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ABSTRACT 

 

Tribological Analysis of Hydrophobic Thin Film with Antimicrobial Propeties 

 

Elizabeth E. DeFusco 

 

Silica based sol gel thin films have become a very popular area of 

research due to their high degree of variability and ease of manufacturing. They 

are commonly used as coatings for many applications in the consumer 

electronics and automotive industries. Some common properties in these thin 

films include optical transparency, wear resistance, antimicrobial, hydrophobic, 

electromagnetic, etc. 

The coating produced in this research has been tailored to meet three key 

functions; durability, hydrophobicity, and anti-microbial properties. This coating is 

created through a three-step sol gel reaction mechanism. The starting chemical, 

tetraethoxysilane (TEOS), yields the final product of a silicon dioxide matrix. 

During the reaction process, other functional chemicals, including quarternary 

ammonium salts to increase antimicrobial properties, are incorporated to achieve 

the desired properties. The sol is then dip coated on to a substrate, glass 

microscope slide, and then used for further testing.  

Testing of these coatings included contact angle analysis to measure the 

degree of hydrophobicity, reciprocating wear to test the durability of the coating, 

stylus profilometery to measure the total coating thickness and coating loss as a 

function of wear, and cell culture studies to determine the efficacy of the anti-

microbial agent.  
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1.0 INTRODUCTION 
 

The purpose of this research was to develop a silica based sol gel thin film with 

three properties: hydrophobic, durable, and antimicrobial. Research in this area 

is driven by daily life, most importantly consumer electronics. As more and more 

aspects of our daily lives are centered on electronic devices, the need to keep 

these devices operating is essential. Thin films are common coatings on touch 

screen displays, solar panels, and many other surfaces. The three properties of 

interest are crucial when developing a thin film coating. The hydrophobic 

properties will make the surface very easy to clean and it will resist water, the 

durability will make it withstand wear by abrasives, and the antimicrobial 

properties will prevent bacteria growth. 

 

Sol gel processing was used to create these films. This is a very common 

processing technique used for thin films. This technique is easily performed in a 

laboratory as a one-pot co-condensation reaction. The addition of specific 

functional chemicals is used to tailor the properties of the coating. When creating 

these coatings, one variable was changed at a time. This allowed a proper 

analysis of the effects of each change. 

 

The thin films were then coated onto glass substrates for further testing. Each 

property has its own unique testing procedure. Hydrophobicity was tested by 

contact angle analysis, durability was tested with the use of tribometer to 

measure wear, and antimicrobial properties were evaluated by cell culture 

studies. The coatings were made so that all three properties co-existed.  

 

2.0 BACKGROUND 

 
2.1 Thin Films 

 

Thin films have been a topic of research in the materials science and engineering 
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world for many years. One particular area of interest in thin film research is the 

creation of hybrid organic-inorganics. These thin films are types of coating that 

possess unique qualities and are typically on the nanometer scale of thickness. 

These coatings are desirable because each group has its own unique 

contributions. Organics have electronic properties, photoconductivity, structural 

flexibility and ease of processing. The inorganics offer magnetic and dielectric 

properties, carrier mobility, and thermal and mechanical stability (1). Therefore 

these films will require special techniques to analyze their properties.  

 

The scale of a thin film can make it challenging to study their properties. This is 

because thin films are on the nanometer to micrometer range for thickness. To 

study these films further, they need to be coated onto a substrate. One 

advantage of thin films is, even when coated on to a substrate, they do not affect 

any of the properties of the substrate. Thin films merely exhibit their own 

properties independently. This makes thin films very useful in many applications 

in chemical processing plants, electronics coatings, biosensors, automotive 

industry applications, and many other areas (2-4). 

 

As mentioned previously, the main focus of this research is in silica based thin 

films. These have been a very popular research area for many years. Silica thin 

films typically have hydrophobic and optically transparent properties. The 

durability of these coatings is also very variable and an important area of focus. 

 

 

2.2 Sol Gel Processing 

 

Silica sol gel research can be traced back as far as the 1800s to the works of 

Graham and Ebelman (5). Sol gel is a common processing technique among 

chemists, chemical engineers, material scientists, and many others. A sol gel 

process is referred to as a process in which a colloidal suspension, or “sol” 

undergoes a transition, through a set of reactions, into a gel phase. It is a 
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desirable technique because it can be preformed at ambient pressure and 

temperature, and with mild chemicals (6). The process also has a high degree of 

variation, as there are many factors that can be manipulated to achieve the 

desired product. This is most commonly used to create a thin film system that 

can possess a multitude of functions, and will be discussed later. 

 

The sol gel process is centered on inorganic polymerization reactions to prepare 

final products such as ceramics and glasses (7). One particular sol gel process of 

interest is that of tetraethoxysilane (TEOS). This results in a final product of 

silicon dioxide (SiO2). A common starting alkoxysilane is tetraethoxysilane 

(TEOS), shown in Figure 1. TEOS is used because it is simple to synthesize  

 

 
Figure 1: Structure of TEOS 

 

This process is a three-step reaction mechanism that includes hydrolysis, water 

condensation, and alcohol condensation. These three steps are shown in 

Equations 1-3, respectively. 

