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ABSTRACT 

Acceleration of Non-Equidiffusive Flames in Channels:  

Computational Simulations and Analytical Studies  

 

Serdar A. Bilgili 

 

 

 When a premixed flame front spreads in a narrow pipe, wall friction continuously distorts 

the flame shape. As a result, the flame front acquires a larger surface area, consumes more fuel 

per unit time and, thereby, propagates faster. While this mechanism of flame acceleration due to 

wall friction has widely been studied, especially within the last decade, the analytical and 

computational studies were mostly devoted to equidiffusive flames, where the Lewis number, 

defined as the thermal to mass diffusivity ratio, is unity, Le  = 1. However, in reality thermal and 

mass diffusion are typically not balanced, especially in rich and lean mixtures. Hence, the micro-

scale, diffusional-thermal effects may appear comparable with macro-scale phenomena such as 

wall friction. The present work sheds the light on the dynamics and morphology of Le ≠ 1 flames 

in channels. Specifically, it studies, by means of computational and analytical endeavors, how 

the interplay of finite flame thickness, stretch effect and the thermal-molecular diffusion 

influence the overall flame acceleration scenario. It is shown that Le > 1 flames accelerate 

slower, due to an effective thickening of the flame front. In contrast, Le < 1 flames exhibit faster 

acceleration due to effective flame channeling and other morphological deformations resembling 

the diffusional-thermal (DT) instability. The analysis also incorporates the internal transport 

flame properties into the theory of flame acceleration due to wall friction, by means of the 

Markstein number, Mk, that characterizes the flame response to curvature and stretch. Being a 

positive or negative function of thermal-chemical combustion parameters, such as the thermal 

expansion ratio and the Lewis and Zel’dovich numbers, the Markstein number either restrains or 

promotes the flame acceleration. While Mk may substantially facilitate the flame acceleration in 

narrow channels, this effects diminishes with the increase in the channel width. The analysis is 

accompanied by extensive numerical simulations of the Navier-Stokes and combustion 

equations, which clarify the impact of the Lewis number on the flame acceleration. It is obtained 

that, for Le lower than a certain critical value, at the initial stage of flame acceleration, globally-

convex flame fronts split into two or more “fingers”, accompanied by a drastic increase in the 
flame surface area and associated enhancement of the flame acceleration. Later, however, the 

flame fingers meet, promptly consuming the troughs, which rapidly diminishes the flame surface 

area and moderates the acceleration. Eventually, this results in a single, globally-convex flame 

front that keeps accelerating. Overall, the thermal-diffusive effects facilitate the flame 

acceleration scenario, thereby advancing a potential deflagration-to-detonation transition. 
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Chapter 1: Introduction 

1.1. Motivation and Literature Review on the Flame Acceleration Mechanisms 

The dynamics and morphology of accelerating flames have extensively been investigated in 

a multitude of configurations [1]. In this respect, pipes and slits have been one of the preferred 

geometries for fundamental combustion studies as it allows reasonable simplifications in the 

analysis. On the other hand, combustion in tubes is associated with numerous practical 

applications of variety of scales, such as pseudo-combustion of thermo-power waves in 

nanotubes [2], micro- and mesa-combustors [3], and fire safety issues in mines [4]. Various 

experimental studies have observed spontaneous flame acceleration, potentially followed by a 

deflagration-to-detonation transition (DDT) event in the geometry of flames spreading in a pipe 

or gap [5-14].  

While such practical demands have stimulated the research in this direction for decades, 

until recently there was a limited theoretical understanding of the flame acceleration 

mechanisms. Namely, the same scenario of the conceptually laminar flame acceleration towards 

the detonation triggering has been demonstrated in the recent computational and analytical 

studies of flames in tubes/channels [15-20]. To be specific, a flame-generated flow in pipes 

becomes non-uniform due to the non-slip boundary conditions at the walls, hence the flame front 

is distorted acquiring a convex shape. This scenario is modeled by the renowned Shelkin 

mechanism [21,22], see Fig. 1.1. On the basis of this simple model, Bychkov et al. [17] have 

developed a quantitative analytical theory of flame acceleration from a closed end of a two-

dimensional (2D) channel with non-slip, adiabatic walls and predicted the main tendencies of the 

acceleration process. According to [17], at the initial, almost incompressible stage, flames in 

pipes accelerate exponentially until compressibility effects become of importance. The analytical 

formulas for the exponential acceleration rate, the flame shape and propagation speed, as well as 

the flame-generated flow velocity profile have been derived [17]. Akkerman et al. [19] have 

subsequently extended the formulation of [17] from 2D channels to axisymmetric, cylindrical 

tubes. The analysis [17] has also subsequently been extended to account for viscous heating [23] 

and gas compression [24-25], with the saturation tendencies identified when the flame speed 

approaches the Champan-Jouguet deflagration speed. As a result, the entire DDT scenario has 
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been elucidated up to the possibility of explosion triggering in the preheated fuel mixture 

because of the flame acceleration [17,19,23,26].  

 

Figure 1.1:   A schematic of wall-friction (a.k.a. Shelkin) mechanism, yielding an exponential acceleration regime. 

While the theoretical endeavors in [17,19] were substantiated by computational 

simulations, both of the formulations adopted a set of simplifying assumptions. One of them is 

the so-called Landau limit of zero flame thickness, which has been a conventional approximation 

used in a multitude of theoretical models. However, the impact of the transport phenomena 

within the burning zone, including thermal and molecular diffusivities, may appear as strong as 

that of viscosity, even yielding locally unstable burning regime of flame propagation. Indeed, the 

possibility of onset and development of multidimensional combustion instabilities, bending 

flame fronts, are influenced by the finite flame thickness [1,27]. In this respect, the diffusional-

thermal (DT) instability mode has been extensively studied in [28-32], with the (in)stability 

domains for non-equidiffusive flames being identified [32-35]. For a summary of computational 
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studies on the DT instability, the reader is referred to [36-37], and the references therein. A 

conventional measure of the combustion “non-equidiffusivity” is the Lewis number (Le) yielding 

the mass to thermal diffusivities ratio, with Le = 1 for equidiffusive flames. Besides, the Lewis 

number can also be coupled to the Schmidt (Sc) and Prandtl (Pr) numbers as Le = Sc/Pr. It 

should be mentioned, in this light, that previous computational simulations of premixed flames in 

channels with non-slip adiabatic walls [17] have been performed for equidiffusive flames only, 

i.e. for Le = 1.  

In spite of a good quantitative agreement between the theory and simulations [17], certain 

specific features of accelerating flames observed numerically have not been explained by the 

theory. Specifically, numerical modeling has demonstrated a little trough at the flame front close 

to the pipe axis, whereas the theory predicted a flat flame top, see Fig. 1.2. In [17], it was pointed 

out that such appearance of a trough at a flame front might be related to the Darrieus-Landau 

(DL) combustion instability that develops at the locally planar part of the flame front close to the 

axis, and this effect was expected to be more profound for non-equidiffusive flames, when the 

DT instability mode comes into play too. Furthermore, it is observed that the flame isotherms get 

thicker close to the walls whereas theory employed infinitely thin flames (Landau limit). The DL 

instability has been ignored in the formulation [17], due to the dominance of the Shelkin 

acceleration mechanism over the relatively weak instability. In contrast, the DT instability mode, 

whose onset is triggered by non-unity Lewis numbers, Le, and negative Markstein numbers, Mk, 

dominates on small scales, and therefore has to be considered. 

 

Figure 1.2:   Evolution of the flame isotherms, from 600 to 2100 K with the step of 300 K, in the simulation run for 

Re = 25, and Pr = 1 [17]. 
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1.2. Methodology 

In the present work, the theory (based on the Landau limit) and simulations (employing Le 

= 1 flames) in [17] is extended further in order to incorporate the effects of internal thermal-

diffusive flame phenomena on the flame acceleration scenario in channels. Firstly, realizing that 

the internal flame structure is crucially interrelated to diffusive properties, the coupling 

mechanisms in the Ze-Le-Θ parametric space is investigated in Ch. 2, for the sake of describing 

the stability limits for the flame front. Here, Ze is the Zel’dovich number, and Θ is the density 

drop parameter at the flame front. Then, the critical conditions for the DT flame instability is 

defined in terms of the critical parametric space formed by the critical Markstein (MkC), 

Zel’dovich (ZeC) and Lewis (LeC) numbers, as well as the critical activation energy (EA,C). 

Furthermore, in contrast with the equidiffusive modeling of [17], direct numerical 

simulations of non-equidiffusive flames are performed, in order to explore the flame stretch and 

thermal-diffusive properties in a profound manner. In Ch. 3, key parameters are introduced, and 

the simulation mechanisms along with basic numerical equations that are used to scrutinize and 

quantify the flame acceleration scenario are described. Then, the simulation results are presented 

in Ch. 4. 

In Ch. 5, two distinguished analytical models are proposed in order to complement the 

computational findings. Specifically, the effects of internal flame structure are incorporated via 

extending the theory based on the Landau limit of zero flame thickness, and the impact of 

diffusive properties on the non-equidiffusive flames is scrutinized. Namely, a model is developed 

to employ the classical flame stretch formulation of Matalon & Matkowsky [38] into the present 

analysis of the flame acceleration. The thermal-diffusive and stretch effects are incorporated into 

the formulas for the flame acceleration rate by means of Mk as a thermal-chemical function, 

characterizing the flame response to curvature and stretch and coupled to Le [38-39]. It is 

recalled that Mk may appear positive or negative, thereby moderating or prompting the flame 

acceleration process, respectively [40-42]. As a review on the stretch effect in tubular flames, 

see, for instance, [43] and references therein. Moreover, a secondary model formulation is also 

developed which scrutinize the flame stretch formulations of [38], and solves the flame evolution 

equation via introducing the finite flame thickness effects in the form of a perturbative 
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correction. As a result, the formulas for the flame acceleration rate are presented, in which the 

effects of the internal flame structure are again incorporated through the Mk number. 

