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AABBSSTTRRAACCTT  

THERMAL ANALYSIS OF TILTED ROOFS COMPOSED 
OF TWO SEPARATED SURFACES 

 
                         Orlando J. Ugarte-Almeyda 
 
Due to the rising power costs and lack of nonrenewable energy sources, the 

cooling of houses is becoming more expensive. Looking for alternative methods 

applicable to this process is becoming not only an option, but also a necessity. Changes in 

the roof structure of buildings can be applied in order to achieve a more favorable 

thermal transmission behavior. The utilization of a tilted roof, composed of two separated 

surfaces, generates natural convection currents in the channel between them. These 

currents, after driving off part of the transferred heat, decrease the temperature of the 

lower surfaces and consequently, the heat flux through the ceiling into the living areas.  

The natural convection phenomenon is treated by numerical means, and the 

influence of the dimensions of the proposed design on the ventilation rates is analyzed in 

order to determine the most efficient geometry. The comparison of thermal performances 

between the proposed roof and a typical unventilated design is also established in order to 

realize the quantitative advantage of the proposed model. 

Results show that the separation between surfaces strongly influences the process 

within certain values; i.e. a reduction in the heat flux through the ceiling achieved by the 

system of 32.9% can be raised to 45.4% by increasing the width of the channel from 

0.05m to 0.15m, and keeping the other dimensions constant. Moreover, higher tilt angles 

also improve natural ventilation rates. For example, a 32.8% reduction obtained by the 

system at a 30 degree tilt angle grows up to 41.6% by raising the tilt angle to 65 degrees.  

A vertical extension or exhaust channel on the top increases the reduction of heat flux 

too, but with less intensity. In this sense, the heat flux reduction achieved by the system, 

when the vertical exhaust length is 12.5% of the length of the roof , increases from 32.9% 

to 45.5% when a considerably bigger vertical extension is used, 60% of the roof length. 
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CChhaapptteerr    11  IInnttrroodduuccttiioonn  

Fossil fuels and other nonrenewable and renewable sources of energy are used 

worldwide for thermal comfort. Even with the rising costs that they have been 

experiencing in recent years, environmental conditioning is desired and in some places, 

absolutely needed. In addition, their applications are pulled by the growing construction 

business. Historically, protection against harsh environmental conditions has forced 

human beings to search for places and mechanisms that can provide them with some 

thermal comfort. However, while heating was developed, even in the old days by open 

fire or primitive chimneys, cooling systems took extra time to appear, since no quick way 

to produce ‘coolness’ was available. With time, several devices were developed 

providing additional thermal comfort conditions. Actually, not only a comfortable heating 

and cooling level is regulated by current air-conditioning systems, but humidity, 

cleanness and deodorization levels are controlled as well. 

Conditions which let the body feel comfortable have been investigated 

extensively, being found to be at temperatures from 73oF to 80oF (considering clothed 

people resting or doing light work), relative humidity in the range of 30 to 70 percent 

(being 50 percent the most desirable level) and air velocity below 9 m/min in winter and 

15 m/min in summer to minimize discomfort caused by a draft [1]. These rates are 

considered the indoor conditions for thermal comfort. The weather, which in some 

locations varies greatly from month to month and even from hour to hour, is the outdoor 
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condition which, in addition to the indoor condition, constitutes the parameters used for 

the air-conditioning system design.  

Temperatures in buildings are affected by different sources: heat gained by lights, 

appliances and people; heat transferred through the walls and roofs; and heat loss to the 

basement. The heat gained and lost strongly affect the energy spending in dwellings, as 

seen in Figure 1 [2], where the higher consumptions are at the hottest months(July and 

August) and the coolest months (December and January). 

 

 

 

 

 

 

 

 

Figure 1. Energy consumption in the last three years in the United States 

 

Natural ventilation is the process by which air is supplied and removed from 

enclosures by natural means. It has been applied for centuries in the construction of 

buildings, often constituting the motivation of many geometries and styles. Similarly, the 

phenomenon has been enhanced in dwellings by applying changes at different parts of the 

structure, such as roofs, walls, floors or basements, in one-story and even in multi-story 

buildings.  
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The aim of this study is to analyze the geometric conditions under which an 

innovative naturally ventilated roof will minimize the heat load into the building in 

summer. The roof is composed of two parallel surfaces, separated from each other 

forming a channel in line with the angle of the roof. During warm temperature conditions, 

the air in the channel is heated, producing natural convection currents. This flow drives 

off part of the heat transferred through the upper surface. After setting the appropriate 

governing equations, numerical methods are used to find the thermal response of the 

proposed design. A comparison of the results with those obtained by current roofs, 

similarly tilted, illustrates how valuable this new design could be. 

The objective of this research is to use natural convection for the reduction of 

energy consumption of air conditioning systems in summer. The proposed roof design is 

applicable in most houses, where tilted roofs are typically used to deal with rain and 

snow. Due to the transferred heat, the temperature inside the dwelling should be expected 

to be greater than the temperature outside; then, the necessity of extra ventilation will 

depend on the weather conditions. Likewise, the benefits analyzed are only related to 

summer conditions; the behavior of this roof in winter has not been evaluated.  

The treatment of the problem is shown in four sections; chapter two shows 

familiarization with current information about induced ventilation and its applications 

through the literature review. In Chapter three, the research methodology used along the 

problem solution is established and described. Chapter four shows the results and 

discussion of the solution data, and finally Chapters five and six present the conclusions 

and recommendations for future work, respectively. 
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CChhaapptteerr    22  LLiitteerraattuurree  RReevviieeww  

This chapter presents a brief review of studies and applications related to the topic 

of this research. The discussion begins with the phenomenological statement of the 

problem, followed by the analysis of one-cavity enclosures and multiple-partition 

enclosures of different shapes. The relation with dwelling designs is initially mentioned 

at the two floor enclosure case, where the radiation effect of a heater is observed. 

Combined effects of natural convection and radiation over the external surfaces of 

buildings are shown through the analysis of solar roof collectors, attics and double skin 

roofs, being the latter the closest model to that proposed in this work. In the last part, a 

natural ventilation system proposed for a multi-story building is studied, concluding with 

some examples of applications and patents introduced in fields other than buildings, such 

as electronics, automotive, etc. 

Natural ventilation is based on buoyancy forces [3] and consequently in buoyancy 

flows. These flows have challenging physical and mathematical problems with the 

coupling of elements such as the transport phenomenon, boundary-layers, core flows, 

interaction between the flow and driven force and the occurrence of flow sub-regions.  

The behavior of air in heated, ventilated enclosures was treated by Dubovsky et 

al. [4]. In this study, two general cases were analyzed: an open and a closed box, both 

heated by a horizontal downward-facing hot plate. By using experimental and numerical 

methods at transient and steady states, it was found that the natural convection at the open 
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case reduces the temperature inside the box. Three different positions for the entrance to 

the open box were considered: top, middle and bottom, where the most effective was the 

bottom. Nishimura et al. [5] conducted a laminar natural convection study in rectangular 

enclosures with multiple vertical partitions, showing that, in the boundary layer regime, 

the partition temperature increases almost linearly in the vertical direction. Moreover, the 

Nusselt number was inversely proportional to the number of partitions.  

