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ABSTRACT 

Analysis of Factors Affecting Wireless Communications 
Systems in Underground Coal Mines 

 
David P. McGraw 

 

Since recent disasters in the mining industry in 2006 the push for a reliable 

communication system has became a high priority.  This thesis will discuss each 

―wireless‖ communication system available and/or being developed for underground 

mines as well as the frequencies that will be used for each system‘s operation.   

The second part of the investigation will be on the factors affecting these 

frequencies as well as possible ways to model these factors analytically.  It is important 

to understand these factors in order to make intelligent conclusions as to what 

communication systems will perform adequately in an underground mining environment. 

The third area discussed will be an analysis of empirical studies completed by 

various agencies, companies, and schools (including West Virginia University).  These 

studies were completed to judge the practicality and performance of each system.  

Practicality is important to the mining industry.  The industry tends not to accept new 

technology quickly, so proof of performance is a key component to introducing the 

products into the market. 
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Chapter 1 

Problem Statement 

Currently mine communication systems have been relatively low tech in 

comparison to the systems currently in place on the surface.  Generally the 

communication usually consists of a twisted pair wired page phone system or possible if 

rail is used in the mine trolley phones are used.  However, past experience has shown 

that in the event of a fire, explosion, or major roof fall these type of systems do not 

perform adequately.   

The need for survivable mine tracking and emergency communication systems 

has been prompted by recent mine disasters in the United States, namely  

 Coal mine water inundation, Quecreek mine, PA, 2002 

 Mine explosion in Sago mine, WV. 2006 

 Mine Collapse in Crandle Canyon, UT, 2007  

More than a hundred systems or components have been or are being developed to 

serve in case of events similar to the ones listed above.  However the design of these 

systems has become a task of great difficulty due to the mining environment not being 

conducive to typical radio frequencies that work well on the surface.  The factors 

affecting these frequencies differ from band to band.  The mining environment also 

provides challenges to devices that could cause system failure in the event of an 

accident.  It is important to understand these factors and challenges in order to make 

intelligent conclusions as to what communication systems will perform adequately in an 

underground mining environment during emergency and non-emergency situations.  

These need to be evaluated before they are installed throughout the USA. 
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Chapter 2 

Objective 

The objective of this research is to evaluate wireless emergency communication 

systems that will be used in underground coal mines.  A thorough analysis of several 

principles of each communication system and wave transmission mechanisms 

associated with each system has been studied and each system has been evaluated 

based on the following:  

 Ground penetrating efficiency,  

 Transmission distance,  

 Survivability,  

 Upgrading of system,  

 Maintenance. 

These are the principles that have been chosen to evaluate the performance of the new 

communication systems and will guide the direction of this thesis.  

 In the conclusion of this thesis, recommendations of future research as well as 

statements of fact will be made that should be considered when deciding what 

communication is appropriate for mine operation communication as well as emergency 

communications. 
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Chapter 3 

Literature and Technology Review 

For the initial steps of this research, a look at the technology being developed as 

well as the currently approved wireless systems and the literature that surrounds each 

of them has been done.  By analyzing these systems one can find out what has been 

done as well as what needs to be done to improve miner communications and mine 

safety.   Following the literature and technology survey, this research will produce 

conclusions and recommendations regarding the technological status of wireless 

communications in underground coal mines. 

 
3.1 Technology Available 

 
The wireless communication systems currently available can be split into two 

different types of systems.   

 Through the earth (TTE). 

 In mine radio systems. 

These systems actually operate at different frequencies, but may be integrated together.  

Figure 3-1 shows what frequencies each system operates at as well as their 

corresponding wavelengths.  Described in the following sections are the systems that 

are currently being developed as well as the systems that are currently approved for 

use in underground coal mines. 
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Figure 3-1 Mine communication systems operating frequencies. 

 
3.1.1 In-Mine Wireless Systems 

 
Frequency selection has a great impact on the overall hardware architecture of 

the system as well as the mechanics of the wireless signal propagation from the 

transmitter to the receiver.  Some frequencies utilize the coal mine entry as a 

waveguide, enhancing signal propagation, while other frequencies will not travel more 

than 50 ft in a bare coal mine entry.  Unaided transmitted radio signals in a certain 

frequency ranges (WiFi or UHF) may travel (line-of-sight) up to 1000 ft. and still be 

received, but typically the signal will not be received if the signal is forced to turn 

corners for more than two crosscuts.  Other types of communication signals (medium 

frequencies) utilize parasitic propagation.  Parasitic propagation works in the proximity 

of wires, conductors, pipes, and rails that can enhance the propagation of signals at 
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certain frequencies.  Both types of systems will be discussed further later in this thesis.  

The most common systems available are hand held two-way radios in conjunction with 

a corresponding leaky feeder backbone or various ―breadcrumb‖ type repeaters, 

scattered strategically throughout the mine.  However in the event of a disaster such as 

an explosion, roof fall, or mine fire these types of infrastructures are susceptible to 

damage that could result in the loss of communication.  It is the goal of this research to 

find the optimum system to use in an underground coal mine.  

 
3.1.1.1 UHF / VHF Systems 

 
Ultra High Frequency (UHF) / Very High Frequency (VHF) systems are currently 

the most available systems for use in underground coal mines.  These systems typically 

operate at approximately 450MHz for UHF and 150MHz for VHF.  They use hand-held 

radios and are usually accompanied by a leaky feeder system.  A leaky feeder system 

consists of a surface base station and ―lossy‖ coaxial cable strung along the roof 

throughout the mine.  The cable is usually accompanied by in line amplifiers and or 

repeaters to boost the signal strength and enhance the signal quality.  Leaky feeder 

systems can be expensive due to the high cost of the specialized cable and hardware 

that is needed to make the system operate properly. 

 
3.1.1.2 WiFi Systems 

 
WiFi is denoted for ‗wireless fidelity‘, a term for wireless local area networks 

conforming to a protocol specified in IEEE 802.11. This technology used to meet the 

needs of underground coal mining is referred to as ―Wireless Mesh Networking.‖  The 
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new IEEE 802.11s standard will enable a collection of Wireless Access Points (WAP) to 

be interconnected with wireless links that enable automatic topology learning and 

dynamic path configuration.  

Wireless modems (sometimes called ―Hot Spots‖ or nodes) are strategically 

placed throughout a work area, and each unit can receive, transmit, or act as a signal 

repeater.  This multi-hop style network can be designed to be redundant and 

automatically configures itself and also has a ―learning‖ and ―self-healing‖ capability.  

There are no predefined signal pathways between the nodes. Failure of any one node 

or closure of any one signal path (due to loss of power or an event such as a fire or a 

roof fall) has little impact on the whole network (Schiffbauer, 2006).  The application of 

this type of network could greatly enhance the reliability of a wireless coal mine 

communication network.  Still, if all possible radio signal paths are closed or if too many 

nodes fail, communications will stop.   

These types of systems are currently being developed right now using various 

frequencies.  One of the main frequencies being considered is 2.4GHz.  It is currently 

the most popular mostly because of the availability of hardware that has already been 

developed for surface and other applications.   Another frequency being developed is 

900MHz.  This frequency is being considered because of its wave propagation 

performance in underground coal mine entries.  Wave propagation of various 

frequencies will be discussed in the analytical study portion of this thesis. 
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3.1.1.3 MF Systems 

 
While not yet fully developed, research has shown that medium frequencies (MF) 

offer a viable approach to underground communications in both coal and metal/non-

metal mines under certain circumstances.  MF transmission is feasible for both 

personnel and vehicular communications.  It does not experience the same attenuation 

characteristics and severe corner losses of UHF and WiFi communications; nor does it 

require the use of expensive leaky feeder cable.  Furthermore, it does not experience 

the high noise levels of Low Frequency communication systems.  Research has 

demonstrated ranges of 1000 – 1500ft. in conductor-free areas, and 1-2 miles in the 

presence of conductors (Schiffbauer, 2006). 