For both analytic approaches, another useful parameter characterizing the flame 

acceleration is the Reynolds number associated with the laminar flame propagation, Re = RSL / Ȟ, 

which is a combination of the quantities describing the configuration (the tube radius or the 

channel half-width, R), the flame (the unstretched laminar flame speed, SL), and the fluid (the 

kinematic viscosity, Ȟ). In narrow pipes, with small Re, where the internal flame features are 

apparent, the Mk-induced modifications of the flame acceleration rate agree well with the 

previous simulation results, thereby justifying an undertaken improvement for the previous 

theory [17]. The role of the stretch diminishes with the increase in Re such that both the theory 

[17] and the present formulation will coincide in the limit of Re >> 1. Besides, the predictions of 

the theory are compared to the simulation results of Ch. 4 for the non-equidiffusive flames. 

Finally, in Ch. 6, the findings of computational and analytical results are discussed, and 

compared to each other. 
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Chapter 2: Zero-Dimensional Theory  

In the introductory chapter, it was mentioned that previous simulation results had minor 

mismatch with the theory, accompanied by morphological deformations (e.g. trough formations) 

of the flame front, which are presumed to be a fingerprint of the DT instability. In order to define 

the stability limits for such a case, let us now consider a flame with Tf  and ρf  being the fuel 

temperature and density; and Tb and ρb being those for the burnt matter. Then, the thermal 

expansion ratio is defined as Θ = Tb / Tf  = ρf / ρb, and the Zel’dovich number, Ze, is defined in 

terms of the activation energy, EA, the universal gas constant Ru, the fuel temperature, Tf , and 

that of the burnt matter, Tb as [39]: 

 ܼ݁ =  Θ − ͳΘ ௨ܴ�ܧ �ܶ  =  Θ − ͳΘଶ ௨ܴ�ܧ ௙ܶ . (2.1) 

The Markstein number, describing the flame response to curvature and stretch, is coupled to 

other thermal-chemical flame properties (Ze, Le, and Θ) as [39]: 

݇ܯ  = ΘΘ − ͳ∫ ℎሺߴሻߴ Θߴ݀
ଵ − ͳʹ ܼ݁ሺͳ − ሻΘ݁ܮ − ͳ ∫ ℎሺߴሻߴ ݈݊ (Θ − ͳߴ − ͳ)݀ߴΘ

ଵ , (2.2) 

where, ߴ = T / Tf  is the scaled temperature such that 1 ≤ ߴ ≤ Θ, and h(ߴ) is the function 

describing the temperature-dependence of the transport coefficients. Then, with the following 

designations   

 �ଵ = ∫ ℎሺߴሻߴ Θߴ݀
ଵ , (2.3) 

   
 �ଶ = ∫ ℎሺߴሻߴ ݈݊ (Θ − ͳߴ − ͳ)݀ߴΘ

ଵ , (2.4) 

Eq. (2.2) can also be expressed as 

݁ܮ  = ͳ − ʹΘ�ଵ − ʹሺΘ − ͳሻܼ݁݇ܯ�ଶ . (2.5) 

2.1. Critical Parameters of the Diffusional-Thermal (DT) Instability  

Recalling that the DT instability develops for Mk < 0, one can define the critical value of 

the Lewis number, LeC, associated with Mk = 0, and thereby being threshold for the DT 

instability. Specifically, the DT instability develops if ݁ܮ <  with ,�݁ܮ
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�݁ܮ  = ݇ܯሺ݁ܮ = Ͳሻ = ͳ − ʹΘ�ଵܼ݁ �ଶ. (2.6) 

Now it is also the time to recall the physical constraint for the lower limit of the Lewis number; 

namely, Le > 0 in the reality. Hence, the situation when the threshold Le formally appears non-

positive, ݁ܮ� ൑ Ͳ, simply denotes that the flame is absolutely stable against the DT instability in 

that case. Thus, the critical Zel’dovich number associated with such a limit of absolute stability 

can be defined. The quantity will obviously be related to both zero Le and Mk, namely, Eq. (2.6) 

yields: 

 ܼ݁� = ܼ݁ሺ݁ܮ = Ͳ,݇ܯ = Ͳሻ = ܼ݁ ሺ݁ܮ� = Ͳሻ = ʹΘ�ଵ/�ଶ. (2.7) 

Then, with Eq. (2.7), Eq. (2.6) takes the form 

�݁ܮ  = ͳ − ܼ݁�ܼ݁ . (2.8) 

One should recall, again, that for ܼ݁ ൑ ܼ݁� one has ݁ܮ� ൑ Ͳ, which is impossible. In other 

words, for ܼ݁ ൑ ܼ݁�, the flame is unstable only for ݁ܮ < �݁ܮ , which is a negative number 

anyway. Therefore, it can be concluded that the flame front never becomes unstable in this case, 

and the condition that a flame is absolutely stable against the DT instability can be stated as: 

 ܼ݁ ൑ ܼ݁� = ʹΘ �ଵ/�ଶ, (2.9) 

or   

�ܧ  ൑ �,�ܧ = ʹΘଷܴ௨ ௙ܶΘ − ͳ �ଵ�ଶ. (2.10) 

   

2.2. Neutral Curves  

As a result, it is identified that the DT instability may develop only if ܼ݁ > ܼ݁� , EA > EA,C, 

and Le < ݁ܮ� = ͳ–ܼ݁�/ܼ݁. The associated neutral curves are shown in Figs. 2.1 and 2.2, which 

are the outcomes of Eqs. (2.8) and (2.9). In this regard, two distinct functional temperature-

dependences of the transport coefficients are chosen for convenience, namely h(ߴ) = 1, and h(ߴ) 

1/2ߴ =
. The integral J2 has been taken numerically via conventional trapezoidal integration.  

It is evident from Fig. 2.1 that increasing Θ extends the stability regime for the flame, 

which can also be verified in Fig. 2.2 as the instability domain reduces with increasing Θ. 

Similarly, Fig. 2.3 shows that LeC, needed to prevent the instability, gets larger as Ze grows. 
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Figure 2.1:   ܼ݁�  as a function of Θ for h(ߴ) = 1 (dashed), and h(ߴ) = 1/2ߴ
 (solid). Marker correspond to current 

simulation parameters. 

 

Figure 2.2:   LeC versus Θ for fixed Ze = [3.5, 10, 20, 50]. Solid lines use h(ߴ) = 1, and dashed lines use h(ߴ) = 1/2ߴ
. 
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Figure 2.3:   LeC versus Ze for fixed Θ = [3, 5, 8, 12]. Solid lines use h(ߴ) = 1, and dashed lines use h(ߴ) = 1/2ߴ
. 

Overall, the analysis of this chapter yields the absolute stability limits for a flame against 

the DT instability. In the following chapters, numerical simulations will be performed where the 

Zel’dovich number is set to Ze = 3.5, which is lower than ZeC corresponding to the given thermal 

expansion rate, which is picked as Θ = 8 in simulations (see the red marker in Fig. 2.1). Hence, 

the critical Lewis number for the simulation runs corresponds to a negative number. As 

previously explained, in this respect, the DT instability is not expected to develop, however the 

disturbances on flame front are expected to be observed, which may still be attributed as an 

instability finger-print. 
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Chapter 3: Description of the Numerical Approach 

In this chapter, the description of the fully-compressible, finite-volume direct numerical 

simulations of the Navier-Stokes equations “in-house” solver is given, which has been employed 

in the present studies on non-equidiffusive flames. The original code is developed by Dr. Lars-

Erik Eriksson at Volvo Aero Co. (Goteborg, Sweden), and it has been subsequently revised and 

updated by several research groups henceforward, including Dr. M. Liberman (Uppsala 

University), Dr. V. Bychkov and Dr. D. Valiev (Umea University), and finally Dr. V. Akkerman 

(West Virginia University). Thanks to these updates, the code is able to solve the complete set of 

the hydrodynamic combustion equations including transport processes and chemical kinetics.  

3.1. Basic Equations  

The basic equations of continuity, momentum conservation, energy conservation, and 

species sonservation read 

ݐ߲�߲  + ௜ݔ߲߲ ሺ�ݑ௜ሻ = Ͳ, (3.1) 

ݐ߲߲  ሺ�ݑ௜ሻ + ௝ݔ߲߲ ሺ�ݑ௜ݑ௝  + ௜௝ߜ݌  − ௜௝ሻߛ = Ͳ, (3.2) 

ݐ߲߲  ߝ�) + ͳʹ (௜ݑ௜ݑ� + ௝ݔ߲߲ �௝ݑ�) + ͳʹ ௝ݑ௜ݑ௜ݑ� + ௝ݍ − (௜௝ߛ௜ݑ = Ͳ, (3.3) 

ݐ߲߲  ሺ�ܻሻ + ௜ݔ߲߲ ௜ܻݑ�) − ߤܵܿ (௜ݔ߲ܻ߲ = −�ܻ��  ௨ܶሻ, (3.4)ܴ/�ܧ−ሺ݌ݔ݁

respectively, where Y is the mass fraction of the fuel mixture, ߝ = ܻܳ +  is the internal ܶ�ܥ

energy, � = ܻܳ +  is the enthalpy, Q is the energy release in the reaction, CV and CP are ܶ�ܥ

heat capacities at constant volume and pressure, respectively. Equation (3.4) employs a one-step 

irreversible Arrhenius reaction of the first order, with the activation energy EA and the time 

dimension constant ĲR. Finally, the stress tensor γij and the energy diffusion vector qj are given by 

௜௝ߛ  = ߞ ቆ߲ݑ௜߲ݔ௝ + ௜ݔ௝߲ݑ߲ − ʹ͵ ௞ݔ௞߲ݑ߲  ௜௝ቇ, (3.5)ߜ

௝ݍ  = ߞ− ቆݎܲ�ܥ ௝ݔ߲߲ܶ + ܳܵܿ  ௝ቇ, (3.6)ݔ߲ܻ߲

where ߞ is the dynamic viscosity. The combustible premixture conventionally consists of a 

diatomic perfect gas of a constant molecular weight m = 2.9 x 10
-2

 kg/mol, with CV = 5Ru/2m, CP 
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= 7Ru/2m, where Ru= 8.314 J / (mol.K) is the universal gas constant, and the equation of state is 

P=ρRuT/m. Within the current configuration, it is considered that a flame propagates in a 2D 

semi-open channel of half-width R, with adiabatic and no-slip boundary condition at the walls, 

i.e. ࢛ = Ͳ and  �̂. �ܶ = Ͳ, where �̂ is the normal vector of wall surface. An initialy planar flame 

front is initiated near the closed end of the channel, and it propagates towards the open end. The 

initial pressure and temperature of the fuel mixture are taken to be Pf = 10
5
 Pa and T = 300 K, 

respectively. The thermal and chemical parameters are chosen to reproduce the most important 

properties of typical methane and propane laboratory flames. Namely, the dynamic viscosity is ߞ 

= 1.7x10
-5

 N.s/m
2
, and the activation energy is EA = 32RuTf. Also, the Prandtl number is kept 

fixed at Pr = 1, such that Le = Sc, hence is varied through Sc. In order to avoid the influence of 

gas compression effects on the burning process, realistically low Mach number value was taken, 

namely Ma = 10
-3

, which corresponds to the planar flame velocity of Uf = 34.7 cm/s. Though, it 

resulted in numerical difficulties since the large difference between the flame velocity and the 

sound speed dramatically increases the computation time. Finally, the flame thickness used in the 

calculations is conventionally defined as 

௙ܮ  = ݎܲߥ ௙ܷ . (3.7) 

The thermal expansion in the burning process is determined by the energy release in the reaction, 

and its initial quantity in all the simulations was kept as large as Θ = 8 in order to obtain similar 

conditions as typical methane and propane burning. 