 

€ 

≡Si - OR +  H2O ↔  ≡Si - OH +  R - OH 	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   	   	   	  	  	  	  	  	  	  (1)	  

	  

€ 

2 ≡Si - OH ↔  ≡Si - O - Si ≡  +  H2O 	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   	   	   	   	   	  	  	  	  	  	  	  (2)	  
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€ 

≡Si - OH +  ≡Si - OR ↔  ≡Si - O - Si ≡  +  R - OH 	   	   	   	   	  	  	  	  	  	  	  (3)	  

 

The first step, hydrolysis, occurs when TEOS is mixed with water. This is done in 

the presence of a solvent, typically ethanol (EtOH), to make these two 

substances miscible (8). This step occurs in the presence of an acid catalyst, to 

occur rapidly and exothermically. This reaction results in the creation of silanols 

and alcohols. 

 

The second step condenses the water by reacting two silanols to produce a long 

chain of siloxanes. The third step reacts a silanol with the starting alkoxide to 

form more of the long chains of siloxanes. Therefore, the second and third steps 

happen simultaneously. These reactions then leave a solution, called a sol, made 

up of water, alcohol, and siloxane. The longer the sol is left to react the more 

chains will be produced. This polymerization process will continue until the sol 

has reached a gel state, and then eventually solidify. Transferring the sol from 

the reaction container to a substrate to create a thin film must be done before this 

state is reached.  

 

There is a period of time when all reactants are added and when the sol reaches 

a gel state. This is called an aging period. Aging is required to ensure that the sol 

gel is mixed completely and homogeneously, this involves the cross-linking of 

polymers to continue (6). As the sol gel ages, the properties can continue to 

change because of the reactions still taking place. Therefore samples of different 

ages are taken and properties are evaluated. The final stage of aging is the 

gelation, this is when the sol has reached a final gelled state and will no longer 

flow as a liquid. The aging time is crucial to ensure that the sol is reacted enough 

before transferring to a substrate. For example, if optically transparency is a 

desired property, a long aging time is not desirable. The sol will start to coagulate 

as the gel state is approached, and this will hinder the transparent properties of 

the sol as it is coated on to a substrate. 
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Once a sol is ready for processing, there are many options that can be taken. 

This thesis is focused on thin film production, but sol gels can be used to create 

fine powders, ceramics, and aerogels (9-13). Figure 2 shows a schematic of the 

process from initial to final products. 

 

 
Figure 2: Final products of sol gel process (14) 

 

2.3 Substrate Deposition 

 

The unique aspect of sol gel based thin films is that they are processed in liquid 

state, so they can be coated on to a wide range of substrates and they can be 

deposited in multiple ways, as they are able to conform to substrate shapes. 

Substrate deposition techniques include spray coating, dip coating, and spin 

coating. Spin coating is a procedure where a specified amount of sol is placed on 

top of the substrate; the substrate is then spun at a specified speed until the 

coating is evenly dispersed (15). A schematic for spin coating can be seen in 

Figure 3.  
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Figure 3: Schematic of spin coating process (15). 

 

Dip coating is an immersion technique where the substrate is immersed in the sol 

then withdrawn at a constant speed. Dip coating is popular because of its 

thickness uniformity upon deposition. The manipulation of coating thickness is 

dependent on the withdrawal speed of the substrate from the sol. The slower the 

withdrawal speed, the thinner the coating, and vice versa. This effect is due to 

shedding as the substrate is withdrawn from the solution. Figure 4 shows the 

different stages that come into effect when dip coating a sol gel (16). 

 

340 R.M. uan Hardeueld et al. /Applied Swface Science 84 (1995) 339-346 

salts on flat supports, in order to prepare model 
catalysts [6]. This method provides an elegant alter- 
native to mimic the wet chemical preparation route 
in that a centrifugal force replaces the capillary 
force. Due to the centrifugal force most of the solu- 
tion is ejected from the disk and only a thin liquid 
film of uniform thickness will stay. When the solvent 
evaporates from this film, the solute deposits homo- 
geneously onto the support. By variation of the 
spin-coating parameters two important characteristics 
of the model catalyst can be adjusted: the loading 
and the morphology of the catalyst particles [6,14,15]. 

The purpose of this paper is to summarize the 
theory for the spin-coating of dilute solutions of 
inorganic salts and to investigate the key relations 
between the amount of material that is deposited and 
(1) the spin speed and (2) the initial solute concentra- 
tion. The amount of deposited material has been 
measured by Rutherford backscattering spectrometry 
(RBS), which has successfully been applied in the 
characterization of flat, supported model catalysts 
[4,7,8,16,17] and by inductively coupled plasma opti- 
cal emission spectroscopy (ICP-OES). 

2. Spin-coating theory 

Spin-coating comprises two major processes 
which take place simultaneously: radial liquid flow, 
which is a consequence of the centrifugal force, and 
evaporation of the solvent, see Fig. 1. Both these two 
processes result in a decrease of the thickness of the 
liquid film. The radial flow behaviour of the liquid 
follows from a force balance between the centrifugal 
force and the shear force. If the equation of continu- 
ity is applied for a pure liquid on a horizontal 
rotating disk under stationary conditions, assuming 
that the initial liquid film has uniform thickness over 
the disk and that the liquid behaves Newtonian, the 
following expression for the decrease in liquid film 
height h [ml with time t [s] can be derived [l&19]: 

dh 2 
-_=-2- 
dt 

rio, h3-cl’. (1) 

In this equation w is the radial velocity [rad s-l], p 
and 17 are the density [kg m-‘1 and viscosity [kg 

Fig. 1. Schematical representation of the major processes that take 
place during spin-coating. 

m-1 s-1 ] of the liquid and @ is the evaporation rate 
[ m s-l], assumed to be independent of the disk 
radius and time. 