Underground tests have shown that MF signals have the capability to inductively 

couple into, and reradiate from, continuous electrical conductors in such a way that 

these conductors become transmission lines or an antenna system for the signals 

(Stolarczyk, 1980).  The existence of electrical conductors in the entryway provides the 

means for what is referred to as the ―parasitic propagation mode‖ of radio signal 

propagation in an underground mine.  Testing has shown that MF signals could be 

carried out by magnetically inducing a signal current flow on other nearby conductor 

(Stolarcyk, 1980).  Thus all of the entryway conductors could provide a means of mine-

wide signal distribution.  The method emulates the general properties of a leaky feeder 

without requirement of the specialized cable. USBM testing has also shown that MF 

radio signal propagation was possible in ―natural waveguides‖ existing in certain layered 

formations (Sacks and Chufo, 1978).  There have been a few commercially developed 

walkie-talkie systems that take advantage of this property. One vendor (Conspec) has a 
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permissible system available (Schiffbauer, 2006).  Also a vendor known as (Kutta) is 

currently developing a MF system that utilizes repeaters as well as hand held radios 

(Chirdon, 2006).  The range depends on a number of factors which include conductivity 

of the surrounding strata, type of floor and roof, distance to conductors, type of 

conductors, etc.  The size of the antenna can also be cumbersome.   

 
3.1.2 Surface to Underground 

 
Radio communications in the frequency band 1 kHz-10 kHz offers the potential 

for wireless communications through-the-earth (TTE).  Most commercial TTE systems 

provide communication from the surface to underground only.  This is because relatively 

high power is needed to transmit through considerable distances from the surface to the 

workers in the mine.  The use of high power systems underground may not be safe, 

especially in emergency situations in which methane gas or coal dust has accumulated.  

Obviously those types of situations could make for a potentially explosive environment.   

MineSite Technologies has developed a prototype two-way text communication 

system that has proven itself to work in ranges of overburden up to 1800 ft.  One 

proposed method of two-way communications, by MineSite Technologies, is to use this 

system as a fixed-station / intermediate relay unit located in a safe area, such as a mine 

refuge chamber, underground away from the mining operations.  The miner could then 

use a mobile UHF radio to communicate directly with the relatively close underground 

relay.  The relay receives the signal then rebroadcast an ELF signal to communicate 

with the surface unit.  However the performance of the ELF portion of the system is not 
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always reliable and consistent since the system is very susceptible to electromagnetic 

noise. 
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Chapter 4 

Factor Analysis 

It is the goal of this research to analyze and model the mine environment with 

respect to electromagnetic signals as well as other factors that affect the communication 

systems described in Chapter 3.  Furthermore it is also within the aspiration of this 

thesis to use the data acquired to discover the optimal system for communication in an 

underground coal mine.  The use of mathematics and fundamental physics will be used 

to describe and model the electromagnetic wave propagation as well as the factors that 

affect it.  This analysis will be considered and compared in conjunction with the 

empirical data that has been collected and discussed in Chapter 5.  What‘s more the 

two analyses will be used to make recommendations concerning what communication 

system will work the best for each individual mine in Chapter 6. 

 
4.1  Coal Properties and Mine Entry Environment 

 
In order to do a complete analysis one must first investigate the environment.  A 

typical coal mine entry is rectangular with a height of 5-7 feet and a width of 16-21 feet.  

Tracks are sometimes seen at the bottom of the portal with a track separation of 3 feet 

for man trip vehicles or supply trains.  Trolley line power cable usually accompanies the 

track.   It can be seen at the top of the entry along with other various conductors such 

as aluminum water pipe and a page phone line.  Also seen on the roof of the mine entry 

are roof bolts, straps and a wire mesh for roof control.  

The electrical properties of coal are discussed in the literature.  Chufo et al 

(Chufo, 1977) gives values of 45 10 to 22 10 /S m  (Siemens per Meter) for the 
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electrical conductivity of coal.  J. Cook (Cook, 1970) gives electrical resistivites of 

500 2000 ohms-meters at 100 MHz with a scaling of 1/ f at lower frequencies.  This 

corresponds to the electrical conductivities of 65 10 to 52 10 /S m  at a frequency of 

~1f MHz .  Cook also gives a relative dielectric constant for coal of ~ 2 4r
. 

 
4.2  VHF / UHF / WiFi Signal Propagation Model 

 
For most In-mine wireless communication systems the use of the certain 

frequencies, being transmitted from a hand held radio, propagating down a mine entry is 

the beginning of the communication systems operation. The attenuation of these signals 

due to absorption, reflection, and refraction is the main reason that the hand held radios 

only reach so far.  Figure 4-1 shows an EM wave‘s incident on a wall or rib of the mine 

entry.  A portion of the energy is assumed to be reflected and a portion is refracted into 

the entry wall.  The wave is attenuated as it propagates down the entry, repeatedly 

being reflected off walls, floor, and ceiling. The wave loses energy at each reflection as 

a portion of the energy is carried away in the transmitted wave. 

To model this, this research was based on the work of Emslie et al (1975).  They 

solve Maxwell‘s equations for an EM wave propagating in the z-direction for a mine 

entry of dimensions shown in Figure 4-2. 

 

 
 
 
 
 
 
 
 



12 

 

                                   
 
 

Figure 4-1. Plane waves incident on entry wall (red) are specularly reflected 

(green) and a portion of the energy is transmitted (blue) into the entry wall. 

 

 

 

 

Figure 4-2. The coal mine entry has dimensions d1 X d2, with the walls having 

dielectric constants of K1 and the floor and ceiling of K2.  
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The result for path loss, LEh in dB for horizontally polarized waves is given by 

where LEv is for vertically polarized waves, λ is the wavelength m, K1 and K2 are the 

relative dielectric constants for the walls (K1) and the floor and ceiling (K2) and d1 and d2 

(meters) are the width and height of the entry respectively. The path loss is linear with 

distance and depends on the square of the wavelength and the inverse cube of the 

entry dimensions, 2/d3. 

Further on in the work of Emslie et al., (1975) they proceeded to approximate the 

effects of rib roughness which in addition to reflection, permits a fraction of the energy to 

be diffusely dispersed with energy being carried by de-polarized waves. Roughness (h), 

is the standard deviation from the mean of the surface and is in meters.   

Emslie et al, (1975) also accounted for the possibility of wall and ceiling tilt (in the 

sense of making the rectangular cross-section larger or smaller as it progresses down 

the z-axis) through an angle (θ) in radians, and the antenna insertion loss C (in dB), 

from inefficient coupling of the radio antenna to the waveguide mode. Lastly, Emslie et 

al, (1975) derived an expression for the path loss in propagation around a corner such 

as a cross-cut. 

The equations for the path loss due to roughness, tilt, and antenna insertion (for 

an antenna located at the center of the entry) are respectively: 
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Figure 4-3 shows the results for the path loss as a function of frequency when 

combining the effects of refraction, and wall roughness and tilt, for an entry 5 m wide, 2 

m high, wall roughness of 10 cm and relative dielectric constant for walls and ceiling 

and floor of 5.  A sharp rise in the path loss occurs as the frequency decreases towards 

the cutoff frequency.   For the larger values of tilt angle, there is a broad minimum in the 

path loss suggesting an optimum frequency.  The minimum in the curve will shift 

depending on the cross-sectional dimensions of the coal mine. 

The work of Emslie et al, (1975) has been compared to measured data in 

Goddard, (1973).  Measurements were taken at 200 MHz, 415 MHz, and 1000 MHz in a 

entry 14 ft wide and 7 ft high for vertical and horizontal and cross-polarizations.  The 

predictions for path loss per 100 ft are in good agreement with the data for entry 

distances ranging from 100 ft to several thousand feet.  
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Figure 4-3. The sum of path losses for refraction, wall roughness, and tilt angle, 

as a function of frequency for various values of tilt (θ). 