3.2. Numerical Scheme  

The numerical scheme of this finite-volume Navier-Stokes solver is second-order accurate 

in time, fourth-order accurate in space for the convective terms, and second-order accurate in 

space for the diffusive term. The computational methods are thoroughly described, in particular 

in [44-45], and it has been utilized successfully in the studies of laminar burning, hydrodynamic 

flame instabilities, development of corrugated flames, and other related phenomena [17-19, 44-

45]. In the present simulations, the channel width (2R) is varied within the range 20Lf - 70Lf, and 

the aspect ratio is taken of the order of 10
3
 such that the channel length practically does not 

influence the results.  
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Figure 3.1:   A sketch of the adaptive non-uniform grid with variable resolution [46]. 

The mesh is composed of a structured rectangular grid, which is adaptive to the flame 

propagation. In order to reduce the computation time to reasonable intervals, the grid is made 

non-uniform in the (axial) z-direction, where the fine resolution region lies around the flame 

front. A scheme of a typical grid used in the solver can be seen in Fig. 3.1 [46]. In this zone, the 

grid size is 0.2Lf  in the z-direction, which is good enough to resolve the internal flame structure. 

Outside this fine grid region the mesh size grows gradually with circa 2% change in size between 

adjacent cells. In order to keep the flame in the fine grid zone, adaptive mesh is applied which 

moves together with the flame. On the other hand, the grid along the x-axis is taken to be 

uniform, with the cell size comparable to 0.5 Lf. Hence, the zone of large velocity gradients close 

to the wall were able to be resolved quite well.  

 

Table 3.1:   Resolution tests for Ma = 0.005, Θ = 8. The notation for the scaled variables reads the Δzf / Lf being the 

mesh size of the grid, Umax / SL being the maximum flame tip velocity, and tmax SL / R being the time corresponding 

to the maximum flame tip velocity [46]. 
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Figure 3.2:   A resolution test for the flame tip position versus time, where different mesh sizes are considered 

which are scaled with respect to the flame thickness [46]. Le = 1. 

 

Figure 3.3:   A resolution test for the flame tip position versus time, similar to Fig. (3.2), but for the current 

simulations. Le = 0.2. 
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In order to check whether the number of cells were sufficient for the problem, various test 

simulations were run with the number of cells increased 3 times in x-direction which yielded an 

accuracy of (5-10)%, and this can be taken as the numerical accuracy of the simulation data. 

Such a test conducted in previous studies can be seen in Table 3.1 and Fig. 3.2 [46], and the test 

conducted for the current solver can be seen in Fig. 3.3. Similar to [44-46], in the present work, 

the Zel’dovich-Frank-Kamenetsky solution for a planar flame front has been employed as an 

initial condition, with the planar flame front initiated at a distance 4Lf  from the closed end of the 

channel. In the reference frame moving with the flame front, the initial conditions read: 

 ܶሺݖሻ௙ܶ = {ͳ + ሺΘ − ͳሻ݁݌ݔሺ−ܮ/ݖ௙ሻ,            ݖ ൒ ͲΘ,                                                       � < Ͳ 
(3.8) 

 ܲሺݖሻ − ௙ܲ�௙ܵ௅ଶ = {ሺͶ/͵ܲݎ − ͳሻሺΘ − ͳሻ݁݌ݔሺ−ܮ/ݖ௙ሻ,            ݖ ൒ ͲሺΘ − ͳሻ,                                                            � < Ͳ 
(3.9) 

with 

ሻܵ௅ݖሺ�ݑ  = �௙�ሺݖሻ = ܶܶ௙ , and       ܻሺݖሻ = Θ − ܶ/ ௙ܶΘ − ͳ . (3.10) 

Likewise, the non-reflecting boundary conditions in [44-46] are adopted at the open end of 

the channel in order to avoid reflections of weak shocks and sound waves that may influence the 

burning and acceleration process. 

The dimensionless parameter of the problem that describes the flame dynamics is the flame 

propagation Reynolds number defined as Re = RUf / Ȟ, which can be coupled to the flame 

thickness through scaled tube half-width as follows: 

 ܴ݁ = ܴ ௙ܷߥ = ௙ܮݎܴܲ . (3.11) 

Since Pr = 1, Re is varied directly through the channel half-width within the limits Re = 5~35. 

The flow ahead of the flame, however, is described by another Reynolds combination: 

 ܴ ௙݁௟௢� = ߥۄ�ݑۃܴʹ = ʹሺΘ − ͳሻܴ݁ ܷ�ܷ௙  , (3.12) 

where the average flow velocity along z-direction is defined as ۄ�ݑۃ = ሺΘ − ͳሻܷ�. Unlike Re of 

Eq. (3.11), Reflow of Eq. (3.12) increases as the flame accelerates. Yet, present simulations are 

performed where the flow Reynolds number remained within the limits of the laminar flow, i.e. 

Reflow < 10
3
. Hence, transition to turbulent flow is beyond the scope of the present work. 
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Chapter 4:  Simulation Results 

In this chapter, the effects of diffusive properties on the flame morphology and dynamics 

are scrutinized and quantified in a detailed parametric study, where diffusive properties are 

represented by Le. In order to be realistic, Le is varied within the range of 0.2–2.0, with Le < 1 

implying that mass diffusion dominates over the heat diffusion, and Le > 1 meaning the opposite 

case. Having fixed Pr = 1, various scenarios for different Sc numbers are thereby investigated. 

Another important parameter is the flame propagation Reynolds number coupled to the flame 

thickness, Eq. (3.11), which is varied by the channel width throughout the simulations. 

4.1. Equidiffusive Flames 

A typical evolution of an equidiffusive flame can be seen in Figs. 4.1 and 4.2, where the 

effect of the channel size on the flame morphology is evident through the formation of a little 

trough close to the tube axis when channel width is increased. In contrast, previous theories 

predicted a flat top of the flame front, with such trough formation being guessed to be either an 

artifact due to initial conditions, or a footprint of a combustion instability developing at the 

locally planar part of the flame front close to channel axis [17]. Such a deformation of the flame 

morphology is found to be an important effect: it alters the dynamical behavior of the flame, 

which is expected since increased surface area changes the burning rate. As a result, in Fig. 4.3 

for the scaled flame tip velocity, the flame front surface area and the total burning rate, a 

deviation from the exponential burning regime is observed. Besides, due to the flame surface 

deformation, one can also see a discrepancy between these three curves despite they are 

predicted to coincide via the same exponent rate by the previous theory. Here, one should recall 

that the burning rate is traditionally measured through an increase in the flame surface area (or 

length, in a 2D case). However, this method yields inaccurate results for strongly corrugated 

flame fronts with troughs and crests, since the local normal velocity significantly differs from the 

planar flame velocity. Therefore, the burning rate here is calculated as [47,48] 

 ܷ� = ͳ�௙ܴ ∫�ܻ��  (3.11) .ݖ݀ݔ௨ܶሻܴ݀/�ܧ−ሺ݌ݔ݁
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Figure 4.1:   Color temperature snapshots for flame propagation in channels with Le = 1, Re = 10. 

 

 

 Figure 4.2:   Color temperature snapshots for flame propagation in channels with Le = 1, Re = 20.  
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Figure 4.3: The scaled flame tip velocity, Utip /Uf, the surface area, Aw /D, and the scaled total burning rate, Uw /Uf, 

versus the scaled time for Le = 1 and Re = 5-35.  

The non-exponential behavior due to the increased channel width is more visible in the 

semi-logarithmic scale, Fig 4.4, where the exponential regression lines are added to measure the 
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exponential regime acceleration rate. The wider the channel, the stronger the morphological 

deformations cause deviation from the exponential regime of acceleration. 

 

Figure 4.4:  The scaled burning rate vs the scaled time for Le = 1 on semi-log plot, along with exponential 

regression fits. 

To validate the accuracy of the simulation data, the results for equidiffusive flames is 

compared with previous simulation results and theory [17]. In Fig. 4.5, the acceleration rate for 

various channel width cases are shown, where a reasonable match between different previous 

simulation results [17,24] and present ones could be observed. 
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Figure 4.5: The scaled exponential flame acceleration rate versus the scaled time for Le = 1.  

4.2. Non-Equidiffusive Flames 

To address the possible effects of diffusion properties on the flame front deformations, 

the scenario where the DT instability modes might be entangled with the overall flame structure 

is put forth. Hence, the dynamics of non-equidiffusive flames is scrutinized in order to 

understand the role of Le in the flame acceleration. 

4.2.1.   Le > 1 results 

Figures 4.6 and 4.7 show a typical evolution of a strongly non-equidiffusive flame. In 

contrast with Figs. 4.1 and 4.2, the trough formation is not observed even though the channel size 

is increased. This is a good example which reveals the nature of the Le number effects on the 

internal flame structure. Namely, increasing Le also increases the flame thickness effectively, 

which in turn reduces the elasticity of the flame. Hence, if Le is large enough, then the flame 

front becomes less prone to be corrugated and the shape of surface remains nearly convex 

throughout the acceleration. Moreover, increasing Le effectively increases heat diffusion; hence 

one can observe the heated localized regions at the walls, whereas the flame front is cooler. 
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Figure 4.6:  Color temperature snapshots for flame propagation in channels with Le = 2, Re = 10. 

