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ABSTRACT 

EVALUATION OF SKIN FACTOR FROM SINGLE-RATE GAS WELL TEST 

Fahad Almutairi 

 
Skin factor is generally used as an indicator for well flow efficiency and the criterion for 
performing stimulation treatment to improve well productivity. This skin factor is a 
composite factor and should be divided into its different components in order to evaluate 
near-wellbore damage. Therefore, the total skin factor obtained from a gas well pressure 
transient test has two primary components, rate-independent and rate-dependent skins. 
Both of these skin factors can be determined directly from the interpretation of pressure 
transient well tests if several transient tests are performed at different rates. However, the 
multi-rate tests are time consuming and expensive. It is advantageous to estimate the rate-
independent skin factor from a single rate test. 
 
In order to obtain a reliable value for the rate-independent skin from a single-rate test, the 
rate dependent skin must be evaluated independently. The rate-dependent skin depends 
on the coefficient of inertial resistance, β and other parameters. A number of correlations 
relating β to permeability are available in the literature. These published correlations are 
derived from limited set of laboratory measurements on various porous media and do not 
provide consistent results. Alternatively, β can be determined from the results of the 
multi-rate well tests using recorded field data. 
 
The main objective of this study is to generate a dependable and simple technique for 
estimating the true skin factor from the single rate well tests, such as build-up or fall-off 
tests, on gas wells. More specifically, the objective is to develop a correlation for β from 
field data. Since, the correlation of turbulence factor, β and permeability, k cannot be 
applied universally to all reservoirs, so the reservoir-specific correlations will be further 
developed. 
 
The well tests from several wells in the same reservoir were available and several field-
specific correlations for β were developed. The comparison of skin factor determined 
from these correlations against the skin factors determined from the well test data 
indicated that reservoir-specific correlations for β provide accurate and consistent results. 
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NOMENCLATURE 
  

K = permeability (md)  

t = Time (hrs) 

φ = Porosity (%) 

μ = Gas Viscosity (cp) 

tC = Total compressibility (psi-1) 

dr = Transient radius of drainage (ft)  

  wr = Wellbore radius (ft)     

)( ipm = Initial pseudo-pressure (psi2/cp) 

)( wfpm = Bottomhole pseudo-pressure (psi2/cp) 

)( Rpm = Reservoir pseudo-pressure (psi2/cp)  

h = Formation thickness (ft) 

T = Temperature (R) 

q = Flow rate (Mscf/D) 

S ′= Apparent skin factor  

S = Skin factor  

iμ = Initial gas Viscosity (cp) 

D = Non-Darcy turbulence coefficient (Mscf/D)-1 

μ = Average gas Viscosity (cp) 

gγ = Gas specific gravity 

Dt = Dimensionless time    



 viii

P = Pressure (Psia)   

aP = Adjusted Bottom hole Pressure (Psia)   

pP ==  Pseudopressure (Psia)      

z = Gas compressibility factor   

fSS − =  dS = Damaged skin   

fD = Non-Darcy flow factor for fractured wells 

wD = Non-Darcy flow factor for nonfractured wells 

α = Factor    

β = Coefficient of internal resistance     

ρ = Density (lbm/ft3) 

fL = Fracture length (ft) 

er = Radius of outer boundary (ft) 

fDL = Dimensionless fracture half-length (=Lf/re)  
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CHAPTER 1 

INTRODUCTION 

 
Well test data from a gas well can be analyzed using standard pressure transient test 

interpretation procedures to determine permeability ( ) and total skin factor ( ). The 

total skin factor is a composite factor which is expressed in terms of rate-independent or 

true skin factor ( ) and rate-dependent skin factor ( ) as follows (Ramey, 1965): 

                                                                                         (1) 

Rate-dependent skin ( ) represents non-Darcy flow pressure drop, however true skin 

factor ( ) represents formation change (stimulation or damage). If a multi-rate test is 

conducted and analyzed, ( ) can be determined for different values of ( ). Plot of ( ) 

versus ( ), which result in straight line, can be utilized to determine ( ) and ( ) from 

the intercept and the slope respectively (Ramey, 1965). If only a single rate test is 

available, the true skin factor ( ) could be estimated from equation (1) if the non- Darcy 

flow coefficient,  can be determined independently. The non-Darcy flow coefficient, 

( ), could be evaluated by integrating the Forchheimer equation (Ramey, 1965 and 

Jones et al, 1975) which gives: 

                                                                                 (2) 

 
The term,  referred to as the coefficient of inertial resistance originates from 

Forchheimer equation and is generally correlated with permeability and porosity of the 

porous media. A number of correlations, which have been derived from limited set of 

laboratory data, are available in the literature. The predicted value of  from these 
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correlations varies several orders of magnitude. Therefore, there is need for a reliable 

consistent procedure to estimate  in order to accurately determine the skin factor from a 

single rate well test. 
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CHAPTER 2 

LITERATURE REVIEW 

 
2.1 Introduction 

Gas properties are very strong functions of pressure which makes analysis of gas well 

tests more complicated. Therefore, all the equations controlling pressure transmission 

through gases are nonlinear.   

 

2.2 Non-Darcy Effect 

In general, the fluid flow in a porous media at low velocities is governed by Darcy’s law 

(1856), which describes a linear relationship between the velocity and the pressure 

gradient, ( ). However, in case of high flow rate, for an instance, near the wellbore 

region in gas wells, Darcy’s law is inadequate for describing the fluid flow. Therefore, In 

order to substitute the shortage encountered by Darcy’s law for high gas flow rates, 

Forchheimer (1901) proposed a classical equation and he found that the best equation that 

could describe his data is as follow. 

                                                                                    (3) 

He modified the Darcy flow equation by adding a non-Darcy term ( ) which is a 

multiplication of the non-Darcy flow coefficient ( ), fluid density ( ) and the second 

power of velocity ( ). He noticed that the pressure gradient ( ) required to sustain a 

specific high flow rate through a porous media was higher than the one predicted by 

Darcy’s law. The deviation from Darcy’s law increases with increasing flow rate and has 
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been credited, by Forchheimer, to the surplus gradient required to overcome inertial flow 

resistance, which is relative to .  

The pressure drop needed to create a desired well production rate is increased by non-

Darcy flow ( ), thus decreasing productivity. It is extremely important to estimate 

the non-Darcy flow coefficient as precisely as possible as it is the most important factor 

in determining the non-Darcy effect. The majority of researchers have confirmed that the 

non-Darcy effect is due to inertial effect and not to turbulence. By analyzing the multi-

rate pressure test results, the non-Darcy flow coefficient can be determined; however 

these data are not always available.  

 

2.3 Turbulence Factor (β) Correlations 

The coefficient, β, appearing in Forchheimer equation (8) has been referred to by several 

names such as the coefficient of inertial resistance, turbulence factor, the velocity 

coefficient, the non-Darcy coefficient, the Forchheimer flow coefficient, and simply the 

beta factor. In general, β is related to the structure of porous media.  

The most important factor in evaluating the non Darcy effect is to get a good estimate of 

the turbulence factor, β. Many efforts have been made to generate a relationship among 

laboratory measured β factor and rock properties such as porosity and permeability. The 

first correlation for turbulence factor, β,  was developed by Janicek and Katz (1955) 

which was a function of porosity and permeability of the porous medium. They have used 

limestone, sandstone, and dolomite cores for developing the following correlation: 

                                                                                 (4) 
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By analyzing both Janicek and Katz data, Tek et al. (1962) proposed a correlation for 

turbulence factor, β, which was expressed as following: 

                                                                                       (5) 

The turbulence factor, β, in propped fracture at different temperatures was investigated by 

Cooke (1973). He developed the following equation: 

                                                                                          (6) 

Where K is fracture permeability (md), β is turbulence factor measured in (1/ft), a and b 

are based on proppant type. This correlation was only applied for used for single phase 

flow.  Table 2.1, presents constant values of a and b for Cooke equation. 

 

Table 2.1: Constants a, b for Cooke’s Correlation 

Sand size a b 
8-12 mesh 1.24 2.32 
10-20 mesh 1.34 2.63 
20-40 mesh 1.54 2.65 
40-60 mesh 1.6 1.1 

 

A different correlation was developed by Geertsma (1974) by analyzing data obtained 

from consolidated sandstones, unconsolidated sandstones, limestone, and dolomites. He 

proposed the following equation: 

                                                                                       (7) 

 

 There was another correlation for Geertsma (1974) when he developed a correlation for 

the turbulence factor for formation with residual water saturation. This correlation was 

defined by the following equation: 
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                                                                               (8) 

 
Another correlation was introduced by Pascal et al. (1980). By using model and data from 

different rate tests in low permeability gas reservoir, he suggested a mathematical model 

to estimate the turbulence factor and fracture length. According to their analysis, the 

following correlation was developed:  

                                                                                       (9) 

Jones (1987) executed a lab experiment on 355 sandstones and 29 limestone cores with 

various core sorts such as crystalline limestone, fine-grain sandstone, and vuggy 

limestone. Based on his final analysis, the following correlation for β  factor was 

obtained: 

                                                                                    (10) 

Li et al. (1995) reviewed the non-Darcy effect using a reservoir simulator. They 

performed a number of experiments by injecting Nitrogen (N2) at diverse rates, in many 

various directions into a wafer shaped Berea sandstone core. Subsequently, the pressure 

drop from experiments and simulations were compared and finally a correlation for the 

turbulence factor was obtained:    

                                                                                       (11) 

Coles and Hartman (1998) performed their experiment on sandstone and limestone 

samples (with no liquid present) and they developed a correlation for turbulence factor as 

follow:  
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                                                                                  (12) 

 
A detailed review of both empirical and theoretical correlations for β has been presented 

by Li and Engler (2001). They have proposed the following correlation for the turbulence 

factor: 

                                                                                     (13) 

 
In recent investigations (Aminian et al, 2007), the values of β  from a number of these 

existing correlations were utilized in conjunction with equation (2) to determine the non-

Darcy flow coefficient, D for a number of well test.  

Table 2.2, presents some of the common correlations based on porosity and permeability. 

The units in this table are (md) for permeability and (1/cm) for β. 

 

Table 2.2:  Factor Correlation 

Source Equation 
Janicek and Katz   

Pascal et al   
Coles and Hartman   
Coles and Hartman   

Svec & Engler  
Jones  
Jones  

Geertsma  
Tek et al.  

Ergun & Orning  
Li et al   
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2.4 Flows around an Artificially Fractured Well 

The existence of an artificial fracture alters the flows near the wellbore significantly. The 

flows that can be developed around an artificially fractured well were presented by 

H.Cinco-Ley. Figure 2.1 shows the various flow conditions around the fracture: 

 

Figure 2.1: Various flow conditions near a hydraulic fracture, (Gilles Bourdarot, 1998) 

 

Linear Flow in the Fracture: theoretically, this type of flow occurs at the beginning of 

the test and it is a linear flow. In this flow the majority of the fluids formed at the well 

come from expansion in the artificial fracture. Pressure differs linearly versus  same 

as any linear flow. 

 

 Bilinear Flow: Cinco was the first to describe this type of flow and since that this flow 

been observed many times in field cases. It is named bilinear as it corresponds to two 

concurrent linear flows: (a) a compressible linear flow in the formation and (b) an 
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incompressible linear flow in the fracture. Bilinear flow remains only if the ends of the 

fracture do not disturb the flows. It is described by linear pressure difference versus the 

fourth root of time.  

 

Linear Flow in the formation: This kind of flow is very often discernible during 

fractured wells testing. It is an essential element of the conventional analysis techniques 

of these tests. The ends of the fracture in this type of flow have been reached and the 

dimension of the fracture has an affect on flows. This flow corresponds to a linear 

variation of the pressure versus . 

The existence of an artificial fracture alters the flows near the wellbore significantly. 

 

 Pseudoradial Flow: The existence of an artificial fracture alters the streamlines near the 

wellbore significantly. Equipotentials recover a radial equilibrium only at a specific 

distance from the well. Flow converts to radial when the compressible zone reaches this 

area. Pressure differs logarithmically versus time. Additionally, the existence of the 

fracture near the wellbore corresponds to a geometrical skin. 

 

2.5 Effect of non-Darcy on Fractured Wells 

In hydraulically fractured gas wells, Non-Darcy flow considered to be the most 

significant factor for pressure drop where high velocity happens in the fracture. Several 

studies were performed to investigate the effect of the non-Darcy flow on hydraulically 

fractured wells. The first who observed the effect of non-Darcy flow on vertically 

fractured well were Millheim and Cichowicz (1968).  Holditch and Morse (1976) used 
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some numerical methods and discussed the effect of non-Darcy flow in the fracture 

system and reservoir. Their results showed that the apparent fracture conductivity was 

reduced by the non-Darcy flow.  Cinco-Ley and Sameniego (1978) were the first ones to 

develop the first solution for the finite conductivity vertical using the methods generated 

by Gringarten et al (1974). Their solutions were achieved numerically by using a 

discretized description of the fracture. A semi-analytical model for non-Darcy flow in 

wells with finite conductivity fracture was developed by Guppy et al. (1982). They 

discussed the alterations in flux distribution in the fracture system under the effect of 

non-Darcy flow. They have revealed a reduction in the apparent conductivity of the 

fracture. 

  

2.6 Gas Well Test Types and Purposes 

Gas well tests can be divided into two common groups based on their main function. The 

first group, pressure-transient tests, contains tests designed to measure important fluid 

and reservoir rock properties (e.g., porosity, permeability, and average reservoir pressure) 

and to define and locate reservoir heterogeneities (e.g., natural fractures, sealing faults, 

and layers). The second group, deliverability tests, contains tests designed to assess a 

well’s production potential. 

 

2.6.1 Pressure-Transient Tests 

Pressure-transient tests describe well tests in which we can measure and generate 

pressure changes with time. From these measured pressures, we can assess near-wellbore 

conditions and also the in-situ reservoir properties further than the region affected by 
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drilling operations. Furthermore, we can obtain significant formation properties of 

potential value in enhancing either a depletion plan or an individual completion for a 

reservoir. Pressure-transient tests can be divided into two wide categories- multi-well and 

single-well tests. 

Single-well tests evaluate pressure drawdown, buildup, and fall-off, as well as injectivity. 

In these tests, we can use the calculated pressure response to find out the average 

properties in the drainage area of the tested well. Multiwell tests, which comprise pulse 

and interference tests, are used to calculate properties in an area centered along a line 

linking pairs of wells. 

  

Drawdown Test: In a drawdown or flow test, a well that is shut-in, static, and stable is 

opened to flow at constant and identified rate while measuring bottomhole pressure 

(BHP) changes as a function of time. Figure 2.2 illustrates a drawdown test. 

  

Figure 2.2: Pressure and flow rate of a typical drawdown test 
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The drawdown test is used as a basis to derive several of the traditional analysis 

techniques.  However, in actual fact, this test may be rather complicated to attain under 

the intended conditions. Especially: (a) it is not easy to make the well flow at constant 

rate, and (b) the well status may not originally be either stable or, static specially if it was 

newly drilled or had been flowed formerly. On the other hand, the drawdown test is good 

technique of reservoir limit testing, because the time needed to notice a boundary 

response is long, hence operating fluctuations in the flow rate become less important over 

such long times. 

 

Buildup Test: In a buildup test, a well which is already producing at some fixed rate is 

shut-in, and the downhole pressure builds up as a function of time. Form this type of test; 

we can calculate average reservoir pressure, permeability, and skin factor in the well 

drainage area. Figure 2.3 illustrates a buildup test.  

 

Figure 2.3: Pressure and flow rate of a typical buildup test 
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Interpretation of a buildup test often needs only minor adjustment of the techniques used 

to describe constant rate drawdown test. The functional benefit of a buildup test is that 

the constant flow rate condition is more easily achieved as the flow rate is zero. Buildup 

tests also have some disadvantages: (a) it might be complicated to achieve the constant 

rate production before the shut-in, especially if it is essential to close the well for a short 

time to run the pressure tool into the hole. (b) Losing of production during the well is shut 

in time.  

 

Injection Test:  an injection test concept is almost identical to a drawdown test, except 

that flow is inside the well rather than out of it. Injection rates can frequently be 

controlled more easily than production rates; however interpretation of test results can be 

difficult by multiphase effects except if the injected fluid is identical to the original 

reservoir fluid. 

 

 Falloff Test: A pressure falloff test concept is almost identical to a pressure-buildup test, 

except that it is performed on an injection well. A falloff test gauges the pressure decline 

after the closure of an injection. Falloff test analysis is more complicated if the injected 

fluid is different from the original reservoir fluids. 

Figure 2.4 illustrates a falloff test.   



 14 

 

Figure 2.4: Pressure and flow rate of a typical falloff test 

 

2.6.2 Deliverability Tests 

Gas well deliverability tests are the testing of gas wells used to determine their 

production capabilities under specific bottomhole flowing pressures and reservoir 

conditions. They consist of a sequence of at least three or more flows with rates, 

pressures, and other data measured as a function of time. Gas well deliverability tests are 

generally performed on new wells and periodically on old wells. The full schedule of 

tests might take more than a few days. For the relatively short time of tests, the well 

behavior/reservoir is often transient, means, pressure or flow rate change with time. The 

characteristics which are desired for long-term forecasts should basically be nontransient 

(pseudo-steady state or steady state). Consequently, the basics of deliverability testing are 

to perform short-time tests that can be successfully used to forecast long-term behavior.  

The absolute open-flow (AOF) potential is the common productivity indicator achieved 

from deliverability tests. The AOF is the maximum flow rate at 14.7 psia sand face 

pressure. An additional, and perhaps more important, application of gas well 
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deliverability testing is to create a reservoir inflow performance relationship (IPR). The 

IPR curve defines the relationship between bottomhole flowing pressure and surface 

production rate for a particular value of reservoir pressure. Several deliverability testing 

techniques have been developed for gas wells such as flow-after-flow, single-point, 

isochronal and modified isochronal tests. 

 

Flow-after-flow Test: Flow-after-flow tests, sometimes called four-point or gas 

backpressure tests, are performed by producing the well at a sequence of different 

stabilized rates and gauging the stabilized bottomhole pressure (pwf).  In many cases, 

stabilization is described in terms of percentage change per unit of time. Figure 2.5 shows 

the essential features of the flow-after-flow test. 

Figure 2.5: Flow-after-flow test, flow rate and pressure diagrams, (Aminian, 2008) 
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 The flow-after-flow test can be applied in high-permeability formations. Low-

permeability formations need undesirably long times for stabilization. 

 

Single-Point Test: This type of test is performed by producing the well at single rate 

until bottomhole flowing pressure (BHFP) is stabilized. This test was created to 

overcome the restriction of long testing times needed to reach stabilization in the flow-

after-flow test. If previous tests have provided values for the non-Darcy flow coefficient, 

D and n, then a single-point test is enough to update values of C and S. As part of a 

pressure survey, this kind of test is often conducted yearly. A single point on the 

deliverability curve can be obtained during this test. 

 

Isochronal Test: Flow-after-flow gas well testing and the analysis of its data are quite 

simple. This type of test has been considered the basic standard for several years, 

however it has certain disadvantages. The complexity happens if the reservoir 

permeability is low, or flaring system needs to be optimized. In this type of reservoir a 

properly stabilized, Flow-after-flow deliverability test might not be performed in a logical 

period of time. In other words, the time needed to get stabilized flow conditions might be 

very long. 

The isochronal gas well test was proposed by Cullender. In this type of test, a well is 

shut-in long enough before each test-flow time so that each flow will begin with the same 

pressure distribution in the reservoir. A typical isochronal test is illustrated in Figure 2.6.  
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Figure 2.6: Isochronal test, flow rate and pressure diagrams, (Aminian, 2008) 

 

Modified Isochronal Test: By comparing the flow-after-flow with the isochronal tests, a 

substantial volume of gas will be saved from being flared into the atmosphere by using 

the isochronal test. In addition, it might save time if the buildup time to static pressure 

subsequent to each flow period is short. This time saving during the flow periods might 

be substantial in the testing of wells producing from taut gas reservoirs, an isochronal test 

might not always be functional, since it is very complicated to achieve a totally stabilized 

static reservoir pressure prior to the first flow period and during each following shut-in 

time. 
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A modification to the isochronal test was proposed by Katz et al. (1959). They proposed 

that both the flow period and the shut-in period for every test could be equal period as 

long as the unstabilized shut-in pressure, , at the end of every test can be used instead 

of the static reservoir pressure, , in determining the variation of pressure squared for 

the next flow rate. Figure 2.7 illustrates the flow rate and pressure series of typical 

modified isochronal test.    

 

Figure 2.7: Modified Isochronal test, flow rate and pressure diagrams, (Aminian, 2008) 

 

2.7 Real Gas Pseudopressure and Pseudotime 

 Since the viscosity and compressibility of real gases are very strong functions of 

pressure, it is incorrect to use the slightly compressible assumption when deriving the 
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differential equations controlling the pressure transients. However, if the gas behavior 

can be described by the real gas law: 

                                                                                       (14) 

Then the controlling differential equations can be approximated by the description of a 

variable named the real gas pseudopressure by Al-Hussainy and Ramey (1966). They 

introduced the real gas pseudopressure as: 

                                                                                     (15) 

     

Pseudotime was presented by Agarwal (1979) as: 

                                                                                      (16) 

 

2.8 Pseudo-Steady State Solution 

Early time or transient solution can be described by the following equation: 

                                                                                       (17) 

 

Where: 

  is the stabilized shut-in bottomhole pressure (BHP) calculated before the 

deliverability test.  In new reservoirs this shut-in pressure equals the initial reservoir 

pressure ( = ) while in developed reservoirs, the shut-in pressure is less than the 

initial reservoir pressure ( < ).  

Pseudo-steady state solution or the late time of the controlling differential equation is: 
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                                                                         (18)                             

Where: 

  is referring to the current drainage area pressure. Gas wells cannot arrive at pseudo 

steady state because of the changes in compressibility and viscosity as the average 

pressure decreases. It should be noticed that the stabilized shut-in bottomhole pressure 

( ) remains constant while the current drainage area pressure ( ) decreases during a 

pseudo steady state flow test. 

  

The transient and pseudosteady state equations were respectively expressed by Houpeurt 

as: 

                                                                        (19) 

                                                                         (20) 

Where:  

                                                                                                                  (21) 

 

                                                                                                                  (22) 

 (23)        

In the above equations  is in MMSCF/D and the coefficient of represents the non-

Darcy flow coefficient. Houpeurt equations can be written in pressure-square 

formulation: 
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                                                                        (24) 

                                                                        (25) 

 

Where:  

                                                                                                                  (26) 

  

                                                                                                                  (27) 

  

                                                                                                                  (28) 

 

2.9 Recent Investigations  

Recent investigations were conducted by Aminian et al (2007) in order to develop a 

reliable method for gas well deliverability determination based on a single rate build-up 

or fall-off test. In these investigations, the values of β  from a number of the published 

correlations (Table 2.2) were utilized in conjunction with equation (2) to determine the 

non-Darcy flow coefficient, D for a number of well tests.  The calculated value of D was 

then used to estimate the true skin factor, s, from the total skin factor, s’, obtained from 

the same well tests using equation (1). The estimated true skin factors were then 

compared to the true skin factors determined from multi-rate tests on the same wells. The 

errors in skin factor varied from 5 to over 1000 percent.  

It was concluded that the relation between the β  factor and the permeability, K, is 

restricted to each porous media and a general correlation cannot be developed that can 
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provide accurate and consistent results in all cases. Furthermore, it was recommended to 

obtain and then analyze actual multi-rate test data from a number of wells in a certain 

reservoir. Accordingly, reservoir-specific β  correlations could be developed in order to 

accurately determine the skin factor from a single rate well test.  
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CHAPTER 3 

METHODOLOGY 

 
The main objective of this study was to generate a reliable and simple technique for 

estimating the true skin factor from the single rate well tests, such as build-up or fall-off 

tests, on gas wells. More specifically, the objective is to develop a correlation for β from 

field data. From previous investigations, it was concluded that the published correlations 

of turbulence factor, β  and permeability, K are derived from limited set of laboratory 

measurements and they do not provide consistent results and cannot be applied 

universally to all reservoirs. Accordingly the reservoir-specific correlations will be 

further developed. To achieve this objective, the following 5 steps were used: 

1. Well test data from 4 storage reservoirs in the Appalachian Basin, referred to in this 

study as reservoirs A, B, C and D, were obtained. 

2. Multi-rate well test data were available from a number of wells in each reservoir. 

These tests were analyzed to obtain permeability, apparent skin factor, the non-

Darcy coefficient, and the true skin factor. 

3. -Factor was determined for each well using equation (2). 

4. The calculated  and  values were utilized to develop a  correlation for each 

reservoir in the form of  the following equation: 

                                                                                     (29) 

Equation (29) can be re-written as follows: 

                                                                                (30) 
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Equation (30) indicates that a plot of  against  on a log-log paper should follow 

a linear trend. The two constants (a, and b) can then be determined from the 

intercept and slope of this line.  

5. To evaluate the accuracy of the correlations, one well in each reservoir was set 

aside as a test well. The well test data from the test wells were treated as a single 

rate tests and the value of true skin factor was estimated using the reservoir 

correlation for β.  This estimated skin factor was then compared to the skin factor 

determined from the analysis of the multi-rate tests. 

3.1 Well Test Data Collection 

In order to attain the primary objectives of this research, actual well test data were 

collected.  This field well test data had to be prepared for well test analysis. One of the 

main required specifications is that data must have bottom hole pressures, but if the given 

data is only well head pressure which occurred in this case, then they have to be 

converted to Bottom Hole Pressures by using well flow and pressure loss calculation. A 

program was utilized to achieve this. In addition, the well test data reflected significant 

fluctuations that needed to be smoothed out before analysis.  

In this study, the well test data from four storage reservoirs in the Appalachian Basin, 

referred to in this research as reservoirs A, B, C and D were available. Table 3.1, presents 

some of the parameters that were used throughout this study.  

Table 3.1: Parameters used for each reservoir 

Parameter Reservoir (A) Reservoir (B) Reservoir (C) Reservoir (D) 
Average Formation Porosity,  (%) 14 15 8.8 10 

Gas Specific Gravity,  0.585 0.585 0.595 0.593 
Average Pay Zone Thickness, (ft) 10 45 24 97 
Average Well-bore Radius, (ft) 0.30 0.24 0.26 0.167 
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3.2 Analysis of Multi-rate Tests 

Multi-rate tests were available from different wells in four different reservoirs as 

reflected in the following table: 

Table 3.2: Number of Wells Available for Each Reservoir 

Reservoir Number of Wells Available  
A  5  
B  4  
C  6  
D  3  

 

These tests were analyzed to determine permeability ( ), the non-Darcy coefficient 

( ), and the true skin factor ( ). A sample evaluation for well D-2 (Reservoir-D) is 

presented in this section.  

1. Adjusted bottom hole pressures ( ) were plotted in a semi-log paper against time 

( ) and from the resulted straight line, the slope and intercept were determined for 

different flow rates.  

2. From these slopes and intercepts, permeability and skin factor were obtained using 

the following equations: 

                                                                                (31) 

 

                                                                      (32) 

 

The above two equations might vary from one well to another depending on the bottom 

hole pressure values. Table 3.3, summarizes the permeability and apparent skin factor 

values at each flow rate for well D-2: 
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Table 3.3: Permeability and apparent skin factor values for well D-2  

Q (MMcf/D) K (md) s’ 
2.10801 4.08 -4.1706908  
3.20385 4.96  -3.913617718  
4.68154 5.28  -3.812443879  

 

3. The apparent skin factor values ( ) were plotted against flow rate values ( ) and it 

was resulted in straight line. This straight line was used to determine true skin factor 

( ) and non-Darcy flow coefficient ( ) from the intercept and slope respectively. 

Figure 3.1 illustrates the plot of apparent skin factor values ( ) vs. flow rates ( ): 

 

Figure 3.1: Apparent skin factors ( ) vs. Flow rates ( ) for well D-2 

From the above plot: 

• The true skin factor ( ) = - 4.416 

• The non-Darcy coefficient ( ) = 0.1352/1000 = 0.0001352 
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3.3 Developing Reservoir specific  Correlation 

Continuing the same well in the previous section (Well D-2), the turbulence factor ( ) 

can be determined by rearranging equation (2) as follow: 

                                                                                 (33) 

 
            

Following the same procedures for the other two wells in Reservoir D, the permeability 

( ) and β-factor values were obtained for each well. Table 3.4, presents the permeability 

and β-factor values for wells in Reservoir-D except for one well which was set aside as a 

test well:  

 

Table 3.4: Permeability and β-factor values for each well in Reservoir-D  

Well K (md) β 
D-1 0.81 3.50 E+10  
D-2 4.78  6.68 E+09 

 

The permeability ( ) and the turbulence factor ( ) values could be utilized to develop a 

relation between  and β for Reservoir D. 

 

The permeability ( ) values were plotted in a log-log paper against turbulence factor 

( ) values and then slope and intercept were determined. Figure 3.2 shows the plot of 

permeability ( ) vs. the coefficient of inertial resistance ( ) values for reservoir-D 

wells: 



 28 

 

Figure 3.2:  Factor vs. Permeability values ( ) for Reservoir-D wells  

From the above plot: 

• a = 3E+10 

• b = -0.934 

Or 

                                                                                 (34) 

 
3.4 Verification of Reservoir-D  Correlation 

One well in each reservoir was set aside as a test well in order to evaluate the accuracy of 

the reservoirs-specific  correlation. Well D-3 was selected as a test well for reservoir-

D. This well test data were treated as a single rate test and the value of true skin factor 

(stest) was estimated from the analysis of the multi-rate tests. This estimated skin factor 

was then compared to the skin factor determined from reservoir-D  correlation (sequ.) to 

evaluate the error.  
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A sample evaluation for well D-3 (Reservoir-D) is presented in this section.  By using the 

same procedures in analyzing multi-rate test in section 3.2 for well D-2, the true skin 

factor (stest) of well D-3 was estimated to be: 

stest = - 4.0 

In order to determine the true skin factor from reservoir-D  correlation (sequ.), we have 

to perform the following steps: 

• Calculate  using the permeability that was obtained from the well test analysis 

and use equation (34). 

• Determine the non-Darcy coefficient ( ) by using equation (2). 

• Calculate the true skin factor (sequ.) using equation (1). 

Table 3.5, summarizes the skin factor estimated from single rate tests using reservoir-D 

β-correlations, the calculated skin factors from multi-rate tests, and percent error in the 

estimated skin factor for well D-3. 

Table 3.5: Estimated skin factor from single rate test (well D-3)  

Q  
(Mcfd) 

K  
(md) s’  D sequ stest % error 

1900  11.34 -3.7 2.98E+09 0.000139 -3.97 -4.0 1 
3100  9.29 -3.7 3.58E+09 0.000137 -4.10 -4.0 4 
4450  7.47 -3.4 4.39E+09 0.000135 -4.04 -4.0 2 

 

 

3.5 Evaluation of the Existing  Correlation for reservoir-C wells  

Well C-6 was selected as a test well for reservoir-C. In this section, 3 existing  

correlations namely Ergun, Janicek & Katz and Tek et al. were evaluated by determining 

the true skin factor by using these existing  correlations (sequ.) and then compared it 

with the value of true skin factor (stest) that was estimated from the analysis of the multi-
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rate tests to evaluate the error. By using the same procedures in analyzing multi-rate test 

in section 3.2 for well D-2, the true skin factor (stest) of well C-6 was estimated to be: 

stest = - 5.4 

Now, in order to determine the true skin factor from these existing  correlations (sequ.), 

we have to perform the following steps: 

• Calculate  using the permeability that was obtained from the well test analysis 

and  equations of Ergun, Janicek & Katz and Tek et al. 

• Determine the non-Darcy coefficient ( ) by using equation (2). 

• Calculate the true skin factor (sequ.) using equation (1). 

Table 3.6, summarizes the skin factor estimated from single rate tests using Ergun, 

Janicek & Katz and Tek et al. β-correlations, the calculated skin factors from multi-rate 

tests, and percent error in the estimated skin factor for well C-6. 

Table 3.6: Evaluation of the Existing  Correlation for wells in reservoir-C 

q  Well Test  Ergun  Janicek & Katz  Tek et al.  
Reservoir 

C  Mscfd  s’  stest               sequ  
% 

ERROR  sequ  
% 

ERROR  sequ  
% 

ERROR  
6700 1 -5.4 1 -119.2 0.2 -103.6 0.2 -102.8 Test Well   

C-6 8150 2.4 -5.4 2.4 -145.1 1.4 -126.3 1.4 -125.3 
 

As mentioned earlier, these existing correlations are derived from limited set of 

laboratory measurements on various porous media and do not provide consistent results. 

Table 3.6 confirmed this theory and it can be seen from this table that the skin factors 

estimated from single rate tests using Ergun, Janicek & Katz and Tek et al. β-correlations 

have a major percentage of error. 
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CHAPTER 4 

RESULTS AND DISCUSSION 

 
The main objective of this study was to generate a reliable and simple method for 

estimating the true skin factor from the single rate well tests, such as build-up or fall-off 

tests, on gas wells. More specifically, the objective is to develop a correlation for β from 

field data. Since, the correlation of turbulence factor, β  and permeability, k cannot be 

applied universally to all reservoirs, so the reservoir-specific correlations will be further 

developed. To achieve this objective, multi-rate well test data were analyzed to obtain 

permeability ( ), apparent skin factor ( ), the non-Darcy coefficient ( ), the true skin 

factor ( ) and (  ) for every well in each reservoir. Table 4.1 summarizes multi-rate test 

analysis for wells in reservoir-C.  

Table 4.1: Multi-rate test analysis for wells in reservoir-C 

Well K, md D β 
C-1 130.00 5.12E-04 2.18E+08 
C-2 71.00 9.68E-04 1.15E+09 
C-3 193.00 3.66E-04 1.21E+08 
C-4 203.00 7.00E-04 1.64E+08 
C-5 102.00 7.64E-04 5.E+08 

   

Permeability ( )  and the coefficient of inertial resistance ( ) values were determined 

for each well of the other four reservoirs. Figure 4.1 shows the plot of permeability ( ) 

values vs. the coefficient of inertial resistance ( ) values for reservoirs A, B, C and D. 
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Figure 4.1:  Correlations for different reservoirs (A, B, C & D)  

The straight line trends for each reservoir are shown on Figure 4.1. The trend lines for 

reservoir A, B, and D appear similar. However, reservoir C exhibit a different trend 

compare to the other reservoirs. Reservoir A appears to have the highest  values while 

reservoir B appears to exhibit the lowest  values. Several possible explanations for 

these differences can be stipulated. One possibility is the impact of stimulation 

treatments. The permeability near the wellbore in reservoir B could be higher than 

formation permeability due to more extensive fracturing. Presence of fractures could 

significantly impact the flow path and tortuosity near the wellbore and thereby reduce the 

value of ( ). Second possibility is presence of liquids which can significantly increase 

the value of ( ). The well tests in reservoir A were performed at the end of withdrawal 

cycle in the storage field. Invasion of the wells by water toward the end of withdrawal 

cycle in the storage field is a common phenomenon. However, the well tests in reservoir 

B were performed at the beginning of withdrawal cycle. Finally, the difference in the 
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characteristics of reservoirs has led to different correlations. It is interesting to note that 

reservoir C exhibit a much steeper slope than the other reservoirs. The detail examination 

of Figure 4.1 reveals that several of data points for reservoir C are on the same trend as 

reservoir A and others are on the same trend as reservoir B. It is possible that reservoir C 

contains two different porous media causing a steep slope when treated as a single porous 

media. It should be also noted that the well tests from reservoir C were to some degree 

erratic and the results are not reliable.  

 

Due to similarity of the linear trends, a general correlation based on the data from all the 

reservoirs was developed as illustrated in Figure 4.2. The constants (a, and b) as well as 

the correlation coefficient (R2) for this line are also provided in Table 4.2. This 

correlation (all reservoirs) represents an average behavior for all the reservoirs and can be 

used in the absence of field data to develop a field specific correlation. 

 

Figure 4.2:  General Correlation based on the data from all reservoirs 
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Table 4.2 Summarizes the values of constants (a, and b) as well as the correlation 

coefficient (R2) for each line in Figures 4.1 and 4.2.  

Table 4.2: a, b & R2 constant values for each line in Figures 4.1 and 4.2 

Reservoir a b R2 
A 1.117×1010 0.79 0.91 
B 9.412×1010 1.09 0.98 
C 5.320×1012 2.01 0.94 
D 2.876×1010 0.93 1.00 

All  3.076×1010 0.96 0.91 
 

Table 4.3 summarizes the skin factor estimated from single rate tests using reservoir 

specific β correlations and percent error in the estimated skin factor for the 4 test wells. 

Table 4.3: Skin Factors Estimated from Reservoir Specific β Correlation  

q Well Test Reservoir Specific 
β Correlation Test Well 

Mscfd s’ s              s % 
ERROR 

820 -2.5 -3.0 -3.1 3 
1380 -1.9 -3.0 -2.9 3 Test Well A 
2080 -1.6 -3.0 -3.0 1 
1450 -2.4 -3.3 -3.5 9 
1750 -2.4 -3.3 -3.8 15 Test Well B 
2300 -1.8 -3.3 -3.6 12 
6700 1.0 -5.4 -5.0 8 Test Well C 8150 2.4 -5.4 -4.6 14 
1900 -3.7 -4.0 -4.0 1 
3100 -3.7 -4.0 -4.1 4 Test Well D 
4450 -3.4 -4.0 -4.0 2 

 

 In addition, the general correlation (all reservoirs) was used for estimation of skin factor 

for all 4 test wells and the results are provided in Table 4.4. 



 35 

Table 4.4: Skin Factors Estimated from General β Correlation (All Reservoirs) 

q Well Test All Reservoirs β 
Correlation Test Well 

Mscfd s’ s              s % 
ERROR 

820 -2.5 -3.0 -3.5 17 
1380 -1.9 -3.0 -3.6 22 Test Well A 
2080 -1.6 -3.0 -4.2 40 
1450 -2.4 -3.3 -3.0 8 
1750 -2.4 -3.3 -3.1 5 Test Well B 
2300 -1.8 -3.3 -2.8 15 
6700 1.0 -5.4 -2.2 59 Test Well C 8150 2.4 -5.4 -1.5 71 
1900 -3.7 -4.0 -4.0 1 
3100 -3.7 -4.0 -4.1 4 Test Well D 
4450 -3.4 -4.0 -4.0 3 

 

For comparison purposes, the correlations developed for β in reservoir A and B were also 

used to estimate skin factors in all the test wells and the results are provided in Table 4.5.  

