
Graduate Theses, Dissertations, and Problem Reports 

2017 

A Data-Driven Smart Proxy Model for a Comprehensive Reservoir A Data-Driven Smart Proxy Model for a Comprehensive Reservoir 

Simulation Simulation 

Faisal Alenezi 

Follow this and additional works at: https://researchrepository.wvu.edu/etd 

Recommended Citation Recommended Citation 
Alenezi, Faisal, "A Data-Driven Smart Proxy Model for a Comprehensive Reservoir Simulation" (2017). 
Graduate Theses, Dissertations, and Problem Reports. 5055. 
https://researchrepository.wvu.edu/etd/5055 

This Dissertation is protected by copyright and/or related rights. It has been brought to you by the The Research 
Repository @ WVU with permission from the rights-holder(s). You are free to use this Dissertation in any way that is 
permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain 
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license 
in the record and/ or on the work itself. This Dissertation has been accepted for inclusion in WVU Graduate Theses, 
Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. 
For more information, please contact researchrepository@mail.wvu.edu. 

https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F5055&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd/5055?utm_source=researchrepository.wvu.edu%2Fetd%2F5055&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu


A DATA-DRIVEN SMART PROXY
MODEL FOR A COMPREHENSIVE

RESERVOIR SIMULATION

Faisal Alenezi

Dissertation submitted to the
Benjamin M. Statler College of Engineering and Mineral Resources

at West Virginia University

in partial fullfillment of the requirements for the degree of

Doctor of Philosophy
in

Petroleum and Natural Gas Engineering

Shahab D. Mohaghegh, Chair Ph.D.
Samuel Ameri, Professor

Ebrahim Fathi, Ph.D.
Ali T. Borujeni, Ph.D.
Dengliang Gao, Ph.D.

Department of Petroleum and Natural Gas Engineering

Morgantown, West Virginia
2017

Keywords: Smart Proxy, Reservoir Simulation, SACROC Field, Artificial Intelligence,
Data Mining

Copyright c© 2017, Faisal Alenezi



ABSTRACT

A Data-Driven Smart Proxy Model for a Comprehensive Reservoir

Simulation

Faisal Alenezi

The preferred common tool to estimate the performance of oil and gas fields under different pro-
duction scenarios is numerical reservoir simulation. A comprehensive numerical reservoir model
has tens of millions of grid blocks. The massive potential of existing numerical reservoir simula-
tion models have gone unrealized because they are computationally expensive and time-consuming.
Therefore, an effective alternative tool is required for fast and reliable decision making. To reduce
the required computational time, proxy models have been developed. Traditional proxy models
are either statistical or reduced-order models (ROM). They were developed to substitute complex
numerical simulation with producing a representation of the system at a lower computational cost.
However, there are shortcomings associated with these approaches when applied to complex systems.

In this study, a novel proxy-model approach is presented in order to overcome the computational
size and the traditional proxy-model challenges. The smart proxy model presented is based on
artificial intelligence and data-mining techniques. The objective of this study was to develop two
types of smart proxy models at each grid block. The first smart proxy model was generated to
identify dynamic reservoir properties (pressure and saturations). The other proxy model was cre-
ated to determine the production profile of a well. The two smart proxy models can be coupled in
order to examine field production performance under different operational and geological realization.

The field of study in this work is the SACROC unit. It is a depleted oil field located in Scurry
County, Texas. The production history of this field began back in the late 1940s. Based on the long
period of production and the different drive mechanisms employed throughout the fields exploitation,
its performance history was divided into three phases in this study. Each phase was investigated
and smart proxy models were applied to each.

To develop a smart proxy model, multiple reservoir simulation scenarios are designed for different
operational constraints and geological realizations. The geological parameters along with the results
from the designed simulation runs are collected to build the spatial-temporal database. The param-
eters in the database are studied and key performance indicators are measured to select the required
data to build the smart proxy model. The smart proxy is trained, calibrated, and validated using
a series of neural networks. To validate a smart proxy model, it is deployed to replicate a blind
numerical simulation run.

The developed smart proxy models are capable of supplying reservoir properties along with produc-
tion profiles very quickly (seconds) and with an acceptable range of error compared to numerical
reservoir models.



To my mother Moneerah for her love, encouragement, and prays day and night make me able to

get such success. To my brother Abdullah for being the guardian and support for my sisters and

brothers during my educational journey.

iii



Acknowledgments

In the name of Allah, the Most Gracious and the Most Merciful Alhamdulillah, all praises to Allah

for the strengths and His blessing in completing this dissertation.

Undertaking this PhD has been a truly life-changing experience for me and it would not have

been possible to do without the support and guidance that I received from many people.

First and Foremost, I would like to express my sincere gratitude to my advisor Professor Shahab

Mohaghegh for the continuous support of my Ph.D study and research, for his patience, motiva-

tion, enthusiasm, and immense knowledge. His guidance helped me in all the time of research and

writing of this thesis. I could not have imagined having a better advisor and mentor for my Ph.D

study.

My deep appreciation goes out to my other committee members, Professor Sam Amiri, Dr.

Ebrahim Fathi, Dr. Ali Takbiri, and Dr. Dengliang Gao. Thank you for investing time and

providing interesting and valuable feedback. I feel proud and honored that you have accepted to be

on my committee.

I also want to take a moment to thank the Laboratory for Engineering Application of Data Sci-

ence (LEADS) graduate team members: Amir Ansari, Maher Alabooodi, and Sina Hosseini Boosari

for their endless support, timely motivation, sympathetic attitude and unfailing help during the

course of entire study. I am also grateful to them for their friendship and the warmth they extended

to me during my time in the lab.

I am grateful to the Department of Petroleum and Natural Engineering faculty and staff who have

been kind enough to advise and help in their respective roles. Also, I want to extend my appreciation

to all my friends that I have known in the department, thank you for the great times that we have

shared. I am also grateful to all my best friends in Morgantown. Your love and care are highly

appreciated.

I want to acknowledge Computing Modeling Group (CMG) and Intelligent Solutions Inc. (ISI)

iv



for providing the software packages and technical supports for my research.

This acknowledgment cannot be complete without thanking my role models in this life, uncle Aqeel

Alenezi and uncle Fahad Alenezi. Words are short to express my deep sense of gratitude for their

sincere encouragement and inspiration throughout my life. They have cherished with me every great

moment and supported my family and me whenever we needed it.

Nobody has been more important to me in the pursuit of this project than the members of my

family, sisters and brothers. I know they think of me all time, and I do the same thing. Thank you

for being in my life.

I would like to thank my mother, her love and guidance are with me in whatever I pursue. She

is the ultimate role model.

Most importantly, I wish to thank my loving and supportive wife, Huda, and my three wonder-

ful children, Jana, Naif and Reelam, who provide unending inspiration.

Finally, I extend my thanks and gratitude to Saudi Aramco for giving me the opportunity and

financial support to pursue a PhD degree.

v



Contents

Abstract ii

Acknowledgments iv

List of Figures x

List of Tables xix

1 Introduction 1

1.1 The Return on Investments in Reservoir Simulation . . . . . . . . . . . . . . . . . . 1

1.2 Problem Statement and Research Objective . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Dissertation Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Literature Review 5

2.1 Machine learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Artificial Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.2 Data Mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.3 Machine Learning in Petroleum Engineering . . . . . . . . . . . . . . . . . . . 15

2.2 Proxy Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1 Response Surface Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.2 Reduced Physics Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.3 Reduced Order Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.4 Data Driven Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Smart Proxy Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Reservoir Modeling 24

3.1 Field Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

vi



3.1.1 Reservoir Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1.2 Field Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1.3 Water-Flood Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1.4 CO2 Injection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Geo-Cellular Model Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.1 Estimation of Porosity and Permeability . . . . . . . . . . . . . . . . . . . . . 32

3.2.2 Geo-Cellular Model Upscaling . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.3 Rock Fluids Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2.4 Initial and Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2.5 Wells and Completions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2.6 History Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3 Numerical Reservoir Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4 Smart Proxy Model Development Methodology 49

4.1 Numerical Simulation Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2 Database Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.3 Data Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.4 Data Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.5 Artificial Neural Network Construction . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.6 Validation with a Blind Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.7 Error Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5 Smart Proxy to Replicate Numerical Simulator 57

5.1 Phase One Smart Proxy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.1.1 Training Model Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.1.2 Training Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.1.3 Validation with a Blind Data Set . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.2 Phase Two Smart Proxy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.2.1 Training Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.2.2 Validation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6 Smart Proxy for Geological and Operational Realization - Non Cascading Process 83

6.1 Smart Proxy Deployment Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.2 Non-Cascading Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

vii



7 Smart Proxy Model for Geological and Operational Realization- Cascading Pro-

cesses 94

7.1 Numerical Simulation Runs Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7.2 Database Generation, Input Selection, and Neural Network Training . . . . . . . . . 97

7.3 Phase One Smart Proxy Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7.3.1 Phase One Training Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7.3.2 Phase One Blind Run Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.4 Phase Two Smart Proxy Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7.4.1 Phase Two Training Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7.4.2 Phase Two Blind Run Results . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7.5 Phase Three Smart Proxy Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

7.5.1 Phase Three Training Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

7.5.2 Phase Three Blind Run Results . . . . . . . . . . . . . . . . . . . . . . . . . . 153

8 Smart Proxy for Field Production 190

8.1 Numerical Simulation Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

8.2 Spatiotemporal Database Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

8.3 Data Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

8.4 Neural Network Construction and Training . . . . . . . . . . . . . . . . . . . . . . . 192

8.5 Verification with a Blind Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

8.6 Phase One Production Smart Proxy Model . . . . . . . . . . . . . . . . . . . . . . . 193

8.6.1 Training Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

8.6.2 Blind Run Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

8.7 Phase Two Production Smart Proxy Model . . . . . . . . . . . . . . . . . . . . . . . 205

8.7.1 Training Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

8.7.2 Blind Run Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

8.8 Phase Three Production Smart Proxy Model . . . . . . . . . . . . . . . . . . . . . . 216

8.8.1 Training Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

8.8.2 Blind Run Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

9 Concluding Remarks and Recommendations 242

9.1 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

9.2 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

viii



Appendix 255

ix



List of Figures

2.1 Traditional Programming and Machine Learning . . . . . . . . . . . . . . . . . . . . 6

2.2 Typical Structure of Machine Learning Model . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Biological Neuron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 From Human neuron to Artificial neuron . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5 Artificial Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.6 Activation Functions of Artificial Neural Network . . . . . . . . . . . . . . . . . . . . 11

2.7 Multilayer ANN Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.8 Back-propagation Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.9 Data Mining Work flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1 Location of SACROC Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 SACROC Unit Lithology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Southwest-northeast schematic cross-section C-C through thickest known part of

Horseshoe atoll . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4 Typical Well Logs in SACROC Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.5 SACROC unit pressure contour map. Left side shows the pressure contour map in

1954 where the right side of the figure shows the pressure contour map in 1970. . . . 29

3.6 Performance history of SACROC Unit . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.7 WAG Phase Locations of SACROC Unit . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.8 Reservoir Model of Northern Platform in SACROC Unit . . . . . . . . . . . . . . . . 32

3.9 Porosity histogram for the selected study area. . . . . . . . . . . . . . . . . . . . . . 35

3.10 Permeability histogram for the selected study area. . . . . . . . . . . . . . . . . . . . 36

3.11 Porosity-Permeability Relationship. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.12 Side view of the high resolution model of SACROC field with 221 layers . . . . . . . 38

x



3.13 The five main formation where the model upscaled from 221 layers to 16 layers

(Canyon 1 (2 layers), Canyon 2 (2 layers), Canyon 3 (3 layers), Canyon 4 (2 lay-

ers), Cisco (7 layers)). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.14 3-D Grid Top of the selected area of study. . . . . . . . . . . . . . . . . . . . . . . . 39

3.15 Typical Relative Permeability Curves . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.16 (a) Relative permeability curve with experimental data from Wabamun Lake (b)

Fitted relative permeability curve with experimental data from SACROC core test . 41

3.17 Relative Permeability Curves for The Area of Study . . . . . . . . . . . . . . . . . . 42

3.18 Hypothetical wells to mimic open flow conditions. . . . . . . . . . . . . . . . . . . . . 43

3.19 Production/Injection wells versus the history of the studied area . . . . . . . . . . . 45

3.20 Production/Injection history of the Selected area of study. . . . . . . . . . . . . . . . 46

3.21 Water and oil production history match results of well 10-10 . . . . . . . . . . . . . . 47

3.22 Average reservoir pressure history match results of three known points . . . . . . . . 48

4.1 Smart Proxy Model Work Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2 Field Oil Rate Histogram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3 Tier System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.4 Smart Sampling Technique for Pressure Data . . . . . . . . . . . . . . . . . . . . . . 54

4.5 Database Generation Represented by the Size of Data . . . . . . . . . . . . . . . . . 54

5.1 All Pressure points versus sampled points histograms, for years from 1953 to 1963 . 58

5.2 The ANN architecture for training the reservoir pressure and saturation . . . . . . . 59

5.3 Selected Parameters to Develop the Smart Proxy Model . . . . . . . . . . . . . . . . 60

5.4 Year 1964 Layer 1 Pressure, Oil Saturation, and Water Saturation Distribution From

Numerical Simulation and Smart Proxy Model (ANN). . . . . . . . . . . . . . . . . . 62

5.5 Year 1964 Layer 5 Pressure, Oil Saturation, and Water Saturation Distribution From

Numerical Simulation and Smart Proxy Model (ANN). . . . . . . . . . . . . . . . . . 63

5.6 Year 1964 Layer 12 Pressure, Oil Saturation, and Water Saturation Distribution From

Numerical Simulation and Smart Proxy Model (ANN). . . . . . . . . . . . . . . . . . 64

5.7 Year 1965 Layer 6 Pressure, Oil Saturation, and Water Saturation Distribution From

Numerical Simulation and Smart Proxy Model (ANN). . . . . . . . . . . . . . . . . . 65

5.8 Year 1965 Layer 10 Pressure, Oil Saturation, and Water Saturation Distribution From

Numerical Simulation and Smart Proxy Model (ANN). . . . . . . . . . . . . . . . . . 66

xi



5.9 Year 1965 Layer 16 Pressure, Oil Saturation, and Water Saturation Distribution From

Numerical Simulation and Smart Proxy Model (ANN). . . . . . . . . . . . . . . . . . 67

5.10 Year 1968 Layer 2 Pressure, Oil Saturation, and Water Saturation Distribution From

Numerical Simulation and Smart Proxy Model (ANN). . . . . . . . . . . . . . . . . . 68

5.11 Year 1968 Layer 7 Pressure, Oil Saturation, and Water Saturation Distribution From

Numerical Simulation and Smart Proxy Model (ANN). . . . . . . . . . . . . . . . . . 69

5.12 Year 1968 Layer 13 Pressure, Oil Saturation, and Water Saturation Distribution From

Numerical Simulation and Smart Proxy Model (ANN). . . . . . . . . . . . . . . . . . 70

5.13 All points versus sampled points histograms, Pressure on left side and the Oil Satu-

ration on right side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.14 Year 1980 Layer 1 Pressure, Oil Saturation, and Water Saturation Distribution From

Numerical Simulation and Smart Proxy Model (ANN). . . . . . . . . . . . . . . . . . 74

5.15 Year 1980 Layer 7 Pressure, Oil Saturation, and Water Saturation Distribution From

Numerical Simulation and Smart Proxy Model (ANN). . . . . . . . . . . . . . . . . . 75

5.16 Year 1980 Layer 15 Pressure, Oil Saturation, and Water Saturation Distribution From

Numerical Simulation and Smart Proxy Model (ANN). . . . . . . . . . . . . . . . . . 76

5.17 Year 1992 Layer 1 Pressure, Oil Saturation, and Water Saturation Distribution From

Numerical Simulation and Smart Proxy Model (ANN). . . . . . . . . . . . . . . . . . 77

5.18 Year 1992 Layer 7 Pressure, Oil Saturation, and Water Saturation Distribution From

Numerical Simulation and Smart Proxy Model (ANN). . . . . . . . . . . . . . . . . . 78

5.19 Year 1992 Layer 15 Pressure, Oil Saturation, and Water Saturation Distribution From

Numerical Simulation and Smart Proxy Model (ANN). . . . . . . . . . . . . . . . . . 79

