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ABSTRACT 

Utilizing early cellular changes to explore biological responses to individual chemical 

and mixture exposures 

by 

Julie Anne Vrana 

 Humans are continuously exposed to a vast number of chemicals, whether it be 

from the air we breathe, the water we drink, or the medications we take daily. Early 

cellular changes after exposure to chemical insult, both individual chemicals and 

mixtures (two or more chemicals) thereof, can offer a wealth of information about 

cellular adaptation (e.g., cell death or survival decision processes). From this 

understanding, better prediction models for chemical risk assessment, such as toxicity or 

carcinogenicity, can be elucidated. Further, these prediction models can greatly improve 

the large backlog of chemicals waiting to be evaluated for potential adverse effects. One 

approach to understand cellular changes and responses after chemical or mixture 

exposure is with toxicodynamics. From a toxicodynamic approach, a host of information 

can be determined, such as spatiotemporal interactions of chemical insult with biological 

targets, the corresponding disruption of intracellular pathways and bioenergetics, and 

downstream effects after exposure. Appropriately measuring these dynamic cellular 

changes is imperative. The recent advances in molecular biology, high-throughput in 

vitro screening assays, and numerous computational techniques have allowed 

toxicologists to collect large data sets on signaling pathways that are perturbed in 

response to chemical insults. From these early cellular perturbations, whether they be 

signaling proteins, biomolecules (e.g., ATP, hormones, NADH), or ions (e.g., Ca
2+

 or 

K
+
), in response to a wide range of doses, especially low concentrations, improved risk 

assessment prediction models for individual chemical and mixture exposures can be 

utilized by many fields, such as risk assessment for environmental toxicology and target 

molecule/pathway analysis for drug development and pharmacology.  
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Chapter 1 

Introduction to early cellular changes that may contribute to 

individual and mixture responses after exposure 
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1. Introduction: Utilizing early cellular changes to explore biological responses to 

individual and chemical mixtures 

 The early cellular changes initiated by external stimuli (whether that be chemical, 

physical, or biological agents) can offer a host of information about the adaptive response 

and adverse effects related to individual chemical and mixture exposures. Notable 

examples of early cellular changes are perturbations of dynamic intracellular signaling 

networks and alterations in cellular bioenergetics, such as increased/decreased oxygen 

consumption or electron transport chain uncoupling. Due to the interconnectivity of 

various effector proteins and biomolecules, activity at a distinct intracellular location can 

have consequences at distal locations.  Additionally, as the primary tenet of toxicology 

proclaims, “it is the dose that makes the poison,” a better understanding of cellular 

changes in response to a range of concentrations, especially low dose exposures, is 

essential to toxicity testing and chemical risk assessment. Finally, the ability to measure 

the rapid and dynamic cellular responses to exposure is critical for an enhanced 

understanding of toxicity. The experimental conditions and assays capable of capturing 

relevant mechanistic information for toxicity testing will be discussed in this chapter. A 

better understanding of the mechanistic components related to chemical response has 

numerous implications across many fields, such as risk assessment for toxicology and 

target molecule/pathway analysis for drug development and pharmacology. With 

mechanistic data collected from various doses, intracellular proteins and biomolecules, 

and cellular endpoints, better toxicity prediction models can be developed for individual 

chemical and mixtures risk assessment.   
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1.1 Classification of toxic agent and exposure effects - a toxicological perspective 

 Humans are continuously exposed to a plethora of chemicals daily. These 

chemicals can be traced to a variety of sources, such as environmental, pharmaceutical, or 

industrial. With the considerable amount of individual chemicals humans can be exposed 

to on a daily basis, this begs the question, what classifies a chemical or agent as "toxic"? 

A toxic agent, whether it be chemical, biological, or physical, can be classified by their 

use (e.g., pharmaceutical, pesticide, additive, etc.), source (e.g., human-made, plant or 

animal toxin, etc.), target organ(s) (e.g., brain, liver, heart, etc.), and effects (e.g., 

cardiotoxicity, carcinogenicity, immunogenicity, etc.) (Casarett and Klaassen, 2008). A 

primary tenet of toxicology states that all chemical agents are toxic, but it is the dose that 

determines if an agent is toxic or safe (Pottenger and Gollapudi, 2009). The classification 

of what constitutes an agent as toxic, and the threshold thereof, can be ambiguous. 

However, the experimental characterization of an agent that incorporates chemical 

properties and biological exposure effects is useful for toxicological risk assessment. The 

work described in this dissertation will primarily focus on exogenous chemical stressors, 

also known as xenobiotics.  

  Appropriately characterizing biological effects of a single agent exposure can be 

a daunting task. Toxicological risk assessment determines the quantitative estimate of 

possible effects of a xenobiotic on human health (Casarett and Klaassen, 2008). 

Following exposure, xenobiotic effects can be adverse, deleterious, or dangerous to an 

organism (Edwards and Aronson, 2000). Conversely, some effects can be beneficial, such 

as pharmaceutical side effects of antihistamines (drowsiness) or oral contraceptives 

(decrease acne severity). To properly address the adverse or beneficial nature of a 
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chemical exposure, the dose and time course of toxicity/adaptation needs to be 

elucidated.   

 

1.1.1 Dose-response for chemical exposure toxicity testing and risk assessment 

 One of the most central concepts utilized for toxicity studies and risk assessment 

is the dose-response relationship (Calabrese and Baldwin, 2003b). The response variable 

can be any desired effect to be measured, such as cell death, survival, or cellular oxygen 

consumption, and the independent variable would be the doses required to elicit a 

response. There are many types of dose-response models used in toxicity testing, but the 

most dominant is the threshold model (Calabrese and Baldwin, 2003a). The threshold 

model has been used in many scientific disciplines, such as biology, pharmacology, and 

toxicology, and has been the primary model for regulatory agencies, such as the U.S. 

Federal Drug Administration (FDA) and Environmental Protection Agency (EPA) 

(Calabrese and Baldwin, 2003a). In the threshold model, depending upon the effect 

measured and assay sensitivity, there exists a dose below which the probability of a 

measured response for a sample or individual compared to control is zero (Cox, 1987). 

This threshold dose is also referred to as the no observed adverse effect level (NOAEL) 

(Allen et al., 1994). An alternative model, the hormesis model, has also proven to be 

useful for low-dose (below the NOAEL) risk assessment (Calabrese, 2009) and has seen 

a recent surge in interest due to advances in molecular toxicology testing (Calabrese and 

Baldwin, 2003b). The hormesis model is a biphasic dose-response relationship and can be 
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succinctly described as low dose activation followed by high dose inhibition, which can 

appear as a U-shaped or J-shaped dose-response curve (Calabrese, 2008).  

 The renewed interest in hormesis as a valid model for toxicity testing has opened 

the door for low-dose biochemical and molecular toxicology research (Calabrese, 2008). 

It is important to note that the hormetic dose-response should also consider time in 

toxicity testing. This is due to the fact that hormesis responses may be a compensatory 

response that follows the initial disruption in homeostasis, resulting in the characteristic 

low-dose stimulatory response (Calabrese, 2001). Biological systems are highly 

coordinated and dynamic (Kholodenko et al., 2010), the exclusion of temporal response 

in risk assessment modeling would ignore the ability of an organism to adapt and respond 

to a low-dose exposure. Therefore, toxicological risk assessment needs to be inclusive of 

the spatiotemporal aspect of biological response post-exposure as well as a wide range of 

doses, including low doses.      

 

1.1.2 Chemical mixtures  

 Current chemical exposure risk assessment is primarily carried out for single 

xenobiotics (Cedergreen et al., 2008), however, in reality humans are continuously 

exposed to a vast number of components, whether they be chemical, physical, or 

biological agents, at various doses, and through a variety of exposure routes on a daily 

basis (Groten et al., 2001). Understanding and ultimately predicting the possible 

combined effects of a given mixture exposure is necessary for risk assessment 

toxicology.  There are two types of mixtures: simple and complex. Simple mixtures 
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contain a small number of different chemicals and the composition is known. Complex 

mixtures contain hundreds to tens of thousands individual chemicals, of which the 

composition (dose or constituents) is not known (Feron et al., 1998). Experimentally 

determining the effects of all possible mixture combinations, or even binary mixtures, for 

a range of doses at different time points is not physically or financially possible 

(Cedergreen et al., 2008). Therefore, adequate models capable of predicting mixture 

responses are necessary for various sectors, such as pharmacological adverse interaction 

risk assessments and environmental exposure risk assessments. The two most commonly 

used and accepted mixture prediction models are Loewe additivity (dose addition) and 

Bliss independence (response addition) (McCarty and Borgert, 2006). 

    Dose addition is typically used when two or more chemical agents have a 

similar mechanism of action (Borgert et al., 2004). Dose addition is based on the theory 

that two chemicals in a mixture act as a dilution of each other (Loewe and Muischnek, 

1926; Berenbaum, 1989). Traditional dose additivity can be described as shown in 

Equation 1: 

 
     

     
              (1) 

where α' is the dose of the chemical   when administered  as a mixture producing 

response E, and α is the concentration of the chemical agent,  , required to produce the 

response effect E when administered alone (single exposure). Equation 1 can be used for 

n number of agents as a mixture. If the overall expression is < 1, the mixture is 

considered synergistic. Conversely, if the overall expression is > 1, the mixture is 

considered antagonistic (Rajapakse et al., 2001).  
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 Response addition (Bliss independence) is typically used for two (or more) 

chemicals that do not have the same mechanism of action, that is, the organism will 

respond to each chemical agent independently, as though the other agent(s) are not 

present (Bliss, 1939; McCarty and Borgert, 2006). The prediction of mixture effects 

using response addition is equivalent to the conditional sum of independent chemical 

effect probabilities (Boyd et al., 2011). Response addition can be described by the 

expression (equation 2) 

                                 (2) 

where F(  ) is the response effect produced by chemical   at dose α. Since this is a 

probabilistic model, F(  ) cannot be greater than 1. Dose addition and response addition 

models are generalizations of nonlinear regression models, such as a Gompertz growth 

curve or Hill plot, and can be easily compared to observed mixture dose-response curves 

(Rajapakse et al., 2001; Boyd et al., 2011).    

 

1.1.3 Mode of action vs mechanism of action 

 Regulatory guidelines for mixture risk assessments rely heavily on the similarity 

(or dissimilarity) of two chemical components' mechanistic information for model 

selection of a given mixture (USEPA, 1986; USEPA, 1999; USEPA, 2000; ATSDR, 

2001b; ATSDR, 2001a; USEPA, 2002). In this discussion of prediction models for 

mixture toxicity, the term “mechanism of action” is used loosely. The term "mechanism" 

of action is often used interchangeably with "mode" of action (Borgert et al., 2004). 

However, these terms have specific definitions, but are often defined differently 
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depending upon the literature article cited (Aptula and Roberts, 2006; Spurgeon et al., 

2010). Traditionally, "mechanism of action" refers to the series of molecular events from 

the absorption of an effective dose of an agent to the eventual biological response 

(Butterworth et al., 1995). To fully describe the mechanism of action for a chemical, the 

components outlined in Figure 1.1 would need to be determined experimentally. 

 

The term "mode of action" is a more generalized way to describe a chemical's 

action on a given organism (Schlosser and Bogdanffy, 1999). The term "mode of action" 

describes the type of observed response of an organism exposed to a given chemical or 

mixture and may only refer to the significant events or components of the mechanism 

Figure 1.1. Mechanism of action. Schematic outlining the components necessary to 

elucidate the mechanism of action for an exposure. All steps must include the temporal 

and dose components to fully understand mechanism of action for a given chemical or 

mixture exposure.     
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necessary for producing a particular biological response or toxic effect (Dellarco and 

Wiltse, 1998). Regardless of the terminology, the suitability of either model for a given 

experiment or effect prediction remains debatable when thorough mechanisms or modes 

of action are unknown, especially for low dose studies (Jonker et al., 2005; Spurgeon et 

al., 2010). Often, the models fail to predict mixtures toxicity when an observed mixture 

acts synergistically (Meled et al., 1998; Forget et al., 1999), antagonistically (Posthuma 

et al., 1997; Van Gestel and Hensbergen, 1997), or dose-dependent subtle interactions 

(e.g., synergy for low dose mixtures and antagonist for high dose mixtures) (Gennings et 

al., 2002; Jonker et al., 2004). To address these challenges, future model development 

should incorporate low dose (i.e., below the NOAEL) mixtures mechanistic effects on the 

appropriate spatiotemporal scale.    

 

1.2 Early cellular changes post-exposure  

 Understanding and ultimately predicting potential biological effects and health 

outcomes from single chemical or mixture exposure remains an arduous task for risk 

assessment. The predominant approach for toxicity testing relies heavily on whole animal 

studies evaluating observable apical responses, such as clinical effects or pathologic 

changes from high dose exposures (Spurgeon et al., 2010). While many of these studies 

have been thorough, the amount of time and resources required to carry out this low-

throughput methodology has left this approach unable to meet the demands of current 

toxicology needs (NRC, 2007). The enormous backlog of chemicals waiting to be 

evaluated for toxic outcome has inspired a paradigm shift in toxicity testing, proposed by 
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the U.S. National Research Council (NRC) report, Toxicity Testing in the 21st Century: A 

Vision and a Strategy (NRC, 2007; Bhattacharya et al., 2011). The NRC proposed a 

transition from in vivo low-throughput animal toxicity testing to an in vitro high-

throughput approach utilizing well-designed mechanistic information-based assays. This 

in vitro approach would take advantage of early cellular perturbations post-exposure 

associated with toxicity endpoints in human cell lines and tissues to elucidate mechanistic 

information regarding the mode(s) of action for a potential xenobiotic or mixture (Attene-

Ramos et al., 2013). Additionally, the high-throughput nature of this approach would 

allow for testing on a wide range of doses, especially low doses, which is not currently 

possible with traditional whole animal studies (Bhattacharya et al., 2011). New risk 

assessment approaches would include a suite of assays in order to cast a wide net on early 

cellular changes, such as changes in cellular bioenergetics, and various pathway 

perturbations, such as alterations in post-translational modifications post-exposure, to 

fully understand the cellular response, whether that be adaptation after exposure to a new 

homeostatic state, or cell death (Andersen and Krewski, 2009).  

 Recent advances in systems toxicology have opened the door for the collection 

and analysis of large amounts of mechanistic data across a wide dosing range and time 

scale. Incorporating toxicodynamic factors for risk assessment can aid in our 

understanding of xenobiotic toxicity. The term toxicodynamics can be succinctly 

described as what the toxicant does to the body. Toxicodynamic analyses interrogate the 

spatiotemporal interaction of a xenobiotic with biological targets, the corresponding 

disruption of molecular pathways and bioenergetics, and downstream effects after 

exposure (Boelsterli, 2007).  
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 Marrying toxicokinetic and toxicodynamic approaches for risk assessment can 

offer a wealth of knowledge regarding xenobiotic exposure and the biological 

perturbations associated with 

exposure and their corresponding 

effects (Figure 1.2). Perturbations 

of biological processes by 

xenobiotic exposure can elicit 

early cellular changes, leading to 

an adaptive stress response for 

continued survival or adverse 

response leading to toxicity 

(Andersen, 2010).  Early cellular 

changes corresponding to 

toxicodynamics will be 

highlighted in this work, 

specifically intracellular signaling perturbations (e.g., post-translational modifications 

after chemical exposure) and alterations in cellular bioenergetics. 

 

1.2.1 Intracellular signaling perturbations associated with exposure 

 The toxicodynamic components of early cellular changes, biological 

perturbations, and corresponding response yield valuable mechanistic information for 

toxicity risk assessment. Early and late effects associated with chemical exposure are 

Figure 1.2. Early cellular changes related to biological 

outcome. Toxicokinetic components of exposure involve 

the absorption of the chemical exposure, biotransformation, 

and distribution resulting in the tissue dose. The chemical 

then interacts with molecular targets, perturbing 

endogenous pathways and processes, resulting in early 

cellular changes, which contributes to the toxicodynamic 

response post-exposure. Early cellular changes can lead to 

adverse effects (toxicity) or adaptive response and survival. 

Adapted from Andersen et al. (2005). Reprinted with 

permission from Elsevier. 
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mediated by plasma membrane receptor proteins acting as a sensor and their downstream 

signaling pathways (Bhattacharya et al., 2011). Signaling pathways are not static linear 

pathways that simply transmit signals, but are responsible for encoding and integrating 

both internal and external cues (Kholodenko, 2006). Exposure to chemical insults can 

perturb the dynamic and highly coordinated signaling pathways responsible for normal 

biological function and maintenance (Houck and Kavlock, 2008). Additionally, chemical 

insult at one molecular target and pathway can propagate throughout the signaling 

network due to pathway crosstalk and the interconnectivity of various signaling cascades 

(Kholodenko et al., 2010). As such, cellular spatiotemporal signaling dynamics are 

responsible for integrating and interpreting intra- and extracellular cues to make cellular 

fate decisions, such as proliferation, differentiation, or programmed cell death (apoptosis) 

(Murphy et al., 2004; von Kriegsheim et al., 2009; Kholodenko et al., 2010). 

 Signaling networks are primarily regulated by post-translational modifications 

(PTMs). PTMs are vital to signaling coordination and diversification of proteins for 

various functions (Wold, 1981; Aye-Han et al., 2009). PTMs can modify proteins after 

translation via complex molecules (glycosylation and isoprenylation), peptides or 

proteins (ubiquitylation and sumoylation), chemical groups (acetylation, methylation, and 

phosphorylation), and cleavage (proteolysis) (Wang et al., 2014). The rapid 

toxicodynamic response of cells to xenobiotics is primarily coordinated by signal 

transduction networks, which follow a simple framework: the phosphorylation / 

dephosphorylation cycle mediated by kinases and phosphatases (Kumar et al., 2007; 

Schilling et al., 2009). Kinases are intimately involved in the regulation of signaling 

events relevant to cellular death and survival processes (Bononi et al., 2011). Xenobiotics 
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can interfere with kinase signaling via activation (e.g., overstimulation) or inhibition 

(Boelsterli, 2007). Kinases can be activated/deactivated via the addition or removal of a 

phosphate group at serine, threonine, and tyrosine residues (-OH containing amino acids) 

(Wold, 1981), shown in Figure 1.3.  

 

The phosphorylation/dephosphorylation of a protein acts as a molecular switch to 

activate or deactivate a protein. In the catalytic domain of protein kinases, the -OH group 

on serine, threonine, and tyrosine residues act as a nucleophile, attacking the γ-phosphate 

on adenosine triphosphate (ATP) resulting in the transfer of a phosphoryl group to the 

protein (Endicott et al., 2012). In this scheme, magnesium is a critical component for 

protein phosphorylation, acting as a supportive chelator. The covalent bonding between 

phosphate groups and protein kinases typically induce a conformational change, aiding or 

preventing protein-protein (enzyme-substrate) interactions (Wang et al., 2012). It is this 

Figure 1.3. Mechanism of phosphorylation. This reaction scheme 

uses serine as the example residue, however, this mechanism is true 

for tyrosine and threonine phosphorylation as well.  
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protein-protein/enzyme-substrate interaction where critical cellular information can be 

transmitted throughout the signaling network.  

 Under xenobiotic stress conditions, many pathways can be perturbed, including 

survival and death pathways. The three major stress-activated pathways are the mitogen-

activated protein kinase (MAPK) pathway (also commonly referred to as extracellular 

signal-regulated kinases (ERK) pathway), the stress-activated protein kinase (SAPK) 

pathway (also commonly referred to as jun N-terminal kinase (JNK) pathway), and the 

p38 pathway (Paul et al., 1997; Tibbles and Woodgett, 1999; Pouyssegur et al., 2002). 

