
Graduate Theses, Dissertations, and Problem Reports

2015

Topics in Graph Compositions Topics in Graph Compositions

Todd Tichenor

Follow this and additional works at: https://researchrepository.wvu.edu/etd

Recommended Citation Recommended Citation
Tichenor, Todd, "Topics in Graph Compositions" (2015). Graduate Theses, Dissertations, and Problem
Reports. 6811.
https://researchrepository.wvu.edu/etd/6811

This Dissertation is protected by copyright and/or related rights. It has been brought to you by the The Research
Repository @ WVU with permission from the rights-holder(s). You are free to use this Dissertation in any way that is
permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license
in the record and/ or on the work itself. This Dissertation has been accepted for inclusion in WVU Graduate Theses,
Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU.
For more information, please contact researchrepository@mail.wvu.edu.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by The Research Repository @ WVU (West Virginia University)

https://core.ac.uk/display/230482544?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F6811&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd/6811?utm_source=researchrepository.wvu.edu%2Fetd%2F6811&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu

Topics in Graph Compositions

Todd Tichenor

Dissertation submitted to the
Eberly College of Arts and Sciences

at West Virginia University
in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy
in

Mathematics

Michael Mays, Ph.D, Chair
John Goldwasser, Ph.D
Harvey Diamond, Ph.D
Marjorie Darrah, Ph.D
James Mooney, Ph.D

Department of Mathematics

Morgantown, WV
2015

Keywords: Graph Composition, Complete Graph,
Bell number, Aitken’s array

Copyright 2015 Todd Tichenor

ABSTRACT

For any discrete undirected graph G with vertex set V (G) and edge set E(G)
(respectively), a graph composition of G is defined to be a partition of V (G)
where every element of the partition yields a connected, induced subgraph
of G. This dissertation is comprised of 5 chapters. The first is a general
introduction to the concept of graph compositions and a survey of previously
researched work; the second focuses on the composition number of deletions
of specific graphs from complete graphs; the third focuses on establishing
bounds for the composition number of general graphs and the Bell number
coefficients of general graphs; the fourth focuses on the connection between
graph compositions and Aitken’s array, a well researched array; finally, the
fifth focuses on the number of compositions of graphs where the number of
components is restricted.

Contents

1 A Guide to Graph Compositions 1
1.1 Introduction . 1
1.2 Definitions, Concepts, and Notation 2
1.3 Previous Work . 8

2 Involving the Composition Numbers of Specific Graphs 10
2.1 The Deletion of General Graphs from Complete Graphs 11
2.2 Deletions of Paths From Complete Graphs 12
2.3 Deletions of Cycles From Complete Graphs 16
2.4 Deletions of Star Graphs From Complete Graphs 20
2.5 Deletions of “Disjoint” Graphs From Complete Graphs 22
2.6 Miscellaneous Results . 24

3 Compositions of General Graphs 26
3.1 Elementary Results . 27
3.2 The Bell Number Coefficients For Graph Compositions 28
3.3 Bounds on the Composition Number of General Graphs 30

4 Connection to Aitken’s Array 33
4.1 Introduction . 33
4.2 Previous Work . 35
4.3 Connection to Graph Compositions 37

5 Compositions of Graphs Limiting the Number of Compo-
nents 39
5.1 Introduction . 39
5.2 Common Graphs . 42
5.3 Deletions of General Graphs from Complete Graphs 44

iii

5.4 Deletions of Specific Graphs From Complete Graphs 45

A CompositionCounter 51

iv

Chapter 1

A Guide to Graph

Compositions

1.1 Introduction

The idea of graph compositions was introduced by Knopfmacher and Mays in

[4]. The work develops formulae for the composition number of a few families

of graphs (e.g. trees, cycles, complete graphs, etc.) and defines the concept

of a graph composition. A study on the composition number of unions of

graphs was conducted by Ridley and Mays [7]. Graph compositions were

used in [3] to gain insight into series-parallel graphs (which are relevant to

the study of electrical networks) and were connected to flats of matroid cy-

cles by Mphako-Banda [5]. Graph compositions are also related to partitions

of positive integers and partitions of finite sets; specifically, the number of

non-isomorphic compositions of Kn (the complete graph on n vertices) is

equal to the number of partitions of the positive integer n, and the number

1

of compositions of Kn is equal to the number of set partitions of S, where S

is any set of cardinality n, for n ∈ Z+.

Many theorems in Chapter 2 were found out of a necessity for data needed

for a larger problem. The problem is as follows: for any graph G, is there a

method for locating an edge e1 such that C(G−e1) ≤ C(G−e) for all e ∈ E(G)

(other than calculating C(G−e) for every e ∈ E(G))? Originally, this problem

was not thought of as one with much substance to offer. However, repeated

(failed) attempts to answer it seem to suggest otherwise. Its stubbornness

and will to remain unresolved have led to insights about graph compositions

that perhaps would not have been otherwise considered.

1.2 Definitions, Concepts, and Notation

Let G be a graph and E(G) and V (G) represent the edge and vertex sets of

G (respectively). A composition of G is defined as a partition of V (G) into

vertex sets of connected induced subgraphs of G. Hence, a composition of G

yields a set of connected subgraphs of G, {G1, G2, ..., Gm}, where
m
∪
i=1
V (Gi) =

V (G) and V (Gi) ∩ V (Gj) = ∅ for i 6= j [4].

The concept of graph compositions will be illustrated below by explicitly

listing all graph compositions of K2,3.

2

rr rr
r

PPP
�
�
�

PPP
rr rr

r
�
�
�

��
�

PPP
rr rr

r
@
@
@

�
�
�

��
� rr rr

r
��

�
PPP@
@
@

�
�
�

��
�

PPP

rr rr
r

��
�

@
@
@

�
�
�

PPP
rr rr

r
��

�

@
@
@

��
� rr rr

r
��

�

��
�

PPP
rr rr

r
PPP@
@
@

�
�
� rr rr

r
��

�
PPP

PPP@
@
@

rr rr
r

�
�
�

PPP
rr rr

r
��

�
PPP

rr rr
r

��
�

PPP@
@
@

rr rr
r

��
�

PPP
�
�
�

��
� rr rr

r
��

�
PPP

PPP

rr rr
r

PPP

PPP
rr rr

r
@
@
@

�
�
� rr rr

r
@
@
@

��
� rr rr

r
@
@
@

PPP
rr rr

r
�
�
�

��
�

rr rr
r

��
�

��
� rr rr

r
��

�

PPP
rr rr

r
PPP@
@
@

rr rr
r

PPP
�
�
� rr rr

r
PPP
��

�

rr rr
r

��
� rr rr

r
PPP

rr rr
r

��
�

PPP rr rr
r

��
�

@
@
@

rr rr
r

��
�

�
�
�

rr rr
r

rr rr
r

��
�

rr rr
r

PPP rr rr
r

@
@
@

rr rr
r

�
�
�

Table 1.1: All compositions of K2,3 [4]

As seen in table 1.1, every composition of G determines a unique subgraph of

G. However, the converse is not necessarily true (i.e. two distinct subgraphs

3

of G can determine the same composition of G). An example is given below.

rr rr
r

PPP
�
�
�

��
� - rr rr

r
�
�
�

��
�

��
�

PPP

rr rr
r

��
�

PPP
�
�
�

- rr rr
r

�
�
�

��
�

��
�

PPP

Table 1.2: Two subgraphs of K2,3 which induce the same composition

As you can see, both subgraphs of K2,3 listed above determine the same

composition of G.

Before discussing results, some concepts, notation, and previous results

used throughout the paper are discussed. For all that follows, let G be a

subgraph of KN on n vertices, C be a composition of G, Gi be a component

of C, and H be a subgraph of G. It follows that C = {G1, G2, ..., Gm} such

that
m
∪
i=1
V (Gi) = V (G) and V (Gi) ∩ V (Gj) = ∅ for i 6= j. Every V (Gi) ∈ C

will be referred to as a component of C and will be denoted as Gi when there

is no chance of confusion (given in [4]). Furthermore, G−H denotes the graph

4

with vertex set V (G) and edge set E(G)\E(H). We refer to this graph as

“the deletion of H from G” and refer to the process of obtaining G−H as

“deleting H from G”. If V (Gi) ⊆ V (H) and the complement of H|Gi
is

disconnected, then Gi will be referred to as a bad component from G with

respect to G−H ; otherwise, Gi will be referred to as a good component of G

with respect to G−H . If C contains a bad component from G with respect

to G−H , then it will be referred to as a bad composition of G with respect

to G−H ; otherwise, it will be referred to as a good composition of G with

respect to G−H . An example of bad compositions and bad components for

a specific graph is provided below. Any e ∈ E(G) is said to be “contained”

in a composition C if there exists a component of G which contains both

vertices of e. Additionally, if G−e1 ∼= G−e2 for every e1, e2 ∈ E(G), then we

denote G−e as G− for all e ∈ E(G). The composition number of G is the

number of distinct compositions of G and is denoted by C(G) [4]. C(KN) is

clearly B(N) [4], where B(N) is the N th term in the Bell number sequence,

which counts the number of partitions of a set with cardinality n [1]. The set

of all compositions of a graph G will be denoted by C(G) and the set of all

subgraphs of G will be denoted by P(G). Finally, if A ⊆ V (G), then G[A]

will denote the induced graph of G on A.

Next, we illustrate the concept of bad components and compositions.

Consider the graph K−P4
4 seen below.

5

Figure 1.1: Graph of K−P4
4 with labelled vertices.

A component of any composition of K−P4
4 which is comprised solely of edges

from the edge set {{1, 3}, {2, 3}, {2, 4}} will be a bad component by defini-

tion. Next, illustrations are provided for all compositions of K4; they will

be grouped into bad compositions (i.e. compositions of K4\K−P4
4) and good

compositions (i.e. compositions of K4 ∩K−P4
4).

6

r
r

r
r

4

1

3

2

r
r

r
r

4

1

3

2

r
r

r
r

4

1

3

2

r
r

r
r

4

1

3

2

r
r

r
r

4

1

3

2

r
r

r
r

4

1

3

2

r
r

r
r

4

1

3

2

r
r

r
r

4

1

3

2

Figure 1.2: Good compositions of K4 with respect to K−P4
4

r
r

r
r

4

1

3

2
�

�
� @
@
@ r

r
r
r

4

1

3

2
�

�
� r

r
r
r

4

1

3

2

@
@

@ r
r

r
r

4

1

3

2
@
@
@�

�
�

r
r

r
r

4

1

3

2
@
@
@ r

r
r
r

4

1

3

2

r
r

r
r

4

1

3

2

�
�
�

Figure 1.3: Bad compositions of K4 with respect to K−P4
4

7

1.3 Previous Work

Theorem 1. (Knopfmacher and Mays, [4]) If G = G1 ∪ G2 and there are

no edges incident to a vertex from G1 and G2 (i.e. G is disconnected), then

C(G) = C(G1) ·C(G2). The same result holds if G1 and G2 have exactly one

vertex in common.