5.20 Year 2000 Layer 1 Pressure, Oil Saturation, and Water Saturation Distribution From

Numerical Simulation and Smart Proxy Model (ANN). . . . . . . . . . . . . . . . . . 80

5.21 Year 2000 Layer 7 Pressure, Oil Saturation, and Water Saturation Distribution From

Numerical Simulation and Smart Proxy Model (ANN). . . . . . . . . . . . . . . . . . 81

5.22 Year 2000 Layer 15 Pressure, Oil Saturation, and Water Saturation Distribution From

Numerical Simulation and Smart Proxy Model (ANN). . . . . . . . . . . . . . . . . . 82

6.1 The permeability (md) data changing technique, left side of the figure shows the HM

model where the right side shows the changed permeability distribution model (Layer

10). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

xii



6.2 Example of the BHP modification technique for well no. 10-4. The blue curve is the

HM BHP where the red one is the modified BHP used in designing the numerical

simulation run to develop the smart proxy model. . . . . . . . . . . . . . . . . . . . . 85

6.3 Another Example of the BHP modification technique for well no. 10-9. . . . . . . . . 85

6.4 Pressure error histogram of randomly selected grids from 1975 to 2003 (smart proxy

error compared to numerical simulator). . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.5 Oil saturation error histogram of randomly selected grids from 1975 to 2003 (smart

proxy error compared to numerical simulator). . . . . . . . . . . . . . . . . . . . . . 86

6.6 Pressure, Oil Saturation, and Water Saturation Distributions From Numerical Simu-

lation and Smart Proxy Model (ANN) In year 1980 Layer 4. . . . . . . . . . . . . . . 87

6.7 Pressure, Oil Saturation, and Water Saturation Distributions From Numerical Simu-

lation and Smart Proxy Model (ANN) In year 1980 Layer 8. . . . . . . . . . . . . . . 88

6.8 Pressure, Oil Saturation, and Water Saturation Distributions From Numerical Simu-

lation and Smart Proxy Model (ANN) In year 1980 Layer 13. . . . . . . . . . . . . . 89

6.9 Pressure, Oil Saturation, and Water Saturation Distributions From Numerical Simu-

lation and Smart Proxy Model (ANN) In year 2000 Layer 4. . . . . . . . . . . . . . . 90

6.10 Pressure, Oil Saturation, and Water Saturation Distributions From Numerical Simu-

lation and Smart Proxy Model (ANN) In year 2000 Layer 8. . . . . . . . . . . . . . . 91

6.11 Pressure, Oil Saturation, and Water Saturation Distributions From Numerical Simu-

lation and Smart Proxy Model (ANN) In year 2000 Layer 13. . . . . . . . . . . . . . 92

7.1 Cascading Training Flow-chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7.2 Cascading Deployment Flow-chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

7.3 The divided three production phases of SACROC unit . . . . . . . . . . . . . . . . . 96

7.4 The high and low porosity-permeability scenarios at layer 10 of the geological model 98

7.5 BHP scenarios for well number 10-1. Same technique was applied for all other pro-

duction wells. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7.6 Cascading Process Input Training Parameters. . . . . . . . . . . . . . . . . . . . . . 100

7.7 Phase one Layer-1 in 1951 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7.8 Phase one Layer-3 in 1951 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.9 Phase one Layer-5 in 1951 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.10 Phase one Layer-7 in 1951 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.11 Phase one Layer-10 in 1951 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

xiii



7.12 Phase one Layer-16 in 1951 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7.13 Phase one Layer-1 in 1953 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7.14 Phase one Layer-3 in 1953 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.15 Phase one Layer-5 in 1953 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.16 Phase one Layer-7 in 1953 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.17 Phase one Layer-10 in 1953 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.18 Phase one Layer-16 in 1953 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.19 Phase one Layer-1 in 1955 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7.20 Phase one Layer-3 in 1955 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7.21 Phase one Layer-5 in 1955 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.22 Phase one Layer-7 in 1955 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.23 Phase one Layer-10 in 1955 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.24 Phase one Layer-16 in 1955 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.25 Phase one Layer-1 in 1957 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

7.26 Phase one Layer-3 in 1957 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.27 Phase one Layer-5 in 1957 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7.28 Phase one Layer-7 in 1957 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7.29 Phase one Layer-10 in 1957 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.30 Phase one Layer-16 in 1957 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7.31 Phase Two BHP for Production Wells . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7.32 Phase two Layer-1 in 1961 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

7.33 Phase two Layer-3 in 1961 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

7.34 Phase two Layer-5 in 1961 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

7.35 Phase two Layer-7 in 1961 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

7.36 Phase two Layer-10 in 1961 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.37 Phase two Layer-13 in 1961 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

7.38 Phase two Layer-1 in 1963 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

7.39 Phase two Layer-3 in 1963 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

7.40 Phase two Layer-5 in 1963 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

7.41 Phase two Layer-7 in 1963 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

7.42 Phase two Layer-10 in 1963 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

7.43 Phase two Layer-13 in 1963 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

7.44 Phase two Layer-1 in 1965 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

xiv



7.45 Phase two Layer-3 in 1965 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

7.46 Phase two Layer-5 in 1965 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

7.47 Phase two Layer-7 in 1965 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

7.48 Phase two Layer-10 in 1965 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

7.49 Phase two Layer-13 in 1965 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

7.50 Phase two Layer-1 in 1967 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

7.51 Phase two Layer-3 in 1967 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

7.52 Phase two Layer-5 in 1967 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

7.53 Phase two Layer-7 in 1967 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

7.54 Phase two Layer-10 in 1967 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

7.55 Phase two Layer-13 in 1967 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

7.56 Phase Three BHP for Production Wells . . . . . . . . . . . . . . . . . . . . . . . . . 152

7.57 Phase three Layer-1 in 1978 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

7.58 Phase three Layer-4 in 1978 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

7.59 Phase three Layer-6 in 1978 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

7.60 Phase three Layer-8 in 1978 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

7.61 Phase three Layer-10 in 1978 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

7.62 Phase three Layer-14 in 1978 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

7.63 Phase three Layer-1 in 1983 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

7.64 Phase three Layer-4 in 1983 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

7.65 Phase three Layer-6 in 1983 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

7.66 Phase three Layer-8 in 1983 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

7.67 Phase three Layer-10 in 1983 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

7.68 Phase three Layer-14 in 1983 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

7.69 Phase three Layer-1 in 1986 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

7.70 Phase three Layer-4 in 1986 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

7.71 Phase three Layer-6 in 1986 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

7.72 Phase three Layer-8 in 1986 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

7.73 Phase three Layer-10 in 1986 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

7.74 Phase three Layer-14 in 1986 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

7.75 Phase three Layer-1 in 1989 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

7.76 Phase three Layer-4 in 1989 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

7.77 Phase three Layer-6 in 1989 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

xv



7.78 Phase three Layer-8 in 1989 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

7.79 Phase three Layer-10 in 1989 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

7.80 Phase three Layer-14 in 1989 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

7.81 Phase three Layer-1 in 1991 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

7.82 Phase three Layer-4 in 1991 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

7.83 Phase three Layer-6 in 1991 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

7.84 Phase three Layer-8 in 1991 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

7.85 Phase three Layer-10 in 1991 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

7.86 Phase three Layer-14 in 1991 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

7.87 Phase three Layer-1 in 1993 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

7.88 Phase three Layer-4 in 1993 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

7.89 Phase three Layer-6 in 1993 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

7.90 Phase three Layer-8 in 1993 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

7.91 Phase three Layer-10 in 1993 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

7.92 Phase three Layer-14 in 1993 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

8.1 Smart Proxy for Production Profile Input Parameters . . . . . . . . . . . . . . . . . 192

8.2 Phase One Oil Production Training Cross Plot . . . . . . . . . . . . . . . . . . . . . 194

8.3 Phase One Gas Production Training Cross Plot . . . . . . . . . . . . . . . . . . . . . 194

8.4 Phase One Water Production Training Cross Plot . . . . . . . . . . . . . . . . . . . . 195

8.5 Phase one well 10-4 oil production profile . . . . . . . . . . . . . . . . . . . . . . . . 196

8.6 Phase one well 10-4 gas rate profile . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

8.7 Phase one well 10-4 water rate profile . . . . . . . . . . . . . . . . . . . . . . . . . . 198

8.8 Phase one well 11-3 oil rate profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

8.9 Phase one well 11-3 gas rate profile . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

8.10 Phase one well 11-3 water rate profile . . . . . . . . . . . . . . . . . . . . . . . . . . 201

8.11 Phase one well 10-5 oil rate profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

8.12 Phase one well 10-5 gas rate profile . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

8.13 Phase one well 10-5 water rate profile . . . . . . . . . . . . . . . . . . . . . . . . . . 204

8.14 Phase two Oil Production Training Cross Plot . . . . . . . . . . . . . . . . . . . . . . 205

8.15 Phase two Gas Production Training Cross Plot . . . . . . . . . . . . . . . . . . . . . 206

8.16 Phase two Water Production Training Cross Plot . . . . . . . . . . . . . . . . . . . . 206

8.17 Phase two well 11-5 oil production profile . . . . . . . . . . . . . . . . . . . . . . . . 207

xvi



8.18 Phase two well 11-5 gas production profile . . . . . . . . . . . . . . . . . . . . . . . 208

8.19 Phase two well 11-5 water production profile . . . . . . . . . . . . . . . . . . . . . . 209

8.20 Phase two well 10-1 oil production profile . . . . . . . . . . . . . . . . . . . . . . . . 210

8.21 Phase two well 10-1 gas production profile . . . . . . . . . . . . . . . . . . . . . . . 211

8.22 Phase two well 10-1 water production profile . . . . . . . . . . . . . . . . . . . . . . 212

8.23 Phase two well 10-1 oil production profile . . . . . . . . . . . . . . . . . . . . . . . . 213

8.24 Phase two well 10-1 gas production profile . . . . . . . . . . . . . . . . . . . . . . . 214

8.25 Phase two well 10-1 water production profile . . . . . . . . . . . . . . . . . . . . . . 215

8.26 Phase three Oil Production Training Cross Plot . . . . . . . . . . . . . . . . . . . . . 216

8.27 Phase three Gas Production Training Cross Plot . . . . . . . . . . . . . . . . . . . . 217

8.28 Phase three Water Production Training Cross Plot . . . . . . . . . . . . . . . . . . . 217

8.29 Phase three well 10-9 oil production profile . . . . . . . . . . . . . . . . . . . . . . . 218

8.30 Phase three well 10-9 gas production profile . . . . . . . . . . . . . . . . . . . . . . 219

8.31 Phase three well 10-9 water production profile . . . . . . . . . . . . . . . . . . . . . 220

8.32 Phase three well 11-5 oil production profile . . . . . . . . . . . . . . . . . . . . . . . 221

8.33 Phase three well 11-5 gas production profile . . . . . . . . . . . . . . . . . . . . . . 222

8.34 Phase three well 11-5 water production profile . . . . . . . . . . . . . . . . . . . . . 223

8.35 Phase three well 11-7 oil production profile . . . . . . . . . . . . . . . . . . . . . . . 224

8.36 Phase three well 11-7 gas production profile . . . . . . . . . . . . . . . . . . . . . . 225

8.37 Phase three well 11-7 water production profile . . . . . . . . . . . . . . . . . . . . . 226

8.38 Phase three well 11-9 oil production profile . . . . . . . . . . . . . . . . . . . . . . . 227

8.39 Phase three well 11-9 gas production profile . . . . . . . . . . . . . . . . . . . . . . 228

8.40 Phase three well 11-9 water production profile . . . . . . . . . . . . . . . . . . . . . 229

8.41 Phase three well 11-10 oil production profile . . . . . . . . . . . . . . . . . . . . . . 230

8.42 Phase three well 11-10 gas production profile . . . . . . . . . . . . . . . . . . . . . . 231

8.43 Phase three well 11-10 water production profile . . . . . . . . . . . . . . . . . . . . . 232

8.44 Phase three well 17-7 oil production profile . . . . . . . . . . . . . . . . . . . . . . . 233

8.45 Phase three well 17-7 gas production profile . . . . . . . . . . . . . . . . . . . . . . 234

8.46 Phase three well 17-7 water production profile . . . . . . . . . . . . . . . . . . . . . 235

8.47 Phase three well 9-9 oil production profile . . . . . . . . . . . . . . . . . . . . . . . . 236

8.48 Phase three well 9-9 gas production profile . . . . . . . . . . . . . . . . . . . . . . . 237

8.49 Phase three well 9-9 water production profile . . . . . . . . . . . . . . . . . . . . . . 238

8.50 Phase three field oil production profile . . . . . . . . . . . . . . . . . . . . . . . . . . 239

xvii



8.51 Phase three field gas production profile . . . . . . . . . . . . . . . . . . . . . . . . . 240

8.52 Phase three field water production profile . . . . . . . . . . . . . . . . . . . . . . . . 241

9.1 Reservoir Pressure and Oil Saturation Error Propagation . . . . . . . . . . . . . . . 245

9.2 Well 10 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

9.3 Well 10 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256

9.4 Well 10 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

9.5 Well 10 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

9.6 Well 11 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

9.7 Well 11 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

9.8 Well 11 13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

9.9 Well 17 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

xviii



List of Tables

3.1 Basic Reservoir Data of SACROC Unit . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Permeability Calculations Using Porosity and Fabric Number . . . . . . . . . . . . . 34

3.3 Oil Composition for SACROC Unit Model . . . . . . . . . . . . . . . . . . . . . . . . 44

4.1 Data Selected to Develop the Database . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.1 Phase One Smart Proxy Training Results . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2 Phase Two Smart Proxy Training Results . . . . . . . . . . . . . . . . . . . . . . . . 71

7.1 Phase one Training Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.2 Phase Two Training Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7.3 Phase Three Training Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

xix



Chapter 1

Introduction

1.1 The Return on Investments in Reservoir Simulation

The petroleum industry strives to find oil and gas reserves, develop these resources, meet the worlds

energy demand, and maximize profits. One of the most important tools for oil and gas reservoir

development and management is reservoir simulation. It is a necessary tool for reservoir engineering

strategy plans. The key goal of reservoir simulation is to predict future performance of the reservoir

and to find ways and means of optimizing the recovery of some of the hydrocarbons under different

operating conditions. The simulation involves four main interrelated modeling stages, establishment

of physical models, development of mathematical models, discretization of these models, and design

of computer algorithms. It requires a combination of skills of physicists, mathematicians, reservoir

engineers, and computer scientists[1].

With the recent advances in computers and simulation software capabilities, the development of

algorithms, and the amount of data that can be collected from the reservoir, it is now possible to

build a comprehensive reservoir simulation model. On the other hand, these models require very

sophisticated performance platforms to run. As the size of the reservoir models grows, the time

required to run different scenarios also increases. Therefore, it is impractical to use a comprehensive

simulation model on a routine basis.

Oil and gas organizations invest heavily in reservoir simulation, often spending millions of dol-

lars. Every organization seeks to maximize the value of the capital, so good management means
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evaluating the return on this investment. Investment decisions are made in uncertain circumstances

and require a proper cost analysis. The time spent to develop the reservoir simulation models, the

cost of the platforms used, and the labor involved are the main parameters for calculating the return

on investment in reservoir simulation.

1.2 Problem Statement and Research Objective

The reservoir engineers main duty is to take critical decisions for the oil and gas reservoirs future

strategies. Drilling new wells, shutting-in some of the production wells, adding injection wells, and

many other development plans should be based on intelligent decisions. Reservoir engineers usually

take these critical decisions based on numerical simulation models, in which it is possible to study all

possible production and injection scenarios. Using a comprehensive numerical model, these different

scenarios could lead to a better development plan.

Unfortunately, to build a comprehensive numerical model, hundreds and sometimes thousands of

simulation runs should be conducted, which is computationally intensive and time consuming. More-

over, with a new drive towards smart fields (smart completions and smart wells) in the petroleum

industry that, the need to process the data in real time has become more prominent. Therefore,

reservoir engineers are looking for ways to reduce the computational size of the simulation models,

keeping the model as complex as possible with acceptable output accuracy.