Since most attics represent triangular enclosures, natural convection is important 

in this geometry. Poulikakos and Bejan [6] analyzed the fluid dynamics of a triangular 

enclosure composed of a cold upper wall and a warm horizontal bottom wall. Transient 

(beginning with the sudden cooling of the upper wall) and steady-state circulation flow 

patterns and temperature fields were presented, the latter by an asymptotic analysis. Flack 

et al. [7] studied the thermal response of an isosceles triangular enclosure composed by 

two isothermal sides and an insulated bottom; where experimental data was obtained. 

Later, Flack et al. [8] theoretically predicted the velocities of the flow field in a triangular 

enclosure, previously studied, in order to elucidate heat transfer correlations. 

Combined surface radiation and free convection was investigated by Balaji and 

Venkateshan [9], considering an enclosure occupied by air. Their study showed that when 

radiation is added to the system, an offset to the reduction on convective heat transfer 

along the cavity occurs. Behnia et al. [10] studied numerically this combined effect in a 

rectangular, two-dimensional enclosure full of a nonparticipating fluid. The flow pattern 

and heat transfer were investigated in the cavity, the terminal temperature difference was 

130oC and the Rayleigh number values were between 104 and 3x105.  
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The air not only can be treated as a natural ventilation medium, but can also act, 

under certain conditions, as a natural insulation medium. For example, referring to 

‘environmentally friendly houses’, vertically perforated bricks were developed to reduce 

the need for insulating materials in walls [11]; the vertical direction reduces convection in 

this zone, limiting heat transfer through the wall considerably. 

Induced ventilation has been applied at different building parts, considering the 

sun or common heaters as heat sources in rooms and over surfaces, such as walls and 

roofs. Ergin [12] investigated the surface thermal response of a heated two-floor 

enclosure. The system was composed of two floors connected via a stairway; the room 

had a heater in which two different input rates of 300W and 600W were applied. Open 

and closed enclosures were analyzed. The investigation concluded that the through-flow 

effect on the wall is mainly done by convection.  

Natural ventilation mechanisms applied to the external surfaces of the building 

have been developed according to concepts, such as the solar chimney effect, which lets 

the air move between heated surfaces. Bansal et al. [13] studied inclined solar chimneys 

by proposing a steady state mathematical model. After evaluating different ambient 

temperatures and solar radiation loads, they showed that a solar collector with area of 

2.25m2, inclined 30o with the horizontal, induced airflows between 140m3/h and 330m3/h 

for solar radiation values of 200W/m2 and 1000W/m2, respectively. Chen et al. [14] 

carried out an investigation by using an experimental solar chimney model with uniform 

heat flux. Different dimensions in the gap and height lengths were evaluated. In these 

studies, the geometry that allowed the maximum airflow was given by an inclination of 

45o, 200mm of gap and 1.5m chimney height. Aboulnaga and Abdrabboh [15] analyzed a 
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combined wall-roof solar chimney to improve night-time ventilation in buildings, 

reporting that this system can induce an airflow rate of 0.81m3/s at an average solar 

radiation of 850W/m2; in addition, the maximum airflow was 1.1m/s, obtained at 25o of 

inclination and 0.25m of separation between chimney plates. 

Mathur et al. [16] investigated an induced solar ventilation system and the 

variations produced by the inclination of the solar absorber on the airflow rate. The 

optimum absorber inclination varied from 40o to 60o for a maximum rate of ventilation.  

Moreover, solar collector systems have been proposed worldwide, e.g. Mathews [17], 

Lanyon [18], Pigg [19] and Stoll et al. [20]. 

Among the studies that consider the roof as part of the natural ventilation system, 

it is necessary to mention Asan and Namli [21] [22] who computationally solved a two 

dimensional, laminar natural convection problem of a roof with a triangular cross-section; 

considering summer and winter-day boundary conditions. Tzeng et al. [23] developed a 

numerical simulation-aided parameter for natural simulation in a roof of a triangular 

enclosure. Messick [24] patented a system for attic ventilation using spaced apart purlins 

and a ceiling sheathing, fixed to the top edge, providing plenum areas between the parts. 

In this study, vents and a fan draw air through the plenum areas, discharging it exteriorly. 

Thong et al. [25] introduced the analysis of a solar roof collector by modeling a 

heated wall over a two dimensional air gap, considering tilt angles between 15o and 55o 

and different air gap heights. The most practical incorporation of solar roof collector into 

a single story structure (in comparison for example with a Trombe Wall), plus the fact 

that this configuration is expected to collect more solar radiation without changing the 
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overall dwelling architecture, make this mechanism attractive in adaptability and 

efficiency.  

 Some combinations of components and techniques for supporting roofs have 

given excellent thermal characteristics. Miller et al. [26] observed a counter-batten 

construction which provides an air space between the exterior face of the roof sheathing 

and the underside of the roof cover. In this air pathway beneath the roof, the air, heated 

by solar irradiance, is moved up along it. This thermally induced airflow, termed above-

sheathing ventilation, was proposed as a method to remove unwanted heat and moisture 

from the roof deck, improving not only the roof thermal performance, but its durability. 

Miller et al. [27] developed an algorithm for predicting rates of airflow and heat flow 

induced by free convection, prevalent in roofs elevated from the roof deck. The 

validation of the routine was done against thermal field data for stone-coated metal roofs 

equipped with above-sheathing ventilation.   

Under-roof cavities where analyzed by Fracastoro et al. [28]. They proposed a 

model for steady-state thermal analysis of ventilated and unventilated light roofs, using 

air temperature distributions, surface temperatures, heat fluxes and air flow rates as 

output data. The algorithm had to be initialized with values near of the solution. Lacena-

Neildez [29] faced a one-dimensional numerical and experimental analysis of a double-

skin metal roof for warm countries. In this study, roof dimensions, slope and external 

wind velocity on the passive ventilation capacity was analyzed. Greater attention was put 

to the influence of surface emissivity, which was recognized as the major parameter for 

efficiency. 
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Biwole et al. [30], after examining a double-skin roof ventilated by natural 

convection in summer time, proposed the most important parameters in the efficiency of 

the system. In the order of importance these were the sheet metal surface emissivity, the 

screen internal and external surface emissivity, the insulation thickness and the 

inclination angle for a channel width over 6 cm. Discussions about the Rayleigh and 

Nusselt number were also presented.  

Chang et al. [31] experimentally evaluated the incorporation of a radiant barrier 

system in a double-skin roof and the energy savings achieved. Azevedo and Sparrow [32] 

established relations for the Nusselt and Rayleigh numbers, evaluating two differentially 

heated open-ended and tilted parallel plates dealing with angles from 45o to 90o. 

Concerned with more than one-story buildings, Letan et al. [33], and Letan et al. 

