call Swap_Front to get the entry, inspect it, and then call

Swap_Front to put it back.  Swap_Front can be implemented in constant time as an

intrinsic operation of the interface, but not so in a layered fashion.  As a layered

operation, Swap_Front would have to dequeue once to get the desired entry, enqueue its

“exchange” entry, then rotate it to the front of the queue; the execution time is dependent

on the size of the queue.  Since obtaining this functional behavior from the concept in

Figure 1.7 unnecessarily constrains the performance that is otherwise available through

Swap_Front, the concept does not adequately satisfy the pragmatic criterion.

 
 concept  Bounded_Queue_Template ( type  Entry,
 constant  Max_Length: Integer)
 requires  Max_Length > 0
 uses  Standard_Integer_Facility
 
 type  family  Queue is  modeled  by  string  of  Entry
 exemplar  q
 initialization  ensures
 |q| = 0
 constraints
 |q| <= Max_Length
 
 operation  Enqueue ( alters  q: Queue, consumes  x: Entry)
 requires |q| < Max_Length
 ensures q = #q * <#x>
 
 operation  Dequeue ( alters  q: Queue, produces  x: Entry)
 requires |q| > 0
 ensures #q = <x> * q
 
 operation  Swap_Front ( alters  q: Queue, alters  x: Entry)
 requires |q| > 0
 ensures there  exists  alpha:  string  of  Entry
 such  that  #q = <x> * alpha and
  q = <#x> * alpha
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operation  Length_Of ( preserves  q: Queue): Integer
 ensures Length_Of = |q|
 
 operation  Allowed_Max_Length (): Integer
 ensures Allowed_Max_Length = Max_Length
 
 end  Bounded_Queue_Template

 Figure 1.9 - A Properly Designed Queue Specification

 

 Figure 1.9 above shows the final generic queue specification design to be discussed.  It is

observable, controllable, and satisfies the pragmatic criterion.  By considering the

pragmatic criterion with this example, we can make at least two more observations:

 

5. There is a strong connection between the pragmatic criterion and each of

generality and high cohesion.

6. There is a strong connection between the pragmatic criterion and each of

primitiveness and potential completeness.

 

 The identification of relationships among the properties greatly motivates the need for

observable and controllable specifications that fulfill the pragmatic criterion as well as the

mechanisms that can be used to develop them.  Essentially, this example illustrates that

 

• it is probable that an observable and controllable specification that meets the

pragmatic criterion will fulfill basic properties such as clarity, restrictiveness,

generality, high cohesion, etc., and

• it is implied that a specification which is not observable or controllable or fails

the pragmatic criterion will fail to fulfill some of the software engineering

properties such as clarity, restrictiveness, generality, high cohesion, etc.

 

 It is worth noting that, although we began this section by first considering observability

and controllability followed by the pragmatic criterion, in general there is no such

ordering.  Different problems need repeated consideration of these issues in different

orders.  The design of a suitable specification demands an iterative process, and usually

involves several attempts in order to develop a final specification that is observable,

controllable, and satisfies the pragmatic criterion.  Figure 1.10 below concludes the

discussion of this example by summarizing each specification design and its (lack of)

attributes.
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Queue Attributes

Figure 1.7

Observable and controllable.  Fails generality and 

high cohesion, thus failing the pragmatic 

criterion.

Figure 1.8

Is not observable or controllable, thus failing clarity

and restrictiveness.  Fails the pragmatic criterion 

by failing generality and high cohesion.

Figure 1.9 Observable, controllable, and satisfies the 

pragmatic criterion.

Specification

 Figure 1.10 - Queue Specification

 Designs and Their  Attributes

1.4 Contributions

The primary contribution of this thesis to the field of computer science is the

development of practical and formal tests for good formal specification design.  We

accomplish the goals set forth in that:

1. We motivate and define observability, controllability, and the pragmatic

criterion as three fundamental properties of well-designed and well-explained

formal specifications of software components.

2. We define the pragmatic criterion to include both functional and performance

considerations.  The definition leads to good designs of both single concept

interfaces as well as suitable concept libraries for a problem domain.

3. We formalize observability and controllability in a more general manner than

has been done before.  The properties are defined in a manner independent of

the system attributes being inspected.  The central difficulty in this

formalization stems from the fact that non-trivial software specifications are

relational, unlike descriptions of physical devices which are almost always

functional.
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4. We make explicit a large part of the RESOLVE discipline in defining the

above properties.  That is, we explicitly state, for a particular specification

design methodology, the guidelines, techniques, and principles that lead to

good specification designs.

5. We exemplify the results on non-trivial formal specifications, and in doing so

validate a subset of the RESOLVE concept library.

These contributions allow the design of objects with which software engineers can easily

reason about and use in complex software systems.  This results in software systems that

cost less to develop and maintain, and are of higher quality than systems developed in an

ad-hoc manner.

1.5 Organization

Chapter II, titled A Pragmatic Criterion for Component Interface Design, discusses the

pragmatic criterion property of good specification design in detail.  In this chapter, we

establish a desirable interface for an ordering concept called Prioritizer_Template.  We

discuss how this interface fulfills the pragmatic criterion, and how the pragmatic criterion

prevents the formation of a concept library that unnecessarily contains similar and

redundant ordering concepts.  This interface serves as the working example for the next

chapter, in which we seek to formally define the behavior of the interface.

Chapter III, titled Observable and Controllable Software Specifications, focuses on the

proper explanation for a given interface.  In the discussion, we illustrate the roles of

observability and controllability in alternative descriptions of the relational behavior of

Prioritizer_Template.

Chapter IV, titled Formalizations of Observability and Controllability, seeks to formally

characterize the properties of observability and controllability for relational

specifications.  Among others are definitions based on scenarios that are exemplified on

the Prioritizer_Template specification of Chapter III.  Previous work on the subject is

discussed, and distinctions between this work and the previous work are made.

Chapter V, titled Validating the RESOLVE Concept Library, gives examples of several

formal specification designs from the RESOLVE library, and demonstrates the utility of
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the formal and practical tests developed in the previous chapters in evaluating the

individual specifications, as well as the library of specifications as a whole.

Chapter VI, titled Conclusions, presents a summary of the research, results, and possible

future research directions.
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A Pragmatic Criterion
for  Component
Interface Design II
A common design objective in developing an object-based interface for a widely

applicable software component is functional flexibility that allows the component to be

used in a variety of applications.  However, concepts providing functional variations that

are unaccompanied by implementations providing desirable performance behaviors will

remain mostly unused.  In the previous chapter, we briefly introduced the pragmatic

criterion for designing widely applicable and efficient software components.  This

chapter defines and exemplifies the significance of this criterion through the design of a

single interface that is suitable for different classes of applications that require the

ordering of a collection of entries.

While good interface designs of a reusable concept make it suitable for use in a wide-

range of applications, the concept will actually be used only in situations where its usage

does not compromise performance.  If components developed “from scratch” provide

better performance for a class of applications, these components are likely to be used

instead of “reusable” concepts and their implementations.  In general, there is usually no

one implementation for a concept that provides desirable performance for all intended

functional variations and applications.  The solution to this dilemma described herein is

based on the consideration of alternative implementations of reusable concepts.  Reusable

concepts must be designed so that they allow multiple implementations, where there is at

least one implementation that provides suitable performance behavior for each intended

application of the reusable concept.

Different approaches for meeting this objective have been discussed in the literature to

varying degrees.  One of them attempts to provide suitable performance for all intended

uses by designing a concept that contains every conceivably desirable operation (see

[Meyer 94], for example).  Apparently, the assumption here is that there will be a most

suitable implementation for this concept.  Figure 2.1 below illustrates this idea.
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Figure 2.1 - One “Catch  All”  Concept

However, this approach is unacceptable.  First, there is no way to envision every desirable

operation for such a concept a priori.  Second, this approach leads to unruly designs that

require a typical client to understand a lot more than is essential in order to fully utilize

the concept.  Third, it is more expensive to implement such concepts.  This is because

choosing an overall strategy for efficiently coding the large operation set can become

extremely difficult.  It is even possible that the implementation strategies which would be

efficient for an otherwise smaller (more appropriate) operation set will be precluded by a

concept with a large operation set.

Another approach for providing suitable performance for all intended uses of a concept is

to design not just one concept, but several “not-so-large” variants of some basic concept,

so that together they provide suitable performance for a wide range of applications.

Figure 2.2 below illustrates this idea.

Smaller Concepts

C1

C2

C3

C4

Imp 1
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Imp 3

Imp 4

Imp 5

Application 1

Application 2

Application 3

Application 4

Figure 2.2 - Many Similar  Concepts

However, this approach is also unacceptable.  To fully understand and use the library, a

client must differentiate among the many similar concepts in order to determine the

one(s) that is of actual interest.  Additionally, this approach leads to unnecessarily large
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libraries.  Furthermore, the implementations for these related concepts would be largely

redundant, reflecting the unnecessarily repeated effort of the implementer.

The approach we advocate concerns the design of each single concept as well as the

design of a concept library for a problem domain.  Essentially, when designing a single

concept, the goal is that it be widely applicable, yet is no larger than it needs to be.  For a

collection of concepts in a particular problem domain, the goal is to design a library of

core concepts that is widely applicable to the domain, yet contains no more concepts than

are actually needed.  In other words, the design of both a single concept as well as a

concept library should be orthogonal:

An object-based concept is orthogonal (i.e., has an orthogonal operation set) if it

contains no operation such that both:

• the operation’s functionality can be subsumed by some combination of the

others, and

• the operation’s performance (for all implementations) can always be

subsumed by some combination of (implementations for) the other operations

of the concept.

A library of core concepts for a problem domain is orthogonal (i.e., has an

orthogonal set of concepts) if it contains no concept such that both:

• the concept’s functionality can be subsumed by some combination of the other

concepts, and

• the concept’s performance (for all implementations) can always be subsumed

by some combination of (implementations for) the other concepts in the

library.

This definition for orthogonality implies the design intent that a concept and a library

should be, in some sense, minimal.  A “non-minimal” concept or library would fail to be

orthogonal as defined above.  This definition is quite different from more traditional ones,

where the focus is only on functionality.  For example, based on functional consideration

alone, the Bounded_Queue_Template introduced in the previous chapter is not

“minimal”, since the Swap_Front operation can be (functionally) layered using the other

queue operations.  However, based on the above definition, the concept is minimal since

Swap_Front offers better performance as a built-in operation than if it were layered.
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Even though an orthogonal concept is a minimal concept, this does not imply that it is a

pragmatic concept.  For example, the Bounded_Queue_Template without Swap_Front

remains orthogonal, but from a pragmatic point of view the Swap_Front operation is

needed for efficient usage in some applications.  That is, this concept without

Swap_Front introduces a performance bottleneck:

A concept exhibits a performance bottleneck if it fails to permit at least

one suitable implementation strategy for each intended functional usage

of the concept [Fleming 97].

The goal is to design a concept that is orthogonal yet does not unnecessarily constrain its

performance for some functional variations of the concept.  Figure 2.3 below illustrates

this idea.

Not

Minimal

Just

Right

Bottleneck

Imp 1

Imp 2

Imp 3

Imp 4

Imp 5

Application 1

Application 2

Application 3

Application 4

Figure 2.3 - A Minimal  and Widely Applicable Concept

without  a Performance Bottleneck

The definition of orthogonality, coupled with the notion of preventing a performance

bottleneck, succinctly states the expectations of both a single concept and a concept

library for a given problem domain.  Figure 2.4 below explicitly defines this statement as

the pragmatic criterion for concept design:
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• A concept should contain an orthogonal set of operations, yet should

not introduce a performance bottleneck between the implementations

for the concept and the applications that use the concept.

• A library of core concepts for a problem domain should contain an

orthogonal set of concepts, yet should not introduce a performance

bottleneck between the implementations for the concepts and the

applications from the problem domain.  The concepts in a library

should not compromise the level of abstraction for the problem

domain.

 Figure 2.4 - The Pragmatic Criterion

A concept, such as the one shown in Figure 2.1, that attempts to include every desirable

operation in order to make it widely applicable tends to fail the pragmatic criterion; even

though it may avoid a performance bottleneck, its large operation set is rarely orthogonal.

Similarly, a concept library, such as the one shown in Figure 2.2, that contains several

variants of a more fundamental concept also fails the pragmatic criterion; even though the

library may offer suitable performance for all applications, the large number of concepts

is rarely orthogonal2.

To illustrate the ideas, the rest of this chapter considers the interface design of a concept

for ordering a collection of entries.  This concept must provide (through alternative

implementations) suitable performance for all the following classes of client applications:

Class I) all entries to be ordered are known a priori and all of them need to be
ordered;

Class II) all entries to be ordered are known a priori, but only an arbitrary subset of
the entries needs to be ordered:
a)  some best k of n entries are needed;
b)  some best k1 and worst k2 entries are needed;

Class III) entries to be ordered are not all known in advance; after some ordered
entries have been obtained from a collection, additional entries may be
added to the collection for subsequent ordering.

                                                
 2 Even though a library of concepts should be minimal, this minimality should not compromise the level of
abstraction required for solving problems in a given domain.
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The rest of this chapter is organized as follows:  Section 2.1 illustrates the usefulness of

the pragmatic criterion in developing a single and widely applicable concept for ordering

a collection of entries.  This section simultaneously illustrates how the pragmatic criterion

prevents the construction of unnecessarily large concept libraries.  Section 2.2

summarizes the results and ideas.  Section 2.3 provides graphs confirming the expected

performance benefits of the interface design through actual implementation using C++

templates.

2.1 Designing a Suitable Interface for  Ordering  a Collection
of Entries

In this section, we consider alternative interface designs for ordering, and evaluate each

design using the pragmatic criterion.  In the process, we also show that some of the

interface designs are subsumed by others, eventually leading to a single suitable concept

for the problem.

A Procedural Interface Design

For solving “batch sorting” problems, captured in application class I, all that is needed is

a generic sorting procedure that takes as its parameters a container of entries (in a specific

representation) that needs to be sorted, and a comparison function for stating when two

entries are ordered.  There are at least two problems with a single procedural interface

design.  This interface fails to decouple the representation of the container from the

ordering problem, thus forcing separate sorting procedures to be implemented and used

for each representation for every container.  The second problem is that the interface is

unsuitable for applications of ordering that do not require batch sorting, such as in classes

II and III.  If used in those applications, the procedural interface will needlessly order all

entries.

The pragmatic criterion demands that alternative, more widely applicable concepts be

considered for ordering a collection of entries.  In addressing this issue, the remainder of

this section illustrates that object-based concept designs are fundamentally necessary for

satisfying the pragmatic criterion.  Moreover, the criterion sets some object-based designs

for a given problem apart from others, resulting in highly reusable concepts that permit

both functional and performance variability.
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Object-Based Designs for  Ordering  a Collection of Entries

Performance flexibility is the motivation for the “recasting” technique presented in

[Weide 94], whereby classical algorithms are encapsulated as objects using data

abstraction principles.  Recasting is a general technique in which a problem that is

typically solved by a single large-effect operation (e.g., sorting) is solved using a concept

that encapsulates the problem as an object-based machine.  A single “recast” interface, in

general, can be used in a wide range of functionally diverse applications.  With a properly

designed interface, the applications can get good performance through different plug-

compatible implementations of the interface.

To illustrate the flexibility offered by recasting, Weide, et al., discuss an object-based

interface design for sorting.  An object-based interface for sorting is fundamentally

superior to a procedural interface design in that it can provide information hiding and

data abstraction [Weide 94].  Unlike a procedural interface, the object-based interface

hides the internal structure in which the entries to be ordered are stored.  The object-based

interface also permits an abstract (and formal) explanation of behavior that is devoid of

representation details [Weide 94].  Such an abstract explanation is not possible for a

procedural interface.

An Object-Based Concept for  Ordering

Figure 2.5 below shows a skeleton of an object-based interface for sorting in the

RESOLVE notation.  This interface is directly based on the formal specification given in

[Weide 94].  Details concerning the mathematical model used as well as individual

operation specifications have been deferred to Chapter III, in order to keep the current

focus on the set of operations.
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 concept  Sorting_Machine_Template (
 type  Entry,
 definition  ARE_ORDERED (x: Entry, y: Entry): boolean ,
 constant  Max_Size: Integer
 )
 
 requires  Max_Size > 0 and
 (* ARE_ORDERED is a total pre-ordering *)
 

uses Standard_Integer_Facility,
Standard_Boolean_Facility

type  family  Sorting_Machine is  modeled  by  …
(details  omitted  to  keep  focus  on  operation  set)

exemplar  m

operation  Insert (
alters  m: Sorting_Machine,
consumes  x: Entry

)

operation  Change_To_Extraction_Phase (
alters  m: Sorting_Machine

)

operation  Extract (
alters  m: Sorting_Machine,
produces  x: Entry

)

operation  Is_In_Insertion_Phase (
preserves  m: Sorting_Machine

): Boolean

operation  Size_Of (
preserves  m: Sorting_Machine

): Integer

operation  Allowed_Max_Size (): Integer

end  Sorting_Machine_Template

Figure 2.5 - A Suitable Object-Based Interface

for  Application  Classes I, II(a)

The concept Sorting_Machine_Template in Figure 2.5 is generic.  To create an instance, a

client must pass the type of Entry to be ordered, a comparison operation for computing

the order of two entries, and a Max_Size value that specifies the maximum number of

entries a Sorting_Machine may contain3.  It is interesting to contrast the object-based

                                                
3 In [Weide 94], the interface also contains a Change_To_Insertion_Phase operation.  It has the effect of
“clearing” the object.  Since every object is assumed to have a Clear operation in the current RESOLVE
discipline, Change_To_Insertion_Phase is no longer needed.
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ordering machine design given here with the parameterized sorting procedure design

given by Stepanov and Lee [Stepanov 94].

The concept in Figure 2.5 has been designed to operate in two phases:  an insertion

phase, in which entries are inserted into a machine one at a time, and an extraction phase,

in which entries are extracted from the machine one at a time; the entries come out in an

ordered fashion.  An informal explanation of the operations is given below:

• Insert (m, x):  Insert Entry x into Sorting_Machine m.  This operation

requires that m be in the insertion phase at the time of the call.

• Change_To_Extraction_Phase (m):  Prepare Sorting_Machine m for calls

to the Extract operation.  This operation requires that m be in the insertion

phase at the time of the call.

• Extract (m, x):  Extract the next ordered Entry from Sorting_Machine m,

based on the client-supplied definition ARE_ORDERED, and return it in

x.  This operation requires that m be in the extraction phase at the time of

the call.

• Is_In_Insertion_Phase (m):  Determine if Sorting_Machine m is in the

insertion phase.

• Size_Of (m):  Return the number of entries currently contained in

Sorting_Machine m.

• Allowed_Max_Size (m):  Return the maximum number of entries

Sorting_Machine m is allowed to contain.  This operation returns the

Max_Size value supplied by the client at instantiation time.

A normal usage of this component involves adding entries to be ordered through calls to

Insert.  The final insertion is followed by a call to Change_To_Extraction_Phase.  Then,

through calls to Extract, the entries can be obtained in a sorted order one at a time.

The performance advantages of object-based ordering result from the fact that the

interface not only hides how the ordering is accomplished, but also when it is done

[Weide 94].  Unlike a typical sorting procedure, which permits only batch sorting, this

interface allows an implementation to distribute the computational expense of ordering

over the code for the operations in any desirable fashion using any known sorting

algorithm [Cormen 90, Horowitz 76].  Figure 2.6 highlights implementation strategies

that provide good performance when either some or all entries need to be ordered.
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Some Implementations
for  the Concept

in Figure 2.5

Batch
Sorting

Sorting
during
Extract

Heap
Based
Sorting

Suitable for Application Class: I II(a) I and II(a)

Each Insertion O(1) O(1) O(1)
n Insertions O(n) O(n) O(n)

Change_To_Extraction_Phase O(n log n) O(1) O(n)

Each Extraction O(1) O(n) O(log n)
n Extractions O(n) O(n2) O(n log n)
k Extractions O(k) O(kn) O(k log n)

Figure 2.6 - Some Implementations Suitable

for  Applications in Classes I  and II(a)

Figure 2.6 outlines the performance obtainable from implementations based on batch

sorting, sorting-during-extraction, and heap-based sorting.  Batch sorting schemes, such

as quick-sort and merge-sort, sort all the entries at once as a “batch”.  Sorting during

extractions, or “selection” sorting, computes the next ordered entry (in linear time) on a

“per-request” basis.  Heap-based sorting schemes involve dividing the computational

expense of sorting into multiple steps.  As illustrated in Figure 2.6, a heap can be

constructed in linear time just before ordered entries are to start being obtained, and from

there each next ordered entry can be obtained in log-n time on a per-request basis.  As

indicated in Figure 2.6, for problems where k << n, both sorting-during-extraction and

heap-based sorting are suitable choices.  In the more general case where k ≤ n, then a

heap based strategy is most suitable.

It is easy to see that the concept in Figure 2.5 is also suitable for sorting an entire

collection of entries, such as needed for applications in class I, since it subsumes the

procedural interface for sorting both in terms of functionality and performance.  In terms

of functionality, any client using a sorting procedure can instead use the concept in Figure

2.5.  The client simply inserts all the entries into a Sorting_Machine object, changes to

the extraction phase, and then extracts all the entries from the Sorting_Machine.  While

any implementation for Sorting_Machine_Template will work, to get the best

performance a client can choose to implement the concept in Figure 2.5 with any batch

sorting strategy, or even a heap-based strategy as shown in Figure 2.6 above.
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Application  of the Pragmatic Criterion  to the Design

We are now ready to evaluate this design using the pragmatic criterion first by examining

whether the concept in Figure 2.5 is orthogonal and then by determining if it introduces a

performance bottleneck.

A concept should contain an orthogonal set of operations, …

For the concept in Figure 2.5, it is easy to see that no one operation can be

implemented using any combination of the others, either functionally or otherwise.

Therefore, the concept in Figure 2.5 is orthogonal.

… yet (the concept) should not introduce a performance bottleneck between the

implementations for the concept and the applications that use the concept.

The concept in Figure 2.5 exhibits a performance bottleneck.  For example, with

respect to application class II(b), this concept provides no suitable means for obtaining

the worst k2 entries from a Sorting_Machine; a client would not be able to extract all the

preceding entries efficiently.  More importantly, it is unsuitable for applications is class

III.

Since this is the only object-based concept in the “current library”, the orthogonality

question of the library does not yet arise.

An Alternative  Object-Based Concept for  Ordering

Figure 2.7 below shows an object-based sorting concept that is suitable for solving

problems in application class II(b) (in addition to problems in classes I and II(a)).
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 concept  Sorting_Machine_Template (
 type  Entry,
 definition  ARE_ORDERED (x: Entry, y: Entry): boolean ,
 constant  Max_Size: Integer
 )
 

(same  as  in  Figure  2.5  with  the  following  operation)

operation  Extract_Any (
alters  m: Sorting_Machine,
produces  x: Entry

)

end  Sorting_Machine_Template

Figure 2.7 - A Suitable Object-Based Interface for  Application  Classes I, II

The above concept is the same as the previous design in Figure 2.5 with the addition of a

new operation, termed Extract_Any, which is specified to return an arbitrary entry from a

Sorting_Machine.  This concept can be used to obtain the best k1 and worst k2 entries

from a collection efficiently.  The steps below illustrate a particular usage pattern for

accomplishing this task, assuming a heap-based implementation is chosen for

Sorting_Machine_Template.  The complexity for each step is shown in parentheses.

1. Create an instance of Sorting_Machine_Template, say sm_a (O(1)).

2. Insert the entries to be sorted into sm_a (O(n)).

3. Change sm_a to the extraction phase (O(n)).

4. Extract and retain the best k1 entries from sm_a (O(k1 log n)).

5. Now create another instance of Sorting_Machine_Template, say sm_b,

based on the reverse ordering of sm_a for its entries (O(1)).

6. Extract the remaining entries from sm_a in an arbitrary order using the

Extract_Any operation, inserting them into sm_b along the way (O(n)).

7. Change sm_b to the extraction phase (O(n)).

8. Extract and retain the best k2 entries from sm_b (these are the worst k2

entries with respect to the ordering of sm_a) (O(k2 log n)).

This usage pattern has time complexity bounded by O(n + (k1+k2) log n) if a heap-based

implementation is chosen.  With the previous concept in Figure 2.5, in step 6 above the

Extract operation would have to be called instead of Extract_Any.  If this were the case,

the time complexity of step 6, and therefore the entire algorithm, would be O(n log n).

Figure 2.8 below shows some suitable implementation strategies for the concept to solve

problems from application classes I, II(a), and II(b) efficiently.
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Some Implementations
for  the Concept

in Figure 2.7

Batch
Sorting

Sorting
during
Extract

Heap
Based
Sorting

Suitable for Application Class: I II(a) and II(b) I, II(a), and II(b)

Each Insertion O(1) O(1) O(1)
n Insertions O(n) O(n) O(n)

Change_To_Extraction_Phase O(n log n) O(1) O(n)

Extract_Any O(1) O(1) O(1)

Each Extraction O(1) O(n) O(log n)
n Extractions O(n) O(n2) O(n log n)
k Extractions O(k) O(kn) O(k log n)

Figure 2.8 - Some Implementations Suitable for  Classes I, II(a),  and II(b)

Application  of the Pragmatic Criterion  to the Design

To evaluate the interface design in Figure 2.7, we first consider its orthogonality and then

consider the orthogonality of the library containing this concept and the previous concept

in Figure 2.5.  Next, we discuss whether there is a performance bottleneck associated with

either the concept in Figure 2.7 or the library.

A concept should contain an orthogonal set of operations, …

For the concept in Figure 2.7, there is the question of whether the Extract_Any

operation violates the orthogonality of the interface.  From a functional point of view, it

may at first seem that there is no way to implement Extract_Any using the other

operations, since there is no other way to obtain a “random” entry.  However, note that

the specification of Extract_Any would say that it simply returns “some” entry.  Clearly,

the Extract operation returns “some” entry, and thus the functionality of Extract_Any can

be attained with a single call to Extract.  The question now is whether the performance of

Extract_Any is always subsumed by Extract.  For applications in class II(b) that need to

use both Extract and Extract_Any, the most suitable implementation strategies are “heap-

based” and “ordered-extraction”.  In such implementations, Extract_Any is a constant

time operation whereas Extract is not.  This performance argument provides the rationale

for why the concept in Figure 2.7 is orthogonal.



31

A library of core concepts for a problem domain should contain an orthogonal set of

concepts,…

The concept library should not contain the concept in Figure 2.5, but only the one in

Figure 2.7 because the former is subsumed by the latter, both in terms of functionality and

performance.  This is easily seen, since the concept in Figure 2.7 is the same as that in

Figure 2.5 with one additional operation, and therefore permits any implementation

strategy that is appropriate for the interface design in Figure 2.5.

Finally, we note that the concept in Figure 2.7 constrains performance for applications in

class III:

… (the concept) should not introduce a performance bottleneck between the

implementations for the concept and the applications that use the concept.

The concept in Figure 2.7 is unsuitable for applications in class III, because it

provides no effective means for inserting new entries after some ordered entries have

already been obtained.  The pragmatic criterion therefore suggests that we look further for

a concept that is suitable for all intended application classes.

A More Generally-Applicable Concept for  Ordering

Conceptually, the modification to the interface for interleaving insertions and extractions

during ordering turns out to be straightforward:  Instead of having

Change_To_Extraction_Phase, we include a different operation that toggles the machine

from one phase to the other, but without modifying the abstract contents of the machine.

The concept in Figure 2.9 below shows this modified interface, with a new operation

termed Change_Phase4.

                                                
4 Functionally, Change_Phase is not needed; i.e., the notion of a phase could be removed from the interface
altogether, by doing (for example) the “phase change” in the first call to Extract following a call to Insert.
However, this introduces a complexity in expressing the performance for Extract, since the performance for
the first call to Extract following a call to Insert will be much different than for each subsequent consecutive
call to Extract.  The Change_Phase operation permits simpler explanations of performance.
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 concept  Prioritizer_Template (
 type  Entry,
 definition  ARE_ORDERED (x: Entry, y: Entry): boolean ,
 constant  Max_Size: Integer
 )
 
 requires  Max_Size > 0 and
 (* ARE_ORDERED is a total pre-ordering *)
 
 uses  Standard_Integer_Facility, Standard_Boolean_Facility

type  family  Prioritizer is  modeled  by  …
(details  omitted  to  keep  focus  on  operation  set)

exemplar  p

operation  Insert (
alters  p: Prioritizer,
consumes  x: Entry

)

operation  Change_Phase (
alters  p: Prioritizer

)

operation  Extract (
alters  p: Prioritizer,
produces  x: Entry

)

operation  Extract_Any (
alters  p: Prioritizer,
produces  x: Entry

)

operation  Is_In_Insertion_Phase (
preserves  p: Prioritizer

): Boolean

operation  Size_Of (
preserves  p: Prioritizer

): Integer

operation  Allowed_Max_Size (): Integer

end  Prioritizer_Template

Figure 2.9 - A Generally Applicable Object-Based Interface for  Ordering

that is Suitable for  Application  Classes I, II,  and III.

Notice that the interface in Figure 2.9 permits easy and efficient management of “priority

queues”, among other problems from application class III.  In light of this added

flexibility to prioritize, the concept in Figure 2.9 has been named Prioritizer_Template.  It

is interesting to note that in the literature, priority queues are normally considered in the

formal and less formal discussions of queues [Booch 86, Jones 90]; the idea of combining
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priority queues with sorting into a single data abstraction never appears to have been

considered.  This observation underscores the important role of the pragmatic criterion in

concept design.

The difference between the interfaces in Figures 2.7 and 2.9 is subtle, but significant.  By

designing the interface so that it can insert additional entries after some have already been

extracted, it admits implementations that can efficiently interleave insertion and

extraction of entries.  Figure 2.10 below shows some suitable strategies for implementing

the concept in Figure 2.7 to solve problems in all three application classes.

Some Implementations
for  the Concept

in Figure 2.7

Batch
Sorting

Heap
Based

Sorting #1

Heap
Based

Sorting #2
Suitable for Application Class: I I, II, and III I, II, and III

Each Insertion O(1) O(1) O(log n)
n Insertions O(n) O(n) O(n log n)

Change_Phase O(n log n) O(n) O(1)

Extract_Any O(1) O(1) O(1)

Each Extraction O(1) O(log n) O(log n)
n Extractions O(n) O(n log n) O(n log n)
k Extractions O(k) O(k log n) O(k log n)

Figure 2.10 - Some Suitable Strategies for  Solving

Problems in All  Three Application  Classes

For clients solving problems where the number of insertions and extractions is

considerably more than the number of phase changes performed, the first heap based

strategy is the most suitable.  For the case where the number of phase changes is

considerably large, the second heap-based strategy, which always maintains a heap, may

be more suitable.  Even better performance is possible if Fibonacci heaps are used for

efficiently merging an “old” heap of entries from the first change (to extraction) phase

with the “new” heap of recently inserted entries on each change (to extraction) phase

thereafter.
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Application  of the Pragmatic Criterion  to the Design

We apply the pragmatic criterion to this new design by first considering its orthogonality,

and then by considering the orthogonality of the library containing this concept and the

previous concept in Figure 2.7.  Next, we discuss whether there is a performance

bottleneck associated with either the new concept or the library.

A concept should contain an orthogonal set of operations, …

The modification of the phase-changing operation does not alter the orthogonality of

the concept from the previous design, since we already explained that it is not possible to

layer Change_To_Extraction_Phase using the other operations in the previous designs,

and since it is not possible to layer Change_Phase using the other operations of this

design.  Therefore, the concept in Figure 2.9 is orthogonal.

A library of core concepts for a problem domain should contain an orthogonal set of

concepts,…

A library containing a concept with Change_To_Extraction_Phase as in Figure 2.7

and a concept with the Change_Phase operation as in Figure 2.9 is not orthogonal.

Obviously, the former is subsumed by the latter in terms of functionality.  In terms of

performance, any implementation strategy used for the previous concept can be used here

as well.  The only additional demand on such implementations is that they provide the

additional code for switching phases without losing the contents.

Given that the interface in Figure 2.9 is most general, all that remains to be argued is

whether it unnecessarily constrains performance for some application classes.

… yet (the concept) should not introduce a performance bottleneck between the

implementations for the concept and the applications that use the concept.

The concept in Figure 2.9 “permits at least one suitable implementation strategy for

each intended functional usage of the concept”; i.e., all three application classes.  For

application class I, any batch-sorting implementation can be used.  For application classes

II(a) and II(b), efficient heap-based implementations can be used.  For application class

III, heap-based implementations such as those based on Fibonacci heaps can be used.

The concept in Figure 2.9 satisfies the pragmatic criterion, since it permits efficient

implementation for all three application classes outlined in the introduction.  Thus, we
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have achieved the goal of designing a single and widely applicable concept for ordering,

and illustrated the utility of the pragmatic criterion in doing so.

2.2 Discussion

For the application classes discussed in this chapter, it has turned out that a single concept

with alternative implementations is sufficient, both in terms of functionality and

performance.  If we had outlined a sufficient number of application classes, then other

questions would arise.  For example, would we be able to design one concept for all the

application classes (probably not)?  If not, what others would there be?  In particular, the

distinction between stable and unstable sorting forces the need to have separate concepts

for each case (as is discussed in Chapter III), thereby resulting in two orthogonal concepts

in a concept library.  When we have multiple such concepts, the question of a

performance bottleneck for a concept library - the last part of the pragmatic criterion -

will arise and need to be addressed.

Advantages of reusing components especially designed to be widely applicable have been

well documented in the literature [Booch 86, Meyer 94, Weide 91, WISR 93].  However,

functional flexibility and functional evolution considerations have been the dominant

motivations for such object interface designs [Booch 86, Meyer 87].  Though the

importance of performance as a component design issue has been occasionally noted

[Harms 91, Koenig 95, Stroustrup 96], the common perception is that there has to be a

trade-off between good performance and widespread applicability.  This chapter has made

a case that good object-based designs can provide performance benefits, thus leading to

their wide applicability, rather than precluding it.  We have exemplified a process for how

the dual objective of functional variation and suitable performance can be achieved by

careful object interface design:

1. Identify classes of applications where the new concept is intended to be used from

a functionality perspective (though there will remain some unanticipated uses).

2. Design an object-based interface for the problem that is suitable for (possibly, a

subset of) the desired set of applications.

3. Determine if the interface satisfies the pragmatic criterion, by considering

alternative implementations.
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4. Refine the interface subject to the pragmatic criterion if no implementation

strategy yields suitable performance for an intended class of applications.

5. Repeat steps 3 and 4 until a suitable interface has been designed; if your goal is

unattainable, i.e., the intended set of applications is too broad, the steps may never

terminate.  This suggests re-examination of your objectives for the concept,

possibly with the solution being to design more than one core concept.

In the next chapter, we discuss issues surrounding the mathematical modeling for the

interface in Figure 2.9 in the light of observability and controllability considerations.  In

Chapter V, we apply these considerations and the pragmatic criterion to a select subset of

the RESOLVE concept library, thus validating the design of these concepts.

2.3 Concrete Performance Analysis

We conclude this chapter with a discussion on concrete performance analysis that

provides practical validation of the pragmatic criterion.  We present graphs to illustrate

the actual run-time performance characteristics obtained by different client applications

using alternative plug-compatible implementations of the Prioritizer_Template in Figure

2.9.  The implementations have been developed using a variant of the RESOLVE/C++

discipline [SIGSOFT 94], and are listed in the appendix.  The intention of these graphs is

not to illustrate any new algorithms or unexpected results, but rather to confirm through

practice that which is obvious in theory.  Together the graphs demonstrate quantitatively

that the object-based concept in Figure 2.9 is the most widely applicable interface for

sorting and prioritizing, in terms of both functionality and performance.
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For applications in class I, Figure 2.11 shows average performance characteristics of a

batch sorting-based strategy.  The figure shows that the performance of the batch

implementation is equivalent to a sorting procedure (in terms of performance) when using

a batch sort-based implementation.

Each Insertion -
First Extraction -

Each Following Extraction -

O(1)  
O(n log n)  

O(1)

Batch Sort  
Based 

10,000 Insertions 9,999 Extractions

First Extraction  

5 

10

15

20

25

0 

n = 10,000

Figure 2.11 — A Performance Graph for  Application  Class I
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For applications in class II(a), Figure 2.12 shows the performance resulting from a heap-

based implementation strategy that “heapifies” on the first call to Extract, with each

subsequent call to Extract rebuilding the heap using a “sift-down” procedure.  As

expected, the graph confirms that a heap-based strategy is a better choice than a

(procedural) batch sort-based strategy for usage patterns from this class of applications.

Each Insertion -
First Extraction -

Each Following Extraction -

O(1)  
O(n log n)  

O(1)

O(1)  
O(n)  

O(log n)

Batch Sort Heap

Any 
Procedural  

Based 
(gray)

Heap-Based  
(black) 

10,000 Insertions 4,999 Extractions 

First Extraction

5 

10

15

20

25

0 

n = 10,000

Figure 2.12 — Performance Graphs for  Application  Class II(a)
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Figure 2.13 illustrates the use of the Extract_Any operation along with the usage pattern

outlined in Section 2.1 in order to handle client applications in class II(b) efficiently.  The

same heap-based implementation strategy used in generating the graph in the previous

figure was also used to produce the data for Figure 2.13.
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100,000 Insertions  
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Figure 2.13 — Performance Graphs for  Application  Class II(b)



40

Figure 2.14 shows how the interleaving ability of the interface in Figure 2.9 is ideal for

client applications in class III.  This graph is based on a heap-based strategy in which

Insert and Extract continually maintain the heap through the use of “sift-up” and “sift-

down” procedures, respectively.  It is interesting to notice that the process of interleaving

insertions and extractions puts no strain on the implementation, as it only creates ripples

in what would otherwise be a somewhat smoother curve.
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Figure 2.14 — Performance Graphs for  Application  Class III
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Observable
and Controllable
Software Specifications III
Designing model-based explanations for object-based software components that are easy

to understand [Sitaraman 93], free from implementation bias [Jones 90], and flexible in

terms of both functionality and performance [Weide 94, Fleming 97] is difficult.  While

in general there can be no way to make the process effective or trivial, research and

experience has shown that these “ideal” specifications, which provide the most

appropriate explanations, have some important properties in common.  Arguably, two

such fundamental properties are observability and controllability, and these properties are

the topics of this chapter.

The complexity (and the importance) of designing observable and controllable

specifications becomes apparent in designing specifications of nontrivial data

abstractions, such as prioritizers and other relational data abstractions arising from

recasting graph optimization problems [Sitaraman 97].  Such complex objects are likely

to arise in industrial-strength software systems, and formal specification methods should

be scaleable to those objects.

To illustrate the impact and significance of the properties on specification design, we

consider alternative plausible explanations for the Prioritizer_Template interface of the

previous chapter.  We keep the discussion here at an informal level, leaving alternative

formal definitions of the terms for the next chapter as they are quite intricate.  Figure 3.1

below shows the intuitive working definitions which we adopt for the current discussion,

based on [Weide 96]:
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Observability - A model-based specification is observable if it is always 

possible to distinguish between any two values of the specified state 

space using the provided operations (in addition to those of imported 

types).

Controllability  - A model-based specification is controllable if it is 

always possible to construct any given value from the specified state 

space using the provided operations (in addition to those of imported 

types).

Figure 3.1 - Intuitive  Definitions of Observability and Controllability

The rest of this chapter is organized as follows:  Section 3.1 considers alternative

specifications for the Prioritizer_Template introduced in the previous chapter.  Section

3.2 presents a discussion and summary of the results.

3.1 Alternative Formal Specifications of Prioritizer_Template

In this section, we show how observability and controllability considerations lead to the

design of a precise and easily understandable formal specification for the

Prioritizer_Template interface.  In the process, we consider three specification designs,

with varying degrees of observability and controllability.

Prioritizer_Template  Specification Design #1

Figure 3.2 below contains a first formal specification of the Prioritizer_Template in the

RESOLVE notation [SIGSOFT 94].  It has the same syntactic interface from Figure 2.10

in the previous chapter.
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concept  Prioritizer_Template (
type  Entry,
definition  ARE_ORDERED (x: Entry, y: Entry): boolean ,
constant  Max_Size: Integer

)

requires Max_Size > 0 and
for  all  x,y,z: Entry,

ARE_ORDERED (x,x) and
if  ARE_ORDERED(x,y) and  ARE_ORDERED(y,z) then

ARE_ORDERED(x,z) and
(ARE_ORDERED(x,y) or  ARE_ORDERED(y,x))

uses  Standard_Integer_Facility, Standard_Boolean_Facility

definition  IS_A_NEXT_ENTRY (
s: string  of  Entry,
x: Entry

): boolean  =
there  exists  alpha,beta: string  of  Entry such  that

s = alpha * <x> * beta and
for  all  y:  Entry,

if  ARE_ORDERED(y,x) and  not  ARE_ORDERED(x,y) then
not  there  exists  alpha,beta: string  of  Entry

such  that  s = alpha * <y> * beta

type  family  Prioritizer is  modeled  by  (
contents: string  of  Entry,
insertion_phase: boolean

)
exemplar  p
constraints

|p.contents| <= Max_Size
initialization

ensures |p.contents| = 0 and
p.insertion_phase

operation  Insert (
alters  p: Prioritizer,
consumes  x: Entry

)
requires  |p.contents| < Max_Size and

p.insertion_phase
ensures p.contents = #p.contents * <#x> and

p.insertion_phase

operation  Change_Phase (
alters  p: Prioritizer

)
ensures p.contents = #p.contents and

p.insertion_phase = not  #p.insertion_phase
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operation  Extract (
alters  p: Prioritizer,
produces  x: Entry

)
requires |p.contents| > 0 and

not  p.insertion_phase
ensures IS_A_NEXT_ENTRY (#p.contents,x)  and

not  p.insertion_phase and
there  exists  alpha,beta: string  of  Entry
such  that

 p.contents = alpha * beta and
#p.contents = alpha * <x> * beta

operation  Extract_Any (
alters  p: Prioritizer,
produces  x: Entry

)
requires |p.contents| > 0
ensures p.insertion_phase = #p.insertion_phase and

there  exists  alpha,beta: string  of  Entry
such  that

 p.contents = alpha * beta and
#p.contents = alpha * <x> * beta

operation  Is_In_Insertion_Phase (
preserves  p: Prioritizer

): Boolean
ensures Is_In_Insertion_Phase = p.insertion_phase

operation  Size_Of (
preserves  p: Prioritizer

): Integer
ensures Size_Of = |p.contents|

operation  Allowed_Max_Size (): Integer
ensures Allowed_Max_Size = Max_Size

end  Prioritizer_Template

Figure 3.2 - A Specification of Prioritizer_Template  Based on Strings

Explanation of the Specification

In order to use the concept in Figure 3.2, a client must provide as parameters the type of

Entry to be prioritized, a mathematical ARE_ORDERED definition for determining when

two entries are ordered, and a Max_Size value for the maximum number of entries a

Prioritizer object is allowed to contain.  The requires clause below the parameter list is a

concept-level requirement, and it states that the Max_Size value supplied must be greater

than zero.  It additionally states mathematically that the definition of ARE_ORDERED

supplied by the client must be a “total pre-ordering”.  That is, the supplied definition

should be reflexive, anti-symmetric, and transitive.  Additionally, the definition must be
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total; i.e., “x ≤ y or y ≤ x”, so that every two entries are ordered.  The uses clause states

that the concept makes use of standard Integer and Boolean facilities throughout the

specification.  The local definition IS_A_NEXT_ENTRY(s,x) is a predicate that is true

when the Entry x is a next ordered entry in the string s; it is used in specifying the

behavior for the Extract operation.

The type Prioritizer is modeled as a tuple where “contents” is a mathematical string

containing the collection of entries in a Prioritizer object and “insertion_phase” is a flag

denoting the current phase of a Prioritizer.  The keyword exemplar simply provides an

example Prioritizer name that is used to express the behavior of every Prioritizer object in

the subsequent assertions.  The constraints clause asserts that a Prioritizer cannot contain

any more than Max_Size entries.  The initialization ensures clause states that, upon

declaration, a Prioritizer will contain no entries and will be in the insertion phase.

As noted earlier, in addition to the operations listed, every RESOLVE concept implicitly

provides the operations Swap (denoted by the operator “:=:”) and Clear.  The Swap

operation simply exchanges the values of two (Prioritizer) objects.  Since swapping can

always be implemented to perform in constant time, it is chosen as the data movement

operator rather than assignment (which forces copying) [Harms 91].  The Clear operation

provides an efficient means for resetting a (Prioritizer) object to its initial state (as

declared in the initialization ensures clause).

The Insert operation requires that its Prioritizer object (p) has room for the Entry to be

inserted and that p is in the insertion phase.  It consumes the Entry and concatenates it to

the right of #p.contents; the string containing the single Entry is denoted by “< >”.  It also

ensures that the Prioritizer remains in the insertion phase.  The Change_Phase operation

ensures that the contents of the Prioritizer remain unchanged, but that its phase is toggled.

The Extract operation requires that p is not empty and that it is not in the insertion phase.

It ensures that a “smallest” value is removed and produced in x based on the definition of

ARE_ORDERED.  It additionally ensures that p will remain in the extraction phase.

Extract_Any requires that the Prioritizer is not empty, but unlike Extract it can be called

in either phase.  It only ensures that an arbitrary value from the Prioritizer is removed and

returned, and leaves the phase unchanged.  In other words, the specifications of both

Extract and Extract_Any are relational; i.e., different results may be output for the same

input value.  The operation Is_In_Insertion_Phase can be used to observe the current

phase of a Prioritizer object and Size_Of can be used to get the number of entries.
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Allowed_Max_Size is useful to remind a client of the maximum number of entries a

Prioritizer object can contain.  This is a module-level operation; i.e., it has no Prioritizer

objects as parameters.

Evaluation of the Specification for  Observability and Controllability

The specification in Figure 3.2 whereby the collection is modeled as a mathematical

string is certainly reasonable and plausible .  Since the problem of prioritization deals

with the ordering of entries, strings seem naturally suited for modeling the contents.  The

specification is easy to understand and it satisfies software engineer’s criteria such as

minimality and comprehensiveness.  And of course, it satisfies the pragmatic criterion as

seen from the discussion in Chapter II.  However, it is not observable, and this suggests

potential problems as explained here.

To see why the specification in Figure 3.2 is not observable, consider

Prioritizer_Template instantiated with an Entry type of Integer with “≤” ordering (which

is a total pre-ordering), and some maximum size.  Now, consider two objects of this type

named p1 and p2 with values as follows:

p1 = ( < 1, 7, 3, 6 >, false)

p2 = ( < 1, 3, 7, 6 >, false)

The value of p1 reveals that the Integers 1, 7, 3, and 6 were inserted in that order.

Likewise, p2 reveals that the Integers 1, 3, 7, and 6 were inserted in that order.  Clearly,

these two abstract values are different.  However, they denote the “same observable”

Prioritizer value.  This is because it is not possible to use the provided operations to

distinguish between these values.  To see why, notice that Is_In_Insertion_Phase and

Size_Of will not distinguish the values.  Since Extract_Any returns arbitrary values of the

objects, it is not a useful discriminator either.  The only other operation of potential use in

observing any difference is Extract, but it will never reveal a difference since it will

always return 1, 3, 6, and 7 in that order for both p1 and p2.  Hence, the specification in

Figure 3.2 is not observable since it is not “possible to distinguish between (these) two

values using the provided operations”.  In general, the concept in Figure 3.2 is not

observable because any two Prioritizers whose “contents” strings are permutations of

each other cannot be distinguished using the operations provided by the specification.
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The impact of the observability problem in the present case becomes obvious in writing

client programs that need to preserve a Prioritizer or test equality of two Prioritizers.

That is, it is not possible to write typical implementations for the following kinds of

specifications using Prioritizers, where Pre_P and Post_P are assertions involving p1 and

other parameters.

operation  P ( preserves  p1: Prioritizer,…)
requires Pre_P
ensures Post_P

This is because the only way to manipulate a Prioritizer p1 is to dismantle it by using

Extract and Extract_Any.  Once dismantled, however, it cannot be restored to its original

abstract value, but only to a permutation of the initial abstract string value.  In other

words, it is only possible to write implementations for specifications of the form:

operation  P ( alters  p1: Prioritizer, …)
requires Pre_P
ensures Post_P and

PERMUTATIONS (p1.contents, #p1.contents) and
p1.insertion_phase = #p1.insertion_phase

More generally, it is not possible to implement any operation where the ensures clause

involves the “=” operator on two Prioritizers (recall that “preserves p1” implies inclusion

of “p = #p” in the ensures clause).  For this reason, operations such as those below cannot

be implemented.

operation   Are_Equal (
preserves   p1: Prioritizer
preserves   p2: Prioritizer

): boolean
ensures Are_Equal  iff   p 1 = p 2

operation   Were_Equal (
consumes   p1: Prioritizer
consumes   p2: Prioritizer

): boolean
ensures Were_Equal  iff   #p 1 = #p 2

The difficulty in doing such basic tasks with Prioritizers in turn inhibits the ability to

write programs that are easy to construct, understand, or verify.