Efforts have been made to reduce the computational size of the model by using proxy models. Proxy

models act as a substitute for the complex numerical simulation, since they produce a meaningful

representation of the complex system using fewer simulation runs.

In petroleum simulation models, engineers and scientists have developed different types of proxy

models based on different techniques. These proxy models are generally based on statistical or

mathematical approaches. The main proxy models can be cited as:

• Response Surface Proxy Models

• Reduced Physics Proxy Models

• Reduced Order Proxy Models

• Data Driven Models

Although these methods work well in many cases, there are some drawbacks and limitations, which

are discussed in the following sections. The current dissertation develops a smart proxy model
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using a state-of-the-art data-driven technique. The smart proxy model must be able to produce

comprehensive reservoir properties (pressure and saturation) along with the wells production profiles

in a significantly shorter simulation time compared to the numerical reservoir models.

1.3 Dissertation Outline

This dissertation is divided into nine chapters and they are organized as follows:

Chapter 1 introduces the problem statement and the objective of this study.

Chapter 2 is literature review. In this chapter, the related topics to this study are reviewed.

The data mining and machine learning techniques are described. The concept of proxy model and

the general types of smart proxy models is also briefed.

Chapter 3 Starts with a background on the field of study and describes the details of the gen-

erated numerical reservoir model.

Chapter 4 Elaborates on the procedure of developing a smart proxy model. It shows the general

work flow of this study.

Chapter 5 presents the development of the smart proxy model to replicate the numerical sim-

ulator results. It includes the steps of training and validating the smart proxy developed for this goal.

Chapter 6 discusses the development of the smart proxy for geological and operational reservoir

field realization. In this chapter, the ability of the smart proxy model to perform geological and

operational realization is proofed. However, this chapter covers the non-cascading feature only.

Chapter 7 extends the work on developing the smart proxy for geological and operational real-

ization to include the cascading feature.

Chapter 8 covers the development of smart proxy for production profiles. In this chapter, details

of generating smart proxy for oil rate, gas rate, and water rate are presented along with deployment

results.
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Chapter 9 summarizes the research on form of concluding remarks. Also, recommendations for

future work are made.
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Chapter 2

Literature Review

2.1 Machine learning

Over the past three decades, machine learning has become one of the pillars of information tech-

nology. With ever-increasing amounts of data, the world is entering the era of big data. Due to

advances in computer technology, it is possible to store and process large amounts of data and to

access it from physically distant locations over a computer network. There is therefore a good reason

to call for automated methods of data analysis, which is what machine learning provides [2].

In particular, machine learning can be defined as a set of methods that can automatically detect

patterns in data, and then use the uncovered patterns to predict future data, or to perform other

kinds of decision-making under uncertainty. Mitchell [3] outlined the main elements of machine

learning by defining machine learning as follows A computer program is said to learn from experi-

ence E with respect to some class of tasks T and performance measure P, if its performance at tasks

in T, as measured by P, improves with experience E. For difficult tasks, programs can be written

and designed to carry them out. In machine learning, tasks are how to process an example using

machine learning. The performance measurement is simply the way machine-learning technique is

evaluated.

The fundamental goal of machine learning is to generalize beyond the examples in the training

set. This is because no matter how much data there is available, it is very unlikely that those exact

examples will reoccur at test time [4]. In traditional programming, the data and the program are
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run on the computer to produce the output. In machine learning, the data and the output are run

on the computer to create a program.

Figure 2.1: Traditional Programming and Machine Learning

There are three main types of machine learning, supervised, unsupervised, and reinforcement

learning. The supervised approach is also known as the predictive approach; the objective of the

machine learning is to learn the relationship between inputs to outputs, given a labeled set of input-

output pairs. The inputs and outputs are called features and responses. The second main type of

machine learning is the descriptive or unsupervised learning approach. There are only inputs in this

type of machine learning. In this type of learning, the machine learns how to find patterns in the

given data. Reinforcement learning is used to solve problems of decision making (usually a sequence

of decisions) [5].

The machine learning model is constructed from three elements [6]:

• Representation: In supervised learning, a model must be represented as a conditional proba-

bility distribution (usually called classifier) a decision function. The set of classifiers is called

the hypothesis space of the model. Choosing a representation for a model is equivalent to

choosing the hypothesis space that it can possibly learn.

• Evaluation: In the hypothesis space, an evaluation function is needed to distinguish good
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classifiers from bad ones.

• Optimization: Finally, we need a training algorithm (also called learning algorithm) to search

among the classifiers in the hypothesis space for the highest-scoring one.

Most recently, machine learning techniques are being widely used to solve real-world problems by

storing, manipulating, extracting and retrieving data from large sources. This success is also appar-

ent in petroleum engineering applications as it will be shown in the following sections.

Figure 2.2: Typical Structure of Machine Learning Model

2.1.1 Artificial Neural Networks

Artificial neural networks (ANN) are biologically inspired methods of computing and thought to be

the next major advancement in the computing industry. They are self-learning mechanisms which

do not require the traditional skills of a programmer. Artificial neural networks are relatively crude

electronic models based on the neural structure of the brain. These artificial neurons are biologically

inspired. The brain learns from experience.

The best and simple definition of the artificial neural networks is provided by Nielsen [7]:

”A computing system made up of a number of simple, highly interconnected pro-

cessing elements, which process information by their dynamic state response to external

inputs.”

The basic part of the human brain is the cell. It provides humans with the ability to remember,

think, and use previous experience for future decisions [8].The human brain includes 100 billion cells,
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which are known as neurons. In addition to that, there are up to 200,000 connections between these

neurons.

Figure 2.3: Biological Neuron
[9]

The history of ANN goes back several decades. In 1943, a neurophysiologist, Warren McCul-

loch, and a mathematician, Walter Pitts, developed a neural network with electrical circuits called

threshold logic. The first book on neural networks was written in 1949 by Donald Hebb. Hebb built

a learning mechanism based on neural plasticity. With the advances in computers in the 1950s, IBM

researcher Nathanial Rochester started the early efforts to simulate a neural network. Dartmouth

Summer Research worked on artificial intelligence in 1956. They developed a process to stimulate

research in artificial intelligence. In 1959, Bernard Widrow and Marcian Hoff developed the first

neural network to be applied to a real world problem. After that, however, due to the limitations of

computer capabilities available at the time, ANN research grew only slowly, until 1982.

In 1982, ANN gained renewed interest of researchers. A conference on neural networks was held in

Kyoto, Japan, in 1982. The outcomes of this conference brought new funding for neural networks

research.

Currently, neural networks are used in several applications. The fundamental idea behind the nature

of neural networks is that if it works in nature, it has to be able to work in computers. The future

of neural networks, though, lies in the development of hardware.

Biologically, neurons receive information known as inputs from another source, connect these in-

puts in some way, and finally perform a nonlinear operation to generate outputs. The process is

summarized in following steps:

• A signal reaches a synapse: Certain chemicals called neurotransmitters are released.

• Process of learning: The synapse effectiveness can be adjusted by signal passing through.
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Information are not transmitted directly, but stored in interconnections. The term Connections

model initiated from this idea.

From biological neuron to artificial neuron, the model elements can be defined as following:

Figure 2.4: From Human neuron to Artificial neuron

• Wires : axon and dendrites

• Connection weights: Synapse

• Threshold function: activity in cell body

The Model of the Artificial Neural Network

The ANN is represented by a mathematical model. In the network, the number of inputs is modeled

using the symbol x. Each of these inputs is multiplied by a connection weight w, and the product of

this operation is summed. After that, the summation is fed through a transfer function to generate

the outputs. The information processing of a neuron can be divided into three basic elements:

1. A group of connecting links. The main characterization of this set is how strength is associated

with each link. The strength is also known as synaptic weight w. Usually the weight is written

with two subscripts k and j. The neuron is represented by k, and k is reverse to the input end

of the synapse. The term wkj is either positive or negative.

2. The summation of the inputs (signals).

3. An activation function. The goal of this function is to limit the amplitude of the neuron

output.

The neuron model can be described mathematically with the following equation [10]:

y = F (

m∑
i=0

wi ∗ xi + b) (2.1)

9



Figure 2.5: Artificial Neural Network

Where:

xi is input value,

wi is the weight value,

b is bias,

F is a transfer function,

yi is the output value

The activation function defines the relation between the inputs and the outputs. Figure 2.6 shows

different types of activation functions.

Artificial Neural Network Architectures

Based on the type of the training algorithm, the ANN architecture is build. Generally, the most

popular ANN architecture used is the multilayer feed-forward networks. In this architecture, the

neurons are organized in the form of layers; input, hidden, and output. A layer of input units is

connected to a layer of hidden units, which is connected to a layer of output units.

The function of these three layers is defined as the following:

• Input layer: Represents the raw information that is fed into the network.

• Hidden layer: Is determined by the activities of the input units and the weights on the con-

nections between the input and the hidden units.

• Output layer: Depends on the activity of the hidden units and the weights between the hidden
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Figure 2.6: Activation Functions of Artificial Neural Network
[11]
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Figure 2.7: Multilayer ANN Architecture
[12]

and output units.

Back-propagation Algorithm

A widely used algorithm with multilayer ANN is back-propagation. It has been successfully applied

to solve problems in different industries. It uses the error correction technique. The process of this

algorithm has two main phases. First, in the forward passes, the inputs are fed into the nodes of

the network and they propagate from layer to layer until the output layer has been reached with

a network response. In the forward pass, the weights are calculated. Second, in the backward

pass, errors between neuron output and target output are measured and the weights are adjusted

accordingly. Moreover, the error signal is propagated backward through the network. This process

continues until a minimum amount of errors has been achieved.

The algorithm can be summarized in the following four steps:

1. Feed-forward computation

12



2. Back propagation to the output layer

3. Back propagation to the hidden layer

4. Weight updates

The above algorithm steps are repeated until an acceptable minimum number of errors has been

achieved. The error is defined as the difference between the actual activation of an output and the

desired activation. The total error is the sum of these errors and it is the measurement tool for

neural network performance.

E = (1/2)

j∑
j=1

(targeti − actualj)2 (2.2)

Figure 2.8: Back-propagation Algorithm

2.1.2 Data Mining

The application of machine learning methods to large databases is called data mining. It is a process

involving analyzing and using the data for predictive modeling.

Data mining is about performing data analysis to explore and discover significant patterns in the

database. Because the data mining is performed on large quantities of data, the process needs to be

automatic or semi-automatic. In order to ensure that the data is suitable for automated processing,
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the raw data is collected, cleaned, and transformed to a standardized format [13]. It is well known

that the biggest part of the work on data mining is data preparation. The typical work flow of data

mining is shown in Figure 2.9.

Figure 2.9: Data Mining Work flow
[13]

There are different activities can be generated using data mining, a short definition will be given

on these activities in the following paragraphs [14].

Classification and Estimation

classification is performed by a well-defined classes. Moreover, classification is a process to examine

features in a newly presented database. This process involves building a model that can used for

classification. classification is dealing with discrete outcomes. On other hand, estimation is dealing

with continuous outcomes.

Clustering

Clustering is a process of segmenting a set of data (features) into a meaningful subgroups.Clustering

is different from classification is that there are no predefined examples.

Visualization

From the Oxford dictionary, data visualization is defined as:

”The representation of information in the form of a chart, diagram, picture, etc.”

Data visualization is a powerful data mining technique. A good representation of the data will

provide a good start for data analysis. Therefore, it is very important to choose the right visualization

tool in order to obtain enough and useful information from the database.
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2.1.3 Machine Learning in Petroleum Engineering

The petroleum industry has been interested in machine learning since the 1990s. A quick search in

the database of the Society of Petroleum Engineers (SPE) turns up hundreds of papers about this

subject. These papers show a successful implementation of machine learning techniques in both;

upstream operations and downstream operations. Moreover, like other industries, the petroleum

industry is challenged by an increasing volume of data collected every day.

In a series of articles in the SPEs journal, Mohaghegh has presented three types of virtual in-

telligence (neural networks, genetic algorithms, and fuzzy logic) and their applications in the oil and

gas industry [15, 16, 17] . These articles show the ability and the potential of artificial intelligence

to solve complex problems in petroleum reservoir engineering.

As part of a study on recovery efficiency, Brown used machine learning techniques to extract

valuable information from a database. He concluded that through machine learning, objective pre-

dictions can be achieved [18]. Al-Baiyat and Heinze implemented ANN in stuck pipe prediction.

They show that machine learning techniques can predict stuck pipe with acceptable accuracy [19].

Anifowose reviewed machine learning and its successful application in reservoir characterization [20].

Subrahmanya et al. explored machine learning methods for production pattern recognition. They

reviewed the effectiveness of these methods in a real-world asset management scenario. They also

explored the use of active learning to intelligently identify data points with the highest value of

information and semi-supervised learning to combine the information from labeled and unlabeled

sources [21]. In 2006, Mohaghegh introduced an alternative reservoir simulation tool that is based

on data mining and artificial intelligence. In the early work, the developed smart proxy primarily

dealt with the production profile at the well level. Since then, the smart proxy model has been

applied to different reservoir simulation studies for obtaining dynamic reservoir properties at the

grid block level and to perform history matching [22].

Tian and Ronald studied machine learning algorithms to interpret flow rate, pressure, and tem-

perature from downhole permanent gauges. They showed the potential of using machine learning

to interpret the data recorded by permanent downhole gauges with complex physical models [23].

Shadravan et al. applied machine learning algorithms to fracturing and cementing operations. They
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used ANN models to reduce the cost by eliminating personnel supervision. Moreover, the developed

machine learning model offers comprehensive insights for fluid design [24]. Shadravan and Tarrahi

discussed the benefits of using machine learning algorithms for fluid design. With intelligent fluid

design, thousands of hours of laboratory testing are saved. The developed prediction model is able

to successfully extract and relate input parameters to output variables [25]. Cao et al. introduced

machine learning algorithms to forecast production for existing and new wells in unconventional

assets using inputs (e.g. geological maps, production history, pressure data, and operational con-

straints). The proposed technique requires less work for model building. [26].

The aforementioned work on the use of machine learning is an example of its successful applica-

tion in the field of petroleum engineering. Machine learning is now attracting more attention from

petroleum engineers, especially since the inception of the intelligent field era.

2.2 Proxy Models

An accurate reservoir simulation involves a comprehensive description of the reservoirs properties.

Until recently, computational science, discovering numerical solutions to complex, multi-physic, non-

linear, and partial differential equations, has been at the leading edge of engineering problem solving

and optimization [27]. . Lately and with the progress of technology and software capabilities, the

developed models for simulating different processes in different science and engineering areas have

become more complex and computationally costly to complete. Often, these complex models need

to be performed hundreds or thousands of times, which requires a large amount of time and com-

putational effort.

To resolve this challenge, many efforts have been made to develop proxy models that can be used

as a substitute for a complex reservoir simulation model. Proxy-modeling (also known as surrogate

modeling) is a computationally cheap alternative to full numerical simulation in assisted history

matching, production optimization and forecasting. A proxy model is defined as a mathematically,

statistically, or data-driven defined function that replicates the simulation models output for selected

input parameters [28]. The proxy models results cannot mimic the numerical simulation results with

100% accuracy, but within the amount of time required to run these models, the outputs generated

have a very acceptable range of error. Reducing the computational time from hours and sometimes

days to seconds makes these models significantly competent and attractive to the reservoir engineers
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[29].

During the last decades, different techniques of the proxy models have been developed and intro-

duced to the petroleum industry. The computational techniques of these proxy models range from

the statistical approach (e.g. response surface) and the mathematical approach (e.g. reduced order

models), to data mining and the artificial intelligence approach (e.g. smart proxy models).

The following sections will discuss these techniques in more details. In addition to that, their abilities

and limitation will be considered.