These stress pathways are endogenously active, controlling cellular fate via 

transcriptional activation and/or inhibition of genes regulating survival/proliferation and 

cell death (Boelsterli, 2007). These pathways were traditionally thought of as discrete 

linear signaling cascades; however, it is now well known that they are merely 

components of a dynamic and highly interconnected network of pathways that contain 

many crosstalk, feedback and feedforward mechanisms to adequately and efficiently 

response to stress-inducing stimuli (Junttila et al., 2008; Kholodenko et al., 2010). 

Therefore, it is the delicate balance/imbalance of these pathways that decides the cell's 

ultimate fate (Bononi et al., 2011; Currie et al., 2014). The highly dynamic and 

interconnected nature of signaling networks has made it increasingly difficult to elucidate 

and predict network responses to xenobiotic stress. However, advances in computational 

and network biology, high-throughput experimental techniques, such as -omics 

investigations using mass spectrometry, multiplex bead-based ELISA (enzyme-linked 

immunosorbent assay) suspension array systems, and microchip arrays, and public 

databases have greatly improved signaling research. With these advances, new 



15 

 

toxicological risk assessment approaches for determining potential toxic outcome of a 

xenobiotic or mixture using mechanistic information can be attempted, as postulated by 

the NRC report (NRC, 2007).         

  

1.2.2 Bioenergetic changes post-exposure 

 Kinase signaling is an energy demanding process, and its reliance on 

phosphorylation results in the consumption of substantial amounts of available adenosine 

triphosphate (ATP) (Hammerman et al., 2004). ATP-production governs ATP-consuming 

processes, such as signal transduction in mammalian cells, and this production is 

primarily driven by oxidative phosphorylation within mitochondria (Buttgereit and 

Brand, 1995; Ainscow and Brand, 1999). Mitochondria are the energy production hub of 

a cell via production of ATP via phosphorylation and, of equal importance, key mediators 

in kinase signal transduction, regulating cell survival, proliferation, differentiation, and 

death (Hammerman et al., 2004; Mohamed et al., 2014). Due to their critical role in many 

cellular processes, mitochondria are also susceptible to xenobiotic exposure effects. 

Additionally, irreversible processes leading to cell death primarily rely on two 

mitochondria-related phenomena: 1) the inability to reverse mitochondrial dysfunction, 

resulting in ATP depletion and 2) the disturbance of membrane function (both 

mitochondrial membrane and plasma membrane) (Law and Elmore, 2008). Therefore, 

maintenance of mitochondrial bioenergetics and integrity is critical to cellular fate.    

Mitochondria are comprised of several key features: the outer mitochondrial 

membrane, intermembrane space, inner mitochondrial membrane, and matrix (Figure 
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1.4). The outer mitochondrial membrane is permeable to small molecules (molecular 

weight < 5,000 g/mol) and ions, which readily diffuse through transmembrane porin 

proteins, such as voltage-gated anion channel (VDAC) (Ninomiya-Tsuji, 2008). The 

inner membrane, however, is impermeable to most molecules and ions, including protons 

and ATP (Lehninger et al., 2008). The inner membrane contains the proteins that make 

up the electron transport chain (ETC). Additionally, the inner membrane contains 

numerous transport proteins to allow metabolites to pass through into the matrix and to 

export ATP generated by the electron transport chain (ETC) into the intermembrane 

space (Ninomiya-Tsuji, 2008). The space between the two membranes is called the 

intermembrane space. The intermembrane contains a small heme-containing protein 

called cytochrome c within the intermembrane-side of inner membrane folds (referred to 

as intracristae space), which acts as an electron carrier for Complex III on the ETC, and 

when released from the outer membrane, can initiate caspase-dependent apoptosis 

Figure 1.4. Mitochondria. The two membranes of mitochondria are shown above as the outer 

membrane (OM) and inner membrane (IM). The VDAC transmembrane protein is shown in yellow at 

the OM and ANT transmembrane protein is in teal at the IM to illustrate the shuttle of ATP from ATP 

synthase (also known as Complex V) of the ETC to the cytosol. Small blue dots indicate cytochrome c 

within the intermembrane space and roman numeral cartoons indicate ETC subunits. Adapted from 

Desagher and Martinou (2000), reprinted with permission from Elsevier. 
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(Desagher and Martinou, 2000; Kroemer et al., 2007). The protein adenine nucleotide 

translocase (ANT) is the transporter responsible for shuttling ATP from the matrix to the 

intermembrane space (Ninomiya-Tsuji, 2008). Additionally, ANT forms a complex with 

VDAC (an outer mitochondrial membrane transporter), commonly referred to as the 

permeability transition pore (PTP) that can compromise the impermeability of the 

mitochondrial membranes.  If the PTP is open, an influx of ions and water can bombard 

the matrix, causing swelling, loss of membrane potential, and uncoupling of oxidative 

phosphorylation, eventually leading to cell death (Fosslien, 2001). Finally, the matrix, 

which is in the space contained by the inner membrane, houses all energy-yielding 

oxidative reactions, such as the citric acid cycle, fatty acid oxidation, and the ETC 

(Ninomiya-Tsuji, 2008). The matrix also contains important ions (magnesium, calcium, 

and potassium), metabolic intermediates, ATP/ADP, and mitochondrial DNA. 

Mitochondrial DNA genes are transcribed and translated within the matrix as well.     

The number of mitochondria in each eukaryotic cell can vary depending upon the 

cell type. Red blood cells (erythrocytes) do not have mitochondria, however, the heart, 

kidney, and liver are considered mitochondria-rich (Veltri et al., 1990). Mitochondria-

rich cell types are especially sensitive to xenobiotics that target the ETC. There are two 

classes of ETC inhibitors: 1) xenobiotics that block the transport of electrons via binding 

to ETC enzyme complexes (e.g., deguelin binding to Complex I) and 2) xenobiotics that 

stimulate the flow of electrons at one portion of the ETC, but shunt electrons away from 

their normal route by acting as an electron acceptor. Disruption of normal ETC function 

and mitochondrial bioenergetics can have deleterious effects (both acute and chronic) on 

the target tissue as well as whole organism. Examples of pathological conditions where 
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mitochondrial dysfunction plays a critical role are neurodegenerative diseases, 

neurotoxicity, heart disease (myocardial infarction and atherosclerosis), liver injury 

(ischemic injury and cholestasis), obesity, and cancer (Kroemer et al., 2007; Nunnari and 

Suomalainen, 2012). Thus, mitochondrial bioenergetics should be carefully considered 

and included in toxicity risk assessment. 

 

1.2.3 Timescale of exposure effects 

 The toxicity of a xenobiotic or mixture at their intended molecular/tissue target(s) 

can vary over exposure time and any change is commonly known as time-dependent 

toxicity (Dawson et al., 2014). The initial toxicodynamic response to any xenobiotic or 

mixture exposure is predominantly coordinated by signal transduction networks, which 

can initiate response within the first few seconds to minutes of exposure. The time course 

from initial toxicodynamic response(s) to cell death following exposure can have a vast 

range (Rehm et al., 2009). For example, the time delay between xenobiotic exposure and 

execution of apoptosis can take from several hours to over a day (Lemasters et al., 1998; 

Messam and Pittman, 1998). With this in mind, monitoring early cellular changes that 

contribute to adaptive stress response (survival and new homeostatic state) or lead to 

adverse effects (apoptosis, carcinogenicity) may aid toxicological understanding and 

ultimately the prediction of potential adverse effects from xenobiotic or mixture 

exposures.  
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1.3 Experimentally testing early cellular changes that may contribute to exposure 

sensing and response 

Traditional risk assessment testing techniques involve screening potential agents 

using in vivo and in vitro endpoint experiments, such as neurotoxicity or developmental 

toxicity, and mode of action analysis, such as cytotoxicity or mutagenicity (Dix et al., 

2007). However, the recent paradigm shift charged by the NRC report has initiated a new 

chemical risk assessment approach that utilizes high-throughput in vitro screening assays 

to exploit early cellular changes (such as signaling pathway perturbations and alterations 

in cellular bioenergetics) to reveal mechanistic information about adverse or adaptive 

effects after xenobiotic exposure. 

 

1.3.1 In vitro cell culture 

The large number of potential toxic chemical agents that have yet to be fully 

characterized pose a significant problem for risk assessment testing (NRC, 2007). 

Traditional in vivo methods cannot be solely relied on for risk assessment testing due to 

the low-throughput, high financial and time cost, and the sheer number of animals 

necessary to test the thousands of chemicals yet to be evaluated. Further, the utility of 

mechanistic information from animal studies has been questionable due to disappointing 

cross-species extrapolation for real life low dose human exposure effects (Houck and 

Kavlock, 2008).  Thus, a paradigm shift from traditional in vivo methods to an in vitro 

approach utilizing assays to collect mechanistic information for pathway/network 

analyses and eventual prediction modeling with computational toxicology has been 
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initiated by the NRC report (NRC, 2007). The NRC suggested human in vitro high-

throughput screening assays to measure early cellular effects, such as perturbations of 

critical signaling pathways related to survival and death (referred to as potential adverse 

outcome pathways by the NRC), across a wide dosing range and multiple cell lines, both 

immortalized and primary cell culture (Andersen et al., 2010).  

The paradigm shift from traditional in vivo animal studies to new in vitro high-

throughput screening assays using human cell lines raises some new questions. What cell 

type should be used (immortalized vs primary)? Primary cell culture is culture that is 

initiated immediately following tissue extraction from the sample organism. Once the 

cells reach confluency (typically 80 % of the culture-containing flask covered by cells, 

without overlapping each other), cells need to be subcultured (also known as passaging) 

by dividing the cells into multiple culture flasks for continued growth. Primary cell 

culture can typically only be subcultured several times before they can no longer be used. 

On the other hand, immortalized (continuous) culture is when cells are cultured for a 

theoretically infinite number of subcultures, which is achieved via transformation 

(spontaneously transformed via cancerous cell lines or chemically induced 

immortalization). Immortalized/continuous cell lines offer a low cost, reproducible in 

vitro experimental set-up, but may result in disparate responses than those achieved in 

primary culture or in vivo due to their continuous cell cycle progression. Even though the 

response may be slightly different from immortalized to primary or in vivo studies, useful 

mechanistic information can be collected for toxicity risk assessment. Fortunately, there 

are several cell lines commercially available that have libraries of data, such as HepG2 

(human hepatocellular carcinoma) for liver toxicity (O'Brien et al., 2006), MCF-7 
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(human breast cancer) for estrogen responsive toxicity studies (Holliday and Speirs, 

2011), and HEK293 (human embryonic kidney cells) for kidney toxicity (Sasaki et al., 

2007).  

Liver injury and toxicity due to xenobiotic exposure is a major concern for 

pharmaceutical regulatory and toxicological risk assessment (Kavlock et al., 2012). 

Additionally, the liver plays a vital role in xenobiotic biotransformation after exposure 

(Mersch-Sundermann et al., 2004). Thus, in vitro high-throughput approaches using 

human-derived liver cell lines to probe important early cellular exposure effects and 

potential pathway perturbations are necessary for toxicological risk assessment. The U.S. 

EPA ToxCast research program was initiated to screen previously untested environmental 

chemicals for adverse effects using a large number of high-throughput bioassays. Data 

collected from ToxCast assays is made available through the ToxCast data library to 

disseminate chemical exposure profiles to further toxicology research and gain a 

mechanistic understanding of chemical exposure (Sipes et al., 2013). The ToxCast library 

has two liver models for toxicity testing: primary rat hepatocytes and HepG2 cells 

(Kavlock et al., 2012). Both models offer important information about hepatotoxicity. 

Due to the limited availability of human primary liver cells, rat primary hepatocytes are 

often used for hepatotoxicity risk assessments. Previous studies have shown that 

xenobiotic metabolizing enzymes have significant interspecies variation (Selkirk, 1977; 

Maslansky and Williams, 1982). An accepted alternative to primary rat hepatocytes for 

liver toxicity research is the HepG2 cell line. A benefit of using HepG2 vs primary rat 

hepatocytes is that they are human-derived. Most importantly, the HepG2 cell line retains 

endogenous xenobiotic metabolizing enzymes, whereas primary hepatocyte culture 
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typically loses these vital enzymes (Knasmuller et al., 1998).  The in vitro studies 

discussed in Chapters 2 - 4 use the HepG2 cell line as the model system for several 

xenobiotic exposure proof-of-principle approaches.  

 

1.3.2 Real time in vitro assays to measure early cellular changes 

 As discussed previously, initial cellular responses to xenobiotic exposure are 

rapid, dynamic, and highly integrated for determining eventual cellular fate. Assays 

capable of capturing these dynamic processes and relating them to apical outcomes (cell 

death, survival, plasma membrane degradation) are necessary for xenobiotic risk 

assessment predictions. The real-time assays used in this dissertation are related to 

mitochondrial bioenergetics (reduced form of nicotinamide adenine dinucleotide 

(NADH) production, cellular oxygen consumption, and estimations of ATP from NADH 

and oxygen consumption) and cell death (plasma membrane degradation).  

  

1.3.2.1 Mitochondrial bioenergetics assays: NADH generation and oxygen consumption 

 NADH is a vital component of mitochondrial function, energy metabolism and 

oxidative stress (Ying, 2008). As a critical component of the ETC and bioenergetics, 

early cellular effects and perturbations can be monitored via changes in cellular NADH. 

One of the most useful and remarkable features of NADH is that it strongly absorbs at 

340 nm; therefore, real time kinetic measurements of cellular NADH can be obtained 
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without the assistance of any fluorescent tag or probe (McComb et al., 1976; Vrana et al., 

2014).  

 Intracellular molecular oxygen is a key component of cellular homeostasis and 

mitochondrial oxidative phosphorylation via the ETC. After xenobiotic exposure, early 

cellular changes associated with mitochondrial bioenergetics and cellular respiration can 

be monitored using real-time oxygen consumption assays. Determining key time points 

related to perturbations in cellular respiration can further the mechanistic understanding 

of xenobiotic exposure and eventual cell survival/death. High-throughput real-time assays 

for oxygen consumption that do not perturb endogenous intracellular activity are limited. 

The most popular method for cellular oxygen consumption is the Clark electrode, 

however it is a very low-throughput method (one sample at a time) (Diepart et al., 2010). 

The development of oxygen sensitive extracellular probes that can reproducibly measure 

discrete changes in oxygen consumption over time (with comparable sensitivity to the 

Clark electrode) have significantly advanced mitochondrial and toxicological research. 

Once such probe was developed by Luxcel Corp (Cork, Ireland), manufactured as 

MitoXpress. The MitoXpress probe is an extracellular phosphorescent platinum-

coproporphyrin dye with a long emission time and stable phosphorescent signal that can 

be used for 24 hour kinetic measurements in a 96-well plate format, making it high-

throughput (Dmitriev et al., 2010). For this assay, the MitoXpress probe is quenched by 

molecular oxygen (O2). A decrease in extracellular O2 concentration (increase in cellular 

oxygen consumption) is measured as an increase in signal (less probe is quenched by O2), 

whereas an increase in extracellular O2  concentration is measured as a decrease in signal 

(more O2 to quench the probe; less oxygen is consumed by the cell) (Diepart et al., 2010).   
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 Finally, one of the most critical components of bioenergetics, ATP can be 

measured to monitor cellular perturbations after xenobiotic exposure. Previously, assays 

for intracellular ATP have employed fluorescent tags, which can potentially disrupt 

endogenous intracellular activity (e.g., FRET) (Berg et al., 2009), or involve cell lysis 

(e.g., luciferase assay), making real-time in vitro ATP measurements not possible 

(Imamura et al., 2009). Monitoring relative ATP generation in response to chemical 

insult without potentially disrupting sensitive intracellular activity is imperative. To this 

end, the Boyd Lab has developed an extracellular approach to estimate ATP production 

with data collected from real-time oxygen consumption and NADH production assays. 

These data sets allow for stoichiometric determinations of ATP production in real-time. 

Theoretically, mitochondrial oxidative phosphorylation is responsible for producing a 

substantial portion of cellular ATP, and traditionally, NADH and oxygen are related to 

ATP production as shown below (Kadenbach, 1986; Lehninger et al., 2008): 

)1(3
2

1
1 2 ATPONADH   

Since our MitoXpress assay monitors oxygen consumption, the equation can be doubled: 

)2(62 2 ATPONADH   

Additionally, cells can produce ATP via glycolysis, where 1 ATP is generated for each 

available NADH.  This may be particularly true for HepG2 cells, since many cancer cells 

have been shown to have a high reliance on glycolysis due to the Warburg effect 

(Warburg, 1956; Vander Heiden et al., 2009). To account for ATP production when there 
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is limited or no oxygen, an “if then else loop” was used to calculate theoretical ATP 

generation: 
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This method has proven successful for two disparate xenobiotics, demonstrating a strong 

correlation to relative ATP measurements collected via the luciferase assay (Vrana et al., 

2014). 

 

1.3.2.2 Plasma membrane degradation 

 The "point-of-no-return" for which a cell decides to die has yet to be determined 

(Kroemer et al., 2005). However, certain cellular features implicate a cell has died; one 

such feature is the loss of plasma membrane integrity (Kroemer et al., 2005). A simple, 

reproducible, and high-throughput assay for plasma membrane degradation is the 

ethidium homodimer-1 (EthD-1) assay, commonly referred to as a "dead assay." The 

EthD-1 dye is impermeable for cells with an intact plasma membrane. However, when 

the plasma membrane is permeabilized, the EthD-1 can penetrate the cell and intercalate 

with DNA nucleic acids. When EthD-1 is bound to strands/segments of DNA, the dye 

emits a strong red fluorescence, whereas in the absence of available DNA segments, the 

dye has a very low intensity fluorescent signal (Grogan et al., 2002). This dye is not only 

useful for in vitro plate reader-based assays, but also fluorescence microscopy.  
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1.3.3 Endpoint in vitro assays to measure early cellular changes and long term exposure 

effects 

 The previous assays described are best suited for in vitro, real-time kinetic 

measurements using a high-throughput platform, such as 96+ well plate assays. However, 

assays that require cell lysis or disruption of cellular function are commonly referred to as 

endpoint assays. The high-throughput in vitro endpoint assays used in this work are MTT 

(cell viability), luciferin/luciferase (intracellular ATP), and multiplex bead-based ELISA 

(phosphoprotein or cytokine).   

 

1.3.3.1 Viability  

 There are several viability measurements used for in vitro experiments that are 

cheap, easy to use, and high-throughput. Examples include the lactate dehydrogenase 

(LDH) assay, neutral red, and methyl tetrazolium (MTT) assay. There are benefits and 

drawbacks for each method, however, of the three, neutral red and MTT are the most 

sensitive for cell viability (Fotakis and Timbrell, 2006). While all three assays are used to 

determine viability, most are used as an orthogonal measurement of cytotoxicity (i.e., not 

used alone), or for initial screening of appropriate dosing ranges (Galluzzi et al., 2009). 

The only true assays for cell death measure plasma membrane degradation, such as the 

EthD-1 dye. However, due to its low cost, robustness, and ease of use, MTT is commonly 

included in studies to estimate viability. The MTT reagent, 3-[4,5-dimethylthiazol-2-yl]-

2,5-diphenyltetrazolium bromide, is a yellow water soluble salt that is converted into 

insoluble formazan crystals in the presence of succinate dehydrogenase within the 
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mitochondria of metabolically active cells via cleavage of the tetrazolium ring (Fotakis 

and Timbrell, 2006). The insoluble purple formazan crystals can be solubilized by DMSO 

or detergent for quantification via absorbance using 96-well plate spectrophotometry.    

