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ABSTRACT 
 

Effects of Artificial Neural Network Speed-Based Inputs on Heavy-Duty  
Vehicle Emissions Prediction 

 
 

Nastaran Hashemi 
 
 
 

The PM split study was performed in Southern California on thirty-four heavy-

duty diesel vehicles using the West Virginia University Transportable Heavy-Duty 

Vehicle Emissions Testing Laboratories to gather emissions data of these vehicles. The 

data obtained from six vehicles in the 1985-2001 model year and 33,000-80,000 lb 

weight range exercised through three different cycles were selected in this thesis. To 

predict the instantaneous levels of oxides of nitrogen (NOx), carbon dioxide (CO2), 

hydrocarbons (HC) and carbon monoxide (CO), an Artificial Neural Network (ANN) was 

used. Axle speed, torque, their rates of change over different time periods and two other 

variables as a function of axle speed were defined as the inputs for the neural network. 

Also, each emissions species was considered individually as the output of the ANN. The 

ANN was trained on the Highway cycle and applied to the City/Suburban Heavy Vehicle 

Route (CSHVR) and Urban Dynamometer Driving Schedule (UDDS) with four different 

sets of inputs to predict the emissions for these vehicles. The research showed an 

excellent emissions prediction for the neural networks that were trained with only eight 

inputs (speed, torque, their first and second derivatives, and two variables of Diff. and 
−

Spd  related to the speed pattern over the last 150 seconds). The Diff variable provided a 

measure of the variability of speed over the last 150 seconds of operation. This variable 

was able to create a moving speed-dependant window, which was used as an input for the 

neural networks. The results showed an average accuracy of 0.97 percent for CO2, 0.89 

percent for NOx, 0.70 for CO and 0.48 percent for HC over the course of the CSHVR, 

Highway and UDDS. 
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1. INTRODUCTION 

The internal combustion engine was introduced to humankind in 1860s by J.J.E. 

Lenoir. He developed the first coal-gas air mixture at atmospheric pressure. These 

engines were built between 1860 and 1865 with up to 6 brake horsepower and an 

efficiency of 5 percent. In 1867, N.A. Otto and E. Langen developed another atmospheric 

engine with the thermal efficiency of 11 percent. To improve the engine efficiency, in 

1876 Otto proposed an engine cycle with four piston strokes: an intake stroke, a 

compression stroke, an expansion or power stroke and an exhaust stroke. Due to this 

improvement, this engine was more efficient and there was a substantial reduction in 

engine volume and weight. Further development followed fast after Otto’s four-stroke 

engine. In 1892, R. Diesel designed a new form of internal combustion engine [1]. He 

found that by injecting a liquid fuel into compressed air, it is possible to achieve a higher 

efficiency, compare to other internal combustion engines. Engine developments have 

continued ever since. The most recent development was the rotary internal combustion 

engine, which was successfully tested in 1957. 

 Nowadays, the engine design is significantly affected by other factors such as air 

pollution and fuel consumption. In 1940s, the automotive air-pollution problem became a 

matter of concern in Los Angeles and it was demonstrated that automotive emissions are 

the reasons of smoke problem in that area. As a result, emission standards for automobile 

were introduced first in California and then in all the United States in the 1960s.  
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The United States Environmental Protection Agency was established three 

decades ago to protect the human health and to safeguard the natural environment (air, 

water, and land). The EPA defined the National Ambient Air Quality Standards 

(NAAQS) and set pollution limits. Diesel engines are extensively used to power the on-

road vehicles such as trucks and buses and also off-road equipment as a result of their 

outstanding fuel economy. Oxides of nitrogen (NOx), particulate matter (PM), 

hydrocarbons (HC) and carbon monoxide (CO) are the main contributions of on-road 

heavy-duty diesel vehicles to the atmospheric inventory. NOx reacts with HC and 

sunlight to form ground-level ozone and also plays an important role in secondary fine 

particulate matter formation [2]. The EPA estimates that 27% of on-road vehicle 

emissions of NOx and more than 60% of PM are contributed by heavy-duty vehicles 

throughout the nation, although these heavy-duty vehicles are only 2% of the total on-

road vehicles by number [3]. Heavy-duty vehicles are identified as vehicles of gross 

vehicle weight rate (GVWR) of above 8,500 lbs in the federal jurisdiction and above 

14,000 lbs in California (model year 1995 and later). Considering the growing pollution 

crisis, emission regulations have been an important topic for environmental researchers. 

The EPA has provided emission standards for heavy-duty diesel vehicles. Model year 

1988-2010 US federal EPA emission standards for the heavy-duty diesel trucks are 

summarized in Table 1.1. 

The PM emission standard must be met by the 2007 heavy-duty vehicle model 

year. However, the NOx and HC standards are scheduled to be met between 2007 and 

2010. This schedule is based on the percentage of the vehicles sale. 50% of the total 
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vehicles sale must meet the standard from 2007 to 2009 and 100% of the vehicles sale by 

2010.  

 
Year HC CO NOx PM 

1988 1.3 15.5 10.7 0.60 

1990 1.3 15.5 6.0 0.60 

1994 1.3 15.5 5.0 0.10 

1998 1.3 15.5 4.0 0.10 

2000 1.3 15.5 4.0 0.10 

2004 0.5 15.5 2.0 0.10 

2007-2010 0.14 15.5 0.20 0.01 

Table 1.1. EPA Emission Standards for Heavy-Duty Diesel trucks, g/bhp-hr [4]. 

 

The EPA’s regulations consider emissions inventory data and drive continuous 

efforts to review the diesel engine design and move toward more effective controls for 

NOx, PM and HC. For the development of a modeling inventory, it is necessary to have a 

database of the emissions, also known as the base year inventory [5]. To approach the 

new analysis needs, the EPA's Office of Transportation and Air Quality (OTAQ) is 

working on a new system defined as the Multi-scale mOtor Vehicles and equipment 

Emission System (MOVES) [6]. The MOVES model will estimate emissions for on-road 

and off-road sources, covering a wide range of pollutants [7]. MOVES is different from 

the previous MOBILE series of models. The ability to generate emissions for a wide 

range of pollutants and processes such as emissions from both on-road and off-road 

vehicles and equipment are combined in this modeling framework. It is also capable of 
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illustrating model validation and the calculation of uncertainty, easing the model 

updating, and interfacing with other models. It is possible to perform multiple scale 

analysis, from fine-scale analysis to national inventory estimation with the MOVES 

design.  

The MOVES design has been developed to satisfy the National inventory 

development for the EPA reports and regulations, local inventory development, model 

interaction, policy evaluation, model analysis, project level analysis and model updates. 

Due to its unique multiple scales and emissions process, this model provides the 

calculation of emissions from a wide range of emission sources. Therefore, a generic 

framework has been suggested to calculate the total emissions according to an identified 

time, location, use type and emission process. 

 

ji,on DistributiBin ji, Rate EmissionsActivity Totali Emissions Total
j

1n

××= ∑
=

  

          Equation 1.1 

where i is the use type and j is the bin.       

 Total activity is the product of population and per-source activity for a specific 

use type, time, and location. Emissions rate specifies emissions for a given process, 

source bin, and operating mode bin. It also can be considered for additional effects such 

as fuel and meteorology. Each discrete bin is dictated by factors that are found to 

contribute unique emissions based on characteristics of the use type and operating modes. 

Source bins are defined by fuel type, accumulated use, technology types, standard levels, 

source weight for on-road sources, and horsepower range for off-road courses.  
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The Artificial Neural Network (ANN) modeling is able to estimate the 

instantaneous emissions. It is necessary to understand the vehicles activities 

characteristics and primarily engines features to analyze their contribution to the 

emissions. The ANN has been widely employed for modeling the engines characteristics 

such as combustion and emissions. In this work, the ANN was used to predict the vehicle 

emissions and identify those specific vehicle parameters that influence the emissions. 

Further results of this research could be used to identify the relation of the emissions and 

engine characteristics in order to improve the engine design. This improvement could 

facilitate the on-road vehicles emissions reduction. 

  

1.1. Objectives 

The primary objective of this research was to develop an artificial intelligence 

method to predict the heavy-duty vehicle emissions. For this purpose the artificial neural 

networks were chosen due to their ability to solve non-linear problems such as vehicle 

emissions. In order to achieve the most accurate emissions prediction, the study was 

concentrated on the contribution of the different inputs and also the techniques that were 

used to pre-process them. Therefore, three sub-objectives were defined as: 

i. Developing a data pre-processing strategy using a dispersion model. 

ii. Creating the different inputs 

iii. Developing different neural network architectures with different number 

of inputs. 

iv. Evaluating the applied approaches. 
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1.2. Literature Review 

Due to the capability of the ANNs in solving non-linear problems, they have been 

the center of great attention since the late 80’s. The engine emissions research area has 

not been excluded from the growing neural network applications. 

Considering the relationship of the Air/Fuel Ratio (AFR) to the power and 

consequently the emissions, precise ignition point of the air-fuel mixture is critical to 

reduce the exhaust emissions and obtain the maximum output power. Bastian [9] used an 

ANN approach to identify the amount of air for a given engine speed and inlet manifold 

pressure. His work was one the earliest research efforts in the ANN applications. Frith et 

al. [10] have also investigated the application of ANNs for adaptive AFR control in 

gasoline engines. Plenty of research was performed on the application of the artificial 

neural networks to identify the AFR effects on gasoline engine emissions levels.  

ANN application to engine exhaust catalysts was another area of interest. Ramani 

et al. [11] used neural networks to identify composition-performance relationships in 

automobile exhaust catalysts. They employed an ANN to undertake a sensitivity analysis 

of the conversions of pollutant gases as a function of the catalyst composition and the 

operating conditions. This approach combined the optimum catalyst composition and 

operating condition in order to produce specific conversions of CO, HC and NOx to CO2, 

water (H2O) and nitrogen respectively.  

Stevens et al. [12] utilized a neural network approach for processing the data and 

to evaluate relationships between engine emissions and engine state variables. 
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To predict real-time engine power output along with exhaust emissions, Atkinson 

et al. [13] developed a neural network-based engine performance, fuel efficiency and 

emissions prediction system for both spark ignited and compression ignition engines. 

Krijnsen et al. [14] proposed the application of ANN as a precise tool to predict 

the engine's NOx emission instead of using expensive NOx analyzers and computer 

models. Data were collected from a transient operating diesel engine and part of the data 

was used to train the network, while the other part was used to test the NOx emission 

prediction. A single-layer perceptron network with the inputs of engine speed, rack 

position, intake air pressure, intake air temperature and their rates of change was chosen 

for this study. The average absolute deviation between the predicted and measured NOx 

emission was 6.7%. This work proved that the ANN is an accurate tool to predict the 

automotive NOx along with its short computation time qualification.  

Quenou et al. [15] proposed an ANN diesel engine exhaust emissions modeling. 

The main feature of this ANN modeling is the capability to identify the emissions 

through opacity. They also dealt with the structure of the one hidden layer feedforward 

neural network and described the Gaussian-Newton training rule based on the general 

error criterion. Then, they used this model to determine the diesel engine emissions using 

the standard Levenberg-Marquardt algorithm. The fuel flow, air flow and the engine 

speed were chosen as inputs to their ANN model. 

To control the diesel engine exhaust, Hafner et al. [16] presented a fast neural 

network to dynamically simulate the different emissions from engine. The ANN was able 

to calculate a cost function for exhaust versus consumption and determine an optimal 



 8

injection angle dependent on the engine's exhaust performance, fuel consumption and the 

real-time driving condition. 

Thompson et al. [17] used the application of a 3-layer neural network to model 

the continuous output torque and engine emissions from a heavy-duty diesel engine for 

the FTP (Federal Test Procedure) heavy-duty engine transient cycle. The ANN consisted 

of 10 input variables including intake air temperature, intake air pressure, injection 

pressure, injection pulse width, start of injection, acceleration position, engine speed, 

engine oil temperature, engine coolant temperature, and exhaust temperature. The 

prediction results were within 5% of their measured values after only 100 minutes of 

transient dynamometer training. 

De Lucas et al. [18] studied the influence of the fuel composition parameters on 

particulate emissions where the data were fitted along with the engine torque and speed 

using an ANN. Their model was also able to estimate emissions within 87-90% of 

confidence for one single operating mode.  

To simulate conventional and hybrid vehicles and predict their emissions, Clark et 

al. [19] used a neural network emission model based on simulated engine speed and 

torque combined with ADVISOR (ADvanced VehIcle SimulatOR) software package. 

The emissions predicted by the ANN showed good correlation with the emissions data 

from the chassis tests using the WVU Transportable Heavy-Duty Vehicle Emissions 

Testing Laboratory (THDVETL).   

Yuanwang et al. [20] examined the application of a backpropagation neural 

network to predict exhaust emissions including HC, CO, PM and NOx. Cetane number 
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was selected as an input and the effects of cetane improver and nitrogen content were 

also analyzed. 

Desantes et al. [21] suggested a mathematical model to correlate NOx and PM as a 

function of engine operating parameters. A multi-layer perceptron with a 

backpropagation learning algorithm was selected for this research. By examining a wide 

range of inputs, they concluded that exhaust gas recirculation (EGR) rate, fuel mass and 

start of injection were the most relevant parameters for NOx, PM emissions and also 

BSFC (Brake Specific Fuel Consumption). BSFC showed how efficiently the engine used 

the fuel to produce power. Their model proved to be successful in maintaining the 

emission values below the obligatory level and minimize BSFC.  

Hafner et al. [22] described a modern approach towards a model-based 

optimization of internal combustion engine control maps. They tried to reduce fuel 

consumption and exhaust emissions while achieving a good driveability. Therefore, the 

structure of a torque-oriented engine management system based on control maps was 

described first. Then in order to develop an optimization tool, an ANN-based model of 

engine emissions was used to compute the basic control maps for the engine settings. The 

results in both simulation and measurements proved the quality of the proposed 

technique.  

