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Abstract

Adapting Roof Support Methods for Anchoring Satellites on

Asteroids

By Grant B. Speer

The use of anchorage in satellite and spacecraft design has been largely restricted

to harpoon-inspired technology based on anticipated low strengths of cometary and

asteroid material. Initial results from the Rosetta mission to comet 67P/Churyumov-

Gerasimenko, however, have demonstrated both larger-than-expected compressive

strengths of cometary materials and the importance of adequate anchorage to mit-

igate the risk of mission failure. The �eld of rock mechanics can provide unique

insight into the design of these satellite and lander anchors by drawing on existing

roof bolt technology. This study compared the behavior of tensioned point anchor

and untensioned fully grouted roof bolts with a polyurethane-anchored bolt under

environmental conditions similar to those anticipated in space. These conditions in-

clude variation in possible material types as well as variations in regolith properties,

anchorage length, and low operating temperatures.

Using a Box-Behnken experimental design, this study �rst compared the e�ects

of anchor depth and rock strength on each of the three anchorage types in a com-

petent rock strength regime. The study then examined the e�ects of compaction,

water content, and temperature on each anchor type in a regolith environment. The

subsequent data analysis identi�ed one anchor type as the overall best anchor for

these environments. This �nding has led to a preliminary design recommendation

to advise space agencies on satellite anchor construction based on the target orbital

body's anticipated environmental and �exogeologic� conditions.
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Chapter 1

Introduction

1.1 New Horizons for an Old Discipline

The �elds of mining engineering in general and rock mechanics in particular have

long been concerned with what was below the ground, with little consideration given

to that which lies above. As NASA plans its missions to Mars and SpaceX con-

tinues to lower launch costs into space, however, mining engineers have increasingly

begun considering possible extraterrestrial applications for their �eld, including in

the development of in situ resource utilization technologies and the potential mining

of asteroids, the Moon, and Mars. One technology that could be readily adapted

to space applications originates in roof support. Rather than preventing mine roofs

from collapsing, however, roof support technology could instead be used to ensure

equipment and operators stay tethered to the orbital body on which they are work-

ing instead of drifting into space. These anchors, in turn, would serve as a primary

mission assurance safeguard against the failure of multi-million or multi-billion dollar

missions and projects dependent on the success of a single satellite, lander, or oper-

ator. Working in a hard vacuum with minimal gravity and operating temperatures

varying between -373�F (-225�C) and 333�F (167�C) creates a whole new set of

design challenges where mining engineers can expand upon rock mechanics and exist-

ing roof support methods to develop a new generation of anchoring technologies that

can lead to advancements both in space and on Earth (Williams 2015b).
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1.2 Motivation for Study

Both the danger of mission failure and the role of anchorage in preventing it have

direct consequences on missions to low-gravity bodies such as asteroids, comets, or

Mars' moons Phobos and Deimos. The second component of the Asteroid Redi-

rect Mission (ARM), the Asteroid Redirect Crewed Mission (ARCM), will involve

astronauts working with, around, and on an asteroid boulder with negligible mass

(Mazanek et al. 2016). This mission, and others like it, will require astronauts or

satellites to anchor themselves and/or their equipment to the small body to ensure

they do not drift away. This situation therefore presents a promising opportunity for

the mining engineering community to provide its decades of knowledge of anchoring in

rock to provide new perspectives to the space community in order to mitigate mission

failure and ensure astronaut and equipment safety.

The �eld of rock anchoring has been a mainstay within the discipline of mining

engineering for years, with bolting practices in mines beginning as early as 1940 (Peng

1998). The study of rock bolt design has led to multiple developments in drilling

techniques and anchoring designs that have additionally increased mining engineers'

understanding of rock mass behavior. These advancements have culminated in the

development of the fully-grouted roof bolt, wherein a roof bolt is completely encased

by a grouting resin to increase the compressive stresses applied to the rock by the

bolt. Little is currently known, however, about how resins or bolts might behave

in space environments. This thesis will therefore conduct an exploratory analysis

of the application of mine roof support anchors for satellite anchoring on asteroids.

The study will also provide an initial comparison between anchorage mechanisms

to identify the mechanism most suitable for further study as a potential anchoring

method. This thesis will therefore begin by surveying engineering literature in order

to identify a case study of the need for innovation in anchoring for missions to small

orbital bodies, as well as a discussion of roof support theory, the di�erent types of

roof bolt systems currently in use, and possible conditions with which an anchor

may interact on an asteroid. It will then move into a discussion of the experimental

2



design of this project in order to test multiple roof bolting techniques under di�erent

anchoring conditions that may be encountered in space. The experimental design

and testing sections will then be followed by results and a comparative analyses of

bolt and resin performances at di�erent conditions that could possibly occur on a

small orbital body, including novel �ndings in the use of roo bolt anchoring in these

applications. The thesis will then conclude with recommendations on how to take

this �rst-order examination to the next round of testing in order to provide NASA

with a more robust anchor design.
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Chapter 2

Literature Review

2.1 A Case Study of Anchoring Mechanisms Cur-

rently Used in Space Applications

Lander technology has a long history at NASA of unanchored support. Beginning

with the Surveyor and Apollo missions to the Moon, landers have been consistently

designed to land on footpads that structurally support the lander and sink into the

regolith under the lander's weight, but provide no anchoring force (Rogers 1972;

Williams 2006). Even the landers of today and tomorrow fall along this design, with

NASA's Project Morpheus and Mighty Eagle both following the same Apollo-era

pattern of circular strut-mounted platforms as lander footpads (Olansen et al. 2013,

McGee et al. 2013). This design has stayed largely consistent primarily due to a lack

of need for advanced anchoring. All of these systems were developed to land on the

Moon or Mars, where gravity, respectively 16% and 36% of that on Earth, is still

powerful enough to hold a lander on its surface (Williams 2015b). The same cannot

be said, however, for asteroids and comets.

There have currently been two missions, one to an asteroid and the other to

a comet, which contained a planned interaction with the planetary body's surface:

Hayabusa, which returned a sample of the asteroid Itokawa, and Philae, which landed

on the comet 67P/ Churyumov- Gerasimenko (Bertini 2013). The landing gear and

4



anchoring strategies for these missions, however, have varied based on the mission's

intent and location. Fujiwara et al. (2006) states, for instance, that Hayabusa was

designed so that the satellite would not land, but only obtain a sample of Itokawa.

The Philae lander, meanwhile, was speci�cally intended to anchor to the comet 67P/

Churyumov- Gerasimenko (Ulamec and Biele 2009). The subsequent landing of Philae

as a part of the Rosetta mission demonstrates the importance of reliable anchoring

systems that can deploy on command (see Figure 2.1).

The �rst step in Philae's anchoring system involved �ring a cold gas thruster as

Philae approached 67P in order to minimize bouncing on the comet's surface (Biele

et al. 2006). Philae's dual anchoring design called for ice screws (see Figure 2.2) with

a double helix design in each of the three feet of Philae's landing tripod and two

anchoring harpoons on the main body, all of which would deploy upon contact with

the ground in order to provide redundant anchoring systems. The ice screws would

drill into the comet using a pulley system activated upon touchdown in regolith with

1 � 100 kPa compressive strength while the thruster continued to push the lander

onto the comet surface. The harpoon, �red as the lander approached the comet,

would anchor in the comet and the tether would retract to provide 5 to 25 N of

anchoring tension. Previous laboratory tests had demonstrated that the harpoon

could penetrate H2O ice with a penetration resistance of 10 MPa and sintered CO2

ice with a penetration resistance of 6.5 MPa (Biele and Ulamec 2013; Biele et al. 2006;

Kömle et al. 2001; Spohn et al. 2015). The ice screw systems were rated for 2 kPa

� 2 MPa compressive strength, with possible mission failure should the compressive

strength be less than 100 Pa or more than 2 MPa (Biele and Ulamec 2013).

5



Figure 2.1: Philae Lander and Its Critical Anchoring Equipment (after Biele et al.
2009)

The Philae ground crew reported that several anomalies occured with the landing

system that resulted in a subnominal landing and anchorage failure (Biele et al.

2015). As Philae approached touchdown, its cold gas thruster did not engage and

its harpoons failed to deploy, thereby removing the main reaction force and anchors

that would have counteracted possible bouncing dynamics. Upon contact, at least

one ice screw deployed into the regolith approximately 50 mm, while another lander

foot's ice screw may have either penetrated the regolith up to 10 mm or made contact

with a 1-m sized boulder. It is unknown if the third foot and ice screw penetrated

the regolith due to a lack of lighting in images from Philae. It is known, however,

that the ice screws did not penetrate the regolith with enough depth/anchoring force

to successfully oppose the normal force applied to the lander by the comet, leading

to the initiation of bouncing dynamics. The subsequent trajectory of Philae led to

a potential collision with a crater rim, a second touchdown and bounce, and a �nal

touchdown one hour and �fty-seven minutes later at its �nal resting place, Abydos.

6



Figure 2.2: Ice Screw Design (after Ulamec and Biele 2009)

A thermal probe, the MUPUS-PEN, was designed to enter the regolith via a ham-

mering mechanism and initiated hammering at an energy level of 0.49 J (Spohn et al.

2015). Hammering progress halted after penetrating the �rst 27 mm of the comet's

surface (a possible dust layer) and was unable to further penetrate the comet's sur-

face material at Abydos despite increasing the energy setting to 1.59 J, 2.17 J, or

4.23 J. As a result, the MUPUS team concluded that the local cometary surface had

a resistance of penetration larger than 4 MPa and a uniaxial compressive strength

larger than 2 MPa. The Rosetta orbiter and Philae lander were able to subsequently

complete their science missions with resounding success (Fantinati and Geurts 2015).

However, the mission does provide some additional insight for future anchor design.

Since the initial harpoon anchors failed to deploy, we may never know if they would

have successfully penetrated the comet's surface. The entire mission itself cost ¿1.4

billion, or $1.86 billion (European Space Agency 2014). Had Philae su�ered irreper-

able damage from its various contacts with the surface of 67P, or had the lander

7



bounced in such a way that its trajectory led it to completely bounce away from the

comet, the failure would have resulted in a major loss of the time and money invested

in the project by the Rosetta team, as well as a loss of much of the previously antici-

pated scienti�c data. This case study therefore establishes the groundwork for a need

for a robust anchoring plan when designing a satellite for small body operations.

2.2 Roof Support and Anchoring

2.2.1 Theories of Roof Bolting

Anchorage in underground mines, unlike on asteroids, has an extense history of

trial and development. The exact nature of roof behavior after excavation has been

studied since the adoption of roof bolts in coal mines in the 1940's, though bolting

had earlier been applied in German coal mines in 1918 and lead-zinc mines in Mis-

souri in the 1930's (Lang et al. 1979). Studying the nature of mine roof behavior has

subsequently allowed for the development of mine roof support systems, the behavior

of which will be examined in this study. Underground mines require extensive roof

support in order to prevent the mine roof from collapsing under the weight of the over-

burden located above the mine. Multiple theories - elastic and plastic deformation,

beam building, plate behavior, and roof arching - attempt to describe the general

behavior that follows this stress relaxation. However, geologic conditions and pillar

designs varying from mine to mine show that di�erent failure phenomena dominate

roof behavior under di�erent mining conditions, and that one theory alone cannot

fully describe the failure of mine roofs.

Upon excavation, the stresses in the rock surrounding a mine entry relax because

the mass that initially con�ned the rock along the entry has been excavated, thereby

removing the con�ning force initially opposing the stresses within the rock. The

excavated opening in the rock mass therefore begins to relax, or �creep�, and undergoes

a series of failure mechanisms by either fracturing outright or undergoing a cataclastic

�ow until the opening has either closed or reached a point of stability. Mine roofs

8



undergoing cataclastic �ow sag at the centerline of the entry as the rock displaces

vertically downwards, while at all other points along the roof the rock �ows vertically

and horizontally towards the center of the opening (Peng 2008). This buckling, the

result of tensile and shear stresses, can occur along bedding planes and laminations

both in rock strata and along beams. As shear and compressive stresses increase,

the roof takes on arching action, wherein the roof and ribs begin to fracture around

the entry to form a more stable arch shape. The roof will then reach temporary

(possibly permanent) stability until utlimately resulting in caving and a collapse of

the mine roof. The application of a roof bolt can counteract this series of events by

applying compressive forces to the rock in which it is anchored, while the bolt itself

is in tension.

Mark (2000) and Peng (2008) o�er an authoritative examination of mine roof

reinforcement mechanisms. Mark (2000) identi�es four di�erent reinforcement mech-

anisms in which roof bolts may be employed: simple skin control, suspension, beam

building, and supplemental support (see Figure 2.3). In skin control operations, the

mine roof is composed of strong, competent rock that can e�ectively support itself

as the mine is developed. In these instances, roof bolts are primarily used to prevent

localized failure along joints, cracks, or faults by bolting across the failure plane to

e�ectively prevent rock falls. Peng (2008) highlights how roof conditions that re-

quire beam building and suspension typically consist of strata with laminations or

bedding planes where failure is likely to occur. Bedded planes overlain by a com-

petent rock are bolted together and supported from the competent rock to prevent

movement along the rock's bedding planes and laminations. Thinly bedded strata

without a competent overlying rock are bolted together so that they collectively form

a beam, using friction to minimize horizontal movement along the bedding planes and

compression to hold together fractured rock masses. Finally, mine roofs can become

extremely fractured or stressed, leading to advanced roof failure. Cable bolts, trusses,

and standing supports can therefore be used to bear the actual load of the roof, while

roof bolts themselves primarily act as a skin control mechanism against immediate

roof failure.
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Figure 2.3: Roof Reinforcement Mechanisms (after Mark 2000)
A. Simple skin control; B. Suspension; C. Beam building, and D. Supplemental

support

2.2.2 Bolt and Anchorage Types

Mark (2000) and Peng (2008) additionally provide a detailed examination of roof

bolt types and anchorage mechanisms. Peng (2008) identi�es two basic types of roof

bolts that are used for mine roof support: point/mechanical/conventional and fully-

grouted resin bolts, as well as combination bolts, tensioned rebar bolts, resin-assisted

mechanically anchored bolt, and cable bolts. Bolts can additionally be classi�ed by

anchorage mechanism (point anchor or resin), with bolts other than mechanical and

resin bolts existing as variations of these two mechanisms and sometimes utilizing

both concepts. Mark (2000) speci�cally highlights that bolts do not provide speci�c

reinforcement mechanisms. Instead, the reinforcement mechanism required and bolt

selection are determined by the geology and stresses of the mine roof. Table 2.1

compares the anchorage methods and designs of these various types of bolts, while

Figure 2.4 o�ers a visualization of how these bolts operate.

Mechanical roof bolts were the original type of roof bolt used in early bolting

plans (Peng 2008). These bolts consist primarily of a smooth shank with threads at
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Table 2.1: Roof Bolt Classi�cations (after Mark 2000; Peng 2008)

Bolt Type Anchoring Mechanism Bolt Surface Tension

Point-anchored bolt Mechanical (shell anchor) Smooth Yes

Point-anchored, resin-assisted bolt Mechanical (shell anchor encapsulated in resin) Smooth Yes

Combination bolt Resin (point) Rebar and smooth Yes

Tensioned rebar bolt Resin (point or fully) Threaded/rebar Yes

fully-grouted resin bolt Resin Threaded/rebar No

Cable bolt Resin (point or full) Cable Yes

(a) Mechanical bolt (after Peng 2008) (b) fully-grouted resin bolt (after Peng 2008)

Figure 2.4: Bolt Installation Layout
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one end and a bolt head at the other, as well as an anchor shell threaded onto the

shank and a bearing plate and low-friction washer located adjacent to the bolt head

(Lang et al. 1979). Anchor shells used a wedge shape to drive the anchor's wings into

the bolt hole in the past, and now also include serrations on the wings/leaves of the

shell to ensure increased gripping along the bolt hole walls. After the bolt hole is

drilled, the bolt is installed and rotated by a roof bolter to achieve a predetermined

level of torque that places the bolt under tension and the surrounding rock under

compression (Mark 2000). The low-friction washer assists this action by lowering

the resistance between the bearing plate and the bolt head. The shank of the bolt

throughout this process does not contact the drill hole wall, instead transferring the

load to the anchor shell and the collar. Additionally, purely mechanical bolts are

rarely used in U.S. mines in contemporary times as mine operators instead opt for

mechanically anchored, resin-assisted bolts. These bolts are installed with high bolt

tension by combining the advantages of mechanical bolts' fast installation and resin

bolts' anchorage capacity.