[34] considered the passive ventilation and heating of a multi-story structure by natural 

convection. Numerical and experimental investigations were carried out in the system 

composed of a five-story building and two metallic open ducts installed at each side, 

being only one of them heated by the sun. Natural ventilation is achieved in the warmer 

duct, and then conducted along the building by the ducts and every floor through ports. 

This system is also heated when the ducts are closed and the air coming from the warmer 

duct passed through the building by the same (now closed) circuit. Clearly, in both cases; 

the air stream is in contact with the interior and its occupants. 

In addition, devices such as electronic equipments (Ostrach [35]), car-roof (Link 

[36], Bird et al. [37]), mobile homes (Struben [38]), house trailers (Orter [39]), ISO 

containers shelters (Hartzell et al. [40]), food storages (Hansen [41]), vehicles (Wittrien 

[42]) or power transmission lines have been designed to facilitate natural ventilation. 
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 To conclude, this brief summary has shown the variety of applications that 

natural convection has had in different devices. In dwellings, the roof and walls are the 

most used surfaces because of their notable effect on the structure heat input. The 

proposed roof introduces the vertical extension of the channel, attempting to improve 

natural ventilation rates obtained so far in houses.  
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CChhaapptteerr    33  RReesseeaarrcchh  MMeetthhooddoollooggyy  

Considering the nature of the problem, a quantitative-qualitative perspective has 

been employed for the solution. In order to realize what key factors were involved, 

numerical values were obtained (quantitative) and evaluated according to their meaning 

and influence in the phenomenon (qualitative). This chapter covers a summary of the 

theoretical support, a description of the analyzed models, and an explanation of the 

strategy followed in the solution. 

The research took place in 2008, when perhaps one of the major concerns has 

been energy utilization and its impact on the environment. The analysis of the proposed 

roof involved the momentum and energy equations which have been treated by numerical 

methods and software packages. The material used was principally articles and books 

published in natural ventilation, heat transfer and fluid mechanics; reports on thermal 

behavior of current roof designs, bibliography on numerical methods and software 

packages such as MATLAB, Fluent and Gambit.    

The research process includes the evaluation under summer conditions of two 

roof designs: a typical tilted roof and a similarly tilted structure composed of two parallel 

surfaces. Both designs have an unventilated attic space between the roof and ceiling. 

Natural currents of air between surfaces are expected in the second model, ventilating the 

lower surface, in contact with the attic, and driving off part of the heat transferred from 

the outer surface. The possibility to reduce this heat flux into the dwelling and the 
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corresponding reduction in the air conditioning power consumption will be an indicator 

of the success of the proposed model. 

Information based on the thermal behavior of each model is necessary in order to 

measure the effectiveness (or not) of the proposed model. However, while the typical 

roof evaluation can be done through methods available for heat transfer in buildings, the 

proposed roof evaluation involves, in addition, a natural convection analysis and will be 

divided in the following steps. First, the description and establishing of the corresponding 

variables, assumptions, governing equations and boundary conditions involved in the 

problem. Second, the strategy to be used in Fluent is applied to similar natural convection 

cases, experimentally studied, in order to verify the accuracy of the method. Third, the 

problem is solved with the verified method, and finally in the fourth stage, the results are 

processed, looking for the most convenient values of the parameters analyzed. 

 

3.1 Principles applied in heating and cooling of building: an overview. 

The heating or cooling loads of a building correspond to the heat to be removed or 

supplied to the interior in order to keep it at the desirable thermal condition. The 

mechanisms at which heat loads are transferred to the building have multiple sources [1]. 

 

a) Heat gain from people, lights and appliances 

This heat comes from the conversion of electrical and chemical energy to heat. 

The average heat given off by a person varies depending on the activity, i.e. about 100 W 

for a resting person and more than 500 W for a physically active one. The lighting energy 
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consumption in office buildings is about 20 to 30 W/m2 of floor space. Furthermore, heat 

gain by a motor inside a room can be calculated by: 

motorusageloadmotortotalmotor ffWQ η/
.

,

.
××= ,  (3.1) 

where: 

motorW
.

: Power rating of the motor 

loadf : Load factor of the motor during operation 

usagef : Usage factor 

motorη : Motor efficiency 

 

b) Heat transfer through walls and roof 

At steady conditions, the rate of heat transfer through the roof and walls can be 

determined from: 

( ) ( )
R

TTATTUAQ oi
oi

−
=−=

.
.    (3.2) 

Here U is the overall heat transfer coefficient (U-factor), A  the heat transfer area, iT  and 

oT  are the indoor and outdoor air temperatures, and R  the overall unit thermal resistance 

(R-value). 

 

c) Heat loss from basement walls and floors 

If different regions are to be evaluated, through the below-grade section of a 

basement wall and through the basement floor; the heat loss in these zones are computed 

by:                                                                                                                                                                  
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( )surfacegroundbasementwallavewallwallsbasement TTAUQ −= ,

.
                                   (3.3) 

( )surfacegroundbasementfloorfloorfloorbasement TTAUQ −=
.

                                    (3.4) 

In this case:  

avewallU , : Average overall heat transfer coefficient between the basement 

wall and the surface of the ground 

floorU : Average overall heat transfer coefficient at the basement floor. 

The heat loss from floors, which are placed on the ground or slightly above, can be 

calculated by: 

( )outdoorindoorfloorgradegradeonfloor TTpUQ −=
.

,                                              (3.5) 

where gradeU  represents the rate of heat transfer from the slab per unit temperature 

difference between the indoor temperature, indoorT and the outdoor temperature, outdoorT  and 

per unit length of the perimeter floorp of the building. 

The heat loss through the floor of the building, when the crawl space temperature 

is known, can be calculated by: 

( )crawlindoorfloorfloorbuildingfloorbuilding TTAUQ −=
.

,                                       (3.6) 

where floorbuildingU is the overall heat transfer coefficient for the floor. 

 

d) Heat transfer through windows 

Three regions are considered in the heat transfer process through windows: the 

center-of-glass, the edge-of-glass, and the frame regions. After adding the heat 

transferred at each region, the total heat transfer is: 
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( )outdoorsindoorswindowwindowframeedgecenterwindow TTAUQQQQ −=++=
....

,                      (3.7) 

with windowU , the overall heat transfer coefficient of the window.   

 

e) Solar heat gain of the building 

It is given by the sum of the transmitted solar radiation and the portion of the 

absorbed radiation that flows indoors. The fraction of incidental solar radiation entering 

through the glazing is called the solar heat gain coefficient (SHGC), bringing the total 

heat gained by that window to: 

incidentsolarglazinggainsolar qASHGCQ ,

.

,

.
××= ,       (3.8) 

where glazingA is the glazing area of the window and incidentsolarq ,

.
, the solar heat flux 

incident on the outer surface of the window.  

 

f) Infiltration heat load and weatherizing 

Although it is uncontrolled, and represents a significant amount of energy loss, it 

is possible to account for it by the latent and sensible heat load; 

( )oiosensible TTVCpQ −=
.

inf,

.
ρ ,              (3.9) 

( )oifgolatent TTVhQ −=
.

inf,

.
ρ ,            (3.10) 

where oρ is the density of the outdoor air, pC  is the specific heat of air, 
.