Theorem 2. (Knopfmacher and Mays, [4]) C(KN) = B(N)

Theorem 3. (Knopfmacher and Mays, [4]) C(K−N) = B(N)−B(N − 2)

For the following theorem, some background information from [2] is nec-

essary. Define a matrix M where all entries are from the set {0, 1} as a

(0, 1) matrix. Consider all 2× 2(0, 1) matrices. Let P and Q be 2× 2 (0, 1)

matrices and define an equivalence relation ∼ by P ∼ Q if and only if Q

can be obtained by performing a finite number of row and column switches

on P . There will be 7 equivalence classes formed by this relation. Each

equivalence class will be represented by some upper case letter. The label

for each equivalence class along with a representative for the class is listed

below using notation from [2]:

I :

 1 0

0 1


Γ :

 1 1

1 0

 C :

 1 0

0 0


T :

 1 1

0 0

 L :

 1 0

1 0


8

J :

 1 1

1 1

 0 :

 0 0

0 0



For a matrix P and a set of matrices α, we say that P avoids α if and only

if P has no submatrices in α.

Finally, S(n, k) will be used to denote the number of partitions of a set

of n elements into k nonempty parts (i.e. S(n, k) is a Stirling number of the

2nd kind). A portion of the array of Stirling numbers may be found on page

41 of this dissertation.

Theorem 4. (Ju and Seo, [2]) The number of k × n matrices which avoid

Γ is given by φ(k, n; Γ) =
min{n,k}∑
m=0

m! · S(n+ 1,m+ 1)S(k + 1,m+ 1).

Remark 1. Note that setting k = n in Theorem 4 yields the number of n×n

matrices which avoids Γ is
n∑

m=0

m! · [S(n+ 1,m+ 1)]2.

9

Chapter 2

Involving the Composition

Numbers of Specific Graphs

The focus of this section is on the composition number of “dense graphs”

(i.e. graphs whose complements have small edge sets); more specifically,

we concern ourselves with the composition number of deletions of certain

families of graphs (e.g. paths, cycles, stars, etc.) from complete graphs. The

motivation for this study came from a result in [4] which states C(K−N) =

B(N) − B(N − 2) for N ≥ 2. The article goes on to state that adjacency

of the edges must be taken into account when deleting more than a single

edge from Kn, but does not discuss the topic any further. We conclude this

introduction by stating that Theorem 5 was developed by examining the

patterns of Theorems 6, 8, 10, and 12.

10

2.1 The Deletion of General Graphs from Com-

plete Graphs

Theorem 5. Let G be a subgraph of KN for |V (G)| = n and bj,k,n represent

the number of ways of choosing k disjoint bad components of K−GN such that

the cardinality of the union of vertices of all aforementioned bad components

is j. If bj,n is defined by bj,n =
n∑
k=0

(−1)k · bj,k,n, then C(K−GN) =
n∑
j=0

bj,nB(N−

j).

Proof: We begin by denoting the set of all compositions of KN by Γ and

the number of disjoint bad components contained in γ by B(γ) for all γ ∈ Γ.

C(K−GN) =
∑
γ∈Γ

B(γ)=0

1 =
∑
γ∈Γ

B(γ)=0

1 +
∑
γ∈Γ

B(γ)6=0

0 =
∑
γ∈Γ

B(γ)∑
k=0

(−1)k
(
B(γ)

k

)

since the alternating sum of the kth row of Pascal’s Triangle is 0 for k > 0

and 1 for k = 0. Note that
(
B(γ)
k

)
will count the number of times γ is counted

as a composition of KN with at least k disjoint bad components for a fixed

γ and k.

∑
γ∈Γ

B(γ)∑
k=0

(
B(γ)

k

)
=

n∑
j=0

n∑
k=0

bj,k,nB(N − j),

11

so

C(K−GN) =
∑
γ∈Γ

B(γ)∑
k=0

(−1)k
(
B(γ)

k

)

=
n∑
j=0

n∑
k=0

(−1)kbj,k,nB(N − j)

=
n∑
j=0

bj,nB(N − j).

Remark 2. It is trivial (but none-the-less important) to note that b0,n = 1

(since you can choose 0 vertices exactly 1 way) and b1,n = 0 (since there is

no way to choose 1 vertex to be a single component) for all n ∈ Z+. Also, bj,n

is undefined for j > n (since you cannot choose more than n vertices from a

set of n vertices).

Remark 3. It is also of merit to note that Theorem 3 is the special case of

Theorem 5 when G = K2.

2.2 Deletions of Paths From Complete Graphs

Theorem 6. Let Pn denote the path with n ≤ N vertices. If pj,k,n denotes

the number of ways of choosing k disjoint bad components from K−Pn
N such

that the number of vertices of all aforementioned bad components is j and

pj,n =
n∑
k=0

(−1)k · pj,k,n, then C(K−Pn
N) =

n∑
j=0

pj,nB(N − j) and pj,n = pj,n−1 −

pj−2,n−2 − pj−3,n−3 for j and n ≥ 3.

Proof: C(K−Pn
N) =

n∑
j=0

pj,nB(N − j) is a result of application of Theorem 5

on K−Pn
N . If C is a composition of KN , then C will not be a composition of

K−Pn
N if and only if C contains a bad component of K−Pn

N .

12

Note if we delete a subpath of length t ≥ 3 of Pn from KN , then the com-

plement is necessarily connected. The endpoints of Pt+1 will be adjacent and

every interior point of the path will be adjacent to both endpoints. Hence,

the only bad components that exist when deleting Pn from KN are subpaths

of Pn of length 1 or 2.

Next, define Sj,n =
∑

k is even

pj,k,n and Lj,n =
∑

k is odd

pj,k,n. Sj,n represents

the number of ways of choosing an even number of disjoint bad components

from V (Pn) where the cardinality of the union of bad vertices is j and Lj,n

analogously represents the number of ways of choosing an odd number of

disjoint bad components from V (Pn) where the cardinality of the union of

bad vertices is j. Note that pj,n = Sj,n − Lj,n.

If u represents one of the terminal vertices of the deleted path and C is

a component which contains u, then one of three cases must occur:

1. C is not a bad component. There are Sj,n−1 [Lj,n−1] ways of choos-

ing an even [odd] number of disjoint bad components from V (PN) such that

the cardinality of union of vertices of components which do not include C is j.

2. C is a 2-element bad component. There are Lj−2,n−2 [Sj−2,n−2]

ways of choosing an even [odd] number of disjoint bad components from

V (Pn) such that the cardinality of union of vertices of components which

include C is j.

3. C is a 3-element bad component. There are Lj−3,n−3 [Sj−3,n−3]

ways of choosing an even [odd] number of disjoint bad components from

13

V (Pn) such that the cardinality of union of vertices of components which

include C is j.

The above “world encompassing” cases give us

Sj,n = Sj,n−1 + Lj−2,n−2 + Lj−3,n−3

Lj,n = Lj,n−1 + Sj−2,n−2 + Sj−3,n−3

which yields

pj,n = pj,n−1 − pj−2,n−2 − pj−3,n−3.

A table of values for pj,n is given below:

n \ j 0 1 2 3 4 5 6 7 . . .

0 1 - - - - - - - . . .

1 1 0 - - - - - - . . .

2 1 0 -1 - - - - - . . .

3 1 0 -2 -1 - - - - . . .

4 1 0 -3 -2 1 - - - . . .

5 1 0 -4 -3 3 2 - - . . .

6 1 0 -5 -4 6 6 0 - . . .

7 1 0 -6 -5 10 12 -1 -3 . . .
...

...
...

...
...

...
...

...
...

...
. . .

Table 2.1: Table of Values of pj,n

14

Remark 4. pj,n = −(n− 1) for j = 2 since this implies the bad component

being chosen from V (Pn) is an edge and there are n− 1 ways of choosing an

edge from Pn.

Theorem 7. If F (x, y) =
∞∑
j=0

∞∑
n=0

pj,nx
nyj, then F (x, y) = 1

1−x+x2y2+x3y3
.

Proof: Using our recurrence relation for pj,n we get

pj,nx
nyj = x · pj,n−1x

n−1yj − x2y2pj−2,n−2x
n−2yj−2 − x3y3 · pj−3,n−3x

n−3yj−3

for j and n ≥ 3. This in turn yields

∞∑
j=3

∞∑
n=3

pj,nx
nyj = x

∞∑
j=3

∞∑
n=2

pj,nx
nyj − x2y2

∞∑
j=1

∞∑
n=1

pj,nx
nyj − x3y3

∞∑
j=0

∞∑
n=0

pj,nx
nyj.

If we consider pj,n = 0 for j > n, then

∞∑
j=3

∞∑
n=0

pj,nx
nyj = x

∞∑
j=3

∞∑
n=0

pj,nx
nyj − x2y2

∞∑
j=1

∞∑
n=0

pj,nx
nyj − x3y3

∞∑
j=0

∞∑
n=0

pj,nx
nyj.

Rewriting the entire equation in terms of F (x, y) yields

F (x, y)−
∞∑
n=0

p0,nx
n −

∞∑
n=0

p1,nx
ny −

∞∑
n=0

p2,nx
ny2

= x(F (x, y)−
∞∑
n=0

p0,nx
n −

∞∑
n=0

p1,nx
ny −

∞∑
n=0

p2,nx
ny2)− x2y2(F (x, y)−

∞∑
n=0

p0,nx
n)− x3y3F (x, y).

Observation of Remark 2 and manipulation of the equation yields

F (x, y)(1− x+ x2y2 + x3y3) = 1,

which leads directly to the desired result.

15

2.3 Deletions of Cycles From Complete Graphs

After examination of C(K−Pn
N), it becomes a natural extension to examine

C(K−Cn
N) where Cn denotes the cycle with n vertices (n ≥ 3). Hence, this

section is concerned with the study of C(K−Cn
N).

Theorem 8. Let n ≤ N and pj,n denote the coefficients defined in Theorem

6. If cj,k,n denotes the number of ways of choosing k disjoint bad components

of K−Cn
N , where the number of vertices of the bad components is j and cj,n =

n∑
k=0

(−1)k · cj,k,n, then C(K−Cn
N) =

n∑
j=0

cj,nB(N − j) and cj,n = pj,n−1 − 2 ·

pj−2,n−2 − 3 · pj−3,n−3 for j and n ≥ 3, and n 6= j for n ∈ {3, 4}.