 

There are a number of issues that are not addressed by the model above and should be 

considered in further analyses.  

 Although cross-cuts have little impact on the propagation losses down a given 

entry, it is important to communicate down those cross cuts. Introducing 

reflectors or repeaters at intersections will impact the losses in the main tunnel. 

 This research also did not considered entries which have curves in them.  The 

curve will disturb the normal waveguide behavior and likely increase the 

attenuation. 

 Blocked or partially obscured entries (by equipment, belt structure, or etc.) have 

also not been considered. 
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4.3   Medium Frequency Propagation Model 

 
In the MF frequency range, two mechanisms have been suggested for the 

propagation of electromagnetic signals in coal mines.  The first is a waveguide mode 

where an EM signal is propagated in a coal seam trapped between two layers of rock 

much like the model of UHF / VHF explained above.  The second mode is a 

transmission line or parasitic coupling mode where electromagnetic signals couple to 

accidental or deliberate transmission line structures and then travel down the entry with 

relatively little attenuation (Chufo et al, 1977),(Stolarczyk, 1980).   

Given that the transmission line mode of propagation appears to be the most 

useful for both parasitic and deliberate coupling of MF frequencies in coal mines, it was 

determined that the use of a transmission line model should be used to predict the 

propagation of a MF signal into a coal mine entry.  A transmission line model predicts 

the voltages and currents on conductors as a function of position along the transmission 

line with respect to a common return or reference conductor.  For example, a coaxial 

cable and a two wire TV antenna cable are both considered to be a single conductor 

(plus return) transmission line.  A shielded twisted pair is considered to be a two 

conductor transmission line with the shield forming the return.   

For this model, the coupling of electromagnetic energy to the transmission line 

and then coupling the propagated energy to a receiving antenna was not taken into 

consideration.  That could be a topic of future research and will be recommended in 

Chapter 6. 
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4.3.1   Transmission Line Modeling 

 
The theory of transmission line modeling is discussed in Taylor (1965), McCray 

(1973), Smith (1983), Vance (1978), Paul (1992), and Paul (1994).  Transmission line 

modeling allows us to use differential equations to predict voltages and currents at unit 

lengths of cable.  This allows us to predict the magnitude of energy transmitted from 

one point on the line to another.  The single conductor (plus return) transmission line 

first followed by the multi-conductor transmission line will be considered. 

 
4.3.1.1  Single Conductor Transmission Line 

 
The voltage V and current I  on a single conductor transmission line is 

characterized by inductance per unit length L , capacitance per unit lengthC , resistance 

per unit length R, and conductance per unit lengthG .  This relationship is described by 

the following equations: 

                 

g

g

V I
L RI V

x t

I V
C GV I

x t

                                                       (3) 

Where ( ), ( )g gV x I x are distributed voltage and current sources with units of volts per 

meter or amperes per meter, respectively.  From these equations it can be derived that 

the complex propagation constant is; 

ZY                                 (4) 

and the complex characteristic or surge impedance 

/oZ Z Y                                                            (5) 
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The transmission line complex propagation constant can be expanded into real and 

imaginary parts, i.e. 

 i R i L G i C
                                         

   (6) 

For an ideal transmission line 0R G  dielectric we have 

0

LC
     

                                      (7) 

where 1/ LC .  Likewise the characteristic impedance reduces to  

/oZ L C
  

                                                           (8) 

For this special case the complex propagation constant is given by /i i  and the 

useful set of conversion relationships can be developed 

 
2 2

2 2
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L Z C Z v C

C L Z Z L

                                            (9) 

For example for a 50oZ
 
transmission line having a propagation velocity equal to 

82 10 /m s  we have 0.25 /L H m  and 100 /C pF m . 

The solution of the homogeneous equations (3) is given by 

( ) ( ) ( )

( ) ( )
( )

x x

x x

o o o o

V x Ae Be V x V x

A B V x V x
I x e e

Z Z Z Z

 

 
                           (10) 

where the negative exponents correspond to waves traveling from left to right (in the 

positive x direction) and the positive exponents correspond to waves traveling from right 

to left. 
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For a finite transmission line of length l , characteristic impedance 
oZ , load 

impedance (receiver) 
LZ and source impedance (transmitter)

SZ  the terms of particular 

interest are the input impedance of the line and the input/output voltages for a specified 

Thevenin source voltage 
sV .  Where, 

sV  is the voltage delivered to the transmission line 

by the radio signal. 

Input impedance 

2

2

2

2

1

1

l

in o l

e
Z Z

e
                                      (11) 

Input voltage ( 0x ), would be the voltage at the point where the signal is coupled to 

the line 

2

2

1
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1
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S l
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Z e
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                                      (12) 

 

Output voltage ( x l ), would be the voltage at the point where the signal is coupled to 

the receiver from the line 
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1
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4.3.1.2   Multi-conductor Transmission Line 

 
The extension of the single conductor plus return transmission line problem to 

the multi-line transmission line problem is formally straight forward, by replacing the 

transmission line voltage and currents V and I  with voltage and current vectors V and 

I where ( ), ( )i iV x I x are the voltages and currents on the thi conductor at location x .  It is 

important to note that the voltages are measured with respect to the reference 

conductor.  To get the differential voltage between the thi and thj conductors the 

difference, i.e. ( ) ( ) ( )ij i jV x V x V x is needed.  With this in mind the differential 

equations for the multi-line problem are given by 

 
g

g

V I
L R I V

x t

I V
C G V I

x t

 (15) 

where , , ,L R C G  are now the inductance, resistance, capacitance, and 

conductance matrices (per unit length), respectively and ( ), ( )g gV x I x are distributed 

voltage and current vectors, respectively   

 
4.4  Raytheon‟s Survivability Analysis of Buried Communication Cable  

 
Since MF communications could potentially utilize a buried twisted pair 

transmission line there has been some interest on the survivability of that line in the 

event of a disaster.  One suggestion has been to bury the cable in a shallow trench 

inside the mine entry.  It is the hope that by doing so the cable would be protected from 

roof falls.  Raytheon has conducted a finite element analysis of factors affecting the 
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theoretical survivability of a buried communications cable in a mine floor when a roof fall 

occurs.  The geotechnical modeling software used for this exercise is FLAC, a finite 

difference modeling approach.  To protect against 90% of all roof falls, 16,000 ft-lb/ft of 

kinetic energy from a 6 foot fall is used as the basis for all of the models, creating a 

worst case scenario.  A small velocity was initially applied to the surface of the FLAC 

model, and forces were recorded until the calculated force applied was attained. To 

determine the force that a roof fall would create, impulse momentum relationships were 

used (Terreri, 2008). 

MV + F(t) = M          (16) 
 

Where, M  = mass of the roof fall 
V1 = velocity created from a 6‘ fall 
F   = force created from impact 
T    = time of impact 
V2  = final velocity (in this case 0) 

 
Force was calculated for a range of impact times. Impact times of 0.15 and 0.30 

seconds were chosen to simulate respectively.  The forces that were calculated from 

those impacts as well as the static load of the rocks after the fall were analyzed in a 

static model.  In the model, a trench was excavated and then the cable was laid on a 

bed backfill and then the trench was filled.  A general example of the model geometry 

can be seen in Figure 4-4.  Other parameters analyzed were trench width, ranging from 

6‖ to 12‖, and trench depth, ranging from 6‖ to 12‖ (Terreri, 2008).   

Static model results show that for both shale and stiff clay floors there is no 

apparent correlation between trench width and force observed on the cable.  It was also 

observed that there was a slight correlation between burial depth and force on the 

cable.  Example graphs of these initial results can be seen in Figures 4-5 and 4-6.   
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Figure 4-4. Example Model Geometry with 12” Trench Width and 12” Cable Burial 
(Terreri, 2008). 
 