When a solution is spin-coated, evaporation of 
solvent results in a concentration increase of solute 
at the liquid/vapour interface and in the develop- 
ment of concentration profiles of solvent and solute 
through the liquid film, see Fig. 2. In case of poly- 
mers, the concentration increase of solute towards 
the liquid/vapour interface, which is accompanied 

Disk Liquid Vapour 

C: 

c i,’ 
-._.” 

Cb 

- -1 C; 

Increasing 
Concentration 

Fig. 2. Illustration of characteristic concentration profiles of solute 
and solvent, indicated by C, and C,, respectively, that develop 
during spin-coating of solutions of polymers (solid lines) and 
inorganic salts (dashed lines). Co corresponds to bulk concentra- 
tions whereas the concentrations at the interface are represented 
by C’. The concentrations of solvent in the vapour phase are 
indicated with an asterisk. 
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Figure 4: Dip coating schematic (16). 

 

Glass is a common substrate for sol gel because of good adhesion properties 

between the two. As the glass is withdrawn from the sol, at a constant withdrawal 

speed, gravity starts to force the bulk of the film back down. As this is occurring, 

alcohol and water are evaporating from the sol, this causes the rest of the film to 

concentrate and aggregate close together. This forms a xerogel, a solid that is 

formed from a gel drying and shrinking. The faster the withdrawal speed, the less 

time there is for the sol to shed from the surface of the substrate; this produces a 

thicker coating. 

 

2.4 Drying 

 

After the thin film is coated on to a substrate a drying procedure is needed to 

evaporate any other unwanted products out of the film and solidify the exposed 

surface. This must be done in a closed and heated environment. The 

temperature must be raised high enough to burn out any unwanted materials, but 

N° 7 FUNDAMENTALS OF SOL-GEL DIP-COATING 1233

Dip-coating,

In dip-coating, the substrate is normally withdrawn vertically from the coating bath at a

constant speed Uo (see fig. la) [5]. The moving substrate entrains the liquid in a viscous

boundary layer that splits in two at the free surface (point S in Fig. lb), returning the outer

layer to the bath. Since the solvent is evaporating and draining, the entrained film acquires an

approximate wedge shape that terminates in a well-defined drying line (x
=
0 in Fig. la).

Above the stagnation point S (Fig, lb), when the upward moving flux is balanced by that due

to evaporation, the film position and shape of the film profile remain steady with respect to the

coating bath surface. Within the thinning film, the inorganic species are progressively
concentrated by evaporation, leading to aggregation, gelation, and final drying to form a type

of a dry gel or xe;ogel.

SOL-GEL DIP-COATING

Capillary
DEPOSITED pressure pc
FILM exer~ec at final '~°~

~ ~
stage of drying ~~~

° as menlscl
recede Into

OR PORE FORIIAfiON gel Interior vapor
~

Pc
= 2y~~cos(@)I ~~_

~

ALCOHOL/V/ATER
EVAPORATION

~
GRAVITATIONAL

DRAINING
+

EVAPORATION
~~~ ~~

~

~

[ ]
~

PORE SIZE CONTROLLED BYI

~ ~ ~]
~

*

=
j~u~)2/3/y~~l/6jpg)1/2 S12E, STRUCTURE, COIIPOSIfiON

~
~ ~ ~

~ ENTRAINED DILUTE SOL RATES OF CONDENSATION/
~ ~

~ ~

~ ~

~~~~~~~,~
EVAPORATION

~,~~~~ ~~~
SURFACE CAPILLARY PRESSURE

a)

Fig. I. -a) Schematic of the steady-state dip-coating process, showing the sequential stages of
structural development that result from draining accompanied by solvent evaporation and continued
condensation reactions, Uo is the withdrawal speed, h (x) is the film thickness at position x measured from

the drying line ~o, h~ is the entrained film thickness just above the stagnation point S, ~ is the liquid
viscosity, p is the liquid density, P~ is the capillary pressure, y~v is the surface tension, and 0 is the

wetting angle. b) Detail of the flow patterns (streamlines) during dip coating. is the boundary layer, and
h i~ the thickness of the fluid film.
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not so high as to compromise the functionality of the coating. Drying is also used 

as a final densification of the coating, which increases the hardness (6).  

 

2.5 Hydrophobic Properties 

 

Once the sol has been coated on to a substrate and dried properly, the function 

analysis can begin. One key property of silica based sol gels is their inherent 

hydrophobic properties (5). A hydrophobic, “water-hating”, environment is 

created by the surface as polar molecules are rejected. As mentioned before, as 

electronic devices are becoming increasingly popular within every aspect of daily 

life, keeping these devices operating is crucial. Most electronic components are 

very sensitive to, and can be easily damaged by, water. A hydrophobic, water-

hating, environment is desirable to keep these products operating. This can be 

achieved by encasing the water-sensitive components, but sometimes this may 

not always be feasible. The next best option is to create a barrier to prevent the 

water from damaging these components. Hydrophobic coatings are used to 

create this barrier. 

 

Hydrophobic coatings are also very common to create an “easy clean” surface 

(17). This is described as such because water, dirt, and oil can be cleaned very 

easily from the surface and will leave little to no residue. 