The other class of bolts, resin bolts, o�ers an improvement on conventional

bolt anchorage. Peng (2008) highlights that fully-grouted roof bolts are often much

stronger than their surrounding rock strata, in large part because the concept of the

resin bolt developed in order to counteract large shear forces experienced in certain

loading conditions by providing anchorage along the full bolt length (Bureau of Mines

1987). After a bolt hole is drilled, a tube of 2-part resin is inserted in the hole. Then,

a bolt is installed to rupture the resin tube and rotated to mix the resin mastic and

catalyst. The resin cures and provides maximum frictional interlocking between the

bolt surface, the grout particles, and the rough rock surface of the hole's wall (Mark

et al. 2001; Signer 1990). Adhesion only plays a smaller, secondary role to the in-

terlocking of rock, bolt, and grout. Longer bolt lengths then provide larger surfaces

along which the grout can distribute this frictional interlocking and shear resistance

to rock movements. Ensuring the bolt is long enough to distribute the load prop-

erly is therefore critical to bolt size selection. Additional factors contributing to the

grout's ability to interlock with the rock particles include the hole annulus, bolt hole
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ri�ing, and bolt diameter (Mark et al. 2002). Ri�ing the bolt hole, increasing the bolt

diameter, and using bolts with rebar-like patterns, for instance, increases the rough

surface area with which grout can interact. An annulus size of 0.125 in., meanwhile,

provides the optimum spacing for grout to interact with both the bolt and rock face.

Signer (1990) concurs with this assessment, while Jalalifar et al. (2005) also include

con�ning pressure, as well as rock and grout strength.

Two subsets of fully-grouted resin bolts exist as well: the point-anchored and fully-

anchored tensioned rebar bolt (Mark 2000; Peng 2008). In fully-grouted tensioned

rebar bolts, two resins are installed so that the anchor point cures faster than the bolt's

shank and provides the point from which the rest of the bolt shank is tensioned prior

to �nal resin curing. In point-anchored tensioned rebar bolts, meanwhile, a shorter

resin cartridge is used to create a point anchor reminiscent of a mechanical anchor

at the anchoring point, while the rest of the shank remains ungrouted and transmits

tension between the anchor and bolt head. There is still considerable debate over

the role of tension during the installation of resin bolts, with Mark (2000) examining

both those who believe that installing pre-tensioned resin bolts further increases their

yield capacity, as well as those who oppose this idea. At the end of this examination,

however, there is insu�cient evidence on both sides to de�nitively settle the argument.

Additionally, there is a lack of comparative studies between the three methods and

the use of anecdotal evidence where variables in the bolt design may not have been

held constant as primary reasons that neither side can be validated at this time.

Finally, cable bolts operate under conditions where normal bolt designs will not

o�er su�cient support (Peng 2008). These bolts are typically employed in extremely

weak rock or where the required length for suspension is much longer than what me-

chanical or resin bolts can provide. Comprised of one central strand surrounded by six

supporting strands, the cable bolt is installed with resin and consequently generates

much higher anchorages than mechanical or resin bolts. One variation of the cable

bolt, the polyurethane injectable cable bolt, was developed in order to encapsulate

the bolt against corrosion (Faulkner 2012). An unintentional bene�t found while de-

ploying these bolts is the polyurethane's ability to permeate roof cracks and �ssures,
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thereby improving roof stability and minimizing the volume of water leaking into the

mine. Injected polyurethane may expand or maintain its original volume depending

upon the speci�c chemical reactions involved (Craig and Murnane 2013; Snuparek

and Soucek 1999). Polyurethanes with higher expansion ratios, and thus larger vol-

umes of froth, possess lower compressive strengths than those with a 1:1 expansion

ratio. For instance, Snuparek and Soucek (1999) found that the UCS of polyurethane

resins decreased from ~75 MPa to ~25 MPa with an increase in the expansion factor

from 1:1 to 1.5:1. The integration of polyurethane with the surrounding rock grains

and �ssures creates a conglomerate �geocomposite� (Bodi et al. 2012). The strength

of these geocomposites in large part depends on the degree of cementation around

the rock grains, which can vary from fully encapsulating a particle to only binding

the interconnected pores between grains. This cementation is also dependent on the

grain density and expansion ratio, since froth bubbles will decrease the amount of

polyurethane bonding two interfaces while extremely compacted grains may prohibit

polyurethane from penetrating between the grains' contact interfaces.

2.2.3 Bolt and Anchorage Failure Mechanisms

Resin bolt failure typically occurs due to movements in the roof (Mark et al.

2002). The bolts typically fail either at the bolt head/mounting plate; along the

bolt length due to tension and/or bending; or at the point of anchorage. Points of

anchorage for grout bolts are typically at the tip of the roof bolt. Hartman and

Mutmansky (2002) discuss several of the bene�ts of resin anchor bolts as opposed to

purely mechanical bolts. Rock lining the bolt hole often splits above the mechanical

anchor and is crushed at the anchor itself, allowing the anchor to slowly pull out.

Resin anchors, by contrast, do not split the rock above the anchor and do not create

stress concentrations at the anchor. Bolts will also tend to elongate under load and

will concentrate stress at the bearing plate and bolthead of a mechanically anchored

bolt. Resin bolts will only elongate for a short length due to their rebar composition

and will not concentrate stress at the bearing plate. Because resin bolts do not create

the stress concentrations, rock fractures, or experience the elongation of mechanical
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bolts, resin anchor bolts are a stronger and more reliable choice of anchoring bolt.

Signer (1990) examined resin anchor failure and found that, if the grouted bolt

is of an adequate length and properly installed, failure generally occurs when the

maximum load on the bolt exceeds the yielding load of the steel. This study found

that yield zones in the rock along bolt lengths can vary from 4 to 22 in., thereby

requiring lengths in excess of 22 in. in order to ensure loads can be transferred from

the bolt to the surrounding rock strata. Mark et al. (2002), meanwhile, surveyed

literature for anchorage pullout tests and found that, according to a study from the

Bureau of Mines, roof bolts needed to have an average of 31 in. of grouted length

when in coal or shale seams in order for 90% of tested bolts to fail due to the yield load

of the steel, rather than insu�cient anchorage length. Sandstone required an average

of 18 in. of bolt length, while limestone required 12 in. of bolt length. The key is

thus ensuring proper load transfer. Ensuring resin bolts are su�ciently long enough

and contain enough grout to properly support the surrounding rock makes ultimate

failure contingent upon the type and diameter of the steel used in the bolt. While

bolt failure is the primary concern in mechanically anchored bolts, it is also necessary

to consider the surrounding geology, rock movements, and proper installation, as any

of the above could lead to crushing at the anchor site, the release of tension on the

bolt, or anchor creep and premature bolt failure (Mark 2000).

2.2.4 Bolt Design and Anchoring Test Method

Despite the variations in bolt anchoring methods and load transfer mechanisms,

bolt length, bolt capacity, and anchorage strength are critical design factors across

classes of bolts. Mark et al. (2001) utilized statistics from roof bolt case studies to

develop a roof bolt design program called Analysis of Roof Bolt Systems (ARBS) to

evaluate the overall bolting plan based on these inputs. Additionally, ARBS considers

geologic properties such as horizontal stress, depth of cover, and rock mass rating

(RMR), as well as bolting pattern design parameters including the span of the mine

roof to be supported, the entry width, the number of bolts per row of bolting, and the

spacing between those rows. The length of bolt calculationLB for ARBS, however, is
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a logarithmic equation based on the roof span Is, coal mine roof rating (CMRR) or

RMR, and the depth of cover H such that

LB =
(
Is

13

)
∗ log10H ∗

(
100− CMRR

100

)
1.5 (2.1)

A similar but earlier study by Mark (2000) examined some empirical-based models

of bolt length from Lang and Bischo� (1982); Bieniawski (1987); Unal (1984), such

as

LB = Is
2
3 (2.2)

LB =
Is

3
(2.3)

LB =
(
Is

2

)
∗
(
100−RMR

100

)
(2.4)

Mark (2000) then based a bolt length design upon a beam building model and

the equation from Unal (1984) and converted it to metric units so that

LB = 0.12 ∗ (Is) ∗ (log103.25H) ∗
(
100− CMRR

100

)
(2.5)

The principle behind all of these studies and equations, however, is the dependence

of bolt length upon the roof span and RMR/CMRR without any direct measures of

the mechanisms working at the individual bolt level. No direct meaning is ascribed

to a bolt's anchorage ability, but only to its yield capacity C described as

C = (
π

4
) ∗G ∗ d2 (2.6)

where G is the grade of steel in thousands of psi and d is the bolt's cross-sectional

diameter. Mechanical bolt anchorage is generally considered synonymous with yield

capacity, with pullout tests showing anchorage adequate if the pullout load exceeds

the yielding capacity of the bolt. While anchor creep can lead to bolt failure, this
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scenario is unlikely in mechanically anchored, resin-assisted bolts.

Amongst resin bolts, meanwhile, a standard pullout test might only result in the

breakage of the bolt since fully-grouted resins can exceed the yielding capacity of the

bolt, and so these tests provide little useful information on anchorage (Mark et al.

2002). As a result, a method was developed for calculating the required bolt length

to provide enough surface area for grouted resin to e�ectively resist rock movements.

These tests, dubbed short encapsulation pullout tests (SEPTs), are performed on

grouted bolts in which the bolt's top 12 inches are grouted within the bolt hole.

After a bolt hole has been drilled, a 12 in. resin cartridge is inserted in the bolt hole.

A bolt with a pulling harness on it is then installed in the hole and the resin allowed

to set. After the resin has cured, a handpump incrementally applies a load to the bolt

until the bolt pulls out of the resin. The load at which the bolt pulls out is known as

the maximum SEPT load.

This study identi�ed an equation for the �Gripping Factor�, also known as the

�Bond Factor�, de�ned as the bolt's resistance to pullout per inch, by dividing the

maximum SEPT load by the 12 inches of anchor:

GF =
SEPT

12
(2.7)

The authors then describe several di�erent types of bolt length: anchor length,

full resistance length, and total bolt length. Total bolt length L is the nominal bolt

length speci�ed by the user. The anchor length LAnch is described as the length of the

bolt active in the anchoring process, while the full resistance length LFR is the bolt

length where a force equal to or greater than the bolt's yielding load actively resists

rock movement. The anchor length and full resistance length equations therefore

relate to the gripping factor such that

LAnch = C/GF (2.8)

LFR = L−LAnch (2.9)
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These equations provide a method of designing a resin anchoring system to meet

a maximum load based on the resin anchor length that can then be compared to

experimental results for quality control and assurance. The SEPT results applied

to a given resin bolt length can then be compared to the pullout test results from

a mechanical bolt to identify under which conditions either system might develop

stronger anchorage.

2.2.5 Resin and Bolt Performance in Extreme Environments

Mechanical and resin bolts are used in various operational environments around

the Earth, and manufacturers often provide data on their products' capabilities to

customers. Any data on operations in low temperatures would therefore provide

critical information on the applicability of this technology to the low (-94 � -328�F, -

70 � -200�C) temperature environment of space. The U.S. Bureau of Mines has found

that, while resin strength decreases at a high rate when temperatures exceed 100�C,

compressive strength increased with decreasing temperature up to 0�C (Bureau of

Mines 1987). Figure 2.5 displays the data found in the Bureau of Mines report.

Figure 2.5: Resin UCS as a Function of Temperature (After Bureau of Mines (1987))

At temperatures below 0 �C, the literature regarding resin performance becomes

much less clear. Williams Form Engineering Corporation (2014) states that resin
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cure time is dependent on temperature and requires 15 � 30 minutes to cure at 10�C.

Due to their instructions to allow temperatures to �normalize� at 10 � 21�C for two

days prior to use if stored at low temperatures, it can be inferred that these resins

would require longer curing times at the present study's target low temperatures.

Similar warnings from the manufacturer of bolts and resins Minova America stress

the temperature sensitivity of resin gel and cure times, which are based at 22�C

and increase in cure time as temperatures decrease (Minova Americas 2009). With

similar warnings of normalizing temperatures prior to use, both Minova and DSI

recommend their respective products for use at temperatures down to 14�F (10�C)

(DSI 2009). Though Orica International provides similar recommendations to the

other three providers, they also provide a characterization of how the amount of time

required for the resin to remain undisturbed after mixing changes with decreasing

temperature (Orica International 2014). This characterization can be seen in Table

2.2.

Table 2.2: Hold Time Variation with Temperature (After Orica International 2014)
Temperture, °C 30 Second Resin Hold Time, s 60 Second Resin Hold Time, s

18 25 50

16 30 55

14 35 60

12 50 75

Most resins have not been tested at the low temperatures anticipated for space

applications since underground mines tend to increase in ambient temperature with

depth due to the thermal gradient of the rock. Compton and Oyler (2005) do men-

tion that, as part of their experimental process to isolate variables, several bolts

were installed with resin at either room temperature, a cold temperature, or with

both cold resin and cold bolts in order to identify possible mechanisms for increasing

the di�culty of installing bolts. Though not a quantitative analysis, theirs found

that temperature did not signi�cantly a�ect the di�culty of roof bolt installation.

Construction industry standards for similar resin anchors to those used in mining,

however, do exist for low temperature situations. Hoermann- Gast and Olsen (2015)
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states that the ACI 355.4 standards on post-installed adhesive anchors recognizes

that tests for adhesive anchors installed in concrete may experience temperatures as

low as -40�C, and that this lower temperature limit is not necessarily indicative of

anchorage problems at lower temperatures, but purely the limit of existing data.

2.3 Exogeologic Characteristics of Planetary Bodies

The physical properties of moons, asteroids, and comets di�er between themselves

and within their own classes. Our knowledge of the properties of these bodies stems

primarily from remote observation, as well as samples that have fallen to Earth and

missions to those planetary bodies. The following sections compare the mineralogy,

density, and porosity of asteroids, comets, and Earth's Moon to establish a baseline

for the possible operating conditions of roof bolt-based anchoring technology used in

space. It then concludes with a discussion of asteroid and comet material strengths.

2.3.1 Mineralogy

Asteroids are classi�ed according to spectral re�ectance type (Nelson et al. 1993).