 

 
 
Figure 4-5. Preliminary Results from Varying Trench Width (Terreri, 2008).  
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Figure 4-6. Preliminary Results from Varying Burial Depth (Terreri, 2008). 

 

4.5   ELF / VLF Propagation Modeling 

 
 Much like the other EM models, ELF/VLF models can be very complicated.  It is 

important to keep in mind that these models are made using assumptions that would 

simplify and generalize the problem.  It is important to use the data gathered from the 

models and compare to the available empirical data.  

 
4.5.1   Wait‟s Homogenous Earth Model 

 
James R. Wait was an internationally recognized expert in EM analysis.  

Although Dr. Wait has many detailed analyses of TTE propagation, his development of 

the homogeneous earth model has been used to supply significant insight into the very 

low frequency (VLF) behavior.  In this model, it assumed that the propagation is in an 
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infinite earth.  There are no reflection or transmission interfaces.  The transmitter, an 

infinitesimal dipole, is assumed to be buried in the earth.  Figure 4-7 shows the 

horizontally oriented transmitter loop of magnetic moment M=NIA (actually an 

infinitesimal dipole in Wait‘s analysis) with N turns, current I and loop area A surrounded 

by an isotropic homogeneous earth.  The magnetic field is desired at point P where the 

receiver would normally be. 

 

 

Figure 4-7.  A current loop in an isotropic homogeneous earth.  The magnetic 
field components, in spherical coordinates, are desired at a receiver located at 
point P. 
 

As derived by (Hill and Wait,1982) the ‗Maxwell‘ equations for field strength are 

presented in equations (17) and (18) for an infinitesimal electric dipole and an 

infinitesimal magnetic dipole embedded in an infinite homogeneous medium (earth) of 

electrical conductivity  (S/m), magnetic permeability  (N/A2), and dielectric permittivity 
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 (A2s2/Nm2).  The permeability of earth is treated as that of free space, o=4 10-7 N/A2.  

Assuming the time variation is described by ej t, where =2 f and f is the frequency in 

Hz and 1j where the result in spherical coordinates for an electric dipole of moment 

Idl  with axis vertically oriented along z-axis is the Maxwell equations that follow: 
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and for a magnetic dipole with a loop moment IdA  vertically oriented along z-axis 
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where is the complex propagation constant.  

There are a number of observations that will enhance the understanding of these 

equations (17) and (18).  First, the propagation constant in (18) can be written as 

where  is the skin depth.  Thus, the product r is a distance measured in terms of the 

number of skin depths.  In free space, the analogous quantity is r*  where =2 / , i.e. 

distances are measured in terms of wave numbers.  For propagation in a dielectric like 

the earth at the low frequencies of interest, the wavelength becomes 2 which is 

jj 1
1

1
2

    (19) 



26 

 

dramatically reduced compared to its free-space extent.  As an example, at 1 kHz, the 

free space wavelength is 300 km.  At the same frequency in the earth, with conductivity 

of 0.01 S/m, the skin depth is 160 m, and the effective wavelength, 2 is 1005 m. 

Considerable understanding of radio wave propagation in the earth can be 

gained by comparing it to propagation in free space.  A reasonable range of 

conductivities for the earth are 0.001< <0.3, with =0.01 S/m as a commonly assumed 

value.  The impedance, over the frequency band of interest, varies from one to three, a 

factor of at least 100 less than that of free space. Hence, the magnitude of the magnetic 

field is much greater, a factor of 100 or more, in earth propagation than in free space 

propagation. This implies that, in earth propagation, most of the energy density is in the 

magnetic component of the field, 2

2

1
Ho  rather than in the electric field, 2

2

1
E , where 

E= H and  is the impedance (Hill and Wait,1982). 

Next consider the variation in the strength of the magnetic field as a function of 

depth below a radiating magnetic loop.  As seen in Fig. 4-8, Curve ‗a‘ demonstrates a 

1/depth3 dependence which can be compared to a near-field dependence on distance 

(the far field should follow 1/z) until the exponential begins to dominate as the depth 

exceeds the corresponding skin depths of 500 m, 50 m and 160 m for curves b, c, and d 

respectively.  Notice that the field decreases with distance depending on the frequency 

and conductivity through the value of the skin depth.  Thus, the combination of a higher 

frequency propagating in a lower conductivity earth is equivalent to a lower frequency 

propagating in a higher conductivity earth as shown in curve d of Figure 4-8.  Figure 4-8 

also shows that the dependence on the skin depth is not monotonic; curve c has the 
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lowest value of skin depth (50 m) yet its field strength is intermediate to those of curves 

a ( =500 m) and d ( =160 m). 

 

Figure 4-8. Magnitude of the magnetic field directly below a loop of magnetic 
moment 1000 Am2 as a function of depth  
 

 In Figures 4-9 and 4-10, the plot shows the components of the magnetic field 

strength as a function of radial distance from the vertical axis.  These plots show that as 

the radial distance from the vertical axis increases the magnetic field strength 

decreases, therefore, decreasing reception of communications  
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Figure 4-9.  Vertical component of magnetic field as function of distance from the 
vertical axis, assuming a magnetic moment of 1000 Am2 oriented horizontally, 1 
kHz, and 0.01 S/m.  
 
 

 

Figure 4-10.  Horizontal component of magnetic field as function of distance from 
the vertical axis, assuming a magnetic moment of 1000 Am2 oriented horizontally, 
1 kHz, and 0.01 S/m. 
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Given the three plots, it can be seen that having the axes aligned is operationally 

the best case scenario for sending and receiving signals through the earth.  However, 

as the axes deviate and the depth increases the magnetic field strength decreases.  

Also, this discussion and results assume the relative orientation of the two coils is fixed.  

This may be likely if the Tx and Rx coils are laid on the ground or one is wrapped 

around a coal pillar.   

 
 

4.5.2    Shope‟s Three-Layered Earth Model 

 
One approach to refining the homogeneous earth model is to consider the earth 

as composed of multiple parallel layers, with each layer having unique electrical 

parameters.  Shope (1982) presented a three-layered earth model with the infinitesimal 

magnetic dipole (vertically oriented) in the ground (Fig. 4-11) 

 

 

 

 

 

 

  

 

 

Figure 4-11.  Side elevation view of the three-layer earth model.  The earth‟s 
surface is at the label „air‟ at z=h.   

z =-c

z =0

z =b

z =h
0

1

1
2+

2-

3

2-
2+

air

loop
z

z =-c

z =0

z =b

z =h
0

1

1
2+

2-

3

2-
2+

air

loop

z =-c

z =0

z =b

z =h
0

1

1
2+

2-

3

2-
2+

z =-c

z =0

z =b

z =h
0

1

1
2+

2-

3

2-
2+

air

loop
zz



30 

 

Each region is horizontally infinite, isotropic, and homogeneous with unique 

electrical properties  and The approach is to solve ‗Maxwell‘s‘ equations using 

Hertzian potentials (King, 1981).  Cylindrical coordinates ( , , z) are used.  The details 

of the derivation can be found in Shope (1982).  The outputs of interest are the z- and -

components (vertical and horizontal) of the magnetic field at the earth‘s surface at z=h, 

labeled as Hzo and Hρo respectively.  A common convention is to write 

ooozo bPHandbQH     (20) 

where  

  NIAMand
h

M
b

32
               (21) 

and M is the magnetic moment, the product of the current, I number of turns, N and 

area of the loop, A.   