V is the 

volumetric flow rate of air, and oi TT − is the temperature difference between the indoor 



 16

and outdoor air. Similarly, fgh is the latent heat of vaporization at the indoor temperature 

and oi ww − is the humidity ratio difference between the indoor and outdoor air. 

 

3.1.1 Sol-air temperature 

The influence of the sun over the earth can be appreciated by recalling that the 

deep space temperature is -270oC and the temperature on the planet would not be higher 

without this heat source. The outdoor temperature variation is governed by the incidental 

solar radiation and the thermal inertia of the earth, which regulates the solar energy stored 

in the ground, the atmospheric air, and the building structures during the day, and their 

slow release at night. In the designed cooling load of a building, solar radiation plays a 

major role, considering that the peak usually occurs early in the afternoon as a 

consequence of the solar energy gain through glazing and from walls and roofs by 

absorption, which is then released later in the day. 

The solar effect from the glazing, as was mentioned, can be accounted by the 

solar heat gain factor (SHGF). In opaque surfaces, such as roofs and walls, the solar 

energy can be conveniently accounted for by considering the outside temperature to be a 

higher amount, which provides the solar radiation effect. Applying this procedure in the 

heat transfer relations, the ambient temperature is replaced by a new sol-air temperature, 

which can be defined as the equivalent outdoor air temperature that gives the same rate of 

heat flow to a surface as would the combination of incident solar radiation, convection 

with the air, radiation exchange with the sky and the surrounding surfaces. 

Heat transfer over a building surface subjected to solar radiation can be calculated 

by: 
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correctionradiationsolarradconvsurface QQQQ
....

−+= +      (3.11) 

)()( 44
..

surrambientsolarssurfaceambientosurface TTAqATTAhQ −−+−= σεα ,  (3.12) 

where sα  is the solar absorptivity and ε  is the emissivity of the surface. The solar 

radiation incident on the surface is given by the second term on Equation 3.12. Moreover, 

the heat transfer coefficient ho represents the combined heat transfer coefficient for 

convection and radiation: 

radconvo hhh += .        (3.13) 

In equation (3.12), the first term represents the convection and radiation heat transfer to 

the surface when the average surrounding surface and sky temperature is equal to the 

ambient air temperature; the last term is the correction when these temperatures are 

different; similarly, the last term in the sol-air equation corresponds to this change (which 

ranges from 0 to 4oC) and basically occurs due to the low effective sky temperature, 

depending if the roof is horizontal or inclined. 

Defining the sol-air temperature as [1]:  

o

surrambient

o

solars
ambientairsol h

TT
h
qTT )( 44
.

−
−+=−
εσα

.    (3.14) 

After replacing Equation 3.14 in Equation 3.12, the heat flux over the surface is given by: 

)(
.

surfaceairsolosurface TTAhQ −= − .       (3.15) 

From Equation 3.14, the sol-air temperature depends on the absortivity of the surface, as 

shown in Section 3.3.3. Figure 2 shows how the radiation effect is accounted for by 

increasing the ambient temperature. 
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Figure 2. Effect of the sun-air temperature replacing the convection and 

radiation effect over the wall 

 

3.1.2 Heat transfer mechanism through walls 

Considering one-dimensional heat transfer through a simple or composite body, 

exposed to convection from both sides with mediums at temperatures 1∞T and 2∞T , the 

total energy transferred can be calculated [43] by: 

totalR
TTQ 21

.
∞∞ −

= ,               (3.16) 

where Rtotal is the total thermal resistance between the two mediums, and in this case is 

determined from: 

AhkAAh
RRRR convwallconvtotal

21

.

2,1,
111

++=++= .      (3.17)  

Figure 3 shows the thermal network method used in the last equation, which could be 

applied in walls consisting of two or more layers by adding the corresponding thermal 

resistances.  
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Figure 3. Thermal resistance networks through a plane wall 

 

3.1.3 Heat transfer through attics 

The thermal calculations of the attic depends on if it is ventilated or not. In the 

summer, the temperatures inside can approach the outside temperature (having a well 

vented attic), but it is still necessary to account for the heat radiation transferred to the 

ceiling from the roof. 

For unventilated attics, heat transfer occurs through the closed system composed 

by the ceiling, the attic space and the roof. In order to calculate the R-value of the roof-

ceiling system, it is necessary to combine the effects of the R-value of the ceiling, the R-

value of the roof, and the thermal resistance of the space. A practical approach for this is 

calculating first the R-value of the ceiling and roof separately, using resistance networks, 

and considering the still-air case for the attic surfaces. After that, the following relation 

expresses the overall R-value of the ceiling-roof combination per unit area of the ceiling 

[1]: 
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)(
.

roof

ceiling
roofceiling A

A
RRR += .       (3.18)  

The last term in Equation 3.18 illustrates the influence of the attic geometry in the R-

value of the system. 

 

3.2 Current roof model 

Figure 4 shows a typical tilted roof and a horizontal ceiling, containing an 

unventilated attic between them, frequently used to deal with rain and snow. 

 

Roof surface

Ceiling

 
Figure 4. Typical tilted roof 

 

The materials and corresponding R-values of the roof and the ceiling surfaces are 

shown in Tables 1 and 2 [1]: 
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Table 1. Roof components and R-Value 

  R-Value 
  mºC/W 
  Between At  
Layer no Construction studs studs 

1 Outside surface, 7.5mph wind 0.044 0.044
2 Asphalt shingle roofing 0.05 0.05
3 Building paper 0.011 0.011
4 Plywood deck, 1/2in 0.11 0.11
5a Non-reflective air space, 3.5in 0.17        - 
5b Wood stud, 2in by 4in          - 0.63
6 Gypsum wallboard, 0.5in 0.079 0.079
7 Inside surface, 45o slope, still air 0.142 0.142

 Total unit thermal resistance per section 0.606 1.066
 U factor per section 1.7 0.9
 Area fraction per section 0.75 0.25
 Overall U-factor 1.2 0.2
 Overall R-Value 0.68 
 

Table 2. Ceiling components and R-Value 

  R-Value 
  mºC/W 
  Between At  
Layer no Construction studs studs 

1 Outside surface, still air 0.16 0.16
2 Wood 25 mm 0.22 0.22
5a Nonreflective air space, 3.5 in 0.18        - 
5b Wood stud, 2 in by 4 in          - 0.98
6 Gypsum wallboard, 0.5 in 0.079 0.079
7 Inside surface, 45o slope, still air 0.16 0.16

 Total unit thermal resistance per section 0.799 1.599
 U factor per section 1.2 0.62
 Area fraction per section 0.9 0.1
 Overall U-factor 1.1 0.06
 Overall R-Value 0.84 
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The thermal resistance of the inner surfaces and the non-reflective air space varies 

with the slope angle. Despite that different angles were considered, this effect has been 

neglected since its influence in the overall R-value is around WCm /03.0 2± . The overall 

R-value were considering according to Equation 3.17.  