2.2.1 Response Surface Methodology

The modeling of experimental responses was developed by Box and Draper in 1987 [30]. A response

surface, also called a proxy model, is a representation of a system simulation. This type of proxy

modeling is very useful when dealing with a large number of complex system parameters. Response

surface methodology (RSM) consists of a group of mathematical and statistical techniques used in

the development of an sufficient functional relationship between a response of interest, y, and a num-

ber of associated input variables denoted by X1, X2, .., Xk [31]. This type of proxy modeling is very

useful when dealing with huge number of complex system parameters [32]. In a reservoir simulation

and based on the number of selected runs, a response surface is generated that can be used predict

other input parameters. The response surface technique is used to find the relationship between

reservoir parameters and the simulation responses (production or pressure). To find the optimum

response, responses generated from a high number of simulation runs are collected to evaluate the

relation between the input and output variables.

To show a simple example of response surface methodology, the liquid flow rate depends on many

variables, the reservoir pressure, X1, and the bottom hole pressure, X2 are the main parameters.

The flow rate can vary under any combination of the values of these parameters. Therefore, reservoir

pressure and bottom hole pressure can vary continuously. The relationship between the flow rate,

reservoir pressure, and bottom hole pressure can be generated using the following form of equation:

y = f ′(x1, x2)β + ε (2.3)

Where ε is the experimental error term and β is a vector of unknown constant coefficient referred

to as parameters [33].

There are two main models in response surface methodology, the first order which can be expressed
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using the following equation:

y =

k∑
i=1

βixi + ε (2.4)

And the second degree:

y =

k∑
i=1

βixi + ε+
∑

i<j

∑
βijxixj +

k∑
i=1

βiix
2
i + ε (2.5)

In order to predict the desired response values, it is necessary to develop a relationship between

the input parameters and to construct the optimum setting of these input parameters. To establish

this relationship, a number of experiments are conducted and in every experiment the response is

calculated under specified ranges of the control variables [31].

Response surface methodology is a method that describes the different settings of input variables

in a series of simulation runs [34]. The goal of this method is to create these settings in order to get

the maximum information in a reasonable number of simulation runs.

The response surface methodology has a wide range of applications, commonly in Industrial, Bio-

logical and Clinical Science, and in Engineering Science.

Over the past few years, the literature in the petroleum industry has shown how the response sur-

face methodology can be applied to reduce the reservoir simulations complexity. Ahmadloo [35] has

developed a simple approach for the prediction of medium to heavy oil viscosity by using Response

Surface Methodology. Beceera (2012) ) work combines history matching with a probabilistic anal-

ysis of a number of scenarios to minimize the range of uncertainty in the input parameters. Dejea

[36]has presented a procedure using response surface methodology to manage the uncertainties in

production prediction. Purwar [37]has built a workflow for the optimization of the gas flood using

response surface methodology. Rezo (2008) study proposed the use of response surface methodology

to secure a reliable initial guess for nonlinear inversion and for understanding the separate contri-

butions of the various measurements of the formation tester to specific inversion parameters. Risso

[38] concluded that response surface methods are a good alternative to risk assessments in oil fields.

Silva [39] has proposed a methodology using surface response to eliminate non-significant param-

eters, which reduces the computational effort and the time spent by the engineer in the oil fields

developments. Vecente (2010) presented an example of how static and dynamic uncertainties were

combined using a scenario-based approach and surface response methodology. He has developed
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models on the variables that control the recovery: reservoir quality, distribution and connectivity,

porosity, permeability and fluid contacts in order to best assist the oil fields development plans.

All things considered, there are some limits of using surface response modeling. If more than one

response needs to be designed, more response surface models are required. Furthermore, with com-

plex systems, a large number of simulation runs are required in order to perform statistical analysis.

Another limitation is the underlying assumption that the response varies smoothly depending on the

parameters. Also, in the petroleum industry, companies are dealing with discrete parameters, such

as faults, different depositional environments, and other geological features. The response surface

technique, on the other hand, is most suitable to continuous parameters.

2.2.2 Reduced Physics Models

To interpret reservoir behavior, a simulation model is built using different physical scenarios. If

more physical parameters are introduced to the model, the measured results are more reliable, but

the model will be more complex.

One way to reduce the complexity and computational time of the full reservoir model is by simpli-

fying the model physics. The reduced physics method works by reducing the number of physical

properties or grid blocks. The reduced physics parameters can be determined using the tuning

procedure, keeping the full physics model as the reference solution. A certain amount of numerical

experimentation must be performed to determine the level of physics and grid resolution required

for the reduced physics model.

Wilson and Durlofsky [40]have presented a general workflow for applying optimization to the devel-

opment of shale gas reservoirs using the reduced physics approach. They started with a full physics

simulation model with dual porosity, dual permeability, and gas desorption. Then, a much simpler

reduced physics surrogate model, with single porosity and single permeability, was developed. The

computational time to run the simulation model is far less.

The main theoretical premise behind the reduced physics model is the use of the tuning procedure.

The tuning procedure is performed by matching the production data (such as gas production) of

the full physics model. The comprehensive model is run for many reservoir scenarios based on the

field development plans and the parameters are calculated for the reduced physics model. The sur-

rogate model is confirmed when the error between the full physics and the reduced physics model is

minimized over the designed reservoir scenarios.
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In conclusion, the available studies on the reduced physics models show the efficiency of this ap-

proach, but the application of the approach to the petroleum industry is limited. The issue of

whether the reduced physics model is applicable for a complex reservoir is clouded by the fact that

this approach has never been applied to a comprehensive, three-dimensional reservoir.

2.2.3 Reduced Order Models

There is an increasing amount of literature on reduced order modeling approaches in petroleum

reservoir engineering. Reduced order modeling is a technique in which the full, high-dimensional

models are replaced with models that are smaller in dimension. The reduced model still charac-

terizes the main features of the system dynamics. The behavior of high-order reservoir models is

generally determined by only a part of the information it contains. Therefore low-order models are

often satisfactorily accurate for describing reservoir dynamics [41].

Most subsurface techniques for high-order reduction are Krylov subspace, balanced truncation, and

proper orthogonal decomposition. Proper orthogonal decomposition is the most commonly used

method for reduced order models in reservoir engineering.

Reduced order models have been applied to reservoir simulation with acceptable results. However,

there are limitations to the application of this approach. Because of the nature of the developed

reduced order model, the time needed to develop this type of model is sometimes close to the time

needed for the numerical simulation run. Therefore, reduced order models are sometimes computa-

tionally expensive.

2.2.4 Data Driven Models

The amount of data in the world is increasing dramatically. Data mining is about solving problems

by analyzing and discovering the patterns already present in databases. Artificial Intelligence is a

powerful technique that teaches the machines how to process data [42].

As the name suggests, Data Driven Modeling is focused on analyzing the total data within a system

and find a connection between the system variables (inputs and outputs).

The main fields of the DDM are:

• artificial intelligence (AI), which is the overarching study of how human intelligence can be

incorporated into computers.
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• computational intelligence (CI), which includes neural networks, fuzzy systems and evolution-

ary computing as well as other areas within AI and machine learning.

• soft computing (SC), which is close to CI, but with special emphasis on fuzzy rule-based

systems induced from data.

• machine learning (ML), which was once a sub-area of AI that concentrates on the theoretical

foundations used by CI and SC.

• data mining (DM) and knowledge discovery in databases (KDD) are focused often at very large

databases and are associated with applications in banking, financial services and customer

resources management. DM is seen as a part of a wider KDD. Methods used are mainly from

statistics and ML.

Data-driven modeling techniques can be used to determine the relationship between systems inputs

and outputs using a training set that represents the systems behavior. Once the relationship is

generated through the training set, another data set that is not included in the training process is

used to test the ability of the model for predication (generalization) [43].

2.3 Smart Proxy Models

The main goal of developing proxy models is to reduce the computational size of complex reservoir

models. The reduced order models and reduced physics models simplify the original problem as

discussed in the previous sections. Recently, real-time measurements using intelligent fields have

produced a large amount of at short intervals. The reservoir models then need to be updated

accordingly. On the other hand, there is an increasing need for a simulation technique that can

perform the tasks in a shorter period of time. The smart proxy model is introduced as a technique

for fast reservoir simulation with acceptable accuracy. This introduced proxy model has the ability

to preserve the complexity of the reservoir model.

The numerical reservoir simulation is still the leading technique in the oil and gas industry and

has been for many decades. The smart proxy model does not replace the conventional numerical

simulation, but it is a reliable alternative technique for fast assessments. The construction of the

smart proxy model is different from other types of proxy models. It is based on data mining and

artificial intelligence methods. The advantage of applying this proxy technique is that it provides
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an accurate replica of a conventional reservoir simulation using a very short computational time.

Based on the objective of the smart proxy model, it can be divided into two classes: a well-based

smart proxy model and a grid-based smart proxy model. To understand well-production injection

behavior, a well-based smart proxy model is developed to simulate the reservoir characterization

at the well level. The grid-based smart proxy model is developed for reservoir information such as

pressure and saturation at the model grid level. In special cases, a coupled well-based and grid-based

smart proxy model is generated.

The concept of the smart proxy model was introduced by Mohaghegh in 2006 [34]. He demon-

strated the ability of the developed smart proxy model (surrogate reservoir model) to mimic a one

million grid-block reservoir model. The power of the smart proxy model to predict fluid flow in

different designed geological scenarios with reasonable accuracy has also been demonstrated. After

that, Mohaghegh et al. presented a smart proxy model for fast-track analysis of complex reservoirs

[44]. They discussed the new simulation technique and analyzed the impact of the input parameters

uncertainties. The proposed model was validated with data that had not been used in the develop-

ment and the results were satisfactory.

Since then, the smart proxy model has been developed for different field and reservoir prob-

lems. Jalalai used the smart proxy model for reservoir simulation and uncertainty analysis of coal

bed methane production [45]. He performed a Monte Carlo Simulation, which requires thousands of

simulation runs for uncertainty analysis. The developed smart proxy model helped to generate these

simulation runs in a shorter time. Also, the number of simulation runs used to build the response

surface was very small compared to conventional statistical techniques. Kalantari introduced the

new simulation technique to a shale gas reservoir [46]. The smart proxy model was able to predict

the production profile of the shale reservoir production with acceptable accuracy.

The aforementioned work on smart proxy models applies to the well level. In 2012, Mohaghegh

et al. presented the first smart proxy model away from the well, at the grit-block level [47]. The

grid-level smart proxy model was applied to a massive oil field with large number of wells. The

grid-based smart proxy model was able to capture the pressure and saturation changes throughout

the reservoir with high accuracy compared to conventional simulation techniques. Amini presented

a grid-based smart proxy model for a CO2 sequestration project [29]. It was the first work consid-

ering a CO2 injection scenario using this new approach. With a CO2 injection in the reservoir, the
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developed smart proxy model is used to generate the output of gas saturation at the grid level with

minimum error compared to the numerical simulator. Gholami was able to build a smart proxy

model for reservoir injection optimization [48]. Gholami concluded that reservoir simulation using

proxy modeling is more practical tool that numerical reservoir simulation.

The smart proxy model is extended to another reservoir simulation application, namely history

matching. Soodabeh used the smart proxy technique to predict the future well/reservoir perfor-

mance and to analyze the behavior of the newly drilled wells in a shale reservoir [49]. She performed

a history match for every single well with very high accuracy. Shakarami developed a smart proxy

model to history match a synthetic reservoir model. This model contains 24 production wells with 30

years of production performance [50]. The history matching method was performed using the smart

proxy model and by modifying the geological parameter (permeability). The technique resulted in

an accurate replica of numerical simulator history matching in less time. He et al. presented a

case study using the smart proxy model to automate the history matching process in the SACROC

(Scurry Area Canyon Reef Operators Committee) unit [51]. In the case study, the optimal value

of 40 uncertain reservoir parameters could be determined for each well at any given time. The

developed smart proxy model was able to successfully perform automatic history matching in a very

short time compared to conventional history matching techniques.

Hagighat used a smart proxy model to detect CO2 leakage [52]. In his work, the smart proxy model

was examined under different conditions. It was tested for multiple well leakage, the availability of

additional monitoring wells, and CO2 leakage through cap rock. Shahkarami et al. presented work

on assisted history matching using smart proxy technology [53]. The developed technology showed

a high accuracy in reproducing the reservoir simulation behavior. Also, the best cases for history

matching were generated to perform future predictions.

The main advantages of using the smart proxy model against other proxy models in reservoir

simulation are:

1. There is no limitation in reservoir complexity.

2. There is no simplification in the reservoir physics.

3. The time to run the smart proxy model is very short.
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Chapter 3

Reservoir Modeling

In order to analyze the fluid behavior of a hydrocarbon reservoir, a reservoir simulation that uses

geological and petrophysical parameters should be developed [54]. The following sections describe

the reservoir model development of the SACROC unit.

3.1 Field Background

The SACROC Unit, which constitutes the major part of the Kelly-Snyder Field, is located in Scurry

County, Texas (Figure 3.1). It is one of the largest unitized fields in the world, covers approximately

50,000 acres, and contains 1,259 wells [55]. The Kelly-Snyder Field was discovered in 1948 and is

one of the major oil reservoirs in the United States, originally containing in excess of 2.73 billion

barrels of oil.

In 1953, due to a rapid pressure decline in the field, the Texas Railroad Commission approved the

creation of SACROC to facilitate a coordinated pressure maintenance program for the field [56].

3.1.1 Reservoir Description

The Scurry Area Canyon Reef Operations Committee Unit is located on a geologic feature named

the Horseshoe Atoll. The Horseshoe Atoll is an isolated carbonate platform accumulated during the

Middle Pennsylvanian through Early Permian age. It is a 175-mile limestone chain in western Texas.

Moreover, the Horseshoe Atoll includes an area of approximately 6,000 mi2 occupying most of the

northern end of the Midland basin, that has the thickest Middle Pennsylvanian to Early Permian

isolated limestone reef sequence known in North America [57].
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Figure 3.1: Location of SACROC Unit

The SACROC Unit is located in the southeastern segment of the Horseshoe Atoll. It lies within

the Midland basin in western Texas. The SACROC Unit contains an area of 141 mi2 with an ap-

proximate north-south length of 25 miles and an east-west length between 2 and 9 miles [58]. The

northern half of the unit contains the thickest portion of the reservoir. Also, it is structurally the

highest and dips steeply to the west and east [59].

The reservoir of the SACROC Unit is directed north-south trending carbonate buildup with a slight

dogleg to the west. The geology of the SACROC Unit is described as a massive bio-clastic limestone

with thin shale beds. The analysis of the core samples shows that the SACROC Unit is mostly

calcite with low quantities of quartz and clay lenses [60].The seal of the reservoir is formed of a thick

sequence of dark black, organic-rich basinal shale and is the source of the trapped hydrocarbons.

Based on the geological description of the available cores and logging information, the main

geological beds of the SACROC Unit are divided into the Canyon and Cisco units [58]. The Canyon

unit is divided into three formations, the Lower Canyon, the Middle Canyon, and the Upper Canyon.

The Lower Canyon is placed below the reservoir. The Upper Canyon is a highly porous unit. It
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includes erosional fragments resulting from extended low sea levels. The Middle and Lower Canyon

contain high porosity layers and are separated by low porosity carbonate muds [58].

Figure 3.2: SACROC Unit Lithology
[61]

Due to the prepositional environment changes, both porosity and permeability show significant

variation. Different studies on the Cisco and Canyon units show porosity values from 0 to 30% and

permeability values from 0 to 1000 mD.

In summary, the average depth of the SACROC Unit formation is 6,700 ft. The formation thickness

ranges from 800 ft on the crest to less than 50 ft on the flanks. The average thickness is 213 ft. On

the basis of drill-stem tests and production data, it has been determined that the first occurrence of

water was approximately 4,500 ft subsea.

The initial reservoir pressure at original BHP is 3,122 psig. The solution gas is under 1000 scf/STB

and the bubble point pressure is 1,805 psig [62].