 

1.3.3.2 Intracellular ATP  

 As described previously, ATP is a critical biomolecule for cell survival. While 

real-time assays for ATP generation are limited, endpoint assays for ATP are widely used 

and extremely sensitive (Imamura et al., 2009). Additionally, ADP:ATP ratios have been 

used to measure cell viability, apoptosis, and necrosis (Bradbury et al., 2000). The 

predominant endpoint ATP assay is the D-luciferin-luciferase assay, which requires cell 

lysis for in vitro applications. The luciferase assay is a bioluminescent assay where the 

substrate D-luciferin is converted into oxyluciferin, by the luciferase enzyme in the 

presence of ATP. The conversion from luciferin to oxyluciferin emits a stable, relatively 

long-lived light emission (~30 minutes). This assay is very sensitive, ranging from 10
-13

 

mol to > 10
-6

 mol ATP, and can be used for a wide variety of sample matrices, such as 

soil, milk, plasma, and cell culture (Kricka, 1988). 

 

1.3.3.3 Multiplex bead-based suspension array   

The analysis of key signal transduction perturbations via PTM assays is one of the 

most valuable tools for intracellular exposure mechanism-based risk assessment.  Upon 

insult by a xenobiotic, the cellular toxicodynamic response is coordinated by signal 
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transduction networks, which follow a rudimentary framework, the phosphorylation / 

dephosphorylation cycle mediated by kinases and phosphatases (Kumar et al., 2007; 

Schilling et al., 2009). Traditionally, western blot and immunoprecipitation have been the 

assays of choice for phosphoprotein analyses (Schmelzle and White, 2006). While 

western blotting has been the gold standard for phosphoprotein determinations, it is very 

low throughput. A multiplexed and high-throughput assay for phosphoprotein analysis to 

elucidate network perturbations and mechanistic exposure information is the bead-based 

(microsphere) sandwich-based ELISA, developed by Luminex (Poetz et al., 2010). This 

assay is a modification of a traditional ELISA, whereby the capture antibody (Ab) is 

immobilized to magnetic (or non-magnetic) polystyrene microspheres (Figure 1.5).  

 

 

Figure 1.5. Bead-based ELISA. A microsphere, which can be magnetic or non-magnetic, (shown in 

red) has two fluorescent dyes  (excited by the same wavelength of light but emit different 

wavelengths) encapsulated within the bead. These dyes act as the bead recognition element, and the 

ratio of dyes identifies the bead type (e.g., bead region 1 has a ratio of 1:100 for the two dyes, and this 

region has the Ab for ERK protein immobilized on the surface). The assay proceeds as a traditional 

sandwich ELISA (with the exception that the capture Ab is immobilized to a microsphere) where the 

capture Ab is specific for one of your desired analytes (e.g, anti-ERK Ab is selective for ERK 

protein) and the biotinylated detection Ab recognizes a separate epitope of your desired analyte (e.g., 

anti-phosphoERK Ab to recognize phosphorylated ERK). The biotinylated detection Ab then binds 

with the fluorescent reporter, streptavidin-phycoerythrin (due to the extremely high binding affinity of 

biotin for streptavidin). Antibody, Ab; phycoerythrin (PE).  
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The assay workflow proceeds as follows: 1) capture Ab beads are added to the 

assay plate wells 2) add the analyte(s)-containing sample and incubate 3) add biotinylated 

detection Ab and incubate 4) add fluorescent reporter (e.g., streptavidin-phycoerythrin 

complex) and incubate 5) analyze samples via suspension array (Houser, 2012).  

Since this is a multiplex method, 100+ different Ab-bead combinations can be 

assayed per well. The beads are coded with two dyes that can be excited by the same 

wavelength but emit different wavelengths. Depending upon the ratio of the two 

encapsulated dyes, the bead region (code) can be measured by the instrument.  In order to 

differentiate between bead dyes and fluorescent reporter dye, the suspension array 

platform utilizes a duel laser system: a red solid state laser (635 nm) to excite dyes 

encapsulated within the microspheres for bead type identification and a Nd:YAG laser 

(532 nm) to excite the phycoerythrin dye (fluorescent reporter). The fluorescent reporter 

is bound to the analyte-bead complex (shown in green, Figure 1.5) for quantitation of the 

captured analyte (Houser, 2012). All emission intensities are detected with a 

photomultiplier tube. This method is high-throughput and requires low sample volume. 

Currently, Luminex-manufactured magnetic microspheres (sold under the name 

MagPlex) have 500 unique bead regions, allowing for 500 different antibody assays to be 

performed per well of a 96-well plate (Luminex, 2015). 
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2. Forecasting cell death dose-response to single chemicals in vitro
1
 

 The rapid pharmacodynamic response of cells to toxic xenobiotics is primarily 

coordinated by signal transduction networks, which follow a simple framework: the 

phosphorylation / dephosphorylation cycle mediated by kinases and phosphatases.  

However, the time course from initial pharmacodynamic response(s) to cell death 

following exposure can have a vast range. Viewing this time lag between early signaling 

events and the ultimate cellular response as an opportunity, we hypothesize that 

monitoring the phosphorylation of proteins related to cell death and survival pathways at 

key, early time-points may be used to forecast a cell's eventual fate, provided that we can 

measure and accurately interpret the protein responses. In this paper, we focused on a 

three-phased approach to forecast cell death after exposure: 1) determine time-points 

relevant to important signaling events (protein phosphorylation) by using estimations of 

ATP production to reflect the relationship between mitochondrial-driven energy 

metabolism and kinase response, 2) experimentally determine phosphorylation values for 

proteins related to cell death and/or survival pathways at these significant time-points, 

and 3) use cluster analysis to predict the dose-response relationship between cellular 

exposure to a xenobiotic and plasma membrane degradation at 24 hours post-exposure. 

To test this approach, we exposed HepG2 cells to two disparate treatments: a GSK-3β 

inhibitor and a MEK inhibitor. After using our three-phased approach, we were able to 

accurately forecast the 24 hour HepG2 plasma membrane degradation dose-response 

                                                 
1
 Parts of this chapter have been published previously, either in part or in full, from Vrana, J.A., Currie, 

H.N., Han, A.A., Boyd, J. (2014) Forecasting cell death dose-response from early signal transduction 

responses in vitro. Toxicol Sci. 140, 338-351. Reproduced with permission from Oxford University Press.  
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from protein phosphorylation values as early as 20 minutes post-MEK inhibitor exposure 

and 40 minutes post-GSK-3β exposure. 

 

2.1 Introduction 

 In mammalian systems, the cellular response to toxic xenobiotics involves the 

complex, yet coordinated transmission of intracellular signaling molecules to determine a 

cell's eventual fate (i.e., survival or death) (Kumar et al., 2007; Schilling et al., 2009). 

The initial pharmacodynamic response to any xenobiotic exposure is predominantly 

coordinated by signal transduction networks, which can initiate response within the first 

few seconds to minutes of exposure. This response follows a simple framework: the 

phosphorylation and dephosphorylation cycle of proteins mediated by kinases and 

phosphatases (Kholodenko, 2006; Newman et al., 2013). However, the time course of 

cell death from exposure to visual morphological changes can have a vast range. For 

example, the time delay between xenobiotic exposure and execution of apoptosis can take 

from several hours to over a day (Lemasters et al., 1998; Messam and Pittman, 1998). 

Based upon the time delay between these early and late responses, we hypothesize that 

monitoring the phosphorylation of proteins related to cell death and survival pathways 

may be predictive of a cell's eventual fate, provided that we can read and correctly 

interpret the protein responses.  

 Considering the vast number of proteins involved in critical intracellular signaling 

processes, the number and type of proteins to be monitored for forecasting a cell's fate 

must be judiciously selected. An advantageous group of proteins to monitor for this 
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approach are kinases involved in the regulation of signaling events relevant to cellular 

death and survival processes.  Irrespective of the cell death modality, the cellular decision 

to survive or die relies on the integration of signals at mitochondrial membranes that 

contribute to mitochondrial membrane permeability (MMP) (Kroemer et al., 2007). By 

monitoring kinases upstream of MMP signaling proteins, a detailed snapshot of the cell's 

own interpretation of exposure can theoretically be determined, and this early signaling 

may foreshadow the cell's fate long before the final steps of cell death occur.      

 Appropriately capturing the time course of critical signaling events that will be 

predictive of cellular survival or death post-exposure is difficult. However, time-points of 

significant deviation may be determined by exploiting the intricate inter-relationship 

between mitochondrial-driven energy metabolism and kinase response in real-time. Most 

importantly, this can be accomplished without potentially disrupting intracellular activity. 

Kinase signaling is an energy demanding process, and its reliance on phosphorylation 

results in the consumption of substantial amounts of available adenosine triphosphate 

(ATP) (Hammerman et al., 2004). ATP-production governs ATP-consuming processes, 

such as signal transduction in mammalian cells, and this production is primarily driven by 

oxidative phosphorylation within mitochondria (Buttgereit and Brand, 1995; Ainscow 

and Brand, 1999). Additionally, it is known that some types of cell death (e.g., apoptosis 

and autophagy) require appreciable amounts of energy due to their reliance on ATP-

dependent processes (Yamamoto et al., 1998; Eguchi et al., 1999; Kanzawa et al., 2004), 

such as activation of caspase signaling cascades (Leist et al., 1997), chromatin 

condensation (Eguchi et al., 1997), and autophagic sequestration (Kondo et al., 2005). 

Therefore, by monitoring energy production processes in the cell in real-time, key time 
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points of significant deviation may indicate critical kinase signaling events relevant to, in 

this study, cell death post-exposure.   

  In this paper, we focused on a three-phased approach to forecast cell death in an 

in vitro system: 1) determine time-points relevant to critical signaling events, 2) 

experimentally determine the phosphorylation of proteins related to cell death and/or 

survival at these significant time-points, and 3) use cluster analysis to predict the 24 hour 

plasma membrane degradation dose-response of cells to xenobiotic exposure. We chose 

the human hepatocellular carcinoma-derived HepG2 cell line as our model in vitro 

system because the liver is rich in mitochondria (Veltri et al., 1990) and this cell line is 

human-derived. Additionally, hepatocellular carcinoma incidence is on the rise in the 

United States with 5-year survival rates of 10% (Altekruse et al., 2009).  To test this 

approach, we chose xenobiotics that have activities at disparate intracellular targets in 

vitro. Specifically, we exposed HepG2 cells to various doses of 4-Benzyl-2-methyl-1,2,4-

thiadiazolidine-3,5-dione (TDZD-8), a glycogen synthase kinase 3β (GSK-3β) substrate-

competitive inhibitor (Martinez et al., 2002).  As a therapeutic target, GSK3 has seen a 

recent surge in interest for its multifunctional role in a variety of signaling processes, as 

well as its implication in a number of diseases, such as diabetes, Alzheimer’s, bipolar 

disorder, and cancer (Kim and Kimmel, 2000; Wang et al., 2006). We also exposed 

HepG2 cells to various doses of 2-Chloro-3-(N-succinimidyl)-1,4-naphthoquinone (MEK 

inh II), a MEK1 inhibitor (Bakare et al., 2003). MEK1 has been shown to be 

constitutively active in several carcinoma cell lines, such as hepatocellular carcinoma, 

contributing to cell survival (Ballif and Blenis, 2001; Mitsui et al., 2001). This makes the 

MEK1-MAPK signal transduction pathway an attractive target for chemotherapies 
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(Huynh et al., 2003). By using our three-phased approach, we were able to accurately 

forecast the 24 hour HepG2 plasma membrane degradation dose-response from protein 

phosphorylation values as early as 20 minutes post-MEK inh II exposure and 40 minutes 

post-TDZD-8 exposure.  The implications of this proof of principle study may have a 

broad reaching impact: from the ability to forecast in vitro cytotoxicity of xenobiotic 

exposures to the identification of therapeutic windows for pharmacological treatments. 

 

2.2 Materials and Methods 

2.2.1 Materials     

 4-Benzyl-2-methyl-1,2,4-thiadiazolidine-3,5-dione (TDZD-8, cas 327036-89-5), 

Dulbecco's modified Eagle's medium (DMEM), sodium pyruvate, D-glucose, L-

glutamate, and sodium bicarbonate were obtained from Sigma Aldrich (St. Louis, MO). 

2-Chloro-3-(N-succinimidyl)-1,4-naphthoquinone (MEK inh II, cas 623163-52-0) was 

purchased from CalBiochem (La Jolla, CA, USA). HEPES was purchased from Fisher 

Scientific (USA). Fetal bovine serum, Ethidium homodimer-1 cytotoxicity kit, ATP 

determination kit (luciferase assay), and penicillin-streptomycin were obtained from 

Invitrogen (Carlsbad, CA). HyClone phosphate buffered saline (PBS) was purchased 

from Thermo Scientific (USA). Cell lines and MTT assay kits were obtained from 

American Type Culture Collection (Manassas, VA).  MitoXpress oxygen probe was 

obtained from Luxcel Corporation (Cork, Ireland). Deionized water used in this study 

was prepared with the Milli-Q Water System (Millipore, Bedford, MA).  
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2.2.2 Cell culture   

 Human hepatocellular carcinoma-derived HepG2 cells were cultured in DMEM, 

supplemented with 2 g/L D-glucose, 2 mM L-Glutamate, 5 mM HEPES, 24 mM sodium 

bicarbonate, 1 mM sodium pyruvate, 10% fetal bovine serum, 100 U/mL penicillin, and 

100 mg/mL streptomycin. Cells were maintained in a humidified atmosphere at 37°C, 5% 

CO2 and passaged at 80 % confluence.  

 

2.2.3 Dosimetry   

 For MTT, NADH, cellular ATP, and plasma membrane degradation assays, cells 

were seeded into clear-bottom, 96-well plates (black-sided for fluorescence assays) at a 

concentration of 4 x 10
4
 cells per well in DMEM without phenol red and allowed to grow 

for 24 hours before dosing. For multiplex phosphoprotein assays, cells were seeded in 12-

well plates at a concentration of 5 x 10
5
 cells per well in DMEM without phenol red and 

allowed to grow for 24 hours before dosing. For oxygen consumption assays, cells were 

seeded into clear-bottom, black-sided 96-well plates at a concentration of 8 x 10
4
 cells 

per well in DMEM without phenol red and allowed to grow for 24 hours before dosing.   

Medium was then aspirated from wells and cells were challenged with TDZD-8 or  MEK 

inh II.  TDZD-8 and MEK inh II were prepared so that resulting well concentrations 

would be < 1 % DMSO. 
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2.2.4 MTT assay   

 After 24 hours of exposure to TDZD-8 (10, 20, 30, 40, 50, or 100 µM) or MEK 

inh II (1, 5, 10, 20, 50, or 100 µM), cell viability was determined using the MTT (3-(4,5-

dimethyl)-2,5-diphenyl tetrazolium bromide) assay, according to the manufacturer’s 

protocol. This assay is based on the reduction of tetrazolium MTT to formazan by 

metabolically active cells, in part by the action of dehydrogenase enzymes, to generate 

reducing equivalents such as NADH and NADPH.  Briefly, MTT reagent was added to 

the wells of the microplate, and after four hours of incubation at 37°C, intracellular 

formazan crystals were solubilized with the provided detergent solution.  Absorbance 

values were obtained using the Tecan InfiniteM1000 plate reader (Tecan US, Raleigh, 

NC) with a measurement wavelength of 570 nm and a reference wavelength of 700 nm, 

read from the bottom.  Assay was  performed in quadruplicate.  Relative viability was 

calculated by subtracting the negative control (contained no cells) and normalizing to 

controls, which received dosing vehicle (< 1% DMSO).   

 

2.2.5 Oxygen consumption assay 

 Immediately after dosing with TDZD-8 (10, 20, 30, 40, or 50 µM) or MEK inh II 

(1, 5, 10, 20, or 50 µM), cellular oxygen consumption was assessed using the MitoXpress 

probe, according to manufacturer’s protocol.  Briefly, oxygen-sensitive probe was diluted 

to a stock concentration of 1µM, and stock probe was diluted 1:15 in each well of a black 

walled 96-well plate containing cells (8 x 10
4
 cells/well); 100 µL of pre-warmed mineral 

oil was also added to each well to block ambient oxygen from the cells.  After pre-
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warming the plates at 37°C for 1 hour, cells were challenged with varying doses of 

TDZD-8 or MEK inh II.  Immediately following addition of TDZD-8 or MEK inh II, 

oxygen consumption was determined by measuring fluorescence.  Fluorescent signal was 

obtained using the Infinite M1000 microplate reader (Tecan US, Raleigh NC) with 

excitation wavelength of 380 nm and emission wavelength of 650 nm, reading from the 

bottom every 10 minutes for 24 hours after dosing.  Experiments were performed in 

quadruplicate.  Relative oxygen consumption was calculated by normalizing to controls, 

which received dosing vehicle (< 1% DMSO).   

 

2.2.6 NADH assay   

 Immediately after dosing with TDZD-8 (10, 20, 30, 40, or 50 µM) or MEK inh II 

(1, 5, 10, 20, or 50 µM), NADH generation was determined by measuring absorbance.  

The absorbance of NADH at wavelength 340 nm  was measured every 10 minutes for 24 

hours.  Experiments were performed in quadruplicate.  Relative NADH generation was 

calculated by normalizing to controls, which received dosing vehicle (< 1% DMSO).  

 

2.2.7 Cellular ATP assay  

 The boiling water method was used to extract cellular ATP from attached cells, as 

described previously (Yang et al., 2002). After 40 minutes, 10 hours, or 24 hours of 

exposure to TDZD-8 (10, 20, 30, 40, or 50 µM), medium was aspirated and cells were 

washed twice with PBS. In the same manner, after 20 minutes, 8 hours 20 minutes, or 24 

hours of exposure to MEK inh II (1, 5, 10, 20, or 50 µM), medium was aspirated and 
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cells were washed twice with PBS. Cells were suspended in 100 µL/well boiling 

deionized water with repeated pipetting. The cell suspension was transferred to a 

microcentrifuge tube and centrifuged 12,000 g for 5 minutes at 4°C. Following 

centrifugation, 10 µL of supernatant was used for the ATP luciferase assay, which was 

performed according to the manufacturer's protocol. Bioluminescence was measured 

using the Infinite M1000 microplate reader (Tecan US, Raleigh NC). Experiments were 

performed in quadruplicate. Relative cellular ATP was determined by normalizing to 

positive control, which received dosing vehicle (< 1% DMSO).   

 

2.2.8 Multiplex phosphoprotein assay 

 After 40 minutes or 10 hours of exposure to TDZD-8 (10, 20, 30, 40, 50, or 100 

µM), cells were washed with ice cold PBS and lysed according to manufacturer's 

protocol.  In the same manner, after 20 minutes or 8 hours 20 minutes of exposure to 

MEK inh II (1, 5, 10, 20, 50, or 100 µM), cells were washed with ice cold PBS and lysed 

according to manufacturer's protocol. Total protein concentration was determined using 

the DC Protein Assay (BioRad, Hercules, CA) according to the manufacturer’s 

instructions.  Protein phosphorylation was determined by using the bead-based BioPlex 

suspension array system (Bio-Rad, Hercules, CA) and lysates were prepared according to 

the manufacturer’s protocol.  Beads and detection antibodies against phosphorylated 

AKT (Ser473), ERK1/2(Thr202/Tyr204, Thr185/Tyr187), GSK-3α/β (Ser21/Ser9), 

HSP27 (Ser78), IκBα (Ser32/Ser36), JNK1/2 (Thr 183/Tyr185), MEK1 (Ser217/Ser221), 

p38MAPK (Thr180/Tyr182), p53 (Ser15), and p90RSK (Thr359/Ser363) were obtained 
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from Bio-Rad (Hercules, CA).  Beads and detection antibodies against phosphorylated 

BAD (Ser 112), CREB1 (Ser133), IGFR (Tyr1131), IRS1 (Ser636/Ser639), EGFR (Tyr), 

MSK1(Ser212), p70S6K (Thr421/Ser424), AKT(Thr308), and p53(Ser46) were obtained 

from EMD Millipore.  Relative phosphorylation was calculated by normalizing to 

control, which received dosing vehicle (< 1% DMSO).  TDZD-8 exposed phosphoprotein 

experiments were performed in triplicate and MEK inh II exposed phosphoprotein 

experiments were performed in duplicate.   