 

3.3 Proposed roof model 

3.3.1 Proposed roof description 

The double skin tilted roof, provided by a vertical extension, is shown in Figure 5. 

The materials selected are those of the previous model, considering the two upper 

surfaces made of the same material. 

 

Figure 5. Proposed roof model 

 

Then, the natural convection process, taking place in the channel between the roof 

and the surface, is added to the discussion.  

Roof surface

Ceiling
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3.3.2 Governing equations of the natural ventilation process 

 

The natural ventilation process 

Natural convection heat transfer occurs when fluid at rest or with very low 

velocity is in contact with a surface at different temperature; in that, heat is transferred by 

conduction throughout adjacent layers. When the surface temperature is greater than the 

surrounding temperature, heat fluxes from the solid to the fluid. At a constant pressure, 

density decreases as temperature increases and buoyancy forces move the fluid particles 

up along the plate. The motion is maintained by the continual replacement of the heated 

air in the vicinity of the wall by the cooler air nearby. 

 

Buoyancy force 

This force is placed in a gravitational field as a force that pushes a fluid in a body 

completely or partially immersed. It can be described as: 

bodyfluidbuoyancy gVF ρ= .        (3.19) 

In addition, the net force acting on a body relates to its weight:  

buoyancynet FWF −= .        (3.20) 

bodyfluidbodynet gVF )( ρρ −= .       (3.21) 

This relation, known as the Archimede’s principle, is proportional to the density 

difference of the fluid and the body immersed in it. In natural convection, this body-fluid 

relation is given by the lighter and the heavier fluid particles with their corresponding 

densities.  
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Volume expansion coefficient 

Since for this investigation temperatures are crucial, expressing the variables 

involved in the phenomenon in terms of temperature will be necessary. An important 

variable that relates density and temperature at a constant pressure is the volume 

expansion coefficientβ , defined as: 

pT
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

−=
ρ

ρ
β 1 .        (3.22) 

 

Boundary Layer equations 

The effect of the surface (i.e. a wall surrounded by air) producing fluid movement 

by warming it up is restricted to a thin region close to the wall, which thickness or 

‘thermal layer’ is limited to the distance from the wall at which the temperature has 

dropped to a certain percentage of the outer temperature (e.g. 1%). This thickness grows 

in the flow direction. Due to the natural convection motion, depending on the influence of 

the heated wall over the air, the fundamental equations that relate its behavior are the 

boundary layer equations [44]: 

0)()( =
∂
∂

+
∂
∂ v

y
u

x
ρρ ,       (3.23) 
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 In Figure 6, the velocity profile developed between two plates, heated by different 

loads, is shown. This profile follows the equations described above [45]. 

 

 
Figure 6. Velocity profile in the channel 

 

If statp  is the pressure obtained at a particular elevation in the channel, considering the 

temperature uniform at ∞T  through the flow field, thus; 

αρ sing
x

p
stat

stat −=
∂
∂ .          (3.26) 

Then, the body and pressure forces can be combined to get: 

αρραρ sin)(sin g
x
pg ∞−−=
∂
∂

−− , (3.27) 

where statρρ =∞  is related to the static field away from the wall at constant ∞T .  

Now, a crucial situation must be pointed out. Natural convection is based on the 

difference in densities present in the fluid (in this case air); it cannot occur at a constant 
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density, and being an effect of variable properties, the momentum and energy equation 

end up mutually coupling. Next, under only small temperatures differences between fluid 

and surface or small wall heat fluxes, the following approximation is valid [44]: 

...)()( +−−= ∞∞∞∞ TTT ρβρρ  (3.28) 

This is the density function expanded in a Taylor series, with ∞ρ and ∞β  evaluated at ∞T . 

Breaking off the series after the linear term, and combining with Equation 3.26, yields: 

αβραρ sin)(sin ∞∞∞ −=
∂
∂

−− TTg
x
pg . (3.29) 

Using other linear expansions, physical properties like viscosity can be approximated by: 

]1[)( υμμ μ
∞

∞
Δ

−=
T

TKT , (3.30) 

with
T
TT

Δ
−

= ∞ )(υ , and TΔ is a characteristic temperature difference. 

 

Boussinesq approximation 

This approximation considers the limiting case 0/ →Δ ∞TT  in Equation 3.29, 

reducing all physical properties to their values at ∞T . Density is evaluated at ∞T  as well, 

with the exception of the buoyancy force term where it is evaluated, according to 

Equation 3.26. Once more, this approximation would be accurate as long as changes in 

actual density are small, specifically when 1)( 0 <<−TTβ . 

 

Basic equations for natural convection in channels 

Finally, the basic equations for natural convection along the channel, according to 

the considerations developed above, are given by: 
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with ∞∞∞∞ = Cpa ρλ /  in Equation 3.32. Since velocities in natural convection flows are 

very small, the dissipation term ∞∞∞ ∂∂ Cpyu ρμ /)/( 2 has been neglected. These equations 

are applied to the vertical extension as well, with the corresponding value for 90=α . 

 

Grashof Number 

The natural convection flow regime can be assessed by the dimensionless Grashof 

number, which relates the buoyancy and viscous forces participating in the fluid: 

ρν
β

ρν
ρ TVgVg

forcesviscuos
forcesbuoyancyGr Δ

=
Δ

== 2 ,     (3.34) 

or commonly expressed as: 

2

3)(
ν

β LTTgGr W ∞−
= .        (3.35) 

where, 

WT : Temperature at the wall, 

∞T : Temperature of the free flow, and 

ν : Kinematic viscosity. 
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The role that the Grashof number plays in natural convection is similar to the 

Reynolds number in forced convection, providing the same criteria in determining 

whether the flow is laminar or turbulent. For example, considering vertical plates, the 

critical Grashof number is observed to be around 109, which means that for a Grashof 

number greater than this value, the flow regime becomes turbulent. 

 

Natural convection correlations 

Due to the complexities of the fluid motion in natural convection, solving the 

governing equations of motion and energy is very difficult. The analytical solutions that 

are known lack generality because they have been found under simplifying assumptions 

and applied for simple geometries, whereas most problems are studied by using 

experimental studies and correlations. From the simpler empirical correlations, the 

average Nusselt number is given [1] by: 

nn CRaGrC
k

hLNu === Pr)(       (3.36) 

where Ra, the Rayleigh number, is the product of the Grashof and Prandtl numbers [1]: 

Pr)(Pr 2

3

ν
β LTTgGrRa W ∞−

== ,       (3.37)  

The value of C and n depend on the geometry of the surface and the flow regime 

characterized by the Rayleigh number range, which usually determines laminar flow 

when less than 108, and transitions to turbulence between the range of 108 < Ra < 1010. 
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3.3.3 Fluent setting 

Fluent was used as the solver of the governing equations previously discussed; the 

geometry and physical characteristic of the systems were earlier defined in Gambit. 

 

Solver used 

The chosen solver was the Surface to Surface radiation model (S2S). Despite not 

having considered properties such as emissivity, absorptivity or reflectivity as variables 

in the problem, the radiation heat transfer should be accounted for the overall heat load 

inside cavities.  

 

Temperatures at the indoor and outdoors locations  

The indoor condition was given by a room temperature value of 298K. The 

outdoor conditions were the corresponding to the higher temperature on a typical day in 

summer at latitude 40, considering an absorptivity coefficient in the surface equal to 0.87. 

According to ASHRAE, Handbook of Fundamentals, Ref 46, Chap 26, Table 1, the sol-

air temperature and the ambient temperature under these conditions are 335K and 308K, 

respectively.  

 The sol-air temperature varies with the angle of inclination and throughout the 

day. In order to compare the thermal response of the roofs under similar conditions, a 

constant sol-air temperature was considered at every tilt angle; then the evaluation has 

not necessarily done at the same time of the day for all the cases.  
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Physical properties and dimensions 

The physical properties were, in the case of the fluid, average values of air at 

temperatures between 35oC and 65oC. Properties at the roof and ceiling surfaces were 

given according to the materials shown in Section 3.2. The geometric variables examined 

in this work are shown in Figure 7. 

e

L

H

 

Figure 7. Variables involved in the proposed roof construction 

The values of the variables shown above are summarized in Table 3.  

 

Table 3. Dimensions used for the different cases 

Tilt angle: α 30, 45, 60, 65 degrees 

Roof length: L 2m, 6m 

Roof width 1m 

Channel width: e 0.02m 0.05m, 0.08m, 0.10m, 011m, 0.13m, 0.14m, 0.15m, 
0.18 m 

Vertical extension: H 0.25m, 0.50m, 0.70m, 0.75m, 0.80m, 0.90m, 1m, 1.20m, 
1.5m, 2m, 2.3m  

Ceiling thickness 0.215m  

Roof/upperoof 
thickness 

0.15m  
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Different combinations of the mentioned variables determine the cases evaluated. 

The vertical extension is related to the roof length (L) according to the percentage which 

it represents on that; for example, at H=0.25m, and L=2m, the vertical extension is 12.5% 

of L. 

 

Boundary conditions 

 

Current roof: 

The boundary conditions of the current roof model were defined as follows: 

• Ceiling: convection heat transfer was specified in this zone. The heat transfer 

coefficient is the correspondence to still air above horizontal surfaces, with the 

heat flux going down, and according to ASHRAE, Handbook of Fundamentals, 

Ref 46, Chap 26, Table 1, it is equal to 6.13W/m2K. The free stream temperature 

as mentioned is 298K and the wall thickness, 0.215m. This thickness in 

conjunction with the material conductivity determines the R-value previously 

found in Section 3.2.  

• Roof: similar to the ceiling, convection heat transfer was considered in this 

region. The heat transfer coefficient at summer conditions for moving air is 

22.7W/m2K (ASHRAE, Handbook of Fundamentals, Ref 46, Chap 26, Table 1). 

The free stream temperature is given by the sol-air temperature, previously 

discussed, which equals 335K. The corresponding wall thickness is 0.15m. 
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Proposed roof: 

In this model, the boundary conditions were defined similarly to the current roof 

in the ceiling and the roof (here called the upper roof). The lower roof, inlet and outlet 

regions were considered as follows: 

• Lower roof: its value is coupled with the conditions specified. The corresponding 

R-value is obtained by considering a wall thickness equal to 0.15m. 

• Inlet and outlet: The pressure in these regions is atmospheric. Then according to: 

gxpp s ∞−= ρ'        (3.38) 

where ps is the ambient pressure, p’ must be zero. This variable, known as the gauge 

pressure, is recognized by Fluent as the boundary pressure condition [47]. 

 The boundary conditions applied at the different zones of the proposed roof model 

are graphically summarized in Figure 8: 

35
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Figure 8. Proposed roof model sketch used in Fluent 
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3.3.4 Thermodynamic analysis 

The First Law of the Thermodynamics establishes that the energy balance of a 

system at steady conditions and in absence of internal generation of energy is given by: 

outin EE =      (3.39) 

Figure 9 shows the mass flow along the channel and the heat flux over the system formed 

by the upper roof, lower roof and the ceiling. 
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Figure 9. Heat load over the roof-attic-ceiling system 

 

Since the channel is an open system, Equation 3.38 can be expressed as: 

342)21(51

.......

QQQmmQQ h =+=Δ+++     (3.40) 

where hΔ  is the difference of enthalpies between the outlet and inlets (both inlets are at 

the same temperature and pressure). Then, some of the heat load is driven off of the 

channel by the mass flow, and does not account for the attic-ceiling heat flux.   
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3.3.5 Validation 

The accuracy of the methodology employed in Fluent facing natural convection is 

contrasted with experiments where the phenomenon is treated under similar conditions. 

W. Aung et al. [45] conducted an investigation analyzing natural convection in 

open channels. They studied two walls at constant temperatures, different than each 

other, and made of aluminum plates with dimensions 7in. by 7in. and a thickness 0.5in. 

The hotter plate was heated using a water pool and the colder by circulating a water-oil 

mixture through a maze of grooves machined into the back of the plate. For visualization 

purposes, glass plates were clamped and sealed on the vertical edges of the isothermal 

plates. The channel widths were of six different lengths and varied from 0.18in to 0.75in. 

Despite the vertical position, which is not the orientation used in the proposed 

roof model, the comparison reflects the accuracy of the surface-to-surface radiation 

model (S2S) analyzing natural convection in channels. 

Two sets of experimental and numerical data are compared, the cases are 

specified by: 

Ratio of temperature: 
01

02

TT
TTrt −

−= ,       (3.41) 

Grashof: 2

4
01 )(

ν
β

l
bTTgGr −

= , and      (3.42)  

Rayleigh: GrRa ∗= Pr .       (3.43) 

 

Also, the dimensionless form of temperature and position along the channel are 

given by: 
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Theta: 
01

0

TT
TT

−
−=θ , and       (3.44) 

Position: 
b
yY = .        (3.45) 

Comparison of the theta function distributions in the exit obtained from 

experimental and numerical methods are shown in Figure 10. Experiment 1 considered a 

ratio of temperatures equal to 0.51 and a Raleigh number of 14.20, while Experiment 2 is 

specified by 0.6 and 2.57, respectively. The results obtained by the solver used in this 

investigation approximated that of the experimental data, with a less fluctuating behavior, 

then, the solver seems to be able to process natural ventilation along channels with 

reliability.  
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Figure 10. Comparison of data obtained from experimental and numerical 

methods 

 

This chapter has synthesized the theoretical background and how the chosen 

methodology was established. The evaluation of the particular influence of the variables 

considered in the system is shown in the next chapter.  
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CChhaapptteerr    44  RReessuullttss  aanndd  DDiissccuussssiioonn  

This chapter relates the behavior of the current roof model with the proposed 

model by comparing the thermal response to the conditions established. Since the heat 

flux through the ceiling determines the heat to be removed, the emphasis is given to this 

surface. 

4.1 Temperature distribution in the roof-ceiling system 

Comparisons of the temperatures reached in a typical roof (left side) and in the 

proposed roof (right side) for different tilt angles are shown in Figure 11, Figure 12 and 

Figure 13. In the proposed roof, a channel width of 0.05m and vertical extension of 

12.5% of the roof length (2m) were considered. 

  
 

Figure 11. Temperatures distribution in the attic, tilt angle 30o 
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Figure 12. Temperatures distribution in the attic, tilt angle 45o 

 

   
 

Figure 13. Temperatures distribution in the attic, tilt angle 60o 

 
Despite every external surface undergoes the same heat transfer mechanisms, 

under similar outdoor and indoor temperatures and even made of the same material, 

different values of temperature distribution are developed along them. For example, 

looking at the current roof designs, the lower values of the tilt angle, the higher 
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temperature in the exterior surface, and consequently in the ceiling surface. According to 

Equation 3.18, the R-value of the attic rises when the ratio of ceiling to roof area also 

increases. Since the roof area is constant in the three cases; the larger R-value is at 30o of 

inclination. The increment of the resistance reduces the temperatures of the surfaces, due 

to the outdoor and indoor temperatures are fixed.  

A sensible reduction in the temperature of the surfaces is appreciated when the 

current roof is provided with a natural ventilation system. The conditions under which it 

is possible to get a bigger reduction will be developed in the following sections. 

 

4.2 Velocity profiles in the channel exit 

Air is moved by buoyancy forces along the channel; the velocity magnitude of the 

flow at the inlet and outlet corresponding to a 0.05m width of channel, 12.5% of vertical 

extension (L=2m) and a 30o inclination is represented in Figure 14. 

 

   
 

Figure 14. Velocity vectors in the inlet (left) and outlet (right) 
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Here, the average velocity magnitude in the inlet and outlet zones is 8x10-3m/s 

and 2.35x10-2m/s respectively. The range of velocities is affected by the dimensions 

considered, i.e. at a vertical extension of 37.5% and 0.10m of channel width, the range of 

velocities goes from 2.64x10-2m/s at the inlet to 3.78 x10-2m/s at the outlet.  

Velocity profiles at different angles and channel widths are shown in Figure 15. 

The velocity magnitudes do not increase considerably at different tilt angles (left). 

Actually, the major difference is in shape and it is due to the exit length, which grows 

when the tilt angle does (channel exit length was built according to αsin2 e× ). On the 

right, increasing of the channel width enlarges the velocity profile. 
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Figure 15. Velocity profiles in the outlet 

 

Figure 16 shows the velocity profiles in the exit, considering L=2m. Here it is 

also appreciated how the velocity curves are smoother when the space between surfaces 

is bigger. The velocity profile is conditioned by the boundary layers adjacent to every 

heated wall and their superposition, since this is the region where the fluid particle 

acquires the energy to move. When the exit length is larger than 0.18m, the boundary 
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layers are far from each other, and the velocity magnitude decreases in the middle of the 

cavity, where the fluid particle is away from the thermal boundary region. 
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Figure 16. Velocity profiles in the exit, at L=2m 

 

The vertical extension also contributes to increasing the velocity magnitude. In 

Figure 17, the velocity profile increases with H, due to the acceleration that the fluid 

particle experiences along the cavity, influenced by the gravity. 
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Figure 17. Velocity profile in the exit under 45 tilt angles 
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The general shape of the velocity profiles is maintained at larger values of L but, 

as it could be expected, the velocity magnitude in this case is higher. Considering L=6m 

(Figure 18), the influence of the vertical extension and the channel width is similar to that 

obtained at the smaller value of L. 
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Figure 18. Velocity profiles in the exit at L=6m 

 

4.3 Mass flow in the channel 

The mass flow relates the velocity and density of the air along the channel. In 

Figure 19, the mass flow variation not only reflects the conditions influencing the 

velocity magnitudes. As before, it increases with the increment of the vertical extension 

and channel width, however, a sensible increment is appreciated when the tilt angle is 

larger. This effect was not achieved in the velocity profiles, then it is inferred that the 

density influence is clearly enhanced by the tilt angle.  
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Figure 19. Mass flow along different channels, L=2m 

 

4.4 Temperature of the ceiling 

4.4.1 Influence of the tilt angle 

The effect of the tilt angle is related to the R-value of the attic in the current roof 

model. In the natural ventilation system, the tilt angle also influences the buoyancy force 

magnitude, since it is related to the gravitational acceleration and the vertical direction in 

which it acts, then, the conditions for cooling are improved at higher angles of 

inclination. Figure 20 shows the temperature distribution along the ceiling and how the 

temperatures decrease in the proposed model in comparison with the current design at 

different inclinations.  

In addition, these temperature distributions show that the reduction gradient is 

steeper at the extremes. Radiation heat transfer is the mechanism that increases the 

temperature in the middle of the ceiling-roof enclosure, where due to their proximity; it 

should have been expected higher temperatures in the extremes as a consequence of heat 
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transferred by conduction and convection. The angle of inclination affects radiation by 

modifying the geometry of the attic, and consequently, the view factor of the enclosure. 

0 0.2 0.4 0.6 0.8 1 1.2 1.4
319.5

320

320.5

321

321.5

322

322.5

323

323.5

324

324.5

X

ce
ili

ng
 te

m
pe

ra
tu

re
[k

]

Current roof

 

 
angle:30
angle:45
angle:60

0 0.2 0.4 0.6 0.8 1 1.2 1.4
309

310

311

312

313

314

315

316

X
ce

ili
ng

 te
m

pe
ra

tu
re

[k
]

Vertical extension: 12.5%,width channel: 0.05m

 

 
angle:30
angle:45
angle:60

 
 

Figure 20. Temperature comparison in the ceiling at different tilt angles 

 
 

At 30o of inclination and 2m length of roof, the temperature decreases from 

320.12K to 312.82K, this represents a reduction of 2.28%. When higher angles are 

considered, this reduction is improved to 2.44% at 45o, and 2.59% at 60 o.  

In this figure, the ceiling length is determined by X, which is the ratio of the 

particular length, corresponding to the position evaluated, to the total ceiling length. This 

variable was introduced in order to evaluate the curves of temperature overlapping at 

different lengths of the ceiling, and will be used in most of the graphs associated with this 

surface. 

 

4.4.2 Influence of the width of the channel 

The width of channel has played a major role in the analysis completed so far, 

influencing greatly the velocity and mass flow, and consequently in the rates of reduction 
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of the temperatures. However, its powerful contribution is limited by the thermal 

boundary layer thickness. At values much bigger than this breadth, the natural ventilation 

effect could be considered only the obtained at the outer surface of the current roof 

model. Figure 21 shows the ceiling temperatures, when the channel width values vary 

from 0.05m to 0.15m, and length of roof equal to 2m. 
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Figure 21. Temperature distribution in the ceiling, different channel widths [m] 

 
 

The mean temperature reduction of the ceiling is considerable when the channel 

width is increased from 0.05m to 0.08m; however, it begins to be less evident when it 

approaches 0.15m. The limitation, mentioned previously, is shown in Figure 22, after 

0.15m, the mean temperature in the ceiling increases in 2K, after which it is kept constant 

through even larger distances between surfaces. When the thermal boundary layer of one 

surface does not influence the other, the upper roof approaches only the barrier effect 

over the lower roof. 