3.1.2 Field Performance

The initial reservoir pressure of the Kelly-Snyder field was 3,122 psig. The primary reservoir mech-

anism was natural solution gas drive. The field was discovered in 1948 and at the end of 1951; more

than 1,200 wells had been drilled in the field. More than 80 companies operated in the field and
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Figure 3.3: Southwest-northeast schematic cross-section C-C through thickest known part of Horse-
shoe atoll

[58]

SACROC Field Characteristics

Average Porosity 7.6%

Average Permeability 19.4 mD

Formation Depth 6700-7000 ft

Initial Reservoir Pressure 3122 psig

Reservoir Temperature 130 oF

Bubble Point Pressure 1820 psig

Table 3.1: Basic Reservoir Data of SACROC Unit

due to this competitive environment, the reservoir pressure had dropped to 1,650 psig with only 5%

of the reserved oil produced. With the primary mechanism, it was estimated that only 19% of the

original amount of oil in place could be recovered [63].

Due to the rapid pressure decline, a pressure maintenance program became essential.
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Figure 3.4: Typical Well Logs in SACROC Unit
[58]
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3.1.3 Water-Flood Program

Due to the rapid decline in pressure, the SACROC Unit was put under a full-scale pressure main-

tenance program in 1954, using a water injection system. The water injection wells were placed

along the longitudinal crest of the structure (Figure 3.5). The pressure maintenance program was

very effective for many years. The water injection program resulted in a restoration of the average

reservoir pressure from a 1546 psi in 1954 to nearly 2300 psi by 1967 [55].

Figure 3.5: SACROC unit pressure contour map. Left side shows the pressure contour map in 1954
where the right side of the figure shows the pressure contour map in 1970.

[48]

Before the water injection, 99% of the reservoir was below the bubble-point pressure (bubble

point pressure is 1820 psig). Two years after the injection, 45% of the reservoir was above the

bubble-point pressure. In 1961, 80% of the reservoir volume was above the bubble-point pressure

and by 1972 the average reservoir pressure was 2356 psig [64].
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Figure 3.6: Performance history of SACROC Unit

3.1.4 CO2 Injection

The pressure maintenance program using water injection was successfully performed to increase the

pressure. However, there were still challenges with pressure maintenance on the eastern and western

margins of the reservoir. To overcome these challenges and after studies showing that the SACROC

Unit properties are ideal for miscible CO2 recovery, a CO2 injection recovery technique (water al-

ternating gas) was applied in 1972 [65].

The CO2 injection was carried out in three consecutive phases; central, north and south WAG

flooding. In the central SACROC Unit, the WAG injection was started in 1972 and lasted until the

second quarter of 1973. During this phase, the maximum oil rate increased from 30,000 barrels per

day to 100,000 barrels per day. The second WAG injection was performed in the north part of the

field in June 1973. The oil rate reached 80,000 barrels per day from 40,000 barrels per day before

the WAG process. The south part of the SACROC field was chosen for phase three of the WAG

process in April 1973. The oil rate was increased from 30,000 barrels per day to 40,000 barrels per

day [66]. After two years of WAG injections, oil production peaked at 211,000 barrels per day.
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Figure 3.7: WAG Phase Locations of SACROC Unit
[67]
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3.2 Geo-Cellular Model Development

In order to analyze the fluid behavior of a hydrocarbon reservoir, a reservoir simulation model that

uses geological and petrophysical parameters is developed.

The Texas Bureau of Economic Geology has developed a geo-cellular model for the northern platform

of the SACROC field. It is a high-resolution model with a dimension of 149X287 and 221 layers. The

size of the geo-cellular model is 4,000 m wide and 10,000 m long. The following sections describe

the reservoir model development of the SACROC field.

Figure 3.8: Reservoir Model of Northern Platform in SACROC Unit
[66]

3.2.1 Estimation of Porosity and Permeability

A very important step in building the geo-cellular model is developing an accurate porosity-permeability

relationship. This step becomes more challenging when dealing with complex reservoir descriptions.

Typically, the porosity measurements are easier to obtain because of the available density and sonic

logging tools. On the other hand, directed permeability techniques are expensive and difficult to

get [68]. Therefore, to calculate the permeability, porosity-permeability correlations are generated
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using the available core permeability data.

A number of techniques to develop porosity-permeability correlation have been discussed in the

literature. The one used for the SACROC geo-cellular model is based on the rock-fabric approach

introduced by Lucia in 1995 [69]. Lucia related the permeability distribution in carbonate forma-

tions to the rock pore size. Moreover, the pore size distribution is related to rock fiber. In his work,

the pore size (porosity) is divided into two classes, inter-particle porosity and vuggy porosity. Inter-

particle porosity includes inter-grain and inter-crystal pore spaces. The separate and connected vugs

belong to the vuggy porosity class.

Three types of rock fabrics are presented by Lucia: first class, inter-particle size from 100 to over

500 m dominant in grain-stones, dolograinstones, and large crystalline dolostones; second class,

inter-particle size from 20 to 100 m, dominant in grain-dominated pack-stones, fine and medium

crystalline, grain-dominated dolopackstones, medium crystalline, and mud-dominated dolostones;

third class, inter-particle sizes from 5 to 20 m, and is dominant in mud-dominated lime-stones and

fine crystalline, mud-dominated dolostones.

The following equation developed by Lucia [69] shows the rock-fabric permeability calculation

method:

log(k) = (9.7982 + 12.0838log(λ)) + (8.6711 + 8.2965log(λ))φ (3.1)

Where:

λ : rock-fabric number

k : permeability

φ : inter-particle porosity

The data plots of porosity-permeability in the SACROC field, show the high heterogeneity of this

field. The porosity values ranges between 0 to 30 percent, and the permeability values ranges be-

tween o md to 2000 md (figures 3.9 and 3.10).

The porosity used in the equation is calculated from 368 wireline logs available and three-

dimensional seismic data [70]. Because of the heterogeneity of the Cisco formation and the low

porosity intervals, wireline logs were not enough to build a high quality geological model. Therefore,

seismic data was added to the wire-line logs in order to build a high quality porosity distribution
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Table 3.2: Permeability Calculations Using Porosity and Fabric Number

[69]

Formation/Sequence Rock Fabric
Number

Transformation Equation

Cisco/Late K = 2.1625×106×ϕ3.8844

Cisco/Late 1.7 K = 1.031× 107 × ϕ6.7592

Cisco/Early 1.9 K = 2.96× 106 × ϕ6.3584

Canyon/1 2.5 K = 97, 628× ϕ5.396

Canyon/2 1.75 K = 38, 520× ϕ5.0923

Canyon/3

in the Cisco formation. In the Canyon formation, on other hand, due to the continuous and better

porosity, the wire-line logs alone were able to develop a reasonable porosity disturbance for the

geological model [48].

Based on the aforementioned rock fabric equation coupled with generated porosity distribution,

permeability is calculated for each layer and complete porosity-permeability is developed for the

SACROC Unit.

3.2.2 Geo-Cellular Model Upscaling

Because the high level of detail of the SACROC geo-cellular model (9,450,623 grid blocks) signifi-

cantly increases the computational cost of this model, procedures have been carried out to coarsen

the reservoir description to reduce the computational cost. Such procedures are referred to as ”up-

scaling” or ”scale up” techniques [71]. The upscaling process is an averaging procedure in which the

static characteristics are up scaled from properties on a fine-scale grid [72].

In the high-resolution model, there are 221 geological layers. All these layers belong to five ge-

ological formations (Canyon 1, Canyon 2, Canyon 3, Canyon 4, and Cisco). The main aim of the

upscaling is to reduces the geological layers from 221 layers to 16 layers in the five main geological

formations. Reducing the number of layers means reducing the number of grid cells. In other words,

the static parameter values in the upscaled cells need to be averaged. The averaging method used

for porosity and permeability are harmonic averaging and geometric averaging respectively.

34



Figure 3.9: Porosity histogram for the selected study area.
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Figure 3.10: Permeability histogram for the selected study area.
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Figure 3.11: Porosity-Permeability Relationship.
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The upscaling procedure leads to a reduced model resolution. That said, efforts were made to pre-

serve the heterogeneity as much as possible.

In addition to the upscaling process, to fit the model for the purpose of this study, a northern

part of the SACROC field was selected for this study. The selected part of the fields dimension was

51X39X16 with a total of 31,824 grid blocks.

Figure 3.12: Side view of the high resolution model of SACROC field with 221 layers
[48]

Figure 3.13: The five main formation where the model upscaled from 221 layers to 16 layers (Canyon
1 (2 layers), Canyon 2 (2 layers), Canyon 3 (3 layers), Canyon 4 (2 layers), Cisco (7 layers)).
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Figure 3.14: 3-D Grid Top of the selected area of study.
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3.2.3 Rock Fluids Properties

In oil and gas reservoirs, two or sometimes three phases are present. Generally, permeability mea-

surements are made with a single fluid filling the pore space. Therefore, the measured permeability

in a multi-phase reservoir is expected to be lower than that in a reservoir with a single fluid. This is

because it occupies only part of the pore space and may also be affected by interaction with other

phases. Moreover, when a wetting and a non-wetting phase flow together in a reservoir rock, each

phase follows separate and distinct paths. This behavior is called relative permeability [73].

Usually, the permeability of the chosen base is measured at the start of the experiment. For

instance, the experiment starts with measurements of the permeability of oil in the presence of irre-

ducible oil in the core. Water is then injected into the core. The permeability of both oil and water

are measured as water replaces the oil. In this case, the base permeability is the initial permeability

of the oil at Swi [74].

Figure 3.15: Typical Relative Permeability Curves

In the SACROC Unit, the relative permeability function has been developed from a similar car-

bonate rock. The developed function was extrapolated from relative permeability data collected from

Wabamun Lake (Figure 3.16 a). Then, the relative permeability of SACROC core Core128V at 50C

and 1.4 MPa [75] was used to calibrate the oil permeability curve from Wabmun Lake (figure 3.15 b).
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Figure 3.16: (a) Relative permeability curve with experimental data from Wabamun Lake (b) Fitted
relative permeability curve with experimental data from SACROC core test

[76]
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The relative permeability curves used for this study numerical model are shown in Figure 3.17.

Figure 3.17: Relative Permeability Curves for The Area of Study

3.2.4 Initial and Boundary Conditions

The SACROC Unit reservoir was initially saturated with oil and gas. The initial reservoir pressure

was assumed to be 3,122 psig at oil-water contact of -4,300 ft. The reservoir temperature used for

the developed model was 130 F and the water saturation below the oil-water contact was 36% [64].

The initial oil composition contained 11 gas components summarized in table no 3.3 [58].

All reservoir boundaries were set as no-flow boundaries. Han [70] has determined the Wolf-camp

shale located above the Cisco and Canyon formations as an effective seal. Therefore, the upper

boundary was treated as a no-flow boundary. The description of the wolf-camp shale formation as

a carbonate reef complex and the prism shape of the Cisco and Canyon formations mean that the

eastern, western, and northern boundaries could be set as no-flow conditions. Finally, the bottom

boundary was set as a no-flow boundary due to the low permeability in the Strawn formation [58].

For this study, part of the northern part of the SACROC field was chosen. To minimize the

effect of the wells beyond the selected area and to replicate the open-flow boundary, six hypothetical

production wells are placed in the extended section of the model.
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Figure 3.18: Hypothetical wells to mimic open flow conditions.
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Table 3.3: Oil Composition for SACROC Unit Model

[58]

Oil Composition Mole Mocular Weight

CO2 0.0032 44.01

N2 0.0083 28.01

C1 0.2865 16.04

C2 0.1129 30.07

C3 0.1239 44.1

I-C4 0.0136 58.12

N-C4 0.0646 58.12

I-C5 0.0198 72.15

N-C5 0.0251 72.15

F-C6 0.0406 86

C7+ 0.3015 197.4

3.2.5 Wells and Completions

This section mainly concerns the wells in the selected area of study of the SACROC Unit.

In this selected area, there are 27 production wells. Twelve of these were converted to injection

wells at a later stage. The number of production/injection wells varies throughout the fields history.

Figure 3.19 shows the number of production/injection wells over the field history from 1949 to 2003

and Figure 3.20 shows the production/injection wells history of the selected area of study. For

instance, in 1980, there were 18 production wells and nine injection wells. However, the numbers

changed in 2000 to nine production wells and 11 injection wells. This figure is conclusive evidence

of the production/injection complexity of the studied area. In addition to the production/injection

wells in this section of the field, a number of hypothetical production wells was added to the model

to mimic the flow boundary.

In the simulation model, the operational constrains used are the liquid rates. For production

wells, the minimum bottom-hole pressure (BHP) was set to 28 psi. To ensure that the entire re-

quired amount of injection can be achieved through the low permeability reservoir, the bottom-hole
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injection pressure was set to 5,000 psi for injection wells.

All the production/injection wells are drilled vertically and completed as open hole wells across

the 16 geological layers.

Figure 3.19: Production/Injection wells versus the history of the studied area

3.2.6 History Matching

History matching is a very important process that validates the built reservoir model for future field

plans.

As the name implies, history matching is the process of adjusting the reservoir model until the

closest match to previous reservoir performance has been achieved [77]. The availability and quality

of historical production and pressure data play a fundamental rule in history matching. In this

process, some of the reservoir parameters are modified with reservoir engineering experience until

the reservoir model has been validated.

The history-matched reservoir model provides a higher degree of confidence for simulating differ-

ent field production scenarios. It helps the reservoir engineer to better understand reservoir behavior,

45



Figure 3.20: Production/Injection history of the Selected area of study.
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to improve reservoir description, and to identify unusual operating conditions [78].

Due to the heterogeneity of the reservoir properties, performing history matching for the SACROC

Unit is challenging. The area of study of the SACROC Unit has been history matched by He [66]

as part of her graduate study research project. In her work, all reservoir properties were considered

trustworthy, except for porosity, permeability, and relative permeability [66].

In the process of reservoir model adjustments, the porosity and permeability were modified us-

ing the multiplier technique. Both reservoir properties were decreased by 50% and increased up

to 400%. However, only one relative permeability curve was used due to the limit of information

availability [66].

Based on different geological scenarios, 80 simulation runs have been developed for history match-

ing. He [66] was able to match water production, oil production, and average reservoir pressure.

Figure 3.21: Water and oil production history match results of well 10-10
[66]
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Figure 3.22: Average reservoir pressure history match results of three known points
[66]

3.3 Numerical Reservoir Development

Once the geo-cellular model has been developed, it is transformed to a fluid flow simulator. The

commercial simulator utilized in this study came from the Computer Modeling Group. It is a

multi-dimensional compositional simulator. [79].
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Chapter 4

Smart Proxy Model Development

Methodology

The smart proxy model is a data mining and artificial intelligence approach. The main step of de-

veloping the smart proxy model is to define the objective of the smart proxy. Based on the defined

objective, the type of smart proxy and the number of numerical simulations can be determined.

Moreover, the nature of the reservoir realization is identified based on the objective of the smart

proxy. For example, a geological realization would be generated if the objective is history matching.

The operational constraints would be modified for field optimization. The technique of the smart

proxy is to learn from provided examples, so it is necessary to have a sufficient quantity and quality

of information to build a successful smart proxy.

Generally, there are six main steps involved in developing the smart proxy model. First, define

the objective of the smart proxy. Second, design the full field numerical simulation model. Third,

extract the static and dynamic data from the simulation run to generate a spatiotemporal database.

Fourth, select the required parameters from the database based on the objective of the smart proxy.

Fifth, using neural networks, train and validate data for the targeted reservoir property (the trained

and validated neural network is the developed smart proxy model). Finally, apply the smart proxy

model to a blind simulation run which was not included in the training set for verification [80]. The

following sections discuss these steps in more detail..
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Figure 4.1: Smart Proxy Model Work Flow
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4.1 Numerical Simulation Design

The purpose of designing and running the numerical simulation model is to provide the sample space

of model input-output relationships required to train the neural network. The simulation run design

must take the objective of the smart proxy model into consideration.

The aim of the current study is to replicate and predict the reservoir dynamic properties at grid-block

level under different geological and operational realizations. In reservoir simulators, the hydrocar-

bon flow is calculated in every grid block but presented in the final output as one well production

value at each time. In this study, the final output is the flow calculations at each grid block.

This means that for each well there will be 16 production data points that represent 16 geological

layers. Obtaining the production data at every grid block of the wells generates the required data

heterogeneity for the training of the neural network (Figure 4.2 shows the oil flow rate heterogeneity).