 

Hydrophobic properties also depend on the texture of the surface. A very smooth 

surface is not conducive to a high contact angle. The lack of roughness on the 

surface will cause a water droplet to lie flat on the surface. A templated rough 

surface will allow the water droplet to stay as round as possible and sit on top of 

the surface while maintaining its shape. This is further explained as 

superhydrophobicity. 
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2.5.1 Contact Angle Analysis 

 

Hydrophobicity, is measured by placing a drop of water on a surface then 

measuring the angle between the surface plane and a line tangent to the water 

drop. This tangent line represents the point where all three phases, solid, liquid, 

and gas, are present. The surface of the coating is the solid phase, the water 

droplet is the liquid phase, and the air surrounding both is the gas phase.  

Surface tension is used to explain the forces that dictate how a water droplet will 

orient itself while on a surface. This is shown in Young’s equation, Equation 4, 

and illustrated in Figure 5. 

 

€ 

γ sv = γ sl +γ lv cosθY                 (4) 

where, 

€ 

θY 	  is the contact angle and 

€ 

γ  is the surface tension of the three interfaces 

(18). 

 

 
Figure 5: Relative contact angles for hydrophobic and hydrophilic surfaces (19) 

 

A contact angle > 90º is considered a hydrophobic surface. Static contact angle 

is the most common method for measuring hydrophobicity of a surface. Although, 

there are other methods that are used, dynamic, advancing and receding, and 

sliding contact angles (20,21). These other methods are illustrated in Figure 6. 
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Figure 6: Example of advancing and receding contact angles by automated 

dispensing method (22) 

 

There is also a special case of superhydrophobicity. This is seen as the static 

contact angle is greater than 150º (23). This is becoming a more popular 

research area in biomimetics, as superhydrophobicity is commonly seen on 

many leaf structures, most famously the lotus leaf; its structure is shown in 

Figure 7. Replicating this templated microstructure is one common approach to 

achieve superhydrophobicity. Another approach is through the use of surface 

modifying agents. These agents are used to replace an H from an –OH group 

with a functional organic (ie, alkyl, aryl). This substitution helps to enhance the 

hydrophobicity (24). 
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Figure 7: Scanning electron microscope images of lotus leaf structure (25). 

 

Since a surface microstructure is needed to achieve hydrophobicity, so these 

surface energies do not follow Young’s equation because the interface between 

the liquid and solid is no longer continuous. Superhydrophobic surfaces tend to 

follow one of two approaches: Cassie or Wenzel (26).  
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In Wenzel’s approached, it is assumed that the water sits on top of the 

microstructure, with the voids being filled by vapor pockets. This is illustrated in 

Figure 8. This will mean that the water will sit across the pieces of the surface 

that protrude upwards. This causes the water to retain its natural round shape. 

 

 
Figure 8: Wenzel’s approach for superhydrophobicity 

 

Cassie, on the other hand, states that the water fills in the voids in the 

microstructure, and is still able to have a high contact angle. This is shown in 

Figure 9. 

 
Figure 9: Cassie’s approach for superhydrophobicity 

 

 

2.6 Antimicrobial Properties 

 

There are many known chemical groups that have been proven to inherently 

posess antimicrobial properties. Some of these include copper, zinc, silver, 

chitosan, ammonium salts, etc (27). Each of these groups has their own 

advantages and disadvantages. For example, the heavy-metal additives, such as 

On the Modeling of Hydrophobic Contact Angles on Rough
Surfaces

Neelesh A. Patankar

Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Road,
B224, Evanston, Illinois 60208-3111

Received September 26, 2002. In Final Form: November 14, 2002

The apparent contact angle of a drop on a rough surface is often modeled using either Wenzel’s or
Cassie’s formulas. Previous experiments are not conclusive regardingwhich formula touse andwhen. This
information is critical in designing a superhydrophobic substrate for applications in microscale devices.
A drop on a rough substrate can occupy multiple equilibrium states. These equilibrium states denote
respective local minima in energy. The particular shape that a drop attains depends on how the drop is
formed. We propose a design procedure to develop a rough superhydrophobic substrate that accounts for
the multiple equilibrium drop shapes. The theory is expected to work well to maximize the advancing
contact angle of a drop. It is noted in the end that appropriate models for the receding contact angles on
rough substrate must be investigated further before appropriate design procedures, which will maximize
the receding contact angle orminimize hysteresis (i.e., minimize the difference between the advancing and
receding contact angles), are developed. We discuss a model for the receding contact angle, based on the
limited data in the literature.

1. Introduction

It is known that thewettability ofa surface is a function
of its roughness. Nonwetting liquids exhibit superhydro-
phobicity on a rough surface. It has been demonstrated
that surfaces with micromachined structures can have
similareffects.1,2Thisphenomenonhasmanyapplications.
In particular it is considered a viable option for surface
tension induced drop motion (Figure 1) in microfluidic
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zinc, silver, and copper, have negative toxicity effects. One particular group of 

interest is the quarternary ammonium salts (QAS). The structure of this group is 

shown in Figure 10. 

 

 
Figure 10: General QAS structure 

 

QAS is a common alternative to heavy-metal groups. Research on these groups 

has shown antimicrobial ability against common gram negative and positive 

bacterium such as Staphylococcus aureus and Escherichia coli (27). 

The topic of QAS as an additive to increase antimicrobial activity is also an area 

of focus for biomimetics. One commonly known chemical that is a naturally 

occurring QAS is chitosan. This is found on the exoskeletons of many shellfish 

and insects (28). The structure for chitosan is shown in Figure 11. 

 
Figure 11: Structure for naturally occurring chitosan 

 

Z. Jia et al. / Carbohydrate Research 333 (2001) 1–6 3

Scheme 1. The synthesis of quaternized N-alkyl chitosan.

Estimation of water solubility.—Dried chi-
tosan derivatives (0.4 g) were accurately
weighed and dissolved in 2 mL of distilled
water. If the solution was not clear, 2 mL
of distilled water was added slowly until the
sample was dissolved completely. The water-
solubility was expressed as percent composi-
tion of chitosan solution.

Determination of degree of substitution.—
The degree of the quaternization of the chi-
tosan derivatives was determined by the
potentiomerty.17 Potentiometric titration of
the halide form was carried out with the aq
silver nitrate, using a calomel electrode as the
reference, and a silver electrode for the
measurement.

Synthesis of quaternized N-alkyl chitosan
deri!ati!es.—Quaternized chitosan derivatives
were prepared by a modified method based on
that of Kim et al.9 Scheme 1 shows a sche-
matic representation of the preparation of
quaternized chitosan derivatives. The different
molecular chitosan solutions were prepared by
dissolving 7 g of chitosan into 1% AcOH.
Various aldehydes were added to the chitosan
solution at rt. After 1 h of stirring, the pH of
the solution was adjusted to 4.5 by adding 1
mol/L NaOH solution. To this solution, 10%
NaBH4 solution (1.5-fold excess to added
aldehyde) was added, and the solution stirred
for 1.5 h. The precipitants of N-alkyl chitosan

derivatives were obtained by adjusting the pH
of the solution to 10. These precipitants were
washed with the distilled water to neutrality
and the unreacted aldehyde and the inorganic
products were soxhlet-extracted with EtOH
and ether for 2 days. Chitosan derivatives
(5 g) were dispersed in 250 mL of NMP for 12
h at rt. To each dispersion, 1 mol/L NaOH
and CH3I (fivefold excess to amine of chi-
tosan) were added. NaI was added to adjust
the concentration in the reaction medium to
0.2 mol/L. Each reaction was carried out with
stirring for 12 h at 50 °C. The solution was
collected by precipitation with acetone, which
was dried to obtain the quaternized N-alkyl
chitosan derivatives.

Infrared spectra.—Fourier transform in-
frared (FT-IR) spectra were obtain with a
Shimadzu 470 Infrared spectrometer.

Determination of MIC.—The MIC were de-
termined by a method based on that of Li et
al.18

Determination of MBC.—The MBC were
determined by a method based on that of Li et
al.18

3. Result and discussion

In order to obtain quaternized chitosan
derivatives in good yields several conditions
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This initial state of chitosan does not have the desired effects when put through 

chemical synthesis. Therefore, the chitosan needs to be manipulated for 

synthesis use. Jia, et al., have described a way to quarternize the chitosan 

molecule so it can be used in chemical processes. This process is shown in 

Figure 12, resulting in a positively charged N in the final state, N-alkyl chitosan. 

 

 
Figure 12: Quarternization process of chitosan 

 

QAS groups also have the advantage of being incorporated into a silica based 

sol gel very easily; the QAS is incorporated after the initial hydrolysis reaction 

has begun. The QAS replaces one of the other organic functional groups on the 

end of the silanol molecules. Then, as two silanols react to form the final product, 

the QAS is incorporated into the matrix. (28). 

 

2.6.1 Cell Culture Studies 
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Z. Jia et al. / Carbohydrate Research 333 (2001) 1–6 3

Scheme 1. The synthesis of quaternized N-alkyl chitosan.

Estimation of water solubility.—Dried chi-
tosan derivatives (0.4 g) were accurately
weighed and dissolved in 2 mL of distilled
water. If the solution was not clear, 2 mL
of distilled water was added slowly until the
sample was dissolved completely. The water-
solubility was expressed as percent composi-
tion of chitosan solution.

Determination of degree of substitution.—
The degree of the quaternization of the chi-
tosan derivatives was determined by the
potentiomerty.17 Potentiometric titration of
the halide form was carried out with the aq
silver nitrate, using a calomel electrode as the
reference, and a silver electrode for the
measurement.

Synthesis of quaternized N-alkyl chitosan
deri!ati!es.—Quaternized chitosan derivatives
were prepared by a modified method based on
that of Kim et al.9 Scheme 1 shows a sche-
matic representation of the preparation of
quaternized chitosan derivatives. The different
molecular chitosan solutions were prepared by
dissolving 7 g of chitosan into 1% AcOH.
Various aldehydes were added to the chitosan
solution at rt. After 1 h of stirring, the pH of
the solution was adjusted to 4.5 by adding 1
mol/L NaOH solution. To this solution, 10%
NaBH4 solution (1.5-fold excess to added
aldehyde) was added, and the solution stirred
for 1.5 h. The precipitants of N-alkyl chitosan

derivatives were obtained by adjusting the pH
of the solution to 10. These precipitants were
washed with the distilled water to neutrality
and the unreacted aldehyde and the inorganic
products were soxhlet-extracted with EtOH
and ether for 2 days. Chitosan derivatives
(5 g) were dispersed in 250 mL of NMP for 12
h at rt. To each dispersion, 1 mol/L NaOH
and CH3I (fivefold excess to amine of chi-
tosan) were added. NaI was added to adjust
the concentration in the reaction medium to
0.2 mol/L. Each reaction was carried out with
stirring for 12 h at 50 °C. The solution was
collected by precipitation with acetone, which
was dried to obtain the quaternized N-alkyl
chitosan derivatives.

Infrared spectra.—Fourier transform in-
frared (FT-IR) spectra were obtain with a
Shimadzu 470 Infrared spectrometer.

Determination of MIC.—The MIC were de-
termined by a method based on that of Li et
al.18

Determination of MBC.—The MBC were
determined by a method based on that of Li et
al.18

3. Result and discussion

In order to obtain quaternized chitosan
derivatives in good yields several conditions



	  

	   15	  

a growth medium in a Petri dish. The plates are then incubated at 37ºC, body 

temperature, and observed after a specified incubation time. The incubation time 

allows colonies, or clusters, of bacteria to form. This is then measureable by 

counting the number of colonies formed. 

 

2.7 Tribological Analysis 

 

With thin films typically being less than 1 µm thick, their ability to withstand 

normal wear and tear, and retain their desired function, is an issue. The study of 

wear and friction is more commonly known as tribology. The major types of wear 

that are studied by tribologists are abrasion, adhesion, cohesion, erosion, and 

corrosion. 

 

There are many ways to test the durability using tribological approaches. The 

most common way to test thin films is by abrasion, often by reciprocating wear. 

This is done by repetitive wear across the surface by an abrasive agent. There 

are multiple configurations to complete this testing.  

 

2.7.1 Wear Testing 

 

The primary way to perform wear testing on a material is by the use of a 

tribometer. There are many variations of tribometers including reciprocating, pin 

on disk, etc (29). Different types of tribometers are shown in Figures 13-15. 
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Figure 13: Schematic for pin-on-ring tribometer (29). 

 

 
Figure 14: Schematic for pin-on-disk tribometer (29). 
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Figure 15: Schematic of four-ball tribometer (29). 

 

Wear testing of materials is used to measure their degree of durability. The most 

common way to express the durability of a substance is the relative weight loss 

when subject to wear testing (30). This is not very easily accomplished with very 

small samples. Thin films are hard to measure weight loss because of how low 

their weight is initially. Thickness loss is another method to measure wear for thin 

films.  

 

2.8 Stylus Profilometry 

 

Profilometers use a small stylus that drags over the surface. This stylus is 

connected to a transducer that produces an electrical signal that is proportional 

to the displacement that is experienced by the tip of the stylus. This signal is then 

amplified and sent to a chart recorder that then displays a scaled view of the 

actual profile (30). A schematic of this setup is seen in Figure 16. 
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Figure 16: General schematic for stylus profilometer (30) 

 

Films are considered “thin films” based on their thickness, nanometer to 

micrometer range. Profilometry can be used to determine initial coating thickness 

as well as coating thickness as a function of wear. This technique is also useful 

to determine surface roughness. Surface roughness is important when looking at 

hydrophobic surfaces. This enables the water to sit on top of a small amount of 

the surface rather than to lie across a large amount. 

 

3.0 EXPERIMENTAL PROCEDURES 

 

This section will include all procedures that were followed when creating these 

coatings in the laboratory. It will also cover analysis techniques that were used. 

 

3.1 Sol gel processing 

 

Sol gel processing is a mild chemical processing approach. This makes it ideal 

for laboratory applications. All chemicals needed for processing are readily 
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available from standard laboratory suppliers. However, high purity reactants are 

needed, so this could increase start up cost.  

 

For this research, all processing was done batch-wise in 25g batches. This silica 

sol gel process is also convenient for processing because it can be treated as a 

one-pot co-condensation. This enabled quick processing times and ease of 

variation. Larger batches were not desirable because it would generate more 

chemical waste. 

 

As mentioned previously, the starting alkoxide precursor is TEOS (Acros 

Organics). Other chemicals used to create these coatings are HCl, water 

(deionized), and an alcohol to act as a diluent; typically ethanol. These are 

common chemicals, but high purity grades are needed, so that increases the cost 

of production.  

 

The first step in this process is to start the initial hydrolysis reaction; combining 

TEOS and water does this. The water is added in two parts; one that is 100% 

deionized water and a second part that is a solution of 3.7 wt% HCl in water. This 

is the catalyst for the reaction. After 1.25 hours of mixing to ensure a 

homogeneous mixture, it is then diluted with ethanol. These four starting 

materials were mixed in varying ratios of TEOS:H2O:HCl:EtOH of 1:4:0.01:10 to 

1:6:0.01:20, depending on the particular sample formulation. After ethanol is 

added the sol was left to mix for a minimum time of three hours aging before it 

was coated on to substrates. All mixing was done under constant stirring. It 

should be noted that this is for a silica sol gel with no antimicrobial properties. 

When antimicrobial agents are added they are part of the molar ratio of TEOS. 

Therefore, the ratio of TEOS for the entire mixture was then broken into an 

internal ratio of TEOS:QAS; this value was 0.8:0.2 to 0.95:0.05. The ratio is so 

high because with more QAS added it takes away from the hydrophobic 

properties.  
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An alternative mix procedure was explored briefly (31). This procedure consisted 

of mixing ethanol, water, and the acid catalyst until complete dissolution. Then 

the TEOS/QAS was added over a ten-minute period while stirring continuously. 

This resulted in a less homogeneous mixture than the original mix procedure. 

Therefore, this procedure was eliminated. 

 

Coatings were initially diluted with an ethanol solution. Since ethanol is so 

expensive in higher purities, the formulation was modified to use methanol to see 

if there were any noticeable changes. After trials with three different formulations, 

there was no noticeable difference between the two diluents, so from then on all 

coatings were made with methanol.  