 45

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
310

312

314

316

318

320

322

channel width [m]

M
ea

n 
ce

ili
ng

 te
m

pe
ra

tu
re

[K
]

Mean temperatures in the ceiling at different channel widths

 
 

Figure 22. Mean temperature at the ceiling at different channel widths 

 
The minimum mean temperature in this curve is 310K and corresponds to 30o of 

inclination, 12.5% of vertical extension and 0.15m of channel width. It represents a 

reduction of 3.14% in the mean ceiling temperature.  

 

4.4.3 Influence of the vertical extensions 

The vertical extension is useful since it allows the channel to have part of it in the 

vertical position which is the more enhancing position for the buoyancy forces, as 

expressed by Equation 3.32. 

The effect of having a vertical extension in the upper part of the roof gains in 

importance at higher tilt angles, but this effect is less noticeable than that observed by 

increasing the channel width. Figure 23 shows the ceiling temperatures corresponding to 

different vertical extensions at two tilt angles.  
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Figure 23. Ceiling temperature at different vertical extensions 

 

Figure 24 shows an almost linear reduction of the temperature at various 

extensions, although this reduction is only about 1K per meter of extension. The L value 

considered was 2m. 
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Figure 24. Variation of the mean temperatures of the ceiling, at different vertical 

extensions 
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Figure 25 presents a direct comparison between the temperatures achieved after 

increasing the vertical extension and the channel width lengths. The roofs are 

characterized by L=6m and 45o of inclination.  
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Figure 25. Comparison of ceiling temperatures at different vertical extension and 

channel width lengths 

 
 

These graphs illustrate the conclusions arrived previously, while the mean 

temperature of the ceiling is slightly reduced by increasing the vertical extension, the 

increasing of the channel width within certain values enhances strongly this reduction. 

 

4.5 Heat flux through the ceiling 

The following curves summarize what the proposed roof can offer under the 

conditions studied.  
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Figure 26. Heat flux through the ceiling at different dimensions 

 

The influence of the variables analyzed reflects the previous results; higher tilt 

angles augment the reduction rates and enhances the vertical extension effect. Likewise, 

the influence of the channel width over the heat flux rates is considerable. Here it is 

important to mention that the larger roof area of the evaluated cases is obtained at 30o of 

inclination, consequently the heat flux is larger in this case and contrasts with its higher 

R-value. 

Another comparison between the effect of increasing the vertical extension and 

the channel width shows the magnitude of the reduction that these variables could 

achieve on the heat flux through the ceiling (Figure 27). The dimensions of the roofs 

considered in this case are L=6m and 45o tilt angle. 
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Figure 27. Comparison of ceiling heat fluxes at different vertical extension and 

channel width lengths 

Since the indoor temperature was considered the ideal for thermal comfort (75ºF), 

the heat flux entering the dwelling though the ceiling must be totally removed by the air 

conditioning system (among other heat loads), so that these figures are strongly related to 

the capacity of the system for potential consumption savings.  
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CChhaapptteerr    55  CCoonncclluussiioonnss  

The effect of a natural ventilation system on a typical dwelling roof has been 

investigated under summer conditions. Different geometries for the roof design were 

considered in addition to the constant outdoor and indoor conditions. The materials used 

were those that currently are employed for most roofs. The particular effects of these 

components have not been evaluated.  

Special emphasis was given to the changes observed in the ceiling temperature 

and the heat flux through this surface, since it constitutes the heat load entering into the 

interior of the building and which is necessary to be removed in order to keep the 

appropriate temperature for thermal comfort.  

The governing equations of the problem were solved by using the software 

package Fluent. Several combinations of the dimension values were set up in order to 

realize their influence in the phenomena. Experimental data was used to validate the 

procedure used to face natural convection. 

The increasing of the roof tilt angle improves the natural ventilation conditions 

according to the favorable orientation that it provides for the buoyancy forces. The 

vertical orientation constitutes the ideal position since it is aligned to the gravitational 

field action. The reduction of the mean temperature of the ceiling was conditioned by the 

radiation head load transferred, which parameters, such as emissivity and effective 

temperature are affected by the attic enclosure geometry. The reduction in the main 
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temperature obtained by a channel width equal to 0.05m and 12.5% of L in the vertical 

extension is 2.28% at 30 degrees, 2.45% at 45 degrees and 2.59% at 60 degrees. The 

reduction in the heat flux through the ceiling is 32.9% at 30 degrees, 33.3% at 45 degrees 

and 41.6% at 65 degrees. 

The effect of the width of the channel is important since the channel area 

influences the mass flow strongly. This length is conditioned by the boundary layer 

thickness, and has been observed that for values larger than 0.15m, the natural ventilation 

effect becomes weak. Also, the ratio of temperature reduction is higher around 0.08m. 

Keeping the tilt angle and vertical extension constant, a reduction in the mean 

temperature of the ceiling can be increased from 2.28% at 0.05m of width of channel to 

3.14% at 0.15m. Similarly, the heat flux reduction grows from 32.9% to 45.4% under the 

same increases in channel widths.  

The vertical extension on the upper roof allows the channel to have part of it in 

the desirable vertical position. The reduction obtained by increasing this extension has 

been observed to be linear, but at the same time much lower than that obtained by certain 

widths of channel. It is necessary to mention that the best rates of reduction in the ceiling 

heat flux obtained by increasing this length is seen at higher tilt angles.  Considering a tilt 

angle value equal to 65 degrees and 0.05m of channel width, the reduction in the heat 

flux into the living interior is 41.56% at 12.5% of vertical extension and 44.29% when 

this extension is 60% of the roof side length.  

In summary, the key factors involved in the geometry of the proposed roof are the 

width of the channel and the tilt angle, respectively. The vertical extension becomes more 
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helpful at higher tilt angles, but its benefit is less than that obtained by the mentioned 

dimensions. 
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CChhaapptteerr    66  RReeccoommmmeennddaattiioonnss  

Recognizing the importance of radiation heat transfer in the attic-roof system, the 

analysis of parameters such as emissivity, factor of view, reflectivity, etc. can be done in 

the proposed roof and other natural convection systems. 

In addition to the advantages shown in weight and durability by new materials, 

the thermal response when forming part of natural ventilation systems should be 

investigated. Not only in insulating materials used as barriers in the attic, but the material 

used for the internal and external surfaces. 

The adaptability of natural convection models to winter conditions is also 

recommended. Since the air possesses low conductivity, there is the possibility of, under 

certain design conditions; that this could act as an insulating material. 

A two dimensional analysis of the introduced system could provide a more 

realistic idea of the heat transfer behavior along the surfaces, since the temperature does 

not remain constant in space necessarily.  

A transient analysis of the introduced system must be considered in future work, 

in order to know the achievable overall power savings in a day. 
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