Figure 4.2: Field Oil Rate Histogram
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4.2 Database Generation

A database that includes time-related parameters is called a temporal database. The parameters

have different values at different times. The database stores a sequence of events over time. Spatial

databases are databases that contain spatial-related information (e.g., geographic (map)) [81].

The majority of time spent developing the smart proxy model is consumed by database genera-

tion. The smart proxy model is constructed to represent the principles of the reservoir physics.

Therefore, reservoir engineer knowledge and inputs are essential to develop the smart proxy model.

The data input in database comes from two sources, the geo-cellular model (static data) and the

fluid-flow model (dynamic data) at each grid block.

The static data include reservoir structure and grid blocks information. The dynamic data are

the properties that change with time and come from two domains. The first domain is the well

domain data such as production/injection rates and well BHP. The grid block domain data are the

system state variables such as pressure and saturation.

In order to monitor the pressure and saturation movement, the data from neighboring grid blocks

are collected using a process called tier system. In this study, the tier system is consisting of four

tier systems as follows:

• Tier 1 represents data of immediate block in the same layer

• Tier 2 represents data from the immediate block in the above layer

• Tier 3 represents data from the immediate block in the bottom layer

• Tier 4 represents data from the surrounding blocks in the same layer

4.3 Data Sampling

Mining data from 31200 grid blocks generates an exceedingly large data set of 1.5 million records.

It is difficult to handle such a large data set with limited resources (time and computational tools).

Therefore, a data sampling technique was applied in this study.
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Table 4.1: Data Selected to Develop the Database

Data Type

Static Data Dynamic Data

Grid Location Grid Injection Rate

Grid Top Grid Injection Cumulative

Grid Thickness Grid Production Rate

Grid Porosity Grid Production Cumulative

Grid Permeability Grid Pressure

Distance to Injection and Boundaries Grid Saturation

Figure 4.3: Tier System

In detention, sampling involves using a small data set out of a larger data set in an attempt to

draw conclusions about the whole data set [82]. In the literature, there are different techniques for

performing data sampling. In this study, two sampling approaches were used. The first approach

was random sampling. In this technique, population members have an equal chance of being se-

lected. Each subject is selected independently of the other members of the population [83]. The

other approach is called the smart sampling technique. In this sampling approach, a histogram of

the targeted output is plotted. Then the output distribution is divided based on the range of the

values. In this data sampling process, the output value represented by a high number of data points

will have a lower percentage of data sampling. On the other hand, the values with less data will

have a higher proportion of the data sampled. This sampling process will give the proxy model the

required data heterogeneity for better training. Figure 4.4 explains the smart sampling procedure.
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Figure 4.4: Smart Sampling Technique for Pressure Data

Figure 4.5: Database Generation Represented by the Size of Data
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4.4 Data Partitioning

As mentioned above, the database was generated to be used for neural network training in order to

develop the smart proxy model. When training artificial neural networks, the database is divided

into three main data sets. The first set is the training set, which is used to train the network. The

second set is the test set, which is used to stop the training when overfitting takes place. The third

set is the validation set, which measures the accuracy of the trained network [84].

It is very important to study the database set in order to determine which partitioning strategy

should be performed. For the current studys database, a random partitioning technique was used.

Random partitioning divided the database so that 70% of the database was assigned to the training

set, 15% to the test set, and 15% to the validation set.

4.5 Artificial Neural Network Construction

An ANN consists of a network of neurons (also known as nodes) that are connected to each other.

There are three types of nodes in an ANN, input nodes (input layer), hidden nodes (hidden layer),

and output nodes (output layer). The input layer corresponds to the input features, so they have

as many nodes as there are selected inputs. The output layer consists of one node, denoting the

property being modeled. The hidden layer entails the nodes in which the computations happen.

The number of the hidden layers in this study was set to double the number of input nodes.

A neural network was designed for each of the three reservoir properties investigated in this

work (pressure, oil saturation, and water saturation). The algorithm used to construct the neural

networks was backpropagation. In this algorithm, the error for each output is propagated backwards

to the input in order to adjust the weights in each layer of the neural network [85]. Once the network

has been constructed, the training process starts and the network performance can be monitored

using several visualization plots in the software [79].

4.6 Validation with a Blind Data Set

Once the neural network has been trained to satisfaction, the last step in smart proxy development

is to verify the model with blind data sets. A blind data set is defined as a numerical simulation of
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input/output data which has not been used in the training of the neural network.

4.7 Error Measurement

The developed smart proxy model is validated by applying the model to a blind set. It is important

to determine the precision of the model to the blind set. In this study, the precision is determined

by measuring the error between the numerical simulator output and the smart proxy model output.

The developed smart proxy is generating output at each grid block, so the error should be calculated

at each grid block.

Different error calculations formulas are used based on the nature of the output data. For the

pressure output, the following error formula is used:

Absolute Error Percentage = [(|Artificial Neural Network Output−Numerical Simulator Output|)/

Numerical Simulator Output] ∗ 100

(4.1)

For the reservoir saturation data, the nature of data is different. The values are between 0 and 1,

therefore the following error formula is used:

Absolute Error Percentage = (|Artificial Neural Network Output−Numerical Simulator Output|) ∗ 100

(4.2)
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Chapter 5

Smart Proxy to Replicate

Numerical Simulator

The objective of this chapter is to test the ability of the smart proxy model technique to replicate

the numerical simulation results. The geological heterogeneity and flow performance heterogeneity

of the SACROC field create an ideal situation for testing whether this proxy modeling technique is

able to mimic the results of the numerical simulation.

As discussed in chapter 4, it is the smart proxy objective that defines the type and the scale of

the proxy model. Because the objective in this chapter is to test the ability of the smart proxy to

mimic the results from the numerical simulator, only one numerical simulation run was designed for

each smart proxy.

Generally, the production/injection performance of the SACROC field in the studied area is

divided into two phases, the first 20 years of the production/injection when there was only one

injection well in the field and the second stage, from 1972, when a number of production wells was

converted into injection wells. Therefore, a smart proxy was generated for each phase.

5.1 Phase One Smart Proxy

The SACROC Unit initially produced under natural solution gas drive. When the reservoir pressure

declined dramatically, the pressure maintenance program using water injection was introduced to
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the field in 1953. In the study area, only one well had been converted to a water injection well (well

17-5) between 1955 and 1972. The water injected into the reservoir brought the reservoir pressure

from 1300 psi to 2000 psi by the end of 1960. The total number of producing wells during this stage

was 13.

5.1.1 Training Model Construction

The static and dynamic reservoir data collected to develop the smart proxy model came from one

simulation run (history-matched model). The database was generated using the geo-cellular model

data and the data from flow performance between 1953 and 1963. Given the reservoir model dimen-

sion, there are 312,000 data records (31,200 grids X 10 time steps). The software used for training

is not capable of handling this amount of data. Therefore, data sampling was applied to the input

data. As mentioned above, it is very important to make sure that the sampled data is representative

of the full data set. For instance, Figure 5.1 shows all data pressure points compared with the

sampled pressure data points. It is clear from the histograms that the sampled data is an excellent

representation of the complete data set.

Figure 5.1: All Pressure points versus sampled points histograms, for years from 1953 to 1963

From this production phase, only 28,000 data points out of 312,000 were used for training. In

other words, only 9% of the data was used in the training. The training data was divided into three

parts, 70% for training (19,600 data records), 15% for calibration (4,200 data records), and 15% for

validation (4,200 data records).

The ANN was constructed in three layers, an input layer, a hidden layer, and an output layer. The

input layer contains 69 selected parameters. The hidden layer has 120 nodes and there was one

output in the output layer.
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Figure 5.2: The ANN architecture for training the reservoir pressure and saturation

5.1.2 Training Results

As mentioned in the previous chapter, the ANN was designed based on the smart proxy development

procedure. Three ANN were designed for the three targeted reservoir properties, grid pressure, oil

saturation, and water saturation. In the ANN, the input layer contains 69 selected parameters, 120

nodes in the hidden layer, and one output node in the output layer. The network was then trained,

calibrated, and tested for the targeted reservoir property. Table 5.1 shows the training results of the

targeted reservoir properties.

Reservoir Property R-squared coefficient

Grid Pressure 99%

Oil Saturation 99%

Water Saturation 99%

Table 5.1: Phase One Smart Proxy Training Results
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Figure 5.3: Selected Parameters to Develop the Smart Proxy Model
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5.1.3 Validation with a Blind Data Set

The smart proxy model was developed for the years from 1953 to 1963 for the targeted reservoir

properties (pressure, oil saturation, and water saturation). The studied area of the field had the

same production performance for the 10 years following that (up to 1970). The ideal way to test

the ability of the developed smart proxy model is to apply it to a blind data set that has never been

seen by the trained model.

The model was applied to selected blind data sets. Static and dynamic reservoir data from the

years 1964, 1965, and 1968 were used as blind data sets for the smart proxy model. The results

showed an excellent match between the numerical simulation model and smart proxy model. The

absolute average error between the two models was 1%. Some of the blind sets results are shown as

data maps images in Figures 5.4 to 5.12.

61



Figure 5.4: Year 1964 Layer 1 Pressure, Oil Saturation, and Water Saturation Distribution From
Numerical Simulation and Smart Proxy Model (ANN).
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Figure 5.5: Year 1964 Layer 5 Pressure, Oil Saturation, and Water Saturation Distribution From
Numerical Simulation and Smart Proxy Model (ANN).
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Figure 5.6: Year 1964 Layer 12 Pressure, Oil Saturation, and Water Saturation Distribution From
Numerical Simulation and Smart Proxy Model (ANN).
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Figure 5.7: Year 1965 Layer 6 Pressure, Oil Saturation, and Water Saturation Distribution From
Numerical Simulation and Smart Proxy Model (ANN).
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Figure 5.8: Year 1965 Layer 10 Pressure, Oil Saturation, and Water Saturation Distribution From
Numerical Simulation and Smart Proxy Model (ANN).
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Figure 5.9: Year 1965 Layer 16 Pressure, Oil Saturation, and Water Saturation Distribution From
Numerical Simulation and Smart Proxy Model (ANN).
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Figure 5.10: Year 1968 Layer 2 Pressure, Oil Saturation, and Water Saturation Distribution From
Numerical Simulation and Smart Proxy Model (ANN).
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Figure 5.11: Year 1968 Layer 7 Pressure, Oil Saturation, and Water Saturation Distribution From
Numerical Simulation and Smart Proxy Model (ANN).

69



Figure 5.12: Year 1968 Layer 13 Pressure, Oil Saturation, and Water Saturation Distribution From
Numerical Simulation and Smart Proxy Model (ANN).
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Reservoir Property R-squared coefficient

Grid Pressure 99%

Oil Saturation 99%

Water Saturation 99%

Table 5.2: Phase Two Smart Proxy Training Results

5.2 Phase Two Smart Proxy

The selected second phase was from 1975 to 2003. In this phase, the number of production and

injection wells introduced to the field varied each year. This type of behavior makes the production

performance very heterogeneous and challenging for smart proxy development.

Two water injection wells were added to the smart proxy model database as in order to monitor the

water injection affect at each grid block. Indeed, adding another injection well provides more op-

portunities for monitoring the reservoirs dynamic property changes due to the injection/production

process at every time step.

In this phase, the database generated was exceedingly large and used data from 28 years of injec-

tion/production performance (from 1975 to 2003). The database had 900,000 data records. Again,

sampling was applied and only 90,000 data points were selected for the ANN training and smart

proxy development. Figure 5.13 shows the complete data set versus the sampled data points.

5.2.1 Training Results

In the development of the ANN at this phase, the same neural network structure as in the first

production stage was followed. The input layer contained 69 selected parameters, 120 nodes in the

hidden layer, and one output node in the output layer.

The neural network was then trained, calibrated, and tested. Table 5.2 shows the training results of

the targeted reservoir properties.
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Figure 5.13: All points versus sampled points histograms, Pressure on left side and the Oil Saturation
on right side
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5.2.2 Validation Results

The smart proxy model was developed using sampled data, which is less than 10% of the entire

database. So, 90% of the database had not been seen by the trained model. To ensure the ro-

bustness of the developed model, it has to be validated by introducing it to different data sets.

As explained in the previous section, the production time period examined in this phase was from

1975 to 2003. In the validation process followed here, the model was applied to all production years

and compared to the results from the numerical simulation. The smart proxy validation showed a

very vigorous model in which the results are an excellent match with the numerical simulation results.

Due to the long period of production (28 years), only results from three years were selected to be

presented in this section. These years were carefully selected based on the production performance

of the field during the studied period of time. 1980 is when the field had a maximum number of

injection/production wells. In 1992, the number of production wells became lower, and in 2000 the

field had the highest number of injection wells.
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Figure 5.14: Year 1980 Layer 1 Pressure, Oil Saturation, and Water Saturation Distribution From
Numerical Simulation and Smart Proxy Model (ANN).
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Figure 5.15: Year 1980 Layer 7 Pressure, Oil Saturation, and Water Saturation Distribution From
Numerical Simulation and Smart Proxy Model (ANN).
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Figure 5.16: Year 1980 Layer 15 Pressure, Oil Saturation, and Water Saturation Distribution From
Numerical Simulation and Smart Proxy Model (ANN).
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Figure 5.17: Year 1992 Layer 1 Pressure, Oil Saturation, and Water Saturation Distribution From
Numerical Simulation and Smart Proxy Model (ANN).
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Figure 5.18: Year 1992 Layer 7 Pressure, Oil Saturation, and Water Saturation Distribution From
Numerical Simulation and Smart Proxy Model (ANN).

78



Figure 5.19: Year 1992 Layer 15 Pressure, Oil Saturation, and Water Saturation Distribution From
Numerical Simulation and Smart Proxy Model (ANN).
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Figure 5.20: Year 2000 Layer 1 Pressure, Oil Saturation, and Water Saturation Distribution From
Numerical Simulation and Smart Proxy Model (ANN).
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Figure 5.21: Year 2000 Layer 7 Pressure, Oil Saturation, and Water Saturation Distribution From
Numerical Simulation and Smart Proxy Model (ANN).
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Figure 5.22: Year 2000 Layer 15 Pressure, Oil Saturation, and Water Saturation Distribution From
Numerical Simulation and Smart Proxy Model (ANN).
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Chapter 6

Smart Proxy for Geological and

Operational Realization - Non

Cascading Process

In Chapter 5, the developed smart proxy was able to replicate the numerical reservoir simulation

results with acceptable range of error. The main objective of this Chapter is to prove that the

smart proxy model is a reliable tool for reservoir simulation realization. The smart proxy model

should be able to supply the reservoir properties (pressure and saturation) when changing the static

(geological) and dynamic (operational constraints) data.

To develop the smart proxy for this objective, a non-cascading process was performed for the

application of the smart proxy model. In non-cascading, the input data is entered to the smart

proxy from the numerical simulation model rather than from the output of the smart proxy at the

previous time step.

To design the numerical simulation run, the permeability distribution in the history-matched

model was modified for each layer. It is important to keep the modification of the permeability

values between the maximum and minimum values at each layer. This process meant a change in

the locations of high and low permeability at each layer.
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To develop the smart proxy model for this case, one of the static (geological) parameters was

selected for modification. Due to the significant impact of permeability in the geological model and

in the dynamic model, this was the parameter used for this case.

Similar to the procedure for changing the static data, the BHP for every production well was

modified from the history-matched model. The wells BHP profiles were plotted and the high/low

points were identified. The new simulation run was designed based on flipping the BHP profile for

every well. The process can clearly be seen in plots for some wells.

Once the static model was built using the new data, the model was fed to a numerical simulator.

Then, the inputs and outputs of the numerical simulator were used to generate the smart proxy

database. The procedure used to develop the smart proxy model has already been discussed in

Chapter 4.

Figure 6.1: The permeability (md) data changing technique, left side of the figure shows the HM
model where the right side shows the changed permeability distribution model (Layer 10).

6.1 Smart Proxy Deployment Results

The developed smart proxy was deployed for a blind run. The results showed a very robust model

when changing static and dynamic data. Compared to the numerical simulator for the reservoir prop-
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Figure 6.2: Example of the BHP modification technique for well no. 10-4. The blue curve is the
HM BHP where the red one is the modified BHP used in designing the numerical simulation run to
develop the smart proxy model.