 

3.2 Substrate deposition 

 

Dip coating was the technique used in this research to coat the sol on to a 

substrate. This is an advantageous technique because it can be done rather 

quickly. Also, since the sol is already mixed in a single container, it is convenient 

to dip the substrate into the sol once a proper aging period has passed.  

 

The substrate used for this research was glass microscope slides (75 mm x 25 

mm x 1 mm by Fischer Scientific). A dip-coating machine was used to dip and 

withdraw the substrates in and out of the sol at a constant speed. The speed for 

this research was 200 mm/min. Before slides were coating they were wiped 

clean with a lint free cloth. Extra caution was taken to ensure that no 

contaminants were introduced into the sol, whether it was inside the mixing 

container or after it has been coated on to the substrate. After the slides were 

coated, they were left to dry in ambient conditions overnight before thermal 

treatment.  
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3.3 Drying 

 

Drying temperature and duration was determined initally by observing 

decomposition temperatures using thermogravimetric analysis (TGA). TGA scans 

were done with dried sol samples that were not coated on to a substrate. The 

scans were done in a ramped mode with a constant temperature increase of     

10 ºC/min. Scans were also done at a constant temperature to determine how 

long the materials could sustain. Decomposition scans were also done with QAS 

samples to determine the maximum temperature it could handle before 

functionality is lost. It was determined that the coating is able to withstand a 

thermal treatment of 175 ºC for a three-hour period. 

 

3.4 Contact Angle 

 

Goniometers are devices that are used to measure angles. There are specific 

goniometers made for measuring water contact angle, such as the piece of 

equipment produced by Ramé-Hart, shown in Figure 17 (32). For the purposes of 

this research, a rudimentary goniometer was used.  
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Figure 17: Ramé-Hart goniometer (32) 

 

The first step for starting a contact angle measurement is to clean the sample. An 

alcohol-based glass cleaning solution was used with a lint-free cloth to 

thoroughly clean the sample surface. Deionized water is placed on to the sample 

surface in 1-2uL drops from a syringe. Five drops are placed on the surface; this 

creates an average contact angle value for the surface to account for variations.  

The goniometer consists of a microscope stage for the samples to sit on. The 

samples are then placed in front of a USB microscope connected to a computer 

to produce a live feed of the images. A still image is captured from the 

microscope. This image is then post-processed to determine the water contact 

angle. Images are processed in ImageJ, with contact angle analysis done by a 

NIH plug-in “Drop Analysis”. 

 

3.5 Thickness 

 

A stylus profilometer, Veeco Dektak 150, was used for thickness measurements. 

Thickness measurements were taken after each slide was produced and during 
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each time step of the wear testing procedure. To measure the thickness, a razor 

blade was used to remove a thin strip of the coating from the substrate. Extra 

caution was taken to not scratch into the substrate, as this would produce a false 

value for the coating thickness. The stylus profilometer was then set to run a 

1000 µm sampling length. This was orientated so the scratch was near the 

middle of the sampling length, with the direction of the scan perpendicular to the 

scratch. This allowed the thickness to be measured as an absolute value of the 

difference in heights. 

 

3.6 Wear Testing 

 

Wear testing was done using a lab-built reciprocating wear tribometer. This 

tribometer was used to wear the samples at a constant frequency with a known 

load.  

The device consisted of a rectangular bath as the base. This is filled with a slurry 

of 300 nm diameter alumina particles dissolved in deionized water. The center of 

the base has a notch cut out for a glass microscope slide to fit. This ensures that 

the sample is in the same location every time. The reciprocating arm moves in 

the y-direction, while the load is variable in the z-direction so it can be raised and 

lowered in and out of the base to position the sample for testing.   

The load that is used is a metal wheel that exerts a known force of 4.7mN and 

has a diameter of 38mm. The outer diameter of this wheel is covered with a cloth 

pad. This is the surface that will be in contact with the sample during wear. Under 

operating conditions, this cloth is immersed in the alumina slurry, therefore the 

alumina is abrasive and will wear the surface of the samples. Each test consists 

of 100 wear cycles across the sample; this is all controlled by a Zaber stepper 

motor (NM34A200). 

 
3.7 Cell Culture 

 

Cell culture studies were preformed with E. coli as the bacteria of target. These 
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studies were preformed in a hood and sterile environment to ensure no 

contaminations.  

 

The first step of the cell culture process was to make a growth medium to put into 

the petri plates. This was made in 500 mL batches. After this was made it had to 

be sterilized in an oven for 4 hours. All work with the petri plates from this point 

on was done under a hood and under sterilized conditions. Once that process 

was complete it was poured into petri dishes. One batch was capable of making 

15 petri plates for culturing. The growth medium was poured into the dishes and 

they were left to solidify overnight. 

 

Then, it was time to prepare the bacteria. E. coli was taken from a concentrated 

solution and diluted to a concentration of 106 cells/mL. The diluent for this 

procedure is a phosphate buffered saline (PBS) solution. The amount of mL of 

bacteria needed is dependent on how many sample dishes there will be. For this 

research, samples were cultured in batches of six; two control samples (no 

coating), two TEOS only coatings, and two TEOS and QAS samples. Each 

sample was placed in a small petri dish then covered with 2 mL of bacteria 

solution. These samples were then placed in a heater (37 ºC) that also had a 

rotating base. This enabled the samples to incubate at body temperature and 

have the solution mixing with the samples.  

 

0.5 µL samples were taken at specific time intervals; 1 min, 10 min, 30 min, 60 

min, 12 hr, 24 hr, 48 hr. These samples were then dropped into the center of a 

growth medium petri plate; swirling the liquid over the entire exposed area then 

plates the sample. These samples were then placed into another incubator for 24 

hours. After the incubation period, the plates were taken out and colonies forming 

units (CFUs) were counted. 
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4.0 RESULTS 
 
 

4.1 Contact Angle Analysis 

 

The main objective of a hydrophobic coating is to increase the contact angle. 

Using the lab-built goniometer and ImageJ for post processing of photographs, 

the contact angles of sample surfaces was determined. Figure 18 shows an 

example of the 5 drops of water laid on to the coating surface. 5 drops were used 

so that an average contact angle can be used to account for any variation in the 

coating.  
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Figure 18: Example of sample contact angle analysis photo. 

 

Each sample had a photo taken before, during, and after all wear testing. This 

was to measure the contact angle on the surface and throughout the bulk of the 

coating.  

 

Changes in formulation were controlled one variable at a time to easily determine 

which factors are important. An example of this point, as mentioned previously, is 

the switch from ethanol to methanol as the diluent. Table 1 shows the two 

average surface contact angle values for these two formulations, each with five 

samples. The minor variations in contact angle ensured that the diluent change 

had a negligible effect.  

 



	  

	   27	  

 

Table 1: Surface contact angle comparison 

 

Ethanol Methanol 
83.8 92.2 
84.2 90.4 
85.1 89.3 
90.1 88.2 
86.1 84.7 

 

Surface contact angle was also measured as a function of coating thickness, 

which was varied by changing the withdrawal speed. The results are shown in 

Table 2. 

 

Table 2: Surface contact angle on samples of same formulation, coated at 

different withdrawal rates. 

 

Surface 
Contact 
Angle 

(º) 

Withdrawal 
Rate 

(mm/min) 
91.5 200.0 
93.7 150.0 
85.3 100.0 
85.0 50.0 
86.7 25.0 

 

Coating thickness has a very little effect on the surface contact angle of a 

coating. The contact angle on the surface is important because this is the part of 

the coating that will be in contact with outside pieces first. When wear becomes 

an issue, then coating thickness will have a more pronounced effect. Figure 19 

shows contact angle as a function of wear for two different formulations, the only 

difference being the amount of methanol added. 
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Figure 19: Contact angle as a function of wear 

 

For the majority of the samples created for this research, the surface contact 

angle was near or at 90º. This puts these coatings near the threshold of being 

hydrophobic. Some samples made had surface contact angles approaching 

105º. 

 

4.2 Wear Testing 

 

This was done using the lab build reciprocating wear tester. It was configured to 

wear samples in intervals of 50 cycles. Then, thickness and contact angle were 

measured between each run. 

 

Initial coating thicknesses were seen as high as 800 nm and as low as 75 nm 

depending on formulation, aging, and withdrawal speed.  

 

Table 3 shows typical thickness degradation with wear. Wear was typically 

stopped after the coating reached about 100 nm. At that point it was extremely 

difficult to produce a scratch that was able to collect five points consistently. 
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Table 3: Average coating thickness per wear cycle 

 

Cycle 
Number Wear 

Cycles 

Average 
Thickness 

(nm) 
Thickness 

Loss % 
0 0 528 0.0 
1 50 457 13.3 
2 100 419 20.6 
3 150 372 29.4 
4 200 317 40.0 
5 250 231 56.2 
6 300 159 69.9 
7 350 99 81.3 

 

With an 80% loss over 7 wear cycles, the coating is now rendered useless. At a 

reciprocating speed of 1 Hz, the 7 cycles took about 12 minutes of total wear. 

 

 

4.3 Cell Culture Studies 

 

These studies were done to determine the viability of E. coli in the presence of a 

coating with antimicrobial properties. The amount of antimicrobial agent added 

into the sol was very small, so as not to compromise the other properties. 

 

Figure 20 shows an example of Petri plates made from agar, ready for culturing. 

This is shown in the sterile hood. Figure 21 shows the shaker machine to keep 

the samples oscillating while heating. 
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Figure 20: Sterile Petri plates 
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Figure 21: Heated shaker machine used for sample incubation before plating 

 

Counting CFUs was the method used to determine the efficacy of the 

antimicrobial agent in the coating. Figure 22 shows four cultured Petri plates after 

incubation. The two plates on the bottom were from control samples. One control 

was a glass slide with no coating, bottom left, and the second was a glass slide 

with a TEOS only coating, bottom right. The two Petri plates on the top had QAS 

incorporated. The plate on the top right was a TEOS and QAS coating that had 

been worn, and the top left was an unworn TEOS/QAS coating. The bacteria are 

more prevalent in the control plates, and there are fewer CFUs in the QAS 

incorporated plates.  
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Figure 22: Cultured Petri plates 

 

5.0 Discussion and Conclusions 
 
Throughout this research I was able to create a thin film coating that was 

hydrophobic, durable, and antimicrobial. A silica sol gel process with the 

incorporation of an antimicrobial agent did this during the hydrolysis reaction. 
 
The coating did possess antimicrobial properties, but the degree was not very 

high. This could be due to the low amount of QAS that was incorporated into the 

coating. More could be added, but then there is a trade-off for the hydrophobicity. 

This coating was able to achieve its the main functions. 
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6.0 Future Work 
 
I think that surface templating should be explored for this application. This would 

make the surface superhydrophobic. Also, surfactant templating would be 

advantageous to create a more hydrophobic environment within the bulk of the 

coating. 
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• Cell culture studies were conducted.  
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