Proof: The result C(K−Cn
N) =

n∑
j=0

cj,nB(N − j) follows from application of

Theorem 5 on K−Cn
N . If C is a composition of KN , then C will not be a

composition of K−Cn
N if and only if C contains a bad component of K−Cn

N .

Next we describe the bad components of K−Cn
N . The graph K−Cn

N will

inherit subpaths of length 1 and 2 of Cn as bad components since you can

always find some Pn ⊆ Cn.

Consider a composition of KN for which all of Cn has been deleted. It is

easily verified that if n > 4, then the composition is good. Hence, the only

remaining bad components of K−Cn
N are 3 or 4 element cyclic components.

If we define Sj,n =
∑

k is even

cj,k,n and Lj,n =
∑

k is odd

cj,k,n, then Sj,n represents

the number of ways of choosing an even number of disjoint bad components

from V (Cn) where the cardinality of the union of vertices is j. Lj,n analo-

gously represents the number of ways of choosing an odd number of disjoint

bad components from V (Cn) where the cardinality of the union of vertices is

j. Note cj,n = Sj,n − Lj,n.

16

If we let w ∈ V (Cn) and fix the component, Cw ∈ C, which contains w,

then one of four cases occur:

1. Cw is not a bad component. There are Sj,n−1 [Lj,n−1] ways of

choosing an even [odd] number of disjoint bad components from V (CN) (with

cardinality of the union of vertices j) which do not include Cw.

2. Cw is a 2-element bad component. There are 2·Lj−2,n−2 [2·Sj−2,n−2]

ways of choosing an even [odd] number of disjoint bad components from

V (Cn) (with cardinality of the union of vertices j) which include Cw.

3. Cw is a 3-element bad component. If Cw is comprised of just a

path (n > 3), then there are 3·Lj−3,n−3 [3·Sj−3,n−3] ways of choosing an even

[odd] number of disjoint bad components from V (Cn) (with cardinality of

the union of vertices j) which include Cw. If Cw is a cycle, then there is

exactly one way of choosing an odd number of bad components and no way

of choosing an even number of bad components.

4. Cw is a 4-element bad component. There is exactly one way of

choosing an odd number of bad components and no way of choosing an even

number of bad components.

The above “world encompassing” cases give us

Sj,n = Sj,n−1 + 2 · Lj−2,n−2 + 3 · Lj−3,n−3

Lj,n = Lj,n−1 + 2 · Sj−2,n−2 + 3 · Sj−3,n−3

17

which yields

cj,n = pj,n−1 − 2 · pj−2,n−2 − 3 · pj−3,n−3.

The first few values of cj,n are shown in the table below:

n \ j 0 1 2 3 4 5 6 7 . . .

0 1 - - - - - - - . . .

1 1 0 - - - - - - . . .

2 1 0 -1 - - - - - . . .

3 1 0 -3 -1 - - - - . . .

4 1 0 -4 -4 1 - - - . . .

5 1 0 -5 -5 5 5 - - . . .

6 1 0 -6 -6 9 12 1 - . . .

7 1 0 -7 -7 14 21 0 -7 . . .
...

...
...

...
...

...
...

...
...

...
. . .

Table 2.2: Table of Values for cj,n

Remark 5. c2,n = −n for n > 2 since c2,n is the number of ways of choosing

a single edge from Cn.

Theorem 9. If G(x, y) =
∞∑
j=0

∞∑
n=0

cj,nx
nyj, then G(x, y) = 1 + x2y2 + 2x3y3 −

x4y4 + x−2x2y2−3x3y3

1−x+x2y2+x3y3
.

18

Proof: Given that cj,n = 0 for j > n and c1,n = 0, it is easily established

that

∞∑
j=3

∞∑
n=3

cj,nx
nyj = G(x, y)−

∞∑
n=0

c0,nx
n − y2

∞∑
n=2

c2,nx
n

=
∞∑
j=3

cj,3x
3yj +

∞∑
j=3

∞∑
n=4

cj,nx
nyj

= c3,3x
3y3 + c4,4x

4y4 + y3

∞∑
n=4

c3,nx
n +

∞∑
j=4

∞∑
n=5

cj,nx
nyj.

Substitution of known values and sums yields

−x3y3 + x4y4 +
y3x4(3x− 4)

(1− x)2
+
∞∑
j=4

∞∑
n=5

cj,nx
nyj.

Application of Theorem 8 yields

− x3y3 + x4y4 +
y3x4(3x− 4)

(1− x)2
+ x

∞∑
j=4

∞∑
n=4

pj,nx
nyj − 2x2y2

∞∑
j=2

∞∑
n=3

pj,nx
nyj − 3x3y3

∞∑
j=2

∞∑
n=2

pj,nx
nyj

= −x3y3 + x4y4 +
y3x4(3x− 4)

(1− x)2
+ x

[
F (x, y)−

∞∑
n=0

p0,nx
n − y2

∞∑
n=2

p2,nx
n − y3

∞∑
n=3

p3,nx
n

]

= −2x2y2

[
y2

∞∑
n=3

p2,nx
n + F (x, y)−

∞∑
n=0

p0,nx
n]− 3x3y3[F (x, y)−

∞∑
n=0

p0,nx
n

]
.

The above equation along with substitution and algebraic manipulation

19

yields the result

G(x, y) = 1− x2y2 − x3y3 + x4y4 +
(1− x2)(2x2y2 + 3x3y3 − 2x4y4)

(1− x)2
+ F (x, y)[x− 2x2y2 − 3x3y3]

= 1 + x2y2 + 2x3y3 − x4y4 +
x− 2x2y2 − 3x3y3

1− x+ x2y2 + x3y3
.

2.4 Deletions of Star Graphs From Complete

Graphs

Recall that a star graph on n ≥ 2 vertices (denoted Sn) is the tree of n

vertices and n− 1 edges where one vertex (which we call the central vertex)

is adjacent to all other vertices.

Theorem 10. If 1 ≤ n ≤ N − 1, then C(K
−Sn+1

N) = B(N)−
n∑
k=1

(
n
k

)
·B(N −

(k + 1)).

Proof: If C is a composition of KN , then C is not a composition of K
−Sn+1

N

if and only if C contains a bad component of K
−Sn+1

N . Every bad component

is isomorphic to some Sk+1 for k ≤ n, and the vertex sets of all distinct bad

components will intersect exactly at the central vertex. So it is impossible

to simultaneously choose more than 1 unique disjoint bad component. The

number of compositions which contain exactly one bad component Gi, where

|V (Gi)| = k+1, is
(
n
k

)
·B(N− (k+1)). Hence, C(K

−Sn+1

N) = B(N)−
n∑
k=1

(
n
k

)
·

B(N − (k + 1)).

Remark 6. Note C(K
−Sn+1

N) can be written as
n∑
j=0

sj,nB(N − j), where sj,n

is undefined for j > n, s0,n = 1 for all n, s1,n = 0 for all n > 0, and

sj,n = −
(
n−1
j−1

)
for j and n ≥ 2 and j ≤ n. Having an explicit formula for

20

sj,n makes it trivial to establish that sj,n = sj−1,n−1 + sj,n−1 for j and n ≥ 3.

This is important for no other reason than to recover a generating function

in order to keep with the structure of the paper thus far.

Remark 7. Note also C(K−SN
N) = B(N − 1) since K−SN

N
∼= KN−1. Set-

ting N = N + 1 yields C(K
−SN+1

N+1) = B(N) and applying Theorem 10 to

C(K
−SN+1

N+1) yields C(K
−SN+1

N+1) = B(N+1)−
N∑
k=1

(
N
k

)
B(N−k). Setting the two

equations equal yields B(N+1) = B(N)+
N∑
k=1

(
N
k

)
B(N−k) =

N∑
k=0

(
N
k

)
B(N−k),

a well-known recursion of the Bell numbers.

Theorem 11. If S(x, y) =
∞∑
j=0

∞∑
n=0

sj,nx
nyj, then S(x, y) = 1−x−xy−x2y2

1−2x+x2−xy+x2y
.

Proof: Using Remark 6, algebraic manipulation, and known values for sj,n,

we get

S(x, y)−
∞∑
n=0

s0,nx
n − y2

∞∑
n=0

s2,nx
n

=
∞∑
j=3

∞∑
n=3

sj,nx
nyj

= xy
∞∑
j=2

∞∑
n=2

sj,nx
nyj + x

∞∑
j=3

∞∑
n=3

sj,nx
nyj

= xy · (S(x, y)−
∞∑
n=0

s0,nx
n) + x · (S(x, y)−

∞∑
n=0

s0,nx
n − y2 ·

∞∑
n=2

s2,nx
n).

21

This yields

S(x, y)[1− x− xy]

= (1− x− xy)
∞∑
n=0

s0,nx
n + y2(1− x)

∞∑
n=2

s2,nx
n

=
1− x− xy − x2y2

1− x
.

Hence, S(x, y) = 1−x−xy−x2y2
(1−x)(1−x−xy)

= 1−x−xy−x2y2
1−2x+x2−xy+x2y

.

2.5 Deletions of “Disjoint” Graphs From Com-

plete Graphs

In graph theory, a k-matching is a graph which consists of k vertex disjoint

edges and is denoted by Mk. We will use the notation Dk when referring to

a k-matching.

Theorem 12. If 2n ≤ N , then C(K−Dn
N) =

n∑
k=0

(−1)k
(
n
k

)
·B(N − 2k).

Proof: If C is a composition of KN , then C is not a composition of K−Dn
N if

and only if C contains a bad component of K−Dn
N .

If we let Γ represent the set of all compositions of KN , B(γ) represent

the number of bad components of γ for all γ ∈ Γ, and Ak,n represent the set

of compositions of KN with at least k bad components, then, as in Theorem

6,

22

C(K−Dn
N) =

∑
γ∈Γ

B(γ)∑
k=0

(−1)k
(
B(γ)
k

)
.

Using

|Ak,n| =
(
n
k

)
B(N − 2k),

we get the result

C(K−Dn
N) =

∑
γ∈Γ

B(γ)∑
k=0

(−1)k
(
B(γ)
k

)
=

n∑
k=0

(−1)k · |Ak,n| =
n∑
k=0

(−1)k ·
(
n
k

)
B(N−2k).

Remark 8. Setting dj,n = (−1)j
(
n
j

)
yields C(K−Dn

N) =
n∑
j=0

dj,n · B(N − j)

for all j and n ∈ Z+. As with Remark 6, having the explicit formula for dj,n

allows us to establish dj,n = dj,n−1 − dj−1,n−1 for j and n ≥ 1.

Theorem 13. If D(x, y) =
∞∑
j=0

∞∑
n=0

dj,nx
nyj, then D(x, y) = 1

1−x+xy
.

Proof: Using Remark 8, we obtain the result

D(x, y)−
∞∑
n=0

d0,nx
n

∞∑
j=1

∞∑
n=1

dj,nx
nyj

= x
∞∑
j=1

∞∑
n=1

dj,nx
nyj − xy

∞∑
j=0

∞∑
n=0

dj,nx
nyj

= x(D(x, y)−
∞∑
n=0

d0,nx
n)− xy ·D(x, y).

This implies

23

D(x, y)[1− x+ xy] = (1− x)
∞∑
n=0

d0,nx
n

=
1− x
1− x

= 1.

Therefore, D(x, y) = 1
1−x+xy

.

2.6 Miscellaneous Results

Results in this section were found during the course of research of the problem

stated in the introduction of Chapter 1 , but seemed inappropriate to include

in the main body of this chapter.

Theorem 14. Let Ka,b denote the complete bipartite graph with vertex bi-

partition sets of sizes a and b. If 0 ≤ m ≤ N , then C(K
−Km,N−m

N) =

B(m) ·B(N −m).

Proof: The graph K
−Km,N−m

N consists of exactly 2 disjoint connected com-

ponentsKm andKN−m. Application of Theorems 1 and 2 yields C(K
−Km,N−m

N) =

C(Km) · C(KN−m) = B(m) ·B(N −m).

Theorem 15. If n ∈ Z+, then C(Kn,n) =
n∑
k=0

k! · [S(n+ 1, k + 1)]2.

Proof: Let A and B be 2 disjoint sets of vertices such that |A| = |B| = n.

The graph Kn,n satisfies the criteria V (G) = A∪B and E(G) = {{u, v}|u ∈

A, v ∈ B} by definition. Label all vertices of A using each element of the set

{1, ..., n} exactly once. Label all vertices of B in a similar manner. Let i ∈ A

24

and j ∈ B. Define an adjacency matrix MH for H ⊆ Kn,n as follows: MH is

an n× n matrix where mi,j denotes the (i, j)th entry of MH and

mi,j =

1, i is adjacent to j

0, otherwise

Let C be a composition of Kn,n and consider MC, the adjacency matrix of

the subgraph of Kn,n determined by C. The resulting matrix cannot have

any 2 × 2 submatrices which contain three 1s and one 0 since it must rep-

resent an induced subgraph of Kn,n. This yields that the adjacency matrix

for every composition of Kn,n is an n × n (0, 1) matrix where every 2 × 2

submatrix avoids Γ. It is trivial to note that C(Kn,n) can be calculated sim-

ply by counting all matrices of the form described above. So by Remark 1,

C(Kn,n) =
n∑
k=0

k! · [S(n+ 1, k + 1)]2.

25

Chapter 3

Compositions of General

Graphs

The results in the following sections involve the composition number of gen-

eral graphs. In particular, we examine the composition number of subgraphs

of any general graph, bounds on K−GN for any graph G which is a subgraph

of KN , and bounds on the Bell number coefficients which can be used to

determine C(K−GN). Results on the bounds of the Bell number coefficients

of K−GN came about by examining the Bell number coefficients of K−GN for

certain G; results on the bounds of K−GN were found by examining illustra-

tions of all graphs on N vertices for certain values of N that were arranged

by composition number in ascending order.

26

3.1 Elementary Results

Theorem 16. If G is a graph and H is a subgraph of G such that |E(H)| <

|E(G)|, then C(H) < C(G).

Proof: Since H is a subgraph of G, then E(H) ⊂ E(G). This implies that

every composition of H will also be a composition of G (i.e. C(H) ≤ C(G)).

Also, there exists an e ∈ E(G)\E(H). Let C be a composition of G which

has e as a component. C cannot be a composition of H since e 6∈ E(H).

Hence, C(H) < C(G).

Theorem 17. If G is a graph and H is a proper subgraph of G such that

|E(H)|+ k = |E(G)|, then C(H) ≥ 1
2k
C(G).

Proof: We prove this theorem via induction. If G is a graph and H is

a proper subgraph of G such that |E(H)| + 1 = |E(G)|, then there exists

an e ∈ E(G)\E(H). For every composition C of G that contains e, either

C is or is not a composition of H. Assume there are exactly s compositions

which contain e that are compositions of H and t compositions which contain

e that are not compositions of H. If C is not a composition of H which

contains e, then deleting e will yield a composition of H which obviously

does not contain e. This one-to-one correspondence yields C(H) = s+ t and

C(G) = 2t + s ≤ 2t + 2s = 2C(H), which leads directly to the result of

Theorem 17 for k = 1.

Assume that the theorem holds for k ≥ 1. If G is a graph and H is

a subgraph of G such that |E(H)| + (k + 1) = |E(G)|, then there exists

e ∈ E(G)\E(H). H ⊂ G−e and |E(G−e)| = |E(H)|+ k. The result C(H) ≥
1
2k
C(G−e) follows from our induction hypothesis. Additionally, G−e ⊂ G and

27

|E(G−e)|+1 = |E(G)| yields C(G−e) ≥ 1
2
C(G). Hence, C(H) ≥ 1

2k
C(G−e) ≥

1
2k+1C(G) and Theorem 17 is true.

3.2 The Bell Number Coefficients For Graph

Compositions

For any subgraph G of KN , let bj,k,n denote the number of ways of choosing

k disjoint bad components from K−GN such that the cardinality of the union

of vertices of all bad components is j. Define bj,n =
n∑
k=0

(−1)kbj,k,n. Theorem

5 states that C(K−GN) =
n∑
j=0

bj,nB(N − j). Hence, a solution for C(K−GN)

of this form can always be found. We will refer to these bj,n as the Bell

number coefficients of K−GN . The following theorems involve the Bell number

coefficients of K−GN .

Theorem 18. If G is a subgraph of KN such that |E(G)| = k and |V (G)| = n

and bj,n represents the jth Bell number coefficient of K−GN , then |bj,n| ≤
(
k
j−1

)
.

Proof: If we define Sj,n =
∑

k is even

bj,k,n and Lj,n =
∑

k is odd

bj,k,n, then bj,n =

Sj,n − Lj,n.

Next, define an equivalence relation ∼ on P(G) as follows: for any A,B ∈

P(G), A ∼ B if and only if G[V (A)] = G[V (B)]. Every equivalence class will

contain exactly 1 member that is a composition of G and at least 1 member

that is a union of trees. It is trivial to notice that bj,n is maximized if every

subgraph of G with exactly j vertices and an even number of components

is a tree and an induced subgraph of G (i.e. Sj,n =
(
k
j−1

)
and Lj,n = 0)

and will be minimized if every subgraph of G with exactly j vertices and

28

an odd number of components is a tree and an induced subgraph of G (i.e.

Lj,n =
(
k
j−1

)
and Sj,n = 0). Hence, |bj,n| ≤

(
k
j−1

)
.

Theorem 19. If G1 and G2 are subgraphs of KN such that |V (G1)| = n1,

|V (G2)| = n2, and V (G1)∩ V (G2) = ∅ and bj,n1 denotes the Bell number co-

efficients of C(K−G1
N), bj,n2 the Bell number coefficients of K−G2

N , and bj,n1⊕n2

the Bell number coefficients of K
−(G1∪G2)
N , then bj,n1⊕n2 =

j∑
k=0

bk,n1 · bj−k,n2.

Proof: Define bj,k,n1 to be the number of compositions of G1 with k disjoint

bad components, where the cardinality of the union of vertex sets of said

disjoint bad components is j. Define bj,k,n2 and bj,k,n1⊕n2 analogously for G2

and G1 ∪G2 (respectively). Define

S(bj,n1) =
∑

k is even

bj,k,n1

and

L(bj,n1) =
∑

k is odd

bj,k,n1 .

If S(bj,n2), L(bj,n2), S(bj,n1⊕n2), and L(bj,n1⊕n2) are defined analogously, then

bj,i = Sj,i − Lj,i for i ∈ {n1, n2, n1 ⊕ n2}.

Sj,n1⊕n2 =
j∑

k=0

Sk,n1 · Sj−k,n2 +
j∑

k=0

Lk,n1 · Lj−k,n2

Lj,n1⊕n2 =
j∑

k=0

Sk,n1 · Lj−k,n2 +
j∑

k=0

Lk,n1 · Sj−k,n2 .

29

Since V (G1) ∩ V (G2) = ∅,

bj,n1+n2 = Sj,n1⊕n2 − Lj,n1⊕n2

=

j∑
k=0

(Sk,n1 · Sj−k,n2 + Lk,n1 · Lj−k,n2 − (Sk,n1 · Lj−k,n2 + Lk,n1 · Sj−k,n2))

=

j∑
k=0

Sk,n1(Sj−k,n2 − Lj−k,n2)− Lk,n1(Sj−k,n2 − Lj−k,n2)

=

j∑
k=0

(Sk,n1 − Lk,n1)(Sj−k,n2 − Lj−k,n2)

=

j∑
k=0

bk,n1 · bj−k,n2 .

3.3 Bounds on the Composition Number of

General Graphs

Lemma 1. If G is a graph such that |E(G)| = k, then C(G) ≤ 2k.

Proof: Every composition of G yields a unique subgraph of G (however, it

is possible for 2 subgraphs of G to determine the same composition of G).

Hence we can define an injective function f : C(G) → P(G). Therefore,

|P(G)| = 2k implies C(G) = |C(G)| ≤ 2k.

Theorem 20. If N ∈ Z+ and k ≤ N − 1 and G is a graph such that

|E(G)| = k, then C(K
−Sk+1

N) ≤ C(K−GN).

Proof: Let bj,n represent the jth Bell number coefficient of K−GN and sj,n

represent the jth Bell number coefficient of K
−Sk+1

N . Remark 2 yields s0,n =

b0,n = 1 and s1,n = b1,n = 0 and Remark 6 yields the result sj,n = −
(
k
j−1

)
for

30

j and n ≥ 2 and j ≤ n. Theorem 18 yields sj,n ≤ bj,n for 0 ≤ j ≤ n. Hence,

Theorem 20 is true.

Theorem 21. If G is a subgraph of KN such that |V (G)| ≤ N − 2, then

C(K
−(G∪{e})
N) ≤ C(K

−(G∪{e′})
N) for any e′ and e 6∈ E(K−GN), where e′ is not

incident to any vertex of V (G).

Proof: Let e and e′ be of the form outlined above. Let C1 = C(KN)\C
(
K
−(G∪{e′})
N

)
,

C2 ⊆ C(KN)\C
(
K
−(G∪{e})
N

)
where C ∈ C2 if and only if Gc[C] contains e

as a single edge component, and C3 = C(KN)\C2. Then C
(
K
−(G∪{e′})
N

)
=

B(N)− |C1| and C
(
K
−(G∪{e})
N

)
= B(N)− (|C2|+ |C3|). It is also trivial to

notice that |C1| = |C2|. Also, if e is not incident to some vertex in V (G),

then |C3| = 0; otherwise, |C3| > 0. Hence, C
(
K
−(G∪{e})
N

)
≤ C

(
K
−(G∪{e′})
N

)
.

Theorem 22. If G is a graph such that |E(G)| = k and 2k ≤ N ∈ Z+, then

C(K−GN) ≤ C(K−Dk
N).

Proof: Let C1 be the set of compositions of KN which are not compositions

of K−Dk
N , C2 be the set of compositions of KN which are not compositions of

K−GN and whose complements are comprised solely of single edge components

of G, and C3 be the set of compositions of KN which are not compositions

of K−GN that are not present in C2. C(K−Dk
N) = B(N)− |C1| and C(K−GN) =

B(N) − (|C2| + |C3|). It is trivial to notice that |C1| = |C2| and |C3| ≥ 0.

Hence, C(K−GN) ≤ C(K−Dk
N).

Corollary 1. If G is a graph such that E(G) = k and 2k ≤ N ∈ Z+, then

C(K
−Sk+1

N) ≤ C(K−GN) ≤ C(K−Dk
N).

31

Proof: The observation of k + 1 ≤ 2k for all k ∈ Z+, where 1 ≤ k allows us

to apply Theorems 22 and Theorem 20 simultaneously to C(K−GN). Hence,

Corollary 1 is verified.

32

Chapter 4

Connection to Aitken’s Array

4.1 Introduction

Aitken’s array is an array with a long history, appearing as early as 1880 in

[6]. The entry in the nth row and kth column is denoted by A(n, k), and is

defined as the number of partitions of the set {1, 2, ..., n + 1} which contain

{k + 1} as the largest singleton component. A portion of the array appears

below.

33

1

1 2

2 3 5

5 7 10 15

15 20 27 37 52

52 67 87 114 151 203

203 255 322 409 523 674 877

Table 4.1: Portion of Aitken’s array

Using the interpretation, it is trivial to notice that A(n, n) = B(n). Ad-

ditionally, it can be shown that A(n, n) = A(n + 1, 1). The theorems that

follow will use the interpretation of Aitken’s array provided by [8] to find

2 recurrences of Aitken’s array in terms of the Bell numbers. We then use

Theorem 10 to tie Aitken’s array to graph compositions. Theorem 24 and

Corollary 3 were originally found independently from the results of Sun and

Wu with Corollary 3 illustrating a very detailed connection between graph

compositions and Aitken’s array; access to the work of Sun and Wu, however,

34

allowed the connection to be shown in a more efficient way.

4.2 Previous Work

Previous work in Aitken’s array was performed by Sun and Wu in [8]. The

authors denoted A(n, k) by An,k and B(n) by Bn. The results from [8] listed

below are used to establish other connections between Aitken’s array and the

Bell number sequence.

Theorem 23. (Sun and Wu, [8]) For any integers n,m, and k ≥ 0,

1. An+m,m =
n∑
j=0

(−1)n−j
(
n
j

)
Bm+j.

2. An+m+k,m+k =
m∑
j=0

(
m
j

)
An+k+j,k.

Corollary 2. (Sun and Wu, [8]) For any integers n and m ≥ 0,

An+m+1,m+1 =
m∑
j=0

(
m

j

)
Bn+j.

The results that follow were proved using the survey of results above.

Theorem 24. For n and k ∈ Z+ and k ≤ n, A(n, k) =
n−k∑
j=0

(−1)j
(
n−k
j

)
B(n−

j).

Proof: By setting m = k and n = n−m in Theorem 23.1, then

A(n, k) =
n−k∑
j=0

(−1)n−k−j
(
n− k
j

)
B(k + j).

35

By setting j = n− k − j, we get

A(n, k) =
n−k∑
j=0

(−1)n−k−(n−k−j)
(

n− k
n− k − j

)
B(k + n− k − j)

=
n−k∑
j=0

(−1)j
(
n− k
j

)
B(n− j).

Corollary 3. A(n, k) =
k∑
j=1

(
k−1
j−1

)
B(n− j).

Proof: If we set k = m+ 1 in Corollary 2, then we get

A(n+ k, k) =
k−1∑
j=0

(
k − 1

j

)
B(n+ j)

=
k−1∑
j=0

(
k − 1

j

)
B(n+ (k − 1)− j)

=
k∑
j=1

(
k − 1

j − 1

)
B(n+ k − j).

Setting n = n− k in the above yields

A(n, k) =
k∑
j=1

(
k−1
j−1

)
B(n− j).

36

4.3 Connection to Graph Compositions

Corollary 4. C(K−Sk
n)− C(K

−Sk+1
n) = A(n, k).

Proof: Application of Theorem 10 yields

C(K−Sk
n+1) = B(n+ 1)−

k−1∑
j=1

(
k − 1

j

)
B(n− j)

C(K
−Sk+1

n+1) = B(n+ 1)−
k∑
j=1

(
k

j

)
B(n− j).

Hence

C(K−Sk
n+1)− C(K

−Sk+1

n+1) =
k∑
j=1

(
k

j

)
B(n− j)−

k−1∑
j=1

(
k − 1

j

)
B(n− j)

=
k−1∑
j=1

[((
k

j

)
−
(
k − 1

j

))
B(n− j)

]
+B(n− k)

=
k−1∑
j=1

[(
k − 1

j − 1

)
B(n− j)

]
+B(n− k)

=
k∑
j=1

(
k − 1

j − 1

)
B(n− j).

Therefore, by Corollary 3, C(K−Sk
n)− C(K

−Sk+1
n) = A(n, k).

37

Remark 9. The proof of Corollary 4 establishes the connection between

Aitken’s array and graph compositions. K−Sk
n+1\K

−Sk+1

n+1 is isomorphic to a

graph Kn and some isolated vertex v where exactly n − k + 1 edges span

V (Kn) and {v}. A(n, k) counts the number of compositions of this graph

that exist as a result of the addition of the (n− k + 1)st edge between V (Kn)

and {v}.

38

Chapter 5

Compositions of Graphs

Limiting the Number of

Components

5.1 Introduction

The previous chapters of this dissertation have dealt with finding the com-

position number of general graphs. The introduction of Chapter 1 discusses

the connection between graph compositions and partitions of positive inte-

gers. In a traditional number theory setting, it is common to discuss general

partitions of positive integers, and then move on to partitions which have

extra criteria added (e.g. compositions of positive integers with exactly k

components). This frame of mind is the motivation for Chapter 5, which

takes results from [4] and adds the extra criterion that each composition

counted in the composition number must have exactly k components. Not

39

surprisingly, Stirling numbers of the second kind play the role that the Bell

numbers do for compositions of a graph without restrictions on the number of

components. The results of Chapter 5 are interesting as they help us to more

clearly understand the results of Knopfmacher and Mays [4]. The results for

the composition number of 2 graphs which are disjoint or share exactly one

vertex are of particular interest since the results are identical in [4], but differ

slightly in this chapter, which was an unexpected surprise.

Recall that Stirling numbers of the second kind is the number of partitions

of a set S such that |S| = n, where every element of the partition has exactly

k non-empty subsets of S. This means that S(n, k) also counts the num-

ber of partitions of the positive integer n which contain exactly k positive

summands. A portion of the array appears below.

40

1

1 1

1 3 1

1 7 6 1

1 15 25 10 1

1 31 90 65 15 1

1 63 301 350 140 21 1

Table 5.1: Portion of Stirling Numbers of the 2nd Kind

For a graph G, Ck(G) will be used to denote the number of compositions

of G with exactly k components where |V (G)| = n. For the theorems that

follow, unless otherwise specified, it will be understood that 0 < k ≤ n.

Lemma 2. C(G) =
n∑
k=1

Ck(G) for any graph G such that |V (G)| = n.

Remark 10. The above lemma may seem trivial, but it is none-the-less useful

for verifying Ck(G) once it is found. It should also be noted that C1(G) = 1

and Cn(G) = 1. Furthermore, Ck(G) = 0 for k > n.

41

5.2 Common Graphs

Theorem 25. If Tn is a tree with n vertices, then Ck(Tn) =
(
n−1
k−1

)
.

Proof: It is well known that Tn has exactly n− 1 edges. Furthermore, it is

trivial to notice that the deletion of a single edge from any subgraph of Tn

will result in a distinct subgraph which has exactly 1 more component than

the original subgraph. Since Tn has 1 component to begin with, we must

delete k − 1 edges to produce a subgraph of Tn which will contain exactly k

components. Hence Ck(Tn) =
(
n−1
k−1

)
.

Lemma 3. Ck(Kn) = S(n, k).

Remark 11. Theorem 25 and Lemma 3 are extreme cases for any connected

graph G such that |V (G)| = n. Hence, it is easily observed that
(
n−1
k−1

)
≤

Ck(G) ≤ S(n, k) for any connected G such that |V (G)| = n.

Theorem 26. If G = G1∪G2 where V (G1)∩V (G2) = ∅ and E(G1)∩E(G2) =

∅, then Ck(G) =
k−1∑
j=1

[
Cj(G1) · Ck−j(G2)

]
.

Proof: Let k ≥ j ∈ Z+ and C be a composition of G1 which has j compo-

nents. Then there are exactly Ck−j(G2) components of G which contain C

and have exactly k components. Hence, Ck(G) =
k−1∑
j=1

[
Cj(G1) · Ck−j(G2)

]
.

Corollary 5. If G = G1 ∪ G2 where |V (G1) ∩ V (G2)| = 1 and E(G1) ∩

E(G2) = ∅, then Ck(G) =
k∑
j=1

[
Cj(G1) · Ck+1−j(G2)

]
.

Proof: Let v be the vertex which V (G1) and V (G2) share and C ∈ Ck(G).

If we separate C into 2 disjoint graphs by disconnecting v from all vertices

in V (G2) and adding a new vertex which is adjacent to all of the original

42

neighbors of v in V (G2), then the result is a composition of k+1 components.

Hence by Theorem 26, Ck(G) =
k∑
j=1

[
Cj(G1) · Ck+1−j(G2)

]
.

Theorem 27. If G = G1 ∪G2 where V (G1)∩ V (G2) = ∅ and G has exactly

one edge incident to vertices from G1 and G2, then Ck(G) =
k−1∑
j=1

Cj(G1) ·[
Ck+1−j(G2) + Ck−j(G2)

]
+ Ck(G1).

Proof: Let e be the edge incident to vertices in G1 and G2 and C ∈ Ck(G).

If the vertices of e in C are connected, then C−{e} will have exactly k + 1

components. Hence, there are exactly Ck+1(G−{e}) compositions of this form.

Also, there are Ck(G−{e}) compositions of G−{e} in which the vertices of e

are not connected. Theorem 26 yields the results

Ck+1(G−{e}) =
k∑
j=1

[
Cj(G1) · Ck+1−j(G2)

]
Ck(G−{e}) =

k−1∑
j=1

[
Cj(G1) · Ck−j(G2)

]
.

Hence, Ck(G) = Ck+1(G−{e}) + Ck(G−{e})

=
k∑
j=1

[
Cj(G1) · Ck+1−j(G2)

]
+

k−1∑
j=1

[
Cj(G1) · Ck−j(G2)

]
=

k−1∑
j=1

Cj(G1) ·
[
Ck+1−j(G2) + Ck−j(G2)

]
+ Ck(G1) · C1(G2)

=
k−1∑
j=1

Cj(G1) ·
[
Ck+1−j(G2) + Ck−j(G2)

]
+ Ck(G1).

Theorem 28. Ck(K−n) = S(n, k)− S(n− 2, k − 1).

Proof: If C is a composition of Kn that has exactly k components, then C

will not be a composition of K
−{e}
n if and only if e is a singleton component

43

of C. There are exactly S(n−2, k−1) of these types of compositions. Hence,

Theorem 28 is true.

Theorem 29. Ck(Cn) =

1, k = 1(
n
k

)
, 1 < k ≤ n

Proof: k = 1 is the trivial case of our theorem and is discussed in Remark

10. Assume that k > 1. Deleting a single edge from Cn yields Pn. Theorem

25 yields Ck(Pn) =
(
n−1
k−1

)
. Hence, Ck(Cn) =

(
n
k

)
.

5.3 Deletions of General Graphs from Com-

plete Graphs

Theorem 30. Let G be a graph with n ≤ N vertices. If bj,m,n represents

the number of ways of choosing m disjoint bad components of K−GN such

that the cardinality of the union of vertices of all bad components is j, then

Ck(K−GN) =
n∑
j=0

j∑
m=0

(−1)mbj,m,n · S(N − j, k −m).

Proof: We begin by denoting the set of all compositions of KN with exactly

k components by Γ. If B(γ) denotes the number of disjoint bad components

contained in γ for all γ ∈ Γ, then

Ck(K−GN) =
∑
γ∈Γ

B(γ)=0

1 =
∑
γ∈Γ

B(γ)=0

1 +
∑
γ∈Γ

B(γ)6=0

0 =
∑
γ∈Γ

B(γ)∑
m=0

(−1)m
(
B(γ)

m

)

44

since the alternating sum of the mth row of Pascal’s Triangle is 0 for m > 0

and 1 for m = 0. Note that
(
B(γ)
m

)
will count the number of times γ is counted

as a composition of KN with at least m disjoint bad components for a fixed

γ and m.

∑
γ∈Γ

B(γ)∑
m=0

(
B(γ)

m

)
=

n∑
j=0

n∑
m=0

bj,m,nS(N − j, k −m).

So

Ck(K−GN) =
∑
γ∈Γ

B(γ)∑
m=0

(−1)m
(
B(γ)

m

)

=
n∑
j=0

n∑
m=0

(−1)mbj,m,nS(N − j, k −m).

Remark 12. It is important for later theorems to note that

• bj,m,n = 0 if j > n, m > j, or m > n.

• b0,0,n = 1.

• b1,m,n = 0.

5.4 Deletions of Specific Graphs From Com-

plete Graphs

Theorem 31. Let n and N be positive integers with n ≤ N . If pj,m,n

represents the number of ways of choosing m disjoint bad components of

K−Pn
N such that the cardinality of the union of vertices of all components

45

is j, then Ck(K−Pn
N) =

n∑
j=0

j∑
m=0

(−1)mpj,m,n · S(N − j, k − m) and pj,m,n =

pj,m,n−1 + pj−2,m−1,n−2 + pj−3,m−1,n−3.

Proof: Ck(K−Pn
N) =

n∑
j=0

j∑
m=0

(−1)mpj,m,n · S(N − j, k − m) is a result of

application of Theorem 30 to K−Pn
N . If C is a composition of KN , then C will

not be a composition of K−Pn
N if and only if C contains a bad component

of K−Pn
N . Theorem 6 yields that all bad components of K−Pn

N will be either

single edge components or subpaths of Pn of length 2.

If u represents one of the terminal vertices of Pn and C is a component

which contains u, then one of three cases must occur:

1. C is not a bad component. There are pj,m,n−1 ways of choosing m disjoint

bad components from V (Pn) such that the cardinality of the union of vertices

of all components which include C is j.

2. C is a single edge bad component. There are pj−2,m−1,n−2 ways of choosing

m disjoint bad components from V (Pn) such that the cardinality of union of

vertices of components which include C is j.

3. C is a 3-element bad component. There are pj−3,m−1,n−3 ways of choosing

m disjoint bad components from V (Pn) such that the cardinality of union of

vertices of components which include C is j.

The above “world encompassing” cases yield the result

pj,m,n = pj,m,n−1 + pj−2,m−1,n−2 + pj−3,m−1,n−3.

46

Theorem 32. If F k(x, y, z) =
∞∑
j=0

∞∑
m=0

∞∑
n=0

pj,m,nx
nymzj, then F k(x, y, z) =

1
1−x−x2yz2−x3yz3 .

Proof: As stated in Theorem 31, pj,m,n is the number of ways of choosing

m disjoint bad components of K−Pn
N where the cardinality of bad vertices is

j. Every vertex in Pn is either:

• A good vertex - represented by x.

• Contained in a 2 element bad component- represented by x2yz2.

• Contained in a 3 element (non-cyclic) bad component- represented by

x3yz3.

(x+ x2yz2 + x3yz3)m represents the number of ways one can choose at most

m disjoint bad components of K−Pn
N . F k(x, y, z) contains coefficients for all

m, so

F k(x, y, z) =
∞∑
m=0

(x+ x2yz2 + x3yz3)m

=
1

1− (x+ x2yz2 + x3yz3)

=
1

1− x− x2yz2 − x3yz3
.

Theorem 33. Let n and N be positive integers with n ≤ N . If pj,m,n is

defined as in Theorem 31 and cj,m,n represents the number of ways of choosing

m disjoint bad components of K−Cn
N where the number of vertices of the bad

components is j, then Ck(K−Cn
N) =

n∑
j=0

j∑
m=0

(−1)mcj,m,n · S(N − j, k −m) and

cj,m,n = pj,m,n−1 +2 ·pj−2,m−1,n−2 +3 ·pj−3,m−1,n−3 for j and n ≥ 3, and n 6= j

for n ∈ {3, 4}.

47

Proof: Ck(K−Cn
N) =

n∑
j=0

j∑
m=0

(−1)mcj,m,n · S(N − j, k − m) follows from the

application of Theorem 30 to K−Cn
N . If C is a composition of KN , then C will

not be a composition of K−Cn
N if and only if C contains a bad component of

K−Cn
N .

We next describe the bad components of K−Cn
N . Theorem 8 tells us that

bad components of K−Cn
N are limited to subpaths of length 1 and 2 of Cn and

3 and 4 element cyclic components of Cn.

If w ∈ V (Cn) and Cw ∈ C contains w, then one of four cases occurs:

1. Cw is not a bad component. There are pj,m,n−1 ways of choosing m

disjoint bad components from V (Cn) (with cardinality of the union of ver-

tices j) which do not include Cw.

2. Cw is a 2-element bad component. There are 2·pj−2,m−1,n−2 ways of choos-

ing m disjoint bad components from V (Cn) (with cardinality of the union of

vertices j) which include Cw.

3. Cw is a 3-element bad component. If Cw is a path (n > 3), then there

are 3·pj−3,m−1,n−3 ways of choosing m disjoint bad components from V (Cn)

(with cardinality of the union of vertices j) which include Cw. If Cw is a

cycle (n = 3), then there is exactly one way of choosing 1 bad component.

4. Cw is a 4-element bad component. There is exactly one way of choos-

ing 1 bad component.

48

The above “world encompassing” cases give us

cj,m,n = pj,m,n−1 + 2 · pj−2,m−1,n−2 + 3 · pj−3,m−1,n−3.

Theorem 34. If Gk(x, y, z) =
∞∑
j=0

∞∑
m=0

∞∑
n=0

cj,m,nx
nymzj, then Gk(x, y, z) =

1− 2x3yz3 + x4yz4 + x+2x2yz2+3x3yz3

1−x−x2yz2−x3yz3 .

Proof: The proof of Theorem 34 is similar to that of Theorem 32. The

formula must be adjusted since there are 2 ways of choosing a bad edge for

every vertex in V (Cn) and 3 ways of choosing a bad subpath of length 2 for

every vertex in V (Cn). The coefficients for x3yz3 and x4yz4 do not follow

from the recurrence listed in Theorem 32, prompting the need for error terms

which will correct the coefficients of the preceding terms.

Theorem 35. If n+1 ≤ N , then Ck(K
−Sn+1

N) = S(N, k)−
n∑
j=1

(
n
j

)
S(N− (j+

1), k − 1).

Proof: Let sj,m,n represent the number of ways of choosing exactly m dis-

joint components from Sn such that the cardinality of the set of vertices of

the components chosen is j. As stated in Theorem 10, all bad components of

K
−Sn+1

N will be Sj+1 ⊆ Sn+1 for 1 ≤ j ≤ n. This further implies m ∈ {0, 1}.

It is easily verified that

sj,1,n =

(
n− 1

j − 1

)
.

Hence, by Theorem 30, Ck(K
−Sn+1

N) = S(N, k)−
n∑
j=1

(
n
j

)
·S(N−(j+1), k−1).

Corollary 6. If Sk(x, y) =
∞∑
j=0

∞∑
m=0

∞∑
n=0

sj,m,nx
nyj, then Sk(x, y) = 1

1−x+xy
.

49

Proof: The coefficients of formulae in Theorems 10 and 35 match. This

means that the generating functions for both sets of coefficients must also

match. Hence, the result is true by Theorem 11.

Theorem 36. If 2n ≤ N , then Ck(K−Dn
N) = S(N, k) −

n∑
j=1

(−1)j
(
n
j

)
S(N −

2j, k − j).

Proof: Let dj,m,2n represent the number of ways of choosing exactly m

disjoint components from Dn such that the cardinality of the set of vertices

of the components chosen is j. Note that dj,m,2n = 0 if j is odd or j 6= 2m.

Also d2j,j,2n =
(
n
j

)
. Hence,

C(K−Dn
N) =

2n∑
j=0

j∑
m=0

(−1)mdj,m,2nS(N − j, k −m)

=
2n∑
j=0

∑
m= j

2

(−1)mdj,m,2nS(N − j, k −m)

=
n∑
j=0

(−1)jd2j,j,2nS(N − 2j, k − j)

=
n∑
j=0

(−1)j
(
n

j

)
S(N − 2j, k − j).

Corollary 7. If Dk(x, y) =
∞∑
j=0

∞∑
m=0

∞∑
n=0

dj,m,nx
nyj, then Dk(x, y) = 1

1−x+xy
.

Proof: The coefficients of formulae in Theorems 12 and 36 match. This

means that the generating functions for both sets of coefficients must also

match. Hence, the result is true by Theorem 13.

50

Appendix A

CompositionCounter

The following is the source code for a program affectionately dubbed “Com-

positionCounter”. During the early stages of research, data on the composi-

tion numbers of certain graphs was needed in order to gain some intuition on

the subject. Analysis of this data led to the main results of Chapter 2. The

program was written using Java. It uses a GUI to receive the edges of a graph

(using 2 positive integers separated by a comma as input) and the number of

components that each composition is to have (also using a positive integer).

The output of the program is the composition number of the specified graph

with the specified number of components. If the component number field

is left blank, then the composition number is displayed by default. In the

interest of saving time and memory, the number of compositions where the

number of components is the same as the number of vertices of the graph is

never considered in the count. There is always one such composition when

this event occurs, so there is no need to compute it. If the entire composition

number of a graph is sought, then 1 is added to the count to compute the

51

composition number. An unfortunate side effect of the utilization of this

method is the program yields an incorrect answer of 0 if the number of ver-

tices of the specified graph is listed as the component number. An example

graph along with the input and output for the graph is given below.

r
r

r r1

2

3 4�
�
�
��

A
A
A
AA

input:

edge: 1,2
edge: 2,3
edge: 1,3
edge: 3,4
number of components: 〈blank〉

output: 10

CompositionCounter.java
import java.awt .*;
import java.util .*;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;

import javax.swing .*;
import javax.swing.event.DocumentEvent;
import javax.swing.event.DocumentListener;
import javax.swing.event.ListSelectionEvent;
import javax.swing.event.ListSelectionListener;

public class CompositionCounter extends JFrame
implements ActionListener , DocumentListener ,

52

ListSelectionListener
{
JLabel inputLabel;
JLabel compLabel;
JLabel outputLabel;

JTextField inputTF;
JTextField compTF;
JTextField outputTF;

JPanel ioPanel;
JPanel layoutPanel;
JPanel inputButtonPanel;
JPanel componentsPanel;
JPanel inputPanel;
JPanel inputEdgePanel;
JPanel inputCompPanel;
JPanel outputPanel;

DefaultListModel inputList;
JList inputListBox;
JScrollPane inputScrollPane;

JButton genButton;
JButton inputButton;
JButton removeButton;
JButton clearButton;

EdgeSet edgeSet;
PowerSet powerSet;
CompositionSet compSet;

public static void main(String [] args)
{
new CompositionCounter ();
}

CompositionCounter ()
{
inputLabel = new JLabel ("Edge ");
compLabel = new JLabel (" Number of Components: ");
outputLabel = new JLabel (" Number of Compositions: ");

inputTF = new JTextField (10);
compTF = new JTextField (5);
outputTF = new JTextField (5);

inputTF.getDocument (). addDocumentListener(this);
compTF.getDocument (). addDocumentListener(this);

outputTF.setEditable(false);

ioPanel = new JPanel(new GridLayout (2 ,1));
layoutPanel = new JPanel(new BorderLayout ());
inputButtonPanel = new JPanel(new FlowLayout ());

53

componentsPanel = new JPanel(new GridLayout (2 ,1));
inputPanel = new JPanel(new GridLayout (2 ,1));
inputEdgePanel = new JPanel(new FlowLayout ());
inputCompPanel = new JPanel(new FlowLayout ());
outputPanel = new JPanel(new FlowLayout ());

inputList = new DefaultListModel ();
inputListBox = new JList(inputList);

genButton = new JButton ("Count Compositions ");
inputButton = new JButton ("Enter Edge ");
removeButton = new JButton (" Remove Edge ");
clearButton = new JButton ("Clear List ");

edgeSet = new EdgeSet ();
compSet = new CompositionSet ();
inputButton.addActionListener(this);
inputButton.setActionCommand ("INPUT ");

genButton.addActionListener(this);
genButton.setActionCommand (" GENERATE ");

removeButton.addActionListener(this);
removeButton.setActionCommand (" REMOVE ");

clearButton.addActionListener(this);
clearButton.setActionCommand ("CLEAR ");

inputButton.setEnabled(false);
genButton.setEnabled(false);
removeButton.setEnabled(false);

inputListBox.addListSelectionListener(this);
inputScrollPane = new JScrollPane(inputListBox);

setupComponents ();
setupCompositionCounter ();
}

public void setupCompositionCounter ()
{
Toolkit tk;
Dimension d;

tk = Toolkit.getDefaultToolkit ();

d = tk.getScreenSize ();

setLocation(d.width/4, d.height /4);
setSize (600, 700);

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
setTitle (" Composition Counter ");

54

setVisible(true);
}

public void setupComponents ()
{
inputEdgePanel.add(inputLabel);
inputEdgePanel.add(inputTF);

inputCompPanel.add(compLabel);
inputCompPanel.add(compTF);

inputPanel.add(inputEdgePanel);
inputPanel.add(inputCompPanel);

outputPanel.add(outputLabel);
outputPanel.add(outputTF);

inputButtonPanel.add(inputButton);
inputButtonPanel.add(removeButton);
inputButtonPanel.add(genButton);
inputButtonPanel.add(clearButton);

componentsPanel.add(inputPanel);
componentsPanel.add(inputButtonPanel);

ioPanel.add(componentsPanel);
ioPanel.add(outputPanel);

layoutPanel.add(ioPanel , BorderLayout.CENTER);
layoutPanel.add(inputScrollPane , BorderLayout.EAST);

getRootPane (). setDefaultButton(inputButton);
getContentPane (). add(layoutPanel);

inputTF.requestFocus ();
}

public void valueChanged(ListSelectionEvent e)
{
if (! inputListBox.isSelectionEmpty ())

{
genButton.setEnabled(true);
removeButton.setEnabled(true);
}

else
{
genButton.setEnabled(false);
removeButton.setEnabled(false);
}

}

55

public void actionPerformed(ActionEvent e)
{
if (e.getActionCommand (). equals (" INPUT "))

{
StringTokenizer strTok;
String input;

int x;
int y;

input = inputTF.getText (). trim ();
strTok = new StringTokenizer(input , ",");

x = Integer.parseInt(strTok.nextToken (). trim ());
y = Integer.parseInt(strTok.nextToken (). trim ());

if (x > y)
{
x += y;
y = x-y;
x = x-y;
}

if (! inputList.contains(x + "," + y))
inputList.addElement(x + "," + y);

inputButton.setEnabled(false);
inputTF.setText ("");
inputTF.requestFocus ();

inputListEmpty ();
outputTF.setText ("");
}

else if (e.getActionCommand (). equals (" GENERATE "))
{
int k;
Edge e0;
String input;
int numCompositions;
int numComponents;

compSet.clear ();
compSet.setMaxVertex (0);

for(k=0; k < inputList.size (); k++)
{
e0 = new Edge((String)(inputList.getElementAt(k)));
edgeSet.add(e0);

if (compSet.getMaxVertex () <= e0.e1)

56

compSet.setMaxVertex(e0.e1);

if (compSet.getMaxVertex () <= e0.e2)
compSet.setMaxVertex(e0.e2);

}

edgeSet.setCardinality(inputList.size ());
powerSet = new PowerSet(edgeSet);

compSet.getPowerSet(powerSet);
compSet.buildCompositions ();

input = compTF.getText (). trim ();

numCompositions = 0;

if (input.isEmpty ())
numCompositions = compSet.getCardinality () + 1;

else
{
numComponents = Integer.parseInt(input);

for (k=0; k < compSet.getCardinality (); k++)
{
if (compSet.get(k). getCardinality () == numComponents)

numCompositions ++;
}

}

outputTF.setText(new Integer(numCompositions). toString ());

for (k=0; k < compSet.getCardinality (); k++)
{
compSet.get(k). print ();
System.out.println ("\n");
}

edgeSet.clear ();
genButton.setEnabled(false);
}

else if (e.getActionCommand (). equals (" REMOVE "))
{
int k;

k = inputListBox.getSelectedIndex ();

while (k != -1)
{
inputList.remove(k);
k = inputListBox.getSelectedIndex ();
}

57

removeButton.setEnabled(false);
inputTF.requestFocus ();

inputListEmpty ();
outputTF.setText ("");
}

else if (e.getActionCommand (). equals (" CLEAR "))
{
inputList.clear ();
outputTF.setText ("");
}

}

public void insertUpdate(DocumentEvent e)
{
inputButton.setEnabled ((validateInput ()));
genButton.setEnabled(validateCompTF ());
}

public void removeUpdate(DocumentEvent e)
{
inputButton.setEnabled ((validateInput ()));
genButton.setEnabled(validateCompTF ());
}

public void changedUpdate(DocumentEvent e)
{

}

public void inputListEmpty ()
{
genButton.setEnabled (! inputList.isEmpty ());
}

public boolean validateCompTF ()
{
String input;
boolean myReturn;
int numInput;

input = compTF.getText (). trim ();

myReturn = false;
if (input.isEmpty ())

myReturn = true;

else

58

{
try

{
numInput = Integer.parseInt(input);

if (numInput > 0)
myReturn = true;

}

catch(Exception e)
{

}
}

return myReturn;
}

public boolean validateInput ()
{
boolean myReturn;
String input;
StringTokenizer strTok;

int x;
int y;

myReturn = false;

input = inputTF.getText (). trim ();

strTok = new StringTokenizer(input , ",");

if (strTok.countTokens () == 2)
{
try

{
x = Integer.parseInt(strTok.nextToken (). trim ());
y = Integer.parseInt(strTok.nextToken (). trim ());

if (x > 0 && y > 0)
myReturn = true;
}

catch (Exception e)
{

}
}

return myReturn;
}
}

class Edge extends Object

59

{
int e1;
int e2;

Edge(String s)
{
StringTokenizer str;

str = new StringTokenizer(s, ",");

e1 = Integer.valueOf(str.nextToken (). trim ()). intValue ();
e2 = Integer.valueOf(str.nextToken (). trim ()). intValue ();
}

public void print()
{
System.out.print ("{" + e1 + ", " + e2 + "}");
}
}

class EdgeSet extends Vector <Edge >
{
private int cardinality;

EdgeSet ()
{
cardinality = 0;
}
public void print()
{
int k;
System.out.print ("{");

for(k=0; k < size (); k++)
{
super.get(k).print ();

if (k < size() - 1)
System.out.print(", ");

}

System.out.print ("}");
}

public void setCardinality(int x)
{
cardinality = x;
}

public int getCardinality ()
{
return cardinality;
}
}

60

class PowerSet extends Vector <EdgeSet >
{
private int cardinality;

PowerSet(EdgeSet e)
{
EdgeSet e2;

int exp;
int exp2;

int k;
int k2;

int j;

boolean positionFound;

exp = e.getCardinality ();

cardinality = 1;

for (k=0; k < exp; k++)
cardinality *= 2;

cardinality --;

for (k=0; k < cardinality; k++)
{
e2 = new EdgeSet ();
k2 = k+1;
exp2 = exp;

while ((int)Math.pow(2, exp2) > k2)
exp2 --;

while (k2 > 0)
{
if ((int)Math.pow(2,exp2) <= k2)
{
if (e2.isEmpty ())
e2.add(e.get(exp2));

else
{
positionFound = false;

for (j=0; j < e2.size() && !positionFound; j++)
{
if (e2.get(j).e1 > e.get(exp2).e1)

{
positionFound = true;
e2.add(j, e.get(exp2));
}

61

else if (e2.get(j).e1 == e.get(exp2).e1)
{
if (e2.get(j).e2 > e.get(exp2).e2)

{
positionFound = true;
e2.add(j, e.get(exp2));
}

}
}

if (! positionFound)
e2.add(e.get(exp2));
}

e2.setCardinality(e2.size ());
k2 -= (int)Math.pow(2,exp2);
}
exp2 --;
}
add(e2);
}

}

public void print()
{
int k;

System.out.print ("{");
for(k=0; k < size (); k++)

{
super.get(k).print ();

if (k < size() - 1)
System.out.print(", ");
}

System.out.print ("}");
}

public int getCardinality ()
{
return cardinality;
}
}

class Component extends Vector <Integer >
{
private int cardinality;
private int maxVertex;
Component ()
{
cardinality = 0;
maxVertex = 0;
}

62

Component(int x)
{
add(new Integer(x));
cardinality = 1;
maxVertex = x;
}

Component (Component c)
{
int k;

cardinality = c.getCardinality ();
maxVertex = c.getMaxVertex ();

for (k=0; k < cardinality; k++)
add(c.get(k));

}

public void print()
{
int k;

System.out.print ("{");

for (k=0; k < size (); k++)
{
System.out.print(get(k). intValue ());
if (k < size ()-1)
System.out.print(", ");
}

System.out.print ("}");
}

public void setCardinality(int x)
{
cardinality = x;
}

public int getCardinality ()
{
return cardinality;
}

public boolean intersects(Component c)
{
boolean intersects = false;

int j;
int k;

63

for (j=0; j < getCardinality () && !intersects; j++)
{
for (k=0; k < c.getCardinality () && !intersects; k++)

{
if (get(j). intValue () == c.get(k). intValue ())
intersects = true;
}

}
return intersects;
}

public void merge(Component c)
{
int k;
int j;

if (getMaxVertex () < c.getMaxVertex ())
setMaxVertex(c.getMaxVertex ());

for(k=0; k < c.getCardinality (); k++)
{
j=0;
while (j < getCardinality () && (get(j). intValue () < c.get(k). intValue ()))

j++;

if (j == getCardinality () && (get(j-1). intValue () < c.get(k). intValue ()))
add(c.get(k));

else if (get(j). intValue () > c.get(k). intValue ())
add(j, c.get(k));

setCardinality(size ());
}

c.clear ();
}

public void setMaxVertex(int x)
{
maxVertex = x;
}
public int getMaxVertex ()
{
return maxVertex;
}

public boolean contains (int x)
{
int k;
boolean contains;
contains = false;
for (k=0; (k < cardinality) && !contains && (get(k). intValue () <= x); k++)

{
if (get(k). intValue () == x)

64

contains = true;
}

return contains;
}

public boolean equals (Component c)
{
int k;
boolean notEqual;

notEqual = false;

if (cardinality != c.getCardinality ())
notEqual = true;

if (! notEqual)
{
for (k=0; k < cardinality && !notEqual; k++)

{
if (get(k). intValue () != c.get(k). intValue ())
notEqual = true;
}

}

return !notEqual;
}
}

class Composition extends Vector <Component >
{
private int cardinality;
private int maxVertex;

Composition ()
{
cardinality = 0;
maxVertex = 0;
}

public void print()
{
int k;
System.out.print ("{");
for(k=0; k < size (); k++)

{
super.get(k).print ();

if (k < size() - 1)
System.out.print(", ");
}

System.out.print ("}");
}

65

public void setCardinality(int x)
{
cardinality = x;
}

public int getCardinality ()
{
return cardinality;
}

public void sweep()
{
int k;

for (k=0; k < getCardinality (); k++)
{
if (get(k). isEmpty ())

{
remove(k);
setCardinality(size ());
}

}
}

public void addMissingComponents(int m)
{
int j;
int k;

Vector <Component > singleComponents;

singleComponents = new Vector <Component >();

boolean componentContainsJ;

for (j=m; j > 0; j--)
{
componentContainsJ = false;
for (k=0; k < cardinality && !componentContainsJ; k++)
{
if(get(k). contains(j))
componentContainsJ = true;
}

if (! componentContainsJ)
singleComponents.add(new Component(j));
}

for (k=0; k < singleComponents.size (); k++)
add(singleComponents.get(k));

setCardinality(size ());
}

public void sort()

66

{
int j;
int k;

int n;

boolean swapped;

Component c;

for (j=0; j < cardinality; j++)
{
for (k=j+1; k < cardinality; k++)

{
if (get(j). getCardinality () > get(k). getCardinality ())

{
c = new Component(get(j));
set(j, get(k));
set(k, c);
}

else if (get(j). getCardinality () == get(k). getCardinality ())
{
swapped = false;
for (n = 0; n < get(j). getCardinality () && !swapped; n++)

{
if (get(j).get(n). intValue () > get(k).get(n). intValue ())

{
c = new Component(get(j));
set(j, get(k));
set(k, c);
swapped = true;
}

else if (get(j).get(n). intValue () < get(k).get(n). intValue ())
swapped = true;
}

}
}

}
}

public int getMaxVertex ()
{
return maxVertex;
}

public void setMaxVertex(int x)
{
maxVertex = x;
}

public boolean equals(Composition c)
{
int k;

67

boolean notEqual;

notEqual = false;

if (cardinality != c.getCardinality ())
notEqual = true;

if (! notEqual)
{
for (k=0; k < cardinality && !notEqual; k++)

{
if (!get(k). equals(c.get(k)))

notEqual = true;
}

}

return !notEqual;
}
}

class CompositionSet extends Vector <Composition >
{
private int cardinality;
private int maxVertex;

CompositionSet ()
{

}

public int getMaxVertex ()
{
return maxVertex;
}

public void setMaxVertex(int x)
{
maxVertex = x;
}

public void getPowerSet(PowerSet powerSet)
{
Composition comp;
Component c;

int k;
int j;

cardinality = powerSet.getCardinality ();

for (k=0; k < cardinality; k++)
{
comp = new Composition ();
for (j=0; j < powerSet.get(k). getCardinality (); j++)

68

{
c = new Component ();
c.add(new Integer(powerSet.get(k).get(j).e1));
c.add(new Integer(powerSet.get(k).get(j).e2));
c.setMaxVertex(powerSet.get(k).get(j).e2);
c.setCardinality(c.size ());
comp.add(c);

if (comp.getMaxVertex () < c.getMaxVertex ())
comp.setMaxVertex(c.getMaxVertex ());

}
comp.setCardinality(comp.size ());
add(comp);
}

}

public void buildCompositions ()
{
int k;

k = 0;
while (k < cardinality)

{
while (intersection(get(k)))
merge(get(k));

get(k).sort ();
get(k). addMissingComponents(getMaxVertex ());

k = trim(get(k), k);
}

}

public boolean intersection(Composition c)
{
int j;
int k;

boolean intersection;

intersection = false;
for (j=0; j < c.getCardinality () && !intersection; j++)

{
for (k=j+1; k < c.getCardinality () && !intersection; k++)

{
if (c.get(j). intersects(c.get(k)))

intersection = true;
}

}

return intersection;
}

public void print()

69

{
int k;

System.out.print ("{");
for(k=0; k < size (); k++)

{
get(k). print ();

if (k < size() - 1)
System.out.print(", ");

}

System.out.print ("}");
}

public void merge(Composition c)
{
int j;
int k;
boolean mergeComplete;

mergeComplete = false;

for(j=0; j < c.getCardinality () && !mergeComplete; j++)
{
for(k=j+1; k < c.getCardinality () && !mergeComplete; k++)

{
if (!(c.get(j). isEmpty () || c.get(k). isEmpty ()))

{
if (c.get(j). intersects(c.get(k)))

{
c.get(j). merge(c.get(k));
mergeComplete = true;
}

}
c.get(j). setCardinality(c.get(j).size ());
}

c.sweep ();
}

}

public int trim(Composition c, int position)
{
int k;
boolean found;

found = false;
for (k=0; k < position && !found; k++)

{
if (c.equals(get(k)))

{
remove(c);
cardinality --;
found = true;

70

}

}

if (!found)
position ++;

return position;
}

public void sweep()
{
int k;

Vector <Composition > removeCompositions;

removeCompositions = new Vector <Composition >();

k = 0;
while (k < cardinality)

{
if (get(k). isEmpty ())

{
removeCompositions.add(get(k));
cardinality = size ();
}

else
k++;
}

}

public int getCardinality ()
{
return cardinality;
}
}

class TFunction
{
TFunction ()
{

}

public static void pause()
{
System.out.println (" Press any key to continue ...");
new Scanner(System.in). nextLine ();
}
}

71

Bibliography

[1] H.W. Gould, Research bibliography of two special sequences, Sixth Edition, 1985.

[2] Hyeong-Kwan Ju and Seunghyun Seo, Enumeration of (0,1)-matrices avoiding some

2 x 2 matrices, Discrete Math 312 (2012), 2473–2481.

[3] Brian Kell, Compositions of series-parallel graphs, Unpublished, 3 2006.

[4] A. Knopfmacher and M.E. Mays, Graph compositions 1: Basic enumeration, Integers

1 (2001), 1–11.

[5] Eunice Mphako-Banda, Graph compositions and flats of cycle matroids, Quaestiones

Mathematicae 32 (2009), 523–527.

[6] C.S. Peirce, On the algebra of logic, Amer. J. Math 3 (1880), 15–57.

[7] J.N. Ridley and M.E. Mays, Compositions of unions of graphs, Fibonacci Quart. 42

(2004), 222–230.

[8] Yidong Sun and Xiaojuan Wu, The largest singletons of set partitions, European J.

Combin 32 (2011), 369–382.

72

	Topics in Graph Compositions
	Recommended Citation

	tmp.1568233084.pdf.ilJ7I