These types, in turn, belong to asteroid �groups�. The overwhelming majority (~92%)

of asteroids fall into the C-, S-, and X- group categories (Williams 2015a). Additional

groups according to the Tholen typology of spectral re�ectance classi�cation are the

A-, D-, Q-, T-, V- and R-groups. The C-, S-, and X- groups can further be divided

into several asteroid type categories, while the other groups all only contain their own

nominal type category. While each asteroid type typically consists of at least some

olivine and pyroxene minerals, the range of content of these minerals varies according

to asteroid type. This degree of variation is in large part because many of the mech-

anisms at play during asteroid formation, such as igneous heating and metamorphic

pressures from collisions, follow a mineralization scheme given by Bowen's reaction

series (Blatt et al. 2006). Bowen's reaction series classi�es the formation processes of

minerals based on the maximum temperature to which a mineral was heated before it

cooled. Ma�c minerals form at higher cooling temperatures than felsic minerals, thus
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allowing the Bowen reaction series to provide an estimation of the formative tem-

peratures of a rock or asteroid and some indication of the formative events. Though

each asteroid type contains materials that distinguish each type from other asteroids

outside of its type, it should not be assumed that asteroid type is indicative of min-

eralogy across all members of the asteroid type (Ga�ey 2011). C-type asteroids, for

instance, are expected to contain ice, amino acids, and carbonaceous materials, while

M-type asteroids contain mostly metals and S-type asteroids contain both metals and

silicates in such a wide range of ratios that multiple subgroups have been created for

the S-type category (Chabot et al. 2014; Williams 2015a). C-type asteroids such as

2008 EV5 are anticipated to be the primary target type of future missions to asteroids

due to their anticipated content of water and volatile gases. Table 2.3 further expands

on the relationship between asteroid type and surface mineralogy.

Comets, like asteroids, contain many minerals generated from the cooling of

molten materials. An examination of material sampled from Comet Halley has re-

vealed the presence of silicates, crystalline olivine, amorphous olivine, enstatite, and

orthopyroxene (Hanner and Bradley 2004). As mentioned in Section 2.1, Spohn et al.

(2015) have assessed the presence of both water and dry ice intermingled with silicate

dust to occur on comet 67P/Churyumov-Gerasimenko based on initial results from

the Philae lander. Ice content of comets generally exceeds that anticipated for aster-

oids, thereby leading to comets actively gassing o� water ice as they draw nearer to

the Sun (Chodas and Baalke 2014). This phenomenon and ice content in general are

therefore key factors de�ning the di�erence between the two types of bodies.

21



Table 2.3: Asteroid Mineralogy and Meteorite Analogs (After Nelson et al. (1993))

Inner Belt Asteroids

Type Interpreted Surface Mineralogy Meteorite Analogs

V Pyroxene, feldspar HED association

A Olivine or olivine-metal Brachinites

S Metal, olivine, pyroxene Pallasites, mesosiderites, CV/CO chondrites, OC

M Metal, trace silicates, enstatite Irons, enstatite chondrites

R Pyroxene, olivine None

B, C, F, G Hydrated silicates, carbon, organics, silicates CI, CM chondrites, black/gas-rich OC

Q Olivine, pyroxene, metal Ordinary chondrites

E Enstatite Enstatite achondrites

Outer Belt Asteroids

D Organic-rich silicates, carbon None

P Organic-rich silicates, carbon None

Finally, the mineralogy of Earth's own Moon o�ers a unique combination of sim-

ilarities to both asteroid and terrestrial materials. The lunar surface is generally

de�ned by the bright white �highland� and dark �mare� features and, similar to as-

teroids, contain pyroxene, silicates, and olivine (Schwandt et al. 2012). Additionally,

however, anorthsite, basalt, ilmenite, and water-equivalent hydrogen (either water ice

or water bound in minerals) have been identi�ed on the Moon as well. These com-

pounds bear particular signi�cance for future missions seeking to use lunar resources

for the production of metals, oxygen, and water in space.

2.3.2 Density and Porosity

Macroporosity in asteroid studies is calculated as a function of the asteroid's bulk

porosity (Britt et al. 2002). Asteroid masses are calculated based on their gravi-

tational impacts on neighboring bodies, while volumes are estimated using e�ective

radii and imaging from spacecraft. Based on the subsequently calculated bulk den-

sity, as well as estimated grain densities and microporosities from meteorite analogs,

the bulk porosity is then derived. Critically, these calculations assume similar min-

eralogical compositions not only between asteroids and meteorites, but throughout

the asteroid's internal structure as well. The microporosity is then subtracted from

the bulk porosity, thus solving for the macroporosity. While a similar method is used
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in rock and soil mechanics, the di�erence in the de�nition of these terms leads to

major di�erences in the ratio between micro- and macroporosity (Stolf et al. 2011).

For instance, the dataset of soils used in a Brazilian study show that microporosity is

nearly always greater than macroporosity. Conceptually, this relationship occurs be-

cause the microcracks and micropores will naturally be greater in number than pores

large enough to qualify as macropores. Because porosity data for asteroids relies on

the de�nitions and methods used in literature by asteroid scientists, their de�nitions

will be used in the following discussion, with �porosity� being used interchangeably

with �macroporosity�. Porosity values vary widely between asteroid types. C-type

asteroids vary between 38 and 70% porosity, with an average porosity of ~38% (Baer

et al. 2011; Chabot et al. 2014). M-type asteroids share an average porosity of ~37%.

Finally, S-type asteroids vary between 10 and 50% porosities, with an average of

20%. Porosities also vary within asteroid classes, with Itokawa, a representative sam-

ple of S-type asteroids, displaying a porosity of 40% while Ida and Eros, also S-type

asteroids, have porosities of 20% (Michikami et al. 2008).

Mathematical models using grain densities from meteorite analogs and estimates

of asteroid volume have been used to model porosity within asteroids, though it

has been previously indicated that internal concavities were not considered in some

studies (Baer et al. 2011). In addition to �internal concavities�, further variations on

porosity can occur due to compaction from impacts or the asteroid's potential genetic

origin on high-mass bodies. As such, a numerical method of determining porosity

should attempt to incorporate variables such as the distribution of heterogeneous

compounds, grain packing, cementation, the e�ects of hydrating previously anhydrous

silicates, compaction due to local gravitational/cohesive force e�ects, or grain sorting

due seismic vibration. Density values, meanwhile, are dependent on initial mass and

volume estimates. The work by Baer et al. (2011) contains a comprehensive listing

of density estimates for speci�c asteroids, with bulk densities of asteroids as a whole

varying between 0.80 and 5.80 cm3.

Comet materials appear to be much more porous than asteroids, with Britt et al.

(2006) estimating general comet porosity to range from 55 � 77%. Spohn et al.
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(2015), meanwhile, cite that a slightly lower estimate of 30 � 65% is consistent with

the data garnered from 67P. Variations also exist in density estimates, with Britt

et al. (2006) estimating densities from 0.18 to 0.62 g/cm3 and Hughes (1985) citing

earlier estimates between 0.5 and 1.1 g/cm3. Initial results from Philae for 67P vary

from 0.44 � 0.47 g/cm3(Biele et al. 2015; Spohn et al. 2015). These results indicate

that, in general, asteroids will provide a denser target object to anchor than a comet,

potentially requiring a more robust anchor. Table 2.4 consolidates some of these

results for ease of comparison.

Table 2.4: Properties of Selected Asteroids and Comets (After Baer et al. (2011);
Britt et al. (2006))

Properties of Selected Asteroids

Name Density g/cm3 Porosity, %

Psyche (M) 6.5-7.9 10-13%

Eros (S) 2.67 20%

Itokawa (S) 1.9 40%

Antiope (C.) 1.24 57%

Properties of Selected Comets

9P/Tempel 1 0.62 +0.47/-0.33 60%

19P/Borrelley 0.18-0.3 77-84%

81P/Wild 2 0.38-0.6 61-73%

2.3.3 Regolith Size Distribution

Asteroid regolith is composed of �ne particles thought to be either the remnants

of ancient collisions between asteroids or the result of continued comminution of larger

coherent masses on asteroids via space weathering e�ects (Miyamoto et al. 2007). The

erosion e�ects generating regolith include meteor impacts, solar wind ion implanta-

tion, and micrometeorite bombardment (Clark et al. 2002). Additional processes

that can be considered space weathering mechanisms include thermal fatigue, aster-

oid rotation, and impact-induced seismic vibrations (Chabot et al. 2014; Dombard

et al. 2010; Miyamoto et al. 2007). These mechanisms collectively contribute to the

darkening of surface material on asteroids, crater formation, boulder deposition, the

breakdown of boulders, and regolith sorting and migration. Impacts from objects as
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small as 1 cm can potentially induce seismic accelerations on par with a small body's

gravitational acceleration. Large impacts, meanwhile, are also believed to have in-

duced regolith migration on the asteroid Itokawa, for instance, by creating seismic

vibrations while dispersing regolith ejecta uniformerly around the asteroid surface.

While Michikami et al. (2008) state that asteroid regolith is more poorly sorted than

lunar regolith, they nonetheless conclude that seismic vibrations led to some particle

migration based on size, with �ner particles such as pebbles and cobbles migrating

towards smoother terrains while boulders remained in place. Extremely �ne particles,

however, are typically lost to space or segregated to the interior of the asteroid via

convection. This process is known as granular convection, wherein the largest rock

bodies ��ow� to the top of a body of regolith (Miyamoto et al. 2007).

The dynamics of asteroid regolith formation, �ow, and ejection are critical to

de�ning the regolith size distribution, or the mass percentage of particles at di�erent

particle diameters where those particle diameters are equivalent to a sphere of the

same size. No experimentally derived particle size distribution, however, currently

exists for asteroid regolith. Within the planetary science community, size distributions

for lunar regolith have been used as a proxy for asteroid regolith size distributions

(Sanchez and Scheeres 2013). Though asteroid size distributions are thought to trend

towards coarser material than lunar regolith, the upper layers of lunar regolith have

thus far been found to adequately represent the porosity and mineralogy of asteroid

regolith and modelled simulants (Clark et al. 2002; Sanchez and Scheeres 2013). Table

2.5 highlights the individual size fractions and cumulative size distributions for four

lunar regolith samples as reported in The Lunar Sourcebook (McKay et al. 1991).

Figure 2.6 graphically compares the size distributions of particles in these samples.

2.3.4 Material Strength of Asteroids

A critical component in discussing the strength of asteroids and comets is de�n-

ing �strength�. Many terms have been used to qualify �strength�, such as �me-

chanical strength�, �material strength�, and �bulk strength� (Holsapple 2009; Popova

et al. 2011). These terms, meanwhile, have been de�ned variously as the uniax-
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Table 2.5: Lunar Regolith Size Fractions in Wt.% (After McKay et al. 1991)

Size Classes Regolith Sample

71061.1 72441.7 15601.96 64501

<20 µm 17.98 25.84

20-45 µm 12.21 18.79 17.37 15.6

45-75 µm 8.39 12 14.45 10

75-90 µm 3 4.1 5.48 3.5

90-150 µm 8.66 11.02 15.99 10

150-250 µm 7.04 8.37 13.13 8.2

250-500 µm 7.08 8.55 11.91 8.9

0.5-1 mm 3.44

1-2 mm 6.15 3.67

2-4 mm 6.74 2.76

4-10 mm 10.16 1.01

Figure 2.6: Lunar Regolith Cumulative Size Distributions (After McKay et al. 1991)
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ial/uncon�ned compressive strength, tensile strength, shear strength, and cohesive

strength (Dombard and Freed 2002; Holsapple 2009; Housen and Holsapple 2003;

Popova et al. 2011). No method is technically an �incorrect� way to de�ne an as-

teroid's �strength� so long as that comparative method is maintained for all of the

specimens examined in a given work. However, each type of strength has its own

nuances that must be considered during comparisons between asteroids.

For geoscientists and mining engineers, a rock type's uniaxial or uncon�ned com-

pressive strength (UCS) provides a general basis for comparison between rock types.

The UCS of a rock plays an integral role in safety factor calculations in tunnel-

ing and mining designs. However, UCS is not an intrinsic property of a material.

Rather, it depends on the material composition, loading conditions, and the geome-

try of the specimen being tested (Hudson and Harrison 2000). While UCS tests are

performed on standardized rock cores, these tests generally tend to result in slightly

higher strengths compared to the overall rock mass's UCS due to a size e�ect. Tensile

strength is similarly dependent upon the material, specimen geometry, and loading

conditions. Additionally, tensile strength tends to be several times less in magni-

tude than the UCS, and shares a similar decrease between specimen and rock mass

strength. Tensile failure is brittle and manifests itself as rapid crack propagation,

while compressive failure occurs as ductile yielding (Holsapple 2009).

Rock masses are generally weaker than subsamples taken from the mass due to

the presence of joints, planes, and other discontinuities in the rock mass (Hudson

and Harrison 2000). There are several criterions, however, that seek to relate spec-

imen strength readings with larger rock mass strengths (see Table 2.6) (Holsapple

2009; Hudson and Harrison 2000). These criterions, such as the Mohr-Coulomb and

Drucker-Prager criterions, have provided a means to estimate rock mass strength,

in turn in�uencing the design of engineering systems. However, no criterion is com-

prehensive. For example, the Grady and Kipp criterion works well when modeling

tensile spall, but not shear �ow. Others, such as the Mohr-Coulomb criterion, are best

suited for highly con�ning pressures. In almost no instance does a criterion consider

the structure or degree of damage of a rock mass, though a revision of the Hoek-Brown
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criterion now considers measures of damage when modeling blasting in mining. As

such, the Hoek-Brown empirical failure criterion has become a standard model for

measuring impact damage and crater formation on asteroids, though others have oc-

casionally been used (Holsapple 2009; Sanchez and Scheeres 2015). Holsapple has

suggested the creation of a new criterion for use with asteroids that includes porosity,

thermal e�ects, measures of damage, crack growth, stress pulse rate e�ect, and con-

�ning pressure as parameters contributing to the formation of a failure envelope, such

as that found in the Mohr-Coulomb criterion, that encompasses all types of loading.

Such a criterion would then allow a more accurate estimation of asteroid failure limits

while minimizing the implicit biases currently found in rock failure criterions due to

their understandable assumption of a terrestrial environment, gravitational force, and

geologic formation processes.

Table 2.6: Rock Mass Failure Criteria (after Holsapple (2009); Hudson and Harrison
(2000))

Authors Criterion Variables

Drucker-Prager σve=a+b*σvm τ = shear stress

τ0= cohesion

Mohr-Coulomb |τ| = τ0+μ*σvn σvn= normal stress

or σvc= uniaxial compressive strength

|τ| = 0.5*(σv1-σv3)*sin(2*β) σvm= hydrostatic stress

σve= equivalent stress

Hoek-Brown, 1980 σv1-σv3=σvc*(mi*(σv3/σvc)+1)0.5 σv1= principle stress in y-direction

σv3= principle stress in x-direction

σvt= uniaxial tensile strength

Hoek-Brown, 2003 σv1-σv3=σvc*(mi*(σv3/σvc)+s)n β= angle between shear and x-planes

μ= coe�cient of friction

a= (2/»3)*(σvc*σvt)/(σvc+σvt)

b= (1/»3)*(σvc-σvt)/(σvc+σvt)

mb= constant based on particle interlocking

mi= ratio of compressive to tensile strength

n= constant based on rock mass

s= constant based on degree of fracturing

Asteroid strengths thus far have been based primarily on computer models, exper-

iments on simulated asteroid materials, and meteorites. Computer models and tests

of simulated asteroid materials have focused on incorporating certain observable and
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inferable phenomena on asteroids to simulate their tensile, compressive, and cohe-

sive strength characteristics (Dombard and Freed 2002; Housen and Holsapple 2003;

Michikami et al. 2007; Sanchez and Scheeres 2013). Several studies have attempted

to correlate ejecta velocity with compressive strength based on materials of varying

strengths' responses to the same impact phenomenon (Housen and Holsapple 2003;

Michikami et al. 2007). These models used experimental testing from the behavior

of glass microspheres, a regolith simulant due to similar particle behavior, in order

to constrain the samples' compressive strengths to between ~10 MPa and the min-

imum strength before ejecta-minimizing compaction processes occur during impact,

0.1 MPa (Michikami et al. 2008). In their models, Michikami et al. (2008) used 0.5-5.5

MPa as asteroid strength estimates in their mass fraction of ejecta calculations for

asteroids with bulk porosities of 40%.

Others have focused on modeling asteroid behavior and strength based on ther-

mal stresses (Dombard and Freed 2002). Coincidentally, the 10 MPa limit used in

Michikami et al. (2008) originates in the analysis of thermal stresses found in Dom-

bard and Freed (2002). Dombard and Freed, believing lineations on Eros demonstrate

internal strength and a plane of tensile-compressive stresses through Eros, theorize

that extremes in surface temperatures on Eros induce internal stresses with magni-

tudes of 10 MPa. As such, the authors believe Eros to be monolithic with an internal

strength of ~10 MPa.

Because asteroids do not necessarily form in the presence of large gravity �elds, it

has been proposed that the dominating forces in rubble-pile asteroids are cohesive van

der Waal forces between asteroid grains (Sanchez and Scheeres 2013, 2015). While

these forces have played only a minor role on Earth, their importance is theorized

to have played a much larger role in rubble-pile asteroid formation. The researchers,

using discrete element analysis, modelled the behavior of individual asteroid grains,

the forces acting between the grains, and the forces between these grains and larger

boulders. Their study found that a realistic estimate for the cohesive strength of

regolith is 25 Pa assuming random grain distribution, a grain size of 10 μm, and the

cohesion of lunar regolith. A distinction must be made that this is the regolith, and
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not the rock mass/asteroid block, strength. Just as soil strengths are at least one

order of magnitude less than those of terrestrial rocks, regolith cohesive strengths

would appear to be several orders of magnitude less than those of meteorites or,

presumably, asteroid blocks (Chabot et al. 2014).

Most of the strength data currently in use originates from meteorites. These

measurements have been based on observation-based ram pressure estimates and ex-

perimental testing of meteorite samples (Popova et al. 2011). �Bulk� strength, de�ned

here as the ram pressure at which the meteorite fractures in the Earth's atmosphere,

is calculated using the equation

P = ρh∗v2h (2.10)

Where ρh= the atmospheric density at the height of the fragmentation and vh=

the velocity of the meteorite �reball at the height of the fragmentation (Popova et al.

2011).

Ram pressure, recalculated for each point at which a fragmentary �reball occurs,

increases from between 0.04 and 5.9 MPa at the point of �rst fragmentation, to a

maximum of 0.4-11.8 MPa at �nal fragmentation, depending on the meteorite. Each

fragmentation event can be thought of as the propagation of a microcrack due to

atmospheric loading, with the �rst breakup consisting of small fragments detached

from the meteorite and the �nal breakup consisting of the �nal disruption of the

meteorite's body before the debris particles begin to decelerate. Should the initial

breakup prove violent, the �nal breakup could occur at a lower ram pressure due to

cracking induced by the violent breakup.

The examination of these meteorites' fragments, however, revealed much higher

compressive and tensile strengths (Popova et al. 2011). The average compressive

strength for the stony meteorites is 188.6-207.4 MPa, while the average tensile strength

for these meteorites ranges between 24.7-28.5 MPa. Carbonaceous meteorites dis-

played an average tensile strength of 29.5 MPa, though some are �weaker and more

crumbly than these two examples�. A similar survey found that the average compres-
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sive strength of stony meteorites is 200 MPa, while the average compressive strength

of iron meteorites is 430 MPa (Petrovic 2001). This survey found that failure behavior

between the two meteorite types di�ered with changes in temperature. Speci�cally,

iron meteorites display ductile behavior above 145-200 K depending on the meteorite,

while they display brittle failure below this transition temperature. Stony meteorites,

by contrast, exhibited purely brittle behavior. Based in the combination of this data

with fragmentary observations, stony asteroid compressive strengths are estimated

to realistically fall between 1 and 5 MPa. Table 2.7 summarizes all strength �nd-

ings from the literature, while Figures 2.7 and 2.8 provide a visual representation of

comparative compressive and tensile strengths from Table 2.7.

Table 2.7: Material Strength of Asteroids, Meteorites, and Regolith by Strength Type

Strength Type Material Type Strength Determintion Method

Compressive Eros (S-type) 10 MPa Thermal stress modeling1

Compressive S-Type asteroid 0.1 - 5.5 MPa Impact ejecta modeling2

Compressive Iron meteorite 430 MPa Mechanical test3

Compressive S-Type asteroid 1-5 MPa Breakup observation3

Compressive Stony meteorite 200 MPa Mechanical test3

Compressive Stony meteorite 188 - 207 MPa Mechanical test4

Compressive Tagish Lake CC meteorite 2.2 MPa N/A5

Compressive Bunburra Rockhole AC meteorite 0.9 MPa N/A5

Tensile Stony meteorite 21.8 - 29.5 MPa Mechanical test3

Tensile Iron meteorite 43 MPa Mechanical test3

Tensile Stony meteorite 24.7 - 28.5 MPa Mechanical test4

Tensile Carbonaceous meteorite 29.5 MPa Mechanical test4

Ram/ �rst breakup Stony meteorite 0.04 - 5.9 MPa Breakup observation4

Ram/ �nal breakup Stony meteorite 0.4 - 11.8 MPa Breakup observation4

Cohesive Asteroid regolith 25 Pa Soft sphere DEM6

1=Dombard and Freed (2002), 2=Michikami et al. (2008), 3=Petrovic (2001), 4=Popova et al. (2011), 5=Chabot et al. (2014), 6=Sanchez
and Scheeres (2013)

2.3.5 Material Strength of Comets

The scienti�c community's knowledge of the material strengths of comets is cur-

rently under revision due to the information gained from the Rosetta mission. Previ-

ously, knowledge of cometary strengths was con�ned by the results of Deep Impact,
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Figure 2.7: Compressive strengths of asteroids and meteorites

Figure 2.8: Tensile strengths of asteroids and meteorites
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a cometary science mission wherein the satellite, a ballistic impactor, collided with

Tempel-1 to learn more about its structure (Biele et al. 2009). Initially estimated at

< 65 Pa (shear) strength, models of Deep Impact's collision have since revised these

strength estimates to 1 � 10 kPa, with 1 � 5 kPa being most consistent with the

data but estimates up to 100 kPa still considered feasible. Estimates from Rosetta's

observation of the collision place the strength at 50 kPa, though this strength is not

speci�ed as tensile, shear, cohesive, or compressive. Cometary analog materials con-

sisting of ice, dust, and gas have similarly been found to possess compressive strengths

of 30 kPa to 1 MPa and tensile strengths of 1 - 10 kPa. Meanwhile, lunar regolith

compressive strength is cited at 1.6 � 68 kPa and Martian regolith at 5 � 10 kPa.

The materials used as cometary analogs, whether extraterrestrial or simulated on

Earth, all share one common feature with models of comet behavior: they are con-

sidered to be granular and follow granular behavior (Biele et al. 2009). Though Biele

et al. (2009) mention that comets likely have surface crusts and may even be further

di�erentiated below the surface, little exists in literature to further examine this pos-

sibility. While the models may accurately describe regolith behavior on the surface of

a comet (or asteroid), they may not be representative of subsurface materials, similar

to how sand and soil on Earth do not demonstrate the same behavior as granite. A

direct outcome of this possibility lies in Section 2.1, where comet subsurface material

demonstrated strengths above 2 MPa and likely above 4 MPa (Biele et al. 2015). Fu-

ture anchoring system design should therefore consider the cases of high as well as low

uniaxial compressive strengths so that a robust, utilitarian anchor can be employed

in a wide range of potential operating environments while minimizing the chances of

under-designing the system.

2.4 Summary of Knowledge Gaps

All of the currently identi�ed properties of asteroids are based on either indirect

measurement or direct testing of meteorite analogs. This lack of direct interaction

with and testing of asteroid materials means that there is no real way of verifying
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the accuracy of models of asteroid behavior during anchoring operations. Data from

the Philae lander o�ers an initial glimpse of the need for developing anchoring tech-

nology that can operate in both low-strength and high-strength environments. This

anchoring technology should additionally minimize any complexity in design in or-

der to reduce the potential points of failure in the system. Additionally, there is

no current information on how roof bolts behave in regolith or regolith simulants

at low temperatures with varying ice content. This study will therefore provide a

�rst-order examination of the e�ects of these variables on bolt anchorge in order to

identify which, if any, roof bolt anchorage mechanisms are appropriate for utilization

in space.
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Chapter 3

Methodology

3.1 Design

The structure of asteroids, comets, and small orbital bodies can generally be

considered somewhere on the spectrum between �rubble piles� and monolithic bodies.

This study was therefore designed to comparatively assess anchor performance within

these two strength regimes in order to identify what di�erences in anchorage, if any,

might occur between anchors installed in regolith and anchors installed in a more

competent asteroid. Under the �monolithic body/boulder� strength regime, bolts were

tested in boulders of di�erent rock strength and at various drilling depths. Variation

in rock strength was tested due to the role of rock strength in bolt behavior on Earth,

with some bolts performing better in stronger rock than in weaker rock and vice versa.

Hole drilling depths, meanwhile, were altered in order to identify the possibility of

anchoring a bolt shorter than 12 in. in an asteroid since each inch of hole drilled in an

asteroid will cost time, energy, and increase the possibility of disrupting the asteroid

and dissassociating it into its constitutent pieces. The �rubble pile/regolith� regime,

meanwhile, tested bolt performance in regoliths of varying compactions, ice contents,

and operating temperatures. Regolith, being much more susceptible to compaction

than solid rock, is more likely to display local variation in compaction on an asteroid,

and so identifying compaction's role in anchoring in regolith will help improve the

security of asteroid anchoring. In this study, compaction was studied using the proxy
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Table 3.1: Summary of Test Conditions

Variable Variable Type Boulder Regolith Range

Rock strength Exogeologic ! 4,335 to 35,250 psi

Drilling depth Operational ! 2 to 12 in.

Temperature e�ects Environmental ! -9.4 °F to 75 °F

Ice content Exogeologic ! 0 to 10%

Compactive load Exogeologic ! 0 to 70%

�compactive load�, or the change in a known mass's density by applying a given load

and measuring the change in volume as a percent di�erence from the initial volume

reading. Ice content, meanwhile, may contribute to increased regolith coherence,

with its presence indicating a more coherent body than initial detection methods

may estimate. These behaviors were measured across a range of temperatures, with

the maximum temperature occuring at 75 ºF to provide a comparison to anchors

tested in room-temperature boulders. Testing at lower temperatures, meanwhile,

provided a more accurate investigtion of how anchors behave in the low-temperature

environment of space. Table 3.1 provides an overview of the variables tested under

each strength regime. In this study, �boulders� and �regolith� materials were used to

represent behavior in larger �monolithic body� and �rubble pile� asteroid/comet mass

conditions.

A full factorial examination of these parameters, wherein each variable combina-

tion is tested, would result in 9 boulder tests and 27 regolith tests per anchor type, for

an overall number of 108 tests. A Box-Behnken experimental design frame was used

to structure the test series in order to properly test these variables while decreasing

the overall number of tests required. Box-Behnken experimental designs treat the

overall characterization of an experiment as a cube, with each geometric vertex and

midpoint representing a testing state. The Box-Behnken method tests only some

of these points in order to generate the full response surface that the experiment

is attempting to obtain. Box-Behnken experiments are de�ned using the equation

N = 2 ∗ k ∗ (k − 1) + C0, where k is the number of variables and C0 is the number

of central points or controls against which variations in the variables are compared

(Amini et al. 2016; Ferreira et al. 2007). Amini (2014) o�ers one example of how
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such a design can be used to e�ciently test a mulivariate experimental design in a

typical mineral processing application. In the current study, the boulder and regolith

tests each look at a di�erent set of variables, and so each must have a separate Box-

Behnken design for each test series. Furthermore, each test series must be replicated

once each for the point anchors, fully-grouted roof bolts, and polyurethane bolts so

that a comparison of the variables across the three bolting methods can be made.

Using two variables in the boulder test series and three center point tests for the

Box-Behnken test design generated seven boulder tests per anchor type, or 21 boul-

der tests overall. Using three variables in the regolith test series, meanwhile, with

three center point tests generated 15 regolith tests per bolt type, or 45 regolith tests

overall. It should be noted, however, that this design is not intended to facilitate

the generation of response surfaces for the bolt types. Instead, the principle allowing

fewer tests to be conducted in order to characterize anchor behavior is being applied

to ensure di�erent variable combinations are examined that can be directly compared

to control tests for each bolt type.

Table 3.2: Box-Behnken Design Variable Key

Test Series Variable BB Test Level

-1 0 1

Boulder Strength 8,875 psi (sandstone) 32,250 psi (diabase) 4,335 psi (limestone)

Boulder Hole Depth 2 in. 12 in. 6 in.

Regolith Temperature 32 °F -9.4 °F 75 °F

Regolith Ice Content 0% 5% 10%

Regolith Compactive Load 0% 30% 70%

The Box-Behnken design is generally placed in tabular form and uses the values

-1 and 1 to di�erentiate variable values other than the control value, while the control

value for that variable is represented as a 0. Table 3.2 displays the variables for the

boulder and regolith tests and their corresponding Box-Behnken design value. In the

boulder tests, the diabase boulder and 12 in. lengths were set as the control values

in order to identify how anchorage values might di�er when bolting in weaker rock

and shallower depths. Limestone and sandstone were used to provide a broad range

of boulder strength values, while depths of 6 in. and 2 in. were examined to identify
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if a point anchor needed to be totally submerged in a bolt hole to anchor to the rock.

Table 3.3 demonstrates the Box-Behnken design for the boulder tests, while Table 3.4

displays the actual design parameters for these boulder tests.

Table 3.3: Boulder Test Series Box-Behnken Design

Experiment Strength Hole Depth

1 -1 0

2 1 0

3 0 -1

4 0 1

C 0 0

C 0 0

C 0 0

Table 3.4: Boulder Test Series Parameter Con�gurations

Experiment Rock Strength/Type Hole Depth

1 8,875 psi/ Sandstone 12 in.

2 4,335 psi/ Limestone 12 in.

3 35,250 psi/ Diabase 2 in.

4 35,250 psi/ Diabase 6 in.

C 35,250 psi/ Diabase 12 in.

C 35,250 psi/ Diabase 12 in.

C 35,250 psi/ Diabase 12 in.

The Box-Behnken design for the regolith tests took a similar approach to the

boulder tests. Regolith at -9.4 ºF, 5% moisture content, and 30% compactive load

established the initial control point in order to identify if the ice behavior would

change as the regolith cooled below the 32 ºF freezing temperature of water, while a

75 ºF temperature provided a maximum temperature value to allow comparisons of

anchor behavior in boulders and regolith at room temperature. Ice content extremes

were placed at 0% and 10% weight by mass water content in order to provide an

examination of how an anchor might perform in both a purely �dusty� asteroid and

in a C-type asteroid with higher water contents. Varying the compaction of the

regolith to 0% and 70%, meanwhile, was intended to provide an examination of what
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role compaction might have on anchorage capabilities since little is currently known

of actual asteroid compaction values. Table 3.5 lists the test series design for the

regolith tests, while Table 3.4 demonstrates how these parameters translated into

actual test con�gurations.

3.2 Comparison of Anchoring Methods in the Rock

Strength Regime

3.2.1 Boulder Core Strength Tests

The diabase, limestone, and sandstone boulders were each characterized through

unixial compressive strength (UCS) tests in order to identify the material strengths

in which the bolts were anchoring. Diabase boulders were sourced from Gettysburg,

PA, while the limestone boulder was sourced from a vendor of stone from the Indiana

Limestone formation. The sandstone boulder originated from the Berea Sandstone

formation. Each core used in the testing was derived from the bolt holes drilled into

the boulders. After measuring each core's nominal diameter length of 0.785 in., core

lengths twice that of the diameter were cut so that cores approximately 0.785 in. in

diameter and 1.575 in length were made for each rock type. These cores can be seen

in Figures 3.1athrough 3.1c.