Tehranian [23] studied the ANN design, architecture, and activation function on 

the accuracy of emissions predictions. She found that the 3-Layer and Jump Connection 

neural networks with radial basis functions such as Gaussian were the best architectures 

to predict five emissions of NOx, PM, HC, CO, and CO2. The data were obtained from a 

550 hp General Electric DC engine dynamometer-testing unit at the West Virginia 
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University Alternative Fuels, Engine and Emissions Research Center. The engine was 

exercised through engine transient test schedules of the ETC, FTP, E-CSHVR, E-

Highway and E-WVU-5 Peak schedules. The E-CSHVR, E-Highway and E-WVU-5 

were chassis test schedules which were adapted to be performed on a dynamometer. 
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2. ARTIFICIAL NEURAL NETWORKS 

Artificial Neural Networks (ANN) with their outstanding ability to obtain 

meaning from complicated data can be used to identify patterns that are too complicated 

to be solved by other computer techniques. The other advantages of ANN can be 

classified as:  

1. Adaptive learning: ANN is able to learn how to perform tasks based on the data 

presented for training.  

2. Real Time Operation: ANN computations may be carried out in parallel. 

Therefore, special hardware devices are being designed and manufactured which 

take advantage of this capability.  

3. Self-Organisation: An ANN is able to create its own organization or 

representation of the information it receives during learning time.  

4. Fault Tolerance: Partial destruction of a network causes the corresponding 

degradation of performance but some network capabilities may be maintained 

even with major network damage [24].  

 

2.1. History  

The history of neural networks has developed through conceptual innovations and 

implementations, two necessary ingredients for the advancement of a technology [25]. 

Some of the neural network developments occurred in the late 19th and early 20th 
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centuries in physics, psychology and neurophysiology. Alexander Bain, William James, 

Hermann von Helmholtz, Ernst Mach and Ivan Pavlov were the pioneers of ANN [26]. 

The modern view of neural networks began in 1940s by Warren McCulloch and 

Walter Pitts [27] who showed that networks of artificial neurons could compute any 

arithmetic or logical function. Their work is often recognized as the origin of the neural 

network field. In 1949 Hebb [28] formed the basis of ‘Hebbian learning,’ which is now 

considered as an important part of ANN theory. The concept of ‘Hebbian learning’ is 

based on the principle that every time a neural connection is used, the path is 

strengthened. 

The first practical application of artificial neural networks was introduced in 

1958, with the concept of the perceptron network by Rosenblatt [29]. He and his 

colleagues introduced the perceptron network and showed its ability to perform pattern 

recognition. Bernard Widrow and his graduate student Marcian Hoff, suggested the 

ADALINE (ADAptive LInear NEuron) network and LMS (Least Mean Square) 

algorithm as its learning rule. ADALINE network was very similar to the perceptron, 

except for its transfer function that was linear.  

In 1969 Minsky and Pappert published a book [30], which showed that the 

perceptron developed by Rosenblatt had serious limitation. They assumed this limitation 

is a common feature of all neural networks. As a result of this publication, the amount of 

research work on ANN was reduced for the next 10 years. 

However, some important work continued during the 1970s. Kohonen [31] and 

Anderson [32] independently developed the linear associator neural networks that could 

act as memories in 1972. 
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During the 1980s with the aid of powerful computers and new concepts, research 

in neural network increased dramatically. Two new concepts helped for the rebirth of the 

neural networks [25]. First was using the statistical mechanics to describe the operation 

of a specific class of recurrent network that could be used as an associative memory.  

This concept was introduced by Hopfield [33] in 1982. The other concept was the 

backpropagation algorithm for training multilayer perceptron networks. This algorithm 

was the answer to the Minsky’s criticism. Rumelhart and McClelland [34] were the 

pioneers of the backpropagation neural network.  

Today there are two classes of ANN patterns, supervised and unsupervised [35]. 

The backpropagation network is the most popular example of the supervised network. It 

is very useful to model the nonlinear transfer function between several inputs and one or 

more outputs. Carpenter and Grossberg [36] proposed the adaptive resonance theory that 

is an unsupervised network with adaptive architecture. Kohonen’s algorithm is another 

well-known unsupervised neural network [26]. 

ANNs are being used extensively due to their ability to provide a rapid solution to 

non-trivial problems. They are not universal solutions to all problems [35]. They are 

alternative mathematical devices for processing the data. 

 

2.2. The Biological Neuron 

The ANN has been developed by inspiration of the characteristics of brain 

function. The brain consists of approximately 1011 highly connected (104  connections per 

element) elements. The neurons have three components: the dendrites, the cell body and 

the axon. The dendrites are receptive networks of nerve fibers that carry electrical signals 
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into the cell body. The cell body sums and thresholds these incoming signals. The axon is 

a single long fiber that carries the signal from the cell body to the other neurons. Synapse 

is the point of contact between an axon of one cell and a dendrite of another cell. The 

arrangement of neurons and the strength of the synapses determine the function of the 

neural network. Figure 2.1 shows the feature of biological neurons and their connections.  

 

 
Figure 2.1. Biological Neurons Feature [25] 

 

Part of the neural structures is defined at birth and continues to change during the 

human life. The similarities between the artificial and biological neural network can be 

summarized in two main characteristics. First, both networks consist of simple elements, 

which are connected extensively. Second, the function of the network is determined by 

the connections of the neurons. Compared to electrical circuits, the biological neurons are 

very slow. However, the brain performs many tasks much faster than any computer. This 

is because of parallel structure of the biological neural network and the high number of 

neural connections. 
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2.3. The Artificial Neuron 

2.3.1. Single-Input Neuron 

Figure 2.2 shows a single-input neuron. The scalar input (p) multiplies by weight 

(w) and sums up with bias (b). The summer output (n) is the net input that goes to the 

transfer function (f) and produces the scalar output (a). 

a = f (wp+b)             Equation 2.1 

Figure 2.2. Single-Input Neuron 

 
Relating the biological neuron to this model, the w corresponds to the power of 

the synapse, the summation is representative of the cell body and the transfer function 

and neuron output represent the axon. 

w and b are adjustable scalars that will be varied by the learning rule but the 

transfer function will be selected by the designer to meet the desired output. 
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2.3.2. Transfer Functions 

The transfer function may be a linear or non-linear function of the net input (n). 

The way the networks produce their outputs is by applying a transfer function to the sum 

of the weighted inputs [37].  

 

2.3.2.1. Gaussian 

This transfer function maps high values into low ones, and mid-range values into 

high ones. It helps identifying meaningful characteristics not found at the extreme ends of 

the sum of weighted inputs. Output of this function is [0,1]. The following transfer 

functions are summarized in Table 2.1. 

a = f(n) = exp (-n²)        Equation 2.2 

 

2.3.2.2. Gaussian Complement 

Gaussian complement function reveals meaningful characteristics in the extremes 

of the data. 

a = f(n) =1- exp (-n²)       Equation 2.3 

 

2.3.2.3. Sigmoid Logistic 

 This function is useful for almost all neural network applications and maps the 

inputs into the (0,1) range. Logistic has always been used for categorized outputs. 
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a = f(n)  = 
)exp(1

1
n−+

      Equation 2.4 

2.3.2.4. Symmetric Logistic 

 Symmetric logistic function maps the data to (-1,1). This function is mostly been 

used in hidden and output layers. 

a = f(n)  = 1
)exp(1

2
−

−+ n
      Equation 2.5 

 

2.3.2.5. Hyperbolic Tangent 

 Tanh is useful for continuous valued outputs. To use it in the first hidden layer, 

the inputs must be scaled into [-1,1]. 

a = f(n)  =
(-n)  (n) 
(-n)   (n) 

expexp
expexp

+
−       Equation 2.6 

 

2.3.2.6. Tanh 1.5n  

 This function is expressed with the following equation and it is much better than 

tanh function in some cases.  

a = f(n)=  
n)(-  n)( 
n)(-   n)( 

1.5exp1.5exp
1.5exp1.5exp

+
−      Equation 2.7 

 

2.3.2.7. Sine 

 The inputs must be scaled into [-1,1] if this function has been used in the first 

hidden layer. 
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a = f(n)  = sin (n)       Equation 2.8 

 

2.3.2.8. Linear 

It is useful for problems where the output is a continuous variable.  The linear 

function prevents the network from producing outputs with more error near the min or 

max of the output scale. It is better to use smaller learning rates, momentums, and initial 

weight sizes with this transfer function. Otherwise, the network may produce larger errors 

and weights which consequently does not minimize the error. 

a = f(n)  = n        Equation 2.9 

 

2.3.3. Neural Network Design 

The process of designing a neural network is an iterative process and can be 

achieved through a series of trial and error steps to achieve a desirable network. 

Designing a neural network includes: 

1. Selecting the type of neuron connections for different layers and also the 

connections among the neurons within a layer.  

2. Determining the strength of connection within the network by allowing the 

network to learn the appropriate values of connection weights by using a training 

data set [38].  

3. Choosing the suitable transfer function or in the other word the way the neuron 

produces output 
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Table 2.1. Transfer Functions 
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2.3.3.1. Network Layers 

Usually a neuron has more than one input; however one neuron with even many 

inputs is not sufficient. Therefore, a layer of neurons working in parallel is needed for 

complicated problems. The layer includes the weight matrix, the summers, the bias 

vector, the transfer functions and the output vector. Figure 2.3 shows a layer of S 

neurons. However, most of the neural networks consist of several layers. The output layer 

is the layer whose output is the neural network output. The layer of the network inputs is 

called input layer and the other layers are considered as hidden layers. 

Figure 2.3. Layer of S Neurons 

 

Hidden layers can be more than one layer in the ANN architecture. Figure 2.4 

shows the layers of a neural network in which every layer is connected to the next.  
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Figure 2.4. Layers of Neural Network 

2.3.3.2. Types of Connections 

The neurons in a layer can be connected either within the layer or between the 

layers. The connections of the neurons within the layers are called intra-layer connections 

however these connections between the layers are identified as inter-layer connections.

 There are two types of intra-layer connections: ‘Recurrent’ and ‘On-center/Off 

surround’ [38]. In ‘Recurrent’ connection, the neurons in one specific layer communicate 

their outputs with each other within the layer before they send their outputs to another 

layer. Generally some conditions among the neurons of the layer should be achieved 

before they communicate their outputs to another layer.  However, in ‘On-center/Off 

surround’ connections, a neuron within a layer has excitatory connections to itself and its 

immediate neighbors, and has inhibitory connections to other neurons. In the excitatory 

connection, the output of one neuron boosts the performance of the neuron that receives 

the signal but in inhibitory connections of the neurons, the output of the neuron sending a 

message would reduce the activity of the receiving neuron. Consequently, after a while 



 22

the neuron with excitatory connections can update its weight and also weights of its 

linked neurons. 

Different types of inter-layer connections consist of ‘Fully connected,’ ‘Partially 

connected,’ ‘Feed forward,’ ‘Bi-directional,’ ‘Hierarchical’ and ‘Resonance.’ In a ‘Fully 

connected’ connection each neuron on the first layer is connected to all neurons of the 

second layer but in ‘Partially connected’ each neuron on the first layer is connected to the 

part of the neurons on the second layer. The neurons in ‘Feed forward’ connections send 

their outputs to the next layer’s neurons and do not receive any input back but in ‘Bi-

directional’ another set of connections bring the outputs back from the neurons of the 

next layer to the previous layer’s. These two types of connections can be ‘Fully or 

Partially connected.’ ‘Hierarchical’ is a type of structure that the neurons of a lower layer 

could only communicate with neurons on the next level of layer and ‘Resonance’ 

presents a kind of bi-directional connection that the layers send signals to each other until 

a certain condition is achieved.  

 

2.3.3.3. Learning  

Like the brain that learns from experience, the ANN learns the solution to a 

specific problem by adjusting the connection weights (training algorithm). Two features 

determine the learning ability of a neural network, its architecture and training algorithm. 

The training algorithm usually consists of: 

1. Supervised learning: Supervised neural networks are trained to achieve desired 

outputs in response to specific inputs. These networks are mostly suitable for 
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predicting future events, modeling and controlling dynamic systems, and 

classifying noisy data [39]. The connections among the neurons in the hidden 

layer are randomly arranged, then a training set of data or an observer identifies 

how close it is to desired outputs and accordingly rearranges the network 

connections. One of the most commonly used supervised neural network model is 

the ‘Backpropagation’ network. Error information is fed back through the system 

and is used to adjust the connections between the layers. The followings are 

examples of supervised networks: ‘Radial basis’ networks that provide an 

alternative technique for designing non-linear feed-forward networks, ‘Recurrent’ 

networks that use feedback to identify spatial and temporal patterns, and ‘Feed-

forward’ networks which are suitable for pattern recognition, prediction, and 

nonlinear function fitting.  

2. Reinforced learning: This learning is similar to supervised learning, but instead of 

being provided with correct output for each network input, the algorithm is only 

given a grade. This grade identifies the network performance. Reinforced learning 

is not very common and it is most useful for control system applications [40]. 

3. Unsupervised learning: Unsupervised learning method is not given any target 

value. A desired output of the network is unknown. During training the network 

performs some kind of data compression such as dimensionality reduction or 

clustering. The network learns the distribution of patterns and makes a 

classification of that pattern where, similar patterns are assigned to the same 

output cluster. Kohonen network is the best example of unsupervised learning 

network. 
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There are a number of mathematical algorithms which are used to update the 

connections weight and perform network training. Some of them are listed as below. 

 

2.3.3.3.1. Perceptron Learning Rule 

This learning rule is an example of supervised training. A set of network behavior 

is defined as:  

{p1,t1}, {p2,t2}, …, {pQ,tQ}      Equation 2.10 

where pq is an input vector and tq is the corresponding target output of the network. The 

network output (aq) is compared to the target and then the weights and biases of the 

network are modified by learning rule to achieve an output close to the target. If the 

scalar perceptron error is defined as: 

e = t-a          Equation 2.11 

The matrix notation of the perceptron learning rule can be written as: 

Wnew  = Wold + e pT       Equation 2.12 

bnew  = bold + e        Equation 2.13 

where W is a weight matrix, ‘new’ refers to the computed weight matrix / bias in each 

step, ‘old’ is the weight matrix / bias in the immediate previous step, e is an error vector 

and b is network bias. 

 

2.3.3.3.2. Hebbian Learning Rule 

The well-known Hebbian rule is the origin of the majority of these learning 

algorithms. The Hebbian learning rule explains that “When an axon of cell A is close 
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enough to excite cell B persistently, some growth process occurs in one or both cells that 

increases the effectiveness of cell A” [25]. To interpret this rule in mathematical form, it 

should be noticed that the connection between inputs and outputs is the weight matrix. 

Consequently, if a positive input produces a positive output then the elements of weight 

matrix should increase.   

Wnew  = Wold + α tq pq
T      Equation 2.14 

Note that α is the learning rate. 

 

2.3.3.3.3. Least Mean Square Learning Rule 

The least Mean Square (LMS) or delta rule is an example of supervised training 

rule that adjusts the weights and biases of the network in order to minimize the mean 

square error. Existence of a unique minimum point depends on the characteristics of the 

input vectors. The LMS rule can be identified as: 

W (k+1) = W (k) + 2 α e (k) pT (k)     Equation 2.15 

b (k+1) = b (k) + 2 α e (k)      Equation 2.16 

 

2.3.3.3.4. Backpropagation Learning Rule 

Similar to the LMS rule, backpropagation  (BP) rule is an approximate steepest 

decent algorithm in which the performance index is mean square error. The only 

difference between LMS and backpropagation is in the way that their derivatives are 

computed. The backpropagation term comes from the concept of the sensitivities, 
m

s . 

The sensitivities are propagated backward through the network from the last layer (M) to 
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the first layer. The sensitivity of transfer function F to changes in the ith element of the 

net input (n) at layer m is defined as: 

m
i

m
i

n
s

∂

∂
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F         Equation 2.17 

n=Wp + b        Equation 2.18 
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m

S
mn shows the s th input of layer m. Finally, the weights and biases are updated 

using approximate steepest descent rule [25]: 

T1mmmm
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α−=+  WW      Equation 2.22 

mmm
s)k()1k(  bb α−=+       Equation 2.23 
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2.3.3.3.5. Kohonen Learning Rule 

This learning is inspired by learning in biological systems and is implemented in 

the unsupervised methods of learning. The weights of a neuron learn an input vector in 

Kohonen rule. This learning is suitable for recognition applications. Learning happens 

when the neuron’s index i is a member of the set X(q). The Kohonen rule can be written 

in vector notation as: 

iw (q) = iw (q-1) +  α ( p (q) - iw (q-1) )  for i є X(q)   Equation 2.24 

where iw is a vector composed of the elements of the ith row of weight matrix. 

 iw =
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        Equation 2.25 

 This rule also can be used with other identification which is its advantage. It is 

useful for training networks such as self-organizing neural network [25,38].  

 

2.4. Backpropagation Neural Network 

 Generalizing the Widrow-Hoff learning rule, backpropagation neural network is 

created for multiple-layer networks with nonlinear differentiable transfer functions. The 

target vector and the associated input vector are used to train the network. Generally, it 

has been showed that 2-layer neural networks with biases, a hidden layer with sigmoid 

transfer function and the output layer with linear transfer function are able to model any 

output vector [41]. In BP neural network the weights for the nodes are selected 

arbitrarily, then the weights are modified according to the gradient of the performance 
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function. Sometimes, this modification points in the direction to the local minimum. 

Unfortunately, the local minimum is not always the global minimum, which causes the 

network to settle in a non-optimal configuration. To prevent the BP neural network from 

settling in local minima, the number of hidden layer nodes can be increased or decreased 

or even the network can be tried with different initial conditions. This is because the 

weights will be reinitialized to a different set of random numbers, which may keep them 

from falling into a local minimum that is not the global minimum.  

 

Figure 2.5. Backprobagation neural network. This illustration combines 
information from Neural Network Design Book and NeuroShell2 Users Manual 
[25,37]. 
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2.4.1. Convergence 

The study of performance function of a multilayer neural network shows that first, 

the initial parameters should not be set to zero. This is because the origin of the parameter 

space is inclined to be a saddle point for the performance surface. Second, the initial 

parameters should not be too large because as we move far away from the global 

minimum the performance surface would become very flat. Typically, the initial weights 

and biases are selected as small random values. It is also recommended to try several 

initial points in order to identify if it is converged to the global minimum or the local 

minimum [42]. For improvement of the BP neural networks, two methods of variable 

learning rate and momentum based on numerical optimization algorithms are generally 

being used [25].  

 

2.4.2. Variable Learning Rate 

To speed up the convergence, the learning rate can be increased on the flat area 

and then be decreased when the slope increase. The error performance of a single-layer 

linear network is a quadratic function and the maximum stable learning rate for the 

steepest decent algorithm is two divided by the maximum eigenvalue of the Hessian 

matrix. But the error surface of the multilayer is not quadratic and its slope is different in 

each region. By adjusting the learning rate considering the performance function shape, 

the convergence time can be decreased. 

Vogl et al. [43] suggested a straightforward batching approach for adjusting the 

learning rate according to the performance of the algorithm. The rules of the Variable 

Learning rate BackPropagation (VLBP) are summarized to: 
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• If over the training set, the squared error increases by more than a specific 

percentage (ζ=1-5%) after the weight update, then the weight update is 

neglected, the learning rate is multiplied by a positive factor less than 1 

(0< η<1) and the momentum coefficient (γ) is set to zero. 

• If the squared error decreases after a weight update, then the weight is 

updated and the learning rate is multiplied by a factor more than 1 (η>1). 

If γ has been changed to zero formerly, it is updated to its original value. 

• If the squared error increases (less than ζ), then the weight is updated but 

the learning rate does not change. If γ has been adjusted to zero, it is set to 

its original value. 

This rule suffers from two main disadvantages while using more complex 

algorithms: 

• The modification requires definition of several parameters such as γ, η and 

ζ. The performance of the algorithm depends on changes in these 

parameters. 

• Sometimes, these modifications to the steepest descent BP cause failing of 

the convergence. 

 

2.4.3. Momentum 

The second method is using the momentum. By smoothing the oscillation of the 

squared error throughout the iterations, the convergence can be improved. This can be 

achieved by applying a low-pass filter. It is possible to use a larger learning rate while 



 31

maintaining the stability of the algorithm by using the momentum. The other advantage 

of momentum is that it accelerates the convergence.  

Tmmmm askWkW )(  )γ1()( )1( 1−−−∆=+∆ αγ     Equation 2.26 

mmm skk   ) - (1 )(b  )1(b αγγ −∆=+∆      Equation 2.27 

 

2.5. Ward Neural Network Architecture 

Backpropagation neural networks are proved to be able to generalize well on a 

wide variety of problems. Typically, training time depends on the number of patterns in 

BP neural networks and it may be slow but worth it because they are such global 

algorithms.  

The neural network used in this research to predict the emissions was a 2-layer BP 

network created by Ward Systems Group (NeuroShell2, release 4.0 software). The hidden 

layer of this neural network was composed of different activation functions. The number 

of inputs determined the number of neurons in the input layer. The numbers of neurons in 

the hidden layer were a function of the number of inputs, outputs and training patterns 

(Equation 2.28).  

 

Number of hidden neurons = 1/2 (Inputs + Outputs) + Square root of the number 

of the training patterns      Equation 2.28 

 

The number of hidden neurons determines how well the network can be trained. 

Too many neurons make the network to memorize the problem and consequently not 
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generalize well later.  Too few neurons make the network generalize well but not learn 

the patterns competently. Output neurons were equal to the number of outputs.  

Applying three different activation functions to the hidden layer identifies 

different features in each pattern and it offers three ways of viewing the data.  

The learning rate and momentum for each link can be adjusted individually or 

they can be similar for all links. 

Figure 2.6 shows the connections of the different layers. Neural network input is 

presented by Slab 1 but it is not considered as a layer according to ANN terminology. 

Slab 2,3 and 4 illustrate the hidden layer of the network. Due to applying three different 

activation functions on hidden layer, three different slabs were shown. Slab 5 refers to 

output layer and is considered as a layer. 

Figure 2.6. Connections of the layers in a 2-layer backpropagation neural network.  
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3. EXPERIMENATAL EQUIPMENT AND PROCEDURE 

The primary objective of this research was to predict second by second heavy-

duty vehicle emissions using ANN during the course of transient chassis tests of the 

vehicles while continuous gaseous emission data were collected. For this purpose, it was 

first required to train the ANN on actual emissions data in order to use the similar 

architecture as a predictive tool for the unseen data. All chassis dynamometer emissions 

data were collected using the West Virginia University (WVU) Transportable Heavy 

Duty Vehicle Emissions Testing Laboratories. Although the collection of data was not 

included in this graduate research effort, it is important to describe the acquisition of the 

data to place the thesis in context. 

 

3.1. WVU Transportable Emissions Testing Laboratory Description 

WVU, with cooperation of the Office of Transportation Technologies of the U.S. 

Department of Energy, designed the Transportable Heavy Duty Vehicle Emissions 

Testing Laboratories to measure the emissions from heavy-duty vehicles. The 

laboratories were able to perform transient and steady state chassis dynamometer 

emissions tests on vehicles and simulate a range of driving cycles to provide performance 

and fuel efficiency data.  

The laboratories can be moved from site to site and cause the reduction in the test 

timing of the tested vehicles. WVU operated two heavy-duty chassis with twin flywheel 

sets and twin power absorbers for the vehicles from 20,000 to 80,000 lbs in Gross 
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Vehicle Weight (GVW). Also there was a medium-duty dynamometer for lighter vehicles 

(3,000 to 20,000 lbs). This dynamometer had a single-phase power absorber and a single 

dynamometer.  

 

3.1.1. Heavy-Duty Vehicle Emissions Testing Laboratory 

The heavy-duty dynamometer unit was composed of a power absorber for 

simulation of road load power and a set of flywheels (discs) for simulation of an inertia 

weight equal to a gross vehicle weight. During the test cycle, torque cell and speed 

transducers in the power absorber drive train measured the vehicle load and speed.  Two 

tractor-trailers carried the laboratory to the test site. The emission measurement 

equipment, data acquisition and control were pulled by one of the trailers while the other 

carried the power absorber unit. At the test site, the dynamometer trailer wheels were 

removed. This laboratory was supplied by its power generator, which makes it able to 

operate when there was no power available at the test site. The vehicles were driven up to 

the dynamometer. The inner wheels were placed on rollers and the outer wheels on each 

side of the vehicle were removed and substituted by hub adapters. The hub adapters 

connected the drive axle to the power absorber units. A data acquisition and control 

system controled the power absorber unit power. To simulate the driving conditions, 

WVU has developed a wide variety of cycles to simulate various types of in-use vehicle 

operation [44]. The vehicle to be tested was driven through the test cycles by a human 

driver. 

 The vehicle exhaust mixed with air in a full-scale dilution tunnel, which was 18 

inches in diameter and 20 feet in length. To guarantee the through mixing of exhaust 
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before reaching the sampling zone, an orifice was located in 3 feet from the dilution 

entrance. The flow rate in the tunnel was maintained by a critical flow venturi. There 

were five venturi setting flow rates of 1000, 1500, 2000, 2500, and 3000 standard cubic 

feet per minute (scfm).  

Stainless steal heated sampling probes and heated sampling lines drew the 

samples from the dilution tunnel to the gas analyzers. 

 

3.1.2. Particulate Matter Sampling 

PM was measured gravimetrically according to the Code of Federal Regulation, 

Title 40, Part 50. A 3-inches diameter and 30-inches long secondary dilution tunnel was 

pulled out from the main dilution tunnel to carry out the exhaust to a stainless steel filter 

holder.  The sample passed through a primary and a secondary Pallflex 70-mm 

fluorocarbon coated glass fiber filter, Model T60A20 with a filtration efficiency of 98% 

for particles larger than 0.1 micron. The secondary dilution tunnel maintained the double 

diluted exhaust at 50˚ C or less, instantly before the primary particle filter in the 

secondary dilution tunnel. The flow rate in secondary dilution tunnel was proportional to 

the flow rate of the primary dilution tunnel. Prior to being weighed on a Cahn 

microbalance, the filter media were maintained for at least one hour to 80 hours at 50% 

relative humidity and 25˚ C in an environmental chamber. The primary dilution air might 

be passed through a HEPA filtration unit before entering the dilution tunnel to remove 

ambient particles. 

Continuous PM was measured using a Tapered Element Oscillating Microbalance 

(TEOM), Rupprecht & Patashnick Co., Inc. TEOM Series 1105, Diesel Particulate Mass 
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Monitor. The TEOM was connected to the secondary dilution tunnel. It was an 

instrument that drew a sample of diluted exhaust air through a filter, Pallflex TX40, at a 

constant flow rate. The filter was weighed continuously to find the real-time PM rate. The 

mass rate of the TEOM filter was measured every 0.42 seconds based on the natural 

frequency of oscillation [45]. The filter was connected to a hollow tapered element, 

vibrating at its natural frequency of oscillation. The natural frequency of oscillation 

changed by the mass change of the filter. 

Due to sensitivity of the TEOM to the variables that occurred during the test such 

as temperature and pressure changes, external vibrations, filter face velocity, filter 

pressure drop and the water content of the filter, it was not an absolutely accurate real-

time PM measuring device [46].  

 

3.1.3. Hydrocarbon Analyzer 

Hydrocarbon emissions were measured using a heated Flame Ionization Detector 

(FID). The HC analyzer consisted of 5 components including flame ionization burner, 

sample handling system, calibration gas system, oven, and burner-flameout/fuel shutoff 

circuitry. HC emissions were ionized and the ionization current was proportional to the 

number of carbon atoms that entered the burner. A pump drew sample to analyzer and 

through a glass fiber filter that removed the PM and it also helped to minimize the system 

response time. Non-methane hydrocarbon (NMHC), aldehyde and alcohol emissions 

were able to be measured by chromatography methods performed at WVU [47]. 
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3.1.4. Oxides of Nitrogen Analyzer 

This analyzer used the chemiluminescent method for the determination of NO or 

NOx in a sample gas. In the NO mode, the NO was converted to NO2.10%-15% of these 

NO2 molecules were elevated to an electronically excited state followed by reversion to a 

non-excited state. This occurrence caused the radiation of the photons. A photodiode 

detector generated DC current proportional to the concentration of NO in the sampled 

gas. In the NOx mode, the NO2 was converted to NO. This analyzer consisted of heated 

sections, which maintained the sample above 50˚ C. Two separate chemiluminescent 

analyzers allowed the NO and NO2 fractions to be determined [48]. 

 

3.1.5. Carbon Monoxide (CO) and Carbon Dioxide (CO2) Analyzers 

These analyzers measured the gas concentration based on the principle that each 

type of gas absorbs unique line spectrum in the infrared region. Carbon monoxide (CO) 

and carbon dioxide (CO2) analyzers were Non-Dispersive Infrared (NDIR) analyzers. 

The CO2 analyzer contained two cells, a sealed reference cell and flow through sample 

cell. The difference between the amounts of infrared energy absorbed by the cells showed 

the concentration of CO2. The sample passed through a filter and a dryer to remove water 

and eliminate its absorption issue in the CO2 and CO measurements. Low CO analyzer 

measured the low CO concentrations. The CO analyzer shared the same sample line, 

filter, and dryer as the CO2 analyzer [49, 50]. 
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3.1.6. Data Acquisition  

The data collected by gas analyzers, pressure transducers, and thermocouples was 

acquired using a RTI-815 digital to analog data acquisition board, a 3-B signal 

conditioning module and a computer. The data was recorded as analog to digital 

conversion (ADC) and during the data reduction was converted to conventional units. 

Data reduction was performed using Microsoft visual basic software according to the 

CFR, Title 40, Part 86. 

 

3.2. Medium-Duty Vehicle Emissions Testing Laboratory  

The medium-duty vehicle emissions laboratory was used to test the vehicles with 

gross weight of 3,000 to 20,000 pounds. It consisted of a chassis dynamometer test bed 

and incorporated with the instrumentation trailer of the heavy-duty laboratory as 

described earlier. This dynamometer was transported to the site using a flatbed tractor 

truck and a crane mounted on this truck was used to place the dynamometer on the 

ground. Similar to the heavy-duty dynamometer, the medium-duty dynamometer unit 

consisted of flywheels and a power absorber. The vehicle to be tested was positioned on 

the dynamometer so that the drive axle of the vehicle was centered on the rollers. The 

medium-duty chassis dynamometer, dissimilar to the heavy-duty dynamometer, drew 

power from the rollers rather than from the drive shafts connected to the axle. The torque 

cell and speed transducers in-line with the power absorbers measured the vehicle load 

and speed during the test. 
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3.3. Transient Cycles and Routes 

The test cycles were designed to simulate the real-life vehicle activity and to test the 

vehicle emissions under various conditions such as acceleration, deceleration, cruise, and 

idling. Heavy-duty vehicles were tested through engine or chassis dynamometer test 

cycles for emissions and fuel economy measurements [51]. Engine test cycles were 

schedules of speed and loads; however chassis test cycles were composed of speed versus 

time or speed versus distance traces. A cycle was a speed-time schedule however a route 

was a speed-distance schedule and it was not dependent on time [52]. A diver with visual 

prompt via computer monitor in the cab was able to incorporate the effects of gear 

shifting to the desired vehicle speed at each second. A route allowed the vehicle full 

acceleration, which was possibly representative of real-life driving conditions [53].  

In this thesis, the emissions data were gathered from three chassis dynamometer test 

schedules: the City Suburban Heavy Vehicle Route (CSHVR), Highway, and EPA Urban 

Dynamometer Driving Schedule (UDDS) or Test D. 

 

3.3.1. City Suburban Heavy Vehicle Route (CSHVR) 

The City Suburban Heavy Vehicle Route (CSHVR) chassis dynamometer test was 

developed by the West Virginia University [54].  The route was achieved by changing the 

route speed to a function of distance traveled and assigning maximum acceleration rates 

to portions of the route. The following are CSHVR test schedule features: 

• Duration: 1700 seconds with the average speed of 14.15 mph 

• Total distance: 6.68 miles 

• Maximum speed: 43.84 mph 
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• Average speed: 14.15 mph  

Vehicle speed versus the distance for the CSHVR test schedule is shown in Figure 3.1. 

Figure 3.1. Vehicle speed versus distance for the CSHVR test schedule. 

 

3.3.2. Highway Cycle   
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Figure 3.2 shows the vehicle speed versus time for the Highway test schedule. 

 

Figure 3.2. Vehicle speed versus time target trace for the Highway test schedule. 
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Vehicle speed versus time for the UDDS test schedule is shown in Figure 3.3. 

 

Figure 3.3. Vehicle speed versus time target trace for the UDDS. 
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4. DATA PROCESSING 

4.1. PM Split Study 

Due to inaccuracy in the engine-based emissions inventory that was used to 

represent mobile source emissions, California has turned to chassis dynamometer based 

emissions data for emissions factor input. Although not a part of this new thrust, the PM 

split study was performed to gather emissions data from thirty-four heavy-duty diesel 

vehicles [55]. NOx, HC, CO, and CO2 were measured from vehicles operating in southern 

California. This study [56] was undertaken using the West Virginia University 

Transportable Heavy-Duty Vehicle Emissions Testing Laboratories described above. The 

tested vehicles were 2 transit buses, 16 trucks with Gross Vehicle Weight (GVW) over 

33000 lbs., 8 trucks with GVW of 14001 to 33000 lbs., and 8 trucks with GVW of less 

than 14001 lbs. The City/Suburban Heavy Vehicle Route (CSHVR), a Highway cycle, 

and an Idle period were used to measure emissions from the vehicles. The buses were 

tested through a Manhattan cycle, an Idle period and CSHVR. Also, a number of these 

vehicles were tested under cold start idle, cold start CSHVR, and the Urban 

Dynamometer Driving Schedule (UDDS).  

 

4.2. Data Description 

From the PM split study database, the group of vehicles in the 33,000-80,000 lb 

weight range was selected for examining in this thesis. There were six tractor trucks in 

this group, and their characteristics are listed in Table 4.1. To perform the power 
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dispersion modeling, three of them (Vehicles 1, 2 and 6) with different engine 

manufacturers were considered.  

 

Vehicle Type Year Manufacturer Odometer 
Mileage 

GVW 
(lb) 

Vehicle 
Tested 
Weight (lb) 

Engine Displacement 
(liter) 

Vehicle 1 Tractor 
Truck 

1985 Freightliner 
 

769413 
 

80,000 
 

42,000 Caterpillar 
3406B 
 

14.6 
 

Vehicle 2 Tractor 
Truck 

1994 Freightliner 
 

639105 
 

80,000 
 

42,000 Detroit 
Diesel 
Series 60 
 

12.7 

Vehicle 3 Tractor 
Truck 

1998 Sterling 327300 
 

80,000 42,000 Detroit 
Diesel 
Series 60 
 

12.7 

Vehicle 4 Tractor 
Truck 

1999 Sterling 
 

272307 
 

80,000 42,000 Caterpillar   
C-12 
 

12 

Vehicle 5 
 

Tractor 
Truck 

2000 Sterling 255880 80,000 42,000 Caterpillar   
C-12 

12 

Vehicle 6 Tractor 
Truck 

2001 Volvo 
 

327300 
 

80,000 42,000 Cummins 

N14-370 

 

14 

Table 4.1. Vehicle and engine descriptions  

 

Vehicles 1 and 2 were exercised through 3 different driving test schedules, the 

City/Suburban Heavy Vehicle Route (CSHVR), Highway cycle and Heavy-Duty Urban 

Dynamometer Driving Schedule (UDDS or Test D). Vehicle 6 was exercised only 

through CSHVR and Highway cycles. Appendix A presents the detailed information on 

the vehicles. 

 



 45

4.3. Cross-Correlation 

In order to find the time delay between the actual emission production instance 

and emissions measuring time, the cross-correlation was performed for the power and  

emissions data series as a function of time. The power was selected due to the 

relationship of this parameter to the engine emissions [57]. Figure 4.1 shows the 

relationship between the power and the vehicle emissions along with the time delay. This 

time delay includes transport time in the dilution tunnel, sampling line and also the 

analyzers’ response time. 

Cross-correlation is a standard method of estimating the degree to which two data 

series are correlated. The cross-correlation product (represented by ⊗ ) of two 

complicated functions f(t) and g(t) of a real variable t can be identified by several 

possible functions. The sum of squared differences method can be used when the data 

series are of the same units [58].  

dτ) τ)(t g)( f ( 2gf ∫ −−=⊗ ∞+
∞− τ       Equation 4.1 

The other method is termed the sum of products: 

∫ −τ=⊗ +∞
∞− τ)dτ)g(tf(gf       Equation 4.2 

These methods may be used to align two signals in time when one signal suffers a 

time offset relative to the other during data logging. The first method describes a measure 

of difference between the two functions, which is supposed to be minimized to find the 

best correlating point. However, the second principle uses a quantity that has to be 

maximized in order to find the target point. 

Cross-correlation has been performed by both methods (Equations 4.1 and 4.2) 

using MATLAB software. In order to use the sum of squared differences method, the 
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power (hp or kW) and its relevant emissions data (g/sec) at each second must be 

dimensionless since they are in different units. Therefore, the data have been made 

dimensionless by dividing them by their average value over the entire test schedules. The 

two methods agreed very well and confirmed one another. The average shifting time was 

8-9 seconds for NOx, 12-14 seconds for CO and 13-15 seconds for CO2. HC shifting time 

varied in different cycles. Since HC may not increase monotonically with power, its time 

alignment can be difficult to find.  

Figure 4.1. Normalized values of NOx/CO2 and power versus time. 
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phenomenon is called axial dispersion and it causes the delay for the emissions to pass 

through the system and be measured. In addition, the time taken by the analyzer to 

respond and measure the data also contributes to this delay. Considering the known 

relationship between the power and emissions, Clark et al. [59] applied a dispersion 

model to the axle power to find the emissions dispersion model. Therefore, the power 

was also assumed to be dispersed to correlate the power and the emissions appropriately. 

  Levenspiel [60] suggested a dispersion model that is applicable to turbulent flow 

in pipes and laminar flow in long tubes or channels. The dispersion coefficient, D, 

represents the spreading process of the flow; the large quantity of D shows rapid 

spreading in time and vice versa. To characterize the distribution, the centroid of the 

distribution, 
−

t , must be described.  

∫

∫
=

−

∞

∞

0

0

dt C

dt Ct 
t         Equation 4.3 

For small quantities of dispersions (D/UL<0.01), the spreading curve is 

symmetric and belongs to a family of gaussian curves and represents by the Equation 4.4. 

 

                                                  Equation 4.4 

 

where θi is ti/
−

t  and D/UL is the Vessel Dispersion Number (VDN) that is a dimensionless 

group characterizing the spread in the tunnel. U is the average velocity of the fluid in a 

tunnel of length L. If D/UL>0.01 there is a nonsymmetrical curve. In this case, regarding 

the boundary condition situation two possible models exist: Undisturbed flow as it passes 

the entrance and exit boundaries and plug flow outside the vessel up to the boundaries. 

)
4(D/UL)

)θ(1
exp(

π(D/UL)2

1
C

2
i

i−−
=



 48

The first condition represents a commonly used experimental device and is defined as 

[60]:  

  

 

                                               Equation 4.5 

      

Baskaran et al. [61], by injecting CO2 into the tunnel for a period of 4 seconds, 

showed that the analyzer response had a delay to detect the injection. It also illustrated 

the diffusion of the input signal. Their dispersion model presented the starting dead time 

and a gamma distribution shape that represented the response of well-mixed tanks in 

series. The values of Ci were normalized in their model. 

Jarrett [53] added two variables of ‘a’ and ‘b’ to Equation 4.4 and tried to 

minimize the actual measured emissions and the suggested emission dispersion model by 

modifying the variables of ‘a,’ ‘b’ and VDN. However in his model the sum of the Ci was 

not equal to 1 and its associated error was about 4%. 

 

4.5. Power Dispersion Modeling 

In this research, to find the best power dispersion model, the linear correlation 

between dispersed power and measured CO2 was set to be optimum in relation to 

different values of D/UL. In most cases, the cross-correlation of the power and CO2 

estimated the time delay to be 15 seconds, therefore the centroid of distribution was 

assumed to be located at 15 seconds. t i was defined over a wide period of 31 seconds to 

show the absolute nature of delay which consisted of onset time and dispersion time and 

)
(D/UL) i 4θ

)θ(1
exp(

(D/UL) i πθ2

1
C

2
i

i−−
=
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Ci ∈[1,31] relevant to tis. Table 4.2 shows the values of Ci ∈[1,31] relevant to ti  which 

were normalized to 1.  

In this work, it was assumed that the dispersion phenomenon has been started at 

the moment of the point injection but the mathematical model (Figure 4.2) showed that 

the Cis of the first 10 seconds after injection were extremely low (Table 4.2) which can 

be easily neglected. Inspection of the Ci values revealed that the beginning of the 

dispersion was actually occurred at t=11 and lasted for 13 seconds. The Cis relevant to 

the last 8 seconds of the studied period were also very small.  The actual values of the Ci 

versus ti are shown in Figure 4.2. The first 10 and the last 8 dispersion coefficients are so 

small that can not be seen in figure. 

C1 7.4e-130 C12 6.4e-02 C23 2.1e-03 

C2 1.2e-56 C13 1.2e-01 C24 8.5e-04 

C3 1.0e-32 C14 1.6e-01 C25 3.2e-04 

C4 4.3e-21 C15 1.7e-01 C26 1.1e-04 

C5 2.1e-14 C16 1.5e-01 C27 4.1e-05 

C6 3.7e-10 C17 1.1e-01 C28 1.4e-05 

C7 2.5e-07 C18 7.6e-02 C29 4.6e-06 

C8 2.2e-05 C19 4.4e-02 C30 1.4e-06 

C9 5.4e-04 C20 2.3e-02 C31 4.5e-07 

C10 4.9e-03 C21 1.1e-02   

C11 2.3e-02 C22 5.0e-03   

Table 4.2.  Normalized values of Ci relevant to ti summed to 1.  

 

The power was dispersed for different values of D/UL (0.085, 0.02 and 0.011). 

CO2 versus dispersed power was mapped to find the best dispersion model. Tables 4.3 

through 4.5 show the correlation coefficient (r²) values. The results demonstrated the best 
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linear correlation for D/UL=0.011 which represented the onset time of 10 seconds and 

dispersion time of 13 seconds. In this case, the Ci curve followed the larger dispersion 

formula (D/UL>0.01) but it was very close to a Gaussian symmetric curve. Figure 4.3 

shows the continuous Ci curves for different D/UL versus θ. Neglecting the Ci <0.001, θ 

∈[0.333 , 2.067] for D/UL=0.085 that shows the 5 seconds onset time with 26 seconds 

dispersion period, θ ∈[0.533 , 1.800] for D/UL=0.02 which corresponds to 8 seconds 

onset time and 19 seconds dispersion period, and θ ∈[0.667 , 1.533] for D/UL=0.011 

which was described earlier as the best power dispersion model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2. Normalized Ci relevant to ti over a 31 second period shows an onset time 
of 10 seconds and dispersion period of 13 seconds. 
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Figure 4.3. Dispersion of the point injection for three different values of D/UL 
(0.085, 0.02, 0.011) corresponding to Equation 4.5. 
 

 

 D/UL=0.085 D/UL=0.02 D/UL=0.011 

Vehicle 1 0.7956 0.8507 0.8507 

Vehicle 2 0.7732 0.8552 0.8668 

Vehicle 6 0.6640 0.8265 0.8684 

Table 4.3. r² results of linear fit for CO2 versus dispersed power through CSHVR. 
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 D/UL=0.085 D/UL=0.02 D/UL=0.011 

Vehicle 1 0.8868 0.9262 0.9274 

Vehicle 2 0.7885 0.8302 0.8131 

Vehicle 6 0.8435 0.9002 0.9067 
Table 4.4. r² results of linear fit for CO2 versus dispersed power through Highway 
cycle. 
 

 D/UL=0.085 D/UL=0.02 D/UL=0.011 

Vehicle 1 0.8625 0.9040 0.9119 

Vehicle 2 0.7848 0.8593 0.8908 
Table 4.5. r² results of linear fit for CO2 versus dispersed power through UDDS. 
 

 

CO2 arises in proportion to fuel used. Heat, auxiliary and axle power are the 

production of the fuel consumption. With axle power as the biggest part of the fuel 

consumption productions, the relationship between the CO2 emissions and the axle power 

is apparent.  

The instantaneous power was correlated with the vehicle emissions and then was 

dispersed using the above non-symmetric dispersion model. The dispersed power was 

linearly mapped versus CO2 continuous data gathered by the analyzer, which had a 

significant contribution to the CO2 dispersion. The results also confirmed the relationship 

between the measured CO2 and the dispersed power distinctly (Tables 4.3 to 4.5).     

Figure 4.4 shows the linear fit of r²=0.9067 with the D/UL=0.011 dispersion model for 

vehicle 6 exercised through the Highway cycle. Some scatter is due to varying the engine 

efficiency over the operating envelope and the consumption of fuel to run auxiliary 

devices such as the compressor and cooling fan. For instance, 1,000 rpm at 1,000 ft-lb of 
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torque may consume fuel at a different rate that 2,000 rpm at 500 ft-lb, but power is the 

same. 

Figure 4.4. Linear fit of CO2 versus dispersed power with D/UL=0.011 for vehicle 6 
exercised through Highway cycle. 
 

This model is capable of representing the onset time and the dispersion period at 

the same time. The delay time was defined as the duration of the onset time along with 

the time taken for the Ci curve to reach to its peak. This delay time consisted of transport 

time in the dilution tunnel, the sampling lines and the analyzers’ response. 

Due to the known correlation of the NOx and CO2 to power, their delay time could 

be found by this model easily. The CO and PM are considered to be affected by the rates 

of the power change along with power which represent the transient effects. 

In this research, the power has been used to find the time delay for all of the 
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4.6. Neural Network Inputs 

In this research, the ANN was trained individually for each emission species 

(NOx, CO2, CO and HC) as the network output. Considering the known relationship [62, 

63] between the vehicle emissions and the power, the hub speed and torque were chosen 

for training the ANN as inputs.  

P = (µ Mv g + ½  ρa CD Av Spd ² ) Spd              Equation 4.6 

where µ is the coefficient of rolling resistance, Mv is the mass of the vehicle, ρa is the 

ambient air density, CD is drag coefficient, Av is frontal area of the vehicle and Spd is the 

vehicle speed. 

The neural network was trained with three different sets of inputs (8, 14 and 20 

inputs) derived from the hub speed and torque. The 20 input neural network consisted of 

the two variables of hub speed and torque and their first and second rates of change over 

three different time ranges (1,5,10 seconds) in addition to two new variables of speed 

defined as:  

22

d
SpdS.sec last t Diff
−

−∑=       Equation 4.7              

where, 

 
dt

.sec t last  S 
Spd d

∑
=

−
       Equation 4.8 

Prediction of “off-cycle” emissions is confusing for ANNs. Variables such as 

Equation 4.7 and 4.8 that measure the steadiness of the speed through the test schedule 

are able to demonstrate if there is not a remarkable change in vehicle speed how well the 

ANN can predict the emissions. The above variables were calculated over three different 



 55

time periods (50, 100 and 150 seconds). Table 4.6 presents the inputs calculation 

technique of the inputs. 

 

Input 1 Dispersed speed (S) Input 11 ∆S/ ∆t (10s) 

Input 2 Dispersed torque (T) Input 12 ∆T/ ∆t (10s) 

Input 3 ∆S / ∆t (1s) Input 13 ∆²S/ ∆t² (10s) 

Input 4 ∆T / ∆t (1s) Input 14 ∆²T/ ∆t² (10s) 

Input 5 ∆²S/ ∆t² (1s) Input 15 S² - Ave. S² (50s) 

Input 6 ∆²T/ ∆t² (1s) Input 16 S² - Ave. S² (100s) 

Input 7 ∆S/ ∆t (5s) Input 17 S² - Ave. S² (150s) 

Input 8 ∆T/ ∆t (5s) Input 18 Sum (S² - Ave. S² (50s)) over the last 50s 

Input 9 ∆²S/ ∆t² (5s) Input 19 Sum (S² - Ave. S² (100s)) over the last 100s 

Input 10 ∆²T/ ∆t² (5s) Input 20 Sum (S² - Ave. S² (150s)) over the last 150s 

Table 4.6. S and T present dispersed speed and torque consequently. dS /dt (1s) 
shows first derivative of dispersed speed over 1 second. d²S/dt² (1s) shows second 
derivative of dispersed speed over 1 second. Inputs 18, 19 and 20 refer to Equation 
4.7 
 

 The fourteen inputs of the hub speed and torque and their first and second rates of 

change for three different time periods (1,5,10 seconds) were applied to the 14 input 

neural network.  

Also the 8 input neural network employed the speed and torque, their first and 

second rates of change at one second and Diff and 
−

Spd  in 150 seconds as the network 

inputs. Table 4.7 summarizes three different neural network architectures that have been 

used in this research. 
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20 Input 
Network 

14 Input 
Network 

8 Input 
Network 

Input 1* X X X 
Input 2 X X X 
Input 3 X X X 
Input 4 X X X 
Input 5 X X X 
Input 6 X X X 
Input 7 X X  
Input 8 X X  
Input 9 X X  
Input 10 X X  
Input 11 X X  
Input 12 X X  
Input 13 X X  
Input 14 X X  
Input 15 X   
Input 16 X   
Input 17 X  X 
Input 18 X   
Input 19 X   
Input 20 X  X 
Table 4.7. Applied neural network architectures with three different sets of inputs.  
* See Table 4.6. 
 

4.7. Relative Contribution Factors 

To show the effect of a particular input in neural network training, the strength of 

each input relevant to the other inputs was considered. Research was initiated with the 20 

input neural network. The architecture of this network consisted of one hidden layer with 

different activation functions in each hidden slab. The linear transfer function was chosen 

for the input. Tanh15, tanh and symmetric logistic were selected for the Slabs 2, 3 and 4 

of the hidden layer respectively. Logistic transfer functions have been chosen for slab 5.  
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Each slab in the hidden layer had 15 neurons and every input connected to each 

neuron by a weight. The output layer was a one-neuron layer relevant to the desired 

emission species. In further steps, the number of inputs was decreased to those specific 

inputs that contributed more to the prediction results. Each slab of the hidden layer of the 

14 input neural network was composed of 14 neurons. However, the 8 input neural 

network had 13 neurons in each hidden layer slab. The study performed on all the 

vehicles for NOx emissions (Table 4.8). The results showed that the dispersed speed was 

the most controlling input in the neural network training for all the emissions prediction 

cases. The second derivative of torque, first derivatives of speed and torque, and the Diff 

variable were the next most powerful inputs respectively. Figure 4.5 shows the average 

relative contribution of each input to predict NOx emissions of the vehicles using the 20 

input neural networks. Since there may be an overlap of information between some of 

these variables such as T and ∆S/∆t (1s), ∆S/∆t (5s) and ∆S/∆t (10s), Figure 4.5 may not 

ultimately classify the relative importance of each variable. 
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 Vehicle 1 Vehicle 2 Vehicle 3 Vehicle 4 Vehicle 5 Vehicle 6 Average 
Input 1 0.087 0.104 0.105 0.104 0.089 0.091 0.0973
Input 2 0.053 0.045 0.057 0.046 0.041 0.042 0.0477
Input 3 0.070 0.055 0.062 0.063 0.052 0.047 0.0587
Input 4 0.053 0.046 0.041 0.055 0.079 0.072 0.0583
Input 5 0.052 0.046 0.043 0.030 0.046 0.040 0.0433
Input 6 0.082 0.050 0.057 0.090 0.068 0.059 0.0680
Input 7 0.051 0.053 0.044 0.043 0.046 0.041 0.0468
Input 8 0.037 0.038 0.050 0.040 0.052 0.040 0.0433
Input 9 0.058 0.059 0.044 0.043 0.051 0.048 0.0510
Input 10 0.049 0.047 0.033 0.057 0.059 0.055 0.0505
Input 11 0.053 0.053 0.052 0.054 0.052 0.050 0.0529
Input 12 0.028 0.033 0.038 0.033 0.034 0.029 0.0328
Input 13 0.039 0.033 0.043 0.029 0.030 0.032 0.0348
Input 14 0.038 0.034 0.035 0.040 0.036 0.033 0.0363
Input 15 0.036 0.044 0.042 0.033 0.031 0.045 0.0388
Input 16 0.038 0.039 0.044 0.041 0.035 0.036 0.0395
Input 17 0.035 0.048 0.046 0.046 0.043 0.052 0.0452
Input 18 0.043 0.052 0.048 0.053 0.049 0.055 0.0503
Input 19 0.049 0.056 0.042 0.053 0.052 0.062 0.0529
Input 20 0.039 0.056 0.064 0.037 0.046 0.060 0.0507
Table 4.8. Relative contribution of the 20 input neural network to predict NOx 
emissions of the vehicle. * See Table 4.6. 
 

0

0.02

0.04

0.06

0.08

0.1

Inp. 1 Inp. 3 Inp. 5 Inp. 7 Inp. 9 Inp. 11 Inp. 13 Inp. 15 Inp. 17 Inp. 19

Network Inputs

R
el

at
iv

e 
C

on
tr

ib
ut

io
n

 
Figure 4.5. Average relative contribution of each input to predict NOx emissions 
using the 20 input neural networks. 
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5.    RESULTS AND DISCUSSION 

Based on the association of the vehicle power (separated into speed and torque) 

and the emissions, the test schedules with a wide range of speed and torque were able to 

predict the emissions more effectively than the test schedules with a lower range of speed 

and torque [64]. Therefore among the available test schedules, the neural network was 

trained on the Highway cycle using different inputs and the trained network was used to 

predict the CSHVR and UDDS emissions. The neural network was also trained on 

CSHVR and UDDS test schedules and applied to the other two cycles. The ANNs that 

were trained on Highway cycle yielded better results. These results also confirmed the 

assumption of using the test schedules with a wide range of speed and torque. The 

networked was trained for every vehicle independently and the trained network was 

applied to the other schedules of the same vehicle. The results showed outstanding 

improvement in emission prediction in respect to the previous study at WVU performed 

by Clark et al. [64]. The new defined variables of Diff and 
−

Spd  maintained a record of the 

constancy of the speed additional inputs to the neural network and helped to improve the 

results.  

 

5.1. NOx prediction  

It was important to find an effective NOx prediction neural network using a 

limited number of inputs to model the measured NOx. Therefore, the first step was to find 

the inputs, which had larger contribution in neural network training and consequently 
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achieving the desired output. The desired output in this case was the measured NOx 

(which was already naturally dispersed). Accordingly the neural network which have 

never seen the actual high rates of torque and speed change might not be able to predict 

real-life emissions. 

The neural network was trained on Highway cycle of each vehicle and applied to 

the other test schedules related to the same vehicle. D/UL=0.011 yielded the best power 

dispersion results in chapter 4. Therefore the network inputs, continuous speed and 

torque, were dispersed using this dispersion number. Their first and second derivatives at 

1, 5 and 10 seconds along with Diff and 
−

Spd  variables at time ranges of 50, 100 and 150 

seconds were computed. In 20 the  input neural network, the linear fits of the predicted 

versus measured NOx yielded an average R² of 0.97 for the Highway cycles. Applying 

the trained network on the other test schedules showed an average R² of 0.82 and 0.85 for 

the CSHVR and UDDS respectively. 

 The other concern in this work was the contribution of the Diff and 
−

Spd variables 

to network training. Therefore, the 14 input neural network was used to examine the 

prediction accuracy while these variables were excluded from the previous neural 

network (20 input neural network). The results are shown in Table 5.1 through Table 5.3.  

At the same time, to investigate the effect of using the suggested dispersion model 

in Chapter 4, the same 14 input neural network with the same initial learning rate, 

momentum and weights was employed to predict NOx. The only difference was that the 

inputs of this neural network were preprocessed by the other dispersion model studied by 

Jarrett [53]. 
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Knowing the relationship between the vehicle steady speed [62] and NOx 

emissions, to obtain an accurate neural network prediction with few inputs, the research 

was directed to use mostly the speed-dependant inputs. Therefore, the research was 

performed with the 8 input neural network including the Diff and 
−

Spd variables in the last 

150 seconds. The motivation to choose the 150 seconds was due to its excellent 

contribution to the ANN emissions prediction compared to the 50 and 100 seconds 

alternatives. The Diff variable worked as a momentum and made the fluctuations of the 

speed smoothed throughout the test schedule. This variable was able to create a steady 

speed-dependant input for the neural networks. The momentum conception of the Diff 

variable also showed that choosing a wider time frame for this variable can improve the 

ANN prediction because the emissions were directly relevant to the steady speed. 

However if the time frame was selected too wide, it was impossible to follow the speed 

changes. Therefore, it was very critical to find an appropriate time frame for this variable.   

 

 NOx 

 20 inputs 

14 inputs 
(preprocessed by 

Jarrett [53] 
dispersion model) 

14 inputs 8 inputs 

Vehicle 1 0.810 0.790 0.811 0.830 

Vehicle 2 0.754 0.807 0.825 0.827 

Vehicle 3 0.687 0.730 0.732 0.643 

Vehicle 4 0.926 0.944 0.933 0.918 

Vehicle 5 0.902 0.928 0.907 0.887 

Vehicle 6 0.854 0.924 0.888 0.854 

Table 5.1. ANN NOx emissions prediction results using different numbers of inputs 
for all 6 vehicles exercised through the CSHVR. The neural network was trained on 
the Highway cycle. 
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 NOx 

 20 inputs 

14 inputs 
(preprocessed by 

Jarrett [53] 
dispersion model) 

14 inputs 8 inputs 

Vehicle 1 0.970 0.971 0.962 0.963 

Vehicle 2 0.967 0.937 0.935 0.946 

Vehicle 3 0.986 0.971 0.972 0.982 

Vehicle 4 0.974 0.952 0.934 0.958 

Vehicle 5 0.978 0.939 0.935 0.943 

Vehicle 6 0.975 0.870 0.855 0.931 

Table 5.2. ANN NOx emissions prediction results using different numbers of inputs 
for all 6 vehicles exercised through the Highway cycle. The neural network was 
trained on the same cycle. 
 
 
 

 NOx 

 20 inputs 

14 inputs 
(preprocessed by 

Jarrett [53] 
dispersion model) 

14 inputs 8 inputs 

Vehicle 1 0.891 0.918 0.918 0.912 

Vehicle 2 0.814 0.907 0.900 0.847 

Table 5.3. ANN NOx emissions prediction results using different numbers of inputs 
for all the vehicles exercised through the UDDS. The neural network was trained on 
the Highway cycle. 
 
 

Tables 5.1 to 5.3 show that the predictions were significantly improved for the 

CSHVR and UDDS test schedules using 8 inputs with respect to 20 and 14 input 

networks. The 20 input network yielded better prediction while it was trained on the 

Highway cycle. However, the prediction was not remarkable for the UDDS and the 

CSHVR because of the overtraining on the Highway cycle. Table 5.4 shows the 

integration of the actual and ANN predicted instantaneous NOx over the CSHVR, 
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Highway and UDDS test schedules along with their percentage error. Figures 5.1 to 5.3 

show the neural network NOx prediction for the Highway cycle and the CSHVR. 

Investigating of the Figure 5.2 shows the warm-up effect of the engine on the neural 

network predictions. There is a significant difference between the ANN predicted and 

actual NOx at the beginning of the test schedule which decreases throughout the schedule. 

The UDDS prediction is presented in Appendix B.  

 

 
 Vehicle 1 Vehicle 2 Vehicle 3 Vehicle 4 Vehicle 5 Vehicle 6 

Actual 247 239 323 94.9 97.1 137 

NN 232 189 235 93.6 88.2 132 

C
SH

V
R

 

Error (%) 5.98 20.9 26.9 1.39 9.15 3.33 

Actual 496 402 733 201 197 253 

NN 497 408 733 200 196 244 

H
ig

hw
ay

 

Error (%) -0.084 -1.37 -0.092 0.288 0.723 3.59 

Actual 203 199 _ _ _ _ 

NN 200 170 _ _ _ _ 

U
D

D
S 

Error (%) 1.13 14.4 _ _ _ _ 

Table 5.4. Integration of the actual and ANN predicted instantaneous NOx over the 
CSHVR, Highway and UDDS test schedules along with their percentage error. 
Positive and negative percentage errors represent over- and under-prediction 
respectively. The 8 input neural network was used. 
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Figure 5.1. Actual and ANN prediction NOx emissions using 8 inputs for Vehicle 1 
exercised through the Highway cycle. The neural network was trained on the same 
cycle. 
 
 
 

Figure 5.2. Actual and ANN prediction NOx emissions using 8 inputs for Vehicle 1 
exercised through the CSHVR. The neural network was trained on the Highway 
cycle. 
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Figure 5.3. ANN prediction versus actual NOx emissions related to the Figure 5.2 
shows correlation coefficient of r²=0.829. 
 

5.2. CO2 prediction 

The same neural network architectures were applied to the data to predict CO2 

emissions. The average prediction accuracy of the 20 input neural network trained on the 

Highway cycle was R²= 0.99. The same ANN was used to predict CO2 emissions of the 

other test schedules. The results showed an average R² of 0.96 for both the CSHVR and 

UDDS. 

Both 14 input neural networks yielded almost the same predictions for the 

Highway cycle and UDDS test schedule. However the Jarrett [53] dispersion model 

showed better prediction for the CSHVR (Table 5.5). 

Table 5.5 clarified that the 8 input ANN was the most accurate architecture for the 

CO2 prediction of the CSHVR and UDDS in all cases. Therefore, the author highly 
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recommend using this neural network architecture due to its capabilities while reducing 

the computing time. 

 

 CO2 

 20 inputs 

14 inputs 
(preprocessed by 

Jarrett [53] 
dispersion model) 

14 inputs 8 inputs 

Vehicle 1 0.963 0.964 0.971 0.972 

Vehicle 2 0.928 0.931 0.928 0.937 

Vehicle 3 0.964 0.975 0.971 0.975 

Vehicle 4 0.972 0.980 0.978 0.979 

Vehicle 5 0.969 0.990 0.971 0.973 

Vehicle 6 0.953 0.944 0.943 0.950 

Table 5.5. ANN CO2 emissions prediction results using different numbers of inputs 
for all the 6 vehicles exercised through the CSHVR. The neural network was trained 
on the Highway cycle. 
 
 

 CO2 

 20 inputs 

14 inputs 
(preprocessed by 

Jarrett [53] 
dispersion model) 

14 inputs 8 inputs 

Vehicle 1 0.993 0.992 0.992 0.991 

Vehicle 2 0.993 0.990 0.990 0.988 

Vehicle 3 0.994 0.992 0.991 0.992 

Vehicle 4 0.994 0.985 0.986 0.989 

Vehicle 5 0.994 0.990 0.987 0.990 

Vehicle 6 0.992 0.981 0.982 0.986 

Table 5.6. ANN CO2 emissions prediction results using different numbers of inputs 
for all the 6 vehicles exercised through the Highway cycle. 
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 CO2 

 20 inputs 

14 inputs 
(preprocessed by 

Jarrett [53] 
dispersion model) 

14 inputs 8 inputs 

Vehicle 1 0.973 0.977 0.979 0.980 

Vehicle 2 0.940 0.939 0.946 0.939 

Table 5.7. ANN CO2 emissions prediction results using different numbers of inputs 
for the vehicles exercised through the UDDS. The neural network was trained on the 
Highway cycle. 
 
 
 

 
 Vehicle 1 Vehicle 2 Vehicle 3 Vehicle 4 Vehicle 5 Vehicle 6 

Actual 1.89e04 
 1.45e04 1.50e04 1.49e04 1.54e04 1.81e04 

NN 1.77e04 1.46e04 1.47e04 1.60e04 1.57e04 1.81e04 

C
SH

V
R

 

Error (%) 6.11 -1.04 2.02 -7.73 -1.71 0.089 

Actual 3.24e04 2.05e04 2.54e04 2.77e04 2.73e04 2.82e04 

NN 3.22e04 2.06e04 2.54e04 2.78e04 2.73e04 2.79e04 

H
ig

hw
ay

 

Error (%) 0.608 -0.453 -0.004 -0.165 -0.072 1.07 

Actual 1.43e04 1.08e04 _ _ _ _ 

NN 1.34e04 0.97e04 _ _ _ _ 

U
D

D
S 

Error (%) 5.68 10.2 _ _ _ _ 

Table 5.8. Integration of the actual and ANN predicted instantaneous CO2 over the 
CSHVR, Highway and UDDS test schedules along with their percentage error. 
Positive and negative percentage errors represent over- and under-prediction 
respectively. The 8 input neural network was used. 
 
 
 

Figures 5.5 and 5.6 show the measured and predicted CO2 for the 1998 Sterling 

tractor truck exercised through CSHVR and UDDS test schedules, respectively. The 

neural network was trained on the Highway cycle (Figure 5.4).  
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Figure 5.4. Actual and ANN prediction CO2 emissions using 8 inputs for Vehicle 2 
exercised through the Highway cycle. The neural network was trained on the same 
cycle. 
 
 

Figure 5.5. Actual and ANN prediction CO2 emissions using 8 inputs for Vehicle 2 
exercised through the CSHVR. The neural network was trained on the Highway 
cycle. 
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Figure 5.6. Actual and ANN prediction CO2 emissions using 8 inputs for Vehicle 2 
exercised through the UDDS. The neural network was trained on the Highway cycle. 
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The 20 input neural network yielded the average R² of 0.85 for HC prediction of 
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network.  
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dispersion model has improved the prediction results significantly for the self-trained 
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while using less neurons in hidden layer and consequently decreasing the training process 

time.  

However considering the results illustrated that HC prediction are poor in relation 

to the other emissions predictions. Generally, the HC level emitted from the vehicle 

engines through the application of the test schedules is very low compared to the 

atmospheric levels in concentration units. HC emissions are even difficult to measure by 

the HC analyzers. This also reinforced the difficulties of the HC prediction using neural 

networks. 

 

 HC 

 20 inputs 

14 inputs 
(preprocessed by 

Jarrett [53] 
dispersion model) 

14 inputs 8 inputs 

Vehicle 1 0.175 0.178 0.180 0.151 

Vehicle 2 0.089 0.181 0.117 0.194 

Vehicle 3 0.084 0.006 0.007 0.008 

Vehicle 4 0.395 0.455 0.716 0.429 

Vehicle 5 0.459 0.412 0.450 0.420 

Vehicle 6 0.681 0.602 0.610 0.647 

Table 5.9. ANN HC emissions prediction results using different numbers of inputs 
for all the 6 vehicles exercised through the CSHVR. The neural network was trained 
on the Highway cycle. 
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 HC 

 20 inputs 

14 inputs 
(preprocessed by 

Jarrett [53] 
dispersion model) 

14 inputs 8 inputs 

Vehicle 1 0.865 0.734 0.644 0.866 

Vehicle 2 0.873 0.311 0.311 0.262 

Vehicle 3 0.886 0.382 0.371 0.659 

Vehicle 4 0.618 0.335 0.636 0.452 

Vehicle 5 0.907 0.612 0.568 0.822 

Vehicle 6 0.954 0.829 0.870 0.930 

Table 5.10. ANN HC emissions prediction results using different numbers of inputs 
for all the 6 vehicles exercised through the Highway cycle. The neural network was 
trained on the same cycle. 
 

 

 HC 

 20 inputs 

14 inputs 
(preprocessed by 

Jarrett [53] 
dispersion model) 

14 inputs 8 inputs 

Vehicle 1 0.449 0.445 0.448 0.486 
Vehicle 2 0.008 0.311 0.265 0.334 

Table 5.11. ANN HC emissions prediction results using different numbers of inputs 
for the vehicles exercised through the UDDS. The neural network was trained on the 
Highway cycle. 
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 Vehicle 1 Vehicle 2 Vehicle 3 Vehicle 4 Vehicle 5 Vehicle 6 

Actual 9.60 2.07 10.0 6.27 7.65 14.7 

NN 6.22 1.96 9.62 8.10 7.90 13.8 

C
SH

V
R

 

Error (%) 35.2 5.31 4.08 -29.1 -3.33 6.20 

Actual 5.86 2.10 10.0 7.13 6.60 14.8 

NN 5.89 2.00 10.0 6.86 6.53 14.5 

H
ig

hw
ay

 

Error (%) -0.511 4.76 -0.19 3.81 1.06 1.62 

Actual 2.58 1.31 _ _ _ _ 

NN 3.52 1.22 _ _ _ _ 

U
D

D
S 

Error (%) -36.4 6.87 _ _ _ _ 

Table 5.12. Integration of the actual and ANN predicted instantaneous HC over the 
CSHVR, Highway and UDDS test schedules along with their percentage error. 
Positive and negative percentage errors represent over- and under-prediction 
respectively. The 8 input neural network was used. 
 
 

Figure 5.7. Actual and ANN prediction HC emissions using 8 inputs for Vehicle 4 
exercised through the CSHVR. The neural network was trained on the Highway 
cycle 
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5.4. CO prediction  

Tables 5.13 to 5.15 show the actual versus predicted CO results. The prediction 

results revealed that the neural network prediction while it has been trained using 8 inputs 

is more accurate than the 14 and 20 input neural networks even on the self-trained cycle. 

Results for a few vehicles on the CSHVR were acceptable while for the UDDS the results 

were uniformly good. Inspection of Figure 5.8 shows that the ANN generally predicted 

‘spikes’ of CO at the appropriate points in the schedule, but that the magnitude of many 

spikes was poorly modeled. However, the transient ‘spikes’ that were shorter than 

smoothing dispersion model were seen accurately. The first 700 seconds of the actual and 

ANN prediction CO emissions versus time for vehicle 2 exercised through the CSHVR is 

presented in Figure 8.3 (Appendix B). 

 

 CO 

 20 inputs 

14 inputs 
(preprocessed by 

Jarrett [53] 
dispersion model) 

14 inputs 8 inputs 

Vehicle 1 0.595 0.614 0.603 0.660 

Vehicle 2 0.605 0.529 0.541 0.674 

Vehicle 3 0.391 0.672 0.662 0.685 

Vehicle 4 0.680 0.736 0.780 0.732 

Vehicle 5 0.298 0.371 0.313 0.448 

Vehicle 6 0.720 0.787 0.796 0.791 

Table 5.13. ANN CO emissions prediction results using different numbers of inputs 
for all the 6 vehicles exercised through the CSHVR. The neural network was trained 
on the Highway cycle. 
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 CO 

 20 inputs 

14 inputs 
(preprocessed by 

Jarrett [53] 
dispersion model) 

14 inputs 8 inputs 

Vehicle 1 0.857 0.779 0.774 0.767 

Vehicle 2 0.935 0.795 0.823 0.712 

Vehicle 3 0.948 0.678 0.683 0.810 

Vehicle 4 0.914 0.710 0.717 0.832 

Vehicle 5 0.843 0.615 0.643 0.666 

Vehicle 6 0.954 0.844 0.836 0.925 

Table 5.14. ANN CO emissions prediction results using different numbers of inputs 
for all the 6 vehicles exercised through the Highway cycle. The neural network was 
trained on the same cycle. 
 
 
 

 CO 

 20 inputs 

14 inputs 
(preprocessed by 

Jarrett [53] 
dispersion model) 

14 inputs 8 inputs 

Vehicle 1 0.493 0.591 0.662 0.559 

Vehicle 2 0.195 0.302 0.303 0.314 

Table 5.15. ANN CO emissions prediction results using different numbers of inputs 
for the vehicles exercised through the UDDS. The neural network was trained on the 
Highway cycle 
 
 
 
 
 
 
 
 
 
 
 



 75

 
 Vehicle 1 Vehicle 2 Vehicle 3 Vehicle 4 Vehicle 5 Vehicle 6 

Actual 115 104 128 63.9 60.1 43.9 

NN 114 97.1 105 66.4 55.6 48.1 

C
SH

V
R

 

Error (%) 0.286 6.28 17.8 -3.87 7.35 -9.46 

Actual 128 72.7 86.9 68.6 65.2 44.6 

NN 136 75.1 90.6 69.4 67.2 44.4 

H
ig

hw
ay

 

Error (%) -5.73 -3.31 -4.25 -1.07 -3.17 0.494 

Actual 84.5 43.0 _ _ _ _ 

NN 69.9 48.4 _ _ _ _ 

U
D

D
S 

Error (%) 17.3 -12.5 _ _ _ _ 

Table 5.16. Integration of the actual and ANN predicted instantaneous CO over the 
CSHVR, Highway and UDDS test schedules along with their percentage error. 
Positive and negative percentage errors represent over- and under-prediction 
respectively. The 8 input neural network was used. 
 
 

Figure 5.8. Actual and ANN prediction CO emissions using 8 inputs for Vehicle 2 
exercised through the CSHVR. The neural network was trained on the Highway 
cycle. 
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5.5. Discussions 

In each cycle, to investigate the areas of divergence of the predicted emissions 

species from the measured emissions, the dimensionless difference between predicted 

and actual was considered and plotted against time. Figure 5.9 shows the difference 

between predicted and measured NOx at each second. To compute the dimensionless 

difference, the difference between the measured and the predicted emissions at each 

second was divided by the average of the measured emissions over the entire test 

schedule. The dispersed speed pattern was illustrated as a solid line (Figures 5.9 and 

5.10).   

Figure 5.9. Difference of ANN predicted and actual real-time NOx for vehicle 1 
exercised through the City/Suburban Heavy Vehicle Route. The neural network was 
trained on the Highway cycle. This illustration shows only 500 seconds of the test 
schedule. 
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The predicted NOx showed more divergence for the area that the test schedule 

experienced a large change in the speed. However, while the speed was constant over a 

period of the time, the difference was very small. This occurred possibly because the 

“off-cycle” NOx is confusing to the neural networks. Emissions of NOx are strongly 

affected by injection timing changes while emissions of CO2 are affected slightly. During 

the 1990’s, some manufacturers implemented timing changes in the engine control 

strategy once the vehicle was detected to be cruising rather than pursuing transient 

activity. This “off-cycle” timing behavior was curtailed following a consent decree 

between manufacturers and the U.S. government [65]. Functions to detect steady 

behavior (Diff and
−

Spd ) offer the neural network a method for predicting timing changes, 

with consequent rise in NOx, although these functions can not hope to mimic 

manufacturers’ strategies faithfully. 

CO2 difference was not uniformly distributed at each second for the CSHVR but it 

followed the speed pattern for the UDDS. On the other hand, the rate of speed change 

was correlated to the magnitude of predicted and measured emissions difference.  

Neural network HC prediction differences did not follow the speed pattern for the 

UDDS and CSHVR and were spread irregularly throughout the test schedules.  

The CO prediction differences were also spread irregularly with no correlation to speed. 
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Figure 5.10. Difference of ANN predicted and actual real-time NOx for vehicle 1 
exercised through the Heavy-Duty Urban Dynamometer Driving Schedule (UDDS). 
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6.    CONCLUSIONS 

A Levenspiel [60] dispersion model was used to mimic the response of analyzers to 

instantaneous emissions. Linear correlation of the dispersed power and CO2 proved that 

the best dispersion model is achievable using a D/UL value of 0.011. This VDN yielded a 

non-symmetric dispersion model. CO2 was chosen for this purpose because of the known 

relation of this emissions species to the power. The suggested model is capable of 

illustrating the onset time and the dispersion period at the same time. To find the delay 

time, a Ci value of 0.001 was set as a criterion. Therefore, the dispersion coefficients, Cis, 

were classified into three groups. The first region with values of Ci less than 0.001    

(10e-130 to 10e-4) was considered as the onset time. The next region was the dispersion 

time period with values of the Ci bigger than 0.001 corresponding to 13 seconds. The 

third region (10e-4 to 10e-7) was the indicator of the damping time of the spike. Using 

the wide range of dispersion coefficients made it possible to model the entire track of an 

emission spike. The delay time was defined as the duration of the onset time along with 

the time taken for the Ci curve to reach to its peak. This delay time consist of transport 

time in the dilution tunnel, the sampling lines and the analyzer’s response and it was 

found to be 16.5 seconds for the D/UL=0.011. NOx and CO2 were perfectly correlated to 

this dispersion model. However CO was known to be dependant on power rate as well as 

power. 

The preprocessing of the vehicle speed and torque was followed by feeding these 

data as inputs to the neural network. Among the applied neural network architectures, the 
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one with 8 inputs of axle speed, torque, their first and second derivatives at one second 

and Diff and 
−

Spd  in 150 seconds yielded the most accurate emissions prediction. 

 
NOx prediction was improved while the trained network applied to the CSHVR 

and UDDS compared to the 20 input neural network. This improvement also can be seen 

in the 8 input self-trained network (for Highway cycle). However, the 14 input neural 

network yielded 2.5% improvement for the CSHVR and 2.7% for the UDDS compared to 

the 8 input ANN.  

The 8 input neural network proved to predict the CSHVR and UDDS CO2 and CO 

emissions much better compared to the other networks.  

However, the HC prediction was poor due to its low emissions level and difficulty 

to measure them, but the 8 input neural network predicted HC emissions very well also.  

Reviewing the results showed that the dispersed speed and the speed-based inputs 

such as the Diff variable were the most controlling input in the neural network training 

for all the emissions prediction cases. Smoothing the oscillations of the speed using the 

Diff variable and feeding it as an input to ANN increased the accuracy of the prediction. 

In some cases this might account for “off-cycle” timing behavior. Overall, ANN would 

be well suited to inventory prediction and would allow access to the real life emissions of 

a vehicle that is operated over a roadway route that is very different from the existing 

tests cycles.  

 
The author’s recommendation for future steps is to concentrate on the optimization 

of the “off-cycle” timing modeling as an input to the neural network. The other area 
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would be considering a smaller number of the neural network inputs while maintaining 

the prediction accuracy. 



 82

 

7.    REFERNCES 

1. Heywood, J. B., “Internal Combustion Engine Fundamentals,” McGraw-Hill, Inc., 

New York, 1988. 

2. U.S. Environmental Protection Agency, “Emission Control Potential for Heavy-

duty Diesel Engines,” EPA 420-F-97-015, 1997. 

3. Yanowitz, J., McCormick, R. L., and Graboski, M. S., “In-Use Emission from 

Heavy-Duty Diesel Vehicle,” Environmental Science & Technology, Vol. 34, No. 

5, pp. 729-740, 2000. 

4. http://www.dieselnet.com/standards/us/hd.html, accessed 10/22/2003. 

5. U.S. Environmental Protection Agency, “Technology Transfer Network 

Clearinghouse for Inventories and Emission Factors - Emissions Modeling: 

Inventories.” http://www.epa.gov/ttn/chief/emch/invent/ accessed 1/13/2004. 

6. Koupal, J., Cumberworth, M., Michaels, H., Beardsley, M. and Brzezinski, D., 

“Draft Design and Implementation Plan for EPA’s Multi-Scale Motor Vehicle and 

Equipment Emission System (MOVES),” EPA420-P-02-006, 2002. 

http://www.epa.gov/otaq/models/ngm/p02006.pdf accessed 3/2/2004. 

7. Koupal, J., “Emission Rate Development, EPA Office of Transportation & Air 

Quality,” FACA Modeling Workgroup Meeting, December 2003. 

http://www.epa.gov/otaq/models/ngm/mwg1203e.pdf, accessed 4/20/2004. 

8. Clark, N. N., Gajendran, P. and Kern, J. M., “A Predictive Tool for Emissions 

from Heavy-Duty Diesel Vehicles,” Environmental Science & Technology, Vol. 

37, No. 1, pp. 7-15, 2003.  

9. Bastian, A., “Modeling Fuel Injection Control Maps Using Fuzzy Logic,” IEEE 

International Conference on Fuzzy Systems, Vol. 2, pp. 740-743, 1994. 

10. Frith, A., M., Gent, C. R., Beaumont, A. J., “Adaptive Control of Gasoline Engine 

Air-Fuel Ratio Using Artificial Neural Networks,” IEEE Conference Publication, 

Proceedings of the 4th International Conference on Artificial Neural Networks, 

pp. 274-278, 1995. 



 83

11. Ramani, S., Miranda, R., “Neural-Network-Aided Design of Automobile Exhaust 

Catalysts,” Chemical Engineering Communications, Vol. 156, pp. 147-160, 1996. 

12. Stevens, S. P., Shayler, P. J., Ma, T. H., “Experimental Data Processing 

Techniques to Map the Performance of a Spark Ignition Engine,” Journal of 

Automobile Engineering, Vol. 209, pp. 297-306, 1995. 

13. Hanzevack, E. L., Long, T. W., Atkinson, C. M., Traver, M. L., “Virtual Sensors 

for Spark Ignition Engines Using Neural Networks,” Proceedings of the American 

Control Conference, Vol. 1, pp. 669-673, 1997. 

14. Krijnsen, H. C., Van Kooten, W. J., Calis, H. A., Verbeek, R. P., Van den Bleek, 

C. M., “Prediction of NOx Emissions from a Transiently Operating Diesel Engine 

Using an Artificial Neural Network,” Chemical Engineering and Technology, 

Vol. 22, pp. 601-607, 1999. 

15. Quenou Gamo, S., Ouladsine, M., Rachid, A., “Diesel Engine Exhaust Emission 

Modeling Using Artificial Neural Networks,” SAE paper 1999-01-1163. 

16. Hafner, M., Schueler, M., Nelles, O., “Dynamical Identification and Control of 

Combustion Engine Exhaust,” Proceedings of the American Control Conference, 

Vol. 1, pp. 222-226, 1999. 

17. Thompson, G. J., Atkinson, C. M., Clark, N. N., Long, T. W., Hanzevack, E., 

“Neural Network Modeling of the Emissions and Performance of a Heavy-Duty 

Diesel Engine,” Proc. Inst. Mech. Engrs., Vol. 214, Part D, pp. 111-126, 2000.  

18. De Lucas, A., Duran, A. Carmona, M., Lapuerta M., “Modeling Diesel Particulate 

Emissions with Neural Networks,” Fuel, Vol. 80, pp. 539-548, 2001. 

19. Clark, N. N., Conley, J., Jarrett, R. P., Nennelli, A., Toth-Nagy, C., “Emissions 

Modeling of Heavy-Duty Conventional and Hybrid Electric Vehicles,” SAE paper 

2001-01-3675. 

20. Yuanwang, D., Meilin, Z., Dong, X., Xiaobei, C., “An Analysis for Effect of 

Cetane Number on Exhaust Emissions from Engine with the Neural Network,” 

Fuel, Vol. 81, pp. 1963-1970, 2002. 

21. Desantes, J., Lopez, J., Garcia, J., Hernandez, L., “Application of Neural 

Networks for Prediction and Optimization of Exhaust Emissions in a H.D. Diesel 

Engine,” SAE paper 2002-01-1144. 



 84

22. Hafner, M., Isermann, R., “Multiobjective Optimization of Feedforward Control 

Maps in Engine Management Systems Towards Low Consumption and Low 

Emissions,” Transactions of the Institute of Measurement and Control, Vol. 25, 

pp. 57-74, 2003. 

23. Tehranian, A., “Effects of Artificial Neural Networks Characterization on 

Prediction of Diesel Engine Emissions,” M.S. Thesis, West Virginia University, 

2004. 

24. Stergiou, C., Siganos, D., “Neural Networks” 

http://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol4/cs11/report.html, accessed 

5/11/04. 

25. Hagan, M. T., Demuth, H. B., Beale, M, “Neural Network Design,” PWS 

publishing Co., Boston, MA, 1996. 

26. Olmsted, D. D., “History and Principles of Neural Networks to 1960,” 

http://www.neurocomputing.org/History/body_history.html, accessed 8/31/03. 

27. McCulloch, W. and Pitts, W., “A Logical Calculus of the Ideas Immanent in 

Nervous Activity,” Bulletin of Mathematical Biophysics, Vol. 5, pp. 115-133, 

1943. 

28. Hebb, D. O., “The Organization of Behaviors,” John Wiley & Sons, New York, 

1949.  

29. Rosenblatt, F., “The Perceptron: A Probabilistic Model for Information Storage 

and Organization in the Brain,” Psychological Review, Vol. 65, pp. 386-408, 

1958. 

30. Minsky, M. L., Papert, S., “Perceptrons,” MIT Press, Cambridge, MA, 1969. 

31. Kohonen, T., “Correlation Matrix Memories,” IEEE Transactions on Computers, 

Vol. 21, pp. 353-359, 1972. 

32. Anderson, J. A., “A Simple Neural Network Generating an Interactive Memory,” 

Mathematical Bioscience, Vol. 14, pp. 197-220, 1972. 

33. Hopfield, J. J., “Neural Networks and Physical Systems with Emergent Collective 

Computational Abilities,” Proceedings of the National Academy of Sciences, Vol. 

79, pp. 2554-2558, 1982. 



 85

34. Rumelhart, D.E., McClelland, J. L., “Parallel Distributed Processing: Explorations 

in the Microstructure of Cognition,” Vol. 1, MIT Press, Cambridge, MA, 1986. 

35. Jain, L. C., Martin, N. M., “Fusion of Neural Networks, Fuzzy Sets, and Genetic 

Algorithms,” CRC Press LLC, Boca Raton, Florida, 1999.  

36. Carpenter, G. A., Grossberg, S., “ART2 Self-Organisation of Stable Category 

Recognition Codes for Analog Input Patterns,” Applied Optics, 26, pp. 4919-

4930, 1987. 

37. NeuroShell2 User’s Manual, Ward Systems Group, Inc., Fredrick, MD, 1996. 

38. http://hem.hj.se/~de96klda/NeuralNetworks.htm, accessed 5/11/04. 

39. https://tagteamdbserver.mathworks.com/ttserverroot/Download/807_8511v04_Ne

uralTbX.pdf, accessed 5/12/04. 

40. White, D., Sofge, D., “Handbook of Intelligent Control,” Van Nostrand Reinhold, 

New York, 1992. 

41. http://www.mathworks.com/access/helpdesk/help/toolbox/nnet/backpr52.html#12

955, accessed 6/9/2004. 

42. http://www.xs4all.nl/~dpsol/data-

machine/nmtutorial/improvementsinbackpropagationtraining.htm, accessed 

6/9/2004. 

43. Vogl, T., P., Mangis, J., K., Zigler, A., K., Zink, W., T., Alkon, D., L., 

“Accelerating the Convergence of the Backpropagation Method,” Biological 

Cybernetics, Vol. 59, pp. 256-264, 1988. 

44. Clark, N. N., Nine, R. D., Daley J. J., and Atkinson, C. M., “Development of a 

Heavy-Duty Chassis Dynamometer Driving Route,” Proceedings of Institution of 

Mechanical Engineers. Part D., Journal of Automobile Engineering, Vol. 213, pp. 

561-574. 

45. Rupprecht & Patashnick Co., Inc., TEOM, Series 1105, Diesel Particulate Mass 

Monitor, Operating Manual, September 1997. 

46. Okrent, D. A., “Optimization of a Third Generation TEOM Monitor for 

Measuring Diesel Particulate in Real-Time,” SAE paper No. 980409, 1998. 

47. Rosemount Analytical Inc., Model 402 Hydrocarbon Analyzer, Instruction 

Manual, 1993. 



 86

48. Rosemount Analytical Inc., Model 955 NO/NOX Analyzer, Instruction Manual, 

Literature No. 748190-D,1992. 

49. Rosemount Analytical Inc., Model 868 Non-Dispersive Infrared Analyzer, 

Instruction Manual, Instructions 015-748003-J, 1991. 

50. Horiba Instrument Incorporated, AIA-210/220 Infrared Analyzer, Instruction 

Manual, Horiba Manual No. 091215, 1995. 

51. http://www.dieselnet.com/standards/cycles/index.html, accessed 03/25/04 

52. Nine, R. D., Clark, N. N., Norton, P., “Effects on Emissions of Multiple Driving 

Test Schedules Performed on Two Heavy-Duty Vehicles,” SAE paper 2000-01-

2818. 

53. Jarrett, R. P., “Evaluation of Opacity Particulate Matter, and Carbon Monoxide 

From Heavy Duty Diesel Transient Chassis Tests,” M.S. Thesis, West Virginia 

University, 2000. 

54. Clark, N. N., Daley, J. J., Nine, R. D., Atkinson, C. M., “Application of the New 

City-Suburban Heavy Vehicle Route (CSHVR) to Truck Emissions 

Characterizations,” SAE paper 99011467. 

55. Clark, N. N., Wayne, W. S., Lyons, W. L. and Thompson G., “Gasoline-Diesel 

PM Split Study: Heavy-Duty Vehicle Exhaust Collection Phase,” Submitted to: 

National Renewable Energy Laboratory by West Virginia University Research 

Corporation, 2002. 

56. Clark, N. N., Wayne, W. S., Nine, R. D., Buffamonte, T. M., Hall, T., Rapp, B. 

L., Thompson, G., and Lyons, D. W., “Emissions from Diesel-Fueled Heavy-

Duty Vehicles in Southern California,” SAE/JSAE Spring Fuels & Lubricants 

Meeting, Yokohama, Japan 2003, JSAE paper 20030232. 

57. Ramamurthy, R. and Clark N. N., “Atmospheric Emissions Inventory Data for 

Heavy Duty Vehicles,” Environmental Science & Technology, Vol. 33, pp. 52-62, 

1999. 

58. http://www.eso.org/projects/dfs/papers/jitter99/node10.html, accessed 4/6/2004. 

59. Clark, N. N., Jarrett, R. P., Atkinson, C. M., “Field Measurements of Particulate 

Matter Emissions and Exhaust Opacity from Heavy Duty Vehicles,” Journal of 

the Air and Waste Management Association, Vol. 49, 1999. 



 87

60. Levenspiel, O., “Chemical Reaction Engineering,” 3rd Edition, John Wiley & 

Sons, Inc., New York, NY, 1999. 

61. Baskaran, G. and Clark N. N., “Relationships Between Instantaneous and 

Measured Emissions in Heavy Duty Applications,” SAE paper 2001-01-3536. 

62. Kern, J., Clark, N. N., Nine, R. and Atkinson, C. M., “Factors Affecting Heavy-

Duty Diesel Vehicle Emissions,” Journal of the Air and Waste Management 

Association, Vol. 52, pp. 84-94, 2002. 

63. Brodrick, C. J., Dwyer, H. A., Farshchi, M., Harris, D. B., King, F. G., “Effects of 

Engine Speed and Accessory Load on Idling Emissions from Heavy-Duty Diesel 

Truck Engines,” Journal of the Air and Waste Management Association, Vol. 52, 

No. 9, 2002. 

64. Clark, N. N., Tehranian, T., Jarrett R. P., and Nine R. D., “Translation of 

Distance-Specific Emissions Rates between Different Heavy Duty Vehicle 

Chassis Test Schedules,” SAE paper 2002-01-1754. 

65. “Title 13. California Air Resources Board: Notice of Public Hearing to Consider 

Amendments to Adopt Not-to-Exceed and Euro III European Stationary Cycle 

Emission Test Procedures for the 2005 and Subsequent Model Year Heavy-Duty 

Diesel Engines” www.arb.ca.gov/regact/ntetest/notice.pdf, accessed 4/18/2004. 

 

 

 

 

 

 



 88

 

APPENDIX A – Vehicle Description 
 
 
VEHICLE 1 
 
WVU Test Reference Number: WVU-TEDDY2-CARB 
 
Fleet Owner Full Name   West Virginia University 
 
Vehicle Type     Tractor Truck 
Vehicle ID Number (VIN)   1FUPYSYB7FH258124 
Vehicle Manufacturer    Freightliner 
Vehicle Model Year    1985 
Gross Vehicle Weight (GVW) (lb.)  80000 
Vehicle Total Curb Weight (lb.)  12000 
Vehicle Tested Weight (lb.)   42000 
Odometer Reading (mile)   769413 
Transmission Type    Manual 
Transmission Configuration   9-Speed 
Number of Axles    3 
 
Engine Type     Caterpillar 3406B 
Engine ID Number    7FB30060 
Engine Displacement (Liter)   14 
Number of Cylinders    6 
Engine Rated Power (hp)   350 
 
Primary Fuel     CARB 
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VEHICLE 2 
 
WVU Test Reference Number: RDO-94 Freight-CARB 
 
Fleet Owner Full Name   RDO Truck Sales 
 
Vehicle Type     Tractor Truck 
Vehicle ID Number (VIN)   1FUYDZYB85H706048 
Vehicle Manufacturer    Freightliner 
Vehicle Model Year    1994 
Gross Vehicle Weight (GVW) (lb.)  52000 
Vehicle Total Curb Weight (lb.)  17120 
Vehicle Tested Weight (lb.)   42000 
Odometer Reading (mile)   639105 
Transmission Type    Manual 
Transmission Configuration   10 Speed 
Number of Axles    3 
 
Engine Type     Detroit Diesel Series 60 
Engine ID Number    l14139 
Engine Displacement (Liter)   12.7 
Number of Cylinders    6 
Engine Rated Power (hp)   470 
 
Primary Fuel     CARB 
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VEHICLE 3 
 
WVU Test Reference Number: RAGRO-5939-CARB 
 
Fleet Owner Full Name   Ralph's Grocery 
 
Vehicle Type     Tractor Truck 
Vehicle ID Number (VIN)   2FWYJFEB3XAB21287 
Vehicle Manufacturer    Sterling 
Vehicle Model Year    1998 
Gross Vehicle Weight (GVW) (lb.)  52000 
Vehicle Total Curb Weight (lb.)  16560 
Vehicle Tested Weight (lb.)   42000 
Odometer Reading (mile)   327300 
Transmission Type    Manual 
Transmission Configuration   10 speed 
Number of Axles    3 
 
Engine Type     Detroit Diesel Series 60 
Engine ID Number    06R0461436 
Engine Displacement (Liter)   12.7 
Number of Cylinders    6 
Engine Rated Power (hp)   470 
 
Primary Fuel     CARB 
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VEHICLE 4 
 
WVU Test Reference Number: RAGRO-5009-CARB 
 
Fleet Owner Full Name   Ralph's Grocery 
 
Vehicle Type     Tractor Truck 
Vehicle ID Number (VIN)   2FWYHWEB5YAF83127 
Vehicle Manufacturer    Sterling 
Vehicle Model Year    1999 
Gross Vehicle Weight (GVW) (lb.)  52000 
Vehicle Total Curb Weight (lb.)  16240 
Vehicle Tested Weight (lb.)   42000 
Odometer Reading (mile)   272307 
Transmission Type    Manual 
Transmission Configuration   10 speed 
Number of Axles    3 
 
Engine Type     Caterpillar C-12 
Engine ID Number    2KS15562 
Engine Displacement (Liter)   12 
Number of Cylinders    6 
Engine Rated Power (hp)   425 
 
Primary Fuel     CARB 
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VEHICLE 5 
 
WVU Test Reference Number: RAGRO-5007-CARB 
 
Fleet Owner Full Name   Ralph's Grocery 
 
Vehicle Type     Tractor Truck 
Vehicle ID Number (VIN)   2FWYHWEB1YAF83125 
Vehicle Manufacturer    Sterling 
Vehicle Model Year    2000 
Gross Vehicle Weight (GVW) (lb.)  52000 
Vehicle Total Curb Weight (lb.)  16460 
Vehicle Tested Weight (lb.)   42000 
Odometer Reading (mile)   255880 
Transmission Type    Manual 
Transmission Configuration   10 Speed 
Number of Axles    3 
 
Engine Type     Caterpillar C-12 
Engine ID Number    12KS15574 
Engine Displacement (Liter)   12 
Number of Cylinders    6 
Engine Rated Power (hp)   425 
 
Primary Fuel     CARB 
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VEHICLE 6 
 
WVU Test Reference Number: RDO-01 Volvo-CARB 
 
Fleet Owner Full Name   RDO Truck Sales 
 
Vehicle Type     Tractor Truck 
Vehicle ID Number (VIN)   4V4NC9JH91N255387 
Vehicle Manufacturer    Volvo 
Vehicle Model Year    2001 
Gross Vehicle Weight (GVW) (lb.)  52000 
Vehicle Total Curb Weight (lb.)  17680 
Vehicle Tested Weight (lb.)   42000 
Odometer Reading (mile)   327300 
Transmission Type    Manual 
Transmission Configuration   10 speed 
Number of Axles    3 
 
Engine Type     Cummins 2N14-370 
Engine ID Number    12002625 
Engine Displacement (Liter)   14 
Number of Cylinders    6 
Engine Rated Power (hp)   370 
 
Primary Fuel     CARB 
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APPENDIX B – Supplementary Figures 
 

 

Figure 8.1. Actual and ANN prediction NOx emissions using 8 inputs for Vehicle 1 
exercised through the UDDS. The neural network was trained on the Highway cycle.  
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Figure 8.2. ANN prediction versus actual CO2 emissions related to the Figure 5.5 
shows correlation coefficient of r²=0.937. 
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Figure 8.3. First 700 seconds of the actual and ANN prediction CO emissions using 8 
inputs for Vehicle 2 exercised through the CSHVR. The neural network was trained 
on the Highway cycle. 
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