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Abstract

Fast, collaborative acquisition of multi-view face images using a camera network and its
impact on real-time human identification

by

Rohith Bakkannagari
Master of Science in Electrical Engineering

West Virginia University

Dr. Vinod Kulathumani, Ph.D., Chair

Biometric systems have been typically designed to operate under controlled environments
based on previously acquired photographs and videos. But recent terror attacks, security
threats and intrusion attempts have necessitated a transition to modern biometric systems
that can identify humans in real-time under unconstrained environments. Distributed cam-
era networks are appropriate for unconstrained scenarios because they can provide multiple
views of a scene, thus offering tolerance against variable pose of a human subject and possible
occlusions. In dynamic environments, the face images are continually arriving at the base
station with different quality, pose and resolution. Designing a fusion strategy poses signif-
icant challenges. Such a scenario demands that only the relevant information is processed
and the verdict (match / no match) regarding a particular subject is quickly (yet accurately)
released so that more number of subjects in the scene can be evaluated.

To address these, we designed a wireless data acquisition system that is capable of
acquiring multi-view faces accurately and at a rapid rate. The idea of epipolar geometry
is exploited to get high multi-view face detection rates. Face images are labeled to their
corresponding poses and are transmitted to the base station. To evaluate the impact of face
images acquired using our real-time face image acquisition system on the overall recognition
accuracy, we interface it with a face matching subsystem and thus create a prototype real-
time multi-view face recognition system. For front face matching, we use the commercial
PittPatt software. For non-frontal matching, we use a Local binary Pattern based classifier.
Matching scores obtained from both frontal and non-frontal face images are fused for final
classification. Our results show significant improvement in recognition accuracy, especially
when the front face images are of low resolution.
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Chapter 1

Introduction

1.1 Motivation

Face recognition systems have evolved into a reliable mechanism for establishing identity

of individuals and countering fraud. They find applications in access control, surveillance,

border security, smart cards etc. Face recognition systems have been traditionally designed

to operate in unconstrained scenarios. Most of the data processing and computation is done

offline that hinders the opportunity for real-time identification. However, there is a need to

operate face recognition systems in unconstrained scenarios and in real time. Recent terror

attacks, security threats, intrusion attempts and criminal activities have further stipulated

the need for such biometric systems.

Realizing such a system using a single camera suffers from several limitations. The system

is highly sensitive to small changes in pose and illumination. Further, the performance of the

system is marred significantly if the subject is not cooperative. If a person is occluded then

there is no way to detect that person and it provides coverage to a specific region. Multi-view

camera network, where each camera is capable of processing locally are designed to meet the

requirements. They can be deployed to provide coverage from different views of the scene,

thus providing tolerance against variable pose, poor illumination and possible occlusions. But

designing such a system poses several challenges. Video data is computationally intensive.

In order to be scalable and operate in real-time there is a tradeoff between local processing

and the computational burden at the central location. Care should be taken not to burden
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the individual nodes and the central location. At the same time, individual nodes or units

are required to sample as many frames as possible so as to not miss any information as

the person is constantly moving. This entitles the requirement for a robust and reliable

multi-view camera acquisition system to acquire as many frames as possible and a fusion

scheme to effectively process the frames form multiple views. Images of different quality

(pose, illumination and resolution) continually stream in from multiple cameras which need

to be efficiently utilized.

Typical example would be to cover an area of interest such as monitoring a critical

region using multiple cameras with overlapping field of views. This way, even if one or

more cameras view is occluded or doesn’t function there is a possibility to arrive at the

result based on the evidences from the other cameras in the network. The limitations on

pose variations, lightning conditions, facial expressions are somewhat minimized. Further,

making a decision based on multiple evidences of the same object instills confidence. Multi-

view camera network can potentially improve the accuracy of the human identification.

Fusion scores across multiple views tend to enhance the recognition accuracy. Generally,

frontal face images are the most suitable ones for reliable face recognition. However, in

unconstrained environments it is not always possible to obtain enough high quality frontal

face images required for accurate recognition. Under such circumstances, non-frontal face

images acquired from a camera network can be used to improve the confidence of face

recognition from frontal faces. Often profile (side view) face images contain moles and

special markers that are useful in human identification [1]. Recent studies have shown that

profile views and partial profile views can be used for reliable face recognition with high

accuracy [2, 3, 4, 5]. That being said, acquiring multi-view face images is a challenging task

in terms of computational overhead especially due to their diversity [6]. Typically, separate

face detectors are trained for each pose that are then sequentially or hierarchically applied

on each frame to detect a face [7, 8, 9, 10]. Alternatively, a pose classifier is first applied

through a sliding window of different sizes (that could fit a face) and then the appropriate face

detector for that pose is used to detect the presence of a face [7]. Both of these approaches

involve significant image processing and unsuitable when we would like to maximize the

number of faces acquired for recognition



R. Bakkannagari Chapter 1. Introduction 3

1.2 Thesis contributions

We design a multi-view face acquisition system to acquire the faces accurately and at a

rapid rate. We devise a fusion strategy to combine the acquired data effectively and to reach

a decision quickly (yet accurately). Finally, we analyze the impact of multi-view faces on

identification.

Our multi-view face acquisition system consists of 3 cameras, which can simultane-

ously take three views of a face at different angles. The data acquisition system exploits the

geometry of multi-camera network to collaboratively acquire both frontal and non-frontal

face images in real-time while maintaining a high sampling rate. An overview of our approach

is as follows. We first train face detectors based on Haar-like features [11, 12] for each pose

class that is required to be detected. We then run a frontal-face detector on each camera in

the network. Whenever a frontal face has been detected on any camera, say Cf , it sends a

notification to other cameras which then narrow down their search to the region surrounding

the epipolar line corresponding to the point where the frontal face is detected in Cf . By

applying a pose specific face detector on this much smaller region in the image, the cameras

are able to quickly extract non-frontal face images and simultaneously index these faces into

the corresponding face pose. Thus, we utilize the multi-view camera geometry and inter-

camera communication to reduce the amount of image processing required for multi-view

face detection. Using this we are able to process an image for detecting non-frontal faces at

almost the same rate as for frontal faces. At the same time, by narrowing down the potential

regions in an image for non-frontal face detection, we significantly improve the reliability of

non-frontal face detection. Our system is easy to setup, does not require camera calibration

and only depends on fundamental matrices of transformation between camera pairs.

To evaluate the impact of face images acquired using our real-time face image ac-

quisition system on the overall recognition accuracy. We interface it with a face matching

subsystem and thus create a prototype of real-time multi-view face recognition system. For

front face matching, we use the commercial PittPatt software [13]. For non-frontal match-

ing, we use a Local binary Pattern [14] based classifier. Matching scores obtained from both

frontal and non-frontal face images are fused for final classification. We tested our prototype
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face recognition system using an experiment with 30 human subjects, walking in isolation

at different distances from the cameras. Our results show significant improvement in recog-

nition accuracy, especially when the front face images are of low resolution. By improving

recognition accuracy at larger stand-off distances and lower image quality, we expect the

face recognition system to be applicable for real-time watch-list identification scenarios in

unconstrained environments.