Shope (1982) took the further step of normalizing all variables by the depth 

variable h.  Hence, he creates dimensionless variables  

D=ρ/h,  B=b/h,   C=c/h,   Z=z/h,   and   hH 2/1

2)(   (22) 

where Shope (1982) states that H is ratio of the source depth h to the skin depth in 

region 2 of conductivity 2.  There appears to be a discrepancy here in that the skin 

depth is actually defined, as mentioned in the homogeneous earth section, as 

2/1

2
.      (23) 

Hence, there is a factor of 2  difference between (22) and (23).  The discrepancy 

appears to be only in the comment and not in the equations he ultimately evaluates, i.e. 
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leave the mathematical definition of H unchanged.  Normalized conductivities are also 

introduced to simplify the analysis. 

2

32

12

2

23

2

12

12 SSandS .     (24) 

In addition to the significantly complex equations given by Shope, the model now 

has more input variables: S12, S23, B, C, D, and Z. The non-normalized variables are; 

 frequency of operation, f;  

 depth of the coil, h (or possibly run analyses as a function of depth h);  

 conductivities 1, 2, and 3; 

 layer locations, b and c; 

 radial distance from coil axis,  (or run analyses as a function of ). 

In summary, the analysis indicates that the total maximum variation in path loss 

could be 28 dB due to the uncertainty in conductivities and layer thicknesses in the 

three-layer earth model.  In comparing a single-layer to a three-layer model, the three 

layer model yields 10 to 20 dB greater path loss than a single layer model for what 

might be termed ‗similar inputs.‘  Therefore, overly simple models and/or data with large 

uncertainties can contribute to perhaps as much as 50 dB in path loss. 
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Chapter 5 

Empirical and Practical Test 

Empirical analysis is important because the data collected in an analytical model 

is not always accurate when compared to real world scenarios.  Because of this, 

experiments should be performed and results documented for comparison.  Since the 

Miner Act of 2006, there have been a number of tests and demonstrations done by 

various vendors, companies, and research agencies.  These tests have provided 

valuable practical data and key insight as to the performance of these systems to be 

used by the mining industry.   

 
5.1 WVU test at Lake Lynn Laboratory 

 
In the Fall of 2006 WVU had the opportunity to conduct tests using the leaky 

feeder system at the Lake Lynn Laboratory.  The goal of the tests was to find out the 

applicability of a leaky feeder as an emergency communication system.  The tests 

completed are as follows: 

 Signal Propagation Test (line of sight) 

 Signal Link Penetration and Distribution Test (non-line of sight) 

The tests were done from a practical point of view and the conclusions listed reflect that.  

The conclusions gathered are: 

 The leaky feeder system does not intensify the signal, but it spreads the signal 

throughout the mine. 

 The leaky feeder system receives the signal and transmits it throughout the mine 

at a different frequency through the antenna.  
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 If the leaky feeder system stops working due to power failure, the hand held radio 

will only reach a few hundred meter on its own.  So the leaky feeder system, in 

the absence of a reliable battery back-up, is not a reliable communication system 

during an emergency. 

 
5.2 Foundation Coal Leaky Feeder Analysis 

 
Foundation Coal conducted tests in a number of their mines using different 

brands UHF and VHF leaky feeder systems.  The tests were conducted to find the 

optimal system for their mines.  The following summary of points concludes their 

findings: 

 The Becker VHF system outperformed the Victor VHF system. 

 It was demonstrated that underground UHF propagation outperforms VHF 

propagation by a factor of 2, independently of the leaky feeder backbone. 

 The Becker UHF backbone system outperformed both VHF systems, in terms of 

lateral coverage off the cable as well as ―around the corner‖ coverage. 

 No significant performance difference was noted between the RFS and 

TRILOGY (Brand Names) UHF radiating cables. 

 The UHF amplifiers should ideally be spaced at 300 m intervals. 

 The UHF cables can be loosely strapped to the meshing and lacing, but must not 

be bundled with other cables in trays or hooks. 

 UHF Radio data connectivity to fixed and mobile devices was successfully 

demonstrated through the radiating cable system. 
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 The Becker active personnel and vehicle tags were successfully detected and 

reported to the surface CATS application through the UHF backbone. 

 The Becker remote telemetry unit (RTU) successfully measured and reported the 

results to the surface Adroit SCADA application through the UHF backbone. 

 Including a small dipole 3dB coupled to the main arterial, in the proximity of a 

crosscut entrance, substantially improves the crosscut coverage. This should be 

considered for final system deployments (Allekotte, 2006). 

 
5.3 Leaky Feeder Explosion Test 

  
In the summer of 2008 NIOSH conducted several explosion tests of leaky feeder 

cable at Lake Lynn Laboratory.  The test consisted of stringing leaky feeder cable from 

the roof of the mine in the directions parallel to the entry, as well as perpendicular to the 

entry.  The entry was then sealed and filled with an explosive concentration of methane 

and ignited.  One test specifically, showed that leaky feeder cable is susceptible to high 

temperatures as well as explosive forces especially when hung perpendicular to the 

entry as shown in figure 5-4. (Figs. 5-1 to 5-4). 
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Figure 5-1. Pre-Blast Picture of a leaky feeder cable hung parallel to entry in Lake 
Lynn Laboratory 
 

 

 

Figure 5-2. Post Blast Picture of a leaky feeder cable hung parallel to entry in 
Lake Lynn Laboratory (“J” hook melted to cable) 
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Figure 5-3. Pre-Blast Picture of a leaky feeder cable hung perpendicular to entry 

in Lake Lynn Laboratory 

 

 

Figure 5-4. Post Blast Picture of a leaky feeder cable hung perpendicular to entry 

in Lake Lynn Laboratory (“I-bolt” sheared off from explosion, Leaky Feeder 

destroyed) 
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5.4 MSHA Wireless Communication Study 

 
The test discussed above centered around leaky feeder systems.  In the wake of 

the Miner Act (2006), MSHA evaluated and performed field testing of six different 

communication and/or tracking systems.  The systems consisted of the following 

technologies:  

 medium frequency radio (<3 MHz)  

 ultra-wide band radio (UHF/ VHF) 

 very low frequency (<10kHz), through-the-earth  

 wireless mesh network (IEEE 802.11b or 802.15.4 standards) 

Field test were conducted to determine:  

 how well signals propagate (maximum distance between nodes)  

 how much overburden systems can penetrate if capable of TTE communication  

 mine coverage area (i.e. are there blind spots and why?)  

 accuracy of tracking features if interference would be an issue 

The tests were conducted at McElroy Mine.  A map of the testing area is shown in figure 

5-5 (Chirdon, 2006). 
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Figure 5-5. Test area McElroy Mine 

The results of the test are as follows: 

Medium Frequency Radios: 

 Medium frequency radio system signals could propagate more than one mile.  

 Systems provide two-way voice and data communications.  

 Have interference problem but can be sorted out. 

Ultra-Wide Band (UWB) Radio:  

 In this test area, range was approximately 1,200 ft with uninterrupted reception 

and approximately 2,000 ft with some dead spots. The signals produced do not 

turn corners well; therefore system design must address how to provide 

coverage in adjacent entries.  

 Provide two-way voice communications and tracking with accuracy.  

 To ensure that system can function during emergency, access points would have 

installed in each entry at predetermined distance.  
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 Have interference problem but could be sorted out. 

Very Low Frequency, Through-The-Earth:  

 Signals could penetrate 270 ft overburden with present system but theoretically 

greater depth can be achieved.  

 Also has interference problem.  

 Off-axis tests signal could be received. 

Wireless Mesh Networks:  

 Wireless mesh network type systems that utilize 802.11b protocol at 2.4 GHz 

propagated up to 1,500 ft in this test area.  

 The signals produced do not turn corners well; therefore system design must 

address how to provide coverage in adjacent entries.  

 Wireless mesh network type systems that utilize 802.15.4 protocol at 900 MHz 

propagated up to 1,800 ft in this test area. The signals produced do not turn 

corners well; therefore system design must address how to provide coverage in 

adjacent entries.  

 Wireless mesh networks have the potential to provide two-way voice 

communications and tracking to the nearest node, as well as data transmission.  