Table 4.5: Skin Factors Estimated from Reservoirs A & B β Correlations 

q Well Test Reservoir A  
β Correlation 

Reservoir B  
β Correlation Test Well 

Mscfd s’ s              s % ERROR s % 
ERROR 

820 -2.5 -3.0 -3.1 3 -4.7 57 
1380 -1.9 -3.0 -2.9 -3 -5.7 91 Test Well A 
2080 -1.6 -3.0 -3.0 1 -7.3 145 
1450 -2.4 -3.3 -2.8 15 -3.5 9 
1750 -2.4 -3.3 -2.8 13 -3.8 15 Test Well B 
2300 -1.8 -3.3 -2.4 25 -3.6 12 
6700 1.0 -5.4 -1.4 74 -4.7 13 Test Well C 8150 2.4 -5.4 -0.6 90 -4.5 16 
1900 -3.7 -4.0 -3.9 -2 -4.3 9 
3100 -3.7 -4.0 -3.9 -1 -4.7 18 Test Well D 
4450 -3.4 -4.0 -3.8 -5 -4.9 24 

 

These two correlations appear to be the upper and lower limits of β . As it can be seen 

from Table 4.3, the reservoir specific correlations provide accurate results in all cases. 

The general correlation (all reservoirs) also provides reasonable results in all test wells 



 36 

with exception of test well C. This is probably due to the unusual nature of reservoir C. 

Data from more reservoirs in the Appalachian Basin is required to confirm if this 

correlation can provide reasonable results for the Appalachian Basin reservoirs. The 

reservoir A and B correlations also provided reasonable results in 3 out of 4 test wells. It 

is interesting to note that the correlation for reservoir B provides good results for test well 

C. This may be attributed to the similarity between reservoir B and some of the wells in 

reservoir C as discussed earlier. 
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CHAPTER 5 

CONCLUSIONS AND RECOMMENDATIONS 

 
In this study, a simple and reliable method for estimating the true skin factor from the 

single rate well tests was generated. The following conclusions have been obtained based 

on the work done during this study: 

1. Four reservoir-specific β correlations were developed based on the actual field 

well tests data. 

2. The reservoir-specific β-correlations provided accurate estimate of skin factors in 

test wells.  

3. Single-rate test can be analyzed to determine the true skin factor upon availability 

of reservoir-specific β -correlation. Accordingly, there would be no need for 

additional multi-rate tests.  

4. It can be concluded that each reservoir has its own specific characteristics. 

5. It is possible for one reservoir to contain two different porous media and as a 

result two β-correlations are required to analyze well test data.   

6. A general correlation has been developed that can be used to estimate skin factor 

when reservoir-specific β-correlation cannot be developed. 

 
RECOMMENDATION 

Additional well test data from gas wells in the Appalachian Basin are needed to confirm 

the applicability of the general correlation developed in this study. 
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APPENDIX A 

Reservoirs A and B Wells Data 

 
1. Reservoir A Parameters: 
 
Table A.1 summarizes reservoir-A parameters and the calculated values of permeability 

( ) and ( ) factor for each well.  

 
Table A.1: Reservoir A Parameters Obtained from Multi-rate Tests 

 
Figure A.1 shows the plot of permeability ( ) values vs. the coefficient of inertial 

resistance ( ) values for reservoirs A. 

 
Figure A.1: ( ) Correlation for reservoir A  
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2. Reservoir B Parameters: 
 
Table A.2 summarizes reservoir-A parameters and the calculated values of permeability 

( ) and ( ) factor for each well.  

 
Table A.2: Reservoir B Parameters Obtained from Multi-rate Tests 

 
Figure A.2 shows the plot of permeability ( ) values vs. the coefficient of inertial 

resistance ( ) values for reservoirs A. 

 
Figure A.2: ( ) Correlation for reservoir B 
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APPENDIX B 

Reservoirs C Wells Data 

 
1. Reservoir C Parameters: 
 
Table B.1 summarizes reservoir-C parameters and the calculated values of permeability 

( ) and ( ) factor for each well.  

 
Table B.1: Reservoir C Parameters Obtained from Multi-rate Tests 

 
Figure B.1 shows the plot of permeability ( ) values vs. the coefficient of inertial 

resistance ( ) values for reservoirs C. 

 
Figure B.1: ( ) Correlation for reservoir C 
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2. Reservoir-C Well Tests Data 
 
Multi-rate test data for wells C-1, C-2, C-3, C-4, C-5 and C-6 were available: 

Well C-1: 

Table B.2: Multi-rate test analysis for well C-1 (Rate-1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Since the calculated BHP is between 1500 & 3000 psi, the adjusted pressure Method has 

been used. 

Pa =P2/ (2*P¯) 
 
 

• By plotting the adjusted pressure against time in a semi-log paper as follow: 
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Figure B.2: Semi-log plot for well C-1 (Rate-1) 

• Now, permeability (K) and apparent skin factor (s’) can be calculated as follow: 
 
 

 
 

• By following the same procedures with the other two rates, the values of the 

permeability (K) and apparent skin factor (s’) were obtained. Table B.3 

summarizes the results of the multi-rate test analysis for well C-1 at each flow 

rate. 
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Table B.3: K and S’ values for well C-1 at different rates 

 

 

 

 

• By plotting the flow rate (Q) against the apparent skin factor (s’) values, we had 

the following result: 

 

Figure B.3: Flow rates against skin factor (s’) for well C-1  
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Well C-2: 

Table B.4: Multi-rate test analysis for well C-2 (Rate-1) 

 

 

 

 

 

 

 

 

 

 

 

 Since the calculated BHP is between 1500 & 3000 psi, the adjusted pressure Method has 

been used. 

 

Pa =P2/ (2*P¯) 
 
 

• By plotting the adjusted pressure against time in a semi-log paper as follow: 
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Figure B.4: Semi-log plot for well C-2 (Rate-1) 

• Now, permeability (K) and apparent skin factor (s’) can be calculated as follow: 
 

 

 

• By following the same procedures with the other two rates, the values of the 

permeability (K) and apparent skin factor (s’) were obtained. Table B.5 
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summarizes the results of the multi-rate test analysis for well C-2 at each flow 

rate. 

Table B.5: K and S’ values for well C-2 at different rates 

 

• By plotting the flow rate (Q) against the apparent skin factor (s’) values, we had 

the following result: 

 

Figure B.5: Flow rates against skin factor (s’) for well C-2 
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Well C-3: 

Table B.6: Multi-rate test analysis for well C-3 (Rate-1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Since the calculated BHP is between 1500 & 3000 psi, the adjusted pressure Method has 

been used. 

Pa =P2/ (2*P¯) 
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• By plotting the adjusted pressure against time in a semi-log paper as follow: 
 
 

Figure B.6: Semi-log plot for well C-3 (Rate-1) 

• Now, permeability (K) and apparent skin factor (s’) can be calculated as follow: 
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• By following the same procedures with the other two rates, the values of the 

permeability (K) and apparent skin factor (s’) were obtained. Table B.7 

summarizes the results of the multi-rate test analysis for well C-3 at each flow 

rate. 

Table B.7: K and S’ values for well C-3 at different rates 

 

• By plotting the flow rate (Q) against the apparent skin factor (s’) values, we had 

the following result: 

 

Figure B.7: Flow rates against skin factor (s’) for well C-3 
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Well C-4: 

Table B.8: Multi-rate test analysis for well C-4 (Rate-1) 

 

 

 

 

 

 

 

 

 

 

 

 

Since the calculated BHP is between 1500 & 3000 psi, the adjusted pressure Method has 

been used. 

Pa =P2/ (2*P¯) 
 

• plotting the adjusted pressure against time in a semi-log paper as follow: 
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Figure B.8: Semi-log plot for well C-4 (Rate-1) 

• Now, permeability (K) and apparent skin factor (s’) can be calculated as follow: 
 
 

 

• By following the same procedures with the other two rates, the values of the 

permeability (K) and apparent skin factor (s’) were obtained. Table B.9 
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summarizes the results of the multi-rate test analysis for well C-4 at each flow 

rate. 

Table B.9: K and S’ values for well C-4 at different rates 

 

• By plotting the flow rate (Q) against the apparent skin factor (s’) values, we had 

the following result: 

 

Figure B.9: Flow rates against skin factor (s’) for well C-4 
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Well C-5: 

Table B.10: Multi-rate test analysis for well C-5 (Rate-1) 

 

 

 

 

 

 

 

 

 

 

 

Since the calculated BHP is between 1500 & 3000 psi, the adjusted pressure Method has 

been used. 

Pa =P2/ (2*P¯) 
 

 

• plotting the adjusted pressure against time in a semi-log paper as follow: 
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Figure B.10: Semi-log plot for well C-5 (Rate-1) 

• Now, permeability (K) and apparent skin factor (s’) can be calculated as follow: 
 
 

 

 

• In this well, the type of test id Flow after flow test. Therefore, different 

procedures to obtain  value were performed. 
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1. Flow after flow test analysis were conducted as shown in the following table: 

Table B.11: Flow after flow test analysis for well C-5  

 

2. Plot ∆P2/q vs. q 

 

Figure B.11: Flow-after flow analysis for well C-5 (Rate-1) 

3. Plot ∆P2/q vs. q 
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Well C-6: (It was selected to be Reservoir C test well) 

 

Table B.12: Multi-rate test analysis for well C-6 (Rate-1) 
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Since the calculated BHP is between 1500 & 3000 psi, the adjusted pressure Method has 

been used. 

Pa =P2/ (2*P¯) 
 

• plotting the adjusted pressure against time in a semi-log paper as follow: 
 

 
 

Figure B.12: Semi-log plot for well C-6 (Rate-1) 

• Now, permeability (K) and apparent skin factor (s’) can be calculated as follow: 
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• By following the same procedures with the other two rates, the values of the 

permeability (K) and apparent skin factor (s’) were obtained. Table B.13 

summarizes the results of the multi-rate test analysis for well C-6 at each flow 

rate. 

Table B.13: K and S’ values for well C-6 at different rates 

 

• By plotting the flow rate (Q) against the apparent skin factor (s’) values, we had 

the following result: 

 

Figure B.13: Flow rates against skin factor (s’) for well C-6 
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APPENDIX C 

Reservoirs D Wells Data 

 
1. Reservoir D Parameters: 
 
Table C.1 summarizes reservoir-D parameters and the calculated values of permeability 

( ) and ( ) factor for each well.  

Table C.1: Reservoir D Parameters Obtained from Multi-rate Tests 

 
Figure C.1 shows the plot of permeability ( ) values vs. the coefficient of inertial 

resistance ( ) values for reservoirs D.  

 

 
Figure C.1: ( ) Correlation for reservoir D 
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2. Reservoir-D Well Tests Data 
 

Multi-rate test data for wells D-1, D-2 and D-3 were available: 

Well D-1: 

Table C.2: Multi-rate test analysis for well D-1 (Rate-1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Since the calculated BHP is > 3000 psia, we need to use the Pressure & Time method 

(Pwf vs. t) 

 
• plotting the adjusted pressure against time in a semi-log paper as follow: 
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Figure C.2: Semi-log plot for well D-1 (Rate-1) 

• Now, permeability (K) and apparent skin factor (s’) can be calculated as follow: 
 

 
 

• By following the same procedures with the other two rates, the values of the 

permeability (K) and apparent skin factor (s’) were obtained. Table C.3 

summarizes the results of the multi-rate test analysis for well D-1 at each flow 

rate. 
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Table C.3: K and S’ values for well D-1 at different rates 

 

 

 

 

• By plotting the flow rate (Q) against the apparent skin factor (s’) values, we had 

the following result: 

 

Figure C.3: Flow rates against skin factor (s’) for well D-1 
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Well D-2: 

Table C.4: Multi-rate test analysis for well D-2 (Rate-1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Since the calculated BHP is > 3000 psia, we need to use the Pressure & Time method 

(Pwf vs. t). 

 
• By plotting the adjusted pressure against time in a semi-log paper as follow: 
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Figure C.4: Semi-log plot for well D-2 (Rate-1) 

• Now, permeability (K) and apparent skin factor (s’) can be calculated as follow: 
 

 

• By following the same procedures with the other two rates, the values of the 

permeability (K) and apparent skin factor (s’) were obtained. Table C.5 

summarizes the results of the multi-rate test analysis for well D-2 at each flow 

rate. 
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Table C.5: K and S’ values for well D-2 at different rates 

 

 

 

 

• By plotting the flow rate (Q) against the apparent skin factor (s’) values, we had 

the following result: 

 

Figure C.5: Flow rates against skin factor (s’) for well D-2 
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Well D-3: (It was selected to be Reservoir D test well) 

Table C.6: Multi-rate test analysis for well D-3 (Rate-1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Since the calculated BHP is > 3000 psia, we need to use the Pressure & Time method 

(Pwf vs. t). 

 
 

• plotting the adjusted pressure against time in a semi-log paper as follow: 
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Figure C.6: Semi-log plot for well D-3 (Rate-1) 

• Now, permeability (K) and apparent skin factor (s’) can be calculated as follow: 

 

• By following the same procedures with the other two rates, the values of the 

permeability (K) and apparent skin factor (s’) were obtained. Table C.7 

summarizes the results of the multi-rate test analysis for well D-3 at each flow 

rate. 
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Table C.7: K and S’ values for well D-3 at different rates 

 

 

 

• By plotting the flow rate (Q) against the apparent skin factor (s’) values, we had 

the following result: 

 

Figure C.7: Flow rates against skin factor (s’) for well D-3 
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