1.3 Thesis outline

The rest of the thesis consists of 3 main parts, namely, multi-view face acquisition system,

fusion and face recognition system. In chapter 2, the background information and related

work has been discussed. Chapter 3 discusses about the data acquisition system design

and implementation. Chapter 4 describes about the fusion strategies and its applications.

In chapter 5, the face recognition system design and experimental evaluation is presented.

Finally, the conclusions and proposed future work are explained in chapter 6.
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Chapter 2

Background information and Related

work

Biometric system is defined as an automated method that helps recognize people based on

physiological or behavioral characteristics. In today’s world, these systems play a substantial

part and cannot be overlooked.. Biometric systems target a wide-ranging applications rite

from border security, monitoring a secure region to smart homes and biometric authentica-

tion for PDA’s. A variety of identification techniques were developed exploiting the distinct

and unique features of a person like face, fingerprint, iris, gait, etc. Each technique has its

own merits and demerits. Some of these techniques are intrusive and some are not. For

example, retina recognition is intrusive and capturing the retina sample may cause inconve-

nience to the user. On the other hand, face recognition is non-intrusive and passive and the

image of the face can be captured from a distance without user intervention or not causing

inconvenience to the subject. Face recognition has received a significant amount of attention

over the years due to it being non-intrusive, non-contact process and reliable. Criminal iden-

tification, personnel screening and surveillance are some of the typical applications where

face recognition is primarily employed.

Fig. 2.1 describes the face recognition system as a three stage process. The first

stage is face detection which extracts faces from a scene. It is followed by feature extrac-

tion stage which involves extracting relevant features for further analysis. The last stage is

face recognition where identification or verification is carried out. These three steps can be
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merged and/or new stages may be added. A substantial amount of work has been done on

both face detection and face recognition. Robust multi-view face recognition system relies

on how well the face detection and face recognition are coupled.

Figure 2.1: A generic face recognition system

2.1 Face detection

In [11], Viola and Jones have designed a face detector that is suitable for real-time frontal

face detection. Their approach utilizes the AdaBoost algorithm to identify a sequence of

Haar like features that indicate the presence of a face. Since then other frontal face detec-

tion algorithms have been developed, a survey of which is presented in [15]. Approaches for

multiview face detection have generally been of two types. The first approach is to estimate

the pose over each sliding window in an image (which may not necessarily have a face) and

then applying the pose specific detector [7]. When involving multiple face poses this is a

hard problem and moreover false estimates of a face pose will lead to incorrect detection

of a face. In the second approach, different view-specific face detectors are applied sequen-

tially or hierarchically to an image [7, 16, 17, 6]. In this thesis, we have used an OpenCV

[18] implementation of the frontal face detector presented in [11] and trained pose-specific

detectors using Haar like features for non-frontal faces as described in [12]. Then, we have

used the information about a detected frontal view along with relative camera orientations

and the subject location to detect non-frontal faces in other cameras and we observe that

our approach decreases overall processing time.
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2.2 Feature extraction

Feature extraction [19, 20] is defined as a process of extracting relevant information from

the input image. To a large extent, input data is highly redundant and large. Processing such

a data utilizes good amount resources and is time consuming. In the feature extraction stage,

the high dimensional and redundant input data is transformed into a low dimensional and

unique set of features (also called as feature vector). The curse of dimensionality problem

is addressed with dimensionality reduction. Characteristics like localization of eyes, nose,

mouth, texture etc in the face image are the features pertaining to the face image. All or

subset of which form the feature vector. In the matcher, the feature vector is compared with

the feature vectors extracted from the samples in the database to perform identification or

authentication.

2.3 Face recognition

Considerable amount of work has been done over the years on face recognition. Tradi-

tional face recognition was done on 2D images, focusing on frontal views. 2D face recognition

methods suffer from pose and illumination changes. 3D face recognition methods are invari-

ant to changes in pose but are either slow or not accurate. Hence are not appropriate for

real-time applications. A large number of these techniques work effectively with frontal views

only. When these techniques or algorithms are used with non-frontal views they tend to fair

badly. The performance drop with non-frontal views is due to the fact that non-frontal views

have highly non- linear features which are hard to resolve.

Facial recognition can be image based or video based. Recognition on still im-

ages is termed as image based recognition and on video sequences is known as video based

recognition. Many traditional methods were focused on still images. Later, face recognition

using video sequences have become popular [21, 22]. We primarily focus on image based

approaches. Image based face recognition techniques can be further classified(illustrated
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in Fig. 2.2) into appearance based or hollistic methods and model based or feature based

methods. Principal Component Analysis (PCA) [23], Linear Discriminant Analysis (LDA)

[24], Local Binary Patterns (LBP) [25] and independent Component Analysis (ICA) [26]

come under appearance based methods and Elastic Bunch Graph Model (EBGM) and 3D

Morphable Model come under the category of model based face recognition.

Principal Component Analysis (PCA) is the one of the major developments in

Figure 2.2: Classification of image based face recognition approaches

face recognition and is the first approach that is based on eigen faces. Later, a number of

techniques were proposed based on PCA. PCA also known as eigenface method is used for

image recognition and also for compression. The main idea here is to reduce the large di-

mensionality of the data space to low dimensionality feature space. This is possible when the

data is correlated. The high dimensional data of the whole face image is projected onto a low

dimensional subspace or feature space using a transformation. Linear Discriminant Analysis

(LDA) and independent Component Analysis (ICA) can be somewhat called refinements to

the PCA. LDA tries to find out a linear transformation that would best discriminate among
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the classes or maximize the between class variance and minimize the in-class variance. ICA

which provides a more powerful data representation differs from the PCA in that PCA con-

siders image elements as random variables with Gaussian distribution and minimizes the

second-order statistics, while ICA tends to look for components that are independent and

non-gaussian.

A number of face recognition techniques like EBGM, LBP, KPCA and including

those discussed above have a requirement that the image has to undergo pre-processing be-

fore it is used for recognition. They are sensitive to pose variations, illumination changes

and image alignment. As a result, face recognition systems using these techniques have an

additional overhead of implementing a pre-processing step, making these techniques unre-

liable and not so robust. Accordingly, they are not suited for automatic face recognition

systems when used in isolation. Addressing these drawbacks companies started to invest in

building complete recognition software that would do image pre-processing in addition to

recognition. This resulted in development of commercial software like Faceit, PittPat [13],

etc which compensate the above discussed drawbacks to a large extent.

Face recognition approaches can be split into two, single view based and multi-view

based. In single view based approach we are matching the test image to the corresponding

gallery of images with the same pose. On the other hand, in the multi-view based approach

the training is done using multi-view face images and thus the test image is compared to

the multi-view face gallery. Many face recognition systems with frontal view faces have been

extensively studied [23, 25, 24]. Multi-view face recognition is a challenging task than the

single view face recognition owing to the fact that multi-view face images have non-linear

manifolds that exist in the data space. Multi-view faces have both frontal and non-frontal

views. Multi-view face recognition is studied in [27, 28].

In general, face recognition algorithms developed over the years are more effective

or tend to perform better when operated on frontal views. This is partly due to the fact

that frontal view is likely to have more features than the non-frontal view and recognition

using frontal views is less sensitive to pose variations and image alignment compared to the

non-frontal views. Conventional face recognition systems carry out identification or authen-

tication using single view (preferably frontal view) of a person’s face. For these systems
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to be reliable it is necessary to obtain a good quality face image. In real unconstrained

scenarios, it is not always possible to have a good quality frontal image. As a result, these

systems become less accurate and unreliable. These limitations can be overcome if we can

establish the identity of an individual or perform authentication using multiple views of the

person. By doing so, even if the frontal image is of low quality the available non-frontal

views supplements the recognition accuracy. This way, the accuracy of the system can also

be increased and is more robust.

2.4 Multi-view Data Acquisition System

To accomplish the task of obtaining multi-view face images, we design a wireless cam-

era network that exploits the multi-view camera geometry between the cameras to acquire

images at a rapid rate. Multi-view camera geometry has been exploited by several recent

research efforts to effectively fuse information from different cameras and consequently im-

prove the accuracy in the context of tasks such as object detection, behavior matching, action

classification and reliable foreground extraction [29, 30]. By way of contrast, we have utilized

multi-view geometry to improve the computational efficiency of the system by collaborating

among the cameras in real-time and reducing the amount of image processing required.

In the context of face recognition, multiple cameras have been used for tracking

in an active control mode by which one or more cameras are controlled to yield a dynamic

coverage [31, 32]. An example of such a system is the combination of a fixed camera and

PTZ camera that is used for close-up tracking of humans and subsequent identification. In

our approach instead of continuously tracking an individual at close quarters to eventually

get a good view that is suitable for recognition, we rely on redundancy offered by multiple

camera views to opportunistically acquire a suitable face image for identification [33]. In

order to reduce the amount of data transmitted to the base station, the approach taken

in this thesis is to use the distributed cameras to perform collaborative face detection [15]

and transmit only the region containing faces detected in each frame to the base station.
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This is expected to save as much as 95% of the network bandwidth when compared to

transmitting raw videos while also reducing the amount of processing required at the base

station significantly [34, 33]. Our approach in this thesis is a balance between completely

centralized camera network systems for surveillance [35, 36] that process all the data at the

base station and completely local approaches (using video analytic cameras [37]) that do

not utilize information from multiple views. Balancing centralized processing with local in

network processing to reduce network and processing overload has been the focus of several

sensor network based data acquisition projects over the past decade [38, 39, 40, 41]. How-

ever, achieving this balance for real-time identification with video data is significantly more

challenging because of the computationally intensive nature of such data. In our work, we

have exploited run-time collaboration between cameras to reduce this local processing time.

2.5 Fusion

Fusion is described as the assimilation of multiple sources of evidence (or information)

to arrive at a comprehensive or unified decision (or result). Depending on what stage of the

biometric system fusion is carried out, we have five fusion techniques : sensor, feature, score,

rank and decision level fusion. Sensor module has the richest source of information and the

amount of information is condensed as we move from sensor to decision module. Integrating

match scores output from multiple biometric sources is termed as score level fusion. This is

also known as measurement level or confidence level fusion. Because of its ease to access and

consolidate, score level fusion strategy is widely used. Most existing work on biometric fusion

[42, 43, 44] has assumed that data has been acquired a priori and prevailing fusion techniques

operate in controlled scenarios. There remains a need for optimizing these techniques for

operation in a dynamic mode where data is continually streaming in and each image varies

in quality (ambient conditions, pose, resolution). Designing a fusion strategy to process this

data and arrive at a decision in real-time poses significant challenges. It is not practical to

process all the acquired data and we need to implement a strategy to fuse only the relavent
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information. At the same time, it is required that the verdict is made reasonably quickly

and is reliable. To address these, we investigate the initial steps towards real-time human

identification using a wireless camera network.

2.5.1 Other related work

To facilitate human identification from low resolution videos, many image restoration

techniques have been designed based on super-resolution of multiple frames [45, 46]. Also,

algorithms have been designed for handling incomplete face data based on a recognition by

parts approach [47] and for generating a composite face image based on multiple partial

views of a face [48]. Such image restoration and fusion techniques are appropriate for use in

conjunction with the distributed face image acquisition framework to enhance the recogni-

tion accuracy.



13

Chapter 3

Collaborative multi-view face

acquisition system

This chapter discusses in depth about the data acquisition system that renders multi-view

face images for recognition. The acquisition system is called collaborative multi-view face ac-

quisition system, since the cameras collaborate to acquire multi-view face images across the

network. Each camera in the network can act as frontal or non-frontal. This relinquishes

the restriction that a person should always face a particular camera.

3.1 Outline

For any recognition system to be robust and operative in real time, the data acquisition

system and the underlying recognition algorithm play a substantial part. To put together

such a system the acquisition system and the recognition algorithm (or scheme) employed

should satisfy certain constraints. The data acquisition system should transmit only the

relevant information and at a rapid rate. This, safeguards against the high network band-

width and possibility of missing important events. The underlying recognition algorithm (or

scheme) should be fast and accurate enough to process the data acquired by the acquisi-

tion system. We realized a collaborative multi-view face acquisition system that is capable

of acquiring multi-view face images across the network reliably and at a rapid rate. The
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C 1

C3

C
2
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80

40

Front face detected
by camera C 1

Figure 3.1: Our experimental deployment of 3 cameras. The cameras are deployed along an
arc of radius 10 feet with a separation of 6 feet between the cameras along the arc as shown.
The angles made by the principal axes of cameras C2 and C3 with that of camera C1 are
40o and 80o respectively. The cameras are deployed on tripods at a height of 7 feet from
the ground. All cameras run a frontal face detector. When a frontal face is detected on any
camera, a notification is broadcast to other cameras.

system comprises of 3 cameras which are oriented in such a way so as to capture multi-view

(frontal, partial profile (40o), partial profile (80o)) face images of the person. These face

images are labeled and transmitted to the centralized location (or base station) which runs

the recognition algorithm.

3.2 Acquisition system design

The collaborative face acquisition system entails a network of 3 cameras with overlapping

field of views. These cameras are positioned to have the area of interest lie within the com-

mon region of the FOV’s of all the 3 cameras. Our experimental setup consists of 3 cameras

which are placed along the arc of radius 10 feet. The cameras are separated by a distance of

6 feet and are fixed on tripods at a height of 7 feet from the ground. The principal axes of

the cameras is parallel to the horizontal plane as shown in the Fig. 3.1. The angle made by

the cameras C2 and C3 with that of camera C1 are 40o and 80o respectively. The cameras

are connected wirelessly and have the same face acquisition software running on them.
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Time synchronization between the nodes is established using NTP (Network Time

Protocol). NTP is a protocol designed to synchronize the clocks of computers over a network.

NTP is organized as an hierarchical client-server model. One of the node in the network is

synchronized with the top level time servers available to the internet which in turn serves

as the reference to the other nodes in the network. The clock on the other 2 nodes is syn-

chronized with that of on the reference node. We note that clocks of any two nodes may

not be in perfect synchronization at any time instant. Let ts denote the maximum clock

synchronization error between any pair of cameras in milliseconds.

Each camera in the network can act as frontal or non-frontal depending on which

camera the person is facing. If the person is directly facing the camera C1, then C1 acts as

frontal and C2, C3 act as non-frontal. Similarly, if the person is facing C2, then C1, C3 act

as non-frontal. If the person is facing C3, then C1, C2 act as non-frontal. This behavior lets

go the restriction of person having to face a specific camera. The multi-view faces collected

across the network are transmitted to the base station for recognition.

Our experiment is carried out with the human subject facing the camera C1. The

cameras C2 and C3 act as non-frontal cameras for the subject. As a result, the camera C1

captures the frontal-view, C2 acquires the partial left (or right) profile and C3 acquires the

left (or right) profile of the subject. We use the yaw angle (that measures the rotation of the

face image along the vertical axis) to define front, partial profile and profile faces(Fig. 3.2).

If the yaw angle made by the subjects face image ranges from −30o to +30o we define it as

− 30 <−> +30 30 <−> 60 60 <−> +120

Front Face Partial Right Profile Face Right Profile Face

Figure 3.2: We classify faces into front, profile and partial profile based on the yaw angles

frontal. If it ranges from −30o to −60o (30o to 60o) we define it as partial left (or right)
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profile face. If it ranges from −60o to −120o (60o to 120o) we define it as left (or right) profile

face. The designed multi-view face acquisition system exploits camera geometry to acquire

multi-view face images reliably and at a rapid rate.

3.3 System Operation

Our face acquisition system encompasses 3 cameras oriented to acquire frontal and non-

frontal face images. All the cameras have the same software running on them. The tasks

performed by a camera in the network can be categorized into 4 threads.

detector

Sample at f fps

Enqueue each 

While true {

Apply front−face

     broadcast notification

else

Subtract background

}

    Store in Q
 

B
ff

B
sf

Q

If message received

}

Dequeue from Q

Capture Message listen Side−face detection

detectionIf front face detected

frame in B
frame from Bff

Dequeue from B
ff

     queue in B
sf

Perform side−face
sf

Retrieve sychronous

While true {

Frontal−face detection

Figure 3.3: Pseudo-code for operations on each embedded camera. each node executes 4
threads: capture, frontal face detection, message listening and side-face detection. The
capture thread samples images at F fps and queues them in Bff . The frontal face detection
thread dequeues frames from Bff and applies frontal face detector on background subtracted
images. If a face is detected, a notification is broadcast to other cameras, otherwise the
background subtracted frame is stored in Bsf . The message listening thread queues any
incoming message intoQ. The side-face detection thread dequeues messages fromQ, retrieves
the synchronous frame corresponding to the message from Bsf and performs the side-face
detection procedure.

3.3.1 Capture

The capture thread acquires images of the scene at F fps and queues them in the buffer

Bff . The timestamp of frame is defined as the time of capture of frame x and is denoted as
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t(x). Two frames are said to be synchronized if they have the same timestamp. Considering

the fact that maximum clock synchronization ts is around it is likely that two frames captured

at the same time may not have the same time. In which case, we consider the frame having

the closest timestamp. Let |Bff | denote the maximum number of frames in the buffer Bff .

3.3.2 Frontal face detection

The frontal face detection thread dequeues the oldest frame the buffer Bff . This frame,

after background subtraction, is subjected to frontal face detector. We use the OpenCV

implementation of the Haar Cascade based face detector [7]. If a frontal face is detected a

notification message M(c(x), t(x), w(x)) is broadcast to all the other cameras in the network,

where t(x) is the timestamp of the frame x, c(x) is the location of the center of the detected

face and w(x) is the width of the bounded square around the face detected. If a frontal face

is not detected the frame is stored in the side face buffer Bsf . Let |Bsf | denote the maximum

number of frames stored in the side face buffer.

3.3.3 Message listening

The message listening thread listens for the notification messages M(c(x), t(x), w(x))

from the neighboring cameras. These messages are queued in the buffer Q. Let |Q| denote

the maximum number of messages in the buffer Q.

3.3.4 Side face detection

The side face detection thread dequeues a message from buffer Q one at a time. If the

retrieved message is M(c(x), t(x), w(x)) then the corresponding frame y from buffer Bsf is

dequeued such that t(x) = t(y). Utilizing the concept of epipolar geometry and known

information w(x) and c(x) the search space in the frame y is reduced to a square block of

size w × w pixels. Based on the relative camera orientations, we determine the expected

pose of a side face and apply side-face detector corresponding to the particular class on the

extracted square block.
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3.4 Epipolar geometry

Epipolar geometry describes the projective geometry between two views. Epipolar geom-

etry reduces corresponding point search space from 2D image to 1D epipolar line since point

x in one camera is constrained to lie on an epipolar line l′ in the other image. Fundamen-

tal matrix, purely dependent on the internal parameters of the camera, is used to compute

projective mapping between uncalibrated views and it is an algebraic representation of an

epipolar geometry [49].

Properties of Fundamental matrix (F),

• Fundamental matrix is of rank 2 and has seven degrees of freedom.

• Point correspondence : If x and x′ are two corresponding image points, then

x′TFx = 0 (3.1)

• Epipolar lines :

l′ = Fx (3.2)

is the epipolar line corresponding to x.

l = F Tx′ (3.3)

is the epipolar line corresponding to x′.

• Epipoles :

Fe = 0 (3.4)

F T e = 0 (3.5)

Fundamental matrix computation:

Fundamental matrix is a 3×3 matrix of rank 2 and its computation is based on corresponding

image points between images and independent of camera calibration and camera internal

parameters. Several techniques have been proposed to compute the F, but normalized-8

point algorithm has shown superior performance since input data normalized before solving

linear equations.
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For our experimental setting, fundamental matrix computed between a pair of cameras

be F12. Using this fundamental matrix project the point C(x) (center of the frontal face

detected) in frame x onto a line (epilpolar line) in frame y. We then determine the intersection

of line with the background subtracted image retrieved from Bsf and extract a square block

of size w × w pixels.

3.5 Experiment setup

We implement our data acquisition system as a 3 node embedded camera network

(schematics shown in Fig. 3.1). We assemble an embedded camera using a Logitech 9000

camera, a 1.6 GHz Intel Atom 230 processor based motherboard from Acer [Acer ] and an

IEEE 802.11 based wireless card. We consider one human subject in the scene at a time.

Each subject stands at a distance of approximately 10 feet from the cameras (close to the

center of the arc) facing any one of the 3 cameras. Note that, if the subject is facing camera

C1 as shown in Fig. 3.1, then the pose estimated by camera C2 and C3 are right partial

profile and right profile respectively. We have tested the system with 10 different subjects

with approximately 15 minutes of data collected for each subject.

(a) (b)

Figure 3.4: Example face images detected by our acquisition service. The white rectangles
indicate the box enclosing the detected faces in each pose. Face images in each column are
extracted from synchronous frames in the three cameras. (a) Images acquired with subjects
facing C2: (Top) Frontal face (Middle) Left partial profile face (Bottom) Right partial profile
face. (b) Images acquired with subjects facing C1: (Top) Frontal face (Middle) Right partial
profile face (Bottom) Right profile face.
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3.6 Results

We perform our experiments in two environments: one with a lot of clutter in the back-

ground and the other one with a relatively plain background. Images are sampled by each

camera at 25 fps. Thus tf = 40ms. In Table 3.1, we show the average execution times for the

different processing modules in our system. In Table 3.2, we show the number of frames that

are processed per second for detecting frontal faces and side faces. The frontal face detector

is applied on background subtracted regions and sometimes applied even on spurious blobs

detected as the foreground. The side-face detector on the other hand is applied only on a

much smaller region that is corroborated by the frontal face detecting camera.

Operation Time (ms) Time (ms)

(clear) (cluttered)

Image capture and storage 2 2
Background subtraction 2 3

Dilation 2 2
Frontal face detection 75 102

Total tff 81 109

Total tsf 15 15

Table 3.1: Processing times: Multi-view face detection in clear and cluttered background

The actual number of frontal and side faces detected correspond to the output of the

detector itself. The difference between frames processed and faces detected gives a measure

of the false negatives for the respective detectors. In a clear background, the number of

frontal faces detected per second are almost equal to the number of frames processed per

second. All the frontal faces detected are notified to the other cameras and the number of

side faces detected per second in each camera matches the frontal face detection rate. In a

cluttered background, the number of missed detections for frontal faces are high and yields

a frontal face detection rate of 6 faces per second and as seen in Table II, the side face

detecting cameras are able to match this detection rate.

The maximum network delay is observed to be 50ms, but we note that this only affects

the size of Bsf and not the overall face detection rate. We also note that the required

buffering is very low (approximately 10 frames). By transmitting only the face images, that
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Rates per second Clear Cluttered

Frontal face processed 11.1 8
Frontal face detected 10.2 6.05
Side-face processed 10 5.5
Side-face detected 9.7 5.2

Table 3.2: Detection rates for frontal and side faces

are on average 60 × 60 pixels in size, we are able to reduce communication bandwidth by

98% compared with transmitting the entire image (640 × 480 pixels) and by 80% when

compared with transmitting the background subtracted image (100×200 pixels on average).

By performing face detection and simultaneously estimating the pose, we also expect to

reduce significant processing time at the fusion center for face recognition.
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Chapter 4

Fusion

Fusion [42] can be defined as a process of integrating information from multiple sources

to produce the most comprehensive unified data about an entity. The purpose of information

fusion is to determine the optimum set of features (or scores) and devise a fitting function

that can suitably combine the scores to arrive at a decision. Face recognition systems em-

ploy face modality for human identification. Each modality (or characteristic) on its own

cannot always be reliably used to perform recognition. Hence fusion strategies are utilized

to improve the overall accuracy of the recognition system.

Information fusion in biometric systems is studied in great detail and is continued

to do so because of the wide range of applications biometric systems find itself in. Biometric

systems using multiple biometric sources to perform recognition are termed as multibiomet-

ric systems. By fusing the data from multiple biometric sources, the multibiometric system

is considered to outperform the traditional (or uni) biometric system which makes use of the

single piece of evidence.

The face acquisition system simultaneously labels the pose of each acquired face

image. In dynamic environments, the face images are continually arriving at the base sta-

tion with different quality, pose and resolution. Fusing information obtained from multiple

probe images poses significant challenges. Such a scenario demands that a verdict (match

/ no match) regarding a particular subject is quickly (yet accurately) released so that more

number of subjects in the scene can be evaluated. The following questions then arise: in

what order should probe images be matched ?, how to combine scores obtained from multi-
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ple probe images ?, how soon can a verdict be confidently reached ?, what is the expected

performance of such a fusion scheme ?.

Depending on what stage of the biometric system fusion is carried out, we have five

fusion techniques : sensor, feature, score, rank and decision level fusion. Sensor module has

the richest source of information and the amount of information is condensed as we move

from sensor to decision module. Integrating match scores output from multiple biometric

sources is termed as score level fusion. This is also known as measurement level or confi-

dence level fusion. Because of its ease to access and consolidate, score level fusion strategy

is widely used. Most existing work on biometric fusion [42, 43, 44] has assumed that data

has been acquired a priori and prevailing fusion techniques operate in controlled scenarios.

There remains a need for optimizing these techniques for operation in a dynamic mode where

data is continually streaming in and each image varies in quality (ambient conditions, pose,

resolution). Designing a fusion strategy to process this data and arrive at a decision in real-

time poses significant challenges. It is not practical to process all the acquired data and we

need to implement a strategy to fuse only the relavent information. At the same time, it is

required that the verdict is made reasonably quickly and is reliable. To address these, we

investigate the initial steps towards real-time human identification using a wireless camera

network.

Multiple biometric sources can lead to multiple biometric traits or a single trait

viewed in multiple ways. That is, we can have a biometric system equipped with a camera,

fingerprint scanner and iris recording equipment. This system is capable of acquiring data

from three different biometric traits namely face, fingerprint and iris. On the other hand, we

can design a system having three cameras oriented in such a way as to acquire the frontal,

partial profile and profile face image of the same subject. This system best describes the

biometric system having the ability to acquire a single biometric trait (face in this case) in

multiple ways.
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4.1 Sources of multiple evidence

• Multi-algorithm systems : The systems where the same biometric information

is processed using multiple algorithms are known as multi-algorithm systems. For

instance, a frontal face image of a person can be processed using Principal Compo-

nent Analysis (PCA), Local Binary Patterns (LBP) and Linear Discriminant Analysis

(LDA). Later, the outcome of the individual classifier is fused to arrive at a unified

decision. This technique is proven to increase the recognition rate.

• Multi-sensor systems : In these systems, the same biometric trait is pictured using

multiple sensors. This system somewhat guarantees to have acquired diverse infor-

mation of the biometric trait being imaged. For example, Marcialis and Roli, 2004a

presented a strategy which would combine the fingerprint information obtained using

an optical and a capacitive fingerprint sensor.

• Multi-sample systems : These systems acquire multiple samples of the same bio-

metric trait. As a result, these systems account for the variations in the underlying

biometric trait and are robust to slight discrepancies in the biometric information. A

three camera system acquiring the frontal, partial profile and profile face image of a

person is an example of such a system.

• Multi-modal systems : The systems that fuse the information from several biometric

traits are known as multi-modal systems. The best example is a biometric system

comprising of a fingerprint sensor and a voice analyzer.

• Hybrid systems : A combination of subset of any of the previous systems would

result in an hybrid system. A multi-sample and multi-modal system can be integrated

giving rise to hybrid system. These systems although improve the recognition accuracy

suffers from the drawback of being costly.

Our fusion technique is an hybrid system. It is a combination of multi-sample and multi-

algorithm systems. As an example, our system uses multiple algorithms, namely LBP based

classifier and PittPatt commercial software and multiple samples of the same biometric
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trait face, namley frontal, partial profile and profile face. PittPatt is used for frontal face

recogntion and LBP based classifier is used for non-frontal face recogntion.

10
−1

10
0

10
1

10
2

0

10

20

30

40

50

60

70

80

90

100

FAR (in %)

G
A

R
 (

in
 %

)
ROC curve (FAR vs GAR)

 

 

Partial Profile
Profile
Frontal
Sum rule

Figure 4.1: ROC curve (GAR vs FAR) based on low resolution images with: only front face,
only partial profile (40o), only profile (80o) and multi-view face images.

4.1.1 Illustrative example

The camera network system acquires multi-view face images, namely frontal, partial

profile and profile faces. The experimental setup is discussed in 5.3. PittPatt software is used

for frontal face recognition and LBP is used for partial profile and profile face recognition.

Each recognition algorithm outputs a matching score or confidence. The database for our

experiment consists of matching scores for frontal, partial and profile face images for 25

subjects. We have three score matrices, one for each view. ROC curve (illustrated in Fig. 4.1)

GAR (Genuine Acceptance Rate) vs FAR (False Acceptance Rate) is plotted across each of

the view using the score matrices. As expected, the frontal face results in higher accuracy

than non-frontal face images because the the number of features offered in frontal view are

higher than non-frontal view.

Sf , Spp and Sp denote the matching score for frontal, partial profile and profile face
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images. The scores across each view are integrated using a weighted sum rule resulting in

a single score or confidence. The resulting score matrix is used to plot the ROC curve.

We notice that by fusing the information from multiple sources the recognition accuracy

increases. Fig. 4.2 compares GAR for fusion and frontal only at varying FAR. Fig. 4.3
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Figure 4.2: GAR vs FAR with:frontal only and fusion.

shows the schematic of a multi-view face recognition system having 3 cameras. The score

output from each of the matcher is normalized and is subjected to a fusion rule (in this case,

weighed sum rule).

Information fusion is categorized based on what stage of the multibiometric system fusion

strategy is implemented. If the fusion is carried out on the raw data from the sensors it

is referred as sensor level fusion. Combining features extracted from multiple biometric

sources is called feature level fusion. Fusing the classifier output or score is termed as match

score level or measurement level or confidence level fusion. Decision level fusion refers to

integrating the decisions output by the biometric system independently. Of all the different

levels of fusion discussed above, feature level fusion has the richest source of information

followed by match score level fusion. Match score level fusion technique, where the match



R. Bakkannagari Chapter 4. Fusion 27

Figure 4.3: Score level fusion of frontal, partial profile and profile face images.

score outputs from the biometric system are integrated, is easy to implement and widely

used method.

Since we have multiple samples (frontal, left partial profile (−40o), left profile face

(−80o) face) of the same biometric trait (face biometric in this case) we use a multi-sample

fusion system. These images are matched to the images in the database having the same

pose to get the scores. The 3 scores are fused using a sum-level fusion strategy to get a

unified score(illustrated in Fig. 4.3).
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Chapter 5

Face Recognition System

Our face matching module consists of two components: front-face matching and non-

frontal face-matching. In an ideal environment, the frontal-face matching alone would have

been enough to get the desired results. This can be possible when the system is operated

in controlled environments, no timing bounds and the captured images are of good quality.

When the system is to be operated in unconstrained environments and we need to perform

recognition in real-time the frontal-face matching alone may not suffice the purpose. This

is when non-frontal faces come in handy. The additional information they offer will aid the

frontal-face recognition, thus enhancing the overall accuracy. To reap the benefits of the

available information (frontal and non-frontal scores) we need to have an information fusion

strategy in place.

5.1 Setup

We use a network of 3 Firewire cameras located along an arc of radius 10 feet. The

cameras are deployed on tripods at a height of about 7 feet from the ground. The angles

made by the principal axes of the cameras C2 and C3 with that of camera C1 are 40o and 80o

respectively. The cameras are connected wirelessly. The multi-view face detection software

(described earlier) is run on these cameras. As a result, multi-view face images (0o, 400, 800)

indexed by pose, are collected at the fusion (recognition) center. These images continuously
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stream in, when a subject is present in the FOV of the camera network. The face images

are time-stamped based on the reception time at the fusion center.

5.2 Method

For frontal face recognition, we use the PittPatt Face Recognition Software Development

Kit from Pittsburgh Pattern Recognition [13]. This SDK provides recognition tools that

extract templates from faces and compare templates to compute similarity scores. When

using this software, there is no need to explicitly align the frontal images before feeding to

the recognition algorithm. The underlying algorithm is also robust to slight variations in

the pose and illumination changes. The PittPatt face recognition algorithm extracts the

template of the test image and compares it with the templates of the face images in the

database.

The PittPat software is designed to work with frontal images only. It supports

variations in the yaw angle ranging from −20o to +20o. The underlying recognition algorithm

outputs a similarity score that is subsequently normalized to a value in the range [0, 1] using

the min-max normalization technique, i.e., given matching scores sk for k = 1, ..n, the

normalized scores are:

snorm =
s−min{sk}

max{sk} −min{sk}
(5.1)

Face recognition algorithm outputs a score which can be similarity or dissimilarity score.

Similarity score is defined as the measure of how well the two images are alike. Dissimilarity

score is defined as the measure of how different the two images are. In our case, PittPat

outputs a similarity score and LBP outputs a dissimilarity score. For fusion, all the scores

should either be similarity or dissimilarity scores.

For non-frontal face recognition, we use the Local Binary Patterns based classifier

which considers both shape and texture information to represent the face images [50]. The

LBP operator forms labels for the image pixels by thresholding a p pixel neighborhood

around each pixel in comparison with the center pixel of the neighborhood, and considering

the result as a binary number. This results in a p bit label for each neighborhood, with 2p

possible values. A histogram of these 2p labels is then used as the image descriptor. Since its
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introduction, the LBP operator has been extended to use different neighborhood sizes and

shapes. In our system, we have specifically considered a circular (8, 3) neighborhood, i.e., 8

sample points uniformly separated along a circle of radius 3 around each pixel. Furthermore,

we use an extension of LBP, namely uniform LBP, in which only a subset of the 2p labels are

used in forming the histogram feature. Specifically, only patterns in which there are at most

2 bitwise transitions from 0 to 1 or vice-versa are considered as uniform. A separate label

is used for each of these uniform patterns, and one label is used for all the other patterns.

In an (8, 3) neighborhood this results in 58 uniform patterns, i.e. 59 labels. In forming the

LBP feature vector, each face image is first divided into 5× 5 equi-sized smaller sub-blocks

(or cells). Division of a face image into smaller cells allows us to retain spatial information

in the face image. Local 8 bit binary patterns are extracted and a separate histogram is

obtained for each cell. Let Rj denote the jth cell where 1 < j < 25. Let f(x, y) denote

the label of pixel (x, y), where f(x, y) ranges from 0 to 59. Let Hi,j denote the histogram

frequency of the label i (0 < i < 59) in region Rj . Let I(A) = 1 if predicate A is true and

0 otherwise. Thus we have:

Hi,j =
∑
x,y

I[f(x, y) == i] ∗ I[(x, y)εRj] (5.2)

The histogram frequencies Hij for cell j are normalized as:

Figure 5.1: A face image divided into 5× 5 windows.

Hi,j norm =
Hi,j

sum(Hi,j)

(5.3)
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The histogram frequencies across all cells are then concatenated into a single histogram that

efficiently represents the face image. During matching, scores are calculated using the nearest

neighbor classification technique with Chi-square (χ2) statistical estimate for dissimilarity

measure. Specifically, if Oi denotes the observed frequency of label i, Mi denotes the expected

frequency of label i, the number of labels are denoted by L, then the χ2 dissimilarity measure

between the observed sequence S and the expected sequence M is given by:

χ2(S,M) =
∑
i

Oi −Mi

O1 +M1

, (i = 0, ..., L− 1) (5.4)

The LBP scores are then normalized so that they are homogeneous and their range lies

within [0, 1] using the min-max normalization technique. Note however that the PittPatt

front face matcher assigns a similarity score. In order to be consistent with the front face

scores, the dissimilarity scores (dk)k = 1, ..n are converted to similarity scores as,

sk = 1− dk, (k = 1, .., n) (5.5)

5.3 Experiment

With the above face matching techniques in place, an experiment was carried out in a

cluttered office background with 30 human subjects using a 3 camera network as shown in Fig.

3.1. The multi-view face acquisition software was installed on these cameras. The subjects

walked facing one of the 3 cameras in the system at a speed of 2 to 3 feet per second and stayed

within the FOV of the network for approximately 6 seconds in each trial. As each subject

walked through the camera network system, approximately 50 to 60 images were acquired for

each subject from each pose using our multi-view face acquisition framework, and these face

images were simultaneously labeled into the appropriate pose. Probe images for each subject

were indexed based on the timestamp associated with that image. Thus front, partial profile

and profile images indexed by the same timestamp correspond to synchronous frames. To

be able to quantify the recognition accuracy of the system at different image resolutions, we

grouped the acquired subject probe images from each camera into the following resolution

sets, low, medium and high, as indicated in Table 5.1.

The front, partial profile and profile images in each resolution set were compared against the
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Table 5.1: Resolution sets for acquired face images

Distance from camera Resolution Average size of face images

8-10 feet High 70x70
10-12 feet Medium 55x55
12-14 feet Low 48x48

respective gallery images for each subject using the PittPatt and LBP technqiues as described

above. The probe images are only matched with gallery images of the corresponding pose.

Let sf , spp and sp denote the matching scores for front, partial profile and profile face images

of a subject respectively that are synchronous and indexed by the same timestamp. A score-

based weighted linear fusion rule was applied to generate an overall score (so) using all types

of face images corresponding to that timestamp,

so = wfsf + wppspp + wpsp (5.6)

5.4 Results

For images in each resolution set, a graph of the False Acceptance Rate against the

Genuine Acceptance Rate is obtained with only front face scores, only partial profile scores,

only profile scores and with fused scores. Note that the threshold depending fraction of

the falsely accepted images divided by the number of all impostor images is called False

Acceptance Rate (FAR). The fraction of the number of rejected images divided by the total

number of images is called False Rejection Rate (FRR) and 1− FRR is called the Genuine

Acceptance Rate (GAR). Recognition accuracy when FAR = FRR is called the Equal

Error Rate (EER) [51, 52]. In obtaining these graphs, the score-based fusion weights were

determined using an iterative procedure: for different combinations of wf , wpp and wp, the

EER is determined for the fusion based classifier and the combination of weights that gives

the highest EER is selected. The results are classified into 3 categories.
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Figure 5.2: ROC curve (GAR vs FAR) for authentication based on low resolution images
with: only front face, only partial profile (40o), only profile (80o) and multi-view face images.

5.4.1 Multi-view fusion by treating each image independently

Each probe image is compared with all the gallery images (images in the database) and

a similarity (or dissimilarity) score is generated for each comparison. For example, if we

have n subjects and each subject has p probe and g gallery images, then it results in an

(n× p× g) × (n× p× g) similarity matrix. The scores accross multiple views are combined

using a weighted sum rule (5.6) and the fused scores are used to plot the ROC and CMC

curve. Fig. 5.2 shows the ROC curve for low resolution multi-view face (frontal, partial

profile and profile) images. Fig. 5.3 shows the ROC curve for medium resolution multi-view

face (frontal, partial profile and profile) images. Fig. 5.4 shows the ROC curve for high

resolution multi-view face (frontal, partial profile and profile) images. Fig. 5.6 shows the

CMC curve for low resolution multi-view face (frontal, partial profile and profile) images.

Fig. 5.7 shows the CMC curve for high resolution multi-view face (frontal, partial profile and

profile) images.
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Figure 5.3: ROC curve (GAR vs FAR) for authentication based on medium resolution images
with: only front face, only partial profile (40o), only profile (80o) and multi-view face images.
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Figure 5.4: ROC curve (GAR vs FAR) for authentication based on high resolution images
with: only front face, only partial profile (40o), only profile (80o) and multi-view face images.
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Fig. 5.5 shows the ROC curve when a score level fusion technique is applied to multi-

view images obtained across the network with different image resolutions. The graphs clearly

indicate that the impact of multi-view fusion is far more significant at lower resolutions.
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Figure 5.5: ROC curve (GAR vs FAR) by fusing multi-view images at low, medium and
high resolution.

5.4.2 Multi-view, multi-sample fusion

Each probe image is compared with all the gallery images (images in the database) and

a similarity (or dissimilarity) score is generated for each comparison. For example, if we

have n subjects and each subject has p probe and g gallery images, then it results in an

(n×p×g) × (n×p×g) similarity matrix. For each subject, the probe image resulting in the

minimum score (we consider dissimilarity score) is retained. These scores accross multiple

views are combined using a weighted sum rule (5.6) and the fused scores are used to plot the

ROC curve. Fig. 5.8 shows the ROC curve for low resolution multi-view face (frontal, partial

profile and profile) images. Fig. 5.9 shows the ROC curve for medium resolution multi-view

face (frontal, partial profile and profile) images. Fig. 5.10 shows the ROC curve for high

resolution multi-view face (frontal, partial profile and profile) images. Fig. 5.11 shows the
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Figure 5.6: CMC curve (Recognition accuracy vs Rank) for identification based on low
resolution images with: only front face, only partial profile (40o), only profile (80o) and
multi-view face images.

ROC curve when a score level fusion technique is applied to multi-view images obtained

across the network with different image resolutions. Fig. 5.12 shows the CMC curve for low

resolution multi-view face (frontal, partial profile and profile) images. Fig. 5.13 shows the

CMC curve for high resolution multi-view face (frontal, partial profile and profile) images.

The graphs clearly indicate that the impact of multi-view fusion is far more significant at

lower resolutions.
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Figure 5.7: CMC curve (Recognition accuracy vs Rank) for identification based on high
resolution images with: only front face, only partial profile (40o), only profile (80o) and
multi-view face images.
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Figure 5.8: ROC curve (GAR vs FAR) for authentication based on low resolution images
with: only front face, only partial profile (40o), only profile (80o) and multi-view face images.
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Figure 5.9: ROC curve (GAR vs FAR) for authentication based on medium resolution images
with: only front face, only partial profile (40o), only profile (80o) and multi-view face images.

10
−1

10
0

10
1

10
2

0

10

20

30

40

50

60

70

80

90

100

FAR (in %)

G
A

R
 (

in
 %

)

ROC curve (FAR vs GAR)

 

 

Partial profile face
Profile face
Frontal face
Fusion

Figure 5.10: ROC curve (GAR vs FAR) for authentication based on high resolution images
with: only front face, only partial profile (40o), only profile (80o) and multi-view face images.
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Figure 5.11: ROC curve (GAR vs FAR) by fusing multi-view images at low, medium and
high resolution.
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Figure 5.12: CMC curve (Recognition accuracy vs Rank) for identification based on low
resolution images with: only front face, only partial profile (40o), only profile (80o) and
multi-view face images.
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Figure 5.13: CMC curve (Recognition accuracy vs Rank) for identification based on high
resolution images with: only front face, only partial profile (40o), only profile (80o) and
multi-view face images.

5.4.3 Robustness of weighted multi-view fusion

So far, the weights assigned to different views during fusion are determined by iterative

procedure over all the subjects. In this experiment we determine the weights iteratively on

a subset of the subject images and test it on the other images. This validates robustness

of the weights determined. For each subject, the probe image resulting in the minimum

score (we consider dissimilarity score) is retained. These scores accross multiple views are

combined using a weighted sum rule (5.6) and the fused scores are used to plot the ROC

curve. Fig. 5.14 shows the ROC curve for low resolution multi-view face (frontal, partial

profile and profile) images. Fig. 5.15 shows the ROC curve for medium resolution multi-view

face (frontal, partial profile and profile) images. Fig. 5.16 shows the ROC curve for high

resolution multi-view face (frontal, partial profile and profile) images. Fig. 5.17 shows the

ROC curve when a score level fusion technique is applied to multi-view images obtained

across the network with different image resolutions. Fig. 5.18 shows the CMC curve for low

resolution multi-view face (frontal, partial profile and profile) images. Fig. 5.19 shows the
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CMC curve for high resolution multi-view face (frontal, partial profile and profile) images.

The graphs clearly indicate that the impact of multi-view fusion is far more significant at

lower resolutions.
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Figure 5.14: ROC curve (GAR vs FAR) for authentication based on low resolution images
with: only front face, only partial profile (40o), only profile (80o) and multi-view face images.
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Figure 5.15: ROC curve (GAR vs FAR) for authentication based on medium resolution
images with: only front face, only partial profile (40o), only profile (80o) and multi-view face
images.
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Figure 5.16: ROC curve (GAR vs FAR) for authentication based on high resolution images
with: only front face, only partial profile (40o), only profile (80o) and multi-view face images.



R. Bakkannagari Chapter 5. Face recognition 43

10
−1

10
0

10
1

10
2

0

10

20

30

40

50

60

70

80

90

100

FAR (in %)

G
A

R
 (

in
 %

)

ROC curve (FAR vs GAR)

 

 

low resolution
medium resolution
high resolution

Figure 5.17: ROC curve (GAR vs FAR) by fusing multi-view images at low, medium and
high resolution.
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Figure 5.18: CMC curve (Recognition accuracy vs Rank) for identification based on low
resolution images with: only front face, only partial profile (40o), only profile (80o) and
multi-view face images.
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Figure 5.19: CMC curve (Recognition accuracy vs Rank) for identification based on high
resolution images with: only front face, only partial profile (40o), only profile (80o) and
multi-view face images.
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Chapter 6

Conclusions and Future work

6.1 Conclusions

We presented a real-time face recognition system that is supported by a collaborative

multi-view face acquisition service. Our service can detect and extract face images from

different poses and simultaneously identify these poses while maintaining a high sampling

rate. We avoid complex image processing and instead use multi-view camera geometry and

inter-camera communication to reduce the processing time. We are able to achieve a non-

frontal face detection rate that is almost equal to frontal face detection rate, thus highlighting

the advantage over multi-view face detection schemes based on sequentially or hierarchically

applying detectors for different poses. Our service is light-weight in terms of processing com-

plexity, has low buffering requirements and is appropriate for implementation on different

smart camera platforms [53] resulting in portable and even covert deployments for human

recognition.

Our face image acquisition service was integrated with a multi-view face classifica-

tion system using a combination of PittPatt SDK and LBP based classifiers. A score-based

fusion technique was used for face recognition using a combination of front, partial profile

and profile face images. Our results show significant improvement in recognition accuracy,

especially when the front face images are of low resolution. By improving recognition ac-

curacy at larger stand-off distances and lower image quality, we expect the face recognition

system to be applicable for real-time watch-list identification scenarios in unconstrained en-
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vironments.

We note that while we have used face detectors based on Haar-like features in our

system, they could be replaced with other pose-specific face detectors as well. Also, while

the specific performance numbers for processing rate are platform and algorithm specific,

the key observation is that our system can be used to detect non-frontal faces at the same

rate as frontal faces (where the rate of processing is determined by the algorithm and the

platform). We have used the detection of frontal face images in a camera to guide the com-

putation at run-time in other cameras. Alternatively, the detection of patterns or events

other than frontal faces can also be used to trigger localized image processing operation in

other cameras and improve the computational efficiency of the system. This gives rise to a

more generalized use of our proposed framework for collaboration in a camera network.

In calculating the achievable recognition accuracy using a multi-view acquisition

framework, we have used the individual probe image matching scores collected in each trial.

However, it is possible to combine the matching scores obtained from multiple probe images

of a given subject to improve the recognition accuracy.

6.2 Future work

Future work entails identification in a dynamic on- line mode, where data is continually

streaming in and each image varies in quality (ambient conditions, pose, resolution). Such a

scenario demands that a verdict (match / no match) regarding a particular subject is quickly

(yet accurately) released so that more number of subjects in the scene can be evaluated.

The following questions then arise: in what order should probe images be matched, how to

combine scores obtained from multiple probe images, how soon can a verdict be confidently

reached, and what is the expected performance of such a fusion scheme. Moreover, different

features are likely to be better suited for classification of acquired images under different

network parameters such as illumination, image resolution etc., and a systematic study

will have to be completed to analyze the impact of image quality metrics on matching

performance. Thus there is a need for adaptive face classification techniques as well as fusion

algorithms that can intelligently combine the probe image inputs to determine a match while
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simultaneously obtaining a confidence estimate for the match. Our future research will focus

on these questions.
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