 In order to outfit the sample test area with communications using wireless mesh 

network systems, access points would have to be installed in each entry at 

distances of a maximum of every 1,500 to 1,800 ft. Redundancy would also have 

to be engineered to ensure that the system would continue to function in the 

event of an explosion or fire.  
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 Interference from other communication systems and electrical systems already 

installed in the mine did not seem to be an issue. The factors that governed 

signal propagation distance could be attributed to entry geometry in the case of 

the track entry and both entry geometry and the presence of an abundance of 

metallic structures in the belt entry  

 
5.5 Minesite Technologies (TTE DEMO) 

  
Minesite Technologies is an Australian based company that develops and 

produces mine communication equipment.  Recently they have developed a prototype 

two-way PED system.  The system when functioning correctly can send text messages 

from underground to the surface and vice versa.  The hardware consists of a loop 

antenna, a transmitter, a receiver, and a laptop PC.  The device operates at relative low 

power in the ELF and ULF EM bands.  The device uses proprietary noise cancelation 

techniques and digital modulation schemes.  Since the development the company put 

on several demonstrations at various mines with varying depths of cover.  The device 

operated successfully at Dana Mining‘s 4-West Mine (270 ft of cover), Patriot Coal‘s 

Federal #2 Mine (800 ft of cover), and Consol‘s Buchanan Mine (1800 ft of cover).  

However at 4-west the initial set up for the demo was too close to the surface substation 

causing too much noise interference.    
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Chapter 6 

Conclusions and Recommendations 

From the extent of this research, and the background surrounding it, it is 

concluded that wireless mine communications has not yet reached its full potential.  It 

can be seen in the analytical section of this thesis that some frequencies used in the 

mine are not optimal for wave propagation in the entryways.  More experimentation with 

various frequency bands and noise cancellation techniques is needed to optimize these 

systems.  Obviously, some frequency bands are better than others for certain 

applications.  Below is a breakdown of conclusions and recommendations. 

 
6.1 Recommendation of a Risk Assessment for Battery Back-ups 

 
All of the systems previously discussed require power to operate.  However, in 

order to operate wirelessly in the case of a disaster, then each system will require 

battery back-up.  The use of batteries also poses interesting problems in the area of 

maintenance.  If each system requires batteries then each system will need to be 

maintained and checked in order to ensure the batteries are charged and safe.  This 

could be cumbersome due the quantity of batteries that could be needed (depending on 

what system is being used and the mine layout).  Obviously disconnecting the node 

from the battery would cause a loss of communication; therefore a risk analysis of the 

use of batteries should be conducted.  Currently battery back-up systems have been 

addressed by MSHA program policy letter P08-V-08. That letter can be seen in 

appendix A-5. 
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6.2 Leaky Feeder Systems 

 
These systems have proven themselves capable to supply mine wide 

communications with the exceptions of a few ―dark spots‖ that are out of range for the 

leaky feeder (due to corners created by crosscuts).   However these types of systems 

have several drawbacks in the event of an emergency. 

 In the event of an emergency the power would be shut off and since the leaky 

feeder system requires power to operate it would become useless in the absence 

of a battery back-up.  Leaving only the hand held radios to provide 

communication 

 The current hand held radios can only reach approx. 600 – 1000 ft. (line of site) 

on their own. 

 If in the event of a roof fall the leaky feeder cable would most likely become 

damaged.  This would make leaky feeder communication beyond the roof fall 

impossible.  The hand held UHF/VHF radios would most likely not penetrate the 

roof fall rock. 

 As seen in the leaky feeder explosion test conducted by NIOSH the infrastructure 

cannot with stand mine fires or mine explosions.  

Because leaky feeder systems cannot survive most crisis situations, system hardening 

as well as burying the cable in a trench, like the one analyzed by Raytheon in Chapter 5 

for medium frequency systems, should be researched.   If these systems cannot be 

strengthened then their use as a form of emergency communication should be 

reconsidered. 
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6.3   Medium Frequency Systems 

 
Medium frequency systems have a lot of potential in the sence that their ability to 

use the conductors in the mine can make it possible for the system to survive roof falls, 

mine fires, and/or mine explosions.  Any further development of this technology is highly 

recommended.  

In this thesis models for the coupling of MF transmit antennas to parasitic or 

deliberate transmission lines, propagating the resulting voltage and current waves down 

the transmission lines have been discussed.  The intent of this effort was to show the 

feasibility of using standard transmission line modeling techniques to model MF 

propagation along conductors in coal mines.   

The most general approach to the problem would be to build an analytical multi-

conductor transmission line model that would include several conductors (trolley wires, 

mine train rails, water lines and so on) and would include branches where the entries 

split.  The transmission line voltage and current sources induced by MF transmit 

antennas would be inserted as a vector of lumped sources.  Receive antenna locations 

would also be specified.  The local fields at the receive antenna locations would be 

determined from the voltages and currents on the transmission line at the location of 

interest assuming a quasistatic model.   

It is recommended that the next step would be to complete the construction of 

the integrated end-to-end single conductor (plus return) model with the transmitting and 

receive antennas included.  The resulting code would run in Fortran and would serve as 

a basis to design the Graphic User Interface (GUI) for the final product.  Then the more 

general multi-conductor model would be written.  It is also recommended that the 
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models presented here be compared to propagation experiments in an actual mine 

environment.  This would serve to identify any obvious shortcomings in the models and 

would better quantify the uncertainties in the transmission line approach.  Finally it is 

recommended that the transmission line model be run at VHF/UHF frequencies to see if 

the transmission line mode is competitive with waveguide models for coal mine entries. 

 
6.4 Through The Earth Systems 

 
Through the earth systems can be considered the most sought after piece of 

technology in terms of mine communications.  In order to overcome the strong noise 

interference, at the frequencies that are required for the system to operate, further 

development of noise cancelation techniques is recommended.   

The homogeneous earth model is very useful for understanding the fundamental 

behavior of radio wave propagation in the earth.  However, it does not allow us to see 

the effects of varying geology, water table, and pervious mining.  The following 

conclusions for the homogeneous model are presented: 

 The controlling variables are frequency, conductivity of the earth, strength of the 

electric or magnetic moment, orientation of the transmitting moment, orientation 

of the receiving moment, depth, and radial distance from the axis. 

 Lower frequencies propagate with less loss, but the reduced bandwidth will limit 

the amount of information that can be transferred and/or the time required to 

transmit the information.   

 Lower values of earth conductivity have reduced path loss. 

 It can be expected six to eight orders of magnitude decrease in field strength 

(120 to 160 dB path loss) in going through 1000 m of earth. 
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 Low values of intrinsic impedance of the earth imply that most of the RF energy 

is carried in the magnetic field. 

 The measured field strength is generally greatest if the transmitter antenna and 

the receive antenna are horizontally oriented and directly above or below one 

another, but, operationally, it will be difficult to ensure this alignment.   
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Appendicies A 

 

Appendix A-1 MSHA Approved Wireless Communication Devices 

(December 2, 2008) 

Handheld two-way radios 

Manufacturer  Model Number  Product Type  Approval #  

Kenwood USA Corporation  TK-290, TK-390  VHF or UHF 
Portable Radio  

23-A060002-0  

Venture Design Services, 
Inc.  