 

2.2.9 Plasma membrane degradation assay   

 To determine plasma membrane degradation of HepG2 cells exposed to TDZD-8 

or MEK inh II, the ethidium homodimer-1 (EthD-1) kinetic assay was used.  Twenty-four 

hours after seeding HepG2 cells (4 x 10
4
) in a black-sided clear-bottom 96 well plate, 

culture medium was removed and replaced with probe-containing culture medium (2 µM 

EthD-1).  Dead control wells were exposed to 70% methanol and the plate was incubated 

for 30 minutes.  Following the 30 minute incubation, cells were challenged with TDZD-8 

(10, 20, 30, 40, 50, or 100 µM) or MEK inh II (1, 5, 10, 20, 50, or 100 µM) and read 

immediately after dosing.  Fluorescent signal was obtained using the Infinite M1000 

microplate reader (Tecan US, Raleigh NC) with excitation wavelength of 530 nm and 

emission wavelength of 645 nm, reading from the bottom every 10 minutes for 24 hours 

after dosing.  Experiments were performed in sextuplicate.  Relative plasma membrane 

degradation was determined by normalizing to dead control (received 70% methanol).  
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2.2.10 Statistical Analysis 

 Dose-response curves for MTT assays were generated by best-fit Hill-plot 

regression with varying slope of scatter plot data using Prism V5 (Graphpad Software, 

San Diego, CA).  Selection of time points related to critical signaling events (40 minutes 

and 10 hours for TDZD-8; 20 minutes and 8 hours 20 minutes for MEK inh II) were 

determined by estimating temporal bifurcation points from theoretical ATP generation 

and activity using SAS JMP V12Pro (Cary, NC).  Correlation analysis for theoretical 

ATP generation and relative cellular ATP was determined using SAS JMP V12Pro (Cary, 

NC). Two-way hierarchical cluster analyses with Ward's minimum variance were 

determined by using SAS JMP V12Pro (Cary, NC). Statistical significance for plasma 

membrane degradation (observed and forecasted) was determined by using a two-way 

analysis of variance (ANOVA) with Bonferroni post-test.  A difference of P < 0.05 was 

considered statistically significant.  For viability, plasma membrane degradation 

(observed and predicted), cellular ATP, and relative phosphorylation data, error bars 

reflect standard error of the mean (S.E.M.).   

 

2.2.11 Signaling Pathway Analysis 

 Functional pathway and network analyses were generated with  Ingenuity 

Pathways Analysis (IPA) software (Ingenuity Systems) as described elsewhere (Madoz-

Gurpide et al., 2007). IPA identified pathways from the IPA Library of Canonical 

Pathways that were significant to our phosphorylation data. The 19 proteins used in this 

paper were considered for analysis. For this study, significance between our protein 
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phosphorylation data set (TDZD-8 and MEK inh II) and the molecular and cellular 

function p-score, along with associated network functions, was measured by Fisher’s 

exact test.  The Fisher's exact test calculates a p-value to determine the probability that 

the relationship between the phosphorylated proteins in our data set and a canonical 

pathway, biological function or disease could be related by chance alone. We reported the 

top three biological functions associated with our datasets. 

 

2.3 Results 

2.3.1 HepG2 viability in response to TDZD-8 and MEK inh II 

 For this proof-of-principle study, we first determined the appropriate dosing range 

for TDZD-8, a GSK-3β substrate-competitive inhibitor (IC50 = 2 µM) (Martinez et al., 

2002), and MEK inh II, a MEK1 inhibitor (IC50 = 0.38 µM) (Bakare et al., 2003). 

Previously, MEK inh II has also been shown to inhibit other intracellular targets, such as 

ERK1 (IC50 = 82.9 µM) and Raf1 (IC50 = 34.5 µM) (Bakare et al., 2003).  To accomplish 

this, we measured HepG2 viability via MTT assay in response to varying doses of 

TDZD-8 and MEK inh II at 24 hours post-exposure (Figures 2.1a,b).  From HepG2 

viability, the best-fit Hill-plot regression with varying slope was used to determine the 

EC50 of TDZD-8 (19 ± 1 µM) and MEK inh II (9 ± 1 µM).     
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2.3.2 Estimation of ATP generation to determine critical signaling events   

 Monitoring relative ATP generation in response to chemical insult without 

potentially disrupting sensitive intracellular activity is imperative. To this end, we have 

developed an extracellular approach to determine kinase signaling events on a temporal 

scale by estimating ATP production with data collected from real-time oxygen 

consumption and NADH production assays. These data sets allow for stoichiometric 

determinations of ATP production in real-time. Theoretically, mitochondrial oxidative 

phosphorylation is responsible for producing a substantial portion of cellular ATP, and 

traditionally, NADH and oxygen are related to ATP production as shown below 

(Kadenbach, 1986; Nelson and Cox, 2008): 

)1(3
2

1
1 2 ATPONADH   

Since our assay monitors oxygen consumption, the equation can be doubled: 

Figure 2.1. HepG2 viability to determine relevant TDZD-8 and MEK inh II doses.  HepG2 

viability dose-response curves for a) TDZD-8 and b) MEK inh II. Viability was measured by MTT 

assay and is shown as relative viability. Relative viability was calculated relative to control cells, 

which received dosing vehicle (< 1% DMSO), but no inhibitor. Dose-response curves were generated 

using the best-fit Hill-plot regression with varying slope. The x-axis is shown as log2 to better 

visualize TDZD-8 and MEK inh II dosing range. Error bars reflect ± S.E.M.   
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)2(62 2 ATPONADH   

Additionally, cells can produce ATP via glycolysis, where 1 ATP is generated for each 

available NADH.  This may be particularly true for HepG2 cells, since many cancer cells 

have been shown to have a high reliance on glycolysis due to the Warburg effect 

(Warburg, 1956; Vander Heiden et al., 2009). To account for ATP production when there 

is limited or no oxygen, an “if then else loop” was used to calculate theoretical ATP 

generation: 
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To account for variations in ATP generation over time, we calculated the relative ATP 

generation activity (equation 3), which we believe more accurately captures temporal 

bifurcations relevant to critical signaling events. This equation is the average of the 

integrated NADH and O2 consumption assays over time divided by their total NADH 

produced and O2 consumed. We also subtracted the positive control and then added a 

value of one to make generation activity curves relative to control, where a value of 1 on 

the generation activity graph is the same as control.  
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Bifurcation points relevant to critical signaling events are shown in figure 2.2a for 

TDZD-8 (40 minutes and 10 hours) and figure 2.2b for MEK inh II (20 minutes and 8 

hours 20 minutes). Bifurcations were selected by relying on the relative ATP generation 

activity curves, then relating ATP generation activity curve changes to simultaneous 

changes in theoretical ATP generation. The first bifurcation is the point before a 

sustained increase/decrease in ATP generation activity that is simultaneously related to a 

change in theoretical ATP generation curves for 3 or more doses. The second bifurcation 

is selected just after there is a rapid decrease/increase in ATP generation activity that is 

simultaneously related to a change in theoretical ATP generation curves for 3 or more 

doses. To validate our ATP estimation method, we determined cellular ATP at the  
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Figure 2.2. Theoretical ATP generation and activity models indicate key bifurcation points for 

HepG2 cells exposed to  TDZD-8 and MEK inh II.  a) Using the NADH/NADPH absorbance at 340 nm, 

NADH generation was measured every 10 minutes for 24 hours following administration of 10, 20, 30, 40, 

and 50 µM doses of TDZD-8 to HepG2 cells. Data is reported as relative NADH generation, which was 

normalized to controls that received vehicle control (< 1% DMSO). Oxygen consumption of HepG2 cells 

exposed to TDZD-8 was monitored every 10 minutes for 24 hours with an oxygen sensitive probe 

(MitoXpress). An increase in probe signal indicates an increase in oxygen consumption relative to controls, 

which received dosing vehicle (< 1% DMSO).  Theoretical ATP Generation (3rd graph) was calculated 

using the “If then else  loop”, as described in Results, which is based on the stoichiometric production of 

ATP from cellular respiration (oxidative phosphorylation). Relative ATP Generation Activity (4th graph) 

was calculated from Equation 3. Critical signaling events were selected at 40 min and 10 h post-TDZD-8 

exposure from our bifurcation analysis described in Results.  b) HepG2 cells exposed to 1, 5, 10, 20 and 50 

µM doses of MEK inh II were measured and analyzed in the same way as TDZD-8. Critical signaling 

events were selected at 20 min and 8 h 20 min post-MEK inh II exposure from our bifurcation analysis 

described in Results. To determine if the theoretical ATP generation model predicted relative cellular ATP 

levels, the luciferase assay was used to measure cellular ATP at the time-points of interest. Extracted 

cellular ATP of HepG2 cells exposed to either c) TDZD-8 or d) MEK inh II were measured using the 

luciferase assay as described in Materials and Methods. Relative cellular ATP from the luciferase assay of 

TDZD-8 exposed cells (c) was found to be significantly correlated to our theoretical ATP generation (a, 3rd 

graph) for TDZD-8 (r = 0.59, P = 0.021) at the time-points of interest (40 min, 10 h, and 24 h). Relative 

cellular ATP from the luciferase assay of MEK inh II exposed cells (d) was found to be significantly 

correlated to the theoretical ATP generation for MEK inh II (b, 3rd graph) for MEK inh II (r = 0.85, P < 

0.001) at the time-points of interest (20 min, 8 h 20 min, and 24 h). Results were reported as relative to 

controls, which received dosing vehicle (< 1% DMSO) and error bars reflect S.E.M. 
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time-points of interest for each compound using the luciferase assay (Figure 2.2c,d). 

Relative cellular ATP from the luciferase assay was found to be significantly correlated 

to our theoretical ATP generation model for TDZD-8 (r = 0.59, P = 0.021) (Figure 2.2a, 

3rd graph) and MEK inh II (r = 0.85, P < 0.001) (Figure 2.2b, 3rd graph). 

  

2.3.3 Multiplex assay to determine phosphorylation of key proteins 

 After time points of critical signaling events have been identified, a snapshot of 

the pharmacodynamic response to xenobiotic exposure can be determined with a high-

throughput approach. Inclusion of valuable proteins that cast a wide net on cell death or 

survival pathways at these time-points are necessary to capture intracellular processes 

that will determine the cell's eventual fate.  In response to cellular stressors (e.g., 

xenobiotics, endogenous molecules), many kinase pathways converge upon 

mitochondria, which can result in mitochondrial membrane permeabilization (MMP) 

mediated death (Kroemer et al., 2007; Rehm et al., 2009). From this, we chose to narrow 

the list of potential proteins to those that are only a few kinase steps removed from key 

survival or death proteins that are known to alter mitochondrial activity. Specifically, 

mitogen-activated protein kinases (MAPKs) have been the subject of intense research for 

many disease pathologies, especially cancer, due to their role in cell proliferation (Anjum 

and Blenis, 2008).  The EGFR-Ras-Raf-MEK-ERK-RSK signaling network is involved 

in cellular proliferation, survival, differentiation, and motility (Roberts and Der, 2007); 

alterations in the normal function of these proteins has been implicated in cancer and 

other diseases (Sebolt-Leopold and Herrera, 2004).  Dysregulated cAMP response 
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element binding protein (CREB1) has also been implicated in uncontrolled growth and 

survival in several cancer cell lines, making it an excellent candidate for this approach 

(Shukla et al., 2009). JNK and p38 kinases are involved in the coordinated response to 

external stress stimuli, inflammation and apoptosis (for review, see Pearson et al., 2001), 

making them viable candidates for this work. Another class of proteins relevant to cell 

survival and death pathways are heat shock proteins (HSP), specifically HSP27, which 

has been shown to act as a protective protein, binding to cytochrome c, preventing 

apoptosis (Bruey et al., 2000). Two proteins intimately involved in mediating stress 

stimuli signals and cell death are tumor suppressor protein p53 and Akt (Gottlieb et al., 

2002). p53-dependent apoptosis plays a critical role regulating pro- and anti-apoptotic 

factors for transcription, as well as translocating from the cytosol to mitochondria, where 

it interacts with proteins related to MMP (Sorrentino et al., 2013). Akt on the other hand, 

has been shown to phosphorylate BCL-2 family proteins, therefore inhibiting MMP 

(Datta et al., 1997). BAD, another valuable pro-apoptotic BCL-2 family protein, is an 

excellent candidate protein to monitor for this approach due to its intimate relationship 

with MMP-related proteins (Zha et al., 1996). To this end, a multiplex bead-based ELISA 

assay was designed and used to simultaneously determine 19 different protein 

phosphorylation responses for TDZD-8 and 18 different protein phosphorylation 

responses for MEK inh II at time points relevant to critical signaling events from ATP 

production bifurcation points.  Cells were lysed at the pre-selected critical signaling time 

points: 40 minutes and 10 hours post-exposure to TDZD-8 (Figure 2.3) and at 20 minutes 
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Figure 2.4. Protein phosphorylation responses of HepG2 cells to MEK inh II. From the 

previously determined temporal bifurcations (20 minutes and 8 hours 20 minutes), relative protein 

phosphorylation was determined by dosing HepG2 cells with various doses of MEK inh II (1, 5, 10, 

20, 50, and 100 µM) and lysing the cell membrane at a-b) 20 minutes and c-d) 8 hours 20 minutes 

post-exposure.  Relative phosphorylation was calculated by normalizing to controls, which received 

vehicle control (< 1% DMSO). Error bars reflect S.E.M. 

 

Figure 2.3. Protein phosphorylation responses of HepG2 cells to TDZD-8. From the previously 

determined temporal bifurcations (40 minutes and 10 hours), relative protein phosphorylation was 

determined by dosing HepG2 cells with various doses of TDZD-8 (10, 20, 30, 40, 50, and 100 µM) 

and lysing the cell membrane at a-b) 40 minutes and c-d) 10 hours post-exposure.  Relative 

phosphorylation was calculated by normalizing to controls, which received vehicle control (< 1% 

DMSO). Error bars reflect S.E.M. 
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and 8 hours 20 minutes post-exposure to MEK inh II (Figure 2.4); the phosphoprotein 

responses of 19 (or 18) different proteins were determined relative to control, which 

received dosing vehicle (< 1% DMSO).   

 

2.3.4 Hierarchical cluster analysis 

 In order to group protein responses that are relevant to varying doses of TDZD-8 

and MEK inh II, we used the unsupervised (i.e., we did not pre-select clusters) Ward two-

way Hierarchical clustering method (Ward, 1963) (Figure 2.5a-d). Two-way clustering is 

necessary to obtain clusters of protein responses across all doses in the first dimension, 

and dose clusters in the second dimension. Negative control-subtracted raw fluorescence 

values for cells exposed to TDZD-8 (10, 20, 30, 40, 50, or 100 µM) or MEK inh II (1, 5, 

10, 20, 50, or 100 µM), as well as cells exposed to vehicle control only (0 µM), were 

used to determine cluster distances.  By including the 0 µM phosphoprotein response 

values, we can include the distance between no dose and the lowest experimentally 

determined dose to forecast the full plasma membrane degradation dose-response.  

Additionally, if we assume that an arbitrary/infinite dose of a xenobiotic (i.e., TDZD-8 or 

MEK inh II) successfully kills all cells exposed, the fluorescence values due to protein 

phosphorylation should theoretically be zero (via endogenous protein degradation after 

the plasma membrane is compromised). From this basic theoretical assumption, we 

included an "infinite dose" column with raw fluorescence values of zero for each protein 

in the two-way hierarchical cluster analysis.  Importantly, the inclusion of a true 0 µM 

dose and a theoretical infinite dose allows for a full dose-response prediction to be made 
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without experimentally testing the entire dosing range. As a visual aid, this unsupervised 

hierarchical clustering method yields a heat map of phosphoprotein responses, where blue 

represents low response values and red represents high response values. These clusters 

are based on similarities in phosphoprotein response magnitude profiles. After 

performing two-way hierarchical cluster analysis on each protein for each set of 

replicates (clusters not shown, only averaged responses are depicted in Figures 2.5a-d), 

cluster distances between doses were used for dose-response predictions.   

 

2.3.5 Forecasting dose-response from hierarchical cluster analysis 

 By monitoring the phosphorylation response of proteins involved in cellular 

survival and/or death pathways at early time-points, the fate of the cell may be forecasted.  

After determining the cluster distances from two-way hierarchical cluster analysis with 

Ward's minimum variance, these values were used to forecast the relative plasma 

membrane degradation dose-response of TDZD-8 (Figures 2.5 e,f) and MEK inh II 

exposed HepG2 cells (Figures 2.5 g,h).  To forecast the dose-response, the cluster 

distance between doses including 0 µM (vehicle control) and the theoretical infinite dose 

were organized in order of increasing dose.  These values were then integrated across 

each dose (x) interval and divided by the sum of all dose cluster distances, as described 

by equation 4: 
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Figure 2.5. Forecasting plasma membrane degradation from two-way hierarchical cluster analysis 

distances. The phosphoprotein fluorescence responses of HepG2 cells to various doses of TDZD-8 (10, 20, 

30, 40, 50, and 100 µM) or MEK inh II (1, 5, 10, 20, 50, and 100 µM) were analyzed with the unsupervised 

Ward two-way hierarchical clustering method. Each set of replicates were treated as a different cluster for 

our analyses; however, to save space, we will show the averaged fluorescence values at each time point. 

Shown above, cluster analyss of phosphoprotein responses to: a) TDZD-8 at 20 minutes post-exposure, b) 

TDZD-8 at 10 hours post-exposure, c) MEK inh II at 20 minutes post-exposure, and d) MEK inh II at 8 

hours 20 minutes post-exposure. After the cluster analyses were performed, the cluster distances associated 

with each dose are assembled and integrated across the dosing range to formulate the forecasted relative 

plasma membrane degradation dose-response curve (e-h). E) Experimentally observed relative plasma  
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To determine if the forecasted dose-response (from early time points to TDZD-8 or MEK 

inh II exposure) matched the observed 24 hour plasma membrane dose response, a two-

way ANOVA was performed. The 24 hour observed and forecasted (from 40 minutes 

post-TDZD-8 exposure and 20 minutes and 8 hours 20 minutes post-MEK inh II 

exposure) plasma membrane responses were not significantly different at any dose. The 

24 hour observed and forecasted plasma membrane degradation at 10 hours post-TDZD-8 

exposure were only statistically different at the 10 µM TDZD-8 dose (P < 0.05). 

Additionally, observed vs. forecasted plasma membrane degradation at the early time 

points (20 minutes plasma membrane degradation post-MEK inh II exposure observed vs. 

forecasted and 40 minutes plasma membrane degradation post-TDZD-8 exposure 

observed vs. forecasted) were significantly different (P < 0.05) from each other at 30, 40, 

50 and 100 µM TDZD-8 and 10, 20, 50, and 100 µM MEK inh II indicating that we are 

membrane responses to TDZD-8 at 40 minutes and 24 hours post-exposure are connected with red and 

black solid lines, respectively. The forecasted 24 hour plasma membrane degradation responses that were 

calculated with cluster distances from 40 minutes post-TDZD-8 exposure phosphoprotein responses are 

connected with a red dashed line. F) Experimentally observed relative plasma membrane degradation 

responses to TDZD-8 at 10 hours and 24 hours post-exposure are connected with blue and black solid lines, 

respectively. The forecasted 24 hour plasma membrane degradation responses that were calculated with 

cluster distances from 10 hours post-TDZD-8 exposure phosphoprotein responses are connected with a blue 

dashed line. G) Experimentally observed relative plasma membrane degradation responses to MEK inh II at 

20 minutes and 24 hours post-exposure are connected with red and black solid lines, respectively. The 

forecasted 24 hour plasma membrane degradation responses that were calculated with cluster distances from 

20 minutes post-MEK inh II exposure phosphoprotein responses are connected with a red dashed line. H) 

Experimentally observed relative plasma membrane degradation responses to MEK inh II at 8 hours 20 

minutes and 24 hours post-exposure are connected with blue and black solid lines, respectively. The 

forecasted 24 hour plasma membrane degradation responses that were calculated with cluster distances from 

8 hours 20 minutes post-exposure phosphoprotein responses are connected with a blue dashed line. For 

graphs in figures e-h, relative plasma membrane responses were analyzed using two-way ANOVA. Cluster-

forecasted responses found to be significantly different (P < 0.05) from observed 24 hour responses are 

marked with ^, cluster-forecasted responses found to be significantly different (P < 0.05) from early time-

point observed responses are marked with #, and observed early time-point responses found to be 

significantly different (P < 0.05) from observed 24 hour responses are marked with *. Error bars reflect ± 

S.E.M. 
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not measuring plasma membrane degradation at those early time points, rather we are 

capturing early critical signaling events related to the eventual cellular fate.   

 

2.4 Discussion 

 Understanding the cell's own pharmacodynamic interpretation of exposure to a 

potentially toxic xenobiotic or therapeutic is imperative to determining the eventual 

cellular fate. Before morphological changes (e.g., plasma membrane degradation) 

indicate the overall cellular state, the intracellular domain is coordinating a dynamic and 

networked response that dictates the eventual cellular outcome. By exploiting critical 

pharmacodynamic events related to the eventual cellular fate decision, the cellular 

response to external stimuli (e.g., xenobiotic exposure or general stress) can be forecasted 

from significantly early time points post-exposure.   In this paper, human hepatocellular 

carcinoma derived HepG2 cells were exposed to two disparate inhibitors, TDZD-8 (GSK-

3β substrate-competitive inhibitor) and MEK inh II (MEK1 inhibitor), to test an approach 

that combines several datasets to forecast the eventual cellular outcome. The datasets 

used in this work incorporated theoretical ATP generation for the identification of critical 

signaling bifurcation points, followed by determinations of the phosphoprotein response 

at these time-points post-exposure for further cluster analyses to forecast the plasma 

membrane degradation dose-response at 24 hours of exposure. This concept has a 

universal approach: utilizing the cell's own early responses post-exposure to forecast the 

cell's eventual fate that may be irrespective of the xenobiotic's intracellular mode(s) of 

action.   
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 To our knowledge, reliable in vitro approaches that are capable of determining 

important intracellular processes in real-time, such as ATP production, without 

perturbing native intracellular biochemical processes have yet to be determined (Imamura 

et al., 2009). Real-time oxygen consumption has been used to identify temporal events 

post-xenobiotic exposure that are related to intracellular signaling, due to the relationship 

between oxygen consumption and oxidative phosphorylation (Janssen-Heininger et al., 

2008). While we have had some success using oxygen consumption alone to select 

critical signaling events (Boyd et al., 2013), this method can be improved by exploiting 

the intricate intracellular relationship between NADH generation, oxygen consumption, 

and ATP production.  By extracellularly monitoring analogs of ATP production over time 

after xenobiotic exposure, critical signaling events may be estimated without potentially 

disrupting intracellular activity. In this manner, two bifurcation time points were 

identified for HepG2 cells post-TDZD-8 or MEK inh II exposure. Since kinase signaling, 

which utilizes appreciable amounts of available ATP, is an energy demanding process 

(Hammerman et al., 2004), these early bifurcation points may be indicative of critical 

signaling processes relevant to intracellular-level decision making for the cell's overall 

eventual fate. This approach assumes that all oxygen consumption and NADH generation 

measured in vitro is attributed to oxidative phosphorylation for ATP synthesis. Thus, this 

model does not incorporate oxidative phosphorylation-independent oxygen consumption, 

which can vary based on cell type (Herst and Berridge, 2007; Trimarchi et al., 2000). 

Additionally, cellular glucose, calcium, and magnesium were not measured in this study. 

For future model development, these critical cellular components may be measured to 

more accurately select key time-points. This new approach may translate well into other 
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cell lines with similar amounts of mitochondria, such as heart and kidney (Veltri et al., 

1990), or similar mitochondrial bioenergetics, such as the heart, testes, and brain 

(Menzies and Gold, 1971). To fully validate this method, additional cell lines, both 

immortalized and primary, in various tissues need to be tested.   

 Cell death can take a number of routes, such as necrosis, apoptosis, or autophagy, 

to name a few (for review, see Galluzzi et al., 2012), whose time course after initial 

exposure can last anywhere from minutes to days (Lemasters et al., 1998). Irrespective of 

the cell death modality, the switch between cell death and survival revolves around the 

integration of signals at mitochondrial membranes that contribute to mitochondrial 

membrane permeability (MMP) (Kroemer et al., 2007). Since MMP is a major player in 

the eventual cellular fate decision of survival or death, monitoring protein signaling 

cascades that converge upon mitochondrial membranes is an advantageous approach. 

Forecasting a cell's eventual fate can be accomplished by monitoring the phosphorylation 

status of proteins that are relevant to survival and death pathways at critical signaling 

time-points following exposure to xenobiotics. While the minimum number of proteins 

necessary to forecast future cell death has yet to be determined, our proof of principle 

study included 19 judiciously selected phosphoproteins in a multiplexable and high-

throughput bead-based ELISA assay. In this work, we chose to cast a wide net on cell 

death and survival pathways at pre-selected time-points to capture critical processes 

responsible for determining the cell's eventual fate. The proteins selected for this study 
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Figure 2.6. Ingenuity pathway analysis of phosphoprotein responses. The most significant network 

interactions from the 19 different phosphoproteins measured and important intermediate proteins were 

compiled in IPA. Since the proteins included in the analyses did not change for all doses at both time 

points, only one dataset per inhibitor is shown in the figure. As examples, a) 50 µM MEK inh II at 20 

minutes post-exposure and b) 50 µM TDZD-8 at 40 minutes post-exposure are included in the figure 

above. Normalized phosphoproteins that were greater than control are shown in red and 

phosphoproteins that were less than control are shown in green. IPA analysis indicated that the most 

significant molecular and cellular function of both inhibitor datasets were cell death and survival; 

specifically, apoptosis, cell survival, and necrosis were the most significant biological functions of the 

proteins included in the analyses. 
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were confirmed to be most relevant to cell death (specifically apoptosis and necrosis) and 

survival by using Ingenuity Pathway Analysis (IPA)-constructed multidirectional 

interaction networks with biological function overlay (Figure 2.6a and b) to visualize the 

connectivity of the proteins and their association with various biological functions.  For 

future development of this approach, additional phosphoproteins or different 

combinations of phosphoproteins should be measured to determine the optimal number 

and type of protein to forecast eventual cellular fate. Additionally, this approach only 

monitored phosphoprotein responses to xenobiotic exposure. However, different types of 

post-translational modifications, such as glycosylation, methylation, or acetylation, may 

also be useful for this type of methodology.      

 While relative phosphoprotein responses of HepG2 cells to various doses of 

inhibitors at key time points post-exposure offer a wealth of information about these 

critical signaling events, a more digestible data platform and data transformation are 

required to construct the forecasted dose-response to TDZD-8 and MEK inh II exposure. 

Hierarchical cluster analysis using Ward's method produces clusters that minimize the 

variance within each cluster (Ward, 1963).  Going a step further, two-way cluster analysis 

allows for the simultaneous clustering of both variables in this paper (i.e., phosphoprotein 

response profiles and dose). In the first dimension, the protein responses across all doses 

(0 µM - 100 µM and theoretical infinite dose) are clustered to minimize the within-cluster 

variance and simultaneously in the second dimension, doses with similar phosphoprotein 

response profiles are clustered together. It is the latter dimension that provides useful 

distances based on the within-group minimized ANOVA sum of squares across all 

clusters. By including the vehicle control phosphoprotein responses (0 µM) and 
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theoretical infinite dose phosphoprotein responses, the forecasted dose-response range 

can be computed, regardless of the actual full dose-response curve (i.e., this circumvents 

the need to pre-determine exposure doses that go from 0 % cell death to 100 % cell 

death). Each replicate dose cluster's ANOVA sum of squares distances were placed in 

order of increasing dose (0 µM - theoretical infinite dose) and integrated across the 

dosing range to formulate the forecasted relative plasma membrane degradation dose-

response curve. While this method does not pinpoint the full intracellular mode(s) of 

action for the two inhibitors included in this study, the 24 hour relative plasma membrane 

degradation dose-response was accurately forecasted as early as 20 minutes post-

exposure to MEK inh II and 40 minutes post-exposure to TDZD-8 exposure. 

Additionally, the observed relative plasma membrane degradation at 20 minutes post-

exposure to MEK inh II and 40 minutes post-exposure to TDZD-8 has little to no death 

occurring. Therefore, the phosphoprotein responses at 20 minutes and 40 minutes post-

exposure are likely associated with the cell's own pharmacodynamic interpretation of 

exposure and eventual cell fate decision, as opposed to actual cell death occurring at this 

time point.   

 In conclusion, this approach offers several advantages over current methodologies 

to determine future xenobiotic toxicity: using extracellular techniques that do not disrupt 

the native intracellular biochemical processes to estimate ATP production relevant to 

critical signaling events, selecting phosphoproteins relevant to survival and/or death 

pathways at critical signaling time-points that may be predictive of the cell's eventual fate 

(i.e., 24 hours post-exposure), and using hierarchical cluster analysis to predict the 24 

hour relative plasma membrane degradation from early phosphoprotein responses. This 
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method has been shown to accurately forecast the eventual cellular fate of HepG2 cells 

exposed to two different xenobiotics, with disparate intracellular modes of action, and 

may theoretically work for any intracellular mode of toxicity or cell death modality. 

Finally, our results for this approach suggest that an analysis aggregating several different 

protein networks may be more informative of in vitro toxicity than any individual 

pathways or biomarkers. This has broad implications for many scientific fields, including 

toxicology and pharmacology. These advantages allow for future studies in a high-

throughput framework to quickly assess and forecast the eventual xenobiotic toxicity of 

cells in vitro. Additionally, the ability to identify early critical signaling events post-

exposure that are related to important cellular endpoints, such as survival or death, may 

significantly impact the pharmacological understanding of the therapeutic window for 

treatment strategies, and potentially alter the forecasted cellular fate by probing the 

endogenous signaling responses to treatments at these time points.      
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3. Forecasting cell death dose-response to mixtures in vitro
1
 

 Individuals are continuously exposed to complex chemical mixtures, whether they 

are derived from environmental or pharmaceutical (polypharmacy) exposures. While this 

is an everyday reality, most chemical risk assessments are carried out on a single 

chemical, or single-dose binary mixtures. Understanding and ultimately predicting 

chemical mixture effects could not only elucidate potential risk factors associated with 

exposures, but also offer the opportunity to develop a greater understanding of cellular 

mechanisms of environmental exposure and even drug discovery. Previously, we have 

shown that post-translational phosphorylation responses to chemical mixture exposures 

can be predicted in vitro using Bliss Independence (Boyd et al., 2013). We have also 

shown that 24 h in vitro cell death dose-response can be forecasted at significantly earlier 

time-points (as early as 20 min or 40 min, depending upon the exposure) by using two-

way cluster analysis of phosphorylation responses (Vrana et al., 2014). However, if both 

methodologies are combined, it may be possible to forecast 24 h mixture cytotoxicity 

without measuring the mixture itself;  ultimately representing a model capable of 

predicting mixture toxicity using only individual compound phosphoprotein responses of 

key kinases at critical signaling events. To this end, we have combined the two 

methodologies to potentially forecast mixture cell death dose-response using Bliss 

Independence-predicted phosphorylation values and compared those results to observed-

forecasted and observed values. To fully test this method, we used two different 

mixtures: Deguelin and KCN (both ETC inhibitors) and MEK inh II and TDZD-8 

                                                 
1
 Parts of this chapter have been published previously from Boyd, J., Vrana, J.A., Williams, H.N. (2013) In 

vitro approach to predict post-translational phosphorylation response to mixtures. Toxicology 313, 113-21. 

Reproduced with permission from Elsevier. 
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(disparate kinase inhibitors). The phosphoprotein targets used in this study are key 

kinases involved in cellular survival and/or death pathways. By monitoring the response 

of these phosphoproteins at critical signaling time-points, the eventual cellular fate may 

be forecasted. Additionally, by using Bliss Independence-predicted phosphoprotein 

responses for two-way cluster analyses, cytotoxicity in response to a potential mixture 

may be forecasted without experimentally measuring the mixture. 

 

3.1 Introduction 

Humans are continuously exposed to complex chemical mixtures, from the air we 

breathe and the water we drink to the medications we take daily. While this is an 

everyday reality, most chemical risk assessments are carried out on a single chemical, or 

single-dose binary mixtures (Cedergreen et al., 2008). Traditional risk assessment testing 

techniques involve screening potential agents with a single high dose exposure, using a 

suite of in vivo animal models and apical endpoint analyses, such as neurotoxicity or 

developmental toxicity, and narrowly-focused mode of action analysis, such as specific 

cytotoxicity or mutagenicity assays (Dix et al., 2007). This low-throughput approach that 

relies heavily on animal testing and high dose exposure analyses has created an enormous 

backlog of chemicals waiting to be evaluated for potential toxicity (Bushnell et al., 2010; 

Bhattacharya et al., 2011). This risk assessment crisis prompted the 2007 U.S. National 

Research Council (NRC) report, Toxicity Testing in the 21st Century: A Vision and a 

Strategy (NRC, 2007). In this report, the NRC proposed a paradigm shift from low-

throughput in vivo studies to new risk assessment strategies that utilizes high-throughput 
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in vitro screening assays to exploit early cellular changes (such as signaling pathway 

perturbations and alterations in cellular bioenergetics) to reveal mechanistic information 

about adverse or adaptive effects after xenobiotic exposure (Hartung, 2009; Krewski et 

al., 2010; Attene-Ramos et al., 2013). With this mechanistic information, better risk 

assessment models can be constructed for single chemical and mixture exposure in 

humans, greatly benefiting the public health sector.  

New risk assessment approaches would include a suite of assays that cast a wide 

net on early cellular changes, such as changes in cellular bioenergetics, and various 

pathway perturbations, such as alterations in post-translational modifications (PTMs) 

post-exposure, to fully understand the cellular response, whether that be adaptation after 

exposure to a new homeostatic state, or cell death (Andersen and Krewski, 2009). 

Understanding and eventually predicting chemical mixture effects could not only 

elucidate potential risk factors associated with exposures, but also offers the opportunity 

to estimate mixtures toxicity at various doses without measuring the actual mixture. With 

this new risk assessment methodology in mind, we have shown that early pathway 

perturbation responses, such as phosphorylation PTMs, to chemical mixture exposures 

(electron transport chain (ETC) inhibitors as well as broad kinase inhibitors) can be 

predicted in vitro using Bliss Independence (with accuracy > 77 %) (Boyd et al., 2013). 

We have also shown that 24 h in vitro cell death dose-response can be forecasted at early 

time points (as early as 20 min or 40 min, depending upon the exposure) by using two-

way cluster analysis of phosphorylation responses at time points relevant to changes in 

cellular bioenergetics and, consequently, perturbations in signal transduction (Vrana et 

al., 2014). The potential combination of these two methodologies may offer a new model 
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for risk assessment capable of harnessing early cellular changes post-exposure to predict 

potential mixtures effects related to cytotoxicity. From this approach, dose-response 

chemical mixture cytotoxic effects may be mathematically predicted without measuring 

the actual mixture. The approach presented in this chapter could be used to test the tens 

of thousands of chemicals currently used and predict all combinations at multiple doses 

that have the potential to be synergistic. This would then allow current risk assessment to 

narrow the experimental efforts to only those doses and chemicals of concern for further 

in vivo testing     

 In this proof-of-concept study, we have combined the two methodologies to 

forecast mixture cell death dose-response using Bliss Independence-predicted 

phosphorylation values and compared those results to observed phosphorylation 

response-forecasted cell death and observed cell death values. The inhibitors used as 

chemical mixtures in this proof of concept study are two mitochondrial electron transport 

chain (ETC) inhibitors, deguelin (0.01 - 100 µM) and KCN (0.01 - 100 µM), and two 

disparate kinase inhibitors, 2-Chloro-3-(N-succinimidyl)-1,4-naphthoquinone, which is a 

MEK1 inhibitor, commonly referred to as MEK inh II (0.5 - 20 µM doses) and  the 

substrate-competitive GSK-3β inhibitor, 4-Benzyl-2-methyl-1,2,4-thiadiazolidine-3,5-

dione, commonly referred to as TDZD-8 (1 - 100 µM doses). These mixtures were 

chosen for their potential interaction and subsequent perturbation of mitochondrial 

bioenergetics (deguelin and KCN), as well as potential intracellular signaling network  

perturbations (MEK inh II and TDZD-8). The phosphoprotein targets used in this study 

are kinases involved in cellular survival and/or death pathways. By monitoring the 

response of these phosphoproteins at critical signaling time-points, the eventual cellular 



82 

 

fate may be forecasted. Additionally, by using Bliss Independence-predicted 

phosphoprotein responses for two-way cluster analyses, cell death in response to a 

potential mixture may be forecasted without experimentally measuring the mixture.  

  

3.2 Materials and Methods 

3.2.1 Materials - Deguelin and KCN     

  Deguelin (CAS 522-17-8) and KCN (CAS 151-50-8) were obtained from Sigma 

Aldrich (St. Louis, MO).  RPMI-1640 containing phenol red, RPMI-1640 without phenol 

red, sodium pyruvate, HEPES, L-glutamine, fetal bovine serum, and penicillin-

streptomycin were obtained from Invitrogen (Carlsbad, CA). HepG2 cells were obtained 

from American Type Culture Collection (Manassas, VA). BioPlex beads, lysis buffer, 

and reagents necessary for determination of relative phosphorylation were obtained from 

BioRad (Hercules, CA). Deionized water used in this study was prepared with the Milli-

Q Water System (Millipore, Bedford, MA). 

 

3.2.2 Materials - MEK inh II and TDZD-8 

 The chemicals 4-Benzyl-2-methyl-1,2,4-thiadiazolidine-3,5-dione (TDZD-8, CAS 

327036-89-5), Dulbecco's modified Eagle's medium (DMEM), sodium pyruvate, D-

glucose, L-glutamate, and sodium bicarbonate were obtained from Sigma Aldrich (St. 

Louis, MO). 2-Chloro-3-(N-succinimidyl)-1,4-naphthoquinone (MEK inh II, cas 623163-

52-0) was purchased from CalBiochem (La Jolla, CA, USA). HEPES was purchased 
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from Fisher Scientific (USA). Fetal bovine serum, Ethidium homodimer-1 cytotoxicity 

kit, ATP determination kit (luciferase assay), and penicillin-streptomycin were obtained 

from Invitrogen (Carlsbad, CA). HepG2 cells were obtained from American Type 

Culture Collection (Manassas, VA). Multiplex bead-based ELISA assays (beads, 

reagents, and lysis buffers) were purchased from Bio-Rad (Hercules, CA) and EMD 

Millipore (Billerica, MA). Deionized water used in this study was prepared with the 

Milli-Q Water System (Millipore, Bedford, MA). 

 

3.2.3 Cell culture   

 Human hepatocellular carcinoma-derived HepG2 cells were cultured in RPMI-

1640, supplemented with 1 mM sodium pyruvate, 5 mM HEPES, 2 mM L-Glutamine, 

10% fetal bovine serum, 100 U/ml penicillin, and 100 µg/ml streptomycin for deguelin 

and KCN experiments. For MEK inh II and TDZD-8 experiments, HepG2 cells were 

cultured in DMEM, supplemented with 2 g/L D-glucose, 2 mM L-Glutamate, 5 mM 

HEPES, 24 mM sodium bicarbonate, 1 mM sodium pyruvate, 10% fetal bovine serum, 

100 U/mL penicillin, and 100 mg/mL streptomycin. Cells were maintained in a 

humidified atmosphere at 37°C, 5% CO2 and passaged at 80 % confluence. 

  

3.2.4 Dosimetry   

 For plasma membrane degradation assays, cells were seeded into clear-bottom, 

96-well black-sided plates at a concentration of 4 x 10
4
 cells per well in RPMI (or 
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DMEM for MEK inh II/TDZD-8) without phenol red and allowed to grow for 24 h 

before dosing. For deguelin and KCN multiplex phosphoprotein assays, cells were seeded 

in 96-well plates at a concentration of 4 x 10
4
 cells per well in RPMI without phenol red 

and allowed to grow for 24 h before dosing. For MEK inh II and TDZD-8 multiplex 

phosphoprotein assays, cells were seeded in 12-well plates at a concentration of 5 x 10
5
 

cells per well in DMEM without phenol red and allowed to grow for 24 h before dosing. 

Deguelin, TDZD-8, and MEK inh II dosing solutions were prepared so that resulting well 

concentrations would be < 1 % DMSO. KCN is water-soluable, therefore dosing 

solutions were prepared in water.  

 

3.2.5 Multiplex phosphoprotein assay - Deguelin and KCN mixtures 

 After 400 min of exposure to mixtures of deguelin (0.01 - 100 µM) and KCN 

(0.01 - 100 µM), cells were washed with ice cold PBS and lysed according to 

manufacturer's protocol. Total protein concentration was determined using the DC 

Protein Assay (BioRad, Hercules, CA) according to the manufacturer’s instructions.  

Protein phosphorylation was determined by using the bead-based BioPlex suspension 

array system (Bio-Rad, Hercules, CA) and lysates were prepared according to the 

manufacturer’s protocol.  Beads and detection antibodies against phosphorylated ERK1/2 

(Thr202/Tyr204, Thr185/Tyr187), AKT (Ser473), HSP27 (Ser78), IκBα (Ser32/Ser36), 

JNK (Thr183/Tyr185), p38MAPK (Thr180/Tyr182), p53 (Ser15), and p90RSK 

(Thr359/Ser363) were obtained from Bio-Rad (Hercules, CA).  Relative phosphorylation 
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was calculated by normalizing to control cells, which received dosing vehicle (<1% 

DMSO).  All experiments were performed in duplicate. 

 

3.2.6 Multiplex phosphoprotein assay - MEK inh II and TDZD-8 mixtures 

 After 20 min or 40 min of exposure to mixtures of MEK inh II (0.5, 1, 2, 5, 10, or 

20 µM) and TDZD-8 (1, 5, 10, 20, 50, or 100 µM), cells were washed with ice cold PBS 

and lysed according to manufacturer's protocol. Total protein concentration was 

determined using the DC Protein Assay (BioRad, Hercules, CA) according to the 

manufacturer’s instructions. Protein phosphorylation was determined by using the bead-

based BioPlex suspension array system (Bio-Rad, Hercules, CA) and lysates were 

prepared according to the manufacturer’s protocol.  Beads and detection antibodies 

against phosphorylated AKT (Ser473), ERK1/2 (Thr202/Tyr204, Thr185/Tyr187), 

HSP27 (Ser78), IκBα (Ser32/Ser36), JNK1/2 (Thr 183/Tyr185), MEK1 (Ser217/Ser221), 

and p38MAPK (Thr180/Tyr182) were obtained from Bio-Rad (Hercules, CA). Beads and 

detection antibodies against phosphorylated BAD (Ser 112), CREB1 (Ser133), IRS1 

(Ser636/Ser639), and p53(Ser46) were obtained from EMD Millipore. Relative 

phosphorylation was calculated by normalizing to control cells, which received dosing 

vehicle (<1% DMSO).  All experiments were performed in duplicate. 
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3.2.7 Plasma membrane degradation assay   

 To determine plasma membrane degradation of HepG2 cells exposed to mixtures 

of deguelin and KCN or MEK inh II and TDZD-8, the ethidium homodimer-1 (EthD-1) 

kinetic assay was used.  Twenty-four hours after seeding HepG2 cells (4 x 10
4
) in a 

black-sided clear-bottom 96 well plate, culture medium was aspirated and replaced with 

probe-containing culture medium (2 µM EthD-1).  Dead control wells were exposed to 

70% methanol and the plate was incubated for 30 min.  Following the 30 minute 

incubation, cells were challenged mixtures of deguelin (0.01 - 100 µM) and KCN (0.01 - 

100 µM) or mixtures of MEK inh II (0.5, 1, 2, 5, 10, or 20 µM) and TDZD-8 (1, 5, 10, 

20, 50, or 100 µM) and read immediately after dosing.  Fluorescent signal was obtained 

using an Infinite M1000 microplate reader (Tecan US, Raleigh NC) with excitation 

wavelength of 530 nm and emission wavelength of 645 nm, reading from the bottom 

every 10 min for 24 h after dosing.  Experiments were performed in duplicate.  Relative 

plasma membrane degradation was determined by normalizing to dead control (received 

70% methanol). Vehicle control wells did not exceed 10 % death.   

 

3.2.8 Statistical analysis 

 Correlation analysis for observed phosphoprotein mixture responses and Bliss 

independence-predicted phosphoprotein mixture responses were determined using SAS 

JMP V12Pro (Cary, NC). Two-way hierarchical cluster analyses with Ward's minimum 

variance were determined by using SAS JMP V12Pro (Cary, NC). Statistical significance 

for plasma membrane degradation (observed, forecasted, and Bliss-forecasted) were 
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determined by using a two-way analysis of variance (ANOVA) with Bonferroni post-test.  

A difference of P < 0.05 was considered statistically significant.  For plasma membrane 

degradation and relative phosphorylation data, error bars reflect standard error of the 

mean (S.E.M.).   

 

3.3 Results  

3.3.1 Using Bliss independence (response addition) to predict relative phosphorylation 

during critical signaling events 

 For this proof-of-concept study, we first determined the relative phosphorylation 

of HepG2 cells exposed to individual chemicals of interest. Previously, we estimated a 

critical signaling event for deguelin and KCN at 400 min post-exposure using HepG2 

cells and relative oxygen consumption observations (Boyd et al., 2013). Since alterations 

in oxygen consumption (cellular respiration) may suggest early perturbations of cellular 

bioenergetics and potentially adverse effects, we chose a time point where all dosing 

conditions experienced the highest degree of change. Previously, we also identified early 

critical signaling events at 20 min and 40 min post-post exposure to MEK inh II and 

TDZD-8, respectively, in HepG2 cells using our published method for estimating ATP 

generation (Vrana et al., 2014). At the identified time points post-exposure, a snapshot of 

the toxicodynamic response to deguelin and KCN or MEK inh II and TDZD-8 exposure 

can be determined with a high-throughput approach. Inclusion of valuable proteins that 

cast a wide net on cell death or survival pathways at this time point is necessary to 

capture intracellular processes related to adverse or adaptive perturbation responses.  
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After exposure to cellular stressors (e.g., xenobiotics, endogenous molecules), many 

kinase pathways converge upon mitochondria, which can result in mitochondrial 

membrane permeabilization (MMP) mediated death (Kroemer et al., 2007; Rehm et al., 

2009). From this, we chose to narrow the list of potential proteins to those that are only a 

few kinase steps removed from key survival or death proteins that are known to alter 

mitochondrial activity. To this end, a multiplex bead-based ELISA assay was designed 

and used to simultaneously determine different protein phosphorylation responses for 

deguelin and KCN (Figure 3.1) and MEK inh II and TDZD-8 (Figures 3.2) at time points 

relevant to their respective critical signaling events.  Cells were lysed and measured for 

phosphoprotein response at the pre-selected critical signaling time points: 400 min post-

exposure to deguelin and KCN alone (Figure 3.1) or as a chemical mixture (Appendix 

3.1) and 20 min and 40 min post-exposure to MEK inh II and TDZD-8 alone (Figure 2.3) 

or as a chemical mixture (Appendix 3.2-3.3). Phosphoprotein responses were determined 

Figure 3.1. Relative phosphorylation responses of HepG2 cells exposed to deguelin or KCN. 

Relative protein phosphorylation was determined by dosing HepG2 cells with various doses of deguelin 

(0.01 - 100 µM) or KCN (0.01 - 100 µM) and lysing the cell membrane at 400 min post-exposure. 

Relative phosphorylation was calculated by normalizing to vehicle controls. Error bars reflect S.E.M. 

Assay was performed in duplicate. 
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relative to control, which received dosing vehicle (< 1% DMSO for deguelin, MEK inh 

II, and TDZD-8, or water for KCN). 

  

 

 

Figure 3.2. Relative phosphorylation responses of HepG2 cells exposed to MEK inh II or TDZD-8. 

Relative protein phosphorylation was determined by dosing HepG2 cells with various doses of MEK inh 

II (0.5, 1, 2, 5, 10, 20 µM; left graphs) or TDZD-8 (1, 5, 10, 20, 50, 100 µM; right graphs) and lysing the 

cell membrane at 20 min (top graphs) or 40  min (bottom graphs) post-exposure. Relative 

phosphorylation was calculated by normalizing to vehicle controls. Error bars reflect S.E.M. Assay was 

performed in duplicate. 
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Figure 3.3. Deguelin and KCN mixture 

correlation. Correlation plot of observed 

and Bliss Independence-predicted 

phosphoprotein mixture responses at 400 

min post-exposure. Data points represent 

the mean of the mixture response. For this 

mixture data set, predicted values were 

strongly correlated to observed values, 

r(200) = 0.904, P < .0001. 

Figure 3.4. MEK inh II and TDZD-8 mixture 

correlation (20 min). Correlation of observed and 

Bliss Independence-predicted phosphoprotein 

mixture responses at 20 min post-exposure. Data 

points represent the mean of the mixture response. 

For this mixture data set, predicted values were 

moderately correlated to observed values, r(432) = 

0.657, P < .0001. 

Figure 3.5. MEK inh II and TDZD-8 mixture 

correlation (40 min). Correlation of observed and 

Bliss Independence-predicted phosphoprotein 

mixture responses at 40 min post-exposure. Data 

points represent the mean of the mixture response. 

For this mixture data set, predicted values were 

weakly correlated to observed values, r(428) = 

0.311, P < .0001. 

  For the same mixtures and dosing 

regimen, we also predicted relative 

phosphorylation responses at the key time 

points of interest using Bliss independence 

(Appendix 3.1-3.3), as previously shown in 

Boyd, et al., 2013. Experimentally 

determined phosphoprotein responses of 

individual chemicals were used to calculate 

predicted values at the time points of interest. 

To determine the accuracy of our prediction 

method, we used correlation analysis for 

observed and predicted relative 

phosphorylation responses (Figures 3.3-3.5). Prediction of relative phosphoprotein 

responses to deguelin and KCN mixtures at 400 min post-exposure (Figure 3.3) were 
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strongly correlated to experimentally determined mixture phosphoprotein responses (r = 

0.904, N = 200, P < 0.0001). Prediction of relative phosphoprotein responses to MEK inh 

II and TDZD-8 mixtures at 20 min post-exposure (Figure 3.4) were moderately correlated 

to experimentally determined mixture phosphoprotein responses (r = 0.657, N = 432, P < 

0.0001). Prediction of relative phosphoprotein responses to MEK inh II and TDZD-8 

mixtures at 40 min post-exposure (Figure 3.5) were weakly correlated to experimentally 

determined mixture phosphoprotein responses (r = 0.311, N = 428, P < 0.0001). The 

number of data points included in the correlation analysis of MEK inh II and TDZD-8 

mixtures at 40 min were 428 instead of 432 due to 4 protein-dose combinations having 

instrumental error, which in this instance, was from bead aggregation. 

  

3.3.2 Forecasting mixtures dose-response with hierarchical cluster analysis  

 By monitoring or predicting the phosphorylation response of proteins involved in 

Figure 3.6. Observed phosphoprotein responses 

for PM degradation forecast. Cluster distances to 

forecast PM degradation from observed 

phosphoprotein responses to mixtures of deguelin 

and KCN 400 min post-exposure were calculated 

with the unsupervised Ward two-way hierarchical 

clustering method. PM degradation dose-response 

curves were calculated using the equation above. 

 

Figure 3.7. Bliss independence-predicted 

phosphoprotein responses for PM degradation 

forecast. Cluster distances to forecast PM 

degradation from predicted phosphoprotein 

responses to mixtures of deguelin and KCN 400 

min post-exposure were calculated with the 

unsupervised Ward two-way hierarchical 

clustering method. PM degradation dose-response 

curves were calculated using the equation above. 
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cellular survival and/or death pathways at early time-points, the fate of the cell may be 

forecasted. In order to accomplish this, we used our previously published method (Vrana 

et al., 2014), which incorporates two-way cluster analysis with Ward's minimum variance 

and a transformation of the cluster distances to yield a relative cell death dose-response 

(for example data analysis, see Figures 3.6-3.7). From this data, relative plasma 

membrane degradation forecasts can be determined for observed phosphoprotein 

responses and Bliss independence-predicted responses, and compared to experimentally 

determined relative plasma membrane degradation (Figure 3.8-3.9).  

 
Figure 3.8. Relative PM degradation (predicted and observed) of HepG2 cells at 400 min post-exposure to 

deguelin and KCN.  Relative plasma membrane (PM) degradation dose-response plots depicting the 24 h 

observed, 24 h cluster forecasted PM degradation from observed phosphorylation values at 400 min post-

exposure, and 24 h cluster forecasted PM degradation from Bliss Independence-predicted phosphorylation values 

at 400 min post-exposure.  Forecasted relative PM degradation responses that are significantly different from 

observed 24 h PM degradation responses are marked with * (P < .05), ** (P < .01), or *** (P < .001). Observed 

relative PM degradation at 400 min post-exposure had less than 10 % toxicity for all dose combinations 

measured (data not shown). Forecasted relative PM degradation responses from 400 min observed 

phosphorylation responses that were statistically different from Bliss-forecasted relative PM degradation 

responses from 400 min predicted phosphoprotein responses were indicated with # (P < .05). Statistical 

significance was determined by using two-way ANOVA with Bonferroni post-test. 
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Figure 3.9.  Relative PM degradation (predicted and observed) of HepG2 cells at 20 and 40 min post-exposure 

to MEK inh II and TDZD-8. Relative plasma membrane (PM) degradation dose-response plots depicting the 24 h 

observed, 24 h cluster forecasted PM degradation from observed phosphorylation values at 20 min (red) and 40 min 

(blue) post-exposure, and 24 h cluster forecasted PM degradation from Bliss Independence-predicted phosphorylation 

values at 20 min (purple) and 40 min (green) post-exposure.  Forecasted (from Bliss independence-predicted 

phosphoprotein responses and observed phosphoprotein responses) relative PM degradation responses that are 

significantly different from observed 24 h PM degradation responses are marked with * (P < .05), ** (P < .01), or 

*** (P < .001), corresponding to their respective colors. Statistical significance was determined by using two-way 

ANOVA with Bonferroni post-test. 
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3.4 Discussion 

 Humans are continuously exposed to a large number of chemicals, such as food, 

air, vitamin supplements, and pharmaceuticals, at various doses, and through a variety of 

exposure routes on a daily basis (Groten et al., 2001). Understanding and ultimately 

predicting the possible combined effects of a given mixture exposure is necessary for risk 

assessment toxicology. The current backlog of tens of thousands of chemicals entering 

the environment for which there is limited or no toxicity information has initiated a 

paradigm shift in traditional toxicity testing (Wilson and Schwarzman, 2009; Judson et 

al., 2010; Kavlock et al., 2012; Sipes et al., 2013). This new push towards high-

throughput in vitro approach would take advantage of early cellular perturbations post-

exposure associated with toxicity endpoints in human cell lines and tissues to elucidate 

mechanistic information regarding the mode(s) of action for a potential xenobiotic or 

mixture (Attene-Ramos et al., 2013). To this end, we combined our two previous 

prediction models to develop this proof-of-concept study to monitor early cellular 

changes relevant to signaling perturbations post-exposure for mixtures model 

development and potential toxicity predictions.  

By combining these two methodologies, we hope to open the door to the 

possibility of predicting cytotoxicity in response to an exposure of any chemical mixture.  

For the Bliss-independence predicted phosphorylation responses, the prediction model 

worked exceptionally well for deguelin and KCN mixtures as well as MEK inh II and 

TDZD-8 mixtures after 20 min of exposure. However, MEK inh II and TDZD-8 

predictions were weakly (albeit significantly) correlated to experimentally determined 

mixture responses after 40 min of exposure. This model for early PTM toxicodynamic 
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responses could greatly benefit from further development since it worked well for certain 

protein-dose combinations at discrete time points but missed others, especially the MEK 

inh II and TDZD-8 phosphoprotein responses 40 min post-exposure. As discussed 

previously in Chapter 1, mixtures prediction models often fail when an observed mixture 

acts synergistically (Meled et al., 1998; Forget et al., 1999), antagonistically (Posthuma 

et al., 1997; Van Gestel and Hensbergen, 1997), or experiences dose-dependent subtle 

interactions (e.g., synergy for low dose mixtures and antagonist for high dose mixtures) 

(Gennings et al., 2002; Jonker et al., 2004).  

In this study, we also utilized our previously developed cytotoxicity forecasting 

model to potentially predict 24 h plasma membrane degradation (cell death) with early 

toxicodynamic perturbations. The deguelin and KCN mixtures (both observed 

phosphorylation response forecasted and Bliss-predicted phosphorylation response-

forecasted) were only 30 and 40 % accurate for prediction of cytotoxicity, respectively.  

However, most low dose deguelin mixtures were accurately predicted (0.01 and 0.1 µM). 

It is important to note that both models for deguelin and KCN mixtures were not 

significantly different from each other (only 2 of 25 dose combinations were significantly 

different, P < .05), suggesting that the Bliss Independence-predicted phosphoprotein 

responses could be used in lieu of actual phosphoprotein mixture responses to forecast 

cytotoxicity. For MEK inh II and TDZD-8 mixtures forecasts (20 min), both observed 

phosphorylation response forecasted and Bliss-predicted phosphorylation response-

forecasted were 75 and 50 % accurate for prediction of cytotoxicity, respectively. Also, 

for MEK inh II and TDZD-8 mixtures forecasts (40 min), both observed phosphorylation 

response forecasted and Bliss-predicted phosphorylation response-forecasted were 77 and 
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49 % accurate for prediction of cytotoxicity, respectively. The early cellular changes 

measured (i.e., phosphorylation responses of kinases related to cell death and/or survival 

pathways) at 20 min post exposure were better for predicting cytotoxicity than at 40 min 

post-exposure to mixtures of MEK inh II and TDZD-8. This shows that appropriate 

selection of early time points, as well as judiciously selected phosphoproteins may 

improve prediction models. Most imporantly, the forecasted 24 h PM degradation using 

Bliss-independence predicted phosphoprotein responses accurately forecasted 

cytotoxicity (77 % and 49 % for 20 min and 40 min data, respectively).  This suggests 

that cytotoxicity dose-response of mixtures can be estimated without measuring the 

actual mixture. The mixture predictions for MEK inh II and TDZD-8 were much more 

accurate than the deguelin and KCN mixture predictions (49 – 77 % vs 30 – 40 %). This 

could be due to the inclusion of 12 phosphoproteins for MEK inh II and TDZD-8 

mixtures as opposed to the 8 phosphoproteins for deguelin and KCN. Additionally, MEK 

inh II and TDZD-8 mixture critical signaling time points were selected from estimated 

intracellular ATP, whereas deguelin and KCN mixture critical signaling time points were 

selected from oxygen consumption alone.  

Possible improvements to this approach could be in the type and number of PTMs 

to measure for early cellular perturbations post-exposure. Previously, our forecast model 

using individual compounds was very successful by using 19 phosphoprotein responses. 

However, in this study, only 8 and 12 phosphoproteins were included for mixture 

predictions. Future optimization of the number and identification of proteins necessary 

for accurate predictions will dramatically improve our model for cytotoxicity forecasting. 
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The initial success of this proof-of-concept approach suggests that high-

throughput in vitro assays incorporating a wide range of doses (low, moderate, and high) 

and early cellular changes to predict individual chemical and mixtures toxicity is 

exceedingly advantageous. We believe that this will greatly impact xenobiotic high-

throughput mixtures risk assessment in vitro, as well as pharmaceutical adverse drug 

reaction analyses.  

 

3.5 References 

Andersen, M.E., Krewski, D., 2009. Toxicity testing in the 21st century: bringing the 

vision to life. Toxicol Sci 107, 324-330. 

 

Attene-Ramos, M.S., Miller, N., Huang, R., Michael, S., Itkin, M., Kavlock, R.J., Austin, 

C.P., Shinn, P., Simeonov, A., Tice, R.R., Xia, M., 2013. The Tox21 robotic 

platform for the assessment of environmental chemicals--from vision to reality. 

Drug Discov Today 18, 716-723. 

 

Bhattacharya, S., Zhang, Q., Carmichael, P.L., Boekelheide, K., Andersen, M.E., 2011. 

Toxicity testing in the 21 century: defining new risk assessment approaches based 

on perturbation of intracellular toxicity pathways. PLoS One 6, e20887. 

 

Boyd, J., Vrana, J.A., Williams, H.N., 2013. In vitro approach to predict post-

translational phosphorylation response to mixtures. Toxicology 313, 113-121. 

 

Bushnell, P.J., Kavlock, R.J., Crofton, K.M., Weiss, B., Rice, D.C., 2010. Behavioral 

toxicology in the 21st century: challenges and opportunities for behavioral 

scientists. Summary of a symposium presented at the annual meeting of the 

neurobehavioral teratology society, June, 2009. Neurotoxicol Teratol 32, 313-328. 

 

Cedergreen, N., Christensen, A.M., Kamper, A., Kudsk, P., Mathiassen, S.K., Streibig, 

J.C., Sorensen, H., 2008. A review of independent action compared to 

concentration addition as reference models for mixtures of compounds with 

different molecular target sites. Environ Toxicol Chem 27, 1621-1632. 

 

Dix, D.J., Houck, K.A., Martin, M.T., Richard, A.M., Setzer, R.W., Kavlock, R.J., 2007. 

The ToxCast program for prioritizing toxicity testing of environmental chemicals. 

Toxicol Sci 95, 5-12. 



98 

 

 

Forget, J., Pavillon, J.-F., Beliaeff, B., Bocquene, G., 1999. Joint action of pollutant 

combinations (pesticides and metals) on survival (LC50 values) and 

acetylcholinesterase activity of Tigriopus brevicornis (Copepoda, Harpacticoida). 

Environ Toxicol Chem 18, 912-918. 

 

Gennings, C., Carter, W., Campain, J., Bae, D., Yang, R., 2002. Statistical analysis of 

interactive cytotoxicity in human epidermal ke. J Agric Biol Environ Stat 7, 58-

73. 

Groten, J.P., Feron, V.J., Suhnel, J., 2001. Toxicology of simple and complex mixtures. 

Trends Pharmacol Sci 22, 316-322. 

 

Hartung, T., 2009. Toxicology for the twenty-first century. Nature 460, 208-212. 

 

Jonker, M.J., Piskiewicz, A.M., Ivorra i Castella, N., Kammenga, J.E., 2004. Toxicity of 

binary mixtures of cadmium-copper and carbendazim-copper to the nematode 

Caenorhabditis elegans. Environ Toxicol Chem 23, 1529-1537. 

 

Judson, R.S., Houck, K.A., Kavlock, R.J., Knudsen, T.B., Martin, M.T., Mortensen, 

H.M., Reif, D.M., Rotroff, D.M., Shah, I., Richard, A.M., Dix, D.J., 2010. In vitro 

screening of environmental chemicals for targeted testing prioritization: the 

ToxCast project. Environ Health Perspect 118, 485-492. 

 

Kavlock, R., Chandler, K., Houck, K., Hunter, S., Judson, R., Kleinstreuer, N., Knudsen, 

T., Martin, M., Padilla, S., Reif, D., Richard, A., Rotroff, D., Sipes, N., Dix, D., 

2012. Update on EPA's ToxCast program: providing high throughput decision 

support tools for chemical risk management. Chem Res Toxicol 25, 1287-1302. 

 

Krewski, D., Acosta, D., Jr., Andersen, M., Anderson, H., Bailar, J.C., 3rd, Boekelheide, 

K., Brent, R., Charnley, G., Cheung, V.G., Green, S., Jr., Kelsey, K.T., Kerkvliet, 

N.I., Li, A.A., McCray, L., Meyer, O., Patterson, R.D., Pennie, W., Scala, R.A., 

Solomon, G.M., Stephens, M., Yager, J., Zeise, L., 2010. Toxicity testing in the 

21st century: a vision and a strategy. J Toxicol Environ Health B Crit Rev 13, 51-

138. 

 

Kroemer, G., Galluzzi, L., Brenner, C., 2007. Mitochondrial membrane permeabilization 

in cell death. Physiol Rev 87, 99-163. 

 

Meled, M., Thrasyvoulou, A., Belzunces, L.P., 1998. Seasonal variations in susceptibility 

of Apis mellifera to the synergistic action of prochloraz and deltamethrin. Environ 

Toxicol Chem 17, 2517-2520. 

 

NRC, 2007. Toxicity Testing in the 21st Century: A Vision and a Strategy. National 

Academies Press, Washington, D.C. 

 



99 

 

Posthuma, L., Baerselman, R., Van Veen, R.P., Dirven-Van Breemen, E.M., 1997. Single 

and joint toxic effects of copper and zinc on reproduction of Enchytraeus 

crypticus in relation to sorption of metals in soils. Ecotoxicol Environ Saf 38, 

108-121. 

 

Rehm, M., Huber, H.J., Hellwig, C.T., Anguissola, S., Dussmann, H., Prehn, J.H., 2009. 

Dynamics of outer mitochondrial membrane permeabilization during apoptosis. 

Cell Death Differ 16, 613-623. 

 

Sipes, N.S., Martin, M.T., Kothiya, P., Reif, D.M., Judson, R.S., Richard, A.M., Houck, 

K.A., Dix, D.J., Kavlock, R.J., Knudsen, T.B., 2013. Profiling 976 ToxCast 

chemicals across 331 enzymatic and receptor signaling assays. Chem Res Toxicol 

26, 878-895. 

Van Gestel, C.A.M., Hensbergen, P.J., 1997. Interaction of Cd and Zn toxicity for 

Folsomia candida Willem (Collembola:Isotomidae) in relation to bioavailability 

in soil. Environ Toxicol Chem 16, 1177-1186. 

 

Vrana, J.A., Currie, H.N., Han, A.A., Boyd, J., 2014. Forecasting cell death dose-

response from early signal transduction responses in vitro. Toxicol Sci 140, 338-

351. 

 

Wilson, M.P., Schwarzman, M.R., 2009. Toward a new U.S. chemicals policy: rebuilding 

the foundation to advance new science, green chemistry, and environmental 

health. Environ Health Perspect 117, 1202-1209. 

 



100 

 

Appendix 3.1 - Observed relative phosphorylation of deguelin and KCN mixtures 

(400 min post-exposure) 

Deguelin + 0.01 M KCN (400 min)
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Deguelin + 0.1 M KCN (400 min)
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Deguelin + 1 M KCN (400 min)
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Deguelin + 10 M KCN (400 min)
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Deguelin + 100 M KCN (400 min)
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Appendix 3.2 - Observed relative phosphorylation of MEK inh II and TDZD-8 

mixtures (20 min post-exposure) 

MEK inh II + 1 M TDZD-8 (20 min)
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MEK inh II + 5 M TDZD-8 (20 min)

0.5 1 2 5 10 20
0

3

6

9

12

15

18

21

AKT

ERK1/2

HSP27

IkBa

IRS1

MEK1

p53

p90RSK

BAD

CREB

p38MAPK

JNK

AKT bliss

ERK bliss

HSP27 bliss

IkBa bliss

IRS1 bliss

MEK1 bliss

p53 bliss

p90rsk bliss

BAD bliss

CREB bliss

p38MAPK bliss

JNK bliss

MEK inh II (M)

R
e
la

ti
v
e
 P

h
o

s
p

h
o

ry
la

ti
o

n

 

 



107 

 

MEK inh II + 10 M TDZD-8 (20 min)
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MEK inh II + 20 M TDZD-8 (20 min)
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MEK inh II + 50 M TDZD-8 (20 min)
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MEK inh II + 100 M TDZD-8 (20 min)
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Appendix 3.3 - Observed relative phosphorylation of MEK inh II and TDZD-8 

mixtures (40 min post-exposure) 

MEK inh II + 1 M TDZD-8 (40 min)
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MEK inh II + 5 M TDZD-8 (40 min)
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MEK inh II + 10 M TDZD-8 (40 min)
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MEK inh II + 20 M TDZD-8 (40 min)
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MEK inh II + 50 M TDZD-8 (40 min)
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MEK inh II + 100 M TDZD-8 (40 min)
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Chapter 4 

Using mixtures to ameliorate undesired side-effects of 

deguelin 
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4. Using mixtures to ameliorate undesired side-effects of deguelin
1
 

 The pharmaceutical world has greatly benefited from the well-characterized 

structure-function relationships of toxins with endogenous biomolecules, such as ion-

channels, receptors, and signaling molecules. Thus, therapeutics derived from toxins have 

been aggressively pursued. However, the multifunctional role of various toxins may lead 

to undesirable off-target effects, hindering their use as therapeutic agents. In this paper, 

we suggest that previously unsuccessful toxins (due to off-target effects) may be revisited 

with mixtures by utilizing the pharmacodynamic response to the potential primary 

therapeutic as a starting point for finding new targets to ameliorate the unintended 

responses. In this proof of principle study, the pharmacodynamic response of HepG2 

cells to a potential primary therapeutic (deguelin, a plant-derived chemopreventive agent) 

was monitored, and a possible secondary target (p38MAPK) was identified. As a single 

agent, deguelin decreased cellular viability at higher doses ( > 10 µM), but inhibited 

oxygen consumption over a wide dosing range (1.0 – 100 µM). Our results demonstrate 

that inhibition of oxygen consumption is related to an increase in p38MAPK 

phosphorylation, and may only be an undesired side effect of deguelin (i.e., one that does 

not contribute to the decrease in HepG2 viability). We further show that deguelin’s 

negative effect on oxygen consumption can be diminished while maintaining efficacy 

when used as a therapeutic mixture with the judiciously selected secondary inhibitor 

(SB202190, p38MAPK inhibitor). These preliminary findings suggest that an 

endogenous response-directed mixtures approach, which uses a pharmacodynamic 

                                                 
1
 Parts of this chapter have been published previously, either in part or in full, from Vrana, J.A., Boggs, N., 

Currie, H.N., Boyd, J. (2013) Amelioration of an undesired action of deguelin. Toxicon 74, 83-91. 

Reproduced with permission from Elsevier. 
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response to a primary therapeutic to determine a secondary target, allows previously 

unsuccessful toxins to be revisited as therapeutic mixtures. 

 

4.1 Introduction 

The well-characterized structure-function relationships of toxins, such as snake 

venoms and plant-derived toxins, have led to major advances in understanding normal 

and disease state physiology, as well as the development of pharmacological regimens 

based on the structures of various toxins (McCleary and Kini, 2012).  One such example 

is captopril, an angiotensin-converting enzyme inhibitor to treat hypertension that is 

based on bradykinin-potentiating factor (BPF) isolated from the Brazilian pit viper 

Bothrops jararaca (Ferreira, 1965).  Captopril has also been used in combination with 

marimastat (a matrix metalloproteinase inhibitor) and fragmin (a low molecular weight 

heparin approved by the U.S. FDA) as an antiangiogenesis therapeutic mixture for 

patients with advanced stage cancer (Jones et al., 2004).  From the successes of captopril, 

among many other therapeutics derived from toxins, natural toxin-based pharmacology 

has been aggressively pursued (Koh and Kini, 2012).  

Previously known for their success as insecticides and fishing poisons, plant-

derived rotenoids, such as deguelin, have been investigated for their potential use as 

chemopreventive (designed to delay the onset of cancer) and chemotherapeutic (designed 

to destroy cancer after it appears) agents (Kim et al., 2008; Aggarwal et al., 2004).  

Deguelin, a natural isoflavonoid isolated from the root of Lonchocarpus utilis and 

Lonchocarpus urucu (Caboni et al., 2004), inhibits NADH:ubiquinone oxidoreductase 

(complex I) of the mitochondrial electron transport chain (ETC), HSP90, and AKT (Lee 
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et al., 2005; Oh et al., 2007, 2008; Peng et al., 2007).  As a fishing poison, rotenoids are 

often used due to their inhibition of cellular respiration via inhibition of complex I of the 

ETC (Neuwinger, 2004).  Inhibition of respiration in cells results in tissue asphyxia and 

consequently organ paralysis (Neuwinger, 2004).  As a chemopreventive agent, 

rotenoids, specifically deguelin, have shown promise for a variety of cancer types (Chun 

et al., 2003; Murillo et al., 2002; Peng et al., 2007; Udeani et al., 1997).  Unfortunately, 

when used as a chemotherapeutic, rotenoids have exhibited undesirable side effects, such 

as respiratory depression and cardiotoxicity, presumably due to a decrease in cellular 

oxygen consumption caused by inhibition of complex I (Lee, 2004).  Additionally, 

deguelin has been shown to induce a Parkinson's disease-like syndrome in rats when 

administered in high doses, which is also potentially related to activity at complex I 

(Caboni et al., 2004). These undesired side effects related to complex I inhibition have 

hindered deguelin’s use as a chemotherapeutic agent (Agarwal and Deep, 2008; Fang and 

Casida, 1998).
 

 While deguelin has inherent faults that diminish its legitimacy as a 

chemotherapeutic agent, it may still hold promise as a potential therapeutic if combined 

with another xenobiotic.  In recent years, using a combinatorial/mixtures approach with 

targeted kinase therapeutics has shown promise as an effective strategy (Engelman et al., 

2007; Ma et al., 2005; Namiki et al., 2006; Stommel et al., 2007; Yasui et al., 2007) 

because many mechanisms for cell survival rely on intricate and sophisticated 

intracellular signaling networks, making single-point inhibition impractical for treatment 

(Fitzgerald et al, 2006; Toschi and Janne, 2008).  The initial pharmacodynamic response 

to xenobiotic insult is primarily coordinated by signal transduction networks, which 



121 

 

typically follow a simple framework: the phosphorylation/dephosphorylation cycle 

mediated by kinases and phosphatases (Kholodenko, 2006; Sauro and Kholodenko, 

2004).  Since a typical cellular response to exposure involves the integration of many 

kinases into pathways for a coordinated response, this enzyme class make advantageous 

targets for a mixtures approach (Cohen, 2002; Collins and Workman, 2006; Dancey and 

Sausville, 2003). 

 There are several different strategies for determining possible mixtures therapies 

for kinase targets (Jackson, 1993).  One strategy involves the simultaneous inhibition of a 

single target using two or more compounds, while another strategy utilizes two inhibitors 

to attack two different proteins on a linear pathway (e.g. mitogen-activated protein kinase 

cascade) (Fitzgerald et al., 2006).  A drawback to these mixtures approaches is that prior 

knowledge of the network and kinases of interest are required to select which inhibitors 

to use.  This paper suggests an alternative strategy: instead of selecting mixtures based on 

previously known mechanisms and complex networks that may not fit the cell line or 

disease of interest, the endogenous response of the cell to a primary therapeutic may be 

used to select the secondary target of interest.  By monitoring the endogenous response of 

the network while under duress from a primary therapeutic, the cell’s alternate mode of 

survival can be exposed, and a second inhibitor may be selected for a more effective 

mixtures therapeutic strategy.  By utilizing the endogenous response to primary 

therapeutic, undesirable effects (such as decreased oxygen consumption following 

exposure to deguelin) may be targeted for amelioration.  Overall, this strategy holds 

promise for potentially maintaining efficacy of an initial therapeutic (deguelin) while 

reducing side effects for improved patient outcome.   
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 In this study, we investigated the endogenous response of HepG2 cells, a human 

hepatocellular carcinoma-derived cell line, to a primary therapeutic (deguelin) at varying 

doses to determine a potential secondary target for a beneficial therapeutic mixture.  We 

selected the HepG2 cell line as our model in vitro system due to the central role that the 

liver plays in xenobiotic biotransformation after exposure (Mersch-Sundermann, et al., 

2004).  Most importantly, the HepG2 cell line retains endogenous xenobiotic 

metabolizing enzymes, whereas primary hepatocyte culture typically loses these vital 

enzymes (Knasmuller, et al., 1998). We monitored the response of HepG2 cells to 

deguelin by determining 24 hour viability and kinetically measuring oxygen consumption 

over 24 hours.  From this data, we found a critical shift in oxygen consumption at 400 

minutes post-dose that spanned several doses.  At this time-point, we monitored the 

relative post-translational phosphorylation of 8 proteins involved in cell proliferation or 

apoptotic signal transduction cascades. From this phosphorylation response data, we 

selected p38MAPK as a secondary target, and used a specific p38MAPK inhibitor 

(SB202190) in combination with deguelin to possibly alter the overall cellular response 

to deguelin.  We found that by using an endogenously selected therapeutic mixture, 

deguelin’s inhibition of oxygen consumption was diminished while maintaining efficacy.  

This proof of principle study shows that by using an endogenous response-directed 

mixtures approach, previously unsuccessful toxins as a primary therapeutic may be 

revisited.  
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4.2 Materials and Methods 

4.2.1 Materials   

 Deguelin (CAS no. 522-17-8) and SB202190 (CAS no. 152121-30-7) were 

obtained from Sigma Aldrich (St. Louis, MO).  RPMI-1640 containing phenol red, 

RPMI-1640 without phenol red, sodium pyruvate, HEPES, L-glutamine, fetal bovine 

serum, and penicillin-streptomycin were obtained from Invitrogen (Carlsbad, CA). Cell 

lines and MTT assay kits were obtained from American Type Culture Collection 

(Manassas, VA).  MitoXpress oxygen probe was obtained from Luxcel Corporation 

(Cork, Ireland).  BioPlex beads, lysis buffer, and reagents necessary for determination of 

relative phosphorylation were obtained from BioRad (Hercules, CA). 

 

4.2.2 Cell culture   

 Human hepatocellular carcinoma-derived HepG2 cells were cultured in RPMI-

1640, supplemented with 1 mM sodium pyruvate, 5 mM HEPES, 2 mM L-Glutamine, 

10% fetal bovine serum, 100 U/ml penicillin, and 100 µg/ml streptomycin. Cells were 

maintained in a humidified atmosphere at 37°C, 5% CO2 and passaged at 80 % 

confluence.  
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4.2.3 Dosimetry   

 Cells were seeded into clear-bottom, black-sided 96-well plates at a concentration 

of 4 x 10
4
 cells per well in RPMI-1640 without phenol red and allowed to grow for 24 

hours before dosing.  Media was then aspirated from wells and cells were challenged 

with varying doses of single and mixed compounds in fresh media.  Compounds were 

prepared so that resulting well concentrations would be <1% DMSO and 0.01 µM to 100 

µM (deguelin) and 350 nM (SB202190). 

 

4.2.4 MTT assay  

 After 24 hours of exposure to single compounds or mixtures, cell viability was 

determined using the MTT (3-(4,5-dimethyl)-2,5-diphenyl tetrazolium bromide) assay, 

according to the manufacturer’s protocol. The assay is based on the reduction of 

tetrazolium MTT to formazan by metabolically active cells, in part by the action of 

dehydrogenase enzymes, to generate reducing equivalents such as NADH and NADPH. 

Briefly, MTT reagent was added to the wells of the microplate, and after two hours of 

incubation at 37°C, intracellular formazan crystals were solubilized with the provided 

detergent solution.  Absorbance values were obtained using the Safire2 microplate reader 

(Tecan US, Raleigh, NC) with a measurement wavelength of 570 nm and a reference 

wavelength of 700 nm, read from the bottom.  Experiments were each performed at least 

in triplicate.  Percent viability was calculated by normalizing to controls, which received 

dosing vehicle (1% DMSO).   
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4.2.5 Oxygen consumption assay  

 Immediately after dosing with single compounds or mixtures, cellular oxygen 

consumption was assessed using the MitoXpress probe, according to manufacturer’s 

protocol.  Briefly, oxygen-sensitive probe was diluted to a stock concentration of 1μM, 

and stock probe was diluted 1:15 in each well of a 96-well plate containing cells; 100μL 

of pre-warmed mineral oil was also added to each well to block ambient oxygen from the 

cells.  After pre-warming the plates at 37°C for 1 hour, cells were challenged with 

varying doses of deguelin alone or in combination the IC50 of SB202190 (350nM).  

Immediately following addition of compound(s), oxygen consumption was determined by 

measuring fluorescence.  Fluorescent signal was obtained using the Infinite M1000 

microplate reader (Tecan US, Raleigh NC) with excitation wavelength of 380 nm and 

emission wavelength of 650 nm, reading from the bottom every 10 minutes for 24 hours 

after dosing.  Experiments were performed in quadruplicate.  Relative oxygen 

consumption was calculated by normalizing to controls, which received dosing vehicle 

(1% DMSO).   

 

4.2.6 Bio-Plex Multiplex Immunoassay 

 After 400 minutes of exposure (Boyd et al., 2012) to increasing doses of deguelin 

(0.01, 0.1, 1.0, 10, 100 µM) in 1% DMSO alone, or in combination with IC50 of 

SB202190 (350nM), cells were lysed using lysis buffer (BioRad, Hercules, CA) with 

500µM phenylmethanesulfonylfluoride (PMSF) (Sigma, St. Louis, MO) and phosphatase 

inhibitors (BioRad, Hercules, CA).  Total protein concentration was determined using the 
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DC Protein Assay (BioRad, Hercules, CA) according to the manufacturer’s instructions.  

Protein phosphorylation was detected using multiplex bead-based BioPlex suspension 

array system (Bio-Rad, Hercules, CA) and lysates were prepared according to the 

manufacturer’s protocol.  Beads and detection antibodies against phosphorylated ERK1/2 

(Thr202/Tyr204, Thr185/Tyr187), AKT (Ser473), HSP27 (Ser78), IκBα (Ser32/Ser36), 

JNK (Thr183/Tyr185), p38MAPK (Thr180/Tyr182), p53 (Ser15), and p90RSK 

(Thr359/Ser363)  were obtained from Bio-Rad (Hercules, CA).  Relative phosphorylation 

was calculated by normalizing to control cells, which received dosing vehicle (1% 

DMSO).  All experiments were performed in duplicate.   

 

4.2.7 Statistical Analysis 

 Dose-response curves for MTT assays were generated by best-fit Hill-plot 

regression of scatter plot data using Prism V5 (Graphpad Software, San Diego, CA). 

Oxygen consumption curves were generated by choosing the best-fit polynomial 

regression of scatter plot data using Prism V5 (Graphpad Software, San Diego, CA). The 

time point of interest (400 min) was selected using SAS JMP V8 (Cary, NC) where the 

change in the slope of the oxygen consumption curve reached a minimum for most 

exposures.  Statistical significance for viability and relative phosphorylation was assessed 

by using a two-way analysis of variance (ANOVA) with Bonferroni post-test.  Statistical 

significance for oxygen consumption (a kinetic assay) was assessed by using a Kruskal-

Wallis nonparametric test with Dunns post-test.  A difference at P < 0.05 level was 

considered statistically significant.  For viability and relative phosphorylation data, error 
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Figure 4.1.  Percent viability of HepG2 cells in response to 24 hour exposure of 0.01 – 100 µM 

deguelin. Viability, shown as % viability, was measured as in Methods and was calculated relative to 

control cells which received dosing vehicle (<1% DMSO) only.  Dose-response curve was generated 

by a best-fit Hill-plot regression of scatter plot data.  Error is reported as ± standard error of the mean 

(SEM). 

bars reflect standard error of the mean.  For oxygen consumption curves (best-fit 

polynomial regression), error was reported at the 95% confidence interval.  

 

4.3 Results  

4.3.1 Deguelin as a monotherapy 

 To determine the overall effect of deguelin alone, HepG2 cells were exposed to 

log doses of deguelin (0.01 – 100 µM) and viability at 24 hours post-dose was measured 

using the MTT assay (shown in Figure 4.1).  Our viability data suggests that deguelin is 

effective at doses greater than 10µM (EC50 = 45 ± 1 µM).   
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4.3.2 HepG2 viability (in response to 

deguelin) may not be directly 

associated with O2 consumption 

 To better relate deguelin's 

inhibition of oxygen consumption to 

endpoint viability, we kinetically 

measured the oxygen consumption of 

HepG2 cells in response to deguelin 

over 24 hours post-dose, as shown in 

Figure 4.2, using the MitoXpress 

oxygen consumption assay.  From 

Figure 4.2, oxygen consumption 

decreased when in the presence of 1.0 

– 100 µM doses of deguelin (as 

compared to controls, represented as percent oxygen consumption). A Kruskal-Wallis 

nonparametric test with Dunns post-test was used to compare oxygen consumption 

responses to various doses.  The oxygen consumption responses at all doses were 

statistically different (P < 0.05) from each other except for 1.0 µM vs 10 µM and 10 µM 

vs 100 µM.  Most importantly, there is a clear separation in oxygen consumption 

responses between two dosing groups: the lowest doses (0.01 and 0.1 µM) and the higher 

doses (1.0 – 100 µM).  Since our oxygen consumption data at these doses does not seem 

to correspond with our MTT assay (which demonstrated no decrease in viability for the 

1.0 and 10 µM doses), the inhibition of oxygen consumption may not be directly 

Figure 4.2.  Percent oxygen consumption of HepG2 

cells in response to 0.01 – 100 µM deguelin.  Oxygen 

consumption response of HepG2 cells to increasing doses 

of deguelin (shown in shades of gray) measured over 24 

hours.  Oxygen consumption was measured using 

MitoXpress extracellular assay as outlined in section 2.5.  

Percent oxygen consumption is shown relative to control 

cells which received dosing vehicle (<1% DMSO) only.  

Oxygen consumption curves were generated using a best-

fit polynomial function with error bars reflecting the 95% 

confidence intervals.  Vertical line at 400 minutes was 

selected as the time-point of greatest disparity in oxygen 

consumption. 
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associated with 24 hour HepG2 viability in response to deguelin.  Furthermore, for the 

lower doses of deguelin (0.01 and 0.1 µM), oxygen consumption actually increases 

relative to controls until about 400 minutes post-exposure; at this time-point, oxygen 

consumption decreases, ultimately returning to control levels.  Therefore, 400 minutes 

appears to be an interesting time point post-exposure that results in the greatest disparity 

in oxygen consumption between high and low doses. Since the full dosing regimen of 

deguelin indicated 400 minutes post-dose as a key time-point where doses of deguelin 

lead to both decreased (1.0 – 100 µM) and increased (0.01, 0.1 µM) oxygen 

consumption, we investigated the post-translational phosphorylation response to identify 

the underlying signal transduction events that allow for both decreased oxygen 

consumption and survival (ie. ~100% viability) at the 1.0 and 10 µM doses.  This method 

of selecting critical time-points of phosphorylation events from oxygen consumption data 

has been previously used by Boyd et al. (2012).   

 

4.3.3 Endogenous phosphorylation response to deguelin exposes a potential secondary 

therapeutic target  

 We next explored the signal transduction response, by means of post-translational 

phosphorylation activity, of HepG2 cells exposed to increasing doses of deguelin.  We 

simultaneously measured the phosphorylation of ERK1/2 (Thr202/Tyr204, 

Thr185/Tyr187), AKT (Ser473), HSP27 (Ser78), IκBα (Ser32/Ser36), JNK 

(Thr183/Tyr185), p38MAPK (Thr180/Tyr182), p53 (Ser15), and p90RSK 

(Thr359/Ser363) at 400 minutes post-exposure to deguelin using bead-based ELISA flow 

cytometry.  These protein targets were selected because of their relevance in signal 
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transduction pathways related to cellular death and recovery [Dong et al., 2002; Jin and 

El-Deiry, 2005; Oren, 2003; Wilkinson and Millar, 2000], and due to the availability of 

selective inhibitors.  Figure 4.3 shows the relative phosphorylation response of HepG2 

cells to 400 minute exposures of increasing doses of deguelin (as compared to controls, 

normalized to a value of 1).  A two-way ANOVA with Bonferroni post-test determined 

significant differences (P < 0.05) between deguelin-exposed and control cells for 

p38MAPK at 0.1 µM; ERK1/2, JNK, p38MAPK, IκBα, p53, and p90RSK at 1.0 µM; for 

all proteins except JNK at 10 µM; and for all proteins at 100 µM (Figure 4.3).  While 

several proteins experienced a relative phosphorylation change in response to deguelin at 

400 minutes post-dose, p38MAPK phosphorylation is statistically different across four 

orders of magnitude of dose (1.0 – 100 µM).  

 

 

Figure 4.3. Relative phosphorylation of protein targets in response to 0.01 – 100 µM deguelin.  Post-

translational phosphorylation response of protein targets (from cell lysates) to 400 minute exposures of 

deguelin as outlined in Methods; responses are shown relative to control cells, which received dosing vehicle 

(<1% DMSO), but no deguelin.  The solid black line at y = 1 shows where observed post-translational 

phosphorylation responses are the same as control.  The phosphorylation responses found to be significantly 

different (P < 0.05) from controls are marked with *. 
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4.3.4 Using mixtures to suppress 

endogenous p38MAPK response to 

deguelin 

 To determine if our directed 

mixtures approach, which takes 

advantage of the endogenous 

pharmacodynamic response to 

deguelin, has the potential to 

decrease viability while minimizing 

deguelin’s effect on oxygen 

consumption, we attempted to 

suppress the post-translational 

p38MAPK phosphorylation 

response to deguelin by using a 

secondary inhibitor, SB202190.  We chose SB202190 because it is a selective inhibitor of 

p38MAPK (Lee et al., 1994).  HepG2 cells were exposed to SB202190 alone at its 

manufacturer reported IC50 (350 nM) and in combination with a full range of deguelin 

doses (0.01 – 100 µM), and we measured the p38MAPK post-translational 

phosphorylation response at 400 minutes post-dose (shown in Figure 4.4).  From this 

figure, SB202190 alone does decrease the phosphorylation response of p38MAPK (0.61 

± 0.02) when compared to controls, indicating that it is a relatively potent inhibitor (350 

nM) of p38MAPK.  A two-way ANOVA with Bonferroni post-test determined 

significant differences (P < 0.05) between the p38MAPK response to deguelin alone and 

Figure 4.4.  Relative p38MAPK phosphorylation in 

response to deguelin, SB202190, and mixtures of 

deguelin with SB202190. The phosphorylation response 

of p38MAPK from cell lysates at 400 minute exposures 

to mixtures of deguelin and 350 nM SB202190 (black), 

deguelin alone (white), and 350 nM SB202190 alone 

(black dots with grey line representing standard error of 

the mean) as discussed in sections 2.6 and 3.4; all values 

are reported as relative to control cells, which received 

dosing vehicle (<1% DMSO) only.  Error is reported as 

± SEM.  Post-translational phosphorylation responses of 

the mixture found to be significantly different (P < 0.05) 

from deguelin alone are marked with * and those 

different (P < 0.05) than SB202190 alone are marked 

with #. 
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Figure 4.5.  Percent viability of HepG2 cells in 

response to 24 hour exposure of deguelin alone and 

in combination with SB202190.  HepG2 viability in 

response to deguelin alone (triangles), mixtures of 

deguelin and 350 nM SB202190 (circles), and 350 nM 

SB202190 alone (black dotted line with grey shading 

for SEM). Viability, shown as % viability, was 

measured as outlined in section 2.4, and was calculated 

relative to control cells which received dosing vehicle 

(<1% DMSO), but no deguelin or inhibitor doses.  

Dose-response curves were generated by best-fit Hill-

plot regression of scatter plot data.  Mixture viability 

responses found to be significantly different (P < 0.05) 

from deguelin are marked with * and those different (P 

< 0.05) from SB202190 are marked with #.  

the mixture, as well as SB202190 alone and the mixture.  Most notably the relative 

p38MAPK phosphorylation responses to mixtures of deguelin (0.1 – 10 µM) with 

SB202190 were significantly decreased in comparison to deguelin alone.   

 

4.3.5 Mixtures approach retains efficacy while decreasing deguelin’s effect on O2 

consumption   

 To test this new potential therapeutic regimen, we exposed HepG2 cells to 

varying doses of deguelin (0.01-100 µM) in combination with SB202190 at its 

manufacturer reported IC50 (350 

nM) and measured viability (Figure 

4.5).  At 24 hours post-dose, 

viability was measured following 

treatment with SB202190 alone and 

in combination with deguelin 

(Figure 4.5), and compared to 

viability data for deguelin alone 

(controls measured concurrently).  

SB202190 alone did not 

significantly decrease viability at 

the 350 nM dose (98 ± 3 %).  

Viability was slightly decreased in 

response to mixtures of deguelin 
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(EC50 = 33 ± 1 µM) when compared to deguelin alone (EC50 = 45 ± 1 µM). To determine 

the effect of this mixtures technique on oxygen consumption, HepG2 cells were exposed 

to a full dosing regimen of deguelin (0.01 – 100 µM) in combination with SB202190 

(350 nM). Immediately after dosing, oxygen consumption was measured kinetically over 

24 hours and compared relative to controls, shown as percent oxygen consumption. From 

Figure 4.6, SB202190 alone did  not affect oxygen consumption from 0 – 600 minutes 

post-dose.  

However, after 600 minutes SB202190 decreased oxygen consumption.  Mixtures of 

deguelin (0.01 – 100 µM) with 350 nM SB202190 sustained oxygen consumption (100% 

Figure 4.6.  Percent 

oxygen consumption of 

HepG2 cells in response 

to deguelin alone, and 

in combination with 

SB202190.  Oxygen 

consumption response of 

HepG2 cells to 

SB202190 alone 

(squares), deguelin alone 

(triangles) and deguelin 

with 350 nM SB202190 

(circles) measured over 

24 hours.  Oxygen 

consumption was 

measured using 

MitoXpress extracellular 

assay as outlined in 

section 2.5.  Oxygen 

consumption is shown 

relative to control cells, 

which received dosing 

vehicle (<1% DMSO), 

but no deguelin or 

SB202190.  Oxygen 

consumption curves were 

generated using a best-fit 

polynomial function 

(solid line) with 

surrounding dotted lines 

reflecting the 95% 

confidence intervals.   
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oxygen consumption relative to controls) for 0.01 µM and 0.1 µM, or increased oxygen 

consumption (1.0 – 100 µM), whereas exposure to deguelin alone inhibited oxygen 

consumption at doses of 1.0 – 100 µM.  A Kruskal-Wallis nonparametric test with Dunns 

post-test was used to compare oxygen consumption responses between doses of deguelin 

alone and in combination with SB202190.  When compared to oxygen consumption in 

response to deguelin alone, mixture doses were statistically different (P < 0.05) for 1.0, 

10 and 100 µM.  When considering viability, efficacy of the highest mixture dose was 

sustained, while oxygen consumption at the highest mixture dose of deguelin (100 µM) 

with SB202190 was significantly increased (P < 0.05) when compared to 100 µM 

deguelin alone.  By increasing oxygen consumption using this endogenously-directed 

mixtures approach, we were able to successfully ameliorate an undesired alternative 

action of deguelin.   

 

4.4 Discussion 

 Due to the activity of various toxins at specific intracellular proteins, therapeutic 

agents derived from these toxins have been aggressively pursued (McCleary and Kini, 

2012).  One such example is cobrotoxin, a protein isolated from the venom of the Taiwan 

cobra Naja naja atra (Chang et al., 1997).  Cobrotoxin binds to nuclear factor-κB (NF-

κB) signaling molecules with high affinity, such as p50 and inhibitory κB kinases (IKKs) 

(Park et al., 2005).  Therapeutic agents capable of suppressing NF-κB are constantly 

being explored due to abnormal or constitutive NF-κB activity in many cancer types 

(Dolcet et al., 2005).  Cobrotoxin's inhibition of NF-κB signaling molecules suppresses 

NF-κB activity, making cobrotoxin an advantageous chemotherapeutic agent (Son et al., 
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2007).    From this ideology, the present proof of principle study has demonstrated that an 

endogenous response-directed mixtures approach may be useful for diminishing possible 

off-target effects while maintaining efficacy of naturally-derived potential therapeutics.  

Deguelin, a plant-derived chemopreventive agent, has been shown (Figure 4.1) to 

decrease HepG2 viability at high doses.  Previously, deguelin has been shown to alter 

activity at different intracellular proteins, such as AKT and HSP90 (Lee et al., 2005; Oh 

et al., 2007, 2008; Peng et al., 2007), making it a valid candidate for kinase-targeted 

chemotherapy.  However, deguelin has also been shown to affect mitochondrial 

bioenergetics, presumably due to its activity at complex I of the electron transport chain 

(Fang and Casida, 1998;Gerhauser, et al., 1997).  Previously, this inhibitory activity has 

been shown to decrease intracellular oxygen consumption in a mouse skin model 

(Gerