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Abstract 
 

Temporal Expression of Key Angioregulatory Proteins in  
Response to Exercise and Detraining 

 
Sara A. Olenich 

 
Angiogenesis is an important adaptation to exercise, occurring in response to a 

multitude of different stimuli including: shear stress, mechanical stretch, ischemia, electrical 

stimulation, and exercise. Current thinking suggests skeletal muscle angiogenesis is a temporal 

process controlled by a balance between positive and negative angiogenic proteins. But there is 

limited information on what molecular mediators control skeletal muscle angiogenesis in this 

time line, creating a critical need to clarify how individual protein responses regulate physiologic 

skeletal muscle angiogenesis in response to exercise training and/or physical deconditioning. 

Our objective is to characterize the temporal expression of several key positive (VEGF, MMP-2, 

MMP-9, nucleolin) and negative (TSP-1, endostatin) angiogenic factors under basal conditions, 

after acute exercise, in response to training, and after detraining. The central hypothesis is that 

training and deconditioning will cause temporally coordinated changes in positive and negative 

angiogenic regulators in response to exercise training, which will be reversed during detraining. 
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CHAPTER 1: INTRODUCTION 

Increasing skeletal muscle vascularity in active muscle is recognized to be important in 

improving the surface area on which substrate/metabolism/oxygen exchange can take place in 

order to meet the high metabolic demands (of skeletal muscle) imposed during periods of 

increased physical activity (Snyder 1987, Wagner, Roca et al. 1990, Snyder, Farrelly et al. 

1992, Wagner 1996, Mathieu-Costello and Hepple 2002, Howlett, Kirkton et al. 2008). Under 

normal conditions endothelial cells, the cells which line blood vessels, have a slow turnover rate 

of about a thousand days, but when called upon, such as in wound healing, endothelial cells 

can turnover in five days (Folkman and Shing 1992).  Likewise, exercise can induce significant 

changes of skeletal muscle capillarity in 7 days (mouse) (Waters, Rotevatn et al. 2004) or as 

little as 2-4 days (rabbit) when electrically stimulated for 8 hours a day (Brown, Cotter et al. 

1976). The growth of vasculature occurs relatively quickly, which is important to meet the 

increased demand of skeletal muscle. Yet, more fascinating than the speed of angiogenesis is 

the temporal coordination and organization of numerous pro and anti angiogenic mitogens in 

order for sprouting vessels to form without overt vascular disruption.   

Understanding  the temporal expression patterns of essential angiogenic peptides, such 

as vascular endothelial growth factor (VEGF), matrix metalloproteinase (MMP) -2, MMP-9, 

nucleolin, endostatin, and thrombospondin-1 (TSP-1) in response to angiogenic-inducing stimuli 

(e.g. exercise) is needed to better understand the physiologic regulation of angiogenesis. For 

example, VEGF stimulates vascular permeability allowing for extravasation of plasma proteins, 

endothelial cell proliferation, migration, and adhesion for vessel lumen formation. Nucleolin may 

help mediate VEGF to the nucleus while presence of MMP-2 and MMP-9 are needed to disrupt 

the extracellular matrix surrounding the existing vessel in order to accommodate the new 

vascular outcropping (Huang, Shi et al. 2006). Plasma proteins, including fibrinogen and 

plasminogen, escape the blood stream through permeable vessels and are capable of initiating 

a basic scaffold on which endothelial cells begin can migrate and to form a cord or tube-like 
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structure. After lumen formation the vessels are still unstable until mural cells migrate in and 

differentiate into pericytes or smooth muscle cells. As patent vessels are formed, withdrawal 

and/or inhibition of the pro-angiogenic signals are needed for maturation and stabilization of 

nascent vessels.  Negative regulators (e.g. TSP-1, endostatin) are able to inhibit pro-angiogenic 

pathways by inhibiting factors such as VEGF. Endostatin, a fragment of collagen XVIII, may also 

prevent microvascular growth by down regulating proangiogenic and up regulating antiangiogic 

factors (Kim, Hwang et al. 2002, Abdollahi, Hahnfeldt et al. 2004, Cao 2008). The complex 

balance of pro- and anti-angiogenic proteins is thought to trigger the growth or regression of 

capillaries.  

 

VASCULAR ENDOTHELIAL GROWTH FACTOR 

VEGF-A, VEGF-B, VEGF-C and VEGF-D comprise the VEGF family and are recognized 

by the receptors VEGFR1 (Flt-1), VEGFR2 (KDR/Flk-1) and VEGFR3 (Flt-4) (Robinson and 

Stringer 2001). VEGF-A, a ~45kDa protein, is the most biologically important in angiogenesis 

and is generally referred to as VEGF (Ferrara and Henzel 1989, Hoeben, Landuyt et al. 2004). 

In the human genome, VEGF has eight exons which are differentially spliced (between 18 and 

24 kDa) to VEGF121, VEGF165, VEGF189, and VEGF206 with the most bioactive form being 

VEGF165 (Tischer, Mitchell et al. 1991, Park, Keller et al. 1993, Roskoski Jr 2007). VEGF mRNA 

half-life has been reported to be about an hour with an increase reported in response to hypoxia 

in cell culture (Levy, Levy et al. 1996) and recombinant VEGF has a half-life of 33.7±13 minutes 

in human plasma (Eppler, Combs et al. 2002). With short half-life’s, proteins such as heparin 

sulphate proteoglycans and neuropilin-1 have the ability to prolong VEGF biological activity or 

enhance receptor binding (Robinson and Stringer 2001). VEGF can also be found bound to the 

ECM (Ferrara and Henzel 1989, Tischer, Mitchell et al. 1991, Park, Keller et al. 1993). When 

bound to the ECM, VEGF can be stored until MMP’s release the protein allowing it to be 

biologically active. 
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VEGF has long been associated with an increase of vascular permeability of blood 

vessels, and in fact was originally known as vascular permeability factor (Senger, Connolly et al. 

1990, Dvorak 2002).  However, the vitality of the gene was demonstrated when attempting to 

create a total body VEGF KO mouse –where the loss of  a single  allele was embryonically 

lethal due to poorly formed vasculature development in utero (Ferrara, Carver-Moore et al. 

1996). A myocyte-specific VEGF KO mouse has been successfully generated and displayed a 

significant reduction in C:F ratio (39% decrease) and exercise performance, e.g.  reduced 

maximal running speed (by 34%) and reduced endurance capacity (by 81%) compared to 

controls (Olfert, Howlett et al. 2009). Furthermore, skeletal muscle capillarity in myocyte-specific 

VEGF KO mice did not adapt to exercise training as typically seen in exercise trained wild-type 

mice (Olfert, Howlett et al. 2010). VEGF receptor antagonism also partially inhibits training 

induced skeletal muscle angiogenesis in ischemia induced hindlimb muscles of mice (Lloyd, 

Prior et al. 2005). Another study which sequestered VEGF using VEGF Trap prevented 

increases in skeletal muscle angiogenesis induced  by shear stress (e.g. increase blood flow) or 

muscle stretch/overload conditions (Williams, Cartland et al. 2006). These studies showed that 

not only is VEGF critical to vascular development in utero but also in response to exercise 

training. 

Short term training (7 days) in humans has been positively correlated with an increase of 

VEGF mRNA in skeletal muscle (Gustafsson, Knutsson et al. 2002). Similar results were 

reported in rats: VEGF mRNA was elevated after each day of exercise when exercising on a 

treadmill for one hour a day, for five days (Gavin and Wagner 2001). In another study the effects 

of detraining were also evaluated in cardiac muscle of rats. Rat VEGF mRNA was investigated 

in control, trained (10 weeks of treadmill training, 30 hours of total training), and detrained rats 

(4 weeks). (Marini, Falcieri et al. 2008) VEGF mRNA and cardiac capillary density were 

elevated after training but those responses returned to control levels after four weeks of 

detraining (Marini, Falcieri et al. 2008). In a time course study where rats treadmill trained, 
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VEGF mRNA had the largest fold change in the white GA, but the SOL and red portion of GA 

had several time points (3-21 days) at which VEGF mRNA was significantly elevated too (Lloyd, 

Prior et al. 2003). Although there is a strong trend for an increase in VEGF mRNA and protein in 

response to exercise, not all studies show this. One example is where participants trained on a 

bicycle ergometer for four weeks (Hoier, Nordsborg et al. 2012). After cycling, there was an 

increase of C:F ratio but VEGF protein at basal conditions were not different before or after the 

training period, but perhaps the window of peak expression/training adaptation had passed by 

four weeks (Hoier, Nordsborg et al. 2012).  

An acute bout of exercise is known to elicit an increase of VEGF mRNA (Olfert, Breen et 

al. 2001, Hoier, Nordsborg et al. 2012). However, there are mixed results as to whether the 

acute response remains in a trained and/or detrained state. In a human population that trained 

on a cycle ergometer for four weeks, VEGF protein was elevated in response to acute exercise 

both before and after four weeks of training (Hoier, Nordsborg et al. 2012). However, the acute 

response to exercise in rats that trained for 10 weeks was lost, but returned after 7 days of 

detraining in the plantaris but not soleus muscle (Malek, Olfert et al. 2010). However, 

discrepancies between mRNA expression in response to acute exercise may be due to species 

and fiber type. 

 

MATRIX METALOPROTEINASE -2 AND -9 

There are at least 20 MMP’s known to participate in processes such as proteolytic 

degradation of the ECM and basement membranes (Nagase and Woessner 1999). Degradation 

is necessary to destabilize current vasculature and ECM allowing for outcroppings of new 

vessels. However, the activities of MMP’s are highly regulated to preserve the integrity of matrix 

surrounding the vasculature which would be compromised if left unchecked. MMP’s are 

regulated at three key steps. First, DNA must be transcribed into mRNA and translated into an 

inactive proMMP. Second, proMMP’s require enzymatic cleavage to become a mature MMP. 
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Third, mature MMP’s can be inhibited by tissue inhibitor of metalloproteinase (TIMPS). There 

are several subclasses of MMP’s but one subclass of particular interest is collagenase which 

harbors the gelatinases: MMP-2 (collagenase A or pro-MMP, 72kDa; active MMP-2, 62kDa) and 

MMP-9 (collagenase B, 92kDa; active MMP-9 82kDa) (Schmalfeldt, Prechtel et al. 2001, 

Shimokawa, Katayama et al. 2002). Gelatinases are instrumental in angiogenesis due to their 

ability to degrade the most prevalent protein in skeletal muscle basal lamina: collagen IV. 

There is strong evidence that MMP-2 and MMP-9 are critical for angioadaptation. MMP-

2 has been localized to the ECM around muscle fibers, capillaries, and inside the muscle fiber 

(Rullman, Norrbom et al. 2009) and is involved with cell fusion (Zimowska, Brzoska et al. 2008). 

Pharmacological inhibition of MMP activity prevents capillary adaptation in chronic electrically 

stimulated hindlimb muscles, demonstrating that MMP activity is required for skeletal muscle to 

undergo capillarity adaptation in response to chronic muscle contractions (Haas, Milkiewicz et al. 2000). 

MMP-9 is localized to capillaries and around muscle fibers without expression in muscle fibers (Rullman, 

Norrbom et al. 2009), may be involved in myoblast cell differentiation (Zimowska, Brzoska et al. 2008), 

plays a role in collagen assembly and compaction (Whatling, McPheat et al. 2004) and inhibition of 

MMP-9 inhibits endothelial cell migration (Jadhav, Chigurupati et al. 2004). Both MMP-2 and MMP-9 are 

more abundant in zones where cellular differentiation occurs and participate in smooth muscle cell 

migration and neointima growth (Whatling, McPheat et al. 2004). The activity of MMP’s may be, in part, 

dependent on the angiogenic stimulus. For example MMP-2 protein levels can be increased with 

muscle stretch by unilateral extirpation of the tibalis anterior but not in response to an increase 

in circulating blood flow and increases in shear stress induced by prazosin (Rivilis, Milkiewicz et 

al. 2002). The same authors reported no significant change of MMP-9 under either condition 

(Rivilis, Milkiewicz et al. 2002); however, MMP-9 may be involved in arterialization (20>μm 

diameter) with administration of prazosin (van Gieson and Skalak 2001).  
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The effects of a protein can be observed when knocking it out in a mouse model. MMP-2 

and MMP-9 null mice both are fertile but subtle differences were noted. MMP-2 KO mice tended 

to be about 15% smaller than littermates (Itoh, Ikeda et al. 1997) and had a slower angiogenic 

response and tumor growth rate than littermate controls (Itoh, Tanioka et al. 1998). MMP-9 KO 

mice showed delayed angiogenesis in bone growth plates (Itoh, Ikeda et al. 1997), did not stop 

tumor growth (Masson, de la Ballina et al. 2005), and had slower smooth muscle cell 

proliferation and migration in arteries (Cho and Reidy 2002). Interestingly, knocking out MMP-2 

or MMP-9 individually was not sufficient to arrest tumor growth/angiogenesis but when both 

were knocked out in the same mouse, tumor growth was halted (Masson, de la Ballina et al. 

2005), possibly implicating that they work together. However, other studies make convincing 

arguments that MMP-9 appears to be a larger contributor and possibly a switch that triggers the 

activation of quiescent vasculature (Bergers, Brekken et al. 2000, Bergers and Benjamin 2003); 

whereas MMP-2 may play a minor role in growth of new vasculature (Bergers, Brekken et al. 

2000). 

MMP-2 and MMP-9 have different expression profiles and have been evaluated under 

basal conditions and in response to acute exercise but the temporal response is still unclear. 

Under basal conditions in mouse skeletal muscle, MMP-2, but not MMP-9, mRNA and protein is 

normally expressed (Kherif, Lafuma et al. 1999). With acute exercise, one study saw a decrease 

of MMP-2 proMMP-2 immediately after exercise (Koskinen, Heinemeier et al. 2004), another 

study reported an increase of MMP-2 protein only at 30 min post cycling (Suhr, Brixius et al. 

2007), a third study saw no increase of protein under basal conditions in long and short track 

athletes pre season but reported an increase 1 hour post acute exercise in long track athletes 

(Suhr, Rosenwick et al. 2010). MMP-2 was evaluated up to 3 days after acute exercise on a 

treadmill, levels were low immediately and 1 day after exercise but were elevated 3 days post 

exercise (Koskinen, Heinemeier et al. 2004).  Meanwhile, MMP-9 has been reported to be 

elevated 0-4 hours post acute exercise (Koskinen, Heinemeier et al. 2004, Suhr, Brixius et al. 
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2007, Suhr, Rosenwick et al. 2010) and remained elevated at 1 and 3 days post acute exercise 

(Koskinen, Heinemeier et al. 2004). In response to a season of training, MMP-9 serum levels 

tended to be lower in both short and long track athletes under basal conditions and after acute 

exercise, but MMP-2 levels were not affected by training (6 months) (Suhr, Rosenwick et al. 

2010). In short, MMP-2’s response to acute exercise has yet to be fully understood but MMP-9 

has an immediate increase of protein levels that remain for at least 3 days but dissipates with 

chronic training. 

There have been a number of articles published in a human model about MMP-2 and 

MMP-9 protein expression in response to acute exercise but there are fewer articles about 

chronic exercise. One study reported ten days of high intensity running elevated MMP-9 mRNA 

in rat GA and SOL (Carmeli, Haimovitz et al. 2007). Single leg training in humans, also resulted 

in an increase of MMP-9 mRNA taken from a muscle biopsy at 10 and 35 days, but MMP-9 

protein remained unchanged (Rullman, Norrbom et al. 2009). In the same single leg study, 

MMP-2 mRNA levels were significantly elevated after 10 and 35 days of training but only had 

increased protein levels at day 10 (Rullman, Norrbom et al. 2009). These two studies suggest 

that MMP-2 mRNA is elevated with increasing exercise duration where as MMP-9 is not. Many 

of the studies evaluated serum and plasma levels but examination of protein expression in the 

skeletal muscle where angiogenesis occurs is needed.  

 

NUCLEOLIN 

Nucleolin (formally known as C23) is a 105 kDa nuclear multifunctional protein which plays a 

role in many different cellular actions including cell proliferation, ribosome biogenesis, 

mitogenesis, adhesion, and differentiation (Andersen, Lam et al. 2005, Destouches, El Khoury 

et al. 2008). Furthermore, nucleolin, a major nuclear protein in cells that proliferate exponentially 

(Lapeyre, Bourbon et al. 1987), also serves as a shuttle between the nucleus, cytoplasm, and 

cell surface (Borer, Lehner et al. 1989, Schmidt-Zachmann, Dargemont et al. 1993, 
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Hovanessian, Soundaramourty et al. 2010), binds to DNA with high affinity (Chen, Chiang et al. 

1991), can control the unwinding of DNA and RNA duplexes (Tuteja, Huang et al. 1995), and 

angiogenesis (Destouches, El Khoury et al. 2008). Nucleolin is exclusively a self cleaving 

fragment (cleaved at 6 hours, completely degraded at 24 hours) but is inhibited by an 

unidentified proteolytic inhibitor in the nuclei (Chen, Chiang et al. 1991). The unidentified 

inhibitor is negatively charged and binds to an enzymatic domain found in the two thirds side of 

the C-terminal (Fang and Yeh 1993). When  using agonist HB-19 pseudopeptide which binds to 

the C-terminal of cell surface nucleolin, tumor growth and angiogenesis has been halted both in 

vivo and in vitro with no toxicity to normal tissue (Destouches, El Khoury et al. 2008). Inhibition 

of nucleolin in cell culture inhibited migration but did not affect proliferation or adhesion (Huang, 

Shi et al. 2006). The presence of nucleolin on the cell surface is highly correlated with cell 

growth conditions in cell culture (Hovanessian, Soundaramourty et al. 2010); degraded nucleolin 

quantities gradually decrease as cells start to become more proliferative (Chen, Chiang et al. 

1991). Nucleolin, with its strong correlation to cell proliferation, has been used as a marker of 

angiogenic endothelial cells in tumor blood vessels (Christian, Pilch et al. 2003). When anti-

nucleolin antibody was injected into mice, the antibody only accumulated on the surface of 

tumor blood vessels (Shi, Huang et al. 2007). These points emphasize the close connection 

between nucleolin expression and angiogenesis, indicating nucleolin might serve as a critical 

angiogenic biomarker for proliferating endothelial cells. 

Due to the strong correlation of nucleolin and angiogenesis and a lack of articles 

evaluating it in response to acute exercise or training, we believe that further evaluation of the 

protein in skeletal muscle angiogenesis is warranted.   

 

ENDOSTATIN 

Endostatin is a 22kDa anti-angiogenic C-terminal fragment of collagen XVIII found 

throughout the body with most of the monomer being prevalent in the vascular and epithelial 
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basal membrane around muscular structures (Faye, Chautard et al. 2009). Endostatin is an 

effective inhibitor of angiogenesis by restricting endothelial cell proliferation and migration by 

inducing apoptosis, down-regulating pro-angiogenic signaling pathways and up-regulating anti-

angiogenic genes (Kim, Hwang et al. 2002, Abdollahi, Hahnfeldt et al. 2004, Cao 2008). Since 

endostatin is derived from collagen matrix, its formation is dependent not on transcription but by 

other regulators such as MMP-9, elastase, and cathepsin L which cleave the fragment from 

collagen XVIII (Wen, Moses et al. 1999, Felbor, Dreier et al. 2000, Chang, Javier et al. 2005, 

Heljasvaara, Nyberg et al. 2005). MMP’s known to produce the endostatin fragment are MMP-3, 

-7, -9, -13, -20, whereas MMP-1, -2, -8 and -12 do not (Heljasvaara, Nyberg et al. 2005). A cell 

culture study suggests that generation of endostatin may be a two step process. The first step is 

metal dependent, which trims collagen XVIII to NC1 [69]. The second step of endostatin 

generation is elastase dependent, elastase cleaves NC1 to endostatin (Wen, Moses et al. 

1999). Endostatin KO mice, also known as Col18a1 KO mice, do not have an abnormal 

increase of capillarity in most organs and tumor growth is not increased in these mice, however 

aortic implants from KO mice into WT mice had increased microvessel growth (Li and Olsen 

2004) the mice may also have ocular abnormalities due to abnormal retinal vessel growth 

(Marneros and Olsen 2005).   

The endostatin fragment works by blocking general mechanisms that influence 

endothelial cell growth including interfering with VEGFR2 receptors (Kim, Hwang et al. 2002, 

Lee, Jang et al. 2002, Cao 2008). An exception to its antiangiogenic activity would be during 

embryonic development where it may operate in an angio-modulatory way. (Kim, Hwang et al. 

2002, Schmidt, Wenzel et al. 2004, Cao 2008) Interestingly, endostatin does not act solely by 

inhibiting pro-angiogenic proteins but also up regulates anti-angiogenic proteins (Abdollahi, 

Hahnfeldt et al. 2004). For example, endostatin can up regulate TSP-1 and simultaneously 

down regulating the TSP-1 suppressor ID-1 (Volpert, Pili et al. 2002). Endostatin does more 

than just modulate TSP-1, it is capable of affecting a wide range of proteins. DNA and antibody 



10 
 

array technology have shown that endostatin, when administered as a drug, is capable of 

inhibiting 65 varieties of tumor and modified 12% of the human genome in human dermal 

microvascular endothelial cells (mostly angiogenic pathways) (Abdollahi, Hahnfeldt et al. 2004).  

 Endostatin concentrations appear to vary due to tissue oxidative capacity. Under basal 

conditions, the heart has 4.9 times lower endostatin and 1.5 higher VEGF protein level than the 

anterior tibialis, which correlates with the heart having a greater capillarity density. However 

after rats exercised for three weeks, there was nearly a 3 fold decrease of endostatin and 2 fold 

increase of VEGF in the TA (Gu, Shparago et al. 2006).  

 Endostatin has been well characterized in tumor research but there are limited articles 

about its regulation and expression in skeletal muscle in response to exercise. During acute 

exercise, circulating levels of endostatin increased in a linear relationship to peak VO2 

(R2=.9388) (Gu, Gadonski et al. 2004), but exercise did not increase endostatin levels in plasma 

with increasing time exercising at 50-65% of VO2 max (Rullman, Rundqvist et al. 2007). In 

response to acute exercise, endostatin is significantly elevated at 0 hours post exercise(Suhr, 

Brixius et al. 2007). Endostatin levels were reduced after training basally and in response to 

acute exercise in both elite short and long track athletes (Suhr, Rosenwick et al. 2010). Another 

study measured VEGF and endostatin concentrations pre and post 6 months of training and 

found VEGF levels were not affected but training significantly reduced endostatin levels (Brixius, 

Schoenberger et al. 2008). In short, endostatin plasma levels seem to be elevated in response 

to acute exercise: the harder the workload (working at a higher VO2), the higher the endostatin 

level. These studies imply that endostatin correlates with intensity (VO2) of acute exercise and 

decreases with chronic training, but the temporal response of endostatin to training and 

detraining are still poorly characterized.  
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THROMOBSPONDIN-1  

TSP-1 is a large, 450 kDa trimeric, extracellular matrix glycoprotein. It is produced by 

several different cell types including α-granules, smooth muscle cells, endothelial cells, 

fibroblasts, kerationocytes, neutrophils and macrophages (Duffield 2003, Olfert and Birot 2011). 

TSP-1 is effective by inhibiting endothelial cell proliferation, adhesion, and motility 

(Bagavandoss and Wilks 1990, Taraboletti, Roberts et al. 1990).  TSP-1 can inhibit the 

angiogenic response by binding to CD47 which in turn inhibits VEGFR2’s phosphorylation and 

thus downstream targets (Isenberg, Frazier et al. 2008, Kaur, Martin-Manso et al. 2010). The 

protein may not be needed in large quantities to inhibit angiogenesis under basal conditions, as 

pM concentrations in plasma appears to be sufficient (Isenberg, Frazier et al. 2008).  

 The first mouse strain used to produce TSP-1 KO mice were 129Sv background mice, 

which exhibited increased levels of white blood cells, lordotic curvature of the spine, and had 

lung abnormalities making them susceptible to pneumonia (Lawler, Sunday et al. 1998). This 

phenotype has not manifested in C57Blk6 strain of TSP-1 KO mice which are currently 

commercially available.  Recent evidence have found the C57Blk6 TSP-1 KO to have greater 

microvessel density compared to wild-type mice under basal conditions (Fitchev, Wcislak et al. 

2010). These TSP-1 KO mice also had 67% increased in endurance running test and an 11% 

increase in maximal running speed, which can likely be attributed to significant increase of 

skeletal and cardiac muscle capillarity (Malek and Olfert 2009). 

 There are only a few studies that examine TSP-1 in response to exercise or training. 

TSP-1 mRNA expression was examined after training rats for one hour a day up to five days. 

The study found that mRNA was elevated from basal conditions only on days one and two, and 

returned to baseline conditions on days 3-5 (Olfert, Breen et al. 2006). After chronic exercise 

consisting of  four weeks of bicycle ergometer training, an increase of C:F ratio was reported but 

VEGF and TSP-1 protein at basal conditions were not remarkable before and after the training 

period (Hoier, Nordsborg et al. 2012). The lack of TSP-1 response may be due to the time 
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points selected for samples to be taken, for example, peak expression may have been at day 3 

which fell between the 0 and 4 week time points. The cycling study also examined acute 

response to exercise under basal and trained states and showed TSP-1 mRNA had an acute 

response at one and three hours post exercise under basal and trained conditions (Hoier, 

Nordsborg et al. 2012). Finally, TSP-1 expression can be altered with other compounds such as 

(-)-epicatchin found in cacao. When (-)-epicatchin was administered in mouse drinking water, 

TSP-1’s response following training was blunted preventing a loss of capillarity; TSP-1 levels 

remained at a trained state even though mice were detraining (Hüttemann, Lee et al. 2011). 

Angiogenesis research has largely examined proangiogenic proteins but antiangiogenic proteins 

including TSP-1 may also play an equally important of a role in regulating capillary growth and 

development and therefore their response need to better characterized. 

 

INTEGRATED ANGIOGENIC PROTEIN RESPONSE TO EXERCISE 

Collectively the review of VEGF, MMP-2, MMP-9, nucleolin, endostatin, and TSP-1 highlight 

their individual importance in the angiogenic process, however, there is a deficiency of 

knowledge of how these proteins respond to physiologic stimuli that alter vascular networks 

such as acute exercise, training and/or detraining. The current proposal examines the temporal 

expression (basal and time course response to acute exercise) of these factors in conjunction 

with morphological changes in skeletal muscle capillarity in mice at differing time points up to 28 

days of voluntary exercise training, and at various time points up to 28 days after detraining, in 

order to gain further insight in the temporal regulation of capillary expansion and rarefaction. But 

it also is important to note that these factors may interact and influence each other. Below is as 

summary of the known effects of each factor with one another, or other potential angioregulatory 

factors.  Identifying the potential temporal associations or links between these individual 

angiogenic may help to more clearly understand the physiologic regulation of exercise-induced 

skeletal muscle angiogenesis.  
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VEGF: 

 VEGF is capable of activating MMP-2 in isolated endothelial cells (Rivilis, Milkiewicz et 

al. 2002), and inhibition of MMP-2 by RNAi decreased VEGF protein (by decreasing 

integrin αVβ3 mediated inhibition of the PI3k/AKT pathway)(Chetty, Lakka et al. 2010). 

 MMP-9 is capable of releasing angiogenic factors including VEGF making them more 

bioavailable (Bergers, Brekken et al. 2000, Giraudo, Inoue et al. 2004, Lee, Jilani et al. 

2005) and in a positive feedback mechanism, VEGF can also up regulate MMP-9 (Wang 

and Keiser 1998, Giraudo, Inoue et al. 2004). 

 VEGF mediates nucleolin mobilization from the nucleus to the endothelial cell surface; 

without VEGF, nucleolin quickly disappears from the cell surface (Huang, Shi et al. 

2006). 

 Endostatin levels in TA have been reported to be inversely correlated with capillary 

density and VEGF levels (Gu, Shparago et al. 2006). Furthermore, several different 

models have shown that endostatin in capable of inhibiting VEGF (Yamaguchi, Anand-

Apte et al. 1999, Wang, Xu et al. 2007, Hu, Xia et al. 2012). One method includes 

inhibiting the KDR/Flk1 VEGF receptor (Kim, Hwang et al. 2002) and another may be 

mediation of endostatin and VEGF by nucleolin. (Huang, Shi et al. 2006, Shi, Huang et 

al. 2007) 

 TSP-1 can interact directly to inhibit VEGF by ligating the VEGFR2 receptor and 

inhibiting phosphorlation,  It can also displace VEGF from a mutual heparin binding site 

on endothelial cells (Gupta, Gupta et al. 1999) 

 

Nucleolin: 

 The interaction between nucleolin and endostatin could be a crucial element for cell 

proliferation and ultimately angiogenesis; heparin binding site of endostatin is critical for 
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nucleolin to bind (Shi, Huang et al. 2007). Nucleolin and endostatin are often found co-

localized on the cell surface but once endostatin is transported to the nuclei via 

nucleolin, endostatin phosphorylates nucleolin inhibiting its role in cell proliferation (Shi, 

Huang et al. 2007). 

 The pseudopeptide HB-19 which inhibits cell surface nucleolin also causes a down 

regulation of VEGF and MMP-2 in cell culture and ultimately suppress tumor growth 

(Krust, El Khoury et al. 2011). 

 Nucleolin is capable of binding to the 3’ region of MMP-9 mRNA, stabilizing it for 

translation and leading to an increase in the degradation of ECM but does not appear to 

participate in the same binding function for MMP-2 (Fähling, Steege et al. 2005). 

 

MMP-2 and MMP-9 

 Both are gelatinases but have their own identity. When knocking out MMP-2 or MMP-9 

individually, neither was individually able to stop tumor growth/angiogenesis but when 

both of these MMP’s were knocked out in the same mouse, tumor growth was halted 

(Masson, de la Ballina et al. 2005) 

 Endostatin may be cleaved by several MMP’s including MMP-9 (Heljasvaara, Nyberg et 

al. 2005).  Endostatin inhibits activity of proMMP-2 (Kim, Hwang et al. 2002). 

 TSP-1 has been shown to increase MMP-2 (Lee, Esemuede et al. 2003) and MMP-9 

(Albo, Shinohara et al. 2002) activation in cell culture. 

Endostatin: 

 TSP-1 shares common cell surface binding ligands with endostatin: α5β1 and αvβ3 

(Sipes, Krutzsch et al. 1999, Rehn, Veikkola et al. 2001). Furthermore, endostatin can 

up regulate TSP-1 and simultaneously down regulating the TSP-1 suppressor ID-1 

(Volpert, Pili et al. 2002). 
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It can be concluded that VEGF, MMP-2, MMP-9, nucleolin, endostatin and TSP-1 all 

play a role in angiogenesis and often have a relationship with each other.  Much of the inference 

between proteins has been implicated by cell culture and tumor research, it has yet to be 

elucidated if similar associations occur in response to exercise-induced skeletal adaptation. The 

current proposal seeks to better understand the relationship between these factors by 

examining their temporal response to acute exercise, chronic exercise and physical 

deconditioning. 
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AIMS: 

Specific Aim 1: Examine the temporal expression of key positive and negative 

angiogenic regulators in skeletal muscle in response to acute exercise. 

H1.1: We hypothesize that both positive (e.g. VEGF, MMP-2, MMP-9, nucleolin) and negative 

(e.g. TSP-1, endostatin) angiogenic factors will be elevated in response to a single bout of 

exercise. 

 

Specific Aim 2: Examine the temporal expression of key positive and negative 

angiogenic regulators in skeletal muscle in response to training as well as the 

responsiveness of the factors to acute exercise immediately following training. 

H2.1: We hypothesize the basal expression of positive factors will remain elevated, while basal 

expression of negative factors will decrease, with increasing temporal exposure to training. 

H2.2: We hypothesize the acute exercise response of positive, but not negative, angiogenic 

regulators will be blunted or lost following exercise training. 

 

Specific Aim 3: Examine the temporal expression of key positive and negative 

angiogenic regulators in skeletal muscle in response to detraining and as well as the 

responsiveness of these factors to acute exercise following detraining. 

H3.1: We hypothesize there will be an increase in negative, relative to positive, angiogenic 

factors with detraining. 

H3.2: We hypothesize the blunted acute response of positive angiogenic regulators to exercise 

following training will return after detraining. 

H3.3: We hypothesize that oxidative muscles will have greater changes in angiogenic regulators 

(both positive and negative) compared to glycolytic muscles. 
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CHAPTER 2:  
Temporal response of positive and negative regulators in response to acute and chronic 
exercise training 
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Abstract (292) 

Angiogenesis is controlled by a balance between positive and negative angiogenic 

factors, but temporal protein expression of many key angiogenic regulators in response to 

exercise are still poorly defined. We evaluated the skeletal muscle temporal expression of pro-

angiogenic vascular endothelial growth factor (VEGF), matrix metalloproteinases (MMP)-2, 

MMP-9, and nucleolin; as well as the anti-angiogenic factors thrombspondin-1 (TSP-1) and 

endostatin, in response to acute and chronic exercise involving 3, 5, 7, 14, or 28 (d)ays of 

voluntary wheel run training. Protein expression of VEGF, endostatin and nucleolin were 

increased 2-4 hours after a single exercise bout; whereas MMP-2 was elevated between a 12-

24 hour window (p<0.05). In response to training, muscle capillarity was increased after 7d, 14d 

and 28d training (p<0.01).  Surprisingly, basal VEGF and MMP-2 were significantly lower with 

3d training, and basal MMP-9 was lower with 5d, 7d and 14d training (p<0.05).  However, 7d 

training significantly increased basal VEGF and MMP-2 compared to 3d training (p<0.05).  

Basal muscle TSP-1 in 14d and 28d trained mice were significantly greater compared to 5d and 

7d trained (p<0.05), and tended to increase compared to basal control levels (p<0.10).  The 

acute responsiveness of VEGF (as seen in untrained mice) was lost after 7d training. Taken 

together, these data support the notion that skeletal muscle angiogenesis is controlled by a 

balance between positive and negative mitogens, and reveals a complex, highly-coordinated, 

temporal scheme whereby these factors can differentially influence capillary growth in response 

to acute versus chronic exercise. Given the multitude of angioregulatory factors that may be 

involved in regulating skeletal muscle angiogenesis, additional studies examining the temporal 

response of each potential angiogenic factor will be necessary before a full understanding of the 

mechanisms regulating exercise-induced skeletal muscle angiogenesis will be gained. 
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Introduction 

High metabolic demands imposed by exercise on skeletal muscle during physical activity 

are known to elicit cardiovascular adaptations. Among the adaptations induced by exercise 

training is the expansion of skeletal muscle vascularity, which is recognized to be an important 

means of increasing conductance of oxygen within the exercising muscle (Snyder, 1987; Snyder 

et al., 1992; Wagner, 1996; Mathieu-Costello & Hepple, 2002; Howlett et al., 2009). Accordingly, 

there has been much interest in identifying the factors and mechanisms regulating skeletal 

muscle angiogenesis in response to exercise (see reviews by (Hudlicka et al., 1992; Prior et al., 

2004; Bloor, 2005; Egginton, 2009)).   

Angiogenesis is a complex process thought to be regulated by a balance of pro-

angiogenic and anti-angiogenic factors. Among the pro-angiogenic factors known to regulate 

skeletal muscle angiogenesis, are vascular endothelial growth factor (VEGF) and matrix 

metalloproteinases -2 and -9 (MMP-2, MMP-9), which have all been shown to be essential in 

the angiogenic response to physical activity. For example, VEGF receptor antagonism partially 

inhibits training induced skeletal muscle angiogenesis in ischemic hindlimb muscles of mice 

(Lloyd et al., 2005) and sequestering circulating VEGF (using VEGF Trap) prevents increases in 

skeletal muscle angiogenesis induced by elevated shear stress or muscle stretch/overload 

conditions (Williams et al., 2006). We have recently shown that skeletal muscle angioadaptation 

to 6-weeks of high intensity treadmill training is absent in healthy myocyte VEGF-deficient mice 

(Olfert et al., 2010), demonstrating that myocyte-derived VEGF is required for exercise-induced 

skeletal muscle angiogenesis. Likewise, there is evidence that MMP’s are equally important and 

necessary for exercise-induced angioadaptation. Haas et al. (2000) have shown that 

pharmacological inhibition of MMP activity prevents capillary adaptation in chronic electrically 

stimulated hindlimb muscles, establishing that MMP activity is also required for skeletal muscle 

to undergo capillarity adaptation in response to chronic muscle contractions. Collectively these 
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studies highlight the importance of VEGF and MMP activity in the regulation of training-induced 

skeletal muscle capillary adaptation.  

Recently, anti-angiogenic factors have also been shown to be stimulated by exercise. 

For example endostatin and thrombospondin-1 (TSP-1) are increased in response to acute 

exercise (Gu et al., 2004; Olfert et al., 2006). Mice lacking TSP-1 also display a greater basal 

muscle capillarity and increase exercise performance compared to wild-type mice (Malek & 

Olfert, 2009).  Circulating endostatin has been shown to increase with acute exercise (Gu et al., 

2004), but is reduced after prolonged training in humans (Brixius et al., 2008; Suhr et al., 2010).  

Recent evidence suggests that the anti-angiogenic action of endostatin on endothelial cell 

activity may be dependent on the nuclear protein nucleolin (Shi et al., 2007).  Nucleolin has 

been previously used as a marker of endothelial cell proliferation for cells undergoing 

angiogenesis in tumors (Christian et al., 2003), but to our knowledge there are no published 

data on the effects of exercise on nucleolin expression.  Given that nucleolin is involved in 

transcription processing, editing and assembly of ribosomes and import/export of proteins from 

the cytoplasm to the nucleus (Srivastava & Pollard, 1999), it is conceivable that it may be 

altered or be responsive to exercise. Supporting this this idea, is circumstantial evidence that 

nucleolin may interact with angiogenic mitogens, such as VEGF (Huang et al., 2006),  bind to 

the 3’ region of MMP-9 stabilizing it for translation (Fahling et al., 2005), and interact with 

endostatin when translocated to the cell surface (Shi et al., 2007).  Thus, we have also sought 

to examine whether or not acute and/or chronic exercise might alter nucleolin expression. 

Several studies have reported the temporal transcriptional/gene expression responses of 

VEGF and MMPs (as well as other angiogenic mitogens) to acute and chronic exercise (Breen 

et al., 1996; Brown & Hudlicka, 2003; Lloyd et al., 2003; Gustafsson et al., 2005), but few 

studies have done so at the translational (i.e. protein) level. Understanding protein level 

changes in response to acute and chronic exercise is vitally important since it is known that 
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transcriptionally-mediated events do not always translate to protein biosynthesis. Moreover, 

factors like endostatin are not gene encoded peptides, but rather formed as a cleavage 

fragment from other molecules (e.g. endostatin is a 22-kd C-terminal fragment formed from 

collagen XVIII). Therefore, any response from endostatin to exercise, or in response to any 

stimulus, would not be detectable at the transcriptional level. Additionally, given the growing 

number of factors thought to regulate angiogenesis it is unlikely that the temporal protein 

responses to an angiogenic stimulus (such as exercise) would occur at one time point. Given 

the coordination of factors and events needed for successful control of angiogenesis, we sought 

to examine the temporal protein expression of several key angiogenic regulators (VEGF, MMP-

2, MMP-9, and nucleolin) in response to acute exercise, as well as at varying time points 

following chronic exercise training. We include the anti-angiogenic regulators (TSP-1 and 

endostatin) in conjunction with morphological assessment of skeletal muscle capillarity, to better 

understand the dynamic balance between several key positive and negative angiogenic 

regulators that are believed to significantly influence skeletal muscle angiogenesis. Specifically, 

we are testing the hypothesis that negative angiogenic regulators (such as endostatin and TSP-

1) are differentially expressed in response to acute versus chronic exercise, such that the 

actions of positive angiogenic molecules (VEGF, MMPs, and possibly nucleolin) are inhibited 

with acute, but not chronic, exercise.  

 

Materials and Methods 

Mice: All mice were purchased from Jackson Laboratories (Bar Harbor, ME) and housed 

in a pathogen-free vivarium room with 12hr:12hr light:dark cycle. Mice were fed rodent chow 

(Harlan Tekland 8604, Madison, WI) and tap water ad libitum. Animal care and handling were 

performed in accordance to PHS Animal Welfare Act and received approval by the West 
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Virginia University and University of California-San Diego Institutional Animal Care and Use 

Committees.   

Study 1 - Time course response to single bout of acute exercise: Twenty-four male 

C57Bl/6 mice were randomly assigned to either a control group (no exercise, n=4) or one of 

seven acutely exercised groups (n=4/group).  Following the 1-hour of acute exercise at 20 

m/min, 10° incline on a rodent treadmill (model CL-4, Omnitech, Columbus, OH), hindlimb 

gastrocnemius muscle was removed at either 0 (immediately post exercise), 2, 4, 6, 12, or 24 

hours post exercise from deeply anesthetized mice (details for tissue harvesting are provided 

below).  

Study 2 – Temporal response of angiogenic regulators to exercise training: Seventy-two 

male C57Bl/6 mice were randomly assigned into a control (no training, n=12) or one of five 

training groups (n=12/group). Training mice had free access to cage running wheels (4.5” 

Mouse Wheel, Respironics, Bend, OR) for either 3, 5, 7, 14, or 28 days. During wheel training 

mice were individually housed and wheel activity (i.e. distance, running time, mean running 

velocity, and maximum running velocity) was monitored and recorded every 24 hours using 

digital bike computers (Cateye Strada CC-RD100N, CatEye North America, Boulder, CO).    

Following training, wheels were removed from the cage, and mice were given a 24-hour 

exercise washout period prior to assessment of either basal or acute exercise responses. After 

the 24-hour exercise washout, half of the mice in each group were randomly selected to perform 

a 1-hour treadmill acute exercise (n=6) while the remaining mice served as basal controls (n=6). 

This allowed for examination of the responsiveness of angiogenic proteins to exercise following 

different days of training. For mice acutely exercised, the gastrocnemius muscle was surgically 

removed 4 hours after the acute exercise bout (1-hour at 20 m/min, 10 degree incline). The 4-

hour time point was selected based on the peak responses observed from Study 1. For all mice, 
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muscles from the left leg were used for molecular analysis and muscles from the right leg were 

used for morphometric analysis. 

Tissue collection and processing: All mice were anesthetized with sodium pentobarbital 

(Nembutal, 50 mg/kg) via intraperitoneal injection. Once anesthetized the gastrocnemius muscle 

from the left leg was carefully removed at its respective origin and insertion attachment, 

weighed, and immediately flash frozen in liquid nitrogen for protein analyses. The 

gastrocnemius from the right leg was removed in the same manner, positioned transversely on 

a cork base, carefully embedded in tissue freezing medium (TBS Tissue Freezing MediumTM, 

Triangle Biomedical Sciences, Durham, NC, USA) and immediately flash-frozen in liquid 

nitrogen cooled isopentane (2-methylbutane, Fisher Chemical O3551-4, Fisher Scientific). All 

muscle samples were stored at -80° C until processed for molecular or morphometric analyses. 

 Protein analysis: Skeletal muscle was homogenized using a lysis buffer containing 50 

mM Tris/HCl (pH 7.4), 150 mM NaCl, 0.5% Triton X-100, and protease inhibitors (Complete™ 

Tablet, Roche Applied Science, Indianapolis, IN). Homogenates were centrifuged at 4°C, 8000g 

for 10 minutes and supernatants removed and placed in new tubes. Total protein was measured 

by the bicinchoninic acid method (BCA protein assay kit, Bio-Rad Laboratories, Hercules, CA). 

Mouse VEGF, MMP-2, and MMP-9 protein levels were measured from 150 µg of total 

protein using a commercially available ELISA kits (VEGF #MMV00; MMP-2 #DMP2F0; MMP-9 

#MMPT90; from R&D Systems, Minneapolis, MN). All analyses were performed according to 

the manufacturer's specification and optical density was measured using a microplate reader at 

450 nm corrected by readings at 540 nm (Bio Rad Model 550, Global Medical Instrumentation 

Inc., Ramsey, Minnesota). TSP-1, endostatin and nucleolin were analyzed using Western 

Blotting. Muscle samples were denatured (36μg GA) and separated on 26 well 8% Bis Tris Midi 

Gels (Novex WG1003BX10, Carlsbad, CA) and blotted onto a 0.45μm nitrocellulose membrane 
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(nitrocellulose membrane #88018, Thermo Scientific, Rockford, IL). The membrane was blocked 

with 5% fat-free milk in TBS and probed with respective antibodies TSP-1 (Thrombospondin-1, 

A6.1, sc-59887, Santa Cruz Biotechnology, Santa Cruz, CA); nucleolin (nucleolin antibody 

#A300-711A, Bethyl Laboratories, Montgomery, TX); and endostatin (anti-mouse endostatin 

antibody #AF570 R&D Systems, Minneapolis, MN).  The housekeeping genes β-tubulin (#4970 

Cell Signaling Technology) and  GAPDH (mouse anti-GAPDH #39-8600, Invitrogen, Camarillo, 

CA) were used to normalize the respective levels of TSP-1, endostatin, and nucleolin measured 

in order to account for potential variations in total protein loaded within each gel. 

Chemiluminescence detection allowed for visualization of proteins (Pierce ECL Western Blotting 

Substrate, #32209, Rockford, IL), images of blots were taken using Genesnap software (version 

7.01; Syngene). Protein expression was quantified by using NIH ImageJ Software (version 1.62) 

and expressed as densitometric arbitrary units (A.U.).  The same control samples were always 

loaded on every gel in order to allow normalization of densitometry across blots and allow all 

groups to be compared relative to each other. 

Histochemistry. Frozen muscles embedded in tissue freezing medium were cut into 

serial 10 μm transverse sections using a cyrotome at -20°C (Reichert Jung Cryocut 1800; 

Cambridge Instruments, Buffalo, NY) and mounted on glass slides (Fisher Superfrost #12-544-

7, Fisher Scientific) for histochemical analysis of muscle morphometry. Great care was taken to 

ensure that the widest part of the muscle was sectioned and that cuts were made perpendicular 

to the orientation of the fibers. Muscle capillarity was determined by measuring capillary-to-fiber 

ratio (C:F) from alkaline phosphatase and dipeptidylpeptidase IV stained sections (Mrazkova et 

al., 1986). Stained muscle sections were viewed by light microscopy and digitally imaged at 25x 

magnification by a researcher blinded to the experimental group identity.  Muscle capillarity was 

assessed from deep and superficial regions in both lateral and medial gastrocnemius. Images 

were obtained in a non-overlapping checkerboard manner within each of the 4 quadrants (i.e. 
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lateral head superficial, medial head superficial, lateral head deep, medial head deep).  This 

resulted in an average of 771 ± 123 (SD) muscle fibers being analyzed from each animal.  

 Statistical Analyses: All data shown are mean ± SEM, unless otherwise indicated.  

Changes in protein expression, exercise performance during training (i.e. daily distance run, 

time running, average speed and maximal speed), and muscle capillarity (i.e. C:F) were 

analyzed using ANOVA. The combined effects of training (i.e. groups trained for different days) 

and the angiogenic factor response to acute exercise (i.e. basal vs. acute exercise) for proteins 

were separately determined using a 2 × 2 factorial ANOVA. When a main effect was observed, 

post hoc testing with a Fisher’s PLSD was used to examine group differences. All statistics were 

performed using Statview Statistical Software package (v5.0.01, SAS Institute Inc., Cary, NC). 

Significance was set at α level of p=0.05.  

 

Results 

Study 1 – Time course response to single bout of acute exercise.  Age, body and 

muscle masses of mice were not different in any of the respective groups for these mice (Table 

1). Expression of skeletal muscle VEGF, endostatin and nucleolin protein levels were 

significantly greater than control at 2 and 4 hours post exercise (p<0.05, Fig. 1).  MMP-2 tended 

to increase at 6 hour (p=0.057) and was significantly elevated at 12 and 24 hours post exercise 

(p<0.05, Fig. 1).  Neither, MMP-9 nor TSP-1 were significantly elevated at any time point up to 

24 hours post exercise (Fig. 1). 

 Study 2 – Temporal response of angiogenic regulators to exercise training.  Age was 

not different between the respective training groups.  Body mass after training was 

approximately 5% greater in the 3-day trained group (p=0.04) compared to control mice, but not 

different in 5- and 7-day trained groups (Table 2).  In contrast, body mass was 6% and 7% lower 
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in 14- and 28-day trained mice, respectively (p<0.01), compared to similar aged untrained 

control mice (Table 2).  The absolute gastrocnemius muscle mass, as well as relative muscle 

mass normalized to total body mass (i.e. GA/BM), were not different among any of the groups. 

The same was observed for the plantaris (PLT) and soleus (SOL) muscles, with one exception, 

where SOL/BM tended to be greater (p=0.04) in 28-day trained mice compared to controls 

(Table 2). 

Training performance and muscle capillarity. Voluntary wheel running behavior was 

similar when comparing performance measures (i.e. average daily running speed, daily maximal 

running speed, and time spent running each day) on the same relative day of training, indicating 

similar training behavior and pattern between groups (data not shown). However, as would be 

expected, measures of exercise performance (i.e. average running speed and greater distance 

run each day) increased with increasing exposure to training (Table 3). Although time spent 

running also decreased with increasing days training (p<0.05), the concommitant increased 

average running speed resulted in an overall effect of an increase in the average distance run 

each day. Maximal running speed performed during daily voluntary wheel training was not 

different between any of the trained groups (Table 3).  

Training increased capillary-to-fiber ratio (C:F) in the gastrocnemius muscle of mice 

beginning with 7-days of training, and increased further with 14- and 28-days of voluntary wheel 

training (p<0.01, at all time points) (Fig. 2). 

Basal muscle protein expression following training. Shown in Figure 3, VEGF (p=0.02) 

and MMP-2 (p=0.03) were significantly lower after 3 days of training compared to the control 

group. After 5 days of training, nucleolin (p=0.03) was elevated and MMP-9 (p=0.01) was 

reduced compared to the control group. The reduction in MMP-9 persisted with 7 and 14 days 

training (p<0.01). MMP-2 was also elevated with 5 days training compared to 3 day trained 
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levels, which also persisted with 7 and 14 days of training. In addition to altered MMP-2 and 

MMP-9 at 7 days of training, basal VEGF protein levels increased (p=0.03). Following 14 days 

of training, VEGF levels were not different than basal control levels, but was significanly lower 

after 28 days of training (p<0.01).  TSP-1 in 14d and 28d trained mice was significantly greater 

compared to 5d and 7d trained mice (p<0.05), but only tended to increase compared to basal 

control levels (p<0.10). 

Acute response to exercise following training. Following training, the angiogenic 

response to a single 1-hour exercise bout (treadmill running at 20 m/min, 10° incline) was 

assessed at the 4-hour time point following the exercise bout. It is notable, of three angiogenic 

regulators found to respond to acute exercise in the (untrained) control mice (i.e. VEGF, 

endostatin, and nucleolin), none were seen to be responsive to acute exercise after 7-days of 

training (Fig. 3) when C:F was significantly increased (Fig. 2). But, the VEGF response to acute 

exercise was present with 3- and 5-days of training.  Given that muscles were harvested at 4-

hours post exercise in each of the trained groups, the responses of angiogenic regulators (e.g. 

MMP-2, MMP-9 and TSP-1) whose peak responses occurred either before or after this time 

point would have limited, if any, interpretative value.   

 

Discussion 

The principal finding of this study is that the expression of key angioregulatory proteins 

are markedly up-regulated in either early (2-4 hours) or late phase (12-24 hours) post acute 

exercise. We find that VEGF, endostatin, and nucleolin protein levels were elevated in the early 

phase, whereas other regulators (such as MMP-2, and to lesser extent TSP-1) responded much 

later post exercise, showing that exercise elicits a complex but coordinated process involving 

positive and negative regulators. The new observation that nucleolin was increased with acute 
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exercise is particularly interesting since it may interact and influence several key angiogenic 

mitogens (i.e. VEGF, MMP-9 and endostatin). Our data also provide evidence that chronic 

exercise training alters the responsiveness of VEGF to exercise after capillary adaptation has 

taken place. Collectively, these data provide evidence supporting the idea that exercise-induced 

skeletal muscle angiogenesis is a multifaceted processes involving positive and negative 

regulators and whose responses are temporally coordinated to limit or prevent angiogenesis in 

response to acute exercise, but which are differentially altered by chronic exercise in manner 

that allows or faciliates capillary expansion.  

 

Temporal responses to single bout of acute exercise 

The skeletal muscle VEGF mRNA response to exercise has been well characterized 

with peak responses occuring between 1-2 hours and returning to baseline levels by 4-8 hours 

(Breen et al., 1996; Gustafsson et al., 2005). Our data show that peak VEGF protein expression 

in mice occurs between 2-4 hours following a single bout of exercise, which is consistent with a 

transcriptionally-mediated event that contributes to the rise of VEGF protein expression (Tang et 

al., 2002).  Nonetheless, we cannot exclude the possibility that exercise-induced post-

translational modifications may have also contributed to the rise in VEGF protein. The observed 

temporal response in this study, is also consistent with a previous report in rats showing 

significantly elevated VEGF protein 4-hours post exercise in the soleus and plantaris muscles 

(Malek et al., 2010).  In contrast, VEGF protein levels measured from muscle biopsy in human 

vastus lateralis muscle have been reported to be lower immediately following exercise and 

return to baseline levels by 4 hours post exercise (Gavin et al., 2004).  Likewise, another study 

reports no VEGF mRNA or protein response to acute exercise in young and old adults 4-hours 

after exercise (Ryan et al., 2006).  While there are several studies that show a significant VEGF 
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mRNA response to acute exercise in healthy adults (Gustafsson et al., 1999; Richardson et al., 

1999; Gustafsson & Sundberg, 2000; Richardson et al., 2000), none that have analyzed muscle 

biopsies have found elevated muscle VEGF protein between 0-6 hours post exercise. Thus, 

although the temporal response of exercise at the transcriptional (mRNA) level may be similar 

between rodents and humans, translation at the protein level appear to have very different 

temporal responses. At present there is not a clear explanation for this discrepancy at the 

protein level between rodents and humans, but one concern may be that the relatively small 

amount of muscle tissue that can feasibly be obtained from a human muscle biopsy may not 

fully represent the proteomic response occurring within the whole muscle. 

Similar to VEGF, we observed that endostatin was significantly elevated in the 

gastrocnemius at 2- and 4-hours post exercise. Our data are consistent with the observation 

that circulating endostatin levels are elevated following acute exercise in humans (Gu et al., 

2004; Rullman et al., 2007; Suhr et al., 2007). This response may seem counter intuitive, but it 

has been previously shown that acute exercise increases gene expression of other negative 

angiogenic regulators, such as TSP-1 (Olfert et al., 2006). The prevailing concept is that up 

regulation of both positive and negative angiogenic regulators occurs in response to a single 

acute exercise bout to limit and/or prevent unnecessary utilization of energy and biological 

resources for capillary expansion in response to a single, one-time, stimulus. And that, capillary 

expansion only occurs in response to reoccurring or repeated exercise-induced mechanical or 

metabolic stress (Egginton, 2009; Olfert & Birot, 2011).  The response observed for endostatin 

in this study adds credence to this idea. With this in mind, we were surprised to observe no 

significant increase in muscle TSP-1 protein expression, particularly given the recent evidence 

supporting a role for TSP-1 as a key negative angiogenic regulator in skeletal muscle (Olfert et 

al., 2006; Malek & Olfert, 2009; Roudier et al., 2010; Hoier et al., 2012). It is, however, 

interesting to note that there was a trend for TSP-1 protein levels to increase at 12-24 hours 
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post exercise (p=0.09).  Therefore, it may be that the peak TSP-1 response occurs beyond 24 

hours, which was not measured in our study.  Another recent study also found no change in 

TSP-1 protein levels in mice 4 hours following acute exercise (Audet et al., 2011), but in light of 

the present data this is not surprising. Based on these data, it might be interpreted that TSP-1 is 

unimportant in regulating exercise-induced skeletal muscle angiogenesis. But, given the robust 

TSP-1 mRNA response to exercise in rodents (Olfert et al., 2006; Kivela et al., 2008) and 

humans (Hoier et al., 2012; Hoier et al., 2013), it may be premature to rule out the involvement 

of TSP-1. Further studies examining and documenting the TSP-1 protein responses to exercise 

are needed, before we may fully appreciate its contribution. 

 We also report the expression of nucleolin, which has been used as a marker of 

endothelial cell undergoing angiogenesis (Christian et al., 2003), and whose activity has been 

linked to endostatin (Shi et al., 2007), as well as interacting with VEGF and MMP-9 (Fahling et 

al., 2005; Huang et al., 2006). Given the increase in nucleolin at 2 and 4 hours post exercise, at 

a time point similar to the time profile seen with VEGF and endostatin, it is tempting to speculate 

that VEGF (in response to exercise) may help to facilitate translocation of nucleolin from the cell 

nucleus to the cell surface of proliferating endothelial cells (Christian et al., 2003; Huang et al., 

2006).  And, if nucleolin serves as a binding partner for endostatin to be internalized on 

proliferating endothelial cells (Shi et al., 2007; Song et al., 2012), this would provide an effective 

means for feedback regulation that could limit and/or brake the angiogenic response of VEGF to 

an acute exercise stimulus. To our knowledge, no previous studies have investigated nucleolin 

in skeletal muscle in response to exercise, but based on this evidence we believe further 

investigation into nucleolin and its potential interaction with VEGF and endostatin are warranted.   

 The importance of MMPs, particularly MMP-9 and MMP-2, have been recognized in the 

context of muscle angioadaptation  (Haas et al., 2000; Rivilis et al., 2002; Brown & Hudlicka, 

2003; Milkiewicz & Haas, 2005), but the temporal responses to acute exercise are still poorly 
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defined. We found no significance increase in MMP-9 protein in response to acute exericse in 

our mice, but did observed a significant elevation during the late phase (12-24 hours) after 

exercsie. A recent report using the vastus lateralis muscle of exercising humans has reported 

no increase in MMP-2 protein following acute exercise (Rullman et al., 2007), but based on our 

data this is perhaps not surprising since those data were obtained 2-hours post exercise. Other 

studies have reported increases in circulating MMP-2 protein in humans 30-min after acute 

high-intensity exercise (Suhr et al., 2007) and up to 1-hour post exercise in endurance track 

athletes (Suhr et al., 2010). But it is presently not clear whether circulating levels of MMPs have 

a significant impact, or even a direct relationship, on skeletal muscle angiogenesis per se 

(Rullman et al., 2012).  For MMP-9, we saw no significant skeletal muscle MMP-9 protein 

response following acute exercise in mice. But, in humans, Rullman et al. (2007) have reported 

an increase in MMP-9 mRNA and total protein in human vastus lateralis muscle immediately 

after and 2-hours post acute exercise. Likewise, Suhr et al. (Suhr et al., 2007) report increased 

circulating MMP-9 from 1-4 hours after exercise in track athletes. While some of the conflicting 

outcomes reported in skeletal muscle may be attributable to the varying time points selected for 

analysis post exercise, it may also be (as that seen for VEGF) that rodents and humans exhibit 

different temporal responses for MMPs in response to exercise. We also cannot rule out the 

possibility that some of the conflicting results may be explained by differing exercise intensity 

performed between studies (discussed further in following section). 

 

Temporal effects of training on muscle capillarity 

Skeletal muscle capillary adaptation to training has been well studied since it was first 

reported by Vanotti & Magiday (1934); and as seen in Table 3, the voluntary wheel training 

paradigm we used resulted in significant increases in capillary-to-fiber ratio starting with 7-days 
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of training, and continued to increase with longer exposure (i.e. 14- or 28-days) to daily 

exercise.  While it was expected that animals with longer exposure to training would exhibit 

better exercise performance attributes (such as the ability to run longer and/or run at a faster 

average speed) compared to those with fewer training days (Table 3), it is important to note that 

we monitored daily training behaivor in all groups and found no difference in the daily absolute 

performance measures of mice across the training groups when compared at the same relative 

day in the training paradigm (i.e. comparing running metrics in all groups at 3-day, or at 5-day, 

etc). This means the responses between the trained groups we observed in our study are not 

likely due to differences in volunatry training behavior, but rather most likely to the level of 

physiological adaptations that occurred with training (e.g. level of muscle capillarity). Given the 

plieotrophic effects of whole body exercise, we cannot directly point to any single training-

induced physiological adaptations (such as increased muscle capillarity) as being solely 

responsible for altering the responses we observed, but it is reasonable to interpret the 

individual and collective outcome of these angiogenic regulators with respect to their putative 

affect on angiogenesis.   

 

Basal response of angiogenic regulators following exercise training 

Basal expression of VEGF protein was lower in 3- and 28-day trained mice, but elevated 

at 7-days training, compared to (untrained) controls. The lower basal VEGF protein levels after 

3-days of training was surprising, and directly contrasts to a previous report in the plantaris 

muscle of healthy mice (Waters et al., 2004).  The reason for this discrepancy is not clear, but 

the rise in basal VEGF after 7-days of training, which coincides with elevated muscle capillarity 

(seen in Fig. 2) is consistent with the existing data (Waters et al., 2004), and suggests a basal 

condition that is favorable for angiogenesis. Surprisingly, we observed that basal VEGF levels 
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fell in 28-day trained mice compared to basal untrained levels. This might suggest a feedback 

mechanism designed to limit or slow down capillary expansion once a sufficient level of 

angiogenesis has taken place. The observation of normalized muscle basal VEGF protein 

expression following training, after capillary expansion has occurred, has also been observed in 

humans following training (Hoier et al., 2012). Taken together, our temporal analysis of basal 

VEGF in association with training-induced muscle capillary adaptation provide evidence of a 

complex control of VEGF, and suggest that basal level expression may be linked to the degree 

of capillary adaptation. This idea is supported by microarray analysis indicating that the genomic 

responses to aerobic exercise in human skeletal muscle is influenced by the magnitude of 

physiological adaptation which has occurred (Timmons et al., 2005), which emphasizes that 

comparing and contrasting VEGF responses (or perhaps of any angioregulatory factor) to 

training among different studies may be difficult to interpret unless the level of capillary 

adaptation is also known and reported. 

With respect to TSP-1, we found that basal protein levels of this anti-angiogenic factor 

were decreased with 5- and 7-days training compared to 14- and 28-days (Fig. 3), suggesting 

that longer exposure to training may act to slow the capillary expansion by elevating basal TSP-

1 levels. This is consistent with the notion that a balance between positive and negative 

angiogenic regulators control skeletal muscle angiogenesis, and is supported by our data 

showing reduced basal VEGF, but elevated basal TSP-1, in 28-day trained mice. This is also 

consistent with mRNA expression profile which have been reported separately for TSP-1 (Olfert 

et al., 2006) and VEGF (Gavin & Wagner, 2001) with short-term training (up to 5-days) in the 

skeletal muscle of rats.  In contrast, however, Hoier et al. have recently shown unaltered basal 

TSP-1 and VEGF proteins following 4-weeks of bicycle ergometer training that resulted in an 

increase of muscle C:F (Hoier et al., 2012). There could be several explanations for the 

apparent difference. First, as we have previously noted with respect to acute exercise 
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responses, there could simply be differences in the temporal response of humans and rodents 

to exercise. Another potential explanation may be that myocytes are not the source of TSP-1. 

Indeed, TSP-1 is an extracellular matrix protein that is produced by a wide variety of cells, such 

as platelets, fibroblasts, macrophages, and other cells (Bornstein, 1992); thus exercise-induced 

alterations in TSP-1 could originate from non-myocyte sources.  Supporting this, Hoier et al. 

(2013) have recently shown decreased TSP-1 protein in extracellular muscle dialysate fluid 

(obtained from indwelling muscle catheters) after 4-weeks moderate-to-high-intensity training in 

man. On the other hand, in the same report, Hoier et al. (2013) show increased TSP-1 protein in 

muscle dialysate following high-intensity intermittent exercise in the same subjects, emphasizing 

that exercise intensity (and subsequent physiological adaptation) likely exerts an important 

influence on the angioregulatory protein response of skeletal muscle to training. Thus, it may be 

difficult to compare training responses unless the exercise intensity is similar, and that it may be 

even more difficult to compare across species (as we have previously seen for VEGF between 

rodents and humans). 

There are a limited number of studies examining the involvement of endostatin in 

exercise-induced skeletal muscle angiogenesis. While circulating endostatin levels under basal 

conditions have been shown to be reduced after six months of training in untrained men and 

short-/long-track athletes (Brixius et al., 2008; Suhr et al., 2010), our data examining basal 

muscle expression of endostatin do not show this in mice. Based on the human data, it could be 

that we needed a longer training period to get a reduction in endostatin, but given the significant 

rise in muscle capillarity observed after 28-days of training it would appear that a reduction in 

basal endostatin was not needed for capillary expansion to occur. However, based on the acute 

protein response we, and others, have observed for endostatin, it appears that endostatin may 

be one of several potential negative regulators that serve to prevent or limit angiogenesis in 

response to acute exercise. 
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As seen with endostatin, no significant changes in basal protein expression of nucleolin 

were observed with training. If the role of nucleolin involves interaction with endostatin in 

response to acute exercise, then this is perhaps not surprising. However, before the importance 

of nucleolin can be determined in response to acute exercise or training, additional studies 

examining the effect of exercise on the translocation of nucleolin to the endothelial cell surface, 

and to what extent VEGF and endostatin are dependent on nucleolin are needed. 

Because previous reports show increased skeletal muscle MMP mRNA and protein in 

response to electrically-stimulated contractions and/or prazosin-mediated increases in vessel 

shear stress (Haas et al., 2000; Rivilis et al., 2002; Brown & Hudlicka, 2003), we were surprised 

to observe that basal MMP-2, and to a larger extent MMP-9, protein expression were 

significantly lower with training in our mice (Fig. 3).  Our data are in stark contrast to existing 

studies, most of which show elevated MMP levels following various intensity and length of 

training in rats (Haas et al., 2000; Carmeli et al., 2007) and humans (Rullman et al., 2009).  For 

example, single-leg training in humans for only 10 days is reported to increase both MMP-2 and 

MMP-9 mRNA and total protein activity in the exercising muscle (Rullman et al., 2009). An 

explanation for the discrepancies between our data and those previously published may be due 

to training paradigm (i.e. voluntary wheel running) we used.  Using a rat model, Carmeli et al. 

(2005) have reported that MMP-2 response to training is exercise intensity dependent, such that 

high intensity training (~70% of maximal oxygen consumption, VO2max) was needed to 

increase MMP-2 expression in the gastrocnemius muscle of rats, whereas training at ~50% of 

VO2max was not sufficient (Carmeli et al., 2005). Despite the high daily volume of training 

voluntarily performed by our mice (up to 6 km per day), the average running speed during 

training ranged between 12 to 18 m/min (0.71 - 1.06 km/hr, Table 3).  If one accepts the 

maximal treadmill running speed for C57Bl/6 mice is between 35-45 m/min (Høydal et al., 2007; 

Malek & Olfert, 2009; Olfert et al., 2009), the average running speed during voluntary wheel 
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training performed by our mice would only be approximately 34-40% of their maximum exercise 

capacity. Thus it may be that we do not find significant increases in MMP due to the low-

intensity training that was voluntarily performed by our mice. Nonetheless, it should be noted 

that we did find that 5-, 7- and 14-days of training resulted in significant increase in total basal 

MMP-2 protein compared to that seen with 3-days training (Fig. 3), and that a similar trend 

existed for elevated basal MMP-2 with 7 days training compared to basal levels in control mice 

(p=0.07, Fig. 3). Thus, exercise intensity may play an important role in MMP response to 

exercise training. This could, in part, also explain the discrepancies in our acute exercise data 

(showing a non-significant response, Fig. 1) compared to the increase in MMP-9 protein seen in 

humans immediately and 2-hours after a single acute bout of exercise (Rullman et al., 2012). 

We estimate the relative intensity of the single 1-hour exercise bout (at 20 m/min with 10-degree 

incline) performed by our untrained mice is about 50-60% of the maximal capacity in these 

mice.  Therefore, even though it appears there was a tendency for MMP-9 to be elevated at 0- 

and 2-hours post acute exercise (compared to controls) (Fig. 1), the exercise intensity 

performed for acute exercise might explain why a greater response was not observed. 

 

Acute exercise responses of angiogenic regulators following exercise training 

To examine that acute responsiveness of these angioregulatory proteins in trained mice, 

we subjected mice in each of the trained groups to a 1-hour standardized treadmill exercsie 

bout (i.e. 20 m/min, 10-degree incline) after a 24-hour window of time following the removal of 

the running wheel from the animals cage. We selected the 4-hour time-point post exercise to 

assess the responsivness to acute exercise, because it corresponded to the most significant 

time point we initially observed in the untrained mice (Study 1, Fig. 1).  Accordingly, it must be 

recognized that we are only able to interpret the outcomes to acute exercise for VEGF, 
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endostatin, and nucleolin, because the responses for these factors occurred at this time point. 

Nevertheless, due to scarcity of data and an expanding need to document the molecular 

interplay that occurs in trained versus sedentary conditions, we have still reported (in Fig. 3) the 

outcome for acute exercise for all the factors we evaluated, even though the interpretative value 

of TSP-1, MMP-2 and MMP-9 (which were found not to respond at 4 hours) are likely to be less 

informative. As such, we have limited our discussion here to focus only on those factors which 

were significant 4-hours post acute exercise (i.e. VEGF, endostatin and nucleolin). 

As reported in previous studies, skeletal muscle VEGF protein was significantly 

increased in response to acute exercise in untrained subjects (Malek et al., 2010; Hoier et al., 

2012).  Our study reveals that the VEGF response is lost after 7-days of training, and remains 

attenuated following 14- and 28-days of training in mice (Fig. 3).  The fact that these time points 

correspond temporally to a significant increase in muscle capillarity (Fig. 2) would suggest that 

elevated muscle capillarity (and/or other training related adaptations) have likely reduced or 

lessened metabolic stress (e.g. shear stress, local tissue hypoxia, stretch, etc) associated with 

exercise, and therefore reduced the underlying stimulus for activating VEGF. This idea is 

supported by previous data showing that in rats trained in hypoxia (which resulted in increased 

muscle capillarization) the VEGF mRNA response to exercise was blunted, whereas rats trained 

at the same absolute training intensity in normoxia (which did not increase muscle capillary, 

presumably due to the significantly lower relative training intensity they experienced) exhibited a 

similar VEGF mRNA response to acute exercise as that seen in untrained rats (Olfert et al., 

2001).  Likewise, neither endostatin nor nucleolin were found to exhibit a significant response to 

acute exercise following training (Fig. 3).  Given the basal levels of endostatin and nucleolin are 

unchanged with training, the most likely interpretation of these data are the that endostatin and 

nucleolin only play a significant role in regulating the initial muscle response to exercise by 
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limiting and/or preventing angiogenesis in response to acute exercise, and not in response to 

chronic exercise training. 

 

In conclusion, the principal finding of this study is that angiognesis resulting from 

exercise training is dependent on coordination of both positive (VEGF, MMP-2, nucleolin) and 

negative (TSP-1, endostatin) angiogenic regulators. In response to acute exercise there 

appears to be early (2-4 hours) and late (12-24 hours) phase protein responses, whereas with 

training these responses are attenuated or lost. To our knowledge, we believe these are the first 

data to suggest that nucleolin may serve (in concert with VEGF and endostatin) as an important 

peptide in response to acute exercise, such that endostatin may serve to inhibit the initial 

angiogenic response to acute exercise by countering the actions of VEGF via a nucleolin-

mediated mechanism. These data also highlight that the temporal responses we observed in 

mice, particularly for VEGF, MMP-2 and MMP-9, may not be directly comparable to humans. 

Nonetheless, when taken together, our results show that there is a complex coordination in the 

protein responses of both positive and negative angiogenic factors that correspond with training-

induced muscle capillary adaptation. 
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TABLES AND FIGURES 

 

Group Age (days) Body Mass (g) GA (mg) PLT (mg) SOL (mg) HRT (mg) 

Controls 72±0 25.7 ± 0.7 137.0 ± 3.2 20.3 ± 0.9 6.4 ± 0.4 132.7 ± 3.6 

0 Hours 71±0 26.5 ± 0.3 146.9 ± 2.7 19.1 ± 0.4 7.4 ± 0.5 117.9 ± 4.8 

2 Hours 72±0 26.6 ± 0.3 139.0 ± 4.5 21.2 ± 1.0 8.2 ± 0.3* 133.4 ± 4.2 

4 Hours 71±0 23.6 ± 0.7 127.4 ± 4.8 18.2 ± 1.4 6.9 ± 0.3 130.3 ± 4.6 

6 Hours 72±0 24.4 ± 0.4 131.6 ± 4.4 18.8 ± 0.3 6.6 ± 0.3 123.5 ± 4.6 

12 Hours 71±0 25.3 ± 0.2 136.7 ± 2.6 21.1 ± 1.6 6.5 ± 0.4 117.6 ± 2.4 

24 Hours 72±0 25.2 ± 0.4 131.2 ± 1.0 19.2 ± 0.4 7.5 ± 0.2 128.4 ± 2.5 

 

Table 1. Mean±SE. Average age, body and muscle mass in mice sacrifice at the select times following a single acute exercise bout 

(n=4/group). GA=gastrocnemius, PLT=plantaris, SOL=soleus, HRT=heart. No significant differences are seen between mice in any 

of the groups.  
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 Age Body Mass (g) GA (mg) GA/BM (%) PLT (mg) PLT/BM (%) SOL (mg) SOL/BM (%) 

Control 74±1 25.0 ± 0.4 133 ± 4 0.53 ± 0.01 15.3 ± 0.7 0.061 ± 0.003 6.7 ± 0.2 0.027 ± 0.001 

3d 73±1 26.3 ± 0.4* 139 ± 2 0.53 ± 0.01 14.7 ± 0.6 0.056 ± 0.002 7.2 ± 0.4 0.027 ± 0.001 

5d 67±2 24.4 ± 0.5 130 ± 5 0.53 ± 0.01 13.8 ± 0.8 0.057 ± 0.004 7.2 ± 0.4 0.029 ± 0.002 

7d 73±3 25.1 ± 0.3 137 ± 3 0.55 ± 0.01 14.1 ± 1.0 0.056 ± 0.004 7.3 ± 0.3 0.029 ± 0.001 

14d 81±4 23.6 ± 0.4* 123 ± 4 0.52 ± 0.02 17.2 ± 1.2 0.073 ± 0.005 7.3 ± 0.7 0.031 ± 0.003 

28d 74±1 23.3 ± 0.5* 126 ± 7 0.54 ± 0.02 13.8 ± 0.5 0.059 ± 0.002 7.4 ± 0.3 0.032 ± 0.001* 

 

Table 2.  Mean±SE. Average age, body and muscle mass following voluntary wheel running training for 3, 5, 7, 14 or 28 (d)ays 

(n=12/group).  BM=body mass, GA=gastrocnemius, PLT=plantaris, SOL=soleus.  * p < 0.05. 
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Table 3. Mean±SE. Characterization of voluntary running wheel training behavior following 3, 5, 

7, 14 or 28 (d)ays (n=12/group). Data represented are average data obtained from the last 24 

hours for each respective group, except for “Start of Training” which is the combined average for 

all groups after 1st full day access to running (n=60). * p < 0.01, **p < 0.005.

Group 
Average Time 

Running (min) 

Average 

Running Speed 

(km/hr) 

Average 

Distance Run 

(km/day) 

Average Max 

Speed (km/hr) 

Start of 

Training 
363 ± 21 0.71 ± 0.02 3.64 ± 0.20 2.59 ± 0.06 

3d 319 ± 27 0.75 ± 0.02 4.19 ± 0.39 2.63 ± 0.06 

5d 261 ± 13* 0.85 ± 0.04** 4.05 ± 0.34 2.64 ± 0.04 

7d 289 ± 29 0.93 ± 0.05** 4.89 ± 0.57* 2.54 ± 0.07 

14d 205 ± 15** 1.02 ± 0.04** 3.91 ± 0.38 2.67 ± 0.07 

28d 247 ± 19** 1.06 ± 0.05** 5.26 ± 0.59** 2.72 ± 0.05 
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Figure Legend 

Figure 1. Protein time course expression of VEGF, MMP-2, MMP-9, TSP-1 (165kDa), 

endostatin (22kDa) and nucleolin (100kDa) following single bout of acute exercise measured by 

ELISA or Western Blot analysis. Representative blots are shown. Control mice did not exercise, 

all others ran for 1 hour (at 20 m/min, 10° incline) and were sacrificed immediately (0), 2, 4, 6, 

12 or 24 hours post exercise (n=4 mice each group). A.U.= arbitary densitometry units 

respresenting Western blot analysis for which each respective factor has been normalized to the 

housekeeping gene GAPDH (40kDa) and/or β-tubulin (55kDa).  * Significantly different 

compared to Basal Control group, p<0.05; $ signifies p ≤0.10 compared to Basal control. 

Figure 2. Gastrocnemuis muscle capillary-to fiber ratio (C:F) in control, untrained, mice 

and in mice that voluntarily trained for 3, 5, 7, 14 or 28 (d)ays (n=6/group). ** p<0.01 compared 

to control. 

Figure 3. Time course protein expression of VEGF, MMP-2, MMP-9, nucleolin (100kDa), 

endostatin (22kDa) and TSP-1 (165kDa) following training measured by ELISA or Western Blot 

analysis. Representative blots are shown. Control mice are untrained, all others voluntarily 

trained using a running wheel for 3, 5, 7, 14, or 28 days (n=12/group). Following training, half of 

the mice per group (n=6) were elevated under basal conditions, and the other half (n=6) 

performed a single bout of exercise (1 hour, 20 m/min, 10° incline) with muscle harvested 4-

hours post exercise. A.U.= arbitary densitometry units respresenting Western blot analysis for 

which each respective factor has been normalized to the housekeeping gene GAPDH (40kDa). 

* significantly different compared to Basal Control group, p<0.05; ‡ significantly different 

between Basal and Acute exercise within same training group, p<0.05; † significantly different 

compared to 3 day trained Basal levels, p<0.05; # significantly different compared to 14-day 

trained Basal levels, p<0.05; $ signifies p ≤0.10 compared to Basal control.
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Temporal expression of positive and negative angiogenic factors in response to detraining is 

poorly understood.  We report the protein expression of anti-angiogenic peptides 

(thrombospondin-1, TSP-1; and endostatin) as well as pro-angiogenic mitogens (vascular 

endothelial growth factor, VEGF; matrix metalloproteinases-2 and MMP-9), and nucleolin (a 

nuclear protein involved with synthesis and maturation of ribosomes) in response to detraining 

in triceps surae muscles of mice. Mice were allowed to voluntarily train for 21 days, and then 

basal and acute response to exercise were evaluated at 1-, 7-, 14- and 28-days detraining (D1, 

D7, D14, D28 groups, respectively, n=12/group).  Training resulted in the expected increases 

muscle capillary-to-fiber ratio (C:F), maximal run test and basal expression of VEGF and MMP-9 

(p<0.05), as seen in the D1 group (i.e. trained control) mice. After 7 days of detraining (D7), C:F 

returned to control levels, but both basal VEGF and TSP-1 were elevated  (p<0.05). In D14 and 

D28 group mice, TSP-1 protein fell to baseline levels, but VEGF remained elevated in 

gastrocnemius, but not the soleus or plantaris, of D14 mice.  Endostatin tended to decrease with 

detraining, resulting in significantly lower basal levels by D14 and D28 for most muscles 

compared to controls. Nucleolin protein expression was inconsistent across muscle, with 

increases at D1 in the plantaris, D7 in the soleus and D14 in the gastrocnemius. The response 

of VEGF to acute exercise was blunted with training, and surprisingly was still blunted even after 

28 days of detraining, despite the return of muscle capillarization to baseline levels.  These data 

suggest that TSP-1 may be an important mediator in capillary regression with detraining.  The 

responses of VEGF and MMPs to detraining did not change in correlation to changes in muscle 

capillarity, suggesting that pro-angiogenic regulators may not play a prominent role in regulating 

physiological decreases in muscle capillarity. 
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INTRODUCTION 

Skeletal muscle has a tremendous plasticity to adapt in response to exercise.  One 

important adaptation is increasing capillarity in the working muscle to help reduce the metabolic 

stress imposed during physical activity (Andersen & Henriksson, 1977). While the molecular 

underpinnings of capillary expansion (i.e. angiogenesis) have been intensely studied, our 

understanding of the mechanisms involving physiologic mediated regression of muscle 

capillaries (i.e. physical deconditioning after cessation of training) is less well understood. 

It is generally accepted that exercise induced skeletal muscle angiogenesis is controlled 

by a balance between positive and negative factors (Egginton, 2009; Olfert & Birot, 2011). 

Among the angioregulatory factors believed to be important in skeletal muscle are: pro-

angiogenic vascular endothelial growth factor (VEGF), and anti-angiogenic thrombospondin-1 

(TSP-1), both of which have been shown to exhibit robust mRNA response to an acute bout of 

exercise in rodents and humans  (Breen et al., 1996; Gustafsson et al., 1999; Richardson et al., 

1999; Gavin & Wagner, 2001; Olfert et al., 2006; Hoier et al., 2012).  Gene deletion strategies in 

mice have shown that muscle-specific loss of VEGF decreases muscle capillarity (Tang et al., 

2004; Olfert et al., 2009), whereas a loss of TSP-1 increases basal muscle capillarity (Malek & 

Olfert, 2009).  Moreover, lack of skeletal muscle VEGF has been reported to prevent training 

induced skeletal muscle angiogenesis (Olfert et al., 2010), demonstrating the myocyte VEGF is 

essential to capillary expansion in response to physical exercise. But to what extent VEGF, 

TSP-1, and/or other key angiogenic regulators influence capillary regression upon cessation of 

training (i.e. detraining) is less well understood.  

Unlike tumor angiogenesis, which represents an uncontrolled and dysregulated 

expansion of blood vessels (Folkman, 1995; Hanahan & Folkman, 1996), physiologically-

mediated angiogenesis (such as that seen in the female reproductive cycle or response to 

exercise training) is a tightly-controlled, highly-coordinated multiple-step process regulating 

endothelial cell proliferation, extracellular matrix remodeling and vessel wall 
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assembly/stabilization (Iruela-Arispe et al., 1995; Prior et al., 2004).  It is conceivable that timing 

of pro- and anti-angiogenic regulator expression plays an important part in the successful 

execution of this highly choreographed process (Egginton, 2009; Olfert & Birot, 2011). Likewise, 

it could also be expected that the temporal expression of angiogenic regulating peptides may 

also determine the physiologic regression of skeletal muscle capillary in response to detraining.  

 At present, we are aware of only 2 studies that report the expression of VEGF following 

detraining in skeletal muscle. Malek et al. report that VEGF protein in the plantaris muscle has 

not returned to control levels after 7 days of detraining in previously trained rats (Malek et al., 

2010). And, Huttemann et al. (2012) report (in mice which trained for 5 weeks) that VEGF 

protein in the gastrocnemius muscle remained elevated after 14-days of detraining. They also 

report that TSP-1 was significantly decreased with training but returned to untrained control 

levels following 14-days of detraining (Huttemann et al., 2012), suggesting that altered 

expression of TSP-1 (and not VEGF per se) may be responsible for the detraining mediated 

losses in skeletal muscle capillarity.  Taken together, these 2 studies suggest the temporal 

response of VEGF and TSP-1 may differ with time spent detraining. But given that only one time 

point was assessed in either study, it is difficult to characterize and interpret any temporal 

effects. Moreover, neither study included assessment of other angiogenic regulators, such as 

matrix metalloproteinases (MMPs) or endostatin, which are also important in regulating 

angiogenesis. For example, MMP-2 and MMP-9 may be especially important because they are 

necessary to destabilize the basement membrane of the existing vasculature and the 

extracellular matrix (ECM) (Nagase & Woessner, 1999; Haas et al., 2000).  Endostatin, which is 

a 22-kD anti-angiogenic fragment of collagen XVIII  cleaved by MMPs, is capable of inhibiting 

VEGF and up regulating TSP-1 (Yamaguchi et al., 1999; Kim et al., 2000; Kim et al., 2002; 

Volpert et al., 2002; Hu et al., 2012) and therefore could have a significant influence on capillary 

regression.  At present, however, nothing is known about the expression of endostatin in the 

context of detraining. Also of interest, is the finding that endostatin activity may be dependent on 
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nucleolin -- a nuclear protein found on the surface of endothelial cells undergoing proliferation 

and which is also important for processing ribosome transcription, editing and assembly, and in 

the import/export of proteins to the nuclear membrane (Lapeyre et al., 1987; Srivastava & 

Pollard, 1999). Nucleolin and endostatin appear to co-localize on the cell surface, which can 

lead to endostatin transport to the nuclei (via nucleolin) where its inhibiting effects on cell 

proliferation can take place (Shi et al., 2007). Thus the temporal expression of nucleolin and 

endostatin could be an important pathway regulating the physiologic adaptation of microvessels 

within skeletal muscle.  

We hypothesize that detraining will preferentially increase the temporal expression of 

key negative angiogenic regulators (such as TSP-1, endostatin) with little influence on basal 

expression of pro-angiogenic regulators (such as VEGF, MMP-2, MMP-9, nucleolin), leading to 

regression of muscle capillaries and reduced exercise performance with detraining. To test this 

hypothesis, we provided mice with 24-hour access to running wheels for 21 days (a voluntary 

training paradigm known to significantly increase hindlimb skeletal muscle capillarity). Then 

muscle capillarity, as well as the basal and acute protein response to exercise, were separately 

examined after 1-, 7-, 14- and 28-days of detraining (D1, D7, D14 and D28, respectively).  

 

MATERIALS AND METHODS 

Mice: Male C57BL/6 mice were purchased from Jackson Laboratories (Stock# 000664, 

Bar Harbor, ME). Mice were housed in 12hr:12hr light:dark cycle with provided free access to 

food and tap  water. Experiments and animal care/handling were performed in accordance to 

PHS Animal Welfare Act and received approval by West Virginia University Institutional Animal 

Care and Use Committee. 

Training and Deconditioning: Sixty C57BL/6 mice were randomly assigned into a control 

group (no training) or one of four groups corresponding to 1-, 7-, 14- and 28-days detraining 

(n=12/group) after 21 days of training. For training, all mice (except control mice) were given 24-
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hour access to running wheels to voluntarily train for 21 days prior to detraining. Mice were 

individually housed in cages containing a running wheel (4.5” Mouse Wheel, Respironics, Bend, 

OR) connected to a bike computer (Cateye Strada CC-RD100N, CatEye North America, 

Boulder, CO) which digitally measured and recorded distance, running time, mean running 

speed, and maximum running speed. Performance over a 24-hour period was recorded each 

day for each animal. Upon completion of training the wheels were removed from the cages and 

mice were detrained according to the respective temporal assignment (i.e. D1, D7, D14 and 

D28).  Basal muscle expression for D1 (n=6) was evaluated after one full-day without access to 

the running wheel, and therefore essentially serves as a trained control group. The day without 

access to the running wheel was to minimize any acute response to wheel running exercise. 

The remaining detraining groups were sacrificed on the day indicated for each respective group 

(i.e. D7, D14, D28; n=6/group).   

Acute Exercise: To examine the angiogenic responses to acute exercise at each of the 

time points (i.e. Control, D1, D7, D14, D28), half of the mice (n=6/group) performed a 

standardized single 1-hour acute bout of exercise at 20 m/min with 10° incline on a rodent 

treadmill (Columbus Instruments, Exer-6M Treadmill, Columbus, OH), and were then sacrificed 

4 hours after the acute exercise bout. Like the basal muscle expression group, acute exercise 

was performed following a full day without access to the running wheel to minimize any 

response from wheel running exercise.  For all mice, muscle from the left triceps surae 

(gastrocnemius (GA), plantaris (PLT), soleus (SOL)) were extracted for molecular analysis and 

muscle from the right triceps surae for morphometric analysis.   

Maximal Run Test: A maximal running speed test was used to measure aerobic 

performance prior to training, on the final day of training, and one day prior to completion of 

detraining for each respective group. All mice experienced a 24-30 hour rest period (with no 

wheel access) prior to sacrifice examining basal or acute exercise responses. Maximal running 

was performed on a mouse treadmill (Columbus Instruments, Exer-6M Treadmill, Columbus, 
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OH) at a 10° incline. Warm up was 5 minutes at 4 m/min, and then increased by 2 m/min every 

30 seconds until test termination defined by the inability of the animal to continue running on the 

belt despite encouragement. 

Tissue collection and processing. All mice were anesthetized with xylazine/ketamine 

(Ketaject 100mg/kg, Xylazine 5mg/kg) via intraperitoneal injection. Once anesthetized the 

gastrocnemius, plantaris, and soleus muscles from the left leg were carefully removed at its 

respective origin and insertion attachment, weighed, and immediately flash frozen in liquid 

nitrogen for protein analyses. Gastrocnemius, plantaris, and soleus from the right leg were then 

removed in the same manner as the left leg, the mid-belly of the muscles were carefully 

resected and positioned transversely on a cork base and carefully embedded in tissue freezing 

medium (TBS Tissue Freezing MediumTM, Triangle Biomedical Sciences, Durham, NC, USA) 

and immediately flash-frozen in liquid nitrogen cooled isopentane (2-methylbutane, Fisher 

Chemical O3551-4, Fisher Scientific).  All muscle samples were stored at -80 C until processed 

for molecular or morphometric analyses. 

Homogenization: Skeletal muscle was homogenized using a lysis buffer containing 50 

mM Tris/HCl (pH 7.4), 150 mM NaCl, 0.5% Triton X-100, and protease inhibitors (Complete™ 

Tablet, Roche Applied Science, Indianapolis, IN). Homogenates were centrifuged at 4°C, 

14000g for 10 minutes and supernatants were then be removed and placed in new tubes. Total 

protein was measured by the Bradford Assay (Coomassie Plus #23236 Assay Pierce 

Biotechnology, Rockford, IL).  

Protein Analysis: Mouse VEGF, MMP-2, and MMP-9 protein levels were measured from 

100 µg of total protein using a commercially available ELISA kits (VEGF #MMV00, MMP-9 

#MMPT90 from R&D Systems, Minneapolis, MN and MMP-2 #ELM-MMP2-001 from 

RayBiotech, Norcross, GA). All analyses were performed according to the manufacturer's 

specification and optical densities were measured using a microplate reader (Bio Rad Model 

550, Global Medical Instrumentation Inc., Ramsey, Minnesota). For western analysis, samples 
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were denatured (18μg SOL, 39 μg PLT, 39-65μg GA ) and separated on 26 well 8% Bis Tris 

Midi Gel (Novex WG1003BX10, Carlsbad, CA) and blotted onto a 0.45μm nitrocellulose 

membrane (nitrocellulose membrane #88018 Thermo Scientific). Membrane was blocked with 

5% fat-free milk in TBS and then membrane was cut twice to yield three membrane strips (TSP-

1/nucleolin, GAPDH, endostatin) and  probed with respective antibodies TSP-1 

(Thrombospondin 1 (A6.1): sc-59887, Santa Cruz Biotechnology, Santa Cruz, CA); nucleolin 

(nucleolin antibody #A300-711A, Bethyl Laboratories, Montgomery, TX); GAPDH (mouse anti-

GAPDH #39-8600, Invitrogen, Camarillo, CA); endostatin (anti-mouse endostatin antibody 

#AF570 R&D Systems, Minneapolis, MN). Nucleolin was probed after TSP-1 had been 

measured. Equal loading was verified and normalized by the loading control, GAPDH. 

Chemiluminescence detection allowed for visualization of proteins (Pierce ECL Western Blotting 

Substrate, #32209, Rockford, IL), images of blots were taken using Genesnap software (version 

7.01; Syngene). Protein expression was quantified by using NIH ImageJ Software (version 1.62) 

and expressed as densitometric arbitrary units (a.u.). Control samples were loaded on each gel 

to normalize groups.  

Histochemistry. Corks containing frozen muscles embedded in tissue freezing medium 

were cut into serial 8-10 μm transverse sections using a microcyrotome at -20°C (Leica 

CM1850, Leica Biosystems, Buffalo Grove, IL) and mounted on glass slides (Colormark* Plus 

Adhesion Slides, #CM-7951, Thermo Scientific) for histochemical analysis of muscle 

morphometry. Great care was taken to ensure that the widest part of the muscle was sectioned 

and that cuts were made perpendicular to the orientation of the fibers.  Muscle capillarity was 

determined by measuring capillary-to-fiber ratio (C:F) by using the alkaline phosphatase and 

dipeptidylpeptidase capillary staining method (Mrazkova et al., 1986).  Stained muscle sections 

were viewed by light microscopy and digitally imaged at 20x magnification. Muscle capillarity 

was assessed from deep and superficial regions within the gastrocnemius. Deep regions are 

defined as the inner half of the gastrocnemius muscle (closest in proximity to the plantaris and 
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soleus muscles), while superficial regions are comprised of the outer half of the gastrocnemius 

(closest in proximity to the skin). Up to 15 digital images were obtained from each quadrant in a 

pseudo-random selection process. Images were selected if they did not overlap with any 

previous image selected and did not violate the boundary used to demarcate the quadrant being 

imaged. The imaging technician was instructed not to “frame” each image per se, but rather 

accept the random image position (after moving the microscope stage) within each quadrant, 

provided they do not violate the image selection criteria above.   

Statistical Analyses: All data shown are mean ± SEM, unless otherwise indicated.  

Changes in protein expression, exercise performance during training (i.e. daily distance run, 

time running, average speed and maximal speed), and muscle capillarity (i.e. C:F) were 

analyzed using one-way ANOVA. A repeated measure ANOVA was used for multiple measures 

of maximal exercise performance testing. The combined effects of training (i.e. groups trained 

for different days) and the angiogenic factor response to acute exercise (i.e. basal vs. acute 

exercise) for proteins were separately determined using a 2 × 2 factorial ANOVA. When a main 

effect was observed, post hoc testing with a Fisher’s PLSD was used to examine group 

differences. All statistics were performed using Statview Statistical Software package (v5.0.01, 

SAS Institute Inc., Cary, NC). Significance was set at α level of p=0.05.  

 

RESULTS 

Animal body mass and muscle characteristics. There was no significant difference in 

age, body mass or hindlind muscle mass (when normalized to body mass) compared to the 

control group (Table 1).  When compared to control mice, training increased capillary-to-fiber 

ratio (C:F) in the gastrocnemius (p=0.04), plantaris  (p=0.04), and soleus (p=0.04) (Table 1). In 

all muscles, C:F returned to control levels after 7 days of detraining and stayed there with 14 

and 28 days of detraining.   
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Training behavior and aerobic performance.  When comparing voluntary wheel running 

behavior across all groups there was no significant difference in time spent running (ranging 

from an average of 306 to 392 minutes each day, Table 1).  However D14 and D28 mice 

exhibited higher average running speed, average distance run per day, and higher maximal 

wheel training speed compared to D7 mice (p<0.05), but not compared to D1 mice (Table 1).  

Aerobic performance measured by a maximal running test before training, at the end of 

training and at the end of detraining, showed that all groups universally increased maximal 

running speed with training, which returned to control (untrained) levels in all detraining groups 

(Figure 1).  

 

Basal Protein Expresison.   

Gastrocnemius.  Shown in Figure 2a, training (i.e. D1 time point) resulted in an increase 

of basal VEGF (p=0.02) and MMP-9 (p=0.04), all other factors remained unchanged when 

compared to the control group. After 7 days of detraining (D7), VEGF (p<0.01) remained 

elevated and TSP-1 (p<0.01) increased. Following 14 days of detraining (D14), basal VEGF 

(p<0.01) levels were still elevated while TSP-1 fell to baseline. Nucleolin was also significantly 

elevated at D14 compared to controls. At 28 days post training (D28), basal VEGF returned to 

baseline, TSP-1 remained at baseline levels and endostatin (p<0.01), MMP-2 (p<0.01) and 

MMP-9 (p=0.03) had all decreased compared to controls. 

Plantaris.  Shown in Figure 2b, training (D1) resulted in an increase of basal VEGF 

(p<0.01), nucleolin (p=0.03), and TSP-1 (p<0.01).  Endostatin did not change when compared 

to the control group. After 7 days of training (D7), VEGF (p<0.01) and TSP-1 (p<0.01) remained 

elevated.  Nucleolin decreased and endostatin remained unchanged. Following 14 days of 

detraining (D14), VEGF fell to control levels while endostatin (p<0.01) was significantly 

diminished, TSP-1 and nucleolin remained unchanged. At 28 days post training (D28), 

endostatin (p<0.01) remained low, VEGF, TSP-1, and nucleolin were not different from controls. 
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Soleus.  Shown in Figure 2c, training (D1) resulted in a decrease only of endostatin 

(p=0.02) when compared to the control group. After 7 days of detraining (D7), endostatin 

returned to control levels while VEGF (p<0.01), nucleolin (p<0.01), and TSP-1 (p<0.04) were all 

significantly increased. Following 14 days of detraining, endostatin (p<0.01) was increased 

while VEGF, nucleolin and TSP-1 returned to control levels. At 28 days post training VEGF was 

elevated (p<0.01), endostatin (p<0.01) was decreased and TSP-1 and nucleolin were not 

different from control levels.  

 

Protein response to Acute Exercise. 

VEGF protein responded to acute exercise in the control group in the plantaris (p<0.04) 

and soleus (p<0.01), and to a lesser extent in gastrocnemius (Figure 3). This response was 

blunted with training (D1) and remained blunted after 7, 14 or 28 days of detraining in the PLT 

or SOL. Endostatin had a group x acute exercise interaction in the SOL with (p<0.05) and to 

lesser extent in the PLT (p=0.057), but did not have an increase of protein following acute 

exercise in any of the muscles. Nucleolin tended to increase in response to acute exercise in all 

three muscles of control mice, this response was blunted in trained mice, and remained blunted 

with detraining. Furthermore, a significant group x acute exercise interaction (p<0.05) was only 

observed in GA and PLT for nucleolin (Figure 3).  Responses for TSP-1, MMP-2 and MMP-9 

are not reported here because these factors have been shown to respond to acute exercise at 

much later time point (than 4-hours post exercise) used in this study. 

 

DISCUSSION 

The principal finding of this study is that detraining losses in skeletal muscle capillarity, 

occurring after 7 days detraining, are associated with elevated basal expression of TSP-1.  

Surprisingly, basal VEGF protein levels were also elevated after 7-days detraining.  Endostatin 

was not elevated at 7-days post training compared to controls, but rather demonstrated a 
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tendency to decrease with greater time spent detraining.  These data suggest that losses in 

skeletal muscle capillarity (due to physical deconditioning) may be more dependent on the 

expression of TSP-1 and/or other negative regulators, rather than reductions in positive 

angiogenic regulators, such as VEGF.   

 

Training response and muscle capillarization 

Our data show some variability in the voluntary wheel running behavior between mice in 

our respective groups, where D14 and D28 mice exhibit greater daily averages in distance and 

speed compared to D7.  But compared to trained (D1) mice, D14 and D28 were not different. It 

should also be noted that average time spent running was similar across all groups. Importantly, 

the training performed (as assessed in the D1 group) significantly increased muscle capillarity in 

the hindlimb muscles (Table 1) and resulted in similar increases in aerobic performance 

capability for all groups (Figure 1).  These increases universally returned back to baseline levels 

in each detrained group (i.e. D7, D14, D28).  Thus, although it was not possible to measure 

muscle capillarity after training in the D7, D14, or D28 groups, based on the overall running 

behavior and performance it is reasonable to expect similar capillary adaptation to training as 

that seen and reported for D1 (training control) mice. 

Consistent with training induced capillary adaptation, as well as previous reports from 

training studies (Carmeli et al., 2007; Rullman et al., 2009; Huttemann et al., 2012), we 

observed an elevated basal expression of VEGF and MMP-9 in trained (D1) mice, with one 

exception.  VEGF was not elevated in the soleus muscle in D1 mice.  TSP-1 was unchanged in 

trained (D1) mice, except in plantaris muscle.  The lack of elevated basal VEGF in the soleus 

muscle is not surprising and is in line with a study by Birot et al which demonstrated that VEGF 

mRNA was up regulated to a greater extent in type IIb myofibers than type I or IIa, most likely 

due to their glycolytic nature (Birot et al., 2003). The soleus muscle is highly oxidative with a rich 

vascular supply and therefore may not have the same oxygen demand/deficit created by 
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exercise to trigger a significant increase in VEGF as that seen in the plantaris and 

gastrocnemius.   

However, the reason for elevated basal TSP-1 expression in the D1 plantaris, but not the 

gastrocnemius and soleus is less clear.  Previous reports have shown TSP-1 mRNA is 

increased in response to acute exercise, but this response is eventually lost with repeated or 

chronic exercise (Olfert et al., 2006).  Data from our previous training study (unpublished data, 

see Training Study) show no significant difference in basal TSP-1 protein expression in the 

gastrocnemius muscle after 14 to 28 days of voluntary wheel training compared to untrained 

controls, which supports the current observation in the gastrocnemius and soleus muscle of the 

animals in this study. Thus, whether the response in the plantaris is a residual effect of training 

or specific to the plantaris is presently unclear. However, it is possible, as previously noted for 

the VEGF response to training, that this finding could be due the greater glycolytic fiber type 

composition of the plantaris muscle compared to the overall greater oxidative nature seen in the 

soleus and the mixed gastrocnemius muscles.  This is supported by evidence of the lower 

VEGF/TSP-1 ratio (suggesting higher TSP-1 relative to VEGF) reported in plantaris muscle 

compared to the soleus muscle during hindlimb unloading (Roudier et al., 2010).  Greater basal 

TSP-1 protein levels have also been reported in the plantaris compared to gastrocnemius 

(Audet et al., 2011). 

Endostatin was largely unaltered in response to training, except for a decreased 

expression level in the D1 soleus muscle (p<0.05). The lack of response from endostatin is 

consistent with the response in gastrocnemius muscle from our previous Training Study 

(unpublished data, see Training Study). Because the actions of endostatin may be regulated in 

part by nucleolin, we also assessed nucleolin levels in response to detraining. We show that 

nucleolin tends to be up regulated in response to acute exercise, which is in accordance with 

the acute response to exercise we report in our Training Study (unpublished data, see Training 

Study). Training induced (D1) increase in nucleolin was only seen in the plantaris muscle.  An 
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argument could be made to that, this too, may involve the greater glycolytic nature of the 

plantaris and mixed gastrocnemius compared to the more oxidative fiber type composition of the 

soleus muscle. But further studies are needed to examine nucleolin’s role in skeletal muscle 

angiogenesis before the importance and/or contribution of nucleolin will be clearly understood. 

 

Detraining and protein expression in skeletal muscles 

In this study we show similar trends across the muscles examined (GA, PLT, SOL) but 

each muscle also appears to have its own unique temporal response to exercise. In all muscles 

examined, there was a statistically significant increase in basal expression of VEGF and TSP-1, 

concurrent with a decrease in muscle capillarity at after 7 day detraining (D7) compared to 

trained control (D1) mice. We would not have predicted that skeletal muscle capillarity would 

have returned to baseline conditions with elevated VEGF levels given it prominent role in 

stimulating angiogenesis. It curious to note that basal VEGF in the gastrocnemius muscle 

remained elevated (while TSP-1 returned to baseline) after 14 days of detraining, perhaps 

suggesting a window of heighten sensitivity in response to capillary regression and/or 

dependence on a cofactor to trigger new blood vessel growth. Only after 28 days of detraining 

did VEGF return to basal levels. At this same 28 day time point, endostatin, MMP-2, and MMP-9 

were all reduced. We speculate endostatin is likely reduced due to lower MMPs and may serve 

to remove its inhibitory influence in response to acute exercise, and increase the sensitivity of 

VEGF to an exercise stimulus. 

In the plantaris, both endostatin and nucleolin tended to decrease with increasing 

number of days detraining with significantly lower expression at D28 compared to controls 

(Figure 2b).  Unlike the gastrocnemius muscle, after 14 days of detraining, VEGF returned to 

control levels and while endostatin tended to diminished through 28 days of detraining. Although 

VEGF levels are low (not in favor of angiogenesis), endostatin levels are also low (favoring 

angiogenesis) perhaps keeping a balance between positive and negative angiogenic factors. 
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Overall, the plantaris appears to have an accelerated molecular response when compared to 

the gastrocnemius (i.e. VEGF returns to basal levels and endostatin levels are reduced faster 

which may be due to differences in fiber type). Unfortunately, due to small muscle size and 

insufficient sample for analysis, we were not able to measure MMP-2 and MMP-9 in either the 

soleus or plantaris. 

In the soleus, the only protein to be altered by training was endostatin which was 

reduced from D1. Likewise, endostatin levels have been reported to be chronically low in other 

oxidative muscles such as the heart (Gu et al., 2006). It was only after D7 that endostatin 

returned to control levels.  In stark contrast, VEGF, TSP-1 and nucleolin (as seen in the PLT) 

were all significantly up-regulated, suggest that the D7 time point could be a tipping point in the 

soleus with all these proteins at play. After D14, endostatin increased while all other proteins 

that were elevated returned to control levels. At D28, endostatin subsided below control levels 

and VEGF was again elevated.  

Taken together, the main theme that emerges is that TSP-1 may play a prominent role in 

capillary regression associated with detraining. This is consistent with evidence that TSP-1 is 

involved in capillary regression seen during menstrual cycle (Iruela-Arispe et al., 1996; Slater & 

Murphy, 1999).  Here, VEGF is has been shown to be localized in capillaries and was most 

strongly detected in the late proliferative and secretory phase (Bausero et al., 1998) while TSP-

1 has been associated with low capillary growth in the secretory phase (Iruela-Arispe et al., 

1996). So, it may not be unexpected that despite having elevated VEGF levels at D7 in each 

hindlimb muscle examined, muscle capillary was reduced at D7. Unfortunately, the temporal 

resolution of our detraining time course does not allow us to pin point when TSP-1 was first up-

regulated between D1 and D7 or when the reversal of the angiogenic gains made by training 

occurred, but based on these data it is clear that morphological changes in capillarity are fully 

affected by 7 days in this training/detraining paradigm.  
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Response to Acute Exercise Following Detraining  

In the current study, we also evaluated the acute exercise response of angiogenic 

regulators as a means to evaluate the effect of detraining and changes in muscle capillarity—

specifically, when/what are the events that lead to a detrained muscle to return to pre-trained 

conditions. Based on prior evidence (unpublished data, see Training Study), we know that peak 

response for VEGF, endostatin and nucleolin protein expression occurs ~4 hours post exercise, 

therefore this time point was selected to harvest muscle to access angiogenic protein response 

to acute exercise with the temporal response to detraining.  Since the peak protein responses 

for TSP-1, MMP-2, and MMP-9 s did not occur at this time point, there is limited, if any, 

interpretative value to be gained from assessing the acute response of these factors in the 

current study.  

As observed in our Training Study (unpublished data, see Training Study), as well as in 

other publications (Olfert et al., 2001; Hoier et al., 2012), we find acute exercise increases 

skeletal muscle VEGF protein levels in plantaris and soleus muscles.  Surprisingly, this 

response did not prove statistically significant in the gastrocnemius despite a consistent trend 

for VEGF to increase.  Nonetheless, the VEGF response to exercise is well documented in 

literature and is established as a prime process orchestrating skeletal muscle angiogenesis.  

Since it has been reported that responsiveness of VEGF mRNA (Olfert et al., 2001) and protein 

to acute exercise is lost or blunted  with training (Malek et al., 2010), a key question this study 

aimed to answer is when would this acute response to exercise return with detraining. 

Consistent with previous reports, the D1 mice exhibited a blunted (or absent) VEGF protein 

response to acute exercise.  Unexpectedly, the acute VEGF response to exercise never 

significantly reemerged even after 28 days of detraining in any of the muscles, except for one 

case (i.e. D14 in the GA).  This is surprising because an underlying theory for the blunted 

response of VEGF with training was thought to be due to greater number of capillaries (induced 

by training) satisfying the metabolic stress associated with chronic exercise. The present finding 
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argues against this idea suggesting that some other mechanism is likely attenuating the VEGF 

response to acute exercise and keeping it blunt despite the losses of capillaries occurring with 

detraining.   

In contrast to our data, Malek et al. report the acute VEGF response to exercise had 

returned after 7 days of detraining in the plantaris and the soleus muscles of rats who treadmill 

trained 3 days a week for 10 weeks (Malek et al., 2010). In addition to using a different animal 

model from the current study, the training regimen was longer in duration, and used lower 

frequency but higher exercise intensity (50-80% of maximal work rate) than that performed by 

our mice which voluntarily performed high daily frequency but low intensity exercise (at ~34-

40% of their maximal exercise capacity). Thus it could be that high-volume-low-intensity 

exercise has a different effect on angiogenic regulators that low-volume-higher-intensity 

exercise. This notion is supported by recent evidence in humans, where intense intermittent, low 

volume, exercise has been reported to be a weaker stimulus for angiogenesis than constant 

moderate intensity exercise (Hoier et al., 2013). 

 We have previously found that endostatin and nucleolin protein levels were up-regulated 

at 4 hours post-acute exercise, but this was not the case for endostatin in our untrained control 

mice in the present study. In both the gastrocnemius and plantaris, nucleolin demonstrated 

significant group x acute exercise interaction effect (p<0.05) with a tendency of elevated 

response in untrained control mice in all three muscles (Figure 3).  Despite this post-hoc 

analysis for acute response did not prove statistically significant. An explanation for this 

discrepancy between these data and our previous data (unpublished data, see Training Study) 

remains unclear, but could raise questions whether the response of either endostatin or 

nucleolin represents a significant biological response to exercise.  It is important to note, at least 

in the case of endostatin, that it is not a transcriptionally-regulated peptide but rather a fragment 

from a larger extracellular matrix molecule (i.e. collagen XVIII). Thus the inconsistent endostatin 

response we observed could likely be associated with the responses of other factors, such as 
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MMP-2 or MMP-9 which influence proteolytic activity within the extracellular matrix. 

Unfortunately, due to the small mass and total protein available we did not have sufficient 

sample to make an assessment of MMP-2 or MMP-9 in either the plantaris or soleus muscles.      

 

In conclusion, this study has demonstrated the temporal response of key positive and 

negative angiogenic regulators in the gastrocnemius, plantaris, and soleus muscles in response 

to detraining. We have shown that the VEGF protein response to acute exercise remains 

blunted after 28 days of training and that elevated TSP-1 and VEGF expression are associated 

with capillary regression occurring after 7 days of detraining.  These data suggest the 

physiologic regression of muscle capillaries may be influence greater by negative angiogenic 

regulators (such as TSP-1) rather than positive angiogenic regulators (such as VEGF). Future 

studies will be needed to determine when the acute VEGF response to exercise returns, while 

shorter term detraining studies are needed to identify how soon with detraining TSP-1 protein 

expression starts to increase. 
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FIGURE LEGEND 

Figure 1. Maximal running test showing aerobic exercise capacity prior to training (pre-

training), post-training and after detraining.  Measured using a standardized incremental 

maximal exercise protocol on a rodent treadmill. *p<0.05 compared to pre-training. Data are 

mean ± SE.  

Figure 2. Basal protein expression of vascular endothelia growth factor (VEGF), 

thrombospondin-1 (TSP-1; 165kDa), matrix metalloproteinase (MMP)-2, MMP-9, endostatin 

(22kDa) and nucleolin (100kDa)  in the (a) gastrocnemius, (b) plantaris and (c) soleus muscles 

measured by ELISA or Western Blot. Representative blots are shown. Control mice did not 

train, all others voluntarily trained on running wheels for 21 days and then subsequently 

detrained for 1, 7, 14, or 28 days (D1, D7, D14, D28, respectively). a.u.= arbitary densitometry 

units from Western blot analysis for each respective factor which has been normalized to the 

housekeeping gene GAPDH or β-tubulin.  *p<0.05 compared to control. Data are mean ± SE.  

Figure 3. Fold-change in protein expression in response to acute exercise for VEGF, 

endostatin (22kDa) and nucleolin (100kDa) in the gastrocnemius, plantaris, and soleus following 

the same conditions in Figure 2. These proteins (VEGF, endostatin and nucleolin ) were 

selected due to their increased expression 4 hours post acute exercise in the Training Study 

(Chapter 2). The basal protein expression in each group of mice was set to 1.0 showing the 

relative acute/basal protein change by group. Data reflect protein levels 4 hours post acute 

exercise.  *p<0.05 to basal within group. Data are mean ± SE.  
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TABLE 1 Control 
Days Detraining 

  D1     D7     D14     D28   

  
  

  
  

  
  

  
  

  
  

  

Wheel Training Behavior 
  

  
  

  
  

  
  

  
  

  

Average Running Time per day 
(min)  

n/a   332 ± 24 306 ± 52 392 ± 52 358 ± 24 

Average Distance Run per day (km) 
 

n/a   6 ± 0.6 4.5 ± 0.4 7.5 ± 0.6 † 7.1 ± 0.8 † 

Average Running Speed (km/hr) 
 

n/a   1.03 ± 0.05 0.96 ± 0.04 1.22 ± 
0.09 
†‡ 

1.26 ± 
0.05 
†‡ 

Maximum Running Speed (km/hr) 
 

n/a   2.76 ± 0.07 2.58 ± 0.05 ‡ 2.86 ± 0.05 † 2.87 ± 0.07 † 

  
  

  
  

  
  

  
  

  
  

  

Animal Characteristics 
  

  
  

  
  

  
  

  
  

  

Age (days) 106 ± 0.1 105 ± 0 104 ± 0 102 ± 0 110 ± 0 

Body Mass, BM (g) 27.2 ± 0.5 27.9 ± 0.4 27.2 ± 0.4 26.5 ± 0.4 27.4 ± 0.8 

Gastrocnemius muscle, GA (mg) 148.5 ± 3.8 148.3 ± 3.3 146 ± 2.7 143.1 ± 2.4 145.4 ± 3.5 

Plantaris muscle, PLT (mg) 21.1 ± 0.7 22 ± 0.8 20.4 ± 0.5 20 ± 0.5 20.5 ± 0.6 

Soleus muscle, SOL (mg) 8.8 ± 0.4 10.3 ± 0.4 8.8 ± 0.4 8.7 ± 0.2 8.7 ± 0.5 

GA/BM (%) 0.55 ± 0.01 0.53 ± 0.01 0.54 ± 0.01 0.54 ± 0.01 0.53 ± 0.01 

PLT/BM (%) 0.08 ± 0.003 0.08 ± 0.003 0.08 ± 0.002 0.08 ± 0.001 0.08 ± 0.002 

SOL/BM (%) 0.03 ± 0.002 0.04 ± 0.001 0.03 ± 0.001 0.03 ± 0.001 0.03 ± 0.001 

  
  

  
  

  
  

  
  

  
  

  

GA C:F 1.37 ± 0.04 1.66 ± 0.16 * 1.2 ± 0.08 ‡ 1.3 ± 0.07 ‡ 1.35 ± 0.11 ‡ 

PLT C:F 1.26 ± 0.04 1.44 ± 0.05 * 1.17 ± 0.05 ‡ 1.28 ± 0.08 1.1 ± 0.10 ‡ 

SOL C:F 1.61 ± 0.07 1.81 ± 0.01 * 1.62 ± 0.03 ‡ 1.72 ± 0.07 1.53 ± 0.05 ‡ 

                                

 Mean±SEM. n/a, not applicable; C:F, capillary-to-fiber ratio.  p<0.05; ‡ different compared to control; * different compared to D1;  † different compared to D7. 
 

     

 
             

    Table 1. Characterization of wheel running over 21 days, age, body mass, muscle mass and C:F ratio. 
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CHAPTER 4: CONCLUSION 

Conclusions 

This work evaluated the temporal response of several positive and negative angiogenic 

proteins in response to acute exercise, training and detraining in skeletal muscle of mice. We 

find and report a complex interplay between positive and negative angiogenic factors in 

response to these physiologic conditions resulting in capillary growth (training) and regression 

(detraining).  

 

Temporal Response to Acute Exercise 

We observed that acute exercise elicited a response of VEGF, MMP-2, TSP-1, 

endostatin and nucleolin proteins, but no significant response was reported for MMP-9 up to 24 

hours post exercise. These results were in agreement with our initial hypothesis that both 

positive and negative angiogenic factors would be up-regulated. We find that angioregulatory 

proteins were markedly up-regulated in either an early (2-4 hours; VEGF, endostatin, nucleolin) 

or late (12-24 hours; MMP-2 and a lesser extent TSP-1) phase in the 24 hour time course. We 

are the first to show that nucleolin, a nuclear protein that may assist in the intracellular transport 

of VEGF and/or endostatin, may also be responsive to acute exercise.  The role of nucleolin in 

exercise is novel and could provide a link between VEGF and endostatin regulation in response 

to acute exercise. In both, our Training (Chapter 2) and Detraining Studies (Chapter 3) we 

observed a consistent and robust VEGF protein response to acute exercise in untrained mice.  

Surprisingly, the response of both endostatin and nucleolin were much more variable in our 

Training (Chapter 2) and Detraining Studies (Chapter 3).  In the Training Study (Chapter 2), 

although both proteins were upregulated in the acute exercise time course, neither endostatin 

nor nucleolin responded to acute exercise in the control mice for the training portion of the 

study.  However, in the Detraining Study (Chapter 3), we find evidence that nucleolin responded 
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to acute exercise, but endostatin still did not respond.   Perhaps these proteins are more 

sensitive to the relative exercise workload for each mouse. Given the variability in the responses 

for both nucleolin and endostatin, the overall importance of these factors may still be somewhat 

speculative.  

We expected a more robust TSP-1 protein response to acute exercise based on its 

known mRNA response, but TSP-1 tended to only be elevated late (up to 24 hours) post 

exercise.  Likewise, we saw no response for MMP-9, which also was surprising since other 

studies have reported MMP-9 to increase within a few hours following acute exercise in different 

animal models. Discrepancies between our data and others may be in part explained by 

exercise intensity and species type. Nonetheless, we find clear evidence supporting our 

hypothesis that both positive and negative angiogenic factors are up-regulated in response to 

acute exercise, suggesting an internal system designed to limit and/or prevent unnecessary 

utilization of energy and biological resources for capillary expansion in response to a single, 

one-time, stimulus.  

  

Temporal Response to Training 

 The goal of our Training Study was to temporally evaluate and link changes in 

angiogenic regulators with changes to training  induced capillary adaptation.  We found that 

voluntary wheel running increased muscle capillarity after at 7 days. In agreement with our 

hypothesis, basal expression of positive factors remained elevated while basal expression of 

negative factors decreased with increasing temporal exposure to training. In response to our 

hypothesis, nucleolin and VEGF were significantly higher at 5 and 7 days respectively while 

TSP-1 was diminished at days 5 and 7, relative to days 14 and 28 of training; these two time 

points correlate with a significant increase in skeletal muscle capillarity at day 7. Contrary to our 

hypothesis, positive factors did not remain elevated, nor did negative factors decrease with 
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increasing training; by day 28 VEGF was significantly lower and TSP-1 was significantly higher 

than it was at days 5 or 7. Retrospectively, this inverse of the angiogenic balance is feasible 

because once the skeletal muscle has adapted to the increased demand for oxygen created 

during exercise, there could likely be negative feedback to inhibit/reduce the continual growth of 

vasculature. Other angiogenic factors investigated in response to training were MMP-9, MMP-2 

and endostatin. MMP-9 and MMP-2 were down (relative to control) and up (relative to day 3) 

respectively at days 5, 7 and 14; however, previous literature would suggest that MMP-9 should 

have been up-regulated at day 3.  This discrepancy might be accounted for by exercise intensity 

and animal models used. Endostatin was not significantly altered with training.  

Furthermore, we hypothesized that acute exercise would result in a blunting or loss of 

the positive, but not negative, angiogenic regulator response following exercise training.   In 

response to this hypothesis, the acute response to VEGF was present at day 3 and remained 

elevated after 5 days of training.  Given the response for endostatin and nucleolin in our 

previous acute temporal exercise response, we were surprised that neither factor was increased 

in the control group of the training study. At present, the reason for this remains unclear.  Given 

that muscles were sampled in early phase (i.e 4 hours) post exercise, we would not expect 

TSP-1 or the MMP-2 to respond.  

Taken together, it can be concluded that angiognesis resulting from exercise training 

occurs in association with basal changes of both positive (VEGF, MMP-2, nucleolin) and 

negative (TSP-1) angiogenic regulators. Given the differences observed in these proteins 

between humans and mice, these data also highlight the temporal responses we observed in 

mice (particularly for VEGF, MMP-2 and MMP-9) may not be directly comparable to humans. 

Nonetheless, it is clear our results show that there is a complex coordination in the protein 

responses of both positive and negative angiogenic factors that correspond with training-

induced muscle capillary adaptation. 
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Temporal Response to Detraining 

The goal of the Detraining Study was to temporally link changes in angiogenic regulators 

with capillary regression associated with physical deconditioning (i.e. detraining).  We 

hypothesized there would be in increase of negative, relative to positive angiogenic factors with 

detraining.  In agreement with our hypothesis, we found TSP-1 protein was increased at 7 days 

post training in all the skeletal muscle examined.  At this same time point, skeletal muscle 

capillarity returned to baseline (pre-training levels) despite elevated VEGF protein. We also 

hypothesized that the acute response to exercise would return once capillarity reached pre-

training levels. To our surprise, this was not the case since 28 days of detraining was not 

sufficient time for the well-established VEGF response to acute exercise to reappear. Finally, we 

hypothesized that oxidative muscles would have greater changes in angiogenic regulators (both 

positive and negative) compared to glycolytic muscles. We show there are protein expression 

differences between glycolytic and oxidative muscles after training (D1); TSP-1, VEGF and 

nucleolin were all elevated after 1 day of detraining relative to the control group in the plantaris 

but not the soleus.  However, all muscles (GA, PLT, SOL) had the same increase of both TSP-1 

and VEGF protein at 7 days post training (D7), the same time point as capillary regression. We 

also show a trend for a decrease of endostatin with time spent detraining in all muscles.  In 

conclusion, these data suggest that although detraining responses after 1 day of detraining may 

be different among the oxidative and glycolytic muscles, all muscles exhibited physiologic 

regression of skeletal muscle capillary regression by 7 days of detraining which may be due to a 

greater influence of negative regulators (TSP-1) than positive regulators (VEGF) following 

detraining. Furthermore, we have shown that the VEGF protein response to acute exercise 

remained blunted after 28 days of detraining.  

 

In conclusion, our findings suggest that skeletal muscle angiogenesis is a complex 

interplay involving both positive and negative angiogenic factors whose expression profiles are 
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temporally distinct in response to acute exercise.  And, whose relative importance may be 

different in response to training-induced capillary expansion compared to detraining-induced 

capillary regression.  Future temporal studies investigating additional angiogenic factors may 

assist in clarifying the mechanisms underlying changes in skeletal muscle capillarity which will 

aid in promoting our understanding of capillary growth and regression under physiologic 

conditions, but also lay the foundation to better understand the reasons for capillary rarefaction 

in chronic disease such as chronic obstruction pulmonary disease, diabetes and/or heart 

disease.  
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