Six cores for each rock type were then tested in a MTS load frame for their uniaxial

compressive strengths. Figure 3.1b displays a typical test setup. The results for each

test are tabulated in Table 3.7. Taking the average for each set of measurements, uni-

axial compressive strengths of 35,250 + 7,883 psi, 8,876 + 321 psi, and 4,335 + 2,463

psi were ascribed to the diabase, sandstone, and limestone boulders, respectively.

These results con�rm that the diabase boulder is the �high strength� boulder sample

used in the anchor testing, while limestone is the �low strength� boulder sample and

sandstone possesses a strength between the two boulders.
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Table 3.5: Regolith Test Series Box-Behnken Design

Experiment Run Temperature, ºC Ice Content, %wt. Compaction, %

1 -1 -1 0

2 1 -1 0

3 -1 1 0

4 1 1 0

5 -1 0 -1

6 1 0 -1

7 -1 0 1

8 1 0 1

9 0 -1 -1

10 0 1 -1

11 0 -1 1

12 0 1 1

C 0 0 0

C 0 0 0

C 0 0 0

Table 3.6: Regolith Test Series Parameter Con�gurations

Experiment Run Temperature, °F Ice Content, %wt. Compaction, %

1 32 °F 0% 30%

2 75 °F 0% 30%

3 32 °F 10% 30%

4 75 °F 10% 30%

5 32 °F 5% 0%

6 75 °F 5% 0%

7 32 °F 5% 70%

8 75 °F 5% 70%

9 -9.4 °F 0% 0%

10 -9.4 °F 10% 0%

11 -9.4 °F 0% 70%

12 -9.4 °F 10% 70%

C -9.4 °F 5% 30%

C -9.4 °F 5% 30%

C -9.4 °F 5% 30%
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(a) Diabase Core Prepared for UCS Testing (b) Diabase Core Post-UCS Failure

(c) Limestone Core Prepared for UCS Testing (d) Sandstone Core Prepared for UCS Testing

Figure 3.1: Uniaxial Compressive Strength Testing
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Table 3.7: Boulder Uniaxial Compressive Strength Test Results

Sample No. Diabase, psi Limestone, psi Sandstone, psi

1 26,890 4,670 5,178

2 37,811 4,220 9,572

3 42,583 4,307 12,357

4 22,060 4,830 10,138

5 40,610 3,989 9,892

6 41,582 3,974 6,135

Average 35,250 4,335 8,876

Stan. Dev. 7,883 321 2463

3.2.2 Boulder Pull Test Setup

Multiple bolt holes were drilled into each boulder so that no bolt hole would be

tested twice. A Milwaukee Cat. No. 4090 Dymodrill coring drill with a nominal 1.0

in. diameter bit was used to core all of the drill holes needed for the boulder test

series, which amounted to 21 bolt holes in total. The point anchor bolts had a 14.5

in. length and 0.875 in. diameter with a 1.0 in. diameter bolt hole. These lengths

provided the bolts with 12 in. of anchorage and the remaining length providing room

for a pull test collar above the bolt hole. The rebar bolts, meanwhile, were 15 in. long,

0.90 in. in diameter, and designed to provide 12 in. of anchorage. The hole annulus

generated by the point anchor bolts was 0.125 in., which fell within the 0.1 � 0.25

in. annulus range recommended by Mark et al. (2002). The rebar bolts, meanwhile,

had a hole annulus of 0.1 in., which was also within the limits recommended by Mark

et al. (2002). The bolts were grade 55 in each test series, with a thread yield strength

of 27,700 lbf and thread tensile strength of 41,600 lbf for the point anchor bolts.

The boulder test series evaluated the anchorage of fully-grouted resin bolts, point-

anchored mechanical bolts, and polyurethane-seated bolts under �weak�, �moderate�,

and �strong� conditions as they would occur on monolithic orbital bodies. �Weak�

bodies were represented by limestone, �moderate� bodies by sandstone, and �strong�

bodies by diabase. The diabase block used during testing had dimensions of 36 in.

by 30 in. by 36 in. The sandstone block was 16 in. by 11 in. by 7 in., while the

limestone block was 15 in. by 17 in. by 5 in. Following the procedure in the Box-
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(a) Point Anchor Roof Bolt

(b) Fully-grouted Rebar Bolt and Resin

Figure 3.2: Bolt Design

Behnken design in Table 3.4, �ve bolt holes were drilled into the diabase boulder for

each of the anchor types for a total of �fteen bolt holes, with an additional three bolt

holes each drilled into the sandstone and limestone blocks. In the diabase boulder,

each anchor type had three anchors installed for the full 12 in. bolt length �nominal

case� and one anchor each anchored at 2 in. and 6 in. of depth to evaluate the e�ect

of hole depth on anchorage, for a total of nine 12 in. anchors, three 6 in. anchors,

and three 2 in. anchors in the diabase boulder. All limestone and sandstone anchors

were anchored at the full 12 in. length to investigate only the role of boulder strength

in anchorage for each anchor type. Bolt holes were separated by 2-3 in. of spacing,

equivalent to two or three bolt diameters, to avoid interaction e�ects between bolts.

After the bolt holes had been drilled, each point anchor had a pull collar attached

immediately below the bolt head. All rebar bolts were of su�cient yield strength for

the pull claw to pull on their resepective bolt heads. The top ends of the point anchor

bolts were then threaded with 3 in. long shells that would provide anchorage in the

bolt hole by expanding and grabbing the edges of the bolt hole. After threading the
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shell onto the point anchor, the bolt was lightly tapped into the bolt hole. A 30

ft.-lb. torque was then applied to the point anchor to ensure the shell had expanded

and gripped the bolt hole surface. While the manufacturer-recommended torque is

125-225 ft.-lbs. for these bolts, the torque was lowered considerably to the 30 ft.-lb.

range where a drill could e�ectively torque the bolt.

Fully-grouted resin bolts, meanwhile, utilized a part of the 12 in. two-part resin

capsules for anchorage. During installation of fully-grouted bolts in mines, tubes of

resin as long as the rebar bolt are �rst installed in the roof using a human-operated

vehicle known as an hydraulic roof bolter. The rebar bolt is then installed and rotated

by the roof bolter at a high rotational speed until the resin has fully mixed and begun

setting, usually in less than one minute. For this study, however, the use of a roof

bolter was considered unfeasible due to the size and cost of the machine versus the

small number of shallow holes that would require bolting. Instead, resin bolts were

prepared for the laboratory study by cutting the 12 in. cartridge in half and then,

using only half of the cartridge, cutting open the 6 in. of �lm on each side that

separated the two parts of the resin. The two components of the resin were then

scooped out of the cartridge and hand-mixed for 5-10 sec. before being inserted into

the bolt hole. The rebar bolt was then lightly tapped into the bolt hole and rotated

by hand for 15 seconds or until it had become �rmly lodged in place. The bolts were

then left to cure for 2 hours in the same temperature environment as that in which

they would be tested. This method of curing would then demonstrate if lowering

the temperature of the resin itself would play any adverse e�ect in its load bearing

capacity. This process most likely slowed the curing time for the resin. The low

temperature environment of space, however, will require this curing to occur at even

lower temperatures, and so e�ects of low temperatures on cure times should be further

investigated.

The cutting and hand-mixing process was necessary because the full 12 in. tube

contained too much resin to fully compress into the hole, with the resin remaining

within the plastic cartridge even when installed with full-length cuts on both sides of

the cartridge. Additionlly, the rebar bolts could not be rotated by hand fast enough to
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mix the two parts of the resin together, and so hand-mixing the resin became the only

available option to prepare the resin for installation. The subsequent anchorage of

the fully-grouted roof bolts in the diabase and limestone boulders has subesequently

validated that this installation method can generate the desired results. Chemical roof

bolting, meanwhile, consisted of rebar bolts identical to those used with the resin and

a two-part polyurethane typically pumped into cable bolts under low or high pressure

to provide secondary support to a fractured rock mass. When mixed in a 1:1 ratio,

this polyurethane creates an exothermic reaction and cures after about one minute

of mixing. The two parts of the polyurethane were therefore mixed in 6.75 �. oz.

(200 mL) batches with 3.38 �. oz. (100 mL) of each part per the manufacturer's

guidence for 30 seconds and then poured into a bolt hole until the hole was full of

the polyurethane. Pouring the polyurethane into the bolt hole at 30 seconds ensured

that the polyurethane would be within the bolt hole prior to its initial cure time

of 45 - 60 seconds. A rebar bolt was then installed into the bolt hole, displacing

some polyurethane and rotated by hand until the bolt had cured beyond the point of

rotation. The samples were then left to cure for two hours in the same temperature

environment as that in which they would be tested.

Once all of the bolt holes were drilled and the bolts installed, a pull claw from an

ENERPAC RCH302 30-ton loading cylinder was connected to either the pull collar

under the point anchor bolt heads or under the bolt heads themselves for the fully-

grouted resin bolts and polyurethane bolts. An ENERPAC P392 hydraulic jack

connected to the loading cylinder was pumped until the cylinder had �lled with

enough hydraulic oil to exert a load on the bolt. A dial gauge was then installed on

the top of the loading cylinder to measure the amount of bolt displacement during

the subsequent loading. The jack was then pumped in 1-ton intervals, during which

bolt displacement readings were taken at each load increase. For the polyurethane

tests, these intervals were lowered to 0.5 tons due to some initial pull out failures for

these anchors at 1.5-2.0 tons. In general, testing ended when either the bolts were

unable to sustain a load or until the limits of the pull cylinder had been reached.

In the former instance, this failure generally resulted in the jack being incapable of
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sustaining a load beyond 1.5-2 tons while the displacement continued to increase. At

this point, bolts were considered to have failed. The pull cylinder's maximum load of

30 tons, meanwhile, meant that no test could exceed this limit. To ensure equipment

operability and safety, this limit was lowered to 28 tons. Setup of the pull test system

can be seen in Figure 3.3. Bolts mounted in the diabase and sandstone system can

be seen in Figure 3.4, while Figure 3.5 portrays the limestone boulder both prior to

and after point anchor-induced failure.

(a) Pull Test System Mounted On The Dia-
base Boulder

(b) Pull Test System Mounted On The Sand-
stone Boulder

Figure 3.3: Pull Test System Setup

.

(a) Bolts Installed In The Diabase Boulder (b) Bolts Installed In The Sandstone Boulder

Figure 3.4: Bolts Installed in Diabase and Sandstone Boulders
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(a) Point Anchor Installation In A Limestone
Boulder

(b) Post-Torque Failure In Limestone

Figure 3.5: Limestone Boulder Pre- and Post-Failure

3.3 Comparison of Anchoring Methods in the Re-

golith Strength Regime

3.3.1 Regolith Simulant Preparation

Asteroid regolith size distributions are relatively unknown, though models of their

composition exist based on computer simulations of granular physics (see Section

2.3.3). In this experiment, the lunar size distributions were used as a starting point for

the creation of an asteroid regolith size distribution since it is the only experimentally-

derived data available. Using the lunar regolith size classes as a guide, the asteroid

regolith simulant was prepared by �rst cutting slices of diabase, which is mineralog-

ically similar to most asteroids due to its igneous formation and mineral contents,

out of a boulder. These slices were then crushed in a Sturtevant Jaw Crusher and

a Sturtevant Laboratory Roll Mill to generate comminuted particles. Since ultra�ne

(<90 μm) particles comprise 45-63% of regolith particles by mass according to Fig-

ure 2.6, the crushed simulant was next sorted in a Sweico Vibro-Energy Separator

wet sieve to ensure that these particles were properly sorted into their respective

size classes. The particles nominally larger than 90 μm were then dry sieved using a

ROTAP vibratory sorter into the same size classes as the lunar regolith samples: +4
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mm, 4 mm x 2 mm, 2 mm x 1 mm, 1 mm x 500 μm, 500 μm x 250 μm, 250 μm x

150 μm, 150 μm x 90 μm, and a bottom collection plate for any misclassi�ed <90 μm

particles. These samples were then stored in 5 gallon buckets and labelled with the

appropriate size class.

The <90 μm particles, whether misclassi�ed during the initial sorting or sus-

pended in the water used to wet sieve the regolith, were consolidated together and

then dewatered using a pump connected to a SEPOR �ltering stand with <5 μm

tolerance �lter paper and a collection tank for the water. Once these particles were

�ltered out, the resulting sludge was placed in aluminum pans and heated in an oven

to 104 ºF to remove any remaining moisture. In order to avoid the time-consuming

method of repeatedly wet-sieving and dewatering particles into ultra�ne size classes

only to combine those size classes later during regolith construction, a particle size

analysis using a Cilas 1190 Particle Size Analyzer was instead performed to iden-

tify the volumetric size distribution of particles within a representative sample. The

analysis can be found in Figure 3.6, with Table 3.8 providing a breakdown of how

each size class was represented in the sample.

Figure 3.6: Particle Size Analysis Results of Asteroid Simulant
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Table 3.8: Particle Size Analysis Size Distributions

Size Class Cumulative Volumetric Fraction, %

<20 µm 25.69

<45 µm 45.36

<75 µm 61.86

<90 µm 67.81

<150 µm 82.23

<250 µm 91.94

<500 µm 99.71

The calculation for this sample considered 100% of the entire volume to be smaller

than 500 μm, rather than the intended 90 μm limit. This is because, following the

seiving process, a hole was found to have formed in one of the sieves, leading to

particle contamination Since the regolith particles are all of the same material, and

thus the same density, the volumetric percentages are equivlent to cumulative mass

percentages for particles <90 μm. However, this calculation does not account for the

full regolith simulant mixture, but only those particles in the dried sludge. Therefore,

an iterative calculation was created in Excel using mass inputs to identify a projected

cumulative mass distribution output. These mass inputs would represent the masses

of each particle size that would be added to the �nal regolith simulant design. This

design, initially based on the weight percentages that occur in Table 2.5, were then

modi�ed to represent the coarser distribution anticipated for asteroid regoliths. The

initial size class masses used are listed in the �rst column of Table 3.9 and generated

the �Initial Design� curve in Figure 3.7. The <90 μm cumulative mass was then

multiplied by the <90 μm mass fractions derived from the PSA to re�ne the initial

estimate of the regolith simulant design to match the actual size distribution of the

<90 μm particles as opposed to that calculated from lunar regolith data. The modi�ed

mass inputs, represented in the second column of Table 3.9, then generated the �nal

regolith simulant mass fractions and cumulative mass size distribution found in Figure

3.7.
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Table 3.9: Regolith Simulant Size Classes

Size Class Initial Regolith Design, % Final Regolith Design, % Regolith Mass Added, kg

<20 µm 25 9 3.06

<45 µm 40 21 3.72

<75 µm 50 28 2.40

<90 µm 55 30 0.58

<150 µm 65 49 6.27

<250 µm 75 57 2.69

<500 µm 85 67 3.14

<1000 µm 90 79 4.00

<2000 µm 95 91 4.00

<4000 µm 100 100 3.00

D50 75 µm 165 µm 32.86

To provide a comparison between the initial and �nal simulant designs, each

design had its D50 calculated, where the D50 represents the particle size at which half

of the particles in the sample are smaller and half of the particles larger than that

diameter. While the initial D50 was a design target based on the initial lunar regolith-

based design, the �nal design D50 had to be calculated from the existing distribution.