 
Figure 4.7:   Color temperature snapshots for flame propagation in channels with Le = 2, Re = 20. 
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Figure 4.8: The scaled flame tip velocity, Utip /Uf, the surface area, Aw /D, and the scaled total burning rate, Uw /Uf, 

versus the scaled time for Le = 2.0 and Re = 10, 20.   

Nonetheless, increasing the channel size poses a similar effect by perturbing the 

exponential regime, which can be seen in Fig. 4.8 for the flame tip velocity, the surface area, and 

the total burning rate. Similarly, the deviation from exponential behavior is observed more 

clearly in Fig. 4.9, with the effect promoting with the increase in the channel width. Though, 

such deviation effects are weaker for larger Le numbers. 

Overall, imposing Le effects significantly alters the flame acceleration scenario for non-

equidiffusive flames. Fig. 4.10 shows the acceleration rates for various Le cases, where current 

simulation data are compared to the previous simulation data and theory. It is apparent that, the 

acceleration rate is reduced for small Re values as Le gets larger. This result is associated with 

the increased flame thickness which in turn reduces the acceleration in narrower channels. 

Hence, one can observe the appearance of a maximum acceleration rate for Le>1 cases. The 

bending-down behavior of the simulation data in Fig. 4.10 for small Re will be further studied in 

Ch. 5 with respect to an analytical point of view. 
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Figure 4.9:  The scaled burning rate versus the scaled time for Le = 2, along with exponential regression fits. 

 
Figure 4.10:   The scaled exponential flame acceleration rate versus the scaled time for Le = 0.8; 1.0; 1.2; 1.6; 2.0. 
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4.2.2.   Le < 1 results 

So far, simulation data for non-equidiffusive flames had shown that the flame morphology 

is significantly altered by the Lewis number effects. Recalling Figs. 4.1 and 4.2, in addition to 

the channel width, such a trough formation might also be related to diffusive flame properties by 

means of heat and mass diffusion. Therefore, in the present sub-section, via gradually decreasing 

Le in the present simulations, it is shown that such a trough formation becomes more and more 

concave as Le gets smaller, hence increasing the surface area of the flame front, thereby causing 

an increase in total burning rate and promoting the acceleration. 

Decreasing Le further eventually escalates the trough formation and creates a split between 

the lower and upper crests of the flame front. Such a behavior creates a time period where the 

acceleration rate is substantially increased due to the positive correlation between the large 

increase in the flame surface area and the burning rate. Figures 4.11 and 4.12 present the 

evolution of the central trough for strongly non-equidiffusive flames, Le = 0.2, for Re = 25 (Fig. 

4.11) and Re = 20 (Fig. 4.12). It is noted that the central trough in Fig. 4.12 provides a dramatic 

increase in the flame surface area. Furthermore, the upper and lower crests are stretched further, 

and the middle trough becomes a deep well and retarded with respect to the crests. After this 

instant, the middle trough begins collapsing onto itself and closing the gap with a high 

acceleration rate at the channel axis. Such a behavior rapidly decreases the overall surface area 

and causes a prompt decrease in total burning rate, yielding a “slowdown” period. Yet, the 

momentum of the burnt matter along the channel axis that gained a substantial acceleration 

during the collapse of the trough nonetheless pushes the flame front, which creates a third crest 

along the axis, and is visible in latter snapshots in Fig. 4.11. Apparently, the formation of the 

third finger is possible only when the channel width is big enough, so the situation is somehow 

different in Fig. 4.12, where the channel is smaller. Here, for Re = 20, the third finger formation 

is initialized, however quickly consumed by the crests. 
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Figure 4.11:   Evolution of the central trough for non-equidiffusive flames (Re = 25, Le = 0.2). 

 

Figure 4.12:   Evolution of the central trough for non-equidiffusive flames (Re = 20, Le = 0.2). 
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Figure 4.13:   The scaled flame tip position (z / R) versus the scaled time (τ = tUf / R), for the fixed Re = 10 

 (R = 20Lf) and various Le values. 

So far, the simulation results undoubtedly showed that the flame splitting into two or more 

elongated crests (the so-called channeling) greatly increases the flame surface area, and the flame 

accelerates faster when Le decreases, and vice versa. The flame tip position for various cases is 

shown in Fig. 4.13, where we observe a negative correlation between Le and the acceleration 

rate, hence justifying the previous statement. Now, at this point, it is natural to ask what the 

scenario afterwards is, namely what fate does the split flame will have. To answer this question, 

namely, in order to observe the behavior of a trough and the crest formation as time passes in the 

long run, simulations were run for thinner channels, as well (see Fig. 4.14).  

Eventually, the simulations for thin channels clearly sketched the picture for the multiple 

“stages” of the acceleration scenario for non-equidiffusive flames. According to this picture, 

such stages could be summarized as follows: 
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 First stage: If the Lewis number is below a certain critical value, Le < LeC, then the trough 

formation on the flame front grows deeper and flame is literally split in half. Such a case 

escalates the positive correlation between the flame surface area, and the total burning rate, 

hence eventually promotes the flame acceleration. 

 

 Second stage: Split flames enter an enhanced acceleration regime where the central flame 

front is retarded as compared to the upper and lower crests, making the trough deeper and 

deeper. Eventually, the flame surface area and the burning rate reaches a local maximum 

value. However, mass diffusion causes the central trough to be devoured by crests at an 

extremely rapid rate, resulting in the previously “retarded” central flame front to “catch-up” 

with the crests. This behavior naturally reduces the flame surface area, and moderates the 

flame momentarily. 

 

 Third stage: As the “retarded” central flame front catches-up with the upper and lower 

crests, its momentum continues to push the front forward even though the flame slows 

down due to the rapid decrease in the burning rate. Thus, formation of a third crest at the 

central axis is observed for Re > 20. Otherwise, “catching-up” period does not occur “fast 

enough” for thin tubes, and the central front does not carry enough momentum to push the 

front and the third crest is not created. Hence, the flame evolution directly enters to the next 

stage. 

 

 Forth stage: As the trough is mostly (but not fully) consumed, the flame front now 

continues to accelerate as a whole. If exists, the third crest is also consumed by the upper 

and lower crests, as observed in the present simulation interval (Re = 10-35). One of the 

interesting outcomes that was apparent in the simulations was the eventual domination of 

the upper crest in the long run, which can be seen via the snapshots in Fig. 4.14. According 

to these snapshots, the upper crest surpasses the lower one and the flame front, once again, 

assumes the finger-like shape, and continues the acceleration period. To be specific, the 

snapshots of Fig. 4.14 represent the first stage, where the flame is split in half; and the 

second stage, where the central trough is consumed. The third crest does not form in such 

narrow tube, and eventually the flame enters the fourth stage where upper crest surpasses 

the lower, and the flame gets globally finger-like again. 
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Figure 4.14:   Evolution of the “stages” of non-equidiffusive flames (Re = 15, Le = 0.2). 

Another way to analyze these stages is to check the time dependence of the scaled flame tip 

velocity. Figure 4.15 presents the simulations results for various Lewis number cases, namely Le 

= 0.2~1.0, at fixed Re = 20. Previously defined stages are apparent on curves’ behavior; first as a 

slight decrease due to the retardation of the center as the central trough gets deeper, and then it is 

followed by a peak due to the “catch-up” period of the central front. Thereafter, the overall 

velocity decreases due to the sharp decrease in the total burning rate. It is also observed that the 

flame front acceleration sharply increases with the decrease in Le, i.e. the increase in mass 

diffusion. Similarly, one can evaluate the scaled burning rate which is directly proportional to the 

flame surface area (or the flame front length in a 2-D channel), namely Uw / Uf = Df / 2R, where 

Df is the length of the flame front. Such an evaluation of the total burning rate could be seen in 

Fig. 4.16, from simulation results for various Reynolds numbers, namely, Re = 10~35, at fixed 

Le = 0.2. The stages of the crest and trough formation are all apparent in all curves, except for 

the Re = 10 case, where the trough formation is not allowed to become too deep before it is 

consumed by the crests. Hence, this value can be counted as the threshold below which trough 

formation is not present. 
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Figure 4.15:  The scaled flame tip velocity versus the scaled time (τ = tUf / R) for fixed Re = 20 (R = 40Lf) and 

various Le.  

In conclusion, the acceleration scenario of non-equidiffusive flames has been identified in 

terms of multiple stages. Now, one can discuss the stability conditions for the flame front. Such a 

trough formation was previously thought to be the result of the initial conditions, or a footprint of 

the combustion instability, say the DL instability mode. However, by modifying the mass and 

thermal diffusivity of the fuel, it is seen that the flame surface might promote such an effect in an 

extensive scale. Therefore, one might also consider that troughs and crests would be a footprint 

of the DT instability. Such instability is controlled by the activation energy of the fuel, and 

diffusive properties, which is described by the Mk number. It is recalled that the Zel’dovich 

number was taken in the simulations as small as Ze = 3.5 for Θ = 8, which corresponds to Mk = 

1.6-1.7 at its minimum. Hence, having Mk > 0 indicates that the flame front is supposed to be 

stable against the DT instability. Nonetheless, one can define a stability threshold at least for 

trough development, i.e. LeC, which indentifies the boundary separating the two limits: 1) a 
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trough appears, yet is quickly consumed before it gets deeper; 2) a trough appears, and continues 

to get deeper due to mass diffusion effects. Critical Le values for various Re-cases are shown in 

Table 1, which indicates a non-linear yet a positive correlation between the flame split and the 

channel size. Fig. 4.17 shows an exponential curve fit for these values, whose coefficient of 

determination (R
2
) value is the greatest compared to the other non-linear regression models that 

have been tried. Yet, the exponential model remains purely observational within the context of 

this study. 

 

Figure 4.16:   The scaled burning rate (Uw / Uf) versus the scaled time (τ = tUf / R), for the fixed Le = 0.2, and 

various Re = 10~35. 

One can observe sample instances for stable and unstable cases in Fig. 4.18a and 4.18b, 

respectively. The development of trough is clearly pictured, where it is promptly consumed in 

stable case, and gets deeper for unstable case. 
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Re 10 15 20 25 

LeC 0.5 0.9 1.7 2.8 

 

Table 4.1:  The critical Lewis number as a stability limit of trough formation, listed for various Re values. 

 

 
Figure 4.17:   LeC versus Re (see Table 1), where the exponential regression model is fitted with the coefficient of 

determination value of R
2
 = 0.998. 

 

However, one should note that the unstable domain defined through LeC is in fact a 

footprint of pseudo-instability, because even though the crest and trough formation is developed 

and the flame is split in half, the crests eventually consume the trough and flame front assumes a 

globally convex shape again, in the long run. However, trough formation substantially increases 

the overall surface area and the reaction rate, therefore it is an important contributor for the 

overall flame acceleration.  
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Figure 4.18:   a) Evolution of the trough instability for the case when it is suppressed, i.e. Le > LeC (Re=10, Le=0.6), 

b) Evolution of the trough instability for the case it develops, i.e. Le < LeC (Re=25, Le=2.0). 
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Chapter 5: Analytical Formulations  

In this chapter, ad-hoc theoretical analyses are developed in order to describe and 

elucidate the simulation results presented in Ch. 4. The analysis is based on the extension of the 

Landau-limit formulation of [17] to incorporate the finite thickness of the burning zone by means 

of Mk, and thereby Le numbers. Two approaches are used, namely: (i) one derived from the 

assumption of self-similar flame acceleration; and (ii) another based on a model equation 

developed from a modified Matalon & Matkowsky formulation [38].      

5.1. Self-similar Consideration.  

 To briefly recall, the analytical theory [17] considered a laminar flame propagating in a 

two-dimensional (2D) semi-open channel of half-width R with adiabatic and nonslip wall 

conditions. In the theory, the stream ahead of the flame is approximated by a plane-parallel flow 

along the walls having the velocity profile u = êzuZ(x,t). To simplify the calculations, the 

conventional scaling is in terms of the channel half-width, R, and the unstretched laminar flame 

velocity, Uf, such that (Ș;ȟ) = (x;z)/R, Ĳ = tUf /R, w = u/Uf. Then, solving the Navier-Stokes 

equation for the plane-parallel flow ahead of the flame front, along with nonslip boundary 

conditions, the following flame evolution equation has been obtained [17]: 

 −߲݂߲� = ,ሺͲ�ݓ �ሻ  + ͳ − �ݓ − √ͳ + ଶ(ߟ߲݂߲) ,  

(5.1) 

where the function  f (Ș,Ĳ) describes the flame shape; it is scaled by the half-width of the channel, 

R. The scaled local flame coordinate is then given by ȟf (Ș,Ĳ) = ȟf (0,Ĳ) + f (Ș,Ĳ), with f (0,Ĳ) = 0 by 

the definition. The flame front is driven / distorted by two aspects: one being the propagation 

with respect to the fuel mixture, and the other is the drifting caused by the flow. Here, the flat top 

of the flame at the axis moves with the scaled velocity wz (0,Ĳ) + 1, whereas the front is also 

drifted by the flow, which yields the local propagation velocity along the walls as wz + [1 + (∂f / 

∂Ș)
2
]
1/2

. The last term in the local propagation velocity represents the contribution of the local 

increase in the flame surface area, which results in flame devouring more fuel mixture per unit 

time. As a result, Eq. (5.1) indicates how the flame shape gets distorted in time. Under the 

condition of a strongly inclined front, |∂f / ∂Ș|>>1, Eq. (5.1) reduces to 

 −߲݂߲� = ,ሺͲ�ݓ �ሻ  − �ݓ +  ߟ߲݂߲
(5.2) 
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for the domain Ș > 0, since the problem is symmetric with respect to the axis Ș = 0. Equation 

(5.2) is linear and has the solution in the form of an exponential acceleration in time: 

 ݂ሺߟ, �ሻ = Φሺߟሻ݁݌ݔሺ�଴�ሻ, (5.3) 

with the acceleration rate assuming the following analytical form (see [17] for the details):  

 �଴ = ሺܴ݁ − ͳሻଶͶܴ݁ ቌ√ͳ + Ͷܴ݁Θሺܴ݁ − ͳሻଶ − ͳቍଶ.  

(5.4) 

 To incorporate the effect of a finite flame thickness into this formulation, it is recalled that 

the viscous effects will be characterized by the Reynolds number associated with the laminar 

flame propagation, ܴ݁ = ܴ ௙ܷ/ߥ = ௙ܮ ௙, whereܮݎܲ/ܴ = /௧ℎܦ ௙ܷ is the conventional definition 

of the flame thickness, Eq. (3.7). We next employ the classical approach of Matalon & 

Matkowsky [38], where the structure of the flame is conventionally approximated as a very thin 

zone, in which the chemical reactions and active transport processes occur. Matalon & 

Matkowsky [38] have derived the equations for the evolution of the shape and location of the 

flame front, along with the appropriate jump conditions across the front. Using their approach, 

the equation for the flame stretch term is defined as: 

 � = ͳȟ݀ȟ݀� , (5.5) 

where Δ is the scaled surface area of an infinitesimal element on the flame front. In the present 

limit of a strongly elongated front that accelerates exponentially, one has ȟ ∝ exp ሺσ�ሻ, which 

then yields � = σ. Next, the scaled flame speed definition is employed [38]:  

௟ܷ/ ௙ܷ = ͳ − �ሺܮெ/ܴሻ = ͳ −  ௙/ܴ,    (5.6)ܮ݇ܯ �

where ܮெ =  ௙ is the Markstein length, playing the role of an effective flame thickness withܮ݇ܯ

respect to the flame curvature and stretch. Then, one finds the local flame propagation speed ௟ܷ 
corrected by the effects of finite flame thickness as 

 ௟ܷ = ௙ܷሺͳ − ௙/ܴሻܮ݇ܯ� = ௙ܷሺͳ −  ሻ (5.7)ܴ݁ݎܲ/݇ܯ�

In the limit of a strongly elongated flame front, employed herein, the local flame speed is also a 

constant. Hence, one may replace the planar flame speed, ௙ܷ, by a modified local flame speed, 

௟ܷ, with the cumulative result for the total burning rate being  
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 ܷ� ∝ exp (� ௙ܷܴݐ ) = exp (�଴ ௟ܷܴݐ ) = exp [�଴ ቆͳ − ௙ܴܮ݇ܯ� ቇ ௙ܷܴݐ ] = [�଴ (ͳ − (ܴ݁ݎܲ݇ܯ� �] . ሺͷ.8ሻ 

As a result, one arrives to a new, modified acceleration rate, �, in terms of �଴, as 

  � = �଴ሺͳ − �Mk/PrRe ሻ    =>    � = �଴ͳ + �଴(5.9) ,ܴ݁ݎܲ/݇ܯ 

with �଴ሺܴ݁ሻ given by [17]; see Eq. (5.4). For simplicity, the Prandtl number is fixed as ܲݎ = ͳ 

hereafter, similar to that used in the computational simulations described in Ch. 3 and 4. 

 
Figure 5.1: Exponential flame acceleration rate � versus the flame propagation Reynolds number, Re, for various 

Markstein numbers, Mk = 0; ± 0.5; ± 1; ± 2.38. Equations (5.9) and (5.10) are presented by the solid/dotted and 

dashed lines, respectively. The dotted portions denote the break of the theory. Markers show the present simulations, 

triangles, as well as the previous ones, [17], circles, and [24], squares.      

 The flame acceleration rate �, Eq. (5.9), versus the flame propagation Reynolds number Re 

is shown in Fig. 5.1 by the solid/dotted lines for a set of fixed Mk = 0; ± 0.5; ± 1; and ± 2.38 

represented by various colors each as specified in the legend. The choice of Mk = 2.38 is related 

to equidiffusive burning (Le = 1), according to Eq. (2.2) with ℎሺߴሻ = ͳ, while the case of Mk = 0 

reproduces the zero-flame-thickness formulation [17]; see Eq. (5.4). For comparison, a variety of 
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numerical simulations on Le = 1 flames are presented in Fig. 5.1 by the markers. It is seen that 

the flame stretch may either promote or moderate the flame acceleration depending on the sign 

of the quantity Mk. The stretch effect obviously diminishes in wide channels such that all the 

curves of Fig. 5.1 tend to Eq. (5.4) in the limit of Re >> 1. A bending of the Mk > 0 curves in 

Fig. 5.1, at small Re, also has a simple physical explanation: a flame front gets “effectively” 

thicker with the increase in Mk, therefore, it is harder to corrugate such a flame at small scales. 

Consequently, the increase in the flame surface area and thereby the burning rate diminishes 

such that the acceleration rate decreases. This effect is negligible at large Re, when small scales 

are of minor importance, but it becomes dominant in narrow channels. It is recalled that such a 

low-Re bending was also observed in the numerical simulations for Le > 1 flames, see Fig. 4.10, 

which justifies Eq. (5.9), at least qualitatively. 

 Nevertheless, the intrinsic limitations of Eq. (5.9) are realized. First of all, it is definitely 

limited to �ܴ݁ݎܲ/݇ܯ < ͳ  as Eqs. (5.7) would formally yield a “negative” flame velocity ௟ܷ 
otherwise. The dotted “tails” of the curves in Fig. 5.1 correspond to such an unphysical situation. 

Hence, only the solid parts of the curves are of relevance. To be more rigorous, this limitation 

should be extended to �ܴ݁ݎܲ/݇ܯ ≪ ͳ, because Eq. (5.6) is actually a first-order expansion in a 

small parameter Re
 -1

, with the higher order terms, O(Re
 -2

), omitted. In this respect, let us 

propose an alternative of Eq. (5.9) in the form   � = �଴ሺͳ − �଴ܴ݁ݎܲ/݇ܯሻ.     (5.10) 

The rational is the following: Eqs. (5.9) and (5.10) differ only by the 2
nd

 and higher order terms 

in Re
-1

. Consequently, both equations should coincide within the validity domain of Eq. (5.6). 

Equation (5.10) is shown in Fig. 5.1 by the dashed lines, with various Mk represented by the 

same color as in the solid/dotted lines. The Re value, at which the solid and dashed lines of a 

given color start deviating, denotes the lower limit of the accuracy of formulations (5.9) – (5.10) 

for the Mk quantity associated with this color. It is seen from Fig. 5.1 that for most Mk from the 

practical reality the present formulation start deteriorating for Re < 10~15, and it completely 

breaks for Re < 5~10 with Mk > 0 (dashed parts). Consequently, at small Re, Eqs. (5.9) and 

(5.10) may work only as models, keeping in mind that the most intriguing effect of flame 

thickening occurs at these scales. In fact, one may not anticipate a brilliant outcome from the 

combination of the studies [38] and [17] anyway, since Matalon & Matkowsky [38] dealt with 
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the approach of weak corrugation and weak stretch while Bychkov and co-authors [17] deployed 

the opposite limit.  

Le 0.2 0.4 0.6 0.8 1.0 1.2 1.6 2 

Mk 1.7 1.87 2.03 2.21 2.38 2.55 2.89 3.22 

Table 5.1: Coupling between the Markstein, Mk, and Lewis, Le, numbers according to Eq. (2.2) with  h(ߴ)=1. 

 For quantitative comparison between the simulations of Ch. 4 and Eqs. (5.9), (5.10), one 

should tabulate the latter in terms of Le instead of Mk. This is undertaken in Fig. 5.2, with the 

relationship between Mk and Le calculated by Eq. (2.2), with h(ߴ)=1, and presented in Table 5.1.  

 
Figure 5.2: Exponential flame acceleration rate � versus the flame propagation Reynolds number, Re, for various 

Lewis numbers, Le = 0.8; 1; 1.2; 1.6; 2.0. Equations (5.9) and (5.10) are presented by the solid/dotted and dashed 

lines, respectively. The dotted portions denote the break of the theory. The black solid line is related to Mk = 0, Eq. 

(5.4). Markers show the present simulations. Overall, the same colors correspond to the same Le numbers.    

 Again, the dashed lines in Fig. 5.2 present Eq. (5.10), while Eq. (5.9) is shown by the solid 

lines, with dotted “tails” associated with an unphysical situation of a formally negative flame 

speed. Deviations between the dashed and solid lines of the same color yield the low-Re 
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limitations of the analytical theory for a given Le at small Re. For Re >> 1 both Eqs. (5.9) and 

(5.10) coincide and tend to the limit (5.4). The cloud of markers fully reproduces that of Fig. 

4.10. 

 The dependence of � versus Le at fixed Re has also been scrutinized. The result is shown in 

Fig. 5.3, for Re = 5 (Fig. 5.3a), Re = 10 (Fig. 5.3b), Re = 15 (Fig. 5.3c) and Re = 20 (Fig. 5.3d), 

respectively. For illustrative purposes, the linear trend of the simulation results is also presented 

in all the plots, which is helpful when compared with the analytical endeavors, Eqs. (5.9), (5.10).  

 

Figure 5.3: Exponential flame acceleration rate � versus the Lewis number, Le, for various fixed flame propagation 

Reynolds numbers: Re = 5 (a); 10 (b); 15 (c) and 20 (d). In all the plots, Eqs. (5.9) and (5.10) are presented by the 

blue solid/dotted and dashed lines, respectively. The dotted black lines show Eq. (5.4). The present simulations are 

shown by markers, with the linear trend presented by the red totted line. 

 One can conclude from Figs. 5.2 and 5.3 (a-d) that Eq. (5.9) agrees qualitatively with the 

simulation results in terms of two major trends. First, a bending trend (the reduction in the 

acceleration rate) at small Re, associated with the flame thickening, is observed both in the 
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modeling and theory. Second, both the simulations and the theory show a decrease in � 

experienced both with the increase in Le and in Re. Still, there is no good quantitative agreement 

between the theory and modeling, which was anticipating accounting the limitations of the 

theory mentioned above. Let us also point out a conceptual difference between the theory and 

modeling: The simulation results change drastically with the variations of the Lewis number. 

Namely, the simulations show almost monotonic Re-dependences for Le = 0.8, 1.0, resembling, 

strikingly, the Mk = 0 result (5.4). In contrast, a bending trend, related to the flame thickening, is 

already detected in the simulations for Le ≥ 1.2. Thus, only a slight change in Mk and Le leads to 

appearance of such a significant effect in the present modeling. In contrast, all the theoretical 

curves for Le = 0.8 ~ 2.0, go very close to each other, and they deviate considerably from Eq. 

(5.4).  

 In order to extend the accuracy and validity of the present formulation, and to reduce the 

existing quantitative gap between the theory and modeling, let us employ the following model 

modification: When defining the Markstein length as ܮெ =  ௙, one should remember that theܮ݇ܯ

flame “thickness” ܮ௙  is actually a useful mathematical parameter of length dimension, which 

however is less than the thermal flame zone, but exceeds the active reaction zone in the reality. 

In this respect, why not replace Mk with its re-defined version, namely the effective Markstein 

number, ݇ܯ௘௙௙? Then for the counterpart of Eq. (5.9), one arrives to a new modified 

acceleration rate, �, in terms of �଴, as 

 � = �଴ͳ + �଴݇ܯ௘௙௙/ܲ(5.11) , ܴ݁ݎ 

with its “conjugative” – analogue of Eq. (5.10) being 

 

 � = �଴ ቆͳ − �଴݇ܯ௘௙௙ܴܲ݁ݎ ቇ. (5.12) 

 Without having a rigorous idea of what ݇ܯ௘௙௙ is, one may guess that is should depend on 

the thermal-chemical flame properties, such as (non)-equidiffusivity and thermal expansion, but 

not on the flow properties. Therefore, it could be assumed that ݇ܯ௘௙௙ is Re-independent, but 

involves a functional dependence on Mk itself. Besides, ݇ܯ௘௙௙ overall should be, say, of the 

order of 10
-1

 in order to justify the 1
st
- order expansion in �଴݇ܯ௘௙௙/ܴܲ݁ݎ ≪ ͳ for small and 
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moderate Re, Re = 5-20. Keeping all these hints in mind, and aiming to fit the simulation result 

as reasonable as possible, the following phenomenological formula is proposed: ݇ܯ௘௙௙ = Ȟ݇ܯ௡, (5.13) 

where Ȟ and n are phenomenological constants. Figures 5.4 and 5.5 are counterparts of Figs. 5.2 

and 5.3, with Eqs. (5.11) and (5.12) employed instead of Eqs. (5.9) and (5.10), respectively. The 

quantity ݇ܯ௘௙௙ was calculated by means of Eq. (5.13), where the arbitrary constants are set to Ȟ = Ͳ.ͲͲͳ and n = 5.5. It is clearly seen that the modified formulation yields much better 

agreement with the simulation results than the original formulation. Indeed, the theoretical 

curves in Figs. 5.4 and 5.5 reproduce the computational trends not only qualitatively, but also 

quantitatively – up to a certain extent, of course. One should nevertheless remember that Eqs. 

(5.11) – (5.13) are just a model; a more rigorous analyses how to quantify and incorporate the 

factor ݇ܯ௘௙௙ constitutes a subject of a future work.    

 
Figure 5.4: Exponential flame acceleration rate � versus the flame propagation Reynolds number, Re, for various 

Lewis numbers, Le = 0.8; 1; 1.2; 1.6; 2.0. Equations (5.11) and (5.12) are presented by the solid/dotted and dashed 

lines, respectively. The dotted portions denote the break of the theory. The black solid line is related to Mk = 0, Eq. 

(5.4). Markers show the present simulations. Overall, the same colors correspond to the same Le numbers. The 

factor ݇ܯ௘௙௙  is given by Eq. (5.13), where Ȟ = Ͳ.ͲͲͳ and n = 5.5. 
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Figure 5.5: Exponential flame acceleration rate � versus the Lewis number, Le, for various fixed flame propagation 

Reynolds numbers: Re = 5 (a); 10 (b); 15 (c) and 20 (d). In all the plots, Eqs. (5.11) and (5.12) are presented by the 

blue solid/dotted and dashed lines, respectively. The dotted black lines show Eq. (5.4). The present simulations are 

shown by markers, with the liner trend presented by the red dotted line. The factor ݇ܯ௘௙௙  is given by Eq. (5.13), 

where Ȟ = Ͳ.ͲͲͳ and n = 5.5. 

5.2. Alternative Formulation 

In this section, an alternative analytic approach is presented for accounting the Mk-related 

effects on the flame acceleration scenario. Firstly, to incorporate the flame thickness, on should 

recall the classical approach of Matalon & Matkowsky [38], where the structure of the flame is 

considered to consist of a boundary layer in which the chemical reactions occur, which is also 

located inside another boundary layer in which transport processes dominate. The authors of [38] 

have derived the equations for the evolution of the shape and location of the flame front, along 

with the appropriate jump conditions across the front. Following their approach, let us consider 

the equation for the motion of the flame front [38]: 
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,ݕሺݑ}  ,ݖ ሻݐ − ࢜ሺݕ, ,ݖ .ሻݐ �݂ − ଵ−ܰ{ݐ߲݂߲
= ͳ − ݇ܯߜ {∇ଶ݂ܰ + �. ࢜ሺݕ, ,ݖ ሻݐ + ͳܰ ݐܦܰܦ } +  ,ሻߜሺ݋

 

(5.14) 

where the scaled increase in the flame surface area is defined as ܰ = ሺͳ + |�݂|ଶሻଵ/ଶ, and the 

correction terms in the right hand side are proportional to the scaled flame thickness, δ = Lf /R, 

and Mk. To adopt and compare Eq. (5.14) along with Eq. (2.1), some adjustments are required to 

make both formulations compatible, which are elucidated in following sub-sections.  

5.2.1 Plane parallel flow and notation correction 

The velocity field in Eq. (5.14) is defined as �⃑⃑ = ,ݕሺݑ ,ݖ ̂�ሻݐ + ࢜⃑⃑  for a flame propagating in 

x-direction, and ࢜⃑⃑  is the 2D transverse velocity component vector [38]. Since the assumption of a 

fully-developed plane-parallel flow is undertaken for a flame propagating in the z-direction, one 

can neglect the transverse component, i.e. ࢜⃑⃑ = Ͳ. Also, it is convenient to switch the notation as ݐ → ݔ ,�  → �ݒ ,ߟ → ,ߟሺ�ݓ �ሻ, hence ݂ሺݔ, ሻݐ → ݂ሺߟ, �ሻ. Thus Eq. (5.14) is simplified as follows: 

 −߲݂߲� = �ݓ− + ܰ − ߳ ቆ߲ଶ݂߲ߟଶ + ߲߲ܰ� ቇ,  

(5.15) 

where the correction parameter is defined as ϵ = δMk. 

5.2.2. Flame function sign correction 

Substituting the parameter N into the Eq. (5.15) yields 

 −߲݂߲� = �ݓ− + [ͳ + ଶ]ଵ/ଶ(ߟ߲݂߲) − ߳ (߲ଶ݂߲ߟଶ + ߲߲� [ͳ +   .(ଶ]ଵ/ଶ(ߟ߲݂߲)

(5.16) 

The flame front function defined in [38] is of the form ȟf = ȟf (0,Ĳ) – f (Ș,Ĳ), whereas [17] 

employs ȟf = ȟf (0,Ĳ) + f (Ș,Ĳ). Observing differences in sign convention, it seems necessary and 

convenient to do a sign correction for consistence with the present formulation, namely f -f as: 

 ߲݂߲� = �ݓ− + [ͳ + ଶ]ଵ/ଶ(ߟ߲݂߲−) − ߳ (−߲ଶ݂߲ߟଶ + ߲߲� [ͳ +  ଶ]ଵ/ଶ). (5.17)(ߟ߲݂߲−)

Following the present condition of a strongly inclined front, that is (∂f / ∂Ș) >> 1, one can ignore 

the unity terms in the N term. Hence, Eq. (5.17) takes the form 
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 ߲݂߲� = �ݓ− + |ߟ߲݂߲| − ߳ ቆ−߲ଶ݂߲ߟଶ + ߲߲�  ቇ. (5.18)|ߟ߲݂߲|

5.2.3. Reference frame correction 

Exploiting the symmetry of the problem, one can consider the domain ߟ > Ͳ, where (∂f / 

∂Ș) < 0. Hence, Eq. (5.18) becomes 

 −߲݂߲� = �ݓ + ߟ߲݂߲ − ߳ ቆ߲ଶ݂߲ߟଶ + ߲ଶ݂߲�߲ߟቇ. (5.19) 

Note that, Eq. (5.19) describes the motion of the flame front within the reference frame 

attached to the flame itself, as it is constructed in [38]. To switch to the laboratory reference 

frame, as to be similar to [17], one needs to modify the velocity term. Namely, the velocity 

should be modified as ݓ� = ,ሺͲ�ݓ �ሻ − �ݓ + ͳ. One can therefore rewrite Eq. (5.19) as 

 −߲݂߲� = ,ሺͲ�ݓ �ሻ − �ݓ + ߟ߲݂߲ − ߳ ቆ߲ଶ݂߲ߟଶ + ߲ଶ݂߲�߲ߟቇ, (5.20) 

where the unity term in the corrected velocity term is again ignored due to the dominant slope 

term. 

5.2.4. Curvature term correction 

Another necessary correction is related to the term corresponding to the curvature effects in 

Eq. (5.20), namely ߲ଶ݂ ⁄ଶߟ߲ . Considering a typical function f (x) = y, the curvature can be 

defined as � = |′′ݕ| ሺͳ + ሺݕ′ሻଶሻଷ/ଶ⁄ . In [38], it was assumed that the slope along the flame tip is 

quite small compared to the unity, namely (∂f/∂Ș) << 1. Therefore, the curvature is approximated 

by � ≅  which is the curvature term in Eq. (5.14), and hence present in the modified ,|′′ݕ|

evolution equation, Eq. (5.20). However, the reciprocal assumption is undertaken in [17], which 

deals with a strong distortion in the flame tip, namely (∂f/∂Ș) >> 1. Thus, the curvature becomes � ≅ |′′ݕ| ሺݕ′ሻଷ⁄ . Substituting the latter approximate curvature term into Eq. (5.20), one attains 

the final form of the modified evolution equation, where the flame thickness effects are 

incorporated through correction terms: 

 −߲݂߲� = ,ሺͲ�ݓ �ሻ − �ݓ + ݂′ − ߳ ቆ ݂′′ሺ݂′ሻଷ + ߲߲� ݂′ቇ, (5.21) 

or, rearranging the terms 
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 − ߲߲� [݂ − ݂߳′] = ,ሺͲ�ݓ �ሻ − �ݓ + [݂′ − ߳ ݂′′ሺ݂′ሻଷ]. (5.22) 

It is observed that Eq. (5.22) is the counterpart of Eq. (5.2), i.e. ignoring the correction terms 

(when ߳ = Ͳ) Eq. (5.22) truncates back to Eq. (5.2). 

5.2.5. Solution for the modified flame evolution equation 

Equation (5.22) is strongly non-linear and it is challenging to split it into the spatial and 

time components. Recalling the present condition of a strongly inclined front, (∂f/∂Ș) >> 1, it is 

plausible to state that curvature effects are negligible. Hence Eq. (5.22) reduces to 

 − ߲߲� [݂ − ݂߳′] = ,ሺͲ�ݓ �ሻ − �ݓ + ݂′. (5.23) 

In order to define the velocity profile, one should quote the Navier-Stokes equation obeyed 

by the plane-parallel flow ahead of the flame front [17]: 

�߲�ݓ߲  = ߞ߲݌߲− + ͳܴ݁ ߲ଶߟ߲�ݓଶ , (5.24) 

where the pressure gradient is produced by the flame front along the scaled propagation 

direction, and density and pressure are scaled by ρf  and ρf Uf 
2
, respectively [17]. Within the 

approach of exponential regime for the flame acceleration, the solution for the velocity profile 

pushed by the flame yields [17]: 

�ݓ  = −ሺΘ − ͳሻ݂ሺͳ, �ሻ ሻߤℎሺݏ݋ܿ  − ሻߤℎሺݏ݋ሻܿߟߤℎሺݏ݋ܿ −  ሻ, (5.25)ߤℎሺ݊�ݏଵ−ߤ

where ߤ = √�ܴ݁. Similar to Eq. (2.3), a solution in the form of exponential acceleration in time 

is desired, namely 

 ݂ሺߟ, �ሻ = [Φ଴ሺߟሻ + ߳Φଵሺߟሻ]݁݌ݔሺ��ሻ, (5.26) 

where the acceleration rate incorporating a small but finite flame thickness is defined to the first 

order correction as � = �଴ + ߳�ଵ. Substituting Eq. (5.26) into Eq. (5.25), then Eq. (5.24); and 

then separating the zeroth and first order terms with respect to the correction factor, ߳, one 

obtains the following differential equations for terms with, and without ߳, respectively: 

 Φ଴′ = −�଴Φ଴ + ሺΘ − ͳሻΦ଴ሺͳሻ ሻߟߤℎሺݏ݋ܿ − ͳܿݏ݋ℎሺߤሻ −  ሻ, (5.27)ߤℎሺ݊�ݏଵ−ߤ



44 

  

 Φଵ′ = −�ଵΦ଴ − �଴ሺΦଵ − Φ଴′ሻ + ሺΘ − ͳሻΦଵሺͳሻ ሻߟߤℎሺݏ݋ܿ − ͳܿݏ݋ℎሺߤሻ −  ሻ. (5.28)ߤℎሺ݊�ݏଵ−ߤ

Equation (5.27) yields the zeroth order flame shape function as 

 Φ଴ሺߟሻ = ሺΘ − ͳሻΦ଴ሺͳሻ݁݌ݔሺ−�଴ߟሻܿݏ݋ℎሺߤሻ − ሻߤℎሺ݊�ݏଵ−ߤ ሻ′ߟߤℎሺݏ݋ܿ]∫ − ͳ]݁݌ݔሺ�଴ߟ′ሻ݀ߟ′�
଴ , (5.29) 

which can be integrated as 

 Φ଴ሺߟሻ = ሺΘ − ͳሻΦ଴ሺͳሻܿݏ݋ℎሺߤሻ − ሻߤℎሺ݊�ݏଵ−ߤ [ ߤሻʹሺߟߤሺ݌ݔ݁ + �଴ሻ − ߤሻʹሺߟߤ−ሺ݌ݔ݁ − �଴ሻ + ଶߤଶߤ − �଴ଶ −ሻ�଴ߟሺ−�଴݌ݔ݁ ͳ�଴], (5.30) 

for the region where Ș > 0, which is already found in [17]. Then, the zeroth order acceleration 

rate could be found by exploiting the condition Φ଴ሺߟሻ = Φ଴ሺͳሻ for ߟ = ͳ 

 �଴ = ሺܴ݁ − ͳሻଶͶܴ݁ ቌ√ͳ + Ͷܴ݁Θሺܴ݁ − ͳሻଶ − ͳቍଶ, (5.31) 

in the limit of large thermal expansion leading to µ  >> 1. Obviously, Eq. (5.31) is identical to Eq. 

(5.4), as expected, since the same methodology of [17] is followed. In a similar manner, 

following a similar approach to integrate Eq. (5.28) results in the first order flame shape 

function: 

 Φଵሺߟሻ = Φ଴ሺͳሻܣ}ܥ +  Φଵሺͳሻ}, (5.32)ܤ

where the parameters A, B, and C are defined as 

 Ȝ = ሻ{�଴ଷߟߤ−ሺ݌ݔ݁ − ଴ସ�ߟ + ଴ଶ�ߤ − ଴ଷ�ߤߟ − ଴ଶ�ଵ�ߟ − +{଴�ଵ�ߤߟ ሻ{�଴ଷߟߤሺ݌ݔ݁ − ଴ସ�ߟ − ଴ଶ�ߤ + ଴ଷ�ߤߟ − ଴ଶ�ଵ�ߟ + +{଴�ଵ�ߤߟ ଶ�଴ଶߤߟʹ}ሻߟሺ−�଴݌ݔ݁ − ଶ�଴ߤʹ + {ଶ�ଵߤߟʹ − ʹ�଴ଷ + −଴ସ�ߟʹ ଶ�ଵߤߟʹ + ଴ଶ�ଵ�ߟʹ − ଶ�଴ଶߤߟʹ +  ଶ�଴ , (5.33a)ߤʹ

 ȝ = ሻ{�଴ଶߟߤ−ሺ݌ݔ݁ + {଴�ߤ + ሻ{�଴ଶߟߤሺ݌ݔ݁ − {଴�ߤ − ሻߟଶ[expሺ−�଴ߤʹ + ͳ]− ʹ�଴ଶ. (5.33b) 

ܥ  = ሺΘ − ͳሻ ʹ�଴ሺߤଶ − �଴ଶሻܿݏ݋ℎሺߤሻ − ⁄ሻߤℎሺ݊�ݏଵ−ߤ . (5.33c) 
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Likewise, the boundary conditions are applied as Φଵሺߟሻ = Φଵሺͳሻ for ߟ = ͳ, and Φଵሺߟሻ = Ͳ for ߟ = Ͳ, which yields the first order correction to the overall acceleration rate in terms of ı0: 

 

�ଵ = {  
  �଴ସ ሺΘߤʹ−] − ͳሻ݁݌ݔሺߤ + �଴ሻ + ሺߤΘ + ͳሻ݁݌ݔሺ�଴ሻ+ሺߤΘ − ͳሻ݁݌ݔሺʹߤ + �଴ሻ ]−�଴ଷ[ʹߤଶሺΘ − ͳሻݏ�݊ℎሺߤሻ݁݌ݔሺߤ + �଴ሻ]+�଴ଶ [ ଷሺΘߤʹ− − ͳሻ݁݌ݔሺߤሻ − ߤሺ݌ݔሻ݁ߤℎሺݏ݋ଷܿߤʹ + �଴ሻ+ʹߤଶݏ�݊ℎሺߤሻ݁݌ݔሺߤ + �଴ሻ + ଷሺΘߤʹ − ͳሻ݁݌ݔሺߤ + �଴ሻ]}  

  

{�଴ଶ[ʹߤሺΘ − ͳሻ݁݌ݔሺߤ + �଴ሻ − ሺΘߤʹ − ͳሻܿݏ݋ℎሺߤሻ݁݌ݔሺߤ + �଴ሻ]+�଴[ʹߤଶሺΘ − ͳሻݏ�݊ℎሺߤሻ݁݌ݔሺߤ + �଴ሻ]−ͶߤଷሺΘ − ͳሻݏ�݊ℎ ቀ�଴ʹቁ ݌ݔ݁ ቀߤ + �଴ʹቁ }. 
 

 

 

 

 

(5.34) 

The last consideration would be about the fate of µ  terms, which could be further 

simplified. It is observed that 

ߤ  = √�ܴ݁ = √ሺ�଴ + ߳�ଵሻܴ݁ = √(ͳ − ߳ �ଵ�଴) �଴ܴ݁.  

(5.35) 

Now, let us check how ߳ �ଵ �଴⁄  term compares with respect to the unity. Recalling the definition ߳ = ݇ܯߜ = ݇ܯ ௙ܮ ܴ⁄ , let us also consider the definitions for the Reynolds and Prandtl numbers, ܴ݁ = ௙ܷܴ ⁄ߥ  and ܲݎ = ߥ ⁄௧ℎܦ , respectively. Using these relations, one can obtain ܴ݁ =
௙ܷܴ ⁄௧ℎܦݎܲ , or rearranging the terms, one gets: 

௧ℎܦ  ௙ܷܴ⁄ = ͳ ⁄ܴ݁ݎܲ . (5.36) 

Observe that, the flame thickness is defined as the ratio of thermal diffusion rate Dth and planar 

flame speed Uf, namely ܮ௙ = ௧ℎܦ ௙ܷ⁄ . Substituting this definition into Eq. (5.36), one obtains ܮ௙ ܴ⁄ = ͳ ⁄ܴ݁ݎܲ . Therefore, the correction factor becomes 

 ߳ = ݇ܯ ⁄ܴ݁ݎܲ . (5.37) 

Hence, using Eqs (5.31), (5.34), and (5.37), ߳ �ଵ �଴⁄  terms can be calculated, whose trend could 

be seen in Fig. 5.7, and picked values are shown in Table 5.1. It is evident that these values 

become significantly small for Re > 10, therefore it is plausible to use the approximation ߤ ≅ √�଴ܴ݁, and substitute it into Eq. (5.34). Overall, the model equation for the total 

acceleration rate is hereby developed, which incorporates the internal flame structure as the first 

order correction term, recalled as follows: 
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 � = �଴ + ߳�ଵ, (5.38) 

where the correction factor is given by Eq. (5.37).  

 

 
Figure 5.6:   Exponential flame acceleration rate � versus the Reynolds number for various fixed Lewis number 

values of simulation data. Same configuration of model equation (5.38) fitted in order to be compared to the 

simulation data. 

Here, it is needed to introduce ݇ܯ௘௙௙ due to likewise reasons as discussed in Section 5.1. Hence, 

the correction factor is modified as ߳ = ௘௙௙݇ܯ ⁄ܴ݁ݎܲ ,     (5.39) 

where the ݇ܯ௘௙௙ is given by Eq. (5.13). An extensive plot of this model equation is shown in 

Fig. 5.6, where the simulation data is compared to the theory for various Le cases. The 

phenomenological constants of the effective Markstein number are likewise set to Ȟ = Ͳ.ͲͲͳ and 

n = 5.5. Similarly, the theory provides qualitative agreement with numerical results, especially 

for higher Le cases where flame thickening occurs. 
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Re 5 10 15 20 25 30 35 |� �૚ �૙⁄ | 0.317 0.121 0.068 0.045 0.032 0.025 0.020 

Table 5.1:  Term ߳ �ଵ �଴⁄  in Eq. (33) for varying Re number. 

 
Figure 5.7:   Term ߳ �ଵ �଴⁄  versus Reynolds number. Apparent that the term could be conventionally neglected at 

least for Re > 10. 
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Chapter 6: Summary and Conclusions 

This work hereby presents the analytical formulations and numerical simulation results of Mk-Le 

interplay effects on the flame acceleration scenario. Firstly, the coupling mechanisms in the Ze-

Le-Θ parametric space are investigated, where the threshold values are observed addressing the 

diffusive flame properties. Hence, the conditions for the flame stability for the DT instability are 

defined in terms of the critical parametric space formed by MkC, ZeC, EA,C, and LeC numbers. 

These results indicate that trough formation on the flame front due to the diffusive properties 

might be indeed the result of DT instability, and dissipation of such trough effects in the long run 

as shown by simulations is verified via the DT stability conditions, where the flame front is 

absolutely stable for given parameters. 

 While the previous numerical simulation on the topic was done only on the equidiffusive 

flames, i.e. Le = 1, this work presents the direct numerical simulations of the hydrodynamic 

combustion equations including transport processes and chemical kinetics for non-equidiffusive 

flames (Le ≠ 1), in order to observe the effects of internal diffusive properties on the flame 

acceleration scenario in a deeper manner. First, the effects of Le number on the flame 

acceleration are observed, with the acceleration rates for various Le-Re combinations compared 

to each other. The numerical simulation data are also compared to the previous theory and 

simulation results, and it is shown that a higher Le number increases the flame thickness, hence 

reducing the flame acceleration in narrow tubes. Then, it is also demonstrated that Le has unique 

effects on the morphology of flame front. Namely, if Le is less then a critical value, Le < LeC, 

flame propagation undergoes a variety of stages, which substantially increase the burning and 

acceleration rates through crest and trough formations. Simulations yielded enough evidence that 

such crest and trough formations disappear after some time in the Re = 10 – 35 range, and the 

flame front once again acquires a globally convex shape until it triggers a DDT. Nonetheless, by 

undergoing the “trough instability” stages (at Le < LeC), the flame acceleration is increased due 

to a larger flame surface area and total burning rate, since the morphological deformations yield 

bifurcation/channeling effects. Hence, it may facilitate a potential DDT scenario in quite shorter 

time periods. Overall, non-equidiffussive effects are promoted at lower Le, and larger channel 

width.  
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 On the other hand, the effects of internal flame structure on flame acceleration scenario are 

scrutinized from an analytical perspective. One may recall that previous analytic models were 

done with the Landau limit of zero flame thickness approximation. However, the corrective 

analytical formulae are hereby derived which incorporate internal flame structure parameters. 

The present new theory shows qualitative agreement with previous theory and simulation results 

[17], hence it is successful in describing the internal flame structure effects that appears at low 

Re values. These corrections moderate fast otherwise (i.e. when Re increases), which indicates 

that the internal flame structure effects do not change the qualitative scenario of the flame 

acceleration.  

 Moreover, the results of both numerical simulation data and theoretical predictions on the 

effects of Le number on flame acceleration are combined. The theory is proved to be successful 

in describing the flame thickening effect which manifests itself as a reduction in flame 

acceleration at lower Re values. Overall, despite quantitative differences ,it is demonstrated that a 

qualitative harmony exists between computational and analytical results on the theory of non-

equidiffusive flames. 

 

Figure 6.1:   Images of various flame propagation modes for equivalence ratio values Φ = 0.8, 0.9, 1.1, 1.2, and 1.3, 

as well as flow velocity values u = 0.23, 0.45, 0.65, 0.75, 0.90, and 0.95 m/s. [49] 
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 A final remark would be on the possible practical applications of this study. Namely, the 

reader may ask how “non-equidiffusivity” or “finite-thickness” effects manifest themselves in 

experimental setups or nature. Certainly, there are various scenarios where one encounters non-

equidiffusive combustion, especially when flow velocities and equivalence ratios are considered 

within a wide range. One such study has been conducted by Khandelwal and Kumar [49] for 

premixed methane-air mixtures, where the flow velocity and equivalence ratio effects on the 

flame morphology and dynamics were scrutinized. Figure (6.1) shows some pictures from their 

experiments for various cases. As the equivalence ratio is varied, the Lewis number of the 

premixed mixture changes, hence one observes similar morphological changes (e.g. channeling) 

as we described in this study.  

 Another similar study has been conducted by Bedat and Cheng [50], where they 

experimentally observed the morphology and dynamics of various fuel mixtures. The OH planar 

laser-induced fluorescence (PLIF) measurements taken for propane, methane, and hydrogen 

mixtures using a swirl burner are shown in Fig. (6.2). Each mixtures having different Lewis and 

Markstein numbers thus behave differently against the curvature and diffusional-thermal effects. 

Hence, the flamefront is observed to acquire a fractal cellular structure which might be stable or 

unstable under certain conditions depending on the Lewis number.  

 For further remarks on the coupled hydrodynamic and diffusional-thermal instabilities, the 

reader is encouraged to see the [51], where the effects of sub-unity Lewis numbers on flame 

morphology and stability are discussed further. 

 

Figure 6.2:   Experimental OH PLIF measurements for propane, methane, and hydrogen mixtures. The image 

widths correspond to 3 cm. [50] 
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