The observability problem with the specification in Figure 3.2 is a typical example of the

situation where there are classes of computationally indistinguishable abstract values
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present in the specified model space.  Such classes present unnecessary difficulty in

reasoning about the behavior of the specification, thereby forcing a client to use

alternative mental models in reasoning about its behavior along with sufficient mappings

between them.  In this case, a client has to constantly remember that all Prioritizers whose

“contents” are permutations of one another are actually the “same” with respect to their

(observable) behaviors.  Clearly, this is “extra baggage” and it has nothing to do with the

intended specification.  The absence of observability can thus lead to higher development

costs associated with the additional complexity placed upon software engineers in

attempting to understand and reason about such specifications, as well as higher

maintenance costs in the upkeep of software which is based on such specifications.

The specification in Figure 3.2 is controllable, however.  This is because it is possible to

construct any abstract string value in the state space.  For example, the abstract value of

p1 can be reached by calling Insert with Integers 1, 7, 3, and 6 in that order, followed by a

call to Change_Phase.  In this fashion, it is straightforward to see that any Prioritizer

value can be constructed.

Prioritizer_Template  Specification Design #2

One approach for eliminating classes of computationally indistinguishable values and

hence avoiding the non-observability problem is to constrain the model space to a

smaller, more meaningful set of abstract values with appropriate re-specification of the

operations as necessary.  Figure 3.3 presents such an alteration of the previous

specification for the Prioritizer_Template.
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concept  Prioritizer_Template (
type  Entry,
definition  ARE_ORDERED (x: Entry, y: Entry): boolean ,
constant  Max_Size: Integer

)

requires Max_Size > 0 and
for  all  x,y,z: Entry,

ARE_ORDERED (x,x) and
if  ARE_ORDERED(x,y) and  ARE_ORDERED(y,z) then

ARE_ORDERED(x,z) and
(ARE_ORDERED(x,y) or  ARE_ORDERED(y,x))

uses  Standard_Integer_Facility, Standard_Boolean_Facility

type  family  Prioritizer is  modeled  by  (
contents: string  of  Entry,
insertion_phase: boolean

)
exemplar  p
constraints

|p.contents| <= Max_Size and
for  all  alpha,beta: string  of  Entry and  x,y: Entry,

if  p.contents = alpha * <x> * <y> * beta then
ARE_ORDERED(x,y)

initialization
ensures |p.contents| = 0  and

p.insertion_phase

operation  Insert (
alters  p: Prioritizer,
consumes  x: Entry

)
requires  |p.contents| < Max_Size and

p.insertion_phase
ensures p.insertion_phase and

there  exists  alpha,beta: string  of  Entry
such  that

#p.contents = alpha * beta and
 p.contents = alpha * <#x> * beta  and
for  all  gamma: string  of  Entry and  y: Entry,

if  beta = <y> * gamma then
ARE_ORDERED (#x,y)

operation  Change_Phase (
alters  p: Prioritizer

)
ensures p.contents = #p.contents and

p.insertion_phase = not  #p.insertion_phase
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operation  Extract (
alters  p: Prioritizer,
produces  x: Entry

)
requires |p.contents| > 0 and

not  p.insertion_phase
ensures #p.contents = <x> * p.contents and

not  p.insertion_phase

operation  Extract_Any (
alters  p: Prioritizer,
produces  x: Entry

)
requires |p.contents| > 0
ensures p.insertion_phase = #p.insertion_phase and

there  exists  alpha,beta: string  of  Entry
such  that

 p.contents = alpha * beta and
#p.contents = alpha * <x> * beta

operation  Is_In_Insertion_Phase (
preserves  p: Prioritizer

): Boolean
ensures Is_In_Insertion_Phase = p.insertion_phase

operation  Size_Of (
preserves  p: Prioritizer

): Integer
ensures Size_Of = |p.contents|

operation  Allowed_Max_Size (): Integer
ensures Allowed_Max_Size = Max_Size

end  Prioritizer_Template

Figure 3.3 - Prioritizer_Template  Modeled Using Ordered Strings

The specification of Figure 3.3 is similar to the one in Figure 3.2 in that it still uses a

mathematical string of entries to model the collection to be prioritized.  However, this

specification restricts the abstract value space by constraining it to contain only ordered

strings of entries.  It provides the same set of operations as in Figure 3.2.  Other than this,

the differences between the two specifications are in the ensures clauses of the Insert and

Extract operations5.

                                                
5 Even though a specification may be doing the abstract “computation” at some point, this does not imply
that a correct implementation for the specification must do the same thing.  For example, even though the
specification in Figure 3.3 appears to suggest an “insertion sorting” implementation, any other strategy
(such as any one detailed in Chapter II) is certainly permissible as well [Weide 94, Sitaraman 97].
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Evaluation of the Specification for  Observability and Controllability

The specification in Figure 3.3 is observable.  For two Prioritizer objects of different size,

the Size_Of operation will detect the difference.  For two Prioritizer objects with opposite

values for their “insertion_phase” fields, the Is_In_Insertion_Phase operation will detect

the difference.  And for the previously problematic situation of having two objects whose

“contents” are permutations of one another, the Extract operation will now detect a

difference6.  This is due to the fact that Extract is specified to remove and return the

leftmost Entry from the string.  Extracting and comparing the entries from two Prioritizer

objects whose “contents” are permutations of each other will eventually reveal a

difference between them.  In particular, it is now possible to implement some of the

operations where the ensures clause involves equality of two Prioritizer values, such as

the Were_Equal operation in the last subsection.

The specification in Figure 3.3 is not controllable.  For example, consider the

Prioritizer_Template instantiated with an Entry type of “Two_Field_Record”, where the

first field is of type Integer and the second field is of type Character.  Suppose the

ordering for objects of Two_Field_Record is based on the “≤” relation on the Integer

field.  Next, consider two objects of this type, named p3 and p4, with values as follows:

                                                
6 It should be noted that the constraining of the state space to contain only ordered “contents” strings has not
completely eliminated the possibility of two Prioritizer variables having their “contents” strings being
permutations of each other, as is illustrated in the following discussion of controllability.

p3.contents:  “(1,a) (2,b) (2,c) (3,d)”

p3.insertion_phase:  false

p4.contents:  “(1,a) (2,c) (2,b) (3,d)”

p4.insertion_phase:  false

The values for p3 and p4 above are within the specified state space; i.e., their “contents”

strings are indeed ordered based on the Integer field.  It is possible that successive calls to

Insert will result in either value above.  However, it is not guaranteed that either value in

particular will be constructed.  This is because the specification of Insert is relational, as it

allows a new entry to be inserted on either side of an entry that is already in the string and

is identically ordered.  The specification in Figure 3.3, therefore, is not controllable since

it is not “always possible to construct any given value from the specified state space using

the provide operations.”
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To see a manifestation of the controllability problem, notice that it is not possible to write

layered implementations of operations that need to “preserve” their parametric

Prioritizers (e.g., Are_Equal as previously mentioned).  This is essentially because it is

not possible to create every value in the abstract space.  The inability to preserve or copy

Prioritizers hints at potential difficulty in using the concept.

The controllability problem with the specification in Figure 3.3 is a typical example of the

situation where there are classes of non-guaranteeably constructable abstract values

present in the model space as specified.  As with the observability problem of the

previous specification, such classes present unnecessary difficulty in reasoning about the

behavior of the specification.  A client must use alternative mental models when

reasoning about the behavior of the specification.  In this case, for example, a client has to

constantly remember that all Prioritizers whose “contents” strings contain the same

entries but have different left-to-right placement for identically ordered entries within

each string are intuitively the “same” Prioritizer value.  Clearly, this additional

consideration has nothing to do with the intended specification.  The absence of

controllability can thus lead to higher software development and maintenance costs.

A Variation  of Design #2

The controllability problem with the previous specification appears to suggest an easy

solution:  re-specify the Insert operation so that when an entry being inserted has the same

ordering as an entry already in the string, the new entry is added to the right of the

existing identically-ordered entry.  Figure 3.4 below contains such a specification.
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concept  Priority_Queue_Template (
type  Entry,
definition  ARE_ORDERED (x: Entry, y: Entry): boolean ,
constant  Max_Size: Integer

)

requires Max_Size > 0 and
for  all  x,y,z: Entry,

ARE_ORDERED (x,x) and
if  ARE_ORDERED(x,y) and  ARE_ORDERED(y,z) then

ARE_ORDERED(x,z) and
(ARE_ORDERED(x,y) or  ARE_ORDERED(y,x))

uses  Standard_Integer_Facility, Standard_Boolean_Facility

type  family  Priority_Queue is  modeled  by  (
contents: string  of  Entry,
insertion_phase: boolean

)
exemplar  p
constraints

|p.contents| <= Max_Size and
for  all  alpha,beta: string  of  Entry and  x,y: Entry,

if  p.contents = alpha * <x> * <y> * beta then
ARE_ORDERED(x,y)

initialization
ensures |p.contents| = 0  and

p.insertion_phase

operation  Insert (
alters  p: Priority_Queue,
consumes  x: Entry

)
requires  |p.contents| < Max_Size and

p.insertion_phase
ensures p.insertion_phase and

there  exists  alpha,beta: string  of  Entry
such  that

#p.contents = alpha * beta and
 p.contents = alpha * <#x> * beta  and
for  all  gamma: string  of  Entry and  y: Entry,

if  beta = <y> * gamma then
ARE_ORDERED (#x,y) and
not  ARE_ORDERED (y,#x)

operation  Change_Phase (
alters  p: Priority_Queue

)
ensures p.contents = #p.contents and

p.insertion_phase = not  #p.insertion_phase
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operation  Extract (
alters  p: Priority_Queue,
produces  x: Entry

)
requires |p.contents| > 0 and

not  p.insertion_phase
ensures #p.contents = <x> * p.contents and

not  p.insertion_phase

operation  Extract_Any (
alters  p: Priority_Queue,
produces  x: Entry

)
requires |p.contents| > 0
ensures p.insertion_phase = #p.insertion_phase and

there  exists  alpha,beta: string  of  Entry
such  that

 p.contents = alpha * beta and
#p.contents = alpha * <x> * beta

operation  Is_In_Insertion_Phase (
preserves  p: Priority_Queue

): Boolean
ensures Is_In_Insertion_Phase = p.insertion_phase

operation  Size_Of (
preserves  p: Priority_Queue

): Integer
ensures Size_Of = |p.contents|

operation  Allowed_Max_Size (): Integer
ensures Allowed_Max_Size = Max_Size

end  Priority_Queue_Template

Figure 3.4 – Priority_Queue_Template, Correctly

Modeled Using Ordered Strings

The specification in Figure 3.4 above is identical to that in Figure 3.3 with the exception

of the specification for the Insert operation (and of course, the renaming of the type

Prioritizer to Priority_Queue).  The only difference in the specification of the Insert

operation in Figure 3.4 is the addition of the last line of the ensures clause:  “and not

ARE_ORDERED (y,#x)”.  This forces the “left-to-right, first inserted-to-last inserted”

placement of identically-ordered entries, thus providing the FIFO behavior of “same

priority” entries that is needed by applications using priority queues.

This design is indeed observable and controllable, but it is a specification for a different

problem:  “stable” ordering; i.e., FIFO behavior for identically-ordered entries.  This

apparently simple “fix” unfortunately precludes all implementations that are not

necessarily stable, such as quick-sort and heap-based ordering, and thus limits



55

performance trade-offs.  This restrictive specification is not demanded by the three

classes of applications in Chapter II.  What we need is a solution to the problem of

specifying ordering without requiring stability.  Such a solution is the topic of the next

subsection.

Prioritizer_Template  Specification Design #3

One alternative solution to the observability and controllability problem of design #2,

without introducing additional constraints, is to add operations to the

Prioritizer_Template interface that help distinguish every abstract value or generate any

desired value.  However, intuitively, the existing set of operations is just what is needed

to perform the task of prioritizing.  Adding other such operations, in addition to cluttering

the interface, violates the pragmatic criterion in this case.  For example, if Were_Equal

were added to the interface in Figure 3.2 or some copy-enabling operations to the

interface in Figure 3.3, then all implementations must keep a record of the order in which

the entries are inserted; this precludes implementations such as those based on heaps.

Adding operations in order to achieve the properties of observability and controllability

only cures symptoms of the disease, and not the disease itself.

The fundamental problem with the first two specification designs is that they use a model

that has too much structure for the problem of prioritizing.  The ordering of entries within

a string has no relevance to the problem being specified.  Figure 3.5 shows an alternative

Prioritizer_Template specification in which an unordered multi-set or “bag” of entries is

used for modeling the collection of entries instead of strings.
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concept  Prioritizer_Template (
type  Entry,
definition  ARE_ORDERED (x: Entry, y: Entry): boolean ,
constant  Max_Size: Integer

)

requires Max_Size > 0 and
for  all  x,y,z: Entry,

ARE_ORDERED (x,x) and
if  ARE_ORDERED(x,y) and  ARE_ORDERED(y,z) then

ARE_ORDERED(x,z) and
(ARE_ORDERED(x,y) or  ARE_ORDERED(y,x))

uses  Standard_Integer_Facility, Standard_Boolean_Facility

subtype  INVENTORY_FUNCTION is  function  from  Entry to  integer
exemplar  f
constraints

for  all  x: Entry, f(x) >= 0

definition  INVENTORY_SIZE (
f: INVENTORY_FUNCTION

): integer  = sum of  f(x) for  all  x: Entry

definition  IS_A_NEXT_ENTRY (
f: INVENTORY_FUNCTION,
x: Entry

): boolean  = f(x) > 0 and  for  all  y: Entry,
if  ARE_ORDERED(y,x) and  not  ARE_ORDERED(x,y)
then  f(y) = 0

type  family  Prioritizer  is  modeled  by  (
contents:  INVENTORY_FUNCTION,
insertion_phase: boolean

)
exemplar   p
constraints

INVENTORY_SIZE(p.contents) <= Max_Size
initialization

ensures   INVENTORY_SIZE(p.contents) = 0 and
p.insertion_phase

operation  Insert (
alters  p: Prioritizer,
consumes  x: Entry

)
requires  INVENTORY_SIZE(p.contents) < Max_Size and

p.insertion_phase
ensures p.insertion_phase and

p.contents(#x) = #p.contents(#x) + 1 and
for  all  y: Entry,

if  y /= #x
then  p.contents(y) = #p.contents(y)
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operation  Change_Phase (
alters  p: Prioritizer

)
ensures p.contents = #p.contents and

p.insertion_phase = not  #p.insertion_phase

operation  Extract (
alters  p: Prioritizer,
produces  x: Entry

)
requires INVENTORY_SIZE(p.contents) > 0 and

not  p.insertion_phase
ensures not  p.insertion_phase and

IS_A_NEXT_ENTRY(#p.contents,x) and
p.contents(x) = #p.contents(x) - 1 and
for  all  y: Entry,

if  y /= x then  p.contents(y) = #p.contents(y)

operation  Extract_Any (
alters  p: Prioritizer,
produces  x: Entry

)
requires INVENTORY_SIZE(p.contents) > 0
ensures p.insertion_phase = #p.insertion_phase and

p.contents(x) = #p.contents(x) - 1 and
for  all  y: Entry,

if  y /= x then  p.contents(y) = #p.contents(y)

operation  Is_In_Insertion_Phase (
preserves  p: Prioritizer

): Boolean
ensures Is_In_Insertion_Phase = p.insertion_phase

operation  Size_Of (
preserves  p: Prioritizer

): Integer
ensures Size_Of = INVENTORY_SIZE(p.contents)

operation  Allowed_Max_Size (): Integer
ensures Allowed_Max_Size = Max_Size

end  Prioritizer_Template

Figure 3.5 - Prioritizer_Template  Modeled Using Multi-Sets

In Figure 3.5, the subtype INVENTORY_FUNCTION serves as the model for the

“contents” field of a Prioritizer object, by mapping each Entry to an integer which

represents the number of occurrences of an Entry in the “bag”.  The definition

INVENTORY_SIZE(f) returns the number of entries in the INVENTORY_FUNCTION

f.  The predicate IS_A_NEXT_ENTRY(f,x) is defined to be true if and only if x is a

smallest entry in f.
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In the interface section, the type Prioritizer is modeled as an ordered pair with a

“contents” field and a boolean “insertion_phase” field.  A Prioritizer’s contents are

modeled by an INVENTORY_FUNCTION.  The constraints clause on the type

Prioritizer is simple and it states that the size of a Prioritizer must be less than or equal to

the Max_Size bound.

The ensures clause of Insert states that the only change to its contents is that the number

of occurrences of the Entry x is increased by one, and that p remains in the insertion

phase.  The ensures clause of Extract states that p remains in the extraction phase, and

that a next smallest entry based on the definition of ARE_ORDERED is removed and

returned in x; the occurrence counts of other entries are not affected.  The Extract_Any

operation specifies that an arbitrary Entry x is removed and returned.  The specifications

for the remaining operations are straightforward.

Evaluation of the Specification for  Observability and Controllability

The specification in Figure 3.5 is observable.  For two Prioritizer objects of different size,

the Size_Of operation will detect the difference.  For two Prioritizer objects with opposite

values for their “insertion_phase” fields, the Is_In_Insertion_Phase operation will detect

the difference.  Since there is no notion of the ordering of entries in a bag, the only way

the contents of two abstract Prioritizer values can be different is if they are of different

size or differ in their “contents” by at least one entry.  When the contents differ, Extract

or Extract_Any would reveal the difference.  Hence, the specification in Figure 3.5 is

observable.

The specification in Figure 3.5 is also controllable, because any abstract bag value can be

constructed by inserting the constituent entries in any order.  Unlike with the string model

of the previous specification designs, the order of insertion is irrelevant since there is no

notion of “one before the other” in a bag.

For a client using the specification in Figure 3.5, in particular it is possible to write totally

correct layered implementations of operations that involve “=” in ensures clauses and

operations that need to preserve Prioritizers.  In other words, it provides sufficient and

visible functionality.  The specification in Figure 3.5 permits any of the usual sorting and

prioritizing implementations, thus allowing clients to choose one that best suits their

performance needs.
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3.2 Discussion

Through the development of an observable and controllable formal specification for the

Prioritizer_Template, we have shown that appropriate choices for mathematical models

and explanations of objects is not always obvious or trivial.  Indeed, in this example,

there appeared to be nothing wrong, in terms of reasoning and comprehensiveness, with

using a mathematical string, at least on the surface.  In fact, in general, there is nothing

wrong with using a mathematical string model when its inherent ordering (i.e., its extra

“book-keeping”) is appropriate.  We have, for example, noted that the distinction between

unstable and stable ordering forces the need to have separate concepts for each case.  But

the objective was to specify a data abstraction for a class of problems that did not care

about the stability of ordering, and hence strings are unsuitable for modeling the objects.

For applications that need a FIFO treatment for identically-ordered entries, a string model

is an appropriate choice that can be specified in an observable and controllable manner.

The concepts of stable vs. unstable sorting are indeed orthogonal.  While it is permissible

to implement Prioritizer_Template using a stable ordering strategy, it is not permissible to

implement the stable Priority_Queue_Template using an unstable ordering strategy.

Furthermore, forcing a client to always use Priority_Queue_Template results in a

performance bottleneck for those applications not requiring this behavior.  Hence, the

pragmatic criterion admits both concepts into a concept library.

In general, the problem of determining when a specification is observable and

controllable can be difficult.  This is particularly so with recast designs such as the

Prioritizer_Template.  And as indicated in the previous chapter, designing component

interfaces that satisfy the pragmatic criterion is also in general a difficult problem.  These

difficulties motivate more formal and stringent tests for observability, controllability, and

the pragmatic criterion, rather than having to rely on intuition for identifying “glitches”.

Developing formal characterizations for observability and controllability is the focus of

the next chapter, where we also outline how the pragmatic criterion might be formalized.



60

Formalizations of
Observability and
Controllability IV
Formal specifications for object-based software components intended for reuse should be

free of implementation bias, offer a high degree of functional and performance flexibility,

and facilitate clear and precise reasoning.  As discussed and exemplified in the previous

chapters, the properties of observability, controllability, and the pragmatic criterion lead

to such specifications.  The objective of this chapter is to discuss formalizations for

observability and controllability, in order to facilitate easier and more precise validation

of candidate object-based specifications.

We begin with the following informal characterizations of observability and

controllability from [Weide 96]:

Observability - A model-based specification S defining the program type

ADT is observable if and only if every two unequal values in ADT’s

state space are “computationally distinguishable” using some

combination of the operations of S.

Controllability  - A model-based specification S defining the program

type ADT is controllable if and only if every value in ADT’s state

space is “computationally reachable” using some combination of the

operations of S.

Figure 4.1 - Intuitive  Definitions for  Observability and Controllability

Though these informal notions for observability and controllability appear to be rather

straightforward and intuitive, it becomes clear that subtle differences in interpretation of

the notions lead to several variations of formal characterizations.  The intuitive

definitions above raise at least two questions that force more specific statements of the

properties.  The first and central question arises from the consideration of specifications

with relational behavior.  Although we have motivated observability and controllability

considerations from the use of the terms in traditional control engineering literature,

relational specifications of behavior essential in software engineering complicate the
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meanings of the terms considerably [Desharnais 97, He 86, Leavens 91, Jones 90,

Sitaraman 97].  In the above definitions in particular, does “computationally

distinguishable” and “computationally reachable” mean that it is always possible to do so

or that it is merely possible to do so?  For example, consider the “computational

reachability” question for the Prioritizer_Template in Figure 3.3 from the previous

chapter that was modeled using ordered strings.  In that specification, the ensures clause

of the Insert operation leaves the arrangement of “equivalent” (identically-ordered) entries

in a string unspecified.  As noted there, while it is possible that certain strings will be

generated with such a specification of Insert, it is not always true that a particular string

will be generated.  Alternatively, consider the reachability question for this specification

in terms of its possible implementations.  If this specification were implemented using a

stable ordering strategy, then for that implementation it would be true that a particular

string containing identically-ordered entries could always be achieved (when the abstract

space corresponds to the implementation space isomorphically).  If this specification,

however, were instead implemented using an unstable sorting strategy, only the

possibility exists for reaching some specific values.  In other words, we can rephrase the

first question as:

Does “computationally distinguishable” and “computationally reachable”

mean for some implementation(s) of the concept, or for all implementations?

The second question addresses the asymmetry between the informal definitions in Figure

4.1 above.  In these definitions, observability is expressed as a relationship between two

values whereas controllability is based on a single value in the abstract space of the type

under consideration.

Should the definitions be phrased in terms of relationships between two values

(i.e., relative), or just in terms of one value (i.e., absolute), or perhaps

something else?

As a result of these questions, Figure 4.2 below contains a “road map” depicting the

different paths to consider when formalizing observability and controllability [Weide 96].
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Define “computationally” based on some
implementation of the concept, or all?

Use “relative” versions of the definitions,
absolute definitions, or something else?

Path taken in
[Weide 96]

some all

relative

absolute

other

Figure 4.2 - Possible Interpretations  for  Defining

Observability and Controllability

The rest of this chapter is organized as follows:  Section 4.1 discusses code-based

formalisms for observability and controllability.  Section 4.2 introduces and formally

describes scenarios for their subsequent use in defining observability and controllability.

Unlike code-based definitions, the use of scenarios simplifies the fundamental notion of

“total correctness” as it applies to the formalization of observability and controllability.

Section 4.3 reexamines the Prioritizer_Template for the properties of observability and

controllability using scenarios.  Section 4.4 presents formal scenario-based definitions for

observability and controllability as an alternative to the code-based definitions.  Section

4.5 compares these definitions with similar notions in the literature.

4.1 Formal Code-Based Characterizations of Observability
and Controllability

Observability and controllability of an object-based concept can be formally defined in

terms of whether it is possible to write layered code for certain operations using calls to

the basic operations provided by an object-based candidate concept (in addition to using

operations available on any imported objects).  The objective of this section is to explore

different code-based formalizations of observability and controllability.  This discussion

as a whole leads to the discovery of interesting if not perplexing relationships among the

many possible code-based definitions for observability and controllability.  An earlier

summary of the definitions based on our work together with Weide et al. appears in

[Weide 96].
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We begin this discussion by considering the case where the definitions hold for all

implementations of the underlying concept.  For observability, the informal description in

Figure 4.1 suggests the following code-based definition:

A model-based specification S defining the program type ADT is

observable if and only if there is a totally correct layered implementation

of:
operation   Are_Equal (

preserves   x1: ADT
preserves   x2: ADT

) : Boolean
ensures   Are_Equal iff  (x1 = x2)

For controllability, the informal definition in Figure 4.1 suggests the following definition:

A model-based specification S defining the program type ADT is

controllable if and only if for every constant c: ADT, there is a totally

correct layered implementation of:

operation   Construct_c (
produces   copy_c: ADT

)
ensures   copy_c = c

The two definitions above appear to state formally that which was stated informally in

Figure 4.1.  To address the asymmetry between these two definitions, we first consider a

relative definition of controllability:

A model-based specification S defining the program type ADT is

relatively controllable if and only if there is a totally correct layered

implementation of:

operation   Get_Replica (
preserves   x: ADT
produces   copy_x: ADT

)
ensures   copy_x = x

Are_Equal and Get_Replica are symmetric now that they are both relative.  However, the

definitions are not independent of one another.  This is because Are_Equal must preserve

its arguments, and this apparently requires the ability to reconstruct or get a replica of
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each argument.  That is, the ability to code Are_Equal hinges on the ability to code

Get_Replica.  Similarly, the first argument to Get_Replica must be preserved, and being

able to prove this implicitly requires the ability to see if the incoming value and the

outgoing value for this argument “are equal”.  This dependency is a result of the

stipulation that the arguments to the definitions must be preserved.  This observation

suggests the following, more independent definitions:

A model-based specification S defining the program type ADT is relatively

observable if and only if there is a totally correct layered implementation of:

operation   Were_Equal (
consumes   x1: ADT
consumes   x2: ADT

) : Boolean
ensures   Were_Equal iff  (#x1 = #x2)

A model-based specification S defining the program type ADT is relatively

controllable if and only if there is a totally correct layered implementation

of:

operation   Move (
consumes   x1: ADT
produces   x2: ADT

)
ensures   x2 = #x1

There is a variety of relationships among these sets of definitions for observability and

controllability.  For example, the ability to code Are_Equal in a layered fashion implies

the ability to code Were_Equal.  Also, the ability to layer Get_Replica implies the ability

to layer Move.  If it is possible to implement Were_Equal and Get_Replica, an

implementation of Are_Equal can be readily constructed for any object as shown below:

procedure   Are_Equal (
preserves   x1: ADT
preserves   x2: ADT

) : Boolean
copy1, copy2: ADT

begin
Get_Replica (x1, copy1)
Get_Replica (x2, copy2)
return  Were_Equal (copy1, copy2)

end  Are_Equal
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Also note that every object-based RESOLVE concept permits construction of the Move

operation, because every object-based RESOLVE concept includes the Swap (“:=:”)

operator on the provided type.  Move is just “half a swap”, as shown below.

procedure   Move (
consumes   x1: ADT
produces   x2: ADT

)
begin

x1 :=: x2
end  Move

Figure 4.3 shows the relationships among the alternative relative definitions.  Each region

defines a set of specifications that meet the specific definitions of

observability/controllability defined by that region.

Were_Equal

Are_Equal

Move

Get_Replica

Figure 4.3 - Relationships Among the Relative Definitions

For example, the final design of the Prioritizer_Template specification in Chapter III,

which is argued to be observable and controllable, happens to be placed in the most dense

region of Figure 4.3 (the lower-left region).  This is because it is possible to layer the

operations Are_Equal and Get_Replica for Prioritizers defined in that specification.

While it is not clear which of the alternative definitions are the best ones for evaluating

candidate specifications, it is fair to say that a specification which fulfills all of the

proposed definitions is observable and controllable (e.g., the Prioritizer_Template).  This

definition, unfortunately, might be too rigid for many reasonable specifications.

Before exploring other possible definitions of the terms, we note one other problem that

needs to be tackled for parameterized concepts such as the Prioritizer_Template.  For
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example, what assumptions can be made on the data types being passed in as parameters

(and any other imported types)?  In particular, if it is assumed that it is possible to

enumerate over all the values of any imported types, then operations such as those

discussed thus far can often be (inefficiently) layered on a concept even when the set of

primary operations on the provided type is otherwise not sufficient for layering these

operations.  Hence, assuming the enumerability of any imported types makes it possible

to deem patently poor specification designs as being observable and controllable.  The

enumerability on imported types “weakens the definitions so much that they are

practically worthless” [Weide 96].  As a result, we stipulate that (the abstract data type

provided by) a concept can only be deemed to be observable and controllable when it is

assumed that any types provided through parameterization are also observable and

controllable.  For example, we say that it is possible to layer Are_Equal on the

Prioritizer_Template so long as it is possible to make use of a similar Entries_Are_Equal

operation for the type of Entry provided during instantiation.

The discriminating power of the relative code-based definitions becomes clear in

considering variants of a concept for a generic Set abstraction.  In [Weide 96], nine

variants of a Set concept are discussed, where eight of the nine are deliberately lacking in

quality (e.g., some variants are missing crucial Set operations), and one design is shown

to be arguably a best design choice.  In other words, the code-based definitions for

observability and controllability admit only the one good design, and simultaneously

make explicit why the poor designs fail.  However, some questions still remain.  For

example, what about absolute versions of the definitions?  And is there a way to reduce

the resulting number of definitions to a more meaningful set?  More importantly, is there

a way to formalize the notion of “there exists a totally correct layered implementation?”

Attempts to answer these questions motivate alternative formalizations of observability

and controllability.

Code-Based Definitions Revisited

The objective of this subsection is to identify absolute versions of code-based definitions

for observability and controllability, and to draw relationships between the absolute and

relative definitions.  The definition for absolute controllability, namely Construct_c, was

among the first results above.  Therefore, here we need only to define a class of absolute

code-based definitions for observability.  Below, we restate the previous informal

definition for (relative) observability followed by a definition for absolute observability:
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Relative Observability - A model-based specification S defining the

program type ADT is relatively observable if and only if every two

unequal values in ADT’s state space are “computationally

distinguishable” using some combination of the operations of S.

Absolute Observability - A model-based specification S defining the

program type ADT is absolutely observable if and only if every value

in ADT's state space is “computationally distinguishable” from every

other value in ADT’s state space using some combination of the

operations of S.

The above definitions appear to be identical, thereby exemplifying the inadequacy of

informal statements in separating the ideas.  When formally stated, however, it is clear

that the absolute notion of observability is quite different:

A model-based specification S defining the program type ADT is

absolutely observable if and only if for every constant c: ADT, there is a

totally correct layered implementation of:

operation   Is_Equal_To_c (
preserves   x: ADT

): Boolean
ensures   Is_Equal_To_c  iff   (x = c)

While this absolute definition of observability is symmetric with its controllability

counterpart Construct_c, it is not independent.  That is, the need to preserve the argument

requires the ability to get a replica of the argument first.  To make the two absolute

definitions more independent, the definition of observability needs to be changed as

follows:

A model-based specification S defining the program type ADT is

absolutely observable if and only if for every constant c: ADT, there is a

totally correct layered implementation of:

operation   Was_Equal_To_c (
consumes   x: ADT

): Boolean
ensures   Was_Equal_To_c  iff   (#x = c)
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As in the case of the relative definitions, there are interesting relationships among

absolute definitions as well.  The ability to layer operations of the form Is_Equal_To_c

implies the ability to layer operations of the form Was_Equal_To_c.  More interesting are

the intertwined relationships among the different absolute and relative definitions.  For

example, the ability to layer Are_Equal and operations of the form Construct_c implies

the ability to layer operations of the form Is_Equal_To_c as follows:

operation   Is_Equal_To_c (
preserves   x: ADT

) : Boolean
copy_c: ADT

begin
Construct_c (copy_c)
return  Are_Equal (copy_c, x)

end  Is_Equal_To_c

Also, the ability to layer Get_Replica and operations of the form Was_Equal_To_c also

implies the ability to layer operations of the form Is_Equal_To_c:

operation   Is_Equal_To_c (
preserves   x: ADT

) : Boolean
copy_x: ADT

begin
Get_Replica (x, copy_x)
return  Was_Equal_To_c (copy_x)

end  Is_Equal_To_c

Figure 4.4 below shows a summary of the implications among the various absolute and

relative definitions for observability and controllability.

Are_Equal implies Were_Equal

Get_Replica implies Move

Were_Equal and Get_Replica implies Are_Equal

Is_Equal_To_c implies Was_Equal_To_c

Were_Equal and Construct_c implies Was_Equal_To_c

Are_Equal and Construct_c implies Is_Equal_To_c

Get_Replica and Was_Equal_To_c implies Is_Equal_To_c

Figure 4.4 - Relationships Among Different  Code-Based Definitions



69

Figure 4.5 contains a depiction of the relationships among the absolute and relative

definitions.  Given that there can be 27 = 128 possible regions, or “specification classes”,

derived from the seven definitions of observability and controllability, the figure shows

only those that can exist.  Regions depicting relationships among the definitions that

violate the implications in Figure 4.4 above cannot possibly exist.  This reduces the total

number of regions to at most 37 classifications for specification designs.  Figure 4.5 lists

these classes of admissible specification designs.
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A "dot" means logical and.
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Figure 4.5 - Classifying Specifications into 37 Possible

Ways to Satisfy Different  Definitions

For example, region ‘1’ (Are_Equal) is missing from Figure 4.5 because it is not possible

for a specification to satisfy Are_Equal without satisfying anything else.  In particular,

Are_Equal implies Were_Equal, and this is why “1 and 2” is present in Figure 4.5.  As

another example, it is not possible for a specification to satisfy the definitions of

Were_Equal and Construct_c without satisfying Was_Equal_To_c since this last

operation can always be implemented using the first two.  This is why the region “2 and

7” is not admissible in Figure 4.5 above, but “2 and 6 and 7” is.

A Discussion of the Alternative  Code-Based Definitions

The identification of absolute and relative definitions for observability and controllability

has led to a variety of relationships among them.  However, this is perhaps more
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confusing than helpful, since the implications involving different definitions suggest that

some definitions might be readily discarded.  It might be true that “almost good”

specifications could be better redesigned as a result of applying only a subset of the

definitions.  But it does not seem that a suitable basis of the definitions exists, given that

there is no one definition that appears in all 37 combinations outlined in Figure 4.5.

In seeking to answer which code-based definitions are the “right” ones, we are left with

one of two choices:  either stipulate that a specification is observable and controllable if

and only if it belongs to the class “1.2.3.4.5.6.7” in Figure 4.5, or pick one of the other 36

classes that seems most reasonable.  The first choice might not be that bad, since we

expect most object-based specifications should be suitable for use in layering any of the

seven observability/controllability operations.  It remains unclear, however, that this

should be a stipulation for all practical object-based specifications.

The second choice seems more appropriate.  For example, it is reasonable to think that

the copying of values for certain data abstractions is undesirable (e.g., system-level or

highly global structures).  That is, some object-based specifications might wish to

deliberately preclude the ability to layer Get_Replica.  This suggests that the ability to

layer operations of the form Construct_c, which in turn ensures the ability to reach every

specified state, is a more appropriate condition for controllability.  Similarly (and as a

direct result), it is also reasonable for such specifications to deliberately preclude the

ability to layer Are_Equal (in part since it might require Get_Replica), thereby suggesting

that Were_Equal is a more appropriate condition for observability.  More specifically, it

is reasonable that specifications we intuitively would deem observable and controllable

are those that facilitate the layering of Were_Equal and operations of the form

Construct_c.  The closest match from Figure 4.5 is the specification class “2 and 6 and 7”

(Were_Equal, Was_Equal_To_c, and Construct_c), where ‘6’ is a direct implication of “2

and 7”.

It is arguable whether Were_Equal implies observability and Construct_c implies

controllability, as there are perhaps equally plausible arguments advocating a different

specification class from Figure 4.5.  It is also arguable that attempting to define

observability and controllability in a code-based fashion is not the best approach.  The

next section explores this last point by considering the use of scenarios in characterizing

observability and controllability.
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4.2 Scenarios

A key difficulty with the code-based definitions is their reliance on being able to define

formally a “total correctness” of code that possibly involves calls to operations with

relational specifications.  Ogden has noted that current proof systems, including the one

for RESOLVE as outlined in [Krone 88, Ernst 94, Sitaraman 97], are inadequate for the

purpose [Ogden 97].  In addressing the problems and in proving the correctness of

relational data abstraction implementations, Odgen has proposed the use of “scenarios”.

While this research is still in progress, we apply the idea of scenarios to alternative and

direct definitions of observability and controllability without having to define total

correctness semantics for code involving loops over relationally specified abstract data

types.

A scenario is essentially a sequence of calls to operations from a given object-based

specification, and in this sense is similar to a program trace on a given piece of code.  A

scenario does not involve any programming constructs such as loops or conditional

statements.  Rather, a scenario simply involves a sequence of operation calls.

Additionally, unlike a program trace in which variables of any known type might be

declared, a scenario involves only variables of the type provided by the object-based

specification on which the scenario acts.  That is, a scenario does not utilize variables of

imported types; in a scenario, arguments of imported types are given as specific constant

values rather than variable names.  A key reason for the different treatment between the

provided type and imported types is to allow one to investigate interesting aspects

regarding the manipulation of the state space of the type provided by a specification,

without having to be concerned (or overwhelmed) with similar aspects of the types

imported into the specification.  Another way to view this is that a scenario lets one “plug

in” desired values for arguments of imported types so that attention can be focused on the

effects these values have on variables of the provided type.

To exemplify the use of scenarios, Figure 4.6 below shows a simple relational

specification of a concept that exports a type with a state space of only two values,

appropriately called Two_Valued_Facility, and an example scenario σ on this concept.  It

should be noted that the syntax of the scenario σ in Figure 4.6 is not entirely precise, and

that we will discuss the specifics following this example.  For the concept
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Two_Valued_Facility, all parameters are specified to be of alters mode because it is the

most general of all specification modes.  Other parameter modes, such as preserves, are

treated as involving additional conjunctions in the ensures clauses.

concept  Two_Valued_Facility

uses  Standard_Integer_Facility

type  family  Two_Valued is  modeled  by
enumeration  {value1, value2}

exemplar  t
initialization

ensures t=value1

operation  P( alters  x: Two_Valued, alters  i: Integer)
ensures i > #i and  (x=value1 or  x=value2)

operation  Q( alters  x: Two_Valued)
requires x=value1
ensures x=value1 or  x=value2

end  Two_Valued_Facility

σ = < x: Two_Valued,  P(x,23) → (x,36),  Q(x) → (x) >

Figure 4.6 - Specification of the Concept “Two_Valued_Facility”

and an Example Scenario σ

The scenario σ in Figure 4.6 begins by declaring one variable x of type Two_Valued,

which is initialized according to its “initialization ensures” clause; i.e., x has the value

“value1”.  Next, the scenario σ has a call to operation P with arguments x and integer 23

resulting in (the “→” is read “results in”) a possibly different value for x and integer 36.

The scenario concludes with a call to operation Q having parameter x, resulting in a

possibly different value for x.

Because of the relational behavior specified in the ensures clauses of P and Q, the

scenario σ actually describes several possible paths of computation, since it does not state

explicit values for the variable x.  This capability proves useful in dealing with

observability and controllability in a uniform fashion for handling functional and

relational specifications of operations.  Figure 4.7 below shows the possible paths of

computation that σ characterizes:
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x:T

P(value1,23)

(x is initialized to value1)

(value1,36),

(value1) ???

→

→

< x:Two_Valued,  P(x,23)→ →(x,36),  Q(x) (x)>

(value2)

Q(value1)
(value2,36),

→Q(value2)

σ =

Figure 4.7 - Possible Paths of Computation Through

Scenario σ for  the Concept Two_Valued_Facility

The above scenario σ raises an interesting issue regarding its legitimacy with respect to

the concept Two_Valued_Facility.  For example, if the value of x upon calling operation

Q turns out to be value2, then this violates the pre-condition for Q in Figure 4.7 above.

For our purposes, we are interested only in legitimate scenarios, and we define these to be

scenarios that describe only paths of computation which do not violate any pre- or post-

conditions (such as the bold-shaded paths in Figure 4.7 above).  Since σ above contains a

path that violates a pre-condition, σ is not a legitimate scenario on Two_Valued_Facility

objects.  Given this intuitive meaning and role of scenarios, we are now ready to define

the terms formally.

Syntax for  Scenarios

We define a scenario to be a 4-tuple, each part of which is defined formally in subsequent

pages:

Scenario == (
base_ai: Abstract_Instance,
var_decl_set: set  of  Variable_Declaration,
op_call_seq: sequence  of  Operation_Call,
alt_init_val_set: set  of  (n,v) where  n ∈ Name and

v ∈ Constrained_Model_Space
)
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The attribute “base_ai” constitutes the context for a scenario, and it is the abstract

instance of the concept under consideration.  This abstract instance may be a non-generic

concept that provides a type (e.g., Two_Valued_Facility in Figure 4.6 that uses the

Standard_Integer_Facility) or an instantiated generic concept (e.g., Integer_Prioritizer,

obtained by instantiating Prioritizer_Template with Integer) [Edwards 95].  The definition

of scenarios, defined to act only on abstract instances, poses no difficulties in using

scenarios to investigate properties of generic concepts.  This is because any type T used in

instantiating a generic concept becomes an imported type, and in every scenario the

values of type T are provided as specific constant values, thus factoring out the particular

computational expressiveness of type T.  Therefore, for definitions of observability and

controllability based on scenarios, what holds for an instantiated generic concept holds

for the (uninstantiated) generic concept as well.

The attribute “var_decl_set” is the set of variables used in a scenario, and they must all be

of the type provided by base_ai.  The attribute “op_call_seq” is the sequence of operation

calls in a scenario.  The attribute “alt_init_val_set” is used for stating explicit initial

values for certain variables, thereby overriding any values imposed on the mentioned

variables by their initialization assertion.  This flexibility proves useful for fully

decoupling the definitions of observability and controllability.  Each variable-value pair

in alt_init_val_set consists of a Name, which is some allowable variable name, and a

value from a Constrained_Model_Space, which is the specified mathematical model

space for a type7.  If alt_init_val_set is empty, then all variables are assumed to have

values consistent with the initialization assertion of the type provided by base_ai.

Expressed in this syntax, the (illegitimate) scenario σ from Figure 4.6, for example,

becomes:

σ = (

Two_Valued_Facility, {(x: Two_Valued)}, < P(x,23)→(x,36), Q(x)→(x) >, {}

)

                                                
7 It should be noted here that we do not make explicit the particular syntax or rules governing any italicized
words used throughout the definitions, but simply offer a brief intuitive description of each.
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We continue by defining the terms used in “Scenario” above.  An abstract instance (for

our purposes) is defined to be:

Abstract_Instance == (
type: Type_Declaration,
op_decl_set: set  of  Operation_Declaration,
uses_set: set  of  Abstract_Instance

)

The attribute “type” is the data type exported by the abstract instance.  In general, an

abstract instance could actually provide multiple data types, and at times this is necessary.

However, in this chapter, we restrict our attention to the more common abstract instances

that provide only one type.  The attribute “op_decl_set” denotes the set of operations

exported by the abstract instance.  It suffices to say here that each operation involves only

arguments of the provided type or of any imported type.  The attribute “uses_set” is the

set of abstract instances used by the abstract instance.

A type declaration in an abstract instance is defined to be:

Type_Declaration == (
name: Name,
model_space: Constrained_Model_Space ,
exemplar: Name,
init: Assertion

)

The attribute “name” is the name of the type itself.  The attribute “model_space” is the

(possibly constrained) mathematical model used to model the type.  In general, an abstract

instance could contain module-level or “global” state information.  A typical example

would be “counters” that keep track of the number of variables of the provided type that

have been declared.  While it is certainly reasonable to pose observability and

controllability questions for concepts containing global state information, we leave the

details for future work.  The attribute “exemplar”, used in the initialization assertions of

an abstract instance, is needed for substituting formal parameters with actual parameters

when evaluating the initialization assertion for the type.  The attribute “init” is the

initialization assertion for variables of the type, where “Assertion” denotes a valid logical

assertion in RESOLVE.
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The declaration of an operation (in an abstract instance) is defined to be:

Operation_Declaration == (
op_name: Name,
formal_seq: sequence  of  Argument,
pre: Assertion ,
post: Assertion

)

The attribute “op_name” is the name of the operation.  The attribute “formal_seq” is the

formal parameter sequence of the operation.  The attribute “pre” is the pre-condition of

the operation, and the attribute “post” is the post-condition of the operation.

We define a variable declaration to be:

Variable_Declaration == (
var_name: Name,
type_name: Name

)

The attribute “var_name” is the name of the variable.  The attribute “type_name” is the

type of the variable.

An operation call (in a scenario) is defined as:

Operation_Call == (
op_name: Name,
in_seq: sequence  of  Argument,
out_seq: sequence  of  Argument

)

The attribute “name” is the name of the operation being called.  The attribute “in_seq” is

the input parameter sequence of arguments passed to the operation.  The attribute

“out_seq” is the output parameter sequence of arguments as a result of the operation call.
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Finally, we define an argument to be:

Argument == (
var_name: Name | const_value: Constrained_Model_Space ,
type_name: Name

)

If the argument is a variable name, then the attribute “var_name” denotes the name of the

variable.  If the argument is some constant value instead, then the attribute “const_value”

denotes the value of the argument.  The attribute “type_name” is the type of the argument.

For convenience, we assume the structural equivalence of a Variable_Declaration and an

Argument.  This is useful for state mapping purposes, where range values can be mapped

from variable names as well as from argument names that are actually variable names.

Hypotheses for Well-Formed Scenarios

Having stated the various attributes of a scenario and defined the terms used therein, we

are now ready to discuss when a given 4-tuple actually constitutes a well-formed

scenario.  There are three hypotheses to be met for a scenario to be well-formed.  The

Acceptable Variable Declaration Set Hypothesis mandates that a scenario only involves

variables of the type provided by the abstract instance on which the scenario acts.  The

Acceptable Operation Call Sequence Hypothesis states the details concerning a valid

operation call.  The Acceptable Alternate Initial Value Set Hypothesis ensures that only

declared variables are given explicit values and that their values are reasonable.

1) Acceptable Variable Declaration Set Hypothesis

A scenario can only have variables of the type provided by the abstract instance on which

the scenario acts (i.e., base_ai).  This is stated as follows:

definition  Has_Acceptable_Variable_Declaration_Set (
σ: Scenario

): boolean  =
∀ vd ∈ σ.var_decl_set,

vd.type_name = σ.base_ai.type.name
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2) Acceptable Operation Call Sequence Hypothesis

There are several constraints on the kinds of things that can appear in an operation call.

First of all, the operation must exist in the abstract instance on which the scenario acts.

The other constraints state that the input and output argument sequences must be

consistent, that arguments of the provided type must be variables, and that arguments of

imported types must be constants.

definition  Has_Acceptable_Operation_Call_Sequence (
σ: Scenario

): boolean  =
∀ op_call ∈ σ.op_call_seq,

∃ op_decl ∈ σ.base_ai.op_decl_set ∋
Matching_Call_And_Declaration (op_decl, op_call) and
Matching_Argument_Sequences (

op_call.in_seq, op_call.out_seq,
σ.var_decl_set, σ.base_ai

)

where

definition  Matching_Call_And_Declaration (
od: Operation_Declaration,
oc: Operation_Call

): boolean  =
od.op_name = oc.op_name and
|od.formal_seq| = |oc.in_seq| and
∀ i: integer, 1 ≤ i ≤ |oc.in_seq|,

od.formal_seq(i).type_name = oc.in_seq(i).type_name

definition  Matching_Argument_Sequences (
in_seq: sequence  of  Argument,
out_seq: sequence  of  Argument,
var_decl_set: set  of  Variable_Declaration,
base_ai: Abstract_Instance

): boolean
|in_seq| = |out_seq| and
∀ i: integer, 1 ≤ i ≤ |in_seq|,

if  in_seq(i).type_name = base_ai.type.name then
∃ vd ∈ var_decl_set ∋

in_seq(i).var_name = vd.var_name and
out_seq(i).var_name = vd.var_name

else
∃ ai ∈ base_ai.uses_set ∋

in_seq(i).type_name = ai.type.name and
out_seq(i).type_name = ai.type.name and
in_seq(i).const_value ∈ ai.type.model_space and
out_seq(i).const_value ∈ ai.type.model_space
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3) Acceptable Alternate Initial Value Set Hypothesis

This hypothesis ensures that the alternate initial value set for a scenario involves only

variables that have been declared, and that the values for such variables are from the

specified state space of the type of the variable.  This is stated as follows:

definition  Has_Acceptable_Alternate_Initial_Value_Set (
σ: Scenario

): boolean  =
∀ alt_val ∈ σ.alt_init_val_set,

∃ vd ∈ σ.var_decl_set and
c ∈ σ.base_ai.type.model_space ∋

alt_val = (vd.var_name, c)

The three hypotheses above are characteristic of all well-formed scenarios.  The

definition of Is_Well_Formed_Scenario below summarizes this notion:

definition  Is_Well_Formed_Scenario (
σ: Scenario

): boolean  =
Has_Acceptable_Variable_Declaration_Set( σ) and
Has_Acceptable_Operation_Call_Sequence( σ) and
Has_Acceptable_Alternate_Initial_Value_Set( σ)

In the next subsection, we discuss the semantic issues regarding scenarios, so that we can

precisely state when a given scenario is legitimate.

State Semantics and Legitimacy of Scenarios

To define when a scenario is legitimate, we use the state spaces after each operation call

in the scenario.  Given that scenarios are concerned with relational data abstraction

specifications in general, it is possible that the state space after each operation call has

multiple variable-to-value mappings for each variable.  This observation requires us to

denote the state of a scenario as a spectrum; i.e., a set of mappings from variable names to

their values as shown below.  Additionally, if a pre- or post-condition does not hold for

some operation call in a scenario, or if a scenario is not well-formed, then the spectrum

for that scenario contains the (bottom) state ⊥.  We denote the spectrum for scenario σ as

S(σ), which has the structure:
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S( σ) == set  of  s: var_name → σ.base_ai.type.model_space
where

∀ vd ∈ σ.var_decl_set,
∃ k ∈ σ.base_ai.type.model_space ∋

s(vd.var_name) = k
union  ⊥

We are now ready to define the semantics of S(σ) formally:

S( σ) =
if  not  Is_Well_Formed_Scenario ( σ) then  ⊥

else  if  | σ.op_call_seq| = 0 then
set  of  s where  Is_Initial_State ( σ, s)

else
set  of  s where  Is_In_Spectrum ( σ’, op_call, s)
union  ⊥ if  Already_Has_Or_Produces_Bottom ( σ’, op_call)

and  where
σ.op_call_seq = σ’.op_call_seq • <op_call> and
σ.base_ai = σ’.base_ai and
σ.var_decl_set = σ’.var_decl_set and
σ.alt_init_val_set = σ’.alt_init_val_set

The above characterization makes use of three sub-definitions, termed Is_Initial_State,

Is_In_Spectrum, and Already_Has_Or_Produces_Bottom, which are defined below:

definition  Is_Initial_State (
σ: Scenario,
s: var_name → σ.base_ai.type.model_space

): boolean  =
∀ alt_val ∈ σ.alt_init_val_set,

∀ vd ∈ σ.var_decl_set,
if  ∃ c ∈ σ.base_ai.type.model_space ∋

alt_val = (vd.var_name, c) then
s(vd.var_name) = c

else
σ.base_ai.type.init [

σ.base_ai.type.exemplar → s(vd.var_name)
]

The predicate Is_Initial_State asserts that a state s is “initial” when all variables not

mentioned in the alternate initial value set map to a value satisfying the initialization

clause, and when all variables that are mentioned in the alternate initial value set map to

the specified value.
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definition  Is_In_Spectrum (
σ: Scenario,
op_call: Operation_Call,
s: var_name → σ.base_ai.type.model_space

): boolean  =
∃ s’ ∈ S( σ) and  op_decl ∈ σ.base_ai.op_decl_set ∋

Matching_Call_And_Declaration (op_decl, op_call) and
Meets_Pre (op_decl, op_call, σ.base_ai, s’) and
Meets_Post (op_decl, op_call, σ.base_ai, s’, s) and

  ∀ vd ∈ σ.var_decl_set,
∀ arg ∈ op_call.in_seq,

if  vd.var_name ≠ arg.var_name then
s(vd.var_name) = s’(vd.var_name)

Is_In_Spectrum asserts that a state s is in the spectrum when:  1) there exists some state s’

from the spectrum before the current operation call such that the pre- and post-conditions

hold, and 2) the mappings for all non-participating variables are not affected (i.e., they are

the same between s and s’).  Is_In_Spectrum makes use of two sub-definitions,

Meets_Pre and Meets_Post, which are defined to be:

definition  Meets_Pre (
op_decl: Operation_Declaration,
op_call: Operation_Call,
base_ai: Abstract_Instance,
s’: var_name → base_ai.type.model_space

): boolean  =
op_decl.pre [

for  i from  1 to  |op_decl.formal_seq|,

op_decl.formal_seq(i)
→

if  op_call.in_seq(i).type_name = base_ai.type.name then
s’(op_call.in_seq(i).var_name)

else   op_call.in_seq(i).const_value
]

The definition for Meets_Pre evaluates the pre-condition of the operation in question by

substituting the formal parameters (i.e., those appearing in the operation declaration in the

abstract instance) with the actual parameters.  For “actual” parameters that are variables,

the values obtained by applying the state function s’ to those variables are given.  For

“actual” parameters that are constant values (of some imported type), those constant

values are given.  The expression “[for  i from  1 to n, a(i) → b(i)]” means that, for i from

1 to n, substitute the expression a(i) with the expression b(i).
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definition  Meets_Post (
op_decl: Operation_Declaration,
op_call: Operation_Call,
base_ai: Abstract_Instance,
s’: var_name → base_ai.type.model_space
s: var_name → base_ai.type.model_space

): boolean  =
op_decl.post [

for  i from  1 to  |op_decl.formal_seq|,

#op_decl.formal_seq(i)
→

if  op_call.in_seq(i).type_name = base_ai.type.name then
s’(op_call.in_seq(i).var_name)

else   op_call.in_seq(i).const_value,

op_decl.formal_seq(i)
→

if  op_call.out_seq(i).type_name = base_ai.type.name then
s(op_call.out_seq(i).var_name)

else  op_call.out_seq(i).const_value
]

The definition for Meets_Post evaluates the post-condition of the operation in question by

substituting the formal parameters with the actual parameters.  Essentially, there are two

groups of formal parameters to deal with.  The first group of formal parameters represents

the values passed into the operation, and are designated using a “#” sign, as in

“#od.formal_seq(i)” above.  This is the syntax used in the RESOLVE notation.  For this

group of formal parameters, the substitution expression is identical to that used in the

definition of Meets_Pre.

The second group of formal parameters represents the values resulting from the operation

call, and are designated by the absence of the “#” sign, as in “od.formal_seq(i)” above.

For this group, the parameters in the output sequence of the current operation call that are

variables are substituted with their corresponding values from the state function s,

whereas the parameters that are constant values are simply substituted with those constant

values.
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Finally, the definition of Already_Has_Or_Produces_Bottom is given as:

definition  Already_Has_Or_Produces_Bottom (
σ: Scenario,
op_call: Operation_Call

): boolean  =
⊥ ∈ S( σ) or
∃ s’ ∈ S( σ) and  op_decl ∈ σ.base_ai.op_decl_set ∋

Matching_Call_And_Declaration (op_decl, op_call) and
(

~Meets_Pre (op_decl, op_call, σ.base_ai, s’) or
∀ t: var_name → σ.base_ai.type.model_space,

~Meets_Post (op_decl, op_call, σ.base_ai, s’, t)
)

Already_Has_Or_Produces_Bottom captures the effect on the spectrum of a scenario

when either a pre-condition or a post-condition is violated.  More precisely, if for some

operation call, there is a state having values that violate the operation’s pre-condition,

then the resulting state in this case is ⊥.  Similarly, if for some operation call, there is

state such that the pre-condition holds, but for which the post-condition can never hold

(due to illegitimate constant values in the scenario), then the resulting state in this case is

⊥.  In either case, ⊥ becomes part of the spectrum and never leaves.

Having defined the state semantics of a scenario, we can now say that a scenario σ is

legitimate if and only if ⊥ is not an element of S(σ).  This is captured by the following

definition:

definition  Is_Legitimate_Scenario (
σ: Scenario

): boolean  =
⊥ ∉ S( σ)

4.3 Evaluation of Prioritizer_Template Specifications Using
Scenarios

This section exemplifies the utility of scenarios by evaluating the Prioritizer_Template

specifications from Chapter III for the properties of observability and controllability.  In

the process, it also lays the intuitive foundation for the formal definition of the terms

using scenarios in the next section.
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Using Scenarios to Show Non-Observability

Scenarios can be used to show witness to the (non-) observability of an abstract instance.

Observability is essentially the ability to show a difference between two known-to-be-

different values, and for scenarios such a difference can be revealed through the constant

indicator values appearing in the output sequences of operation calls.

The basic idea of using scenarios for the purpose of observability is as follows:  We start

with two given different values k1 and k2 from the space of type provided by the abstract

instance that is under evaluation.  We then consider two similar scenarios σ1 and σ2 on

that abstract instance which begin with the values k1 and k2, respectively, for some

candidate variable of the provided type.  By “similar”, we mean that σ1 and σ2 have the

same context, the same set of variable declarations, and call the same operations using the

same input parameter sequences.  In other words, the output sequences resulting from the

operation calls may be different between σ1 and σ2, both in terms of the values for

variables as well as the indicator values.

If both σ1 and σ2 are legitimate scenarios, and if they have different indicator values

between them, then this shows the possibility of getting distinguishing results, which

means that the abstract instance under evaluation might be observable.  If this is the case,

then all that remains is the question of whether we could instead “erase” the indicator

values from σ1 and σ2 and legitimately “write down” some same sequence of indicator

values in both σ1 and σ2.  If so, then at this point the “replaced” versions of σ1 and σ2

are in fact identical in all respects, thus demonstrating the possibility of getting

nondiscriminating results.  This situation means that the abstract instance under

evaluation is not observable.  To the contrary, if we find that it is impossible to “erase”

and “write down” some same sequence of indicator values in σ1 and σ2, then the abstract

instance is deemed observable.

As an example, consider the Prioritizer_Template based on unconstrained strings in

Figure 3.2.  This specification is not observable, since the “erase and replacement”

procedure described above is in fact possible for some different values k1 and k2.  For

example, consider the values k1 and k2 and scenarios σ1 and σ2 below for the abstract

instance Integer_Prioritizer, which is obtained by instantiating Prioritizer_Template with

Integer:
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k1 = (<37, 43>, false)
k2 = (<43, 37>, false)

σ1 = (
Integer_Prioritizer,{p:Integer_Prioritizer},op_call_seq1,{(p,k1)}

)
and
σ2 = (

Integer_Prioritizer,{p:Integer_Prioritizer},op_call_seq2,{(p,k2)}
)

where
op_call_seq1 = <

Extract (p,3) → (p, 37), Extract (p,17) → (p, 43)
>
and
op_call_seq2 = <

Extract (p,3) → (p, 37), Extract (p,17) → (p, 43)
>

As exemplified by σ1 and σ2 above, Extract called on two strings which are permutations

of each other can (and always will) result in the same sequence of indicator values (which

is pointed out by the bold constants).  If Extract_Any were to be used instead of Extract,

it is still possible that identical indicator values would result.  Hence, the

Prioritizer_Template specification based on the unconstrained string model is not

observable.

Using Scenarios to Show Non-Controllability

Scenarios can be used to show witness to the (non-) controllability of an abstract instance.

Controllability is essentially the ability to generate any “target” value k of the type

provided by an abstract instance “from scratch” (i.e., from an initialized variable).  This

capability can be shown using scenarios as follows:  for all target values k, if there is a

scenario σ having some variable such that, for all mappings of that variable in S(σ), the

variable maps to the target value k, then the abstract instance under evaluation is

controllable.

As an example, consider the Prioritizer_Template based on ordered strings in Figure 3.3.

This specification is not controllable, since it is not possible to demonstrate the existence

of “generating” scenarios for all target values k.  For example, consider an abstract

instance Record_Prioritizer, which is obtained by instantiating Prioritizer_Template with

Two_Field_Record.  For this record, let the first field be Integer and the second be
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Character.  Also, assume that the records are to be prioritized based on “≤” ordering on

the Integer value.  Consider the following target value k and scenario σ:

k = (<(1,‘a’), (2,‘b’), (2,‘c’)>, true)

σ = (
Record_Prioritizer, {p:Record_Prioritizer}, op_call_seq, {}

)

where
op_call_seq = <

Insert (p,(1,‘a’)) → (p,(0,‘’)),
Insert (p,(2,‘b’)) → (p,(0,‘’)),
Insert (p,(2,‘c’)) → (p,(0,‘’))

>

The Insert operation alone is as useful as any combination of the other operations in

attempting to generate a given string value.  Therefore, without loss of generality, we can

narrow our consideration to only those scenarios that involve calls to Insert, such as σ
above.

The scenario σ could possibly result in the given target value k.  However, we have seen

in the previous chapter that, for an entry (record) that has the same ordering as one that is

already in the Prioritizer (i.e., (2,‘b’) and (2,‘c’) above), the Insert operation could place

that entry on either side of the existing one.  That is, the scenario σ above could possibly

generate the target value k, but cannot guarantee that it will.  Indeed, it is straightforward

to see (and can be formally argued using the spectrum for σ) that there is no scenario that

can guarantee the generation of the intended target value k in this case.  Hence, the

specification of Prioritizer_Template based on ordered strings is not controllable.

Discussion of an Observable and Controllable Specification for
Prioritizer_Template

The final Prioritizer_Template specification in Figure 3.5, modeled using a multi-set, was

deemed observable and controllable.  The goal here is to reaffirm this conclusion using

scenarios.

We begin with observability.  When two Prioritizers (multi-sets) are of different sizes, a

pair of legitimate and similar scenarios involving a single call to Size_Of must always

have different indicator values for the sizes.  Likewise, for two Prioritizers in different
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phases, Is_In_Insertion_Phase serves the purpose.  The more interesting observability

question is whether it is always possible to differentiate between two same-size-same-

phase Prioritizers that differ in their contents by at least one entry.  Consider the two

Record_Prioritizer (as previously instantiated) values k1 and k2 and scenarios σ1 and σ2:

k1 = ({(2,‘a’), (2,‘b’), (3,‘d’)}, false)
k2 = ({(2,‘a’), (2,‘b’), (3,‘c’)}, false)

σ1 = (
Record_Prioritizer,{p:Record_Prioritizer},op_call_seq1,{(p,k1)}

)
and
σ2 = (

Record_Prioritizer,{p:Record_Prioritizer},op_call_seq2,{(p,k2)}
)

where
op_call_seq1 = <

Extract (p,(7,‘f’)) → (p,(2,‘a’)),
Extract (p,(2,‘h’)) → (p,(2,‘b’)),
Extract (p,(3, ‘’)) → (p, (3,‘d’) )

>
and
op_call_seq2 = <

Extract (p,(7,‘f’)) → (p,(2,‘a’)),
Extract (p,(2,‘h’)) → (p,(2,‘b’)),
Extract (p,(3, ‘’)) → (p, (3,‘c’) )

>

In this pair of legitimate and similar scenarios, the third call to Extract results in the

different indicator values (3, ‘d’) and (3, ‘c’).  Furthermore, for σ1 and σ2 above, it is not

possible to “erase” the indicator values and legitimately “replace” them with some same

sequence of indicator values.  Indeed, no matter which two different Record_Prioritizer

values are given, a sufficient number of calls to Extract will reveal a difference between

them.  For all different Record_Prioritizer values k1 and k2, there is always a pair of

legitimate and similar scenarios σ1 and σ2 that will distinguish between the two values,

and hence, the Prioritizer_Template specification is deemed observable.

For controllability, arguing that there is a scenario σ that will always generate a given

target value k is straightforward.  For a given target multi-set value k, simply construct a

scenario σ involving a series of calls to Insert, one for each entry in k.  For example,

consider the Record_Prioritizer value k below and scenario σ that generates it:
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k = ({(2,‘a’), (2,‘b’), (3,‘d’)}, true)

σ = (
Record_Prioritizer, {p:Record_Prioritizer}, op_call_seq, {}

)

where
op_call_seq = <

Insert (p,(3,‘d’)) → (p,(0,‘’)),
Insert (p,(2,‘a’)) → (p,(0,‘’)),
Insert (p,(2,‘b’)) → (p,(0,‘’))

>

It is easy to see (and can be formally argued using the spectrum for σ) that the variable p

has (and can only have) the value k at the end of σ.  Indeed, for all target values k, it is

straightforward to see that there is a scenario σ involving a sufficient number of calls to

Insert that always results in the value k.  Hence, the Prioritizer_Template specification

based on multi-sets is deemed controllable.

The manner in which we utilized scenarios to characterize observability and

controllability throughout the Prioritizer_Template example suggests that more formal

characterizations involving scenarios are possible.  Indeed this is the case, and the topic

of the next section.

4.4 Formal Scenario-Based Characterizations of
Observability and Controllability

Utilizing scenarios to formally explain the notions of observability and controllability is

the topic of this section.  The definitions are more formal than code-based versions

because they do not evade defining “total correctness” of layered implementations on

relational data abstractions.
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A Formal Scenario-Based Definition  for  Observability

Figure 4.8 below shows a formal characterization of observability based on scenarios.

definition  Is_Observable (
base_ai: Abstract_Instance

): boolean  =
∀ k1, k2 ∈ base_ai.type.model_space,

if  k1 ≠ k2 then
∃ σ1: Scenario = (

base_ai, var_decl_set, op_call_seq1, {(p, k1)}
) and
σ2: Scenario = (

base_ai, var_decl_set, op_call_seq2, {(p, k2)}
) ∋

Is_Legitimate_Scenario ( σ1) and
Is_Legitimate_Scenario ( σ2) and
Similar_Scenarios ( σ1, σ2) and
Always_Different_Indicators ( σ1, σ2, k1, k2)

Figure 4.8 - A Scenario-Based Definition  for  Observability

The definition for Similar_Scenarios formally captures the notion of two “similar”

scenarios as used in the previous section, and is defined to be:

definition  Similar_Scenarios (
σ1, σ2: Scenario

): boolean  =
σ1.base_ai = σ2.base_ai and
σ1.var_decl_set = σ2.var_decl_set and
| σ1.op_call_seq| = | σ2.op_call_seq| and
∀ i: integer, 1 ≤ i ≤ | σ1.op_call_seq|,

σ1.op_call_seq(i).op_name = σ2.op_call_seq(i).op_name and
σ1.op_call_seq(i).in_seq = σ2.op_call_seq(i).in_seq

Intuitively stated, two scenarios are similar if they have the same context, the same set of

variable declarations, and call the same operations using the same input parameter

sequences.  That is, they may differ only in their output constant values (i.e., indicator

values) as well as their alternate initial value sets.

The definition of Always_Different_Indicators formally expresses the impossibility of

performing the indicator “erase and replace” procedure discussed in the previous section,

and is given as:
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definition  Always_Different_Indicators (
σ1, σ2: Scenario,
k1, k2 ∈ σ1.base_ai.type.model_space

): boolean  =
~ ∃ γ1: Scenario = (

base_ai, var_decl_set, op_call_seq1, {(p, k1)}
) and
γ2: Scenario = (

base_ai, var_decl_set, op_call_seq2, {(p, k2)}
) ∋
Is_Legitimate_Scenario ( γ1) and
Is_Legitimate_Scenario ( γ2) and
Similar_Scenarios ( σ1, γ1) and
Similar_Scenarios ( σ2, γ2) and
∀ i: integer, 1 ≤ i ≤ | γ1.op_call_seq|,

γ1.op_call_seq(i).out_seq = γ2.op_call_seq(i).out_seq

A Formal Scenario-Based Definition  for  Controllability

Figure 4.9 below shows a formal characterization of controllability based on scenarios.

definition  Is_Controllable (
base_ai: Abstract_Instance

): boolean  =
∀ k ∈ base_ai.type.model_space,

∃ σ: Scenario ∋
Is_Legitimate_Scenario ( σ) and
Always_Reaches_Target_From_Scratch ( σ, k)

Figure 4.9 - A Scenario-Based Definition  for  Controllability

The definition for Always_Reaches_Target_From_Scratch is given as:

definition  Always_Reaches_Target_From_Scratch (
σ: Scenario,
k ∈ σ.base_ai.type.model_space

): boolean  =
σ.alt_init_val_set = {} and
∃ vd ∈ σ.var_decl_set ∋

∀ s ∈ S( σ),
s(vd.var_name) = k

Intuitively, this definition holds when a scenario σ begins with all variables initialized

and ends with at least one variable that maps to the target value k for all states in S(σ).
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4.5 Related Work

While there is hardly unanimity about the precise meaning of observability, researchers

with slightly dissimilar interpretations generally agree that it is an essential property of

sufficiently abstract software component descriptions.  Other terms used to describe the

idea are “freedom from implementation bias” [Jones 80,90] and “full abstraction” [Milner

77, He 86, Nipkow 87].  A good example of a difference in interpretation, however, is

that observable specifications exist for which there are provably correct implementations

requiring abstraction relations [Sitaraman 97, Leavens 91], yet in the view of some

researchers these same specifications have an implementation bias (are not fully abstract),

since no abstraction function exists for some implementations.  Jones gives the following

characterization of observability [Jones 90]:

“A model-oriented specification is based on an underlying set of states.  The
model is biased (with respect to a given set of operations) if there exist different
elements of the set of states which cannot be distinguished by any sequence of the
operations.”

He gives an example of a biased (i.e., non-observable) model-based specification for a

Queue similar in spirit to the one in Figure 1.7.  The specification models a Queue with a

sequence of queue entries and an index into the sequence that designates the front entry of

the Queue.  The operations are specified such that a Queue value (unnecessarily)

maintains a history of the Queue’s elements.  For example, the following two different

Queue model values actually designate the same “intuitive” queue of characters “bc”,

where ‘b’ is the front, and this is reflected by the fact that the provided operations on

Queues can never distinguish between such values:

q1:  ([a,b,c], 1) q2:  ([b,c], 0)

There are at least two important ramifications that result from this exercise:  First, a client

trying to use such a non-observable specification as a basis for understanding the intuitive

behavior of queues faces unnecessary complexity by having to continually keep in mind

that values such as those above are actually the “same” queue.  Second, the only provably

correct implementations for this so-called specification are those that (at least) maintain a

history of the queue’s entries.  Clearly this is undesirable, and exposes its implementation

bias.
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While the utility of observable specifications is unquestioned, many researchers debate

the necessity of having to determine whether a specification is observable.  Jones himself,

for example, after evaluating a “number of specifications” states that in his experience,

“very few specifications were found to have been biased,” and that “it is therefore not

envisaged that this proof obligation need normally be discharged in a formal way.”

However, in our experience we have found that, by far, most initial attempts at

specification result in non-observable designs, and that it certainly is not trivial to

determine if a specification is observable.  This is particularly so among specifications of

newer and nontrivial relational data abstraction specifications with provably correct

implementations that require abstraction relations (optimization problems are good

examples [Sitaraman 97]).

In [Kapur 80], the notion of an “expressively complete” specification is presented.  The

ideas in this work are similar in spirit to the code-based definitions.  There, an

expressively complete specification is one that has an operation set “adequate enough to

implement  all computable functions on its values.”  For controllability purposes, this

means that it is possible to construct any value in the specified state space; however, this

does not imply that this can be done efficiently.  In particular, expressive completeness

relies on the assumption that one can enumerate over all the values (in the model spaces)

of the imported types.  Enumeration is used to implement certain layered operations

where the provided operation set is not adequate to efficiently do so.  A typical example is

a data abstraction for some collection that does not permit the efficient (or even at all the)

removal of an entry, but can answer whether a particular entry is in the container when

asked about that entry.  Therefore, as a last resort for computing certain operations, one

can enumerate over all possible values of the contained type one at a time, asking whether

each such entry is contained.  However, it becomes clear that such an assumption may not

apply to data types in general, and therefore does not scale well when attempting to

design generic data abstractions.

Kapur et al. then remove this assumption by defining the notion of an “expressively rich”

specification.  An expressively rich specification (for a data abstraction) “is expressively

complete with an operation set that is rich enough to conveniently extract from a value,

all relevant information required to reconstruct the value from scratch.”  For example, a

specification for any container object should have at least one operation that can

conveniently remove entries from the container.  In this fashion, it is possible to



93

efficiently perform operations such as making a copy of some value, among others,

without needing to enumerate over all values of the contained entry’s type.

As in [Weide 96], Kapur et al. consider an example of a specification for a generic “Set”

data abstraction with operations “insert(s,x)”, “remove(s,x)”, “is_defined(s,x)”, and

“size(s)”.  Assuming that it is possible to enumerate over values of a Set, the Set

abstraction is expressively complete, but not expressively rich.  For example, it may seem

that making a copy of a Set of integers is not possible, since there is no way to remove

values from a Set without knowing that a particular value is in the Set.  However, by

using “is_defined”, we can check for Set membership of an integer value, one at a time,

by enumerating over (the finite space of) all the integers.  Each time we determine an

integer to be in the Set value, we simply “insert” an integer of the same value into a new

Set value.  In this (inefficient) manner, we can make a copy of a Set value.  Indeed, any

computable function on Set values can be handled in a similar fashion.  But to make the

use of the Set abstraction efficient and practical, we need to make the Set abstraction

expressively rich.  By adding an operation that allows us to arbitrarily remove an entry

from a Set value, such as “remove_any(s,x)”, we can efficiently make a copy of a Set

value without needing enumeration of the contained type.  This makes the computation of

any function on Set values possible in an efficient and convenient manner.  In terms of

this chapter, the Set specification with remove_any is controllable.

The use of scenarios in characterizing observability and controllability for generic data

abstractions with relational specifications stands apart from similar work in the literature.

To our knowledge, observability and controllability have never been formally defined in

the context of relational specifications for generic data abstractions.
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Validating  the
RESOLVE
Concept Library V
The previous chapters have focused on the development and explanation of formal and

practical tests for the evaluation of model-based specifications of object-based software

components.  The dual purpose of this chapter is to illustrate the utility of these tests in

evaluating actual formal specification designs, and to motivate the unique collection of

RESOLVE object-based concepts based on [Ogden 96].  For each concept presented, we

give an overview of the problem that it addresses, discuss the concept in terms of the

pragmatic criterion, and discuss observability and controllability aspects of the concept

using the scenario-based definitions for these properties.  We discuss other relevant issues

for each concept where appropriate.

We present fourteen specifications in all, ranging from concepts that capture basic data

structures, such as stacks and queues, to those that capture more complex and relational

behavior such as partial maps and minimum spanning forest abstractions.

5.1 Concepts Modeled Using Strings

In this section, we present five concepts whose behaviors are modeled using

mathematical strings.  The first three of these concepts are singly-bounded:  generic

queues, stacks, and priority queues.  In singly-bounded concepts, each object of the type

is bounded by a “max-size” constant supplied by the client at the time of instantiation.

The last two concepts in this section are communal-bounded:  generic lists and

preemptable queues.  In communal-bounded concepts, all the objects of the type from an

instantiation are bounded collectively by a “total-bound” constant supplied by the client at

the time of instantiation.
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Bounded Queue_Template

concept  Queue_Template (
type  Entry,
constant  Max_Length: Integer

)
requires Max_Length > 0

uses Standard_Integer_Facility

type  family  Queue is  modeled  by  string  of  Entry
exemplar  q
constraints |q| <= Max_Length
initialization

ensures |q| = 0

operation  Enqueue (
alters q: Queue,
consumes x: Entry

)
requires |q| < Max_Length
ensures q = #q * <#x>

operation  Dequeue (
alters q: Queue,
produces x: Entry

)
requires |q| > 0
ensures #q = <x> * q

operation  Swap_Front (
alters q: Queue,
alters x: Entry

)
requires |q| > 0
ensures there  exists  α: string  of  Entry such  that

q = <#x> * α and  #q = <x> * α

operation  Length_Of (
preserves q: Queue

): Integer
ensures Length_Of = |q|

operation  Allowed_Max_Length (): Integer
ensures Allowed_Max_Length = Max_Length

end  Queue_Template

Figure 5.1 - Queue_Template
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Overview of the Concept

Figure 5.1 above shows a specification for a bounded generic queue abstraction.  The

behavior of a queue is modeled using a mathematical string of entries, with the constraint

that a string cannot exceed the length specified by Max_Length.  The provided operations

are those typical to most queue data structures, with the exception of the Swap_Front

operation.

Is it  Pragmatic?

Enqueue, Dequeue, Length_Of, and Allowed_Max_Length form a functional basis on

abstract queue values.  The Swap_Front operation could indeed be layered using the

others, and is therefore not needed functionally.  As discussed in Chapter I, the

Swap_Front operation is useful for “one-look-ahead” applications such as parsing and

others in which there is a need to inspect the next entry before committing to its

permanent removal.  As a layered operation, Swap_Front takes linear time dependent on

the length of the queue.  However, as an intrinsic operation it can be implemented to

perform in constant time.  Hence, the provided set of operations is orthogonal when both

functionality and performance are considered.  Therefore, Queue_Template satisfies the

pragmatic criterion.

Is it  Observable and Controllable?

Queue_Template is observable.  For any two different queue values k1 and k2, there are

two legitimate and similar scenarios σ1 and σ2 such that their indicator values cannot be

“erased” and legitimately “replaced” with some identical sequence of indicator values.

There are two ways in which k1 and k2 could be different:  they could have different

lengths, or have the same length but different (arrangements of the same) entries.  For the

first case, σ1 and σ2 (with a representative variable that starts with the values k1 and k2,

respectively) involving a single call to Length_Of must always have different indicator

values (lengths) between them.  For the second case, σ1 and σ2 involving |k1| successive

calls to Dequeue must always have different indicator values (entries) between them.

Queue_Template is controllable.  There is a scenario σ for every queue value k such that

σ starts with an initialized queue variable and ends with that variable mapping to k for all
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states in S(σ).  For example, σ could simply involve successive calls to the Enqueue

operation, with the entries enqueued in the left-to-right order of the entries in k.

Other Issues

There are other possibilities for modeling the abstract behavior of a queue, and some are

also observable and controllable.  For example, a queue could instead be modeled as a

sequence of the entries with an index pointing to the front of the queue.  However, this

model is not as intuitive or understandable as the string model, since it has more structure

than is needed for the purpose.  The specification of the operations in terms of a sequence

involves significant manipulation of the indices of the entries’ positions during

enqueueing and dequeueing.  Another alternative choice is to model the queue as a

function from integers to entries, as in a “circular array” implementation.  However, as

discussed in Chapter I, queues modeled in this fashion are not observable or controllable.
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Bounded Stack_Template

concept  Stack_Template (
type  Entry,
constant  Max_Depth: Integer

)
requires Max_Depth > 0

uses Standard_Integer_Facility

type  family  Stack is  modeled  by  string  of  Entry
exemplar  s
constraints |s| <= Max_Depth
initialization

ensures |s| = 0

operation  Push (
alters s: Stack,
consumes x: Entry

)
requires |s| < Max_Depth
ensures s = <#x> * #s

operation  Pop (
alters s: Stack,
produces x: Entry

)
requires |s| > 0
ensures #s = <x> * s

operation  Depth_Of (
preserves s: Stack

): Integer
ensures Depth_Of = |s|

operation  Allowed_Max_Depth (): Integer
ensures Allowed_Max_Depth = Max_Depth

end  Stack_Template

Figure 5.2 - Stack_Template

Overview of the Concept

Figure 5.2 above shows a specification for a bounded generic stack abstraction.  The

behavior of a stack is modeled using a mathematical string of entries, with the constraint

that a string cannot exceed the length specified by Max_Depth.
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Is it  Pragmatic?

All of the operations provided form a functional basis on stack values.  No one operation

can be implemented in terms of the others, either in terms of functionality or

performance.  Hence, the provided operation set is orthogonal and satisfies the pragmatic

criterion.

Is it  Observable and Controllable?

Stack_Template is observable.  For any two different stack values k1 and k2, there are

two ways in which k1 and k2 could be different:  they could have different depths, or

have the same depth but different (arrangements of the same) entries.  For the first case,

two similar scenarios σ1 and σ2 involving a single call to Depth_Of must always have

different indicator values (depths) between them.  For the second case, σ1 and σ2

involving |k1| successive calls to Pop must always have different indicator values (entries)

between them.

Stack_Template is controllable.  An example scenario σ for a stack value k starts with an

initialized stack variable followed by successive calls to the Push operation, with the

entries pushed in the right-to-left order of the entries in k.

Other Issues

As is most often the case for string-modeled abstractions, another way in which the

abstract behavior of a stack could be modeled is to use a sequence with an index to the

top of the stack.  However, for the same reasons discussed in the context of queues above,

this model is more complex than essential for this purpose.
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Bounded Priority_Queue_Template

concept  Priority_Queue_Template (
type  Entry,
definition  ARE_ORDERED (x: Entry, y: Entry): boolean ,
constant  Max_Size: Integer

)

requires Max_Size > 0 and
for  all  x,y,z: Entry,

ARE_ORDERED (x,x) and
if  ARE_ORDERED(x,y) and  ARE_ORDERED(y,z) then

ARE_ORDERED(x,z) and
(ARE_ORDERED(x,y) or  ARE_ORDERED(y,x))

uses  Standard_Integer_Facility, Standard_Boolean_Facility

type  family  Priority_Queue is  modeled  by  (
contents: string  of  Entry,
insertion_phase: boolean

)
exemplar  p
constraints

|p.contents| <= Max_Size and
for  all  alpha,beta: string  of  Entry and  x,y: Entry,

if  p.contents = alpha * <x> * <y> * beta then
ARE_ORDERED(x,y)

initialization
ensures |p.contents| = 0  and

p.insertion_phase

operation  Insert (
alters  p: Priority_Queue,
consumes  x: Entry

)
requires  |p.contents| < Max_Size and

p.insertion_phase
ensures p.insertion_phase and

there  exists  alpha,beta: string  of  Entry
such  that

#p.contents = alpha * beta and
 p.contents = alpha * <#x> * beta  and
for  all  gamma: string  of  Entry and  y: Entry,

if  beta = <y> * gamma then
ARE_ORDERED (#x,y) and
not  ARE_ORDERED (y,#x)

operation  Change_Phase (
alters  p: Priority_Queue

)
ensures p.contents = #p.contents and

p.insertion_phase = not  #p.insertion_phase
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operation  Extract (
alters  p: Priority_Queue,
produces  x: Entry

)
requires |p.contents| > 0 and

not  p.insertion_phase
ensures #p.contents = <x> * p.contents and

not  p.insertion_phase

operation  Extract_Any (
alters  p: Priority_Queue,
produces  x: Entry

)
requires |p.contents| > 0
ensures p.insertion_phase = #p.insertion_phase and

there  exists  alpha,beta: string  of  Entry
such  that

 p.contents = alpha * beta and
#p.contents = alpha * <x> * beta

operation  Is_In_Insertion_Phase (
preserves  p: Priority_Queue

): Boolean
ensures Is_In_Insertion_Phase = p.insertion_phase

operation  Size_Of (
preserves  p: Priority_Queue

): Integer
ensures Size_Of = |p.contents|

operation  Allowed_Max_Size (): Integer
ensures Allowed_Max_Size = Max_Size

end  Priority_Queue_Template

Figure 5.3 - Priority_Queue_Template

Overview of the Concept

Figure 5.3 above shows a specification for a bounded priority queue abstraction, and it is

slightly different from the one in [Odgen 96].  The behavior of a priority queue is

modeled using a mathematical string of entries, with the constraints that the entries in a

string are ordered and that a string cannot exceed the length specified by Max_Size.

Is it  Pragmatic?

Following the rationale in Chapter II, in the context of the Prioritizer_Template, the

specification of Priority_Queue_Template also satisfies the pragmatic criterion.  The only

distinction between the two concepts is that the specification for Prioritizer_Template is



102

not concerned with the notion of stability whereas Priority_Queue_Template specifies

stable ordering.

Is it  Observable and Controllable?

Priority_Queue_Template is observable.  For any two different priority queue values k1

and k2, there are three ways in which k1 and k2 could be different:  they could have

different sizes, be in different phases, or have the same size and phase but different

(arrangements of the same) entries.  For the first case, two similar scenarios σ1 and σ2

(for k1 and k2 respectively) involving a single call to Size_Of must always have different

indicator values (sizes) between them.  For the second case, σ1 and σ2 involving a single

call to Is_In_Insertion_Phase must always have different indicator values (phases)

between them.  For the third case, σ1 and σ2 involving |k1| successive calls to Extract

must always have different indicator values (entries) between them.

Priority_Queue_Template is controllable.  An example scenario σ for a priority queue

value k starts with an initialized priority queue variable followed by successive calls to

the Insert operation, with the entries inserted in the left-to-right order of the entries in k,

and is ended by a call to Change_Phase if k is in the extraction phase.
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Communal List_Template

concept  List_Template (
type  Entry,
constant  Max_Total_Length: Integer

)
requires Max_Total_Length > 0

uses Standard_Integer_Facility

type  family  List is  modeled  by  (
preceding: string  of  Entry,
remaining: string  of  Entry

)
exemplar  l
initialization

ensures |l.preceding| = 0  and
|l.remaining| = 0

definition  Total_Length: integer  =
sum from  i = 1 to  List. Last_Specimen_Num  of

|List. Denoted_By (i).preceding| +
|List. Denoted_By (i).remaining|

constraints Total_Length <= Max_Total_Length

operation  Insert (
alters l: List,
consumes x: Entry

)
requires Total_Length < Max_Total_Length
ensures l.preceding = #l.preceding and

l.remaining = <#x> * #l.remaining

operation  Remove (
alters l: List,
produces x: Entry

)
requires |l.remaining| > 0
ensures l.preceding = #l.preceding and

#l.remaining = <x> * l.remaining

operation  Advance (
alters l: List

)
requires |l.remaining| > 0
ensures l.preceding * l.remaining =

#l.preceding * #l.remaining and
|l.preceding| = |#l.preceding| + 1

operation  Move_To_Start (
alters l: List

)
ensures |l.preceding| = 0 and

l.remaining = #l.preceding * #l.remaining
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operation  Move_To_End (
alters l: List

)
ensures |l.remaining| = 0 and

l.preceding = #l.preceding * #l.remaining

operation  Length_Of_Preceding (
preserves l: List

): Integer
ensures Length_Of_Preceding = |l.preceding|

operation  Length_Of_Remaining (
preserves l: List

): Integer
ensures Length_Of_Remaining = |l.remaining|

operation  Swap_Remainders (
alters l1: List,
alters l2: List

)
ensures l1.preceding = #l1.preceding and

l2.preceding = #l2.preceding and
l1.remaining = #l2.remaining and
l2.remaining = #l1.remaining

operation  Swap_Preceding_Entry (
alters l: List,
alters x: Entry

)
requires |l.preceding| > 0
ensures l.remaining = #l.remaining and

there  exists  α: string  of  Entry such  that
#l.preceding = α * <x> and
 l.preceding = α * <#x>

operation  Available_Capacity (): Integer
ensures Available_Capacity =

(Max_Total_Length - Total_Length)

operation  Allowed_Max_Total_Length (): Integer
ensures Allowed_Max_Total_Length =

Max_Total_Length

end  List_Template

Figure 5.4 - List_Template

Overview of the Concept

Figure 5.4 above shows a specification for a generic one-way list abstraction.  This

concept is communally-bounded, which means that all list variables from an instance of

the template share the space allotted by the client-supplied value for Max_Total_Length,

rather than each single list variable having its own maximum bound.
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Unlike most textbooks, where lists and list operations are explained in terms of pointer

structures, in List_Template a list is modeled using a pair of mathematical strings.  The

string labeled “preceding” contains those entries to the left of the insertion point, and the

string labeled “remaining” contains those entries to the right of the insertion point.  This

view is analogous to a line of text in a word processor, where the characters to the left of

the cursor are “preceding”, and those to the right of the cursor are “remaining”.

Is it  Pragmatic?

Insert, Remove, Advance, Move_To_Start, Length_Of_Remaining, Available_Capacity,

and Allowed_Max_Total_Length form a functional basis of the provided operation set.

In other words, the operations Swap_Remainders, Swap_Preceding_Entry,

Move_To_End, and Length_Of_Preceding can be implemented using the other

operations.  However, in a typical pointer-based implementation, each of these four

operations can be implemented to work in constant time when provided as a primary

operation of the interface.

Swap_Remainders is useful for “preserving the cursor” in instances where repositioning

the cursor would otherwise take linear time dependent on the size of the “preceding”

string.  Many operations, such as List_Copy, can benefit from this operation.  For

example, consider the (recursive) code for Entry_Is_In_Remainder below:
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procedure   Entry_Is_In_Remainder (
l: List,
x: Entry

): Boolean
ensures

Entry_Is_In_Remainder iff
there exists  alpha,beta: string of  Entry such that

l.remaining = alpha * <x> * beta

variables
temp: List;
y: Entry;
found: Boolean;

begin
found := false;
Swap_Remainders (l, temp);
Remove (temp, y);

if  Are_Equal (x,y) then
found := true;

else  if  Entry_Is_In_Remainder (temp, x)
found := true;

end  if

Insert (temp, y);
Swap_Remainders (l, temp);
return  found;

end

Without Swap_Remainders, repositioning the cursor after performing the above search

would take linear time dependent on the size of the “preceding” string of the list.

Swap_Preceding_Entry is useful for “one-look-behind” applications, much like

Swap_Front on queues is useful for “one-look-ahead” applications as discussed in

Chapter I.  For example, when searching for a given entry in a list that is maintained in a

specified order, it is convenient to see whether the entry preceding the cursor is “greater”

than the given entry.  If not, then the list will have to be reset before beginning the search.

If it isn’t, then the search can begin from the current cursor position.  This permits

efficient searches for entries that fall in a “gap” in the ordered list.  As an intrinsic

operation, Swap_Preceding_Entry can always be implemented to perform in constant

time, thus making it suitable for such applications.

Move_To_End could be performed by calling Advance repeatedly.  However, this

procedure takes linear time, arguing for the inclusion of Move_To_End as an intrinsic

operation, in which case it can be implemented with constant time performance.

Similarly, both Length_Of_Preceding and Length_Of_Remaining are included so that

they can be implemented with constant time performance.
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In terms of the pragmatic criterion, while the functionality of the four operations

discussed is subsumed by the other operations, the performance is not subsumable by the

others.  Hence, the entire operation set is orthogonal and List_Template satisfies the

pragmatic criterion.

Is it  Observable and Controllable?

List_Template is observable.  Any two different list values k1 and k2 could differ in their

“preceding” or “remaining” lengths, or have the same lengths but different (arrangements

of the same) entries.  For the first case, σ1 and σ2 involving a call to

Length_Of_Preceding followed by a call to Length_Of_Remaining must always have

different indicator values (lengths) between them.  For the second case, σ1 and σ2

involving a call to Move_To_Start followed by |k1| successive calls to Remove must

always have different indicator values (entries) between them.

List_Template is also controllable.  There is a scenario σ for every list value k such that σ
starts with one initialized list variable followed by a sequence of calls to Insert, with the

entries inserted in the right-to-left order of the entries in k, and then followed by calls to

Advance until the cursor position of k is reached.

Other Issues

Sitaraman et al. discuss the drawbacks of modeling the behavior of a list as a function

from indices to entries [Sitaraman 93].  Even though such a concept can be made to be

observable and controllable with appropriate list constraints, it is clear that the

explanations of the operations are not as intuitive or understandable.
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Communal Preemptable_Queue_Template

concept  Preemptable_Queue_Template (
type  Entry,
constant  Max_Total_Length: Integer

)
requires Max_Total_Length > 0

uses Standard_Integer_Facility

type  family  Preemptable_Queue is  modeled  by  string  of  Entry
exemplar  q
initialization

ensures |q| = 0

definition  Total_Length: integer  =
sum from  i = 1 to  Preemptable_Queue. Last_Specimen_Num

of  |Preemptable_Queue. Denoted_By (i)|
constraints Total_Length <= Max_Total_Length

operation  Enqueue (
alters q: Preemptable_Queue,
consumes x: Entry

)
requires Total_Length < Max_Total_Length
ensures q = #q * <#x>

operation  Dequeue (
alters q: Preemptable_Queue,
produces x: Entry

)
requires |q| > 0
ensures #q = <x> * q

operation  Inject (
alters q: Preemptable_Queue,
consumes x: Entry

)
requires Total_Length < Max_Total_Length
ensures q = <#x> * #q

operation  Swap_Rear (
alters q: Queue,
alters x: Entry

)
requires |q| > 0
ensures there  exists  α: string  of  Entry such  that

q = α * <#x> and  #q = α * <x>

operation  Append (
alters q1: Preemptable_Queue,
alters q2: Preemptable_Queue

)
ensures q1 = #q1 * #q2 and  |q2| = 0
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operation  Length_Of (
preserves q: Preemptable_Queue

): Integer
ensures Length_Of = |q|

operation  Available_Capacity (): Integer
ensures Available_Capacity =

Max_Total_Length - Total_Length

operation  Allowed_Max_Total_Length (): Integer
ensures Allowed_Max_Total_Length = Max_Total_Length

end  Preemptable_Queue_Template

Figure 5.5 - Preemptable_Queue_Template

Overview of the Concept

Figure 5.5 above shows a specification for a communal-bounded generic preemptable

queue abstraction.  As with Queue_Template discussed earlier, the behavior of a

preemptable queue is modeled using a mathematical string of entries.  However, the

interface for a preemptable queue is quite different than that of an “ordinary” queue.  By

“preemptable”, we mean that entries can be enqueued into the opposite end as well.

Is it  Pragmatic?

Enqueue, Dequeue, Length_Of, Available_Capacity, and Allowed_Max_Total_Length

form a functional basis on queue values.  That is, the operations Inject, Swap_Rear, and

Append could instead be layered using the others, and are therefore not needed

functionally.  As intrinsic operations in a pointer-based implementation, however, they

can be implemented with constant time performance.

Inject, which subsumes the Swap_Front operation of previous designs both in terms of

functionality and performance, is useful for enqueueing entries into the normally “output-

only” end of a queue.  Swap_Rear provides the same kind of functionality as that of

Swap_Front, except that it works on the input end of the queue.  Unlike in a bounded

queue implemented using an array, in the communally-bounded

Preemptable_Queue_Template, Append can be implemented with constant time

performance if the implementation is pointer-based or if it is such that the queues share a

common array.  As a layered operation, Append would take a linear amount of time.

Thus, Preemptable_Queue_Template satisfies the pragmatic criterion.
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Is it  Observable and Controllable?

Preemptable_Queue_Template is observable and controllable.  This is easily seen, given

that we have already shown Queue_Template to be observable and controllable, and that

Preemptable_Queue_Template subsumes the functionality of Queue_Template.

Other Issues

While Preemptable_Queue_Template itself satisfies the pragmatic criterion, it is not

obvious that a concept library containing both the bounded Queue_Template as well as

Preemptable_Queue_Template satisfies the pragmatic criterion.  Though the former is

subsumed by the latter in terms of functionality and duration considerations, space

considerations argue for the inclusion of both concepts.  While the pragmatic criterion

does not address the issue of single versus communal bounds explicitly, it is reasonable to

conclude that both bounding schemes are useful depending on client needs.  A

“communal” Queue_Template cannot be justified in this library, because

Preemptable_Queue_Template, as specified, would subsume that concept under all

considerations.
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5.2 Concepts Modeled Using Sets, Functions, and Bags

In this section, we present three concepts whose behaviors are modeled using

mathematical sets, functions, or bags.  None of these concepts is communal.

Partial_Map_Template is modeled using sets, Almost_Constant_Function_Template is

modeled using functions, and Prioritizer_Template is modeled using bags (as discussed in

Chapter III).

Bounded Partial_Map_Template

concept  Partial_Map_Template (
type  D_Entry,
type  R_Entry,
constant  Max_Size: Integer

)
requires Max_Size > 0

uses Standard_Integer_Facility, Standard_Boolean_Facility

subtype  PARTIAL_FUNCTION is  set  of  (
d: D_Entry,
r: R_Entry

)
exemplar  m
constraints

for  all  d: D_Entry and  r1, r2: R_Entry,
if  (d,r1) is  in  m and  (d,r2) is  in  m
then  (r1 = r2)

definition  DEFINED_IN (
m: PARTIAL_FUNCTION,
d: D_Entry

): boolean  =
there  exists  r: R_Entry such  that  ((d,r) is  in  m)

type  family  Partial_Map is  modeled  by  PARTIAL_FUNCTION
exemplar  m
constraints |m| <= Max_Size
initialization

ensures |m| = 0

operation  Define (
alters m: Partial_Map,
consumes d: D_Entry,
consumes r: R_Entry

)
requires not  DEFINED_IN (m,d) and

|m| < Max_Size
ensures m = #m union  {(#d,#r)}
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operation  Undefine (
alters m: Partial_Map,
preserves d: D_Entry,
produces dcopy: D_Entry,
produces r: R_Entry

)
requires DEFINED_IN (m,d)
ensures (d,r) is  in  #m and

m = #m - {(d,r)} and
dcopy = d

operation  Undefine_Any_One (
alters m: Partial_Map,
produces d: D_Entry,
produces r: R_Entry

)
requires |m| > 0
ensures (d,r) is  in  #m and  m = #m - {(d,r)}

operation  Is_Defined (
preserves m: Partial_Map,
preserves d: D_Entry

): Boolean
ensures Is_Defined = DEFINED_IN (m,d)

operation  Size_Of (
preserves m: Partial_Map

): Integer
ensures Size_Of = |m|

operation  Allowed_Max_Size (): Integer
ensures Allowed_Max_Size = Max_Size

end  Partial_Map_Template

Figure 5.6 - Partial_Map_Template

Overview of the Concept

Partial_Map_Template in Figure 5.6 above is an abstraction for creating mappings from

values of a domain type to values of a range type.  It is useful for “search and

store/retrieval” problems such as database applications.  The behavior of a partial map is

modeled using a mathematical set of ordered domain-range pairs, with the constraints that

there can be only one pair with a given domain value and that each partial map

individually is no larger than the maximum supplied bound.  Partial_Map_Template is

not one of the concepts in [Ogden 96].



113

Is it  Pragmatic?

All of the operations provided form a functional basis on partial map values, with the

possible exception of Undefine_Any_One.  Undefine_Any_One has been included to

permit iteration over all the mappings in a partial map object.  Interestingly, it is not

strictly necessary since, if the domain entry type is enumerable, then it is possible to

enumerate over the domain type and then undefine any one that is defined using the

operations Is_Defined and Undefine.  However, this is clearly not efficient and

furthermore, it cannot be assumed that an arbitrary domain entry type is enumerable.

Without the ability to undefine an arbitrary mapping, for example, it is not possible to test

the equality of or replicate partial maps.  Undefine_Any_One, therefore, must be included

for general functional completeness, and because it can be implemented in constant time

as an intrinsic operation.

Is it  Observable and Controllable?

Partial_Map_Template is observable.  Any two different partial map values k1 and k2

may differ in their sizes or because they contain different entries.  For the first case, two

similar scenarios σ1 and σ2 involving a call to Size_Of must always have different

indicator values (sizes) between them.  For the second case, σ1 and σ2 involving |k1|

successive calls to Undefine_Any_One must always have different indicator values

(entries) between them.  Note that it is irrelevant that two same maps may produce

different values on successive calls to Undefine_Any_One.

Partial_Map_Template is also controllable.  There is a scenario σ for every partial map

value k such that σ starts with an initialized partial map variable, followed by a sequence

of calls to Define, one for each entry in k.
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Bounded Almost_Constant_Function_Template

concept  Almost_Constant_Function_Template (
type  Index,
type  Range,
definition  ARE_ORDERED(i:Index, j:Index): boolean ,
constant  Default_R_Value: Range,
constant  Max_Count: Integer

)
requires Max_Count> 0 and

for  all  i,j,k: Entry,
ARE_ORDERED (i,i) and
if  ARE_ORDERED(i,j) and  ARE_ORDERED(j,k) then

ARE_ORDERED(i,k) and
(ARE_ORDERED(i,j) or  ARE_ORDERED(j,i)) and
if  ARE_ORDERED(i,j) and  ARE_ORDERED(j,i) then

i = j

uses Standard_Integer_Facility, Standard_Boolean_Facility

definition  DEVIATION_COUNT (
f: function  from  Index to  Range

): integer  =

|{i:Index | f(i) ≠ Default_R_Value} |

definition  LESS_THAN (
i: Index,
j: Index

): boolean  =
ARE_ORDERED(i,j) and  not  ARE_ORDERED(j,i)

type  family  Almost_Constant_Function is  modeled  by
function  from  Index to  Range

exemplar  f
constraints DEVIATION_COUNT(f) ≤ Max_Count
initialization

ensures for  all  i: Index, f(i) = Default_R_Value

operation  Give_Value (
alters f: Almost_Constant_Function,
preserves i: Index,
consumes r: Range

)
requires DEVIATION_COUNT(f) < Max_Count or

f(i) ≠ Default_R_Value or
r = Default_R_Value

ensures f(i) = #r and
for  all  j: Index, if  i ≠ j then  f(j) = #f(j)
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operation  Get_Value (
alters f: Almost_Constant_Function,
preserves i: Index,
produces r: Range

)
ensures r = #f(i) and

f(i) = Default_R_Value and
for  all  j: Index, if  i ≠ j then  f(j) = #f(j)

operation  Next_Index (
preserves f: Almost_Constant_Function,
preserves i: Index,
produces n: Index

)
requires there  exists  j: Index such  that

LESS_THAN(i,j) and
f(j) ≠ Default_R_Value

ensures LESS_THAN(i,n) and
f(n) ≠ Default_R_Value and
for  all  j: Index,

if  LESS_THAN(i,j) and  LESS_THAN(j,n) then
f(j) = Default_R_Value

operation  Is_Last_Index (
preserves f: Almost_Constant_Function,
preserves i: Index

): Boolean
ensures Is_Last_Index =

for  all  j: Index, if  LESS_THAN(i,j) then
f(j) = Default_R_Value

operation  First_Index (
preserves f: Almost_Constant_Function,
produces i: Index

)
requires there  exists  j: Index such  that

f(j) ≠ Default_R_Value
ensures f(i) ≠ Default_R_Value and

for  all  j: Index, if  LESS_THAN(j,i) then
f(j) = Default_R_Value

operation  Deviation_Count_Of (
preserves f: Almost_Constant_Function

): Integer
ensures Deviation_Count_Of = DEVIATION_COUNT(f)

operation  Allowed_Max_Count (): Integer
ensures Allowed_Max_Count = Max_Count

end  Almost_Constant_Function_Template

Figure 5.7 - Almost_Constant_Function_Template
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Overview of the Concept

Almost_Constant_Function_Template in Figure 5.7 is an alternative specification to the

Partial_Map_Template for essentially the same problem.  This is the data abstraction for

searching found in [Ogden 96].  Unlike Partial_Map_Template, which conceptualizes a

map as a set of domain-range pairs, in Almost_Constant_Function_Template the

provided type is modeled as a function from “index” values to the range values.  To

capture the notion of an “undefined” range value, the client supplies a default range value,

to which all “uninteresting” index values map.  Since an almost-constant-function maps

to this default range value for all indices other than those that have been explicitly defined

using Give_Value, the function “almost” maps to this default range value everywhere,

hence the name.  The design of Almost_Constant_Function_Template is also different in

that it allows extraction of individual mappings in an order supplied through the

ARE_ORDERED parameter.

Is it  Pragmatic?

The operations Give_Value, Get_Value, Deviation_Count_Of, and Allowed_Max_Count

clearly form a functional basis on almost-constant functions.  The operations First_Index,

Next_Index, and Is_Last_Index help iterate over the mappings in an almost-constant-

function object based on the provided order.  As primary operations, the index operations

can be coded to work efficiently, for example, in a binary search tree-based

implementation.  Hence, Almost_Constant_Function_Template satisfies the pragmatic

criterion.

Is it  Observable and Controllable?

Almost_Constant_Function_Template is observable.  Any two different almost-constant-

function values k1 and k2 could differ in their deviation counts, or contain different

mappings.  For the first case, σ1 and σ2 involving a call to Deviation_Count_Of must

always have different indicator values (counts) between them.  For the second case, σ1

and σ2 involving a call to First_Index, followed by a call to Get_Value, followed by

Deviation_Count_Of(k1)-1 calls to pairs of Next_Index - Get_Value operations, must

always have different indicator values (entries) between them.
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Almost_Constant_Function_Template is also controllable.  For example, for an almost-

constant-function value k, σ could involve successive calls to Give_Value, one for each

“defined” index value of k.

Other Issues

Almost_Constant_Function_Template and Prioritizer_Template in the library of concepts

in [Odgen 96] have some overlapping functionality in their abilities to produce entries in

order.  However, neither is subsumed by the other both in terms of functionality and

performance.  Whereas the “searching” functionality is not available for Prioritizers, the

ability to retrieve specified entries is not demanded of implementations of

Prioritizer_Template.  If Partial_Map_Template is also considered, then the degree of

orthogonality of a library containing all three concepts is not clear or obvious.  The

pragmatic criterion that has raised this issue also suggests exploration of a more general

concept that has more combined functionality as well as scaling down the functionality of

one of the existing ones.
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Bounded Prioritizer_Template

concept  Prioritizer_Template (
type  Entry,
definition  ARE_ORDERED (x: Entry, y: Entry): boolean ,
constant  Max_Size: Integer

)

requires Max_Size > 0 and
for  all  x,y,z: Entry,

ARE_ORDERED (x,x) and
if  ARE_ORDERED(x,y) and  ARE_ORDERED(y,z) then

ARE_ORDERED(x,z) and
(ARE_ORDERED(x,y) or  ARE_ORDERED(y,x))

uses  Standard_Integer_Facility, Standard_Boolean_Facility

subtype  INVENTORY_FUNCTION is  function  from  Entry to  integer
exemplar  f
constraints

for  all  x: Entry, f(x) >= 0

definition  INVENTORY_SIZE (
f: INVENTORY_FUNCTION

): integer  = sum of  f(x) for  all  x: Entry

definition  IS_A_NEXT_ENTRY (
f: INVENTORY_FUNCTION,
x: Entry

): boolean  = f(x) > 0 and  for  all  y: Entry,
if  ARE_ORDERED(y,x) and  not  ARE_ORDERED(x,y)
then  f(y) = 0

type  family  Prioritizer is  modeled  by  (
contents:  INVENTORY_FUNCTION,
insertion_phase: boolean

)
exemplar   p
constraints

INVENTORY_SIZE(p.contents) <= Max_Size
initialization

ensures   INVENTORY_SIZE(p.contents) = 0 and
p.insertion_phase

operation  Insert (
alters  p: Prioritizer,
consumes  x: Entry

)
requires  INVENTORY_SIZE(p.contents) < Max_Size and

p.insertion_phase
ensures p.insertion_phase and

p.contents(#x) = #p.contents(#x) + 1 and
for  all  y: Entry,

if  y /= #x
then  p.contents(y) = #p.contents(y)
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operation  Change_Phase (
alters  p: Prioritizer

)
ensures p.contents = #p.contents and

p.insertion_phase = not  #p.insertion_phase

operation  Extract (
alters  p: Prioritizer,
produces  x: Entry

)
requires INVENTORY_SIZE(p.contents) > 0 and

not  p.insertion_phase
ensures not  p.insertion_phase and

IS_A_NEXT_ENTRY(#p.contents,x) and
p.contents(x) = #p.contents(x) - 1 and
for  all  y: Entry,

if  y /= x then  p.contents(y) = #p.contents(y)

operation  Extract_Any (
alters  p: Prioritizer,
produces  x: Entry

)
requires INVENTORY_SIZE(p.contents) > 0
ensures p.insertion_phase = #p.insertion_phase and

p.contents(x) = #p.contents(x) - 1 and
for  all  y: Entry,

if  y /= x then  p.contents(y) = #p.contents(y)

operation  Is_In_Insertion_Phase (
preserves  p: Prioritizer

): Boolean
ensures Is_In_Insertion_Phase = p.insertion_phase

operation  Size_Of (
preserves  p: Prioritizer

): Integer
ensures Size_Of = INVENTORY_SIZE(p.contents)

operation  Allowed_Max_Size (): Integer
ensures Allowed_Max_Size = Max_Size

end  Prioritizer_Template

Figure 5.8 - Prioritizer_Template

Is it  Pragmatic?

As discussed in Chapter II, Prioritizer_Template satisfies the pragmatic criterion.

Is it  Observable and Controllable?

Prioritizer_Template is observable and controllable, as discussed informally in Chapter III

and formally using scenarios in Chapter IV.
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5.3 Other Concepts

Bounded Coalescable_Equivalence_Relation_Template

concept  Coalescable_Equivalence_Relation_Template(
constant  Range_Size: Integer
)

requires  Range_Size > 0

uses  Standard_Boolean_Facility, Standard_Integer_Facility

subtype  RANGE is  integer
exemplar  n
constraints  1 ≤ n ≤ Range_Size

type  family  Equivalence_Relation is  modeled  by  function  from  (
x : RANGE,
y : RANGE

) to  boolean
exemplar  e
constraints

for  all  x: RANGE, e(x,x) and
for  all  x, y: RANGE, if  e(x,y) then  e(y,x) and
for  all  x, y, z: RANGE,

if  e(x,y) and  e(y,z) then  e(x,z)
initialization

ensures
for  all  x, y: RANGE, if  e(x,y) then  x = y

operation  Are_Equivalent(
preserves e: Equivalence_Relation,
preserves x: RANGE,
preserves y: RANGE

): Boolean
ensures Are_Equivalent iff  e(x,y)

operation  Make_Equivalent(
alters e: Equivalence_Relation,
preserves x: RANGE,
preserves y: RANGE

): Boolean
ensures for  all  u, v: RANGE,

e(u,v) = (
#e(u,v) or
#e(u,x) and  #e(v,y) or
#e(u,y) and  #e(v,x)

)

operation  Range_Of (): Integer
ensures Range_Of = Range_Size

end  Coalescable_Equivalence_Relation_Template

Figure 5.9 - Coalescable_Equivalence_Relation_Template
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Overview of the Concept

Figure 5.9 above shows a specification for an equivalence relation abstraction.  The

behavior is modeled using a function that maps pairs of (a finite subset of) integers to a

boolean value that is true only for pairs that have been made “equivalent”.  Initially, no

two integers are equivalent.

Is it  Pragmatic?

The operations Are_Equivalent, Make_Equivalent, and Range_Of  are functionally

orthogonal.  Hence Coalescable_Equivalence_Relation_Template satisfies the pragmatic

criterion.

Is it  Observable and Controllable?

Coalescable_Equivalence_Relation_Template is observable.  The approach for

demonstrating the existence of two similar scenarios σ1 and σ2 for distinguishing two

equivalence relations k1 and k2 is unlike any discussed thus far, since

Coalescable_Equivalence_Relation_Template does not involve any types as generic

parameters.  In this case, σ1 and σ2 involve a sequence of calls to Are_Equivalent, one

call corresponding to each pair of the finite set of integers of the subtype RANGE.

Where k1 and k2 have different mappings, σ1 and σ2 must always produce different

indicator values (booleans) between them.

Coalescable_Equivalence_Relation_Template is also controllable.  There is a scenario σ
for every function k that involves successive calls to Make_Equivalent, one for each pair

of integers that are equivalent in k.
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Bounded Spanning_Forest_Machine_Template

concept  Spanning_Forest_Machine_Template (
constant  Max_Vertex: Integer,
constant  Max_Edges: Integer

)
requires Max_Vertex > 0 and  Max_Edges > 0

uses Standard_Integer_Facility, Standard_Boolean_Facility

subtype  EDGE is  (
v1: integer ,
v2: integer ,
w: integer

)
exemplar  e
constraints 1 <= e.v1 <= Max_Vertex and

1 <= e.v2 <= Max_Vertex and
e.w > 0

subtype  GRAPH is  finite  set  of  EDGE

definition  IS_MSF (msf: GRAPH, g: GRAPH): boolean  =
(* true iff msf is an MSF of g *)

definition  SHARE_AN_MSF (g1: GRAPH, g2: GRAPH): boolean  =
there  exists  msf: GRAPH such  that

IS_MSF (msf, g1) and  IS_MSF (msf, g2)

type  family  Spanning_Forest_Machine is  modeled  by  (
edges: GRAPH,
insertion_phase: boolean

)
exemplar  m
initialization

ensures |m.edges| = 0 and  m.insertion_phase

operation  Insert (
alters m: Spanning_Forest_Machine,
consumes v1: Integer,
consumes v2: Integer,
consumes w: Integer

)
requires |m.edges| < Max_Edges and

m.insertion_phase and
1 <= v1 <= Max_Vertex and
1 <= v2 <= Max_Vertex and
w > 0

ensures SHARE_AN_MSF (
m.edges,
#m.edges union  { (#v1, #v2, #w) }

) and
m.insertion_phase



123

operation  Change_To_Extraction_Phase (
alters m: Spanning_Forest_Machine

)
requires m.insertion_phase
ensures IS_MSF (m.edges, #m.edges) and

not  m.insertion_phase

operation  Extract (
alters m: Spanning_Forest_Machine,
produces v1: Integer,
produces v2: Integer,
produces w: Integer

)
requires |m.edges| > 0
ensures (v1, v2, w) is  in  #m.edges and

m.edges = #m.edges - {(v1, v2, w)} and
m.insertion_phase = #m.insertion_phase

operation  Size_Of (
preserves m: Spanning_Forest_Machine

): Integer
ensures Size = |m.edges|

operation  Is_In_Insertion_Phase (
preserves m: Spanning_Forest_Machine

): Boolean
ensures Is_In_insertion_Phase = m.insertion_phase

operation  Allowed_Max_Vertex (): Integer
ensures Allowed_Max_Vertex = Max_Vertex

operation  Allowed_Max_Edges (): Integer
ensures Allowed_Max_Edges = Max_Edges

end  Spanning_Forest_Machine_Template

Figure 5.10 - Spanning_Forest_Machine_Template

Overview of the Concept

Spanning_Forest_Machine_Template in Figure 5.10 above is a specification for an

abstraction of a machine that computes a minimum spanning forest of a graph,

reproduced from [Sitaraman 96].  It is modeled using a tuple consisting of a set of the

inserted graph edges, and a flag indicating whether a spanning forest machine is in the

insertion phase or the extraction phase.  Edges are inserted into the machine one at a time,

a change to the extraction phase is done, and then the edges are extracted from the

machine, one at a time.  The edges that are returned constitute a minimum spanning forest

of the original graph.  The performance advantages for this recast abstraction of the

minimum spanning forest problem have been discussed in the literature [Weide 94].
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Is it  Pragmatic?

The operations Insert, Change_To_Extraction_Phase, Extract, Size_Of,

Is_In_Insertion_Phase, Allowed_Max_Vertex, and Allowed_Max_Edges form an

orthogonal set of operations on spanning forest machine values.  Hence,

Spanning_Forest_Machine_Template satisfies the pragmatic criterion.

Is it  Observable and Controllable?

Spanning_Forest_Machine_Template is observable.  For any two different spanning

forest machine values k1 and k2, there are three ways they could be different:  they could

have different sizes, have the same sizes but be in different phases, or have the same size

and phase but contain different entries.  For the first case, σ1 and σ2 involving a call to

Size_Of must always have different indicator values (sizes) between them.  For the

second case, σ1 and σ2 involving a call to Is_In_Insertion_Phase must always have

different indicator values (phases).  For the third case, σ1 and σ2 involving |k1|

successive calls to Extract must always have different indicator values (edges) between

them.

However, Spanning_Forest_Machine_Template is not controllable, since there does not

exist a scenario σ for some spanning forest machine value k such that σ starts with an

initialized spanning forest machine variable and ends with that variable mapping to k for

all states in S(σ).  This is because the Insert operation is specified so that it might not

keep all the edges that are inserted.

Other Issues

This specification is an excellent example of an abstraction that, while failing one

characterization for controllability, satisfies some others.  In the discussion on code-based

definitions for controllability in the previous chapter, we illustrated the possibility of

formalization along the lines of “for some implementations” of the concept.  That is, a

specification S is controllable if it is possible that every value can be reached.  If we were

to assume this notion of controllability, it would be possible to rework the scenario-based

definition for controllability to accommodate this assumption by replacing the predicate

Always_Reaches_Target_From_Scratch with Might_Reach_Target_From_Scratch, where

the requirement here is that S(σ) contains at least one state where some spanning forest
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machine variable maps to the target value k.  By such a definition,

Spanning_Forest_Machine_Template would be deemed controllable.

This example does not necessarily say that one definition is better than the other, since it

is arguable whether the specification of Spanning_Forest_Machine_Template in Figure

5.10 is the most desirable.  The specification in Figure 5.10 is the result of performance

considerations on specification design [Sitaraman 96], as it permits implementation

strategies ranging from those that store all the edges inserted to those that only keep edges

constituting an MSF of the input graph at all times.  A potential drawback here is the

behavior of the Size_Of operation, which during the insertion phase has potentially erratic

behavior depending on what a specific implementation of the concept is doing with the

inserted edges.  Sitaraman considers other specification designs, such as those that keep

all inserted edges and those that only keep MSF edges.  While each of these designs is not

as general as that in Figure 5.10, they are observable and controllable with respect to the

scenario-based definitions in Chapter IV, and their behavior with respect to the Size_Of

operation is predictable as well.
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5.4 “Built-In”  Concepts

In this section, we present four concepts that are typically built into programming

languages.  These four concepts are for booleans, integers, records, and arrays.  The

RESOLVE implementation language also contains “syntactic sugar” for calling

operations on these basic types, such as allowing the use of “a+b” instead of a call to

“Add(a,b)”.  However, in RESOLVE all types - including built-in types - are defined and

used through concepts.

Boolean_Facility

concept  Boolean_Facility

uses Two_Valued_Boolean_Algebra_Theory

type  family  Boolean is  modeled  by  boolean
exemplar  b
initialization

ensures b = true

operation  And (
preserves a: Boolean,
preserves b: Boolean

): Boolean
ensures And = (a and  b)

operation  Not (
preserves b: Boolean

): Boolean
ensures Not = ( not  b)

end  Boolean_Facility

Figure 5.11 - Boolean_Facility

Overview of the Concept

Figure 5.11 above shows a specification for a boolean abstraction.  The behavior of a

Boolean object is modeled using the logical boolean values true and false.  The use of the

term “Standard_Boolean_Facility” as used throughout this dissertation refers to some

standard implementation for this concept with suitable enhancements such as “or”.
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Is it  Pragmatic?

The provided operations And and Not form a functional basis on Boolean values, since

all other logical operators can be easily and efficiently layered using these two operations.

Is it  Observable and Controllable?

Boolean_Facility is observable.  While in terms of code it may seem trivial that the

operation And can easily be used to reveal a difference between k1 and k2, when applying

the scenario-based definition for observability there can be no “communication” between

σ1 and σ2.  That is, σ1 and σ2 cannot simply involve a single call to “And (a,b)”, where

a=k1 and b=k2, because σ1 involves only k1 and σ2 involves only k2.  However, one

approach in this situation is to compare k1 or k2 with an initial boolean variable (which

has a value of true) using the And operation.  For example, consider the values k1 and k2

and the scenarios σ1 and σ2 below:

k1 = true
k2 = false

σ1 = (
Boolean_Facility, {p:Boolean, b:Boolean},
< And (p,b,true) → (p,b, true ) >, {(p,k1)}

)
and
σ2 = (

Boolean_Facility, {p:Boolean, b:Boolean},
< And (p,b,true) → (p,b, false ) >, {(p,k2)}

)

Boolean_Facility is also controllable.  For example, if k = true, σ simply involves no

operation calls; if k = false, σ simply involves a call to Not.
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Bounded Integer_Facility

concept  Integer_Facility

uses Standard_Boolean_Facility, Integer_Theory

constant  Min_Int: integer
constraints Min_Int <= 0

constant  Max_Int: integer
constraints Max_Int > Min_Int

type  family  Integer is  modeled  by  integer
exemplar  i
constraints Min_Int <= i <= Max_Int
initialization

ensures i = 0

operation  Add (
preserves i: Integer,
preserves j: Integer,
produces sum: Integer

)
requires Min_Int <= i+j <= Max_Int
ensures sum = i+j

operation  Multiply (
preserves i: Integer,
preserves j: Integer,
produces product: Integer

)
requires Min_Int <= i*j <= Max_Int
ensures product = i*j

operation  Subtract (
preserves i: Integer,
preserves j: Integer,
produces diff: Integer

)
requires Min_Int <= i-j <= Max_Int
ensures diff = i-j
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operation  Int_Divide (
preserves i: Integer,
preserves j: Integer,
produces quot: Integer

)
requires if  j <= 0

then  j * (Max_Int + 1) < i < j* (Min_Int - 1)
ensures |j*quot| <= |i| and  |i-j*quot| < |j|

operation  Less_Equal (
preserves i: Integer,
preserves j: Integer

): Boolean
ensures Less_Equal = (i <= j)

operation  Min_Allowed (): Integer
ensures Min_Allowed = Min_Int

operation  Max_Allowed (): Integer
ensures Max_Allowed = Max_Int

end  Integer_Facility

Figure 5.12 - Integer_Facility

Overview of the Concept

Figure 5.12 above shows a specification for a bounded integer abstraction.  The behavior

of an Integer is modeled using mathematical integers, constrained within minimum and

maximum bounds.  The bounding values of Min_Int and Max_Int are not parameters to

the concept in the typical sense, but are rather implementation-dependent values.  Such

values are implicitly passed from an implementation into the specification, rather than

from the specification to an implementation, as is the case with parameterization.  The

use of the term “Standard_Integer_Facility” as used throughout this dissertation in many

specifications refers to some standard implementation for this concept along with some

common enhancements for easier usage, such as “equal”.

Is it  Pragmatic?

The provided operations Add, Subtract, Multiply, Int_Divide, Less_Equal, Min_Allowed,

and Max_Allowed form a functional basis on Integer values.  Operations such as Equal,

Greater_Equal, etc., can be layered using these four operations without suffering a

performance penalty.
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Is it  Observable and Controllable?

Integer_Facility is observable.  While in terms of code it may seem trivial that the

operation Less_Equal can easily be used to reveal a difference between any two Integer

values k1 and k2, when applying the scenario-based definition for observability there can

be no “communication” between σ1 and σ2 that correspond to initial values k1 and k2,

respectively.  This is because σ1 and σ2 cannot simply involve a single call to

“Less_Equal (a,b)”, where a=k1 and b=k2, because σ1 involves only k1 and σ2 involves

only k2.  However, one approach in this situation is to incrementally construct the value

of k1 in both σ1 and σ2.  Then, σ1 and σ2 can involve a call to Less_Equal (p,

same_as_k1), where p=k1 for σ1 and p=k2 for σ2 and where “same_as_k1” is the

constructed value of k1.  The resulting indicator values (booleans) for σ1 and σ2 must be

different, since k1 ≠ k2.  For example, consider the values k1 and k2 and the scenarios σ1

and σ2 below8:

k1 = 1
k2 = 2

σ1 = (
Integer_Facility,
{p:Integer, max1:Integer, max2:Integer, one: Integer},
op_call_seq1, {(p,k1)}

)
and
σ2 = (

Integer_Facility,
{p:Integer, max1:Integer, max2:Integer, one: Integer},
op_call_seq2, {(p,k2)}

)

where
op_call_seq1 = <

Max_Allowed (max1) → (max1),
Max_Allowed (max2) → (max2),
Int_Divide (max1, max2, one) → (max1, max2, one),
Less_Equal (p, one, false) → (p, one, true )

>
and
op_call_seq2 = <

Max_Allowed (max1) → (max1),
Max_Allowed (max2) → (max2),
Int_Divide (max1, max2, one) → (max1, max2, one),
Less_Equal (p, one, false) → (p, one, false )

>

                                                
8 Note that in a scenario, we alter the signatures of operations that return a result through their name (i.e.,
functions such as Less_Equal) by adding an extra produces parameter to their parameter lists.
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In the more general case where k1 is not 1, we could incrementally add or subtract “one”

until we reach the value of k1 in both σ1 and σ2, and then make the comparison using

Less_Equal.

Integer_Facility is also controllable.  There is a scenario σ for every Integer value k such

that σ starts with an initialized Integer variable and makes a sequence of calls to Add (or

Subtract, if k is negative) until the value of k is reached.
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(Two Field) Record_Template

concept  Record_Template (
type  Entry_1,
type  Entry_2

)

type  family  Record is  modeled  by  (
field1 : Entry_1,
field2 : Entry_2

)
exemplar  r
initialization

ensures r.field1 = Entry_1. initial_value  and
r.field2 = Entry_2. initial_value

operation  Swap_Field_1 (
alters r: Record,
alters x: Entry_1

)
ensures r.field1 = #x and  x = #r.field1 and

r.field2 = #r.field2

operation  Swap_Field_2 (
alters r: Record,
alters x: Entry_2

)
ensures r.field2 = #x and  x = #r.field2 and

r.field1 = #r.field1

end  Record_Template

Figure 5.13 - (Two Field) Record_Template

Overview of the Concept

The Record_Template in Figure 5.13 is a specification for a generic two-field record

abstraction.  It actually serves as an example for a collection of specifications of n-field

records in general, since variable-length generic parameter lists are not syntactically

supported in the RESOLVE notation nor in most other languages.

The operations Swap_Field_1 and Swap_Field_2 form an orthogonal operation set on

two-field record values.  Hence, Record_Template satisfies the pragmatic criterion.  Also,

it is easy to show that Record_Template is observable and controllable, using calls to

Swap_Field_1 and Swap_Field_2.
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Bounded Array_Template

concept  Array_Template (
type  Entry,
constant  Max_Size: Integer

)
requires Max_Size > 0

uses Standard_Integer_Facility

type  family  Array is  modeled  by  function  from  integer  to  Entry
exemplar  a
constraints

for  all  i: integer ,
if  i < 1 or  i > Max_Size then  a(i) = Entry. Base_Point

initialization
ensures for  all  i: integer ,

if  i >= 1 and  i <= Max_Size then
a(i) = Entry. Initial_Value

operation  Swap_Entry (
alters a: Array,
preserves i: Integer,
alters x: Entry

)
requires i >= 1 and  i <= Max_Size
ensures a(i) = #x and  x = #a(i) and

for  all  j: integer , if  (j != i) then  a(j) = #a(j)

operation  Allowed_Max_Size (): Integer
ensures Allowed_Max_Size = Max_Size

end  Array_Template

Figure 5.14 - Array_Template

Overview of the Concept

Figure 5.14 above shows a specification for a bounded array abstraction.  The behavior of

an array is modeled using a function mapping integers to entries, with the constraint that

any domain value i not with the range [1,Max_Size] maps to a pre-defined Base_Point.

Array_Template only has one operation for array manipulation:  Swap_Entry.  This single

operation serves both purposes of getting an entry from a given index and/or setting an

entry of a given index to a particular value.  Clearly, this interface is orthogonal and

introduces no performance bottlenecks.  Also, it is easy to see that Array_Template is

both observable and controllable.
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Conclusions VI
To enhance applicability and encourage its use, a component or a component-based

system must have a well-designed set of interface features as well as a proper explanation

of these features.  If the interface does not include suitable operations for effective

manipulation of objects defined by that interface, then it might compromise functional

and/or performance flexibility, thereby inhibiting its reuse.  Alternatively, poor

explanations of an otherwise well-conceived interface might make it impossible to

understand its objects and operations, and also inhibit its use.  This interconnected

problem of designing an interface that provides a suitable set of features along with an

appropriate formal explanation is termed the specification design problem.

Unfortunately, both aspects of the specification design problem are rarely addressed

simultaneously in the software engineering community.  For example, in the formal

specification community, the focus is mostly on precise notation, whereas issues

surrounding the clear and precise explanation of interface behavior are rarely the focus in

the practicing object-oriented community.  This dissertation fills this gap by providing a

foundation for the formal specification design problem.  Specifically, the properties of

observability, controllability, and a particular version of the pragmatic criterion are

shown to comprise this foundation.

The performance-motivated pragmatic criterion guides the design of component

interfaces and component libraries so that they are widely applicable in terms of both

functionality and performance.  The pragmatic criterion accomplishes this task by

simultaneously demanding the inclusion of features that augment the functionality and

performance of a component or library and by disallowing features that are redundant

along either of these lines.

To complement the pragmatic criterion, the principles of observability and controllability

direct formal explanations of software components to be precise and understandable.  The

principles guide this task by requiring that the explanations of software components

thoroughly and minimally describe the intended problem.  In this dissertation, we have
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formally characterized observability and controllability using both code-based definitions

and scenario-based definitions.  The scenario-based definitions are especially precise

because they are self-contained, unlike the code-based definitions which rely on suitable

definitions of “total correctness” of code involving relational data abstractions.  The

difficulty in formalization stems from the need to specify relational behavior in software

engineering.

In defining fundamental properties for assisting with the specification design problem, we

are also making explicit a large part of the RESOLVE discipline for designing

specifications of object-based software components.  In particular, we have illustrated

how these concerns have led to the unique collection of RESOLVE component

specifications.

Future Research Directions

There are several interesting possibilities for future research involving the discovery and

description of desirable attributes of formal specification designs.  We discuss some of

these possibilities here.

Performance-Based Observability and Controllability Definitions.  We have stated

that it might be possible to formalize the pragmatic criterion.  One approach for such

formalization is to view the problem as defining observability and controllability of non-

functional aspects.  The model spaces of concepts, for example, could be augmented with

information for capturing precise execution times and space utilization of the provided

operations.  To justify the inclusion of functionally non-orthogonal operations, the

pragmatic criterion may demand the existence of implementations that will show a

distinction in performance for those operations.  The use of observability and

controllability principles along these lines is also useful to show the need for intermediate

abstract models for performance.

Specifications with Global State and Multiple Data Types.   In this dissertation, we

restricted our attention to specifications that provided only one data type and where each

object of the provided type contained an entire “copy” of the specified state.  Given that

there are situations in which components providing multiple data types and/or having
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global state information are necessary, it is required to identify characterizations of

observability, controllability, and the pragmatic criterion for such specifications.

Automating Validation of Specifications.  It remains a question whether it is possible to

show the existence of the properties of observability, controllability, and the pragmatic

criterion for a given specification, at least in part mechanically.  It seems clear that the

process is not effective in general.  However, it may be possible, for example, to construct

a database of particular good and bad specification designs for specific modeling

strategies.  Then an automation tool could use such a database to identify common

problems and suggest routine fixes in the specification design process.

Design of New Specifications.  The recasting strategy has led to a collection of new

object-based concepts in RESOLVE such as Spanning_Forest_Machine_Template,

Cheapest_Path_Template, and Rank_Ordering_Template, among others [Ogden 97].  The

design of new specifications can be proudly justified using the principles proclaimed in

this dissertation.  In addition, the overall collection of concepts in a RESOLVE library

can be argued to be robust and minimal using a formalization of the pragmatic criterion.
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Sample Component
Implementations for
Prioritizer_Template A
This appendix presents some implementations based on arrays (for simplicity) for the

bag-modeled Prioritizer_Template concept.  These implementations were used to

generate the timing data from which the performance graphs of Chapter II were produced.

The first implementation, called “Prioritizer_Template_1”, is based on quick-sort.  The

entire sorting takes place during a call to “Change_Phase”, in which the entire collection

is reverse-ordered from the first index in the array towards the last index.  Each insertion

places the entry in the next available slot in the array.  Each extraction gets the next

ordered entry in the array, which begins with the highest index containing an entry (since

the array is reverse-ordered).  This strategy provides Insert and Extract with constant time

performance.  Change_Phase has an average time bounded by O (n log n) when changing

from the insertion phase to the extraction phase, and has constant time performance when

changing the other direction.

For the heap-based implementation shown next, termed “Prioritizer_Template_2”, the

ordering process is distributed among two of the operations.  Each insertion places the

entry in the next available slot in the array.  The Change_Phase operation uses a “heapify”

operation to construct a heap from all the entries in the array.  Doing so takes time O (n).

During each call to Extract, the root of the heap (the first array value) is returned.  To re-

construct the heap, the last value in the array is moved to the top and “sifted down” to its

appropriate position in the heap.

The third and final implementation, called “Prioritizer_Template_3”, is also heap-based

and makes use of two operations: “sift-up” and “sift-down”.  During each call to Insert,

the entry is placed adjacent to the last entry in the array, then “sifted up” to its appropriate

position in the heap.  The Extract operation is the same as in the first heap-based

implementation described.  This strategy provides Insert and Extract each with

performance bounded by O (log n), and Change_Phase with constant time performance.
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A.1 A Quick Sort-Based Implementation Suitable for
Application  Class I

Implementation Header

template <
class Entry,
class Entry_Compare_Capability,
int Max_Size

>
class Prioritizer_Template_1: public
Prioritizer_Template <

Entry,
Entry_Compare_Capability,
Max_Size

>
{

public:
Prioritizer_Template_1 ();
virtual ~Prioritizer_Template_1 ();
virtual void operator &= (Prioritizer_Template_1& rhs);

virtual void Insert (Entry& x);
virtual void Change_Phase ();
virtual void Extract (Entry& x);
virtual void Extract_Any (Entry& x);
virtual Boolean Is_In_Insertion_Phase ();
virtual Integer Size_Of ();
virtual Allowed_Max_Size ();

private:
/* Implicit assignment and copy constructor are prohibited

*/
Prioritizer_Template_1 (const Prioritizer_Template_1& m);
Prioritizer_Template_1& operator = (

const Prioritizer_Template_1& rhs
);

Boolean filling;
Integer size;
Entry* ele;

void QuickSort (Integer a, Integer b);
Integer Partition (Integer a, Integer b);

};
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Implementation

template <
class Entry,
class Entry_Compare_Capability,
int Max_Size

>
Prioritizer_Template_1 <

Entry,
Entry_Compare_Capability,
Max_Size

>::
Prioritizer_Template_1 ()
{

ele = new Entry [Max_Size+1];
filling = true;
size = 0;

};

template <
class Entry,
class Entry_Compare_Capability,
int Max_Size

>
Prioritizer_Template_1 <

Entry,
Entry_Compare_Capability,
Max_Size

>::
~Prioritizer_Template_1 ()
{

delete [] ele;
};
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template <
class Entry,
class Entry_Compare_Capability,
int Max_Size

>
void Prioritizer_Template_1 <

Entry,
Entry_Compare_Capability,
Max_Size

>::
operator &= (

Prioritizer_Template_1 <
Entry,
Entry_Compare_Capability,
Max_Size

>& rhs
)

{
Entry *tele;

tele = ele;
ele = rhs.ele;
rhs.ele = tele;

rhs.filling &= filling;
rhs.size &= size;

};
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template <
class Entry,
class Entry_Compare_Capability,
int Max_Size

>
Integer Prioritizer_Template_1 <

Entry,
Entry_Compare_Capability,
Max_Size

>::
Partition (Integer left, Integer right)
{

Integer up, down;

up = left+1;
down = right;

while (true) {
while (

Entry_Compare_Capability::Compare (
ele[left],
ele[up]

) &&
(up < right)

)
up++;

while (
!Entry_Compare_Capability::Compare (

ele[left],
ele[down]

)
)

down--;

if (up < down)
ele[up] &= ele[down];

else {
ele[left] &= ele[down];
return down;

}
}

};
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template <
class Entry,
class Entry_Compare_Capability,
int Max_Size

>
void Prioritizer_Template_1 <

Entry,
Entry_Compare_Capability,
Max_Size

>::
QuickSort (Integer start, Integer end)
{

Integer split;

if (start < end) {
split = Partition (start, end);
QuickSort (start, split - 1);
QuickSort (split + 1, end);

}
};

template <
class Entry,
class Entry_Compare_Capability,
int Max_Size

>
void Prioritizer_Template_1 <

Entry,
Entry_Compare_Capability,
Max_Size

>::
Insert (Entry& x)
{

size++;
ele[size] &= x;

};

template <
class Entry,
class Entry_Compare_Capability,
int Max_Size

>
void Prioritizer_Template_1 <

Entry,
Entry_Compare_Capability,
Max_Size

>::
Change_Phase ()
{

Integer a;

if (filling) {
filling = false;
QuickSort (1, size);

}
else

filling = true;
};
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template <
class Entry,
class Entry_Compare_Capability,
int Max_Size

>
void Prioritizer_Template_1 <

Entry,
Entry_Compare_Capability,
Max_Size

>::
Extract (Entry& x)
{

Entry temp;

x &= temp;
ele [size] &= x;
size--;

};

template <
class Entry,
class Entry_Compare_Capability,
int Max_Size

>
void Prioritizer_Template_1 <

Entry,
Entry_Compare_Capability,
Max_Size

>::
Extract_Any (Entry& x)
{

Entry temp;

x &= temp;
ele [size] &= x;
size--;

};

template <
class Entry,
class Entry_Compare_Capability,
int Max_Size

>
Integer Prioritizer_Template_1 <

Entry,
Entry_Compare_Capability,
Max_Size

>::
Size_Of ()
{

return size;
};
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template <
class Entry,
class Entry_Compare_Capability,
int Max_Size

>
Boolean Prioritizer_Template_1 <

Entry,
Entry_Compare_Capability,
Max_Size

>::
Is_In_Insertion_Phase ()
{

return filling;
};

template <
class Entry,
class Entry_Compare_Capability,
int Max_Size

>
Integer Prioritizer_Template_1 <

Entry,
Entry_Compare_Capability,
Max_Size

>::
Allowed_Max_Size ()
{

return Max_Size;
};
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A.2 A Heap-Based Implementation Suitable for  Application
Class II

Implementation Header

template <
class Entry,
class Entry_Compare_Capability,
int Max_Size

>
class Prioritizer_Template_2: public
Prioritizer_Template <

Entry,
Entry_Compare_Capability,
Max_Size

>
{

public:
Prioritizer_Template_2 ();
virtual ~Prioritizer_Template_2 ();
virtual void operator &= (Prioritizer_Template_2& rhs);

virtual void Insert (Entry& x);
virtual void Change_Phase ();
virtual void Extract (Entry& x);
virtual void Extract_Any (Entry& x);
virtual Boolean Is_In_Insertion_Phase ();
virtual Integer Size_Of ();
virtual Allowed_Max_Size ();

private:
/* Implicit assignment and copy constructor are prohibited

*/
Prioritizer_Template_2 (const Prioritizer_Template_2& m);
Prioritizer_Template_2& operator = (

const Prioritizer_Template_2& rhs
);

Boolean filling;
Integer size;
Entry* ele;

void sift_down (Integer a, Integer b);
void heapify (Integer a);

};



146

Implementation

template <
class Entry,
class Entry_Compare_Capability,
int Max_Size

>
Prioritizer_Template_2 <

Entry,
Entry_Compare_Capability,
Max_Size

>::
Prioritizer_Template_2 ()
{

ele = new Entry [Max_Size+1];
filling = true;
size = 0;

};

template <
class Entry,
class Entry_Compare_Capability,
int Max_Size

>
Prioritizer_Template_2 <

Entry,
Entry_Compare_Capability,
Max_Size

>::
~Prioritizer_Template_2 ()
{

delete [] ele;
};
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template <
class Entry,
class Entry_Compare_Capability,
int Max_Size

>
void Prioritizer_Template_2 <

Entry,
Entry_Compare_Capability,
Max_Size

>::
operator &= (

Prioritizer_Template_2 <
Entry,
Entry_Compare_Capability,
Max_Size

>& rhs
)

{
Entry *tele;

tele = ele;
ele = rhs.ele;
rhs.ele = tele;

rhs.filling &= filling;
rhs.size &= size;

};
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template <
class Entry,
class Entry_Compare_Capability,
int Max_Size

>
void Prioritizer_Template_2 <

Entry,
Entry_Compare_Capability,
Max_Size

>::
sift_down (Integer n, Integer k)
{

Integer left = 2*k,
right = 2*k + 1,
smallest = k;

if (left <= n) {
if (!Entry_Compare_Capability::Compare (

ele[smallest],
ele[left]

)
)

smallest = left;

if (right <= n)
if (!Entry_Compare_Capability::Compare (

ele[smallest],
ele[right]

)
)

smallest = right;
}

if (smallest != k) {
ele[smallest] &= ele[k];
sift_down (n, smallest);

}
};

template <
class Entry,
class Entry_Compare_Capability,
int Max_Size

>
void Prioritizer_Template_2 <

Entry,
Entry_Compare_Capability,
Max_Size

>::
heapify (Integer n)
{

Integer i = 0;

for (i = n/2; i >= 1; i--)
sift_down (n, i);

};
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template <
class Entry,
class Entry_Compare_Capability,
int Max_Size

>
void Prioritizer_Template_2 <

Entry,
Entry_Compare_Capability,
Max_Size

>::
Insert (Entry& x)
{

size++;
ele [size] &= x;

};

template <
class Entry,
class Entry_Compare_Capability,
int Max_Size

>
void Prioritizer_Template_2 <

Entry,
Entry_Compare_Capability,
Max_Size

>::
Change_Phase ()
{

if (filling) {
filling = false;
heapify (size);

}
else {

filling = true;
}

};

template <
class Entry,
class Entry_Compare_Capability,
int Max_Size

>
void Prioritizer_Template_2 <

Entry,
Entry_Compare_Capability,
Max_Size

>::
Extract (Entry& x)
{

Entry temp;

x &= temp;
ele[1] &= x;
ele[1] &= ele[size];
size--;
sift_down (size, 1);

};
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template <
class Entry,
class Entry_Compare_Capability,
int Max_Size

>
void Prioritizer_Template_2 <

Entry,
Entry_Compare_Capability,
Max_Size

>::
Extract_Any (Entry& x)
{

Entry temp;

x &= temp;
ele[size] &= x;
size--;

};

template <
class Entry,
class Entry_Compare_Capability,
int Max_Size

>
Integer Prioritizer_Template_2 <

Entry,
Entry_Compare_Capability,
Max_Size

>::
Size_Of ()
{

return size;
};

template <
class Entry,
class Entry_Compare_Capability,
int Max_Size

>
Boolean Prioritizer_Template_2 <

Entry,
Entry_Compare_Capability,
Max_Size

>::
Is_In_Insertion_Phase ()
{

return filling;
};



151

template <
class Entry,
class Entry_Compare_Capability,
int Max_Size

>
Integer Prioritizer_Template_2 <

Entry,
Entry_Compare_Capability,
Max_Size

>::
Allowed_Max_Size ()
{

return Max_Size;
};
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A.3 A Heap-Based Implementation Suitable for  Application
Class III

Implementation Header

template <
class Entry,
class Entry_Compare_Capability,
int Max_Size

>
class Prioritizer_Template_3: public
Prioritizer_Template <

Entry,
Entry_Compare_Capability,
Max_Size

>
{

public:
Prioritizer_Template_3 ();
virtual ~Prioritizer_Template_3 ();
virtual void operator &= (Prioritizer_Template_3& rhs);

virtual void Insert (Entry& x);
virtual void Change_Phase ();
virtual void Extract (Entry& x);
virtual void Extract_Any (Entry& x);

virtual Boolean Is_In_Insertion_Phase ();
virtual Integer Size_Of ();
virtual Allowed_Max_Size ();

private:
/* Implicit assignment and copy constructor are prohibited

*/

Prioritizer_Template_3& operator = (
const Prioritizer_Template_3& rhs

);
Prioritizer_Template_3 (const Prioritizer_Template_3& m);

Boolean filling;
Integer size;
Entry* ele;

void sift_up ();

void sift_down (
Integer n,
Integer k

);
};
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Implementation

template <
class Entry,
class Entry_Compare_Capability,
int Max_Size

>
Prioritizer_Template_3 <

Entry,
Entry_Compare_Capability,
Max_Size

>::
Prioritizer_Template_3 ()
{

ele = new Entry [Max_Size+1];
filling = TRUE;
size = 0;

};

template <
class Entry,
class Entry_Compare_Capability,
int Max_Size

>
Prioritizer_Template_3 <

Entry,
Entry_Compare_Capability,
Max_Size

>::
~Prioritizer_Template_3 ()
{

delete [] ele;
};
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template <
class Entry,
class Entry_Compare_Capability,
int Max_Size

>
void Prioritizer_Template_3 <

Entry,
Entry_Compare_Capability,
Max_Size

>::
operator &= (

Prioritizer_Template_3 <
Entry,
Entry_Compare_Capability,
Max_Size

>& rhs
)

{
Entry *tele;

tele = ele;
ele = rhs.ele;
rhs.ele = tele;
rhs.filling &= filling;
rhs.size &= size;

};

template <
class Entry,
class Entry_Compare_Capability,
int Max_Size

>
void Prioritizer_Template_3 <

Entry,
Entry_Compare_Capability,
Max_Size

>::
sift_up ()
{

Integer n = size;
Integer parent = n/2;

while (parent > 0) {
if (Entry_Compare_Capability::Compare (

ele[parent],
ele[n]

)
) return;

ele[parent] &= ele[n];
n = parent;
parent = n/2;

}
};



155

template <
class Entry,
class Entry_Compare_Capability,
int Max_Size

>
void Prioritizer_Template_3 <

Entry,
Entry_Compare_Capability,
Max_Size

>::
sift_down (

Integer n,
Integer k

)
{

Integer left = 2*k,
right = 2*k + 1,
smallest = k;

if (left <= n) {
if (!Entry_Compare_Capability::Compare (

ele[smallest],
ele[left]

)
)

smallest = left;

if (right <= n)
if (!Entry_Compare_Capability::Compare (

ele[smallest],
ele[right]
)

)
smallest = right;

}

if (smallest != k) {
ele[smallest] &= ele[k];
sift_down (n, smallest);

}
};

template <
class Entry,
class Entry_Compare_Capability,
int Max_Size

>
void Prioritizer_Template_3 <

Entry,
Entry_Compare_Capability,
Max_Size

>::
Insert (Entry& x)
{

size++;
ele [size] &= x;
sift_up ();

};
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template <
class Entry,
class Entry_Compare_Capability,
int Max_Size

>
void Prioritizer_Template_3 <

Entry,
Entry_Compare_Capability,
Max_Size

>::
Change_Phase ()
{

filling = !filling;
};

template <
class Entry,
class Entry_Compare_Capability,
int Max_Size

>
void Prioritizer_Template_3 <

Entry,
Entry_Compare_Capability,
Max_Size

>::
Extract (Entry& x)
{

Entry temp;
x &= temp;

ele[1] &= x;
ele[1] &= ele[size];
size--;
sift_down (size, 1);

};

template <
class Entry,
class Entry_Compare_Capability,
int Max_Size

>
void Prioritizer_Template_3 <

Entry,
Entry_Compare_Capability,
Max_Size

>::
Extract_Any (Entry& x)
{

Entry temp;

x &= temp;
ele[size] &= x;
size--;

};
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template <
class Entry,
class Entry_Compare_Capability,
int Max_Size

>
Integer Prioritizer_Template_3 <

Entry,
Entry_Compare_Capability,
Max_Size

>::
Size_Of ()
{

return size;
};

template <
class Entry,
class Entry_Compare_Capability,
int Max_Size

>
Boolean Prioritizer_Template_3 <

Entry,
Entry_Compare_Capability,
Max_Size

>::
Is_In_Insertion_Phase ()
{

return filling;
};

template <
class Entry,
class Entry_Compare_Capability,
int Max_Size

>
Integer Prioritizer_Template_3 <

Entry,
Entry_Compare_Capability,
Max_Size

>::
Allowed_Max_Size ()
{

return Max_Size;
};
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