Model TMLT 
Text Messaging 
Location 
Transponder  

Tracking Tag 
and Text 
Messaging 
Device  

23-A080002-0  

Motorola  HT750  VHF or UHF 
Portable Radio  

23-A080007-0  

Alion Science and 
Technology 

ASM100001 
Accolade 

Mesh Radio 
Handset 

23-A080020-0 

 

Leaky Feeder Communication Systems 

Manufacturer  Model Number  Approval #  

Mine Radio Systems  Flexcom Communications 
Systems  

9B-219 

Varis Mine Tech.  Model IS Leaky Feeder 
Communication System  

23-A050001 

DAC  Type RFM 2000 Radio System  9B-201 

EL-EQUIP, INC  Model VHF-1 Radio System  9B-196 

Tunnel Radio of 
America  

Model UltraComm Distributed 
Antenna Communication 
System  

23-A070005-0 

Becker Electronics 
(PTY) LTD  

Becker Leaky Feeder System  23-A080003-0 

 

Paging/Text Messaging Systems 

Manufacturer  Model Number  Approval #  

Mine Site Technologies  Model PED1  6D-46-0  

Mine Site Technologies  ICCL Integrated 
Communications Cap Lamp 
with Optional PED  

23-ISA080002-0  

NL Technologies  Model GII Cap Lamp 
Messenger Circuit  

23-ISA070004-0  
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Stolar Horizon, Inc.  RGU104-001 Remote 
Graphical User Interface  

23-A070002-0  

 

Wireless Mesh Communications and/or Tracking Systems 

Manufacturer  Model Number  Product Type  Approval #  

Venture Design 
Services, Inc.  

MineTracer Miner 
Location 
Monitoring System  

IEEE 802.15.4 Text 
Messaging and 
Tracking System  

23-A080001-0  

NL Technologies  Digital 
Communications 
System  

IEEE 802.11 mesh 
network over fiber 
System  

23-A080010-0  

Innovative 
Wireless 
Technologies  

Fixed Mesh Node, 
with Antenna & 
Battery  

Fixed Mesh Node  23-ISA080005-0 

L-3 
Communications 

Accolade Wireless Mesh 
Communication 
System 

23-A080015-0 
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Appendix A-2 Miner Act (2006) 
 
Section 2 (F) PLAN CONTENT-SPECIFIC REQUIREMENTS.— 
 

"(i) IN GENERAL.--In addition to the content requirements contained in 
subparagraph (E), and subject to the considerations contained in subparagraph 
(C), the Secretary may make additional plan requirements with respect to any of 
the content matters.  
 
"(ii) POST ACCIDENT COMMUNICATIONS.--Not later than 3 years after the 
date of enactment of the Mine Improvement and New Emergency Response Act 
of 2006, a plan shall, to be approved, provide for post accident communication 
between underground and surface personnel via a wireless two-way medium, 
and provide for an electronic tracking system permitting surface personnel to 
determine the location of any persons trapped underground or set forth within the 
plan the reasons such provisions can not be adopted. Where such plan sets forth 
the reasons such provisions can not be adopted, the plan shall also set forth the 
operator's alternative means of compliance. Such alternative shall approximate, 
as closely as possible, the degree of functional utility and safety protection 
provided by the wireless two-way medium and tracking system referred to in this 
subpart. 
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Appendix A-3 List Underground Wireless Communication system 
requirments in the state of WV (WVOMSHT, 2008). 
 

TITLE 56 SERIES 4 
OFFICE OF MINERS' HEALTH, SAFETY AND TRAINING 

EMERGENCY RULES GOVERNING PROTECTIVE CLOTHING AND 
EQUIPMENT 

 
§56-4-9. Wireless Emergency Communication and Tracking/Locating systems. 
 
9.1 The Director shall require, in each underground mine, an integrated communication 
and tracking/locating system maintained consistent with WV CSR Title 36, Series 5 – 
3.2 and a component of which shall be a communication center monitored at all times 
during which one or more miners are underground. A wireless emergency 
communication and tracking/locating device approved by the Director shall be worn by 
each miner underground and shall be provided by the operator. 

 
9.2 As soon as practicable, the Director shall notify all operators of the wireless 
emergency communication and tracking/locating devices approved by the Director for 
use by each miner underground pursuant to WV Code Chapter 22A, Article 2 – 55. 

 
9.3 The Director shall acquire, no later than July 1, 2006, the necessary 
technical/engineering support to evaluate the performance of individual 
communication/tracking devices and review the effectiveness of proposed 
communication/tracking plans. 

 
9.4 The Director shall, no later than July 10, 2006, issue an open opportunity for 
emergency communication and tracking/locating providers to submit products for 
approval. 

 
9.5 The Director shall require providers seeking approval submit documentation certified 
by a license West Virginia professional engineer that the product has been tested for 
functionality in West Virginia underground mines, that the product has been or is in the 
process of being approved as intrinsically safe by MSHA and other criteria as the 
Director determines, a description of the process used in making that determination and 
a certification in the following form: ―I, the undersigned, hereby certify that this product, 
to the best of my knowledge and belief, meets or exceeds all requirements set forth in 
WV CSR Title 56, Series 4 – 9‖, that the product has been tested for functionality in 
West Virginia underground mines, that the product has been or is in the process of 
being approved as intrinsically safe by MSHA and other criteria as the Director 
determines. 
9.6 No later than July 31, 2007 all underground mine operators shall submit a 
communication/tracking plan for approval by the Director in accordance with WV Code 
Chapter 22A, Article 1 – 36. The design, development, submission, and implementation 
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of the communication/tracking plan shall be the responsibility of the operator of each 
mine. 
 
9.7 Within thirty (30) calendar days after submission of the communication/tracking 
plan, the Director shall either approve the communication/tracking plan, or shall reject 
and return the plan to the operator for modification and resubmission, stating in detail 
the reason for such rejection. If the plan is rejected, the Director shall give the operator 
a reasonable length of time, not to exceed fifteen (15) calendar days, to modify and 
resubmit such plan. 
 
9.8 Within fifteen (15) days of approval by the Director, the underground mine operator 
shall submit as an addendum to its plan, a copy of any contract, or purchase order, or 
other proof of purchase of any equipment required to complete the 
communication/tracking system and for installation and ongoing maintenance. 
 
9.9 The operator shall submit certified progress reports no less frequently than every 
sixty (60) calendar days until full compliance is achieved. 
 
9.10 If the Director, in his sole discretion, determines that an operator has failed to 
provide a communication/tracking plan or progress report, has provided an inadequate 
communication/tracking plan or progress report, has failed to comply with its approved 
communication/tracking plan or compliance schedule, or has failed to provide a copy of 
any contract, purchase order or other proof of purchase required under this section, in 
an effort to delay, avoid or circumvent compliance with WV Code Chapter 22A, Article 2 
– 55 or this rule, the Director shall issue a cessation order to the operator for the 
affected mine under WV Code Chapter 22A, Article 1 – 15. 
 
9.11 In developing the communication/tracking plan and any revisions, the operator 
shall take into consideration the needs for emergency communications and 
tracking/locating resulting from accidents as described at WV Code 
Chapter 22A, Article 2 – 66(a), physical features of the particular mine, emergency 
plans, existing communication infrastructure, communications required under WV Code 
Chapter 22A, Article 1 – 35(k) and 2 – 42, and WV CSR Title 26, Series 2 – 2 and 5 – 2, 
advances in communication/tracking technologies and any other aspect of the particular 
mine the operator deems relevant to the development of the communication/tracking 
plan. 
 
9.12 The proposed communication/tracking plan shall describe the structure and 
operations of the separate or integrated communication/tracking system(s) and its role 
in emergency response specific to the mine shall be detailed and submitted to the 
Director and, once approved, to the mine rescue teams providing coverage with an 
updated mine rescue program pursuant to WV Code Chapter 22A, Article 1 – 35(q). 
Copies of the most recent version shall be available at the mine for emergency 
responders. As changes are made to the system, updated versions shall be submitted 
to the above. 
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9.13 The proposed communication/tracking system shall include the ability for: 
(1) A communication center monitored at all times during which one or more 
miners are underground. 

(a) This center shall be staffed by miners holding a valid underground 
miners certificate, and trained and knowledgeable of the installed 
communications/tracking systems, monitoring and warning devices, 
travelways, and mine layout. 
(b) Individuals not possessing a valid underground miner‘s certificate but 
working full time as a communication center operator on or before May 25, 
2006 shall be allowed to continue as communications center operators at 
that mine provided they will have successfully completed no later than 
December 31, 2006 a certified 80 hour underground miners apprentice 
training program, as defined in WV CSR Title 48, Series 2 – 2.7(a), 
renewed annually pursuant to WV CSR Title 48, Series 2 – 2.8(a) and 
documentation is available for inspection consistent with WV CSR Title 36, 
Series 24 – 5;  

(2) Knowing the location of all miners immediately prior to an event by 
tracking/locating device in the escapeways, normal work assignments, or 
notification of the communication center; 
(3) Knowing the location of miners in the escapeways after an event providing 
the tracking system is still functional; 
(4) Check-in and check-out with the communication center by miners prior to 
entrance and exit from bleeders and remote or seldom used areas of the mine 
(all times shall be logged); 
(5) Allowing two-way communications coverage in at least two separate air 
courses and at least one of which shall be intake; 
(6) Maintaining communication/tracking after loss of outside power and maintain 
function both inby and outby of the accident event site with suitable supply of 
equipment for rapid reconnection; 
(7) Maintain a surface supply of communication/tracking devices for use by 
emergency rescue personnel; 
(8) Allow for communication to surface at all required emergency 
shelters/chambers; 
(9) All miners and likely emergency responders shall be trained in the use, 
limitations and inter-operability of all components of the communication and 
tracking/locating system. This shall be incorporated into ongoing required 
training. All training shall be recorded and made available upon request. 
 

9.14 The operator shall provide a schedule of compliance for the 
communication/tracking plan, which shall include: 

(1) A narrative description of how the operator will achieve compliance with 
above requirements; 
(2) A schedule of measures, including an enforceable sequence of actions with 
milestones, leading to compliance; and 
(3) A statement indicating when the implementation of the proposed plan will be 
complete. 
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9.15 The operator shall provide as attachments to its communication/tracking plan: 

(1) A statement of the analysis and evaluation required in developing its plan; 
(2) A statement indicating the initial training dates for implementation of the 
communication/tracking system and how the communication/tracking system will 
be incorporated in other required training; 
(3) A statement regarding how the communications/tracking system will be tested 
and maintained; and 
(4)The name of the person or persons representing the operator, including his or 
her title, mailing address, e-mail address and telephone number, who can be 
contacted by the Director for all matters relating to the communication/tracking 
plan and weekly testing of the system. 
 

9.16 After the Director has approved an operator‘s communication/tracking plan, the 
operator shall submit revisions to the communications plan at any time that changes in 
operational conditions result in a substantive modification in the communication/tracking 
system. In addition, at any time after approval, the operator may submit proposed 
modifications or revisions to its plan along with reasons therefore to the Director. Within 
thirty (30) days after receipt by the Director of any proposed revisions or modifications 
to the communications/tracking plan, the Director shall either approve or reject the 
revisions, stating in detail the reasons for such rejection. 
 
9.17 The Director may require modifications to a communication/tracking plan at any 
time following the investigation of a fatal accident or serious injury, as defined by WV 
CSR Title 36 Series 19 – 3.2, if such modifications are warranted by the findings of the 
investigation. 
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Appendix A-4 MSHA Program Policy Letter P06-V-10 
 
Emergency Response Plan - Content 

1. Post-accident Communication  
When hardwired systems are used to meet the MINER Act requirement for 
redundant communication between surface and underground personnel, wires 
should be routed through separate entries or boreholes continuous to the 
surface. MSHA interprets the term "wireless," as used in the MINER Act, to mean 
that no wired component of the system exists underground where it may be 
damaged by fire or explosion. Post-accident communication technology would be 
considered acceptable if, based on its location in the mine and the history of 
mine explosions and fires in the mine, it is likely to withstand the event intact. A 
reasonable timetable for installation should be included in the plan.  
This provision applies to all mines except anthracite mines with one intake and 
one return aircourse. In these mines, the redundant hardwired systems may be 
placed in the same aircourse. 
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Appendix A-5 MSHA Program Policy Letter P08-V-10 

SUBJECT:     Approval of Communication and Tracking Devices Required by the Mine  
                        Improvement and New Emergency Response Act of 2006 (MINER Act)  
 
Scope 
This program policy letter (PPL) is intended for Mine Safety and Health Administration 
(MSHA) personnel, equipment manufacturers, repair facilities, underground mine 
operators, underground independent contractors, miner's representatives, and other 
interested parties.  
 
Purpose 
This PPL is issued to establish approval guidelines for communication and tracking 
devices under Title 30 Code of Federal Regulations (30 C.F.R.) Part 23, Telephones 
and Signaling Devices, to address the provisions of the MINER Act.  
 
Policy 
The following guidelines are being administered by the Approval & Certification Center 
when processing applications for approval of communication and tracking products for 
those underground mines or operations required to have permissible equipment:  

 Any component or system used to provide voice, text, or signaling data (e.g., 
tracking) that is intended to remain operational in the event of an emergency is 
considered a telephone or signaling device and evaluated under 30 C.F.R. Part 
23.  

 Line powered devices must be equipped with a standby power source to allow 
continued operation in the event the line power is lost during an emergency. The 
standby power source must be capable of providing additional operating capacity 
(24 hours recommended) based on an 80% idle time, 10% transmit time and 
10% receive time, denoted as 80/10/10 ratio.  

 When operating under standby power, all components of a communication or 
tracking system must be MSHA-accepted as intrinsically safe, or housed in an 
MSHA certified explosion-proof enclosure. Communication and tracking system 
components include any interconnecting cables.  

 All cables between communication and tracking components must be MSHA-
approved as flame-resistant or enclosed in MSHA-approved, flame-resistant 
hose conduit.  

 Intrinsically safe batteries of portable assemblies that are housed in enclosures 
too large to be subjected to the MSHA intrinsic safety drop test (greater than 5 
kg) will be evaluated in accordance with the battery enclosure requirements of §§ 
7.44(a), (b), (d), (e), (f), (h), (l) and (m).  
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 Standby power sources that include rechargeable batteries must be designed or 
equipped with means to mitigate the explosion hazard of battery off-gassing. 
Examples of available mitigation techniques include venting of the enclosure or 
automatic de-energization when an explosive gas concentration reaches 20% of 
the gas' lower explosive limit.  

 The standby power source will be subject to MSHA's "Criteria for the Evaluation 
and Test of Intrinsically Safe Apparatus and Associated Apparatus" 
(http://www.msha.gov/techsupp/acc/application/acri2001.pdf) to ensure that it 
does not create a hazardous condition in the de-energized line power portion of 
the power supply or in the in-coming line power cable (back-feed protection).  

 Any potential for radio frequency interference (RFI) with blasting circuits must be 
detailed by the approval applicant. The approval applicant must specify the 
maximum output power, normal operating frequency, and the safe distance from 
blasting circuits.  

 Person-wearable tracking tags are considered portable apparatus and therefore 
are subjected to the MSHA intrinsic safety drop test. Machine-mounted (asset) 
tracking tags are subjected to an impact test.  

 Cap lamps powering communication and/or tracking related components are 
required to meet the performance requirements specified in § 19.9(a) when both 
the cap light and communication and/or tracking component are in operation. To 
assure sufficient operational capability in various scenarios, the cap lamp battery 
should be capable of providing sufficient power to effectively operate the 
communication and/or tracking component for a period of time beyond the 10-
hour minimum (4 hours additional recommended).  

 Where lightning arrestors for conductors between surface and underground 
locations are required, system approval documentation must specify the lightning 
arrestor used to comply with §§ 57.12069 and 75.521, and to ensure that it does 
not invalidate the Part 23 approval.  

 

 

 

 

 

http://www.msha.gov/techsupp/acc/application/acri2001.pdf
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