Since the 150 μm and 250 μm classes encompass the diameter that de�nes 50% of the

total regolith distribution, the D50 was calculated using the equation

250µm−D50
250µm−150µm

= wt%250µm−wt%D50

wt%250µm−wt%150µm

Rearranging the equation, D50 can be solved for such that

D50 = 250µm− (250µm− 150µm) ∗ wt%250µm−wt%D50

wt%250µm−wt%150µm

Inputting the values for each weight percentage, the D50 can thus be calculated

as

D50 = 250µm− (250µm− 150µm) ∗ 56.97%−50%
56.97%−48.79%

= 164.8µm
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Figure 3.7: Comparison of Asteroid Regolith Size Distributions with Lunar Regolith

The D50 for the �nal design, 164.8 µm, is thus 2.2 times that of the initial lunar

regolith-based design. To validate this �nding, plotting the D50 on the regolith size

distribution graph also generates a D50 in the range of 150-170 , thereby demonstrating

that this interpolation is valid. This D50 therefore demonstrates that the goal of

creating a coarser, more asteroid-like regolith has been achieved. Based on this design,

masses for each size class were weighed out and mixed into a �ve gallon bucket using

an electric mixer. The bucket was then mixed by hand to ensure particles were

uniformly distributed throughout the bucket.

3.3.2 Regolith Compactive Load Tests

In order to test the role of regolith compaction on anchor performance, a method

of consistently packing regolith to the same compaction percentage required devel-

opment. A test method does exist in ASTM D698-12e2 to measure compaction.

However, this method requires the dropping of a calibrated ball mass into a bed of

soil and provided a method of measuring compaction after it had occurred, as opposed

to applying the same degree of compaction to a surface. As a result, a new method

and term were developed in order to serve as a proxy for compaction. �Compactive
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load� identi�es the loads under which the simulant volume would change by 30% and

70% for a uniform initial volume and varying water contents. Since a soil would reach

a fully compacted load at the point that the axial stress-strain loading rate becomes

linear, e.g. at the minimum point where the tangent elastic modulus equals the rate

of elastic deformation, this point was taken to be 100% compression. As a result, any

UCS test performed on a regolith sample could then be used to calculate the load

required to achieve 30% and 70% compactive loads at di�erent water contents once

this point of incompressibility was known.

In order to conduct these loading tests, a testing cylinder was constructed to

contain regolith so that the applied force would solely propogate in the axial direction,

thereby maximizing compactive load and minimizing radial expansion of the regolith

sample. The test cylinder, shown in Figure 3.8, was constructed of 2.06 in. inner

diameter PVC pipe cut to 2.5 in. in length. Loading �caps� were developed for

the pipe so that the �caps�, measuring 1.96 in. in diameter, would load the regolith

without contacting the PVC pipe and could move into the pipe as far as necessary

to properly load the regolith sample. These �caps� were cut from diabase cores to

thicknesses of 0.25 in. for the bottom �cap� and 1.125 in. for the top �cap�. The

bottom cap was then glued to the PVC pipe using epoxy so that only one �cap� had

mobility and could compress the regolith.

Testing was performed on regolith samples with 0% and 10% water content in

order to fully identify the e�ects that varying water content might have on the com-

pressibility of the regolith. Regolith mass and water were mixed at certain ratios in

order to prepare regolith with these di�erent water contents. Table 3.10 contains the

masses for each bucket, the combined bucket and regolith mass, and the derived total

and water masses. Based on the dry regolith masses, the equation below was used to

calculate the amount of water required for the 5% and 10% water contents:

T − (Wt.%H2O) ∗ T = s

T − s = W

Where T is the total mass of regolith and water, s is the dry regolith mass, and
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W is the mass of water in the system. Based on the known inputs for s, T, and

Wt.%H20, the calculation for the 5% water regolith thus becomes

T − (0.05) ∗ T = 9.758 kg

T = 10.27 kg

10.27− 9.758 = 0.514 kg H2O

Similarly, the calculation for the 10% water regolith becomes

T − (0.1) ∗ T = 10.05 kg

T = 11.17 kg

11.17− 10.05 = 1.12 kg H2O

Figure 3.8: Compaction Test Setup
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Table 3.10: Regolith Masses

Sample Bucket, kg Bucket and Regolith, kg Dry Regolith, kg. Total Mass, kg. Water Mass, kg.

0% H2O 0.28 9.60 9.32 9.32 0.00

5% H2O 0.28 10.04 9.76 10.27 0.51

10% H2O 0.28 10.33 10.05 11.17 1.12

The derived water masses were subsequently weighed out by adding water to a

beaker resting on a scale. For each water mass, the scale was �rst zeroed with the

beaker present and the water subsequently poured into the beaker using a graduated

cylinder until the water mass had been reached. The beakers of water were then

poured into their respective regolith buckets. Finally, the buckets were hand-mixed

in order to ensure that no pockets of regolith remained unsaturated by the water.

The regolith compaction tests were initiated by �rst pouring regolith from the 0%

water content sample into the cylinder until the entire cylinder volume had been �lled

with regolith. The top �cap� was then placed on top of the regolith, while the cylinder

was placed in the MTS load frame. A testing procedure was then developed so that

the MTS load frame would apply 10 lbf. of force to the sample per minute. This

ensured the MTS load frame would accurately capture all of the loading that would

take place prior to the initial elastic loading, information that would be critical in

determining the point at which linear elastic loading �rst occurred. Once the program

was initiated for each sample, the MTS load frame loaded the sample until the elastic

deformation began to take place. At this point, the test was then concluded. This

procedure was then repeated for the 10% water content sample.

Figure 3.9 provides a comparison of how the 0% and 10% water content samples

performed as they were progressively loaded. The 10% specimen required the largest

applied stress to achieve 100% compactive load, at 11.91 psi, while the 0% specimen

required 8 psi to reach its full compactive load. The 5% sample's required load was

calculated to be halfway between the 0% and 10% water content samples, at 9.96 psi.

The results for how these stresses translated to 30% and 70% compactive loads are

tabulated in Table 3.11. Once these stresses were known, they were each multiplied

by the area of the test cylinders that would house the regolith for the pull tests, 28.3
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in.2, to �nd the compressive force required to reach the desired compactive load levels

for each sample type.

Table 3.11: Compactive Load Test Results

Sample Stress at 100% compression, psi
Stress Load, lbf.

0% 30% 70% 0% 30% 70%

0% H2O 8 0 2.4 5.6 0.0 67.9 158.3

5% H2O 9.955 0 3.0 7.0 0.0 84.4 197.0

10% H2O 11.91 0 3.6 8.3 0.0 101.0 235.7

Figure 3.9: Compactive Load Test Results As A Function Of Water Content

3.3.3 Regolith Pull Test Setup

The regolith pull tests compared the performance of point anchored, fully-grouted

resin, and polyurethane bolts as a function of moisture content, temperature, and

compaction. Testing was conducted using plastic concrete molds to hold the regolith

samples with 6 in. diameters and 12 in. lengths. To prepare a sample for a test,

regolith would �rst be added to the test mold until the mold was completely full

of regolith. Once the mold was �lled with regolith it was placed on the MTS load
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frame. A metal cylinder was then placed on top of the regolith and a load applied

by the MTS load frame based on the required compactive loading for the speci�c

variable con�guration being tested (see Figure 3.10). After the compactive loading, a

bolt hole was drilled into the specimen using the Dymodrill coring drill. Because the

height of each concrete mold was 12 in., the bolt holes used for the regolith testing

were limited to 11 in. in order to ensure that the tip of the bolt would anchor in the

regolith, rather than press �ushly against the plastic mold. Hole and bolt diameters

were maintained at 1 in. and 0.875 in., respectively. Anchors were then installed after

the bolt hole had been drilled.

Figure 3.10: Setup for Sample Compactive Loading

During initial sample preparation, 0% water regolith samples could not have a

core adequately extracted from its bolt hole due to the lack of internal cohesion. As a

result, sample preparation was modi�ed for the 0% samples by �lling the mold with
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regolith around a PVC tube 11 in. long and 1 in. in diameter. A metal cylinder with

a hole in the center typically used in direct shear tests was then used as the loading

platform through which the MTS load frame could apply the compaction load to the

regolith sample. This cylinder was re-positioned four times to ensure that the entire

surface of the sample was compacted by the MTS load frame. After compacting

the sample, the PVC tube was gently pulled out of the regolith mold and an anchor

installed in the arti�cial bolt hole. Figure 3.11 demonstrates hole installation in a 5%

water content regolith samples, as well as the resulting bolt hole and the modi�ed

installation required for the 0% water content regolith.
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(a) Drilling a Bolt Hole in 10%wt. Regolith
(b) Completed Bolt Hole in 5%wt. Regolith

(c) Modi�ed Bolt Hole Preparation for 0%wt.
Regolith

Figure 3.11: Construction of Bolt Holes in Regolith

The speci�cs of anchor installation varied depending on the type of anchor being

installed in the bolt hole. Point anchor installation �rst began with threading the

expansion shell onto the bolt until the top of the shell's nut was �ush with the bolt tip.

Threading all expansion shells to the same point removed any possible variation in

anchorage from premature or delayed shell expansion due to the expansion beginning

at di�erent lengths along the bolt. Once the shell was threaded onto the bolt, the bolt

was then installed in the bolt hole by hand and rotated clockwise until the bolt could
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no longer be rotated by hand. This rotation ensured that the shell had expanded

until the shell leaves had contaced the surface of the bolt hole, thereby anchoring in

the bolt hole.

Fully-grouted resin bolts, meanwhile, were installed in a similar manner to the

method used for the boulder testing. First, a 12 in. resin cartridge was cut down to

6 in. for use in anchoring the rebar bolt. The closed end and sides of this cartridge

were then sliced open and the contents of the two-part resin were mixed by hand for

5-10 seconds. The mixed resin was then molded in a cylindrical shape and inserted

in the bolt hole. A rebar bolt was installed immediately after the resin and pushed

by hand into the hole until the bolt had displaced the resin along its length from the

bottom of the hole. The bolt was rotated until the resin had hardened beyond the

point of rotation. The resin and bolt were then allowed to cure for 2 hours in the

environment at which it would be tested.

Polyurethane bolts were installed in the same manner as that used in the boulder

tests as well. Using a 1:1 ratio, 3.38 �.oz. (100 mL) of each of the two parts comprising

the polyurethane were mixed together in a beaker for 30 seconds and then poured

into the bolt hole. A rebar bolt was then immediately installed in the bolt hole and

rotated until the polyurethane had hardened beyond the point of rotation. The bolt

and polyurethane were then allowed to cure for 2 hours in the environment at which

they would be tested.

Since temperature e�ects on anchorage were a key component of this test, the

regolith molds required a method to regulate the regolith samples' temperatures at

75 ºF, 32 ºF, and -9.4 ºF. In the �rst instance, regolith samples were tested under

the ambient air condition of 75 ºF. Samples could thus cure in the open air and room

temperature. Tests examining anchorage at 32 ºF, meanwhile, required the regolith

to be frozen to 32 ºF. Once the bolts being tested had been installed, the regolith

molds were stored in a freezer for two hours until the sample had lowered to 32 ºF.

After measuring the temperature of the regolith using a digital thermometer, the

sample was then removed from the freezer and the pull test conducted. The -9.4

ºF tests, meanwhile, required cooling the regolith to a temperature lower than the
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freezer was capable of achieving. A new con�guration for freezing these samples was

therefore required and can be seen in Figure 3.12. First, two regolith samples to be

frozen down to -9.4 ºF were placed in an empty cooler per freezing iteration. Next,

a thermal probe was inserted in a regolith cylinder and dry ice was poured over the

regolith cylinders until they were submerged in dry ice. A sheet of thermal insulation

was then draped over the cylinders with holes cut in the insulation through which the

bolt heads protruded since the bolts' length prevented the cooler lid from completely

shutting over top of the cylinders. The regolith cylinders were then left in the cooler

until each had frozen to -9.4 ºF. The exact time required for this freezing varied

depending on the initial temperature of the regolith. Each cylinder would freeze for

the longer time of either 1 hour or until the desired temperature had been achieved.

Upon reaching the desired temperature, a cylinder was pulled out of the cooler and

a pull test conducted. Once any test had been conducted, the regolith cylinder was

allowed to thaw in a �ve-gallon bucket until the bolt could be extracted from the

cylinder by hand. Once the bolt had been removed, the regolith was mixed back into

its respective �ve-gallon storage bucket so that it could be re-used in another regolith

test.

Figure 3.12: Low Temperature Regolith Con�guration

60



In a pull test conducted on rock, the pull test apparatus typically rests on the rock

surface and, as the hydraulic pump is pumped, the loading cylinder will push on the

rock while pulling on the bolt. Due to the low strength of the regolith, however, this

was not possible since the loading frame would continuously push into the regolith

rather than brace against the testing surface. A �bench� was therefore constructed

to provide the load cylinder with a frame to brace against, and can be seen in Figure

3.13. A piece of plywood was cut into a circular shape with a diameter of 11 in. A hole

3 in. in diameter was then cut into the center of the plywood so that the bolt heads

could �t through the plywood and be pulled by the load cylinder. Metal and wood

blocks, meanwhile, were stacked on either side of the regolith mold up to its height of

12 in. The plywood testing surface was then placed on top of the mold and supports,

with the bolt head protruding through the central hole in the platform. The pull

test loading cylinder was then connected to the bolt head and the hydraulic pump

was pumped until the cylinder had been fully pressurized. Once the loading cylinder

was fully pressurized, a dial gauge was attached to the top of the loading cylinder to

measure displacement in the bolt as a load was applied. The test was then initiated

by pumping the hydraulic pump so that the loading cylinder would load the bolt in

1-ton increments. The bolts were loaded until either the pump failed to sustain a

load on the bolt, indicating bolt failure, or until the bolt had been subjected to the

28-ton upper limit imposed on the loading for safety.

Figure 3.13: Pull Test Loading Platform
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Chapter 4

Results and Analysis

4.1 Data Analysis

Typical pull test results from a mine will record either the load at which the bolt

failed or that the bolt did not fail. Additionally, displacement is recorded while the

load is applied so that the loading behavior of the bolt can be better understood.

During testing for this study, readings varied between anchorage failure without dis-

placement, failure with displacement, and no failure with displacement. After con-

ducting a qualitative analysis of the results for each test series, a statistical study

examined the signi�cance of these apparent trends. This analysis for each test series

was conducted using JMP statistical modeling software and allowed each variable's

impact on bolt anchorage to be independently identi�ed for each anchorage type.

4.1.1 Boulder Tests

A total of 21 tests were conducted in the boulder strength regime. A total of

8 tests failed at varying pullout loads, while the remaining bolts all withstood the

28 ton maximum applied load. The test results have been tabulated in Table 4.1.

Of note are a few changes in test parameters that occurred during bolt installation

and testing. Torquing the point anchors in sandstone and limestone led to fractures

in the boulder and subsequent bolt failure. While the limestone anchor was able to
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hold an initial torque and applied pull load before failing, the sandstone anchor was

not. No displacement data was therefore collected for this sandstone test. Similarly,

di�culties were encountered during the �rst two attempts to install fully grouted

resin bolts. While installation was partially successful, the bolts were only able to be

installed to 6 in. depths due to the resin cartridge �lling up the rest of the space in

these two bolt holes. As a result, the anchor depths have been changed to re�ect the

actual, rather than planned, installation depths.

The experimental design, while seeking to replicate a Box-Behnken design, did

not incorporate many tests outside of the diabase boulder. The dibase tests were

intended to serve as the center point tests due to their mineralogical similarity with

asteroid types. Because this study did not seek the development of a response surface,

using the diabase as the center point was not thought to be a concern. However, the

subsequent test results have shown that there is a potential for the diabase test results

to bias the overall trends identi�ed in this testing. The conclusions developed from

this analysis should therefore be considered with caution.

An initial summary examining some of the e�ects between boulder strength, an-

chor depth, pullout load, and anchor type can be seen in Tables 4.2 and 4.3. In

these tables, the average bolt load, bolt displacement, and bolt displacement rate

are provided relative to the strength of the rock in which they were anchored and

the depth to which they were anchored. Averages for each parameter were taken

for each bolt type so that the behavior for a �typical� bolt under those conditions

could be identi�ed. In all three rock strength regimes and anchorage depths, fully

grouted roof bolts demonstrated less displacement than either point or polyurethane

anchors. Additionally, all failures occurred with anchors in 12 in. bolt holes in all

three boulder types, while no failures occurred in the 2 in. or 6 in. depths in the

diabase boulder. Finally, bolts anchored in sandstone (8875 psi) demonstrated the

lowest pullout loads, while bolts anchored in diabase (35,250 psi) demonstrated some

of the highest pullout loads achieved during testing. Pullout tests from the weaker

limestone (4335 psi), meanwhile, generated larger pullout loads than the sandstone

boulder as well. A hypothesis for these results is that, while the limestone boulder
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Table 4.1: Boulder Pull Test Results

Anchor Type Rock Strength, psi Anchor Depth, in. Pullout Load, tons Displacement, in.

Point Anchor 35,250 12 28 0.0083

Point Anchor 35,250 12 28 0.0033

Point Anchor 35,250 12 28 0.0029

Point Anchor 35,250 6.0 28 0.12

Point Anchor 35,250 2.0 28 0.035

Point Anchor 8875 12 0.0 0.0

Point Anchor 4335 12 7.5 0.32

FGRB 35,250 6.0 28 0.0005

FGRB 35,250 6.0 28 0.033

FGRB 35,250 12 28 0.033

FGRB 35,250 6.0 28 0.032

FGRB 35,250 2.0 28 0.023

FGRB 8875 12 2.5 0.082

FGRB 4335 12 28 0.0

PUR 35,250 12 2.0 0.13

PUR 35,250 12 3.5 0.045

PUR 35,250 12 1.0 0.14

PUR 35,250 6.0 28 0.033

PUR 35,250 2.0 28 0.049

PUR 8875 12 2.5 0.11

PUR 4335 12 9.0 0.087

demonstrated an overall increase in pullout load, a feature of the sandstone, rather

than a relationship with boulder strength, led to the poor performance in the 8875

psi strength regime.

Following this initial characterization, an analysis of variance was conducted using

JMP software to identify any signi�cant relationships amongst the anchoring variables

and anchor types. Two tests were run per anchor type to identify how anchor pullout

load and anchor displacement varied with rock strength and installation depth. Rock

strength was identi�ed as a signi�cant parameter in point anchor pullout load. In this

test, the p-value for rock strength was p= 0.00285, while the p-value for anchor depth

was p= 0.94089. Additionally, anchor depth was found to be a sign�ciant parameter in

polyurethane pullout load, with p= 0.00283 for anchor depth and p= 0.43206 for rock

strength. These results, however, should be regarded with a measure of skepticism.

Failures in the sandstone block regardless of anchor type are hypothesized to have
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Table 4.2: Average Bolt Behavior Relative to Rock Strength

Anchor Type Rock Strength, psi Pullout Load, tons Displacement, in. Displ. rate, in./ton

Point Anchor 35,250 28 0.034 0.0012

FGRB 35,250 28 0.024 0.00087

PUR 35,250 13 0.079 0.0063

Point Anchor 8875 0.0 0.0 N/A

FGRB 8875 2.5 0.082 0.033

PUR 8875 2.5 0.11 0.044

Point Anchor 4335 7.5 0.32 0.043

FGRB 4335 28 0.0 0.0

PUR 4335 9.0 0.087 0.0097

Table 4.3: Average Bolt Behavior Relative to Anchor Depth

Anchor Type Anchor Depth, in. Pullout Load, tons Displacement, in. Displ. rate, in./ton

Point Anchor 12 23 0.084 0.0037

FGRB 12 20 0.038 0.0020

PUR 12 3.6 0.10 0.028

Point Anchor 6 28 0.12 0.0043

FGRB 6 28 0.022 0.00077

PUR 6 28 0.033 0.0012

Point Anchor 2 28 0.035 0.0013

FGRB 2 28 0.023 0.00083

PUR 2 28 0.049 0.0017
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originated with internal fractures within the sandstone block. These results, combined

with the large number of successful diabase tests, likely generated this �false positive�

data. The failures in sandstone, all using 12 in. deep bolt holes, possibly biased

the results of the anchor depth analysis and generated another set of �false positive�

results. Further anchor testing in larger sandstone and limestone blocks with varying

anchor depths would clarify if these initial results were biased or truly indicative of

anchor depth acting as a signi�cant parameter in pullout load.

4.1.2 Regolith Tests

Of the original 45 tests conducted in regolith, 30 tests failed prior to taking

loading and displacement measurements. These failures are hypothesized to have

occurred while pressurizing the loading cylinder prior to loading the bolt. During

this process, the pull collar contacts the bolt head and exerts a small force on the

bolt as each pump of the jack vertically displaces the loading cylinder's hydraulic

�uid reservoir, thereby pressurizing the loading cylinder. The reaction force of the

bolt's anchorage generally provides enough resistance for the load cylinder to be fully

pressurized and begin loading the bolt head. During the regolith tests, however, it is

hypothesized that the pull claw pulled the bolt out of its anchorage while the load

cylinder continued to pressurize. Once the oil reservoir had reached its mechanical

limit of extension, the load cylinder would then begin to re�ect a �load� on the bolt

head and no displacement, with the �load� actually indicating a buildup of pressure

inside the loading cylinder. This process culminated in results that would otherwise

indicate that bolts had reached a 28 ton load with 0 in. of displacement. Each

pressurizing pump of the jack is less than 1 ton of load, however, and so each test

that failed in this manner must have failed at a load less than 1 ton. Since these

failures occured while the loading cylinder was undergoing pressurization and the oil

reservoir had not yet extended to its mechanical limit, the dial gauge had not yet

been installed. No vertical displacement measurements therefore exist for these failed

tests. The failed tests are recorded in Table 4.4. Of special note in Table 4.4 are the

tests marked by an asterisk. These tests have been recorded as failures because the
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tests indicated 0 in. of displacement under loads of 28 tons. However, other tests

under similar temperatures and water contents successfully anchored into the regolith.

Tests in the -9.4 ºF regolith in particular generated very low displacements, and so

these �failed� tests may have actually been successful anchors with no displacement.

Further testing of these conditions may clarify if the anchors truly fail under these

conditions.

Table 4.4: Failed Regolith Pull Tests

Anchor Type Temperature, °F Ice Content, %wt. Compactive Load, % Failure Load, tons

Point Anchor 75 °F 0% 30% 1 tons

Point Anchor 75 °F 5% 0% 1 tons

Point Anchor 32 °F 0% 30% 1 tons

Point Anchor 32 °F 5% 0% 1 tons

Point Anchor 32 °F 5% 70% 1 tons

Point Anchor -9.4 °F 0% 0% 1 tons

Point Anchor* -9.4 °F 5% 30% 1 tons

Point Anchor* -9.4 °F 5% 30% 1 tons

FGRB 75 °F 0% 30% 1 tons

FGRB 75 °F 5% 70% 1 tons

FGRB 75 °F 10% 30% 1 tons

FGRB 32 °F 0% 30% 1 tons

FGRB 32 °F 5% 0% 1 tons

FGRB -9.4 °F 0% 70 1 tons

FGRB -9.4 °F 5% 30% 1 tons

FGRB -9.4 °F 5% 30% 1 tons

FGRB* -9.4 °F 10% 0% 1 tons

FGRB* -9.4 °F 10% 70% 1 tons

PUR 75 °F 5% 0% 1 tons

PUR 75 °F 5% 70% 1 tons

PUR 75 °F 10% 30% 1 tons

PUR 32 °F 0% 30% 1 tons

PUR 32 °F 5% 0% 1 tons

PUR 32 °F 5% 70% 1 tons

PUR 32 °F 10% 30% 1 tons

PUR -9.4 °F 0% 0% 1 tons

PUR -9.4 °F 0% 70% 1 tons

PUR* -9.4 °F 5% 30% 1 tons

PUR* -9.4 °F 5% 30% 1 tons

PUR* -9.4 °F 10% 0% 1 tons

*Unclear if test failed prior to loading or successfully loaded with 0.0� displacement; considered failed by default (see
text)
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The results of the remaining 15 tests may be seen in Table 4.5. Average displace-

ment values were calculated for each anchor type based on these results and can be

seen in Table 4.6. Dividing these average displacement values by the 28-ton max-

imum load each bolt received then generated the nominal displacement rate, while

dividing the number of failed tests for a bolt by the number of total tests performed

generated the success rate. Fully grouted roof bolts generated the lowest displace-

ment, at 0.0034 in., and subsequently had the lowest displacement rate of 0.00012

in./ton. Point anchors edged out polyurethane anchors in both categories, at 0.0061

in. vs. 0.0077 in. and 0.00022 in./ton vs. 0.00028 in./ton, respectively. However,

point anchors were the most reliable anchor type overall, with a success rate of 46.6%

vs. the 33.3% for fully grouted roof bolts and 20% for polyurethane bolts (see Figure

4.1).

Figure 4.1: Overall Success Rates for Anchor Types

The results from Table 4.5 can also be reconstructed to provide useful trends

on how the bolt behavior changed according to speci�c variables and bolt types.

Tables 4.7, 4.8, and 4.9 show how bolt test success rate and average displacement
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Table 4.5: Regolith Pull Test Results

Anchor Type Temperature, °F Ice Content, %wt. Compactive Load, % Displacement, in.

Point Anchor 75 °F 5% 70% 0.0065 in.

Point Anchor 75 °F 10% 30% 0.0122 in.

Point Anchor 32 °F 10% 30% 0.0049 in.

Point Anchor -9.4 °F 0% 70% 0.0045 in.

Point Anchor -9.4 °F 5% 30% 0.011 in.

Point Anchor -9.4 °F 10% 0% 0.0015 in.

Point Anchor -9.4 °F 10% 70% 0.0024 in.

FGRB 75 °F 5% 0% 0.002 in.

FGRB 32 °F 5% 70% 0.0032 in.

FGRB 32 °F 10% 30% 0.0012 in.

FGRB -9.4 °F 0% 0% 0.0055 in.

FGRB -9.4 °F 5% 30% 0.0049 in.

PUR 75 °F 0% 30% 0.0088 in.

PUR -9.4 °F 5% 30% 0.0028 in.

PUR -9.4 °F 10% 70% 0.0115 in.

Table 4.6: Comparison of Bolt Types and Displacement in Regolith

Anchor Type Displacement, in. Displacement Rate, in./ton Success Rate, %

Point Anchor 0.0061 in. 0.00022 in/ton 46.7%

FGRB 0.0034 in. 0.00012 in/ton 33.3%

PUR 0.0077 in. 0.00028 in./ton 20%

rate changed between bolt types as a function of water content, regolith temperature,

and regolith compactive load, respectively. Figure 4.6 o�ers a visual representation

of this data.

Qualitatively, several observations can be made regarding trends in anchor per-

formance with respect to speci�c regolith variables. The success rate for conducting

pull tests that did not fail prior to loading generally increased with increasing water

content. Point anchors in particular demonstrated greater anchorage success as water

content of the regolith increased. While fully grouted roof bolts did not demonstrate

the same trend in success rate, they did slightly decrease in displacement rate as wa-

ter content increased. All three anchorage types demonstrated net gains of 3-7% in

success rate between 75 ºF and -9.4 ºF. Point anchors demonstrated a slight decrease
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Table 4.7: Pull Test Success and Displacement Rates' Dependency on Water Content

Anchor Type H2O Content, %wt. Successful/Total Tests Success Rate, % Displ. Rate, in./ton

Overall 0% 3/12 25% 0.00022 in./ton

Overall 5% 6/21 28.6% 0.00018 in./ton

Overall 10% 6/12 50% 0.00020 in./ton

Point Anchor 0% 1/4 25% 0.00016 in./ton

Point Anchor 5% 2/7 28.6% 0.00031 in./ton

Point Anchor 10% 4/4 100% 0.00019 in./ton

FGRB 0% 1/4 25% 0.00020 in./ton

FGRB 5% 3/7 42.9% 0.00012 in./ton

FGRB 10% 1/4 25% 0.00004 in./ton

PUR 0% 1/4 25% 0.00031 in./ton

PUR 5% 1/7 14.3% 0.00010 in./ton

PUR 10% 1/4 25% 0.00041 in./ton

in displacement rate as temperature decreased, while fully grouted roof bolts had a

slight increase in displacement rate. The overall success rate for tests generally in-

creased when compactive load alone is examined, with a large increasing success rate

for point anchors and a decreasing success rate for fully grouted roof bolts combining

to create the more moderate overall increasing success rate. Fully grouted roof bolts

showed a slight decrease in displacement rate when considering the role of compactive

load.

While this analysis has thus far examined only the results of tests that did not

fail, an analysis of variance (ANOVA) for all of the regolith pull tests was used to

identify possible statistically signi�cant relationships related to bolt strength and

displacement. JMP was again used to conduct this analysis. Bolts that did not fail

were assigned a pullout load of 28 tons since this was the maximum applied to the

bolts. Bolts that did fail, meanwhile, were assigned a failure load of 1 ton since these

bolts all failed to sustain loads above 1 ton. The displacement values for these bolts

were assigned a value of 0 in. since the bolts failed prior to the recording of bolt

displacements. The ANOVA analysis was then conducted for each bolt type twice,

with bolt load serving as the dependent variable in one analysis and bolt displacement

in the other. An analysis of the test results using displacement as the dependent
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Table 4.8: Pull Test Success and Displacement Rates' Dependency on Temperature

Anchor Type Temperature, °F Successful/Total Tests Success Rate, % Displ. Rate, in./ton

Overall 75 °F 4/12 33.33% 0.00026 in./ton

Overall 32 °F 3/12 25% 0.00011 in./ton

Overall -9.4 °F 8/21 38.1% 0.00020 in./ton

Point Anchor 75 °F 2/4 50% 0.00033 in./ton

Point Anchor 32 °F 1/4 25% 0.00018 in./ton

Point Anchor -9.4 °F 4/7 57% 0.00017 in./ton

FGRB 75 °F 1/4 25% 0.000071 in./ton

FGRB 32 °F 2/4 50% 0.000079 in./ton

FGRB -9.4 °F 2/7 28.6% 0.00019 in./ton

PUR 75 °F 1/4 25% 0.00031 in./ton

PUR 32 °F 0/4 0% N/A

PUR -9.4 °F 2/7 28.6% 0.00026 in./ton

Table 4.9: Pull Test Success and Displacement Rates' Dependency on Compactive
Load

Anchor Type Compactive Load, % Successful/Total Tests Success Rate, % Displ. Rate, in./ton

Overall 0% 3/12 25% 0.00300 in./ton

Overall 30% 7/21 33.3% 0.00016 in./ton

Overall 70% 5/12 41.7% 0.00020 in./ton

Point Anchor 0% 1/4 25% 0.00005 in./ton

Point Anchor 30% 3/7 42.9 0.00033 in./ton

Point Anchor 70% 3/4 75% 0.00016 in./ton

FGRB 0% 2/4 50% 0.00375 in./ton

FGRB 30% 2/7 28.9% 0.00305 in./ton

FGRB 70% 1/4 25% 0.00011 in./ton

PUR 0% 0/4 0% N/A

PUR 30% 2/7 8.9% 0.00021 in./ton

PUR 70% 1/4 25% 0.00041 in./ton
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(a) Bolt Behavior With Varying Water Con-
tent

(b) Bolt Behavior With Varying Temperature

(c) Bolt Behavior With Varying Compctive
Load

Figure 4.2: Comparison of Anchor Success Under Varying Conditions

variable found that no parameter played a signi�cant role in bolt displacement.

Using bolt load as the dependent variable, some of the tested variables were found

to be signi�cant parameters, i.e. p< 0.05, for the point anchor tests. The p-value

for comparing regolith water content with pullout load for point anchors was found

to be p= 0.0323 when including temperature (p= 0.692) and compactive load (p=

0.127) in the analysis. After conducting an analysis with temperature removed from

the calculation due to its high p-value, the p-value for water content decreased to p=

0.0260 and the p-value for compactive load decreased to p= 0.112. The results for fully

grouted roof bolt and polyurethane bolts, by contrast, did not identify any parameter

as playing a signi�cant role in anchor performance. The p-values for water content,

temperature, and compactive load for fully grouted roof bolts were p= 1.00, p= 0.991,

and p= 0.548, while the results for polyurethane anchors were p= 1.00, p= 0.802, and

p= 0.496, resepectively. This is because the pullout loads were either 1 or 28 tons,

and so any attempt to model the relationship will fall in between the two extremes.

The variation in the models for all three bolts' relationship with compactive load is
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likely a result of more data points having accumulated at one pullout load extreme or

the other, rather than any signi�cant underlying relationship. Further testing with

a more sensitive loading cylinder is necessary to con�rm that this relationship is not

the result of bias introduced by the premature bolt failures.

4.2 Interpretation

4.2.1 Performance of Anchors

The summary of the JMP results for the boulder and regolith test series in Table

4.10 provides one method of directly comparing the e�ects of di�erent operating

conditions on bolt anchorage. Several overarching trends may be identi�ed based on

trends identi�ed during the analysis of the test data. First, fully grouted roof bolts

outperformed point anchor and polyurethane bolts in terms of minimum displacement

exhibited for any testing condition in the boulder test series. This result did not carry

through to the regolith test series, where fully grouted roof bolts generated the same

relative levels of displacement as point anchor and polyurethane bolts. Fully grouted

roof bolts also sustained lower pullout loads than point anchors during the regolith

tests, with only one third of the fully grouted roof bolts successfully resisting a load

higher than 2 tons. In the boulder strength regime, fully grouted roof bolts exhibited

an ability to anchor in diabase and limestone, with only one failure recorded in the

sandstone strength regime. Similar polyurethane and point anchor failures in the

sandstone regime indicate a failing in the boulder itself, rather than with the bolts.

The polyurethane bolts, by contrast, consistently performed at a lower level of

e�ectiveness than point anchor or fully grouted roof bolts. Polyurethane bolts gen-

erated the largest amounts of displacement of any bolt type during the boulder tests

while only sustaining pullout loads of 28 tons twice. These bolts did, however, suc-

cessfully withstand loads of 28 tons at only 2 in. and 6 in. of depth. During regolith

tests, the polyurethane bolts generated the same range of displacement values as other

bolt types. Only three tests successfully withstood pullout loads of greater than 2

73



tons, the lowest amount of successful anchors of the three bolt types.

The point anchor bolts consistently sustained pullout load results either the same

as or exceeding those of fully grouted roof bolts. The point anchor bolts all succeeded

in sustaining 28 ton pullout loads in diabase, but failed in both the sandstone and

limestone boulders. These failures are hypothesized to have occurred due to a lack

of con�ning pressure around the boulders that would have increased their strength

and resisted the bolt's installation torque. This issue could be resolved by anchoring

in an area with a larger con�ning stress, which would strengthen the overall rock

mass. The bolts' displacements were greater than those exhibited by fully grouted

roof bolts, but this is not considered to be a concern because 1) the displacements

were not signi�cant enough to induce failure, and 2) the bolts require some initial

displacement after installation in order for the serrated edges of the anchor shell to

engage the walls of the bolt hole. In the regolith tests, meanwhile, point anchors

became the bolt type with the largest number of tests to withstand the initial load of

2 tons, with seven out of �fteen tests loading to 28 tons. This success rate, combined

with anchorage rates comparable to those generated by fully grouted roof bolts in the

boulder strength regime, make point anchorage the preferable anchoring mechanism

for a utilitarian satellite anchor design.
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Table 4.10: Summary of P-Test Results

Anchor Type Variable Load p-value Displacement p-value

Point Anchor Rock Strength, psi 0.00285 0.17135

Point Anchor Anchor Depth, in. 0.94089 0.56471

Point Anchor Water Content, % wt. 0.03229 0.51418

Point Anchor Temperature, ºF 0.69195 0.28808

Point Anchor Compactive Load, % 0.12645 0.54841

FGRB Rock Strength, psi 0.43150 0.98271

FGRB Anchor Depth, in. 0.86342 0.68781

FGRB Water Content, % wt. 1.0 0.24908

FGRB Temperature, ºF 0.99065 0.25795

FGRB Compactive Load, % 0.54828 0.84400

PUR Rock Strength, psi 0.43206 0.88404

PUR Anchor Depth, in. 0.00283 0.17693

PUR Water Content, % wt. 0.80213 N/A

PUR Temperature, ºF 1.0 N/A

PUR Compactive Load, % 0.49570 N/A

4.2.2 Anchor Design Considerations

The initial intent of this study was to provide a nomogram for anchor selection

based on how each anchor type responded to the di�erent tested variables. At the

conclusion of this study, however, experience gained during the course of the testing

campaign highlighted possible di�culties with incorporating some of the bolt types

into a satellite anchoring system. During test preparation, it quickly became clear

that fully grouted roof bolts would probably not be a realistic option for satellite

anchorage due to the previously mentioned di�culties in mixing and pouring the

resin into a bolt hole. While a robotic operator could mix and inject the two-part

resin at the speed and pressure require, the low temperatures anticipated in space

could freeze water the resin prior to injection into the bolt hole. Such a system would

require a method to drill a bolt hole, store the two resin components separately, store

a rebar bolt, mix the components together, inject the resin, install the bolt into the

bolt hole, and rotate the bolt until it has anchored in the resin. A heater could also

possibly be required to prevent the resin components from freezing prior to injection.

Even if the resin did not freeze, its components would become much more viscous in
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the low temperatures of space, possibly to the point that the resin loses its �uidity.

In any event, such a system is overly complex and would use an excessive amount of

storage volume on the satellite prior to deployment.

Polyurethane anchors generated similar concerns regarding bolt installation as

the fully grouted roof bolts. There may be a similar need to heat the resin during

storage to prevent freezing, as well as increases in �uid viscosity should the resin not

require heated storage. A polyurethane bolt anchoring system would also require a

method to drill a bolt hole, store the bolt and two resins, mix the resins together,

inject the resin, and install the bolt. A hollow rebar bolt could be used so that the

bolt is installed in the hole and the resin pumped through the bolt into the bolt hole,

thereby encapsulating it in resin. The poor performance of polyurethane bolts during

the regolith tests, however, indicate that, depending on the size of the satellite being

anchored, these bolts might not provide the anchorage strength required to a�x the

satellite to the ground.

Based on the previous analyses and experiences with bolt installation, the point

anchor bolt design is most conducive for incorporation into a satellite anchor. In

addition to providing the most reliable method of anchorage in regolith testing, the

bolts performed at the same high levels of success in pullout load as the fully grouted

resin bolts. A point anchor system would not require the addition of any �uid reservoir

space or injection system. Such a bolt would instead rely on a robotic operator to

drill a bolt hole and then install the bolt with a certain amount of torque to ensure

that the anchor shell had embedded in the bolt hole walls. A further optimization

of the system could be the introduction of a self-drilling bolt head at the tip of the

bolt. This head could perhaps be integrated with the anchor shell in such a way that

the bolt could then act both as a drill and an anchor. The bolt, rotated by a robotic

operator, would �rst drill a bolt hole while slowly being installed as the bolt continues

to cut the hole. Once the desired depth had been reached, the bolt would then be

rotated to generate the installation torque required for shell expansion.

In addition to the anchor type, variables in the operating environment were ini-

tially thought to in�uence anchorage in the asteroid. One observed phenomenon
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during test setup was the high di�culty in drilling bolt holes in the diabase boul-

der. Drilling took anywhere from 3.5 to 8 hours to drill one 12 in. bolt hole using a

diamond coring bit. The sandstone and limestone boulders, by contrast, took 10-15

minutes to drill a hole of similar length. While a robotic drill would probably use a

rotary percussive method of drilling a bolt hole and a tungsten carbide boring bit, an-

choring in such a boulder would still require several hours to drill a 12 in. hole. Since

diabase is mineralogically similar to other igneous rock types, drilling into asteroids

with high igneous mineral contents, such as S-type asteroids, or high metal contents,

such as M-type asteroids, may be di�cult. If a satellite must be anchored to one of

these types of asteroids during a short amount of time, therefore, it is advised that

anchoring sites be selected based on high regolith content, rather than bare surfaces

that may be di�cult to drill. This regolith may then provide an easier mechanism

into which the satellite can anchor. If time is not a major concern, then drilling into

the coherent asteroid body will generate a more stable anchorage.

In the regolith strength regime, compactive load and temperature did not play a

statistically signi�cant role in the failure pullout load of the bolts. Only water content

generated a signi�cant result, and then only with point anchor bolts. This is hypoth-

esized to occur due to the increased particle cohesion created by the addition of water

to the regolith. This, in turn, created a stronger regolith mass that, through frictional

interlocking of the regolith particles, provided an increased resistance to the point an-

chor's anchoring force. This e�ect may have shown itself only for the point anchor

because it was the only anchor to generate enough data points to model the role of

water. When frozen, this water will act as a lattice or matrix that further strengthens

the cohesion of the regolith mass, and so will likely generate a more internally com-

petent, and thus �stronger�, regolith. The environmental conditions that generated

signi�cant �ndings during the boulder tests (anchor depth for polyurethane and rock

strength for point anchor) both may have explanations beyond simple causation. In

the former case, the success of the polyurethane bolts in sustaining 28 ton pullout

loads at 2 in. and 6 in., but not at 12 in., most likely generated this �signi�cant� re-

sult. This anchorage phenomenon may be due to a reaction between the polyurethane
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and the surrounding air that was able to take place at shallower bolt depths during

the allotted cure time. The in�uence of rock strength on point anchors, meanwhile, is

similarly due to the point anchor failures in the low- and medium-strength boulders

and successes in the high-strength boulder. The only environmental property that

may actually impact anchorage, therefore, is the internal strength of the body being

anchored. This strength will depend on con�ning stresses, water/ice content, regolith

cohesion, and the absence/presence of discontinuities within the orbital body. Based

on the �ndings from the regolith and boulder tests, therefore, anchorage in bodies

composed either of rock-like material or in regolith may be achieved if the anchorage

design is based on a point anchor system and the body is strong enough to land on

in the �rst place.
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Chapter 5

Conculsions and Recommendations

5.1 Conclusions

This work examined the potential for repurposing anchoring concepts used in mine

roof support for use in designing a satellite anchoring system. Three di�erent types of

anchorage - point anchors, fully grouted resin bolts, and polyurethane anchors - were

tested to identify which, if any, anchorage system would provide the best anchorage in

an asteroid for a given set of environmental conditions. These anchors were tested in

both a �bedrock/boulder� and a regolith medium, with variations in boulder strength

and anchor depth as well as regolith compaction, water content, and temperature.

While the hydraulic pump and load cylinder were overpowered for the regolith tests

and led to many premature bolt failures, several useful conclusions were still gathered

from the study:

1. Short anchor depths do not appear to a�ect the pullout strength of the anchors

themselves. While some failures occurred in 12 in. bolt holes, none occurred in any

of the 6 in. or 3 in. bolt holes. This indicates that, while there may be an e�ect if

a bolt is loaded beyond 28 tons, no di�erences in anchor strength exist between the

di�erent anchor depths at pull loads < 28 tons.

2. Water content can play a signi�cant role in the pullout strength of point

anchors. This is possibly due to an increase in the cohesion of the regolith created

by the water particles that, in turn, creates a stronger body of regolith in which the
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point anchors can embed. This, combined with the failure of most of the other tested

parameters to generate signi�cant results, appears to indicate that the single largest

concern in the regolith strength regime is the internal strength of the regolith itself,

rather than individual parameters that may or may not contribute to the strength of

the regolith body.

3. Serious installation challenges may exist with incorporating a fully grouted

roof bolt design. These challenges arise from the di�culty of mixing the resin, the

possibility of the resin freezing in space, and the long set time that may be required

for the resin to reach its full cured strength.

4. Point anchors overall proved most resilient to the applied pullout loads. While

torque-induced bolt failures did occur in weaker rocks, this can be avoided in space

environments by anchoring in either an area with a larger con�ning stress or in an area

covered with regolith. The point anchor, therefore, appears to be the best anchorage

mechanism for use in designing a satellite anchoring system.

5.2 Future Work

This initial work has provided as much of a guide of how not to anchor onto an

asteroid as it has on how anchorage should occur. Selection of a point anchor-derived

system, however, has provided a baseline from which future work can expand. One

limitation of the current study was its inability to drill the bolt holes into the boulders

and regolith at the low temperatures expected in space. This limitation was primarily

due to the large size of the boulders and drill, as well as safety concerns for a human

operator to use a drill in such conditions. Additionally, while the temperatures of the

regolith samples were lowered and bolts installed in these low temperature samples,

the anchor material itself was room temperature prior to installation in order to fa-

cilitate human handling of the materials during installation. Future tests with point

anchor bolts should therefore take place in a testing chamber where the temperature

can be lowered to -40ºF to -94ºF and a full vacuum created. Testing under these sim-

ulated asteroid conditions would then reveal de�ciencies in anchor design or material
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selection. Additionally, conducting all drilling, bolt installation, and bolt testing in

this chamber will be a closer analog to operating in an asteroid environment than

conducting the tests in a typical lab setting. Testing in such conditions will reveal

any potential problems with how the operations are conducted and whether the ma-

terials used are appropriate for use in a low temperature vacuum. In the event that

the steel normally used on Earth for these bolts becomes too brittle to use in space,

an anchor system could instead be constructed from �berglass reinforced plastic, or

FRP. This material is already in use for creating roof bolts that require high corrosion

resistance and high tensile strength (JENNMAR USA (2017)). An investigation into

the behavior of FRP bolts at low temperatures may �nd a lower degree of brittleness

than that encountered by steel bolts, thereby providing another material option for

use in constructing a satellite anchor.

Future testing should primarily focus on bolt design and anchoring depth in order

to minimize the time required to drill and anchor into an asteroid or comet. As has

previously been mentioned, integrating a self-drilling bolt head with the point anchor

system may be one way to minimize the time, movement, and mass required for

anchoring into the asteroid. Testing should therefore examine if such a cutting head

can drill through asteroid regolith simulant at low temperatures with both low and

high water contents. Since anchor depth did not a�ect anchor pullout loads in the

boulder strength regime, a similar test should be conducted in regolith to identify if

anchor depth plays a larger role in a granular environment. Results from this test

could then determine if the anchoring system must be 12 in. long or if shorter anchors

will be adequate. During this testing, it is strongly advised that a low-pressure jack

and loading cylinder be utilized in order to capture loading data at the <2 ton interval.

Additionally, regolith testing should take place in a lid-capped container with a hole

on the top through which the bolts can protrude. This lid will need to be of su�cient

strength to withstand the reaction force generated by the loading cylinder when the

maximum load is applied. Otherwise the lid will fail and the dial gauge will generate

an incorrect displacement and load despite this load no longer being actually applied

to a surface. A �nal safeguard against erroneous readings is to limit the exposed bolt
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length above the test site to 1 in. Doing so will prevent the loading cylinder from

fully pressurizing prior to the pull claw actually coming into contact with the pull

collar or bolt head. Such a situation can otherwise occur if the pull claw vertically

displaces far enough for the loading cylinder to pressurize prior to this contact.
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