Figure 6.3: Another Example of the BHP modification technique for well no. 10-9.
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erties (pressure and saturation), the smart proxy results were within an acceptable range of accuracy.

The absolute error percentage of the reservoir pressure over about 25 time steps was 5%. On the

other hand, the absolute error percentage of the saturation for the same time period was about 1%.

Figure 6.4: Pressure error histogram of randomly selected grids from 1975 to 2003 (smart proxy
error compared to numerical simulator).

Figure 6.5: Oil saturation error histogram of randomly selected grids from 1975 to 2003 (smart
proxy error compared to numerical simulator).
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Figure 6.6: Pressure, Oil Saturation, and Water Saturation Distributions From Numerical Simulation
and Smart Proxy Model (ANN) In year 1980 Layer 4.
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Figure 6.7: Pressure, Oil Saturation, and Water Saturation Distributions From Numerical Simulation
and Smart Proxy Model (ANN) In year 1980 Layer 8.
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Figure 6.8: Pressure, Oil Saturation, and Water Saturation Distributions From Numerical Simulation
and Smart Proxy Model (ANN) In year 1980 Layer 13.
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Figure 6.9: Pressure, Oil Saturation, and Water Saturation Distributions From Numerical Simulation
and Smart Proxy Model (ANN) In year 2000 Layer 4.
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Figure 6.10: Pressure, Oil Saturation, and Water Saturation Distributions From Numerical Simula-
tion and Smart Proxy Model (ANN) In year 2000 Layer 8.
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Figure 6.11: Pressure, Oil Saturation, and Water Saturation Distributions From Numerical Simula-
tion and Smart Proxy Model (ANN) In year 2000 Layer 13.
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6.2 Non-Cascading Discussion

The developed smart proxy model results show strong agreement with the results from the numer-

ical simulator using a non-cascading process. The non-cascading was applied in the deployment of

the smart proxy to test the concept of using data mining and artificial intelligence in a reservoir

simulation application. In a non-cascading process, the inputs always come from the numerical

simulator at each targeted time step. Therefore, according to the current author, non-cascading is

impractical for predicting the reservoirs performance over many times steps (days, months, or years).

It is more practical to have a smart proxy model that is independent and can make predictions

with a minimum of communication with the numerical simulators inputs/outputs. In order to achieve

this objective, the cascading process was used when building the smart proxy model. In this process,

the smart proxy model used the previous time step output as an input for the next time step until

the last time step was reached. To put it another way, in this process, the smart proxy model was

almost automated. The cascading process and smart proxy models are elaborated upon in the next

sections of this dissertation.

93



Chapter 7

Smart Proxy Model for Geological

and Operational Realization-

Cascading Processes

As stated in Chapter 4, the most important step in developing the smart proxy is to define the

objective. In this section, the objective is to develop a smart proxy model for geological and opera-

tional realization of the SACROC Unit using the cascading feature.

In cascading, the initial database is generated at the beginning. At the first time step, the ANNs

models were trained and validated for the targeted reservoir properties (pressure and saturations).

The models outputs with a calculated tier system were imported into the database of the next time

step. This procedure was continued until the last time step was reached. The cascading feature was

used in the training and deployment of the smart proxy development.

It is very important to design the best training technique in order to achieve the assigned ob-

jective. As mentioned in the previous sections, the majority of the time spent in developing the

smart proxy model is taken up with studying the system and preparing the data. With cascading

feature, the technique used to generate the smart proxy with a cascading feature was modified from

the technique used in the non-cascading process.
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The smart proxy models aim to supply the reservoir properties (pressure and saturations) for

the SACROC Unit during the history of the field performance. The targeted period ranges from

1951 to 1995. For a better smart proxy performance, the field performance was divided into three

phases for two reasons. Firstly, the training and validation of the proxy model is performed at each

time step and since there are about 40 time steps, error accumulation would make this impractical

to do in one phase. Second, there were different reservoir drive mechanisms during the development

of the SACROC field (solution gas drive at the early production, then pressure maintenance using

water injection).

Figure 7.1: Cascading Training Flow-chart

7.1 Numerical Simulation Runs Design

The objective of the smart proxy is to examine the field performance under different geological and

operational realizations. To do this, a handful of numerical simulation runs were designed to build

the spatiotemporal database. The numerical simulation runs were built by changing the geological

parameters (permeability and porosity) and the operational constraint (BHP).

For the geological parameters, permeability and porosity, two geological scenarios were designed.
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Figure 7.2: Cascading Deployment Flow-chart

Figure 7.3: The divided three production phases of SACROC unit
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The first scenario was generated by multiplying the history-matched model porosity and perme-

ability by 1.5. The second geological scenario was performed by multiplying the permeability and

porosity by 0.5. In other words, two general scenarios were designed, a high porosity-permeability

scenario and a low porosity-permeability one.

The operational constraint examined in this study is BHP. The operational constraint numerical

simulation run designs were based on the profile of the BHP for every production well. To have

sufficient data for the model to be trained and generalized for different BHP profiles, 10 numerical

simulation runs were generated by modifying each wells BHP profile. To elaborate, the BHP of

the wells in the history-matched model was plotted. The maximum and minimum BHP of all wells

was identified. After that, for each well, 10 BHP profiles were designed between the maximum and

minimum values of BHP.

7.2 Database Generation, Input Selection, and Neural Net-

work Training

The designed numerical simulations were executed to collect the static and dynamic data of these

runs to generate a database that would represent the entire reservoir in terms of data. Once the

database had been generated, the tier system was calculated (tier system details are provided in

Chapter 4). Subsequently, inputs for neural network training were selected for the reservoir proper-

ties (pressure and saturation).

The neural network was constructed to develop a smart proxy model for each reservoir property.

The training was performed at each time step for each property. This means that the number of

smart proxy models developed was equal to the number of the time steps for each reservoir property.

7.3 Phase One Smart Proxy Model

Phase one represents the early time production of the field. The duration of this phase is 10 years

(from 1950 to 1960). During this phase, the field started producing under the gas solution drive.

The reservoir pressure decreased to the point where a pressure maintenance program was needed.
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Figure 7.4: The high and low porosity-permeability scenarios at layer 10 of the geological model
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Figure 7.5: BHP scenarios for well number 10-1. Same technique was applied for all other production
wells.
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Figure 7.6: Cascading Process Input Training Parameters.

In 1956, the first water injection well was introduced to the field.

The number of time steps in phase one is 10 (10 years of production). This means 10 smart proxy

models were developed for every reservoir property. Every model was trained and validated and the

output of each model at each time step was imported to the next time step database for training

until the last time step was reached.

7.3.1 Phase One Training Results

The construction of the neural networks as well as the data input selection was based on the smart

proxy development explained earlier in this study. The neural networks hidden layer and the nodes

in the hidden layers could be assigned based on the number of inputs and the data records size.

The data was divided for the training, with 80% in the training set and 20% for the calibration and

validation sets. Ten neural networks were trained for every reservoir property. The calibration data

sets performance was monitored for network training validation.

The networks training showed an excellent performance for all targeted reservoir properties. Table

7.1 shows the average R-squared coefficient for each property (calculated average based on 10 trained
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neural networks).

Reservoir Property Average R-squared coefficient

Grid Pressure 99%

Oil Saturation 99%

Water Saturation 99%

Table 7.1: Phase one Training Results

7.3.2 Phase One Blind Run Results

In order to validate the developed smart proxy model and to test that it was able to provide the

reservoir properties at each grid block, it was applied to a blind simulation run scenario that was

designed with different geological and operational realizations.

The deployment results showed that the smart proxy model was capable to produce the reservoir

properties (pressure and saturation) with an acceptable range of error compared to the numerical

simulator. The absolute average error for the pressure was 1.5% and the absolute average error of

the saturation was 1%.

The results of the deployment were shown using data distribution maps. Since the reservoir has

16 layers and since there were 10 smart proxy models for each reservoir property, 480 images were

generated from these results. Therefore, it is difficult to show all results in this section. Selected

layers of the reservoir are shown in the following images, based on the productivity of each layer.

For highly productive layers, layers 3, 7, and 10 were selected. On the other hand, layers 1, 4, and

16 were selected as less productive ones.
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Figure 7.7: Phase one Layer-1 in 1951
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Figure 7.8: Phase one Layer-3 in 1951
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Figure 7.9: Phase one Layer-5 in 1951

104



Figure 7.10: Phase one Layer-7 in 1951
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Figure 7.11: Phase one Layer-10 in 1951
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Figure 7.12: Phase one Layer-16 in 1951
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Figure 7.13: Phase one Layer-1 in 1953
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Figure 7.14: Phase one Layer-3 in 1953
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Figure 7.15: Phase one Layer-5 in 1953
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Figure 7.16: Phase one Layer-7 in 1953
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Figure 7.17: Phase one Layer-10 in 1953
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Figure 7.18: Phase one Layer-16 in 1953
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Figure 7.19: Phase one Layer-1 in 1955

114



Figure 7.20: Phase one Layer-3 in 1955
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Figure 7.21: Phase one Layer-5 in 1955
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Figure 7.22: Phase one Layer-7 in 1955
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Figure 7.23: Phase one Layer-10 in 1955
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Figure 7.24: Phase one Layer-16 in 1955
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Figure 7.25: Phase one Layer-1 in 1957
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Figure 7.26: Phase one Layer-3 in 1957
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Figure 7.27: Phase one Layer-5 in 1957
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Figure 7.28: Phase one Layer-7 in 1957
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Figure 7.29: Phase one Layer-10 in 1957
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Figure 7.30: Phase one Layer-16 in 1957
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7.4 Phase Two Smart Proxy Model

Phase two production performance started in 1960 and ended in 1970. In this phase, only one water

injection well was added in the field. Also, the variation in the wells BHP during the 10 years of

production was relatively small. The BHP for every production well was between 1950 psi to 2100

psi. The designed numerical simulation runs that generated the database and the construction of

the neural networks were carried out following the same workflow as that used for phase one.

Figure 7.31: Phase Two BHP for Production Wells

7.4.1 Phase Two Training Results

The construction of the trained neural networks in this phase was similar to that used for phase

one. There was a neural network trained for each reservoir property at each time step. In order to

verify the training, the calibration data set was monitored for a better network performance.
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Reservoir Property Average R-squared coefficient

Grid Pressure 99%

Oil Saturation 99%

Water Saturation 99%

Table 7.2: Phase Two Training Results

7.4.2 Phase Two Blind Run Results

The validated smart proxy models were used to mimic the results produced by a blind numerical

simulation run. The deployment process was implemented using a cascading feature. The smart

proxy models showed robust performance with an acceptable range of error. The absolute average

error at the first time step was under 1% and it reached about 2% by the last time step. For satu-

ration, the absolute average error was 1% at the last time step.

The following figures show the smart proxy model results compared to the numerical simulator

in form of distribution maps. Like for the phase one result, only selected time steps and geological

layers are shown in this section.

127



Figure 7.32: Phase two Layer-1 in 1961

128



Figure 7.33: Phase two Layer-3 in 1961
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Figure 7.34: Phase two Layer-5 in 1961
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Figure 7.35: Phase two Layer-7 in 1961
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Figure 7.36: Phase two Layer-10 in 1961
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Figure 7.37: Phase two Layer-13 in 1961
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Figure 7.38: Phase two Layer-1 in 1963
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Figure 7.39: Phase two Layer-3 in 1963
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Figure 7.40: Phase two Layer-5 in 1963
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Figure 7.41: Phase two Layer-7 in 1963
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Figure 7.42: Phase two Layer-10 in 1963
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Figure 7.43: Phase two Layer-13 in 1963
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Figure 7.44: Phase two Layer-1 in 1965
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Figure 7.45: Phase two Layer-3 in 1965
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Figure 7.46: Phase two Layer-5 in 1965
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Figure 7.47: Phase two Layer-7 in 1965
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Figure 7.48: Phase two Layer-10 in 1965
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Figure 7.49: Phase two Layer-13 in 1965
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Figure 7.50: Phase two Layer-1 in 1967
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Figure 7.51: Phase two Layer-3 in 1967
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Figure 7.52: Phase two Layer-5 in 1967
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Figure 7.53: Phase two Layer-7 in 1967
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Figure 7.54: Phase two Layer-10 in 1967
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Figure 7.55: Phase two Layer-13 in 1967
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7.5 Phase Three Smart Proxy Model

Phase three of the field production profile is the longest in duration and the most active production

phase. In this phase, there were up to 15 production wells and up to 12 water injection wells. The

production duration of this phase was about 20 years.

Again, in this phase, the smart proxy development procedure was the same as that used for

the first and second phases. However, in this phase, the training and validation was particularly

challenging, due to the number of time steps. There were 20 time steps, requiring the development

of 20 smart proxies.

Using the cascading feature, it is necessary to have a very well trained model at each time step in

order to keep the validation and deployment error low. The error propagation needs to be considered

with this type of training. Therefore, the training should be performed carefully to minimize the

error at each time step.

Figure 7.56: Phase Three BHP for Production Wells
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7.5.1 Phase Three Training Results

Similar to phase one and phase two, neural networks were trained for reservoir pressure and satu-

ration. For each reservoir property, 20 neural networks were trained and validated. The selected

neural network inputs along with carefully designed simulation runs resulted in the required training

results. The following table summarizes the neural networks training in this phase.

Reservoir Property Average R-squared coefficient

Grid Pressure 99%

Oil Saturation 99%

Water Saturation 99%

Table 7.3: Phase Three Training Results

7.5.2 Phase Three Blind Run Results

Once the smart proxy had been developed and trained, its capability for generalization was tested by

applying it to a blind data set. The blind data set was generated using a new numerical simulation

run that had not been used in the training process. In this phase, the same blind simulation run as

that used in the previous phases was used to verify the phase three smart proxy model.

The developed proxy deployment performed with a cascading feature. In other words, 20 proxy

models were used in this process. The initial time step used the reservoir pressure and saturation

from the numerical simulator. However, the next time step used the reservoir pressure and satura-

tion from the output of the initial time step deployment. This process was continued until the last

time step had been reached.

The deployment results showed a low average absolute error between the numerical simulator

and the smart proxy at most of the time steps. However, due to the error propagation, the average

absolute error at the last time step for reservoir pressure was 11%. On the other hand, the satura-

tion average absolute error was under 2% at all-time steps. The following data distribution maps

show the comparison between the numerical simulator and smart proxy for reservoir pressure and

saturation. Because of substantial amount of data maps that were generated from the results of this
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phase, only selected time steps (years) and layers are presented in this section.

Figure 7.57: Phase three Layer-1 in 1978
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Figure 7.58: Phase three Layer-4 in 1978
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Figure 7.59: Phase three Layer-6 in 1978
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Figure 7.60: Phase three Layer-8 in 1978
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Figure 7.61: Phase three Layer-10 in 1978
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Figure 7.62: Phase three Layer-14 in 1978
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Figure 7.63: Phase three Layer-1 in 1983
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Figure 7.64: Phase three Layer-4 in 1983
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Figure 7.65: Phase three Layer-6 in 1983
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Figure 7.66: Phase three Layer-8 in 1983
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Figure 7.67: Phase three Layer-10 in 1983
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Figure 7.68: Phase three Layer-14 in 1983
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Figure 7.69: Phase three Layer-1 in 1986
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Figure 7.70: Phase three Layer-4 in 1986
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Figure 7.71: Phase three Layer-6 in 1986
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Figure 7.72: Phase three Layer-8 in 1986
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Figure 7.73: Phase three Layer-10 in 1986
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Figure 7.74: Phase three Layer-14 in 1986
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Figure 7.75: Phase three Layer-1 in 1989
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Figure 7.76: Phase three Layer-4 in 1989
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Figure 7.77: Phase three Layer-6 in 1989
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Figure 7.78: Phase three Layer-8 in 1989
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Figure 7.79: Phase three Layer-10 in 1989
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Figure 7.80: Phase three Layer-14 in 1989
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Figure 7.81: Phase three Layer-1 in 1991
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Figure 7.82: Phase three Layer-4 in 1991
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Figure 7.83: Phase three Layer-6 in 1991
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Figure 7.84: Phase three Layer-8 in 1991
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Figure 7.85: Phase three Layer-10 in 1991
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Figure 7.86: Phase three Layer-14 in 1991
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Figure 7.87: Phase three Layer-1 in 1993
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Figure 7.88: Phase three Layer-4 in 1993
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Figure 7.89: Phase three Layer-6 in 1993
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Figure 7.90: Phase three Layer-8 in 1993
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Figure 7.91: Phase three Layer-10 in 1993
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Figure 7.92: Phase three Layer-14 in 1993
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Chapter 8

Smart Proxy for Field Production

In the previous Chapters, smart proxy models were developed for dynamic reservoir properties (pres-

sure and saturation) at grid-block level. Since the main objective of this study was to build a smart

proxy for field geological and operational realization, it was important to design a smart proxy that

is able to predict the production profile of the field.

The objective of the production profile smart proxy model is to imitate the response of the pro-

duction wells in the form of production rates to different geological and operational realizations.

This type of smart proxy model and dynamic reservoir properties smart proxy models are great

tools for decision making about field development plans.

To build a smart proxy for field production profile, the general workflow for a dynamic reservoir prop-

erties smart proxy model in a cascading process was followed. The field performance history from

1950 to 1995 was divided into three phases and for each phase, smart proxy models were developed.

For each phase, three smart proxy models were generated for three production profiles; oil rate, gas

rate, and water rate. In the following section, the production profile smart proxy development is

explained.

8.1 Numerical Simulation Design

To make the smart proxy model more practical in reservoir simulation, it is essential that it is

capable of producing the reservoir properties as well as the production profiles (production rates).

Thus, the dynamic reservoir smart proxy model (grid based) and the production profile (well based)
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should be run under the same geological and operational realizations. To achieve this, the designed

numerical simulation runs for the production profile smart proxy model were the same numerical

simulation scenarios used for the reservoir properties smart proxy models training and validation at

each production phase.

8.2 Spatiotemporal Database Generation

Spatiotemporal database generation is an essential step in developing the smart proxy model. It

has the reservoir physics and phenomenon in form of data. The required parameters are imported

and organized from the designed numerical reservoir simulation runs to generate the database. The

selection of the input parameters is based on the impact of these parameters on the reservoir perfor-

mance (production profile in this case). Also, the domain knowledge (reservoir engineering) in this

study plays a significant rule in the selection of the input parameters in order to deliver the desired

results out of the smart proxy model.

The parameters selected for production profile smart proxy were directly impact the production

profile performance. Geological parameters such as reservoir thickness, grid top, porosity, and

permeability are selected for the database. Reservoir thickness and porosity represent the pore

volume of the reservoir and how much fluids can be produced. The permeability affects the ability

of the fluids to flow from the reservoir. In addition to that, the location of producers is defined by

the grid block location (I, J, K) in the geological model. In addition to the geological parameters,

which do not change with time, wells production rates were added to the database at each previous

time step to teach the network efficiently about the production profiles.

8.3 Data Partitioning

Different data partition techniques were examined for this case. The software used to develop the

production profile smart proxy model is IDEA. In this software, a novel technique for data portioning

is available. This technique is called intelligent data portioning. It ensures that data distribution is

honored in all three categories, training, calibration, and validation.

Since the number of records in the database for the well base model (production profile) is much

smaller than the grid base model, 80% of the data was assigned for the training set and 20% for
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Figure 8.1: Smart Proxy for Production Profile Input Parameters

calibration and validation sets (10% for each).

8.4 Neural Network Construction and Training

Once the spatiotemporal database had been generated and the data portioning had been selected,

neural network construction and training could be implemented. Three smart proxy models for each

production phase were developed for the production profiles, oil production, gas production, and

water production.

The training and validation workflow include a cascading feature. The neural network was trained

and validated at each time step and the outputs of the trained model were used for the next time

step. The backpropagation algorithm was used to train the networks. The network architecture

(input layer, hidden layer, and output layer) was designed based on the number of inputs/outputs

of the training set. The success of training and validation was measured by using the calibration

data set performance.
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8.5 Verification with a Blind Data Set

As discussed in other sections of this study, strong training results alone do not ensure the gener-

alization ability of the developed neural network. The trained ANN has to be applied to a blind

data set for verification. Therefore, the developed proxy models were examined with a designed

simulation case that had not been used in the training process.

The designed blind simulation run was the same one used for the smart proxy model developed

for reservoir properties in order to verify both smart proxies (reservoir property model and produc-

tion profile model).

The smart proxy model deployment used a cascading feature. The proxy model was applied at

each time step and the output was used for the next time step. In other words, the smart proxy

production inputs from the previous time step were imported from the numerical simulation results

only at the initial time step.

In the following sections, the training and deployment results are demonstrated for each production

phase.

8.6 Phase One Production Smart Proxy Model

8.6.1 Training Results

In phase one of production, there were only three wells producing. These were well 10-4, well 10-5,

and well 11-3. Network training was challenging due to a low number of data records. However, the

right input selection provided the desired training results.

The network training results of the three production profiles (oil rate, gas rate, and water rate) are

shown in the following figures.

193



Figure 8.2: Phase One Oil Production Training Cross Plot

Figure 8.3: Phase One Gas Production Training Cross Plot
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Figure 8.4: Phase One Water Production Training Cross Plot
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8.6.2 Blind Run Results

The smart proxy deployment results are shown in the form of data maps for the oil, gas, and water

production profiles. In general, compared to the numerical simulator, the results show an acceptable

performance of the smart proxy model.

Figure 8.5: Phase one well 10-4 oil production profile
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Figure 8.6: Phase one well 10-4 gas rate profile
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Figure 8.7: Phase one well 10-4 water rate profile
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Figure 8.8: Phase one well 11-3 oil rate profile
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Figure 8.9: Phase one well 11-3 gas rate profile
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Figure 8.10: Phase one well 11-3 water rate profile
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Figure 8.11: Phase one well 10-5 oil rate profile
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Figure 8.12: Phase one well 10-5 gas rate profile
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Figure 8.13: Phase one well 10-5 water rate profile
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8.7 Phase Two Production Smart Proxy Model

8.7.1 Training Results

Phase two production was similar to phase one with regards to the low number of data records for

training. In this phase, there were four active production wells. These wells were 10-1, 10-2, 11-4,

and 11-5. Again, the domain knowledge allowed for selecting the required input data for training.

The network training is shown in the following cross plots.

Figure 8.14: Phase two Oil Production Training Cross Plot
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Figure 8.15: Phase two Gas Production Training Cross Plot

Figure 8.16: Phase two Water Production Training Cross Plot
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8.7.2 Blind Run Results

The application of the smart proxy model results compared to the numerical simulation results are

shown in the following figures. However, the results from well 11-4 differ significantly from the

numerical simulation and are therefore not displayed in this section.

Figure 8.17: Phase two well 11-5 oil production profile
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Figure 8.18: Phase two well 11-5 gas production profile
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Figure 8.19: Phase two well 11-5 water production profile
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Figure 8.20: Phase two well 10-1 oil production profile
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Figure 8.21: Phase two well 10-1 gas production profile
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Figure 8.22: Phase two well 10-1 water production profile
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Figure 8.23: Phase two well 10-1 oil production profile
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Figure 8.24: Phase two well 10-1 gas production profile
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Figure 8.25: Phase two well 10-1 water production profile
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8.8 Phase Three Production Smart Proxy Model

8.8.1 Training Results

Phase three production performance was the most active with regards to the number of wells and

the production time. There were 15 production wells in this phase. Moreover, the production dura-

tion was 20 years. Therefore, the number of data records available for training was sufficient for a

robust proxy development. In addition, the variation of production profiles coming from these wells

provides the required data heterogeneity for network training and generalization.

The following cross plots are the training results of oil rate, gas rate, and water rate.

Figure 8.26: Phase three Oil Production Training Cross Plot
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Figure 8.27: Phase three Gas Production Training Cross Plot

Figure 8.28: Phase three Water Production Training Cross Plot
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8.8.2 Blind Run Results

The deployment results of the smart proxy model in phase three showed a very close match to the

production results of the numerical simulator for all wells. The error between the proxy results

compared to the numerical simulator is within the acceptable range. The following figures show the

deployment results compared to the numerical simulator for the oil, gas, and water rates profiles.

Figure 8.29: Phase three well 10-9 oil production profile
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Figure 8.30: Phase three well 10-9 gas production profile
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Figure 8.31: Phase three well 10-9 water production profile
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Figure 8.32: Phase three well 11-5 oil production profile
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Figure 8.33: Phase three well 11-5 gas production profile
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Figure 8.34: Phase three well 11-5 water production profile
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Figure 8.35: Phase three well 11-7 oil production profile
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Figure 8.36: Phase three well 11-7 gas production profile
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Figure 8.37: Phase three well 11-7 water production profile
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Figure 8.38: Phase three well 11-9 oil production profile
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Figure 8.39: Phase three well 11-9 gas production profile
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Figure 8.40: Phase three well 11-9 water production profile
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Figure 8.41: Phase three well 11-10 oil production profile
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Figure 8.42: Phase three well 11-10 gas production profile
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Figure 8.43: Phase three well 11-10 water production profile
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Figure 8.44: Phase three well 17-7 oil production profile
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Figure 8.45: Phase three well 17-7 gas production profile
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Figure 8.46: Phase three well 17-7 water production profile
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Figure 8.47: Phase three well 9-9 oil production profile
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Figure 8.48: Phase three well 9-9 gas production profile
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Figure 8.49: Phase three well 9-9 water production profile
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Figure 8.50: Phase three field oil production profile

239



Figure 8.51: Phase three field gas production profile
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Figure 8.52: Phase three field water production profile
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Chapter 9

Concluding Remarks and

Recommendations

9.1 Concluding Remarks

In the oil and gas industry, as in any other industry, the ultimate goal is to increase the revenues

and decrease the operational costs. Therefore, the industry strives to find new technologies to help

achieve this goal. Reservoir simulation helps oil and gas companies plan and set future strategies for

their fields. Reservoir simulation can be used in many tasks, such as history matching, evaluation,

optimization, and other necessary field-development tasks . With the new geological description

tools, geological models can be significantly complex, which greatly increases the computational size

of these models. This of course increases the costs associated with running complex models.

To reduce the cost of reservoir simulation and increase the rate of investment, a smart proxy model

was introduced. As defined earlier in this dissertation, smart proxy modeling is a technique that is

based on data mining and artificial intelligence. Many recent studies conclude that this type of proxy

model can be utilized as an alternative to traditional reservoir-simulation techniques. Smart proxy

models can perform reservoir simulation with very low computational cost compared to conventional

reservoir simulators.

All new technologies take some time to be accepted by the industry and require comprehensive

studies and applications to be welcomed. Upon the announcement of the smart proxy model, there
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was resistance from the petroleum industry. This can be expected for two main reasons. First,

industry reservoir engineers are used to the traditional reservoir techniques, and it is hard for them

to shift and change their habits. Second, in some cases, the new technology was misused and ap-

plied without considering its limitations. It is very important to understand the limitations and

conditions of smart proxy applications. First and foremost, this technology is an objective-oriented

technology. In other words, the smart proxy model that is built for CO2 injection cannot be used

in a water-injection simulation scenario. Applying the right smart proxy model for the right sim-

ulation scenario is key to convincing the industry to make this paradigm shift in reservoir simulation.

Two types of smart proxy model are developed in this study for the SACROC unit. This field

has been producing for a long time with deferent production-drive mechanisms. The complexity

of the production performance and the geological characterization make it an ideal candidate for

examining the smart proxy performance. The first type of smart proxy model was built to generate

reservoir properties (pressure and saturation) at grid block level under different geological (porosity

and permeability) and operational scenarios (BHP). To gain a larger picture of field performance,

another proxy model was developed to generate the well-production profile.

Because the numerical reservoir simulator is the technique most widely accepted and used for reser-

voir simulation, the results of the smart proxy models were compared to the numerical simulator

under the same scenarios to determine the smart proxy performance. Both smart proxy models

yielded very acceptable absolute average errors compared to the numerical simulator. The devel-

opment of the smart proxy model is explained comprehensively in this study. The results used for

comparison came from a totally blind simulation run and were not used in the training and devel-

oping of the proxy model. They demonstrate the ability of the smart proxy to generate accurate

reservoir simulation outputs under any designed simulation scenario within the range of the trained

geological and operational parameters.

The development of the smart proxy is based on the solution objective, so the development tech-

nique is based on the type of problem in hand. This study tests two types of training and validation

techniques. The non-cascading method was using the inputs at each time step from the numerical

simulator. Although this method yields an acceptable range of error, it is not practical for reservoir

simulation forecasting. Therefore, this study was mainly using the cascading feature. In the cas-

cading feature, the inputs at each time step come from the output of the previous time step until
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the last time step is reached (except for the first time step). This feature allows the smart proxy

model to feed itself with selected dynamic data inputs. The real challenge of using cascading is error

propagation. In non-cascading, the error comes mainly from the neural-network training process.

On other hand, the error in the cascading method comes mainly from two sources. The first source

is the error generated from the neural-network training; the other source is the error generated from

the deployment of the previous time step of the smart proxy model. The error from the cascading

process can be significant if the neural network is not trained properly especially with a large number

of time steps. The error propagation of the pressure and oil saturation for this study is illustrated

in figure 9.1 .

The main purpose of the study is to draw attention to the time and computational size savings

that can be achieved using the smart-proxy-model technique. In addition to simulation output ac-

curacy, the smart proxy model is competitive with the conventional simulation techniques because

of its low computational size and faster running time. To run a smart proxy model, no expensive

processing computers are needed; it can be run using a regular personal computer. The smart proxy

database can be very large, but it can be sampled to reduce the size if necessary.

It has been found that this technique constitutes an effective way to improve the speed of the

simulation run. In most cases, smart proxy simulations can be completed in fractions of a second.

To illustrate, the run time of one simulation scenario in this study takes seven hours with the con-

vectional numerical simulator. The smart proxy model using the cascading feature for 30 time steps

takes up to 30 seconds. To run 100 simulation scenarios with a conventional numerical simulator

could take up to one month. On the other hand, it would take only a couple of minutes using smart

proxy.

The question of whether the physics is ignored has recently caused much debate over the use of

this technique. In the smart proxy model, by studying all the corresponding reservoir data, the

network learns from the data that carries information about the physics of the system. On these

grounds, it can be argued that the physics of the system is not disregarded.
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Figure 9.1: Reservoir Pressure and Oil Saturation Error Propagation
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9.2 Recommendations

The following recommendations are offered for related research in the field of smart proxy develop-

ment for reservoir simulation.

1. To build a smart proxy for reservoir simulation applications, the number of time steps and

the time resolution should be chosen carefully. Time resolution is a key feature for planning

how much data needs to be collected out of the field performance. A finer time resolution

means more information can be gathered in order to understand the fields behavior. In this

study, an annual time resolution was selected. It is highly recommended to consider obtaining

a monthly time resolution in order to monitor the reservoir pressure and saturation along with

their effect on the production performance on a month-by-month basis. In this way, the smart

proxy would be able to discover any missing information during the production year. .

2. Designing numerical simulation runs plays a significant role in smart proxy development. It

helps to train the ANN with different field scenarios. For the operational scenarios in this

study, only the BHP was used to design numerical simulation runs. It is recommended to

include multiple injection scenarios along with BHP scenarios. In this way, the smart proxy

would be able to obtain the optimum production/injection strategy of the field.

3. To make the smart proxy more practical in a reservoir simulation, it is recommended to

investigate the feasibility of developing a smart proxy that is able to produce more than one

reservoir property. In this study, one smart proxy was developed for each reservoir property

(pressure and saturation). It would be very useful to build one smart proxy that can supply

both reservoir properties.
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Appendix

Phase 3 wells production profile.

Figure 9.2: Well 10 1
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Figure 9.3: Well 10 1
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Figure 9.4: Well 10 11
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Figure 9.5: Well 10 4
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Figure 9.6: Well 11 11
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Figure 9.7: Well 11 12
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Figure 9.8: Well 11 13
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Figure 9.9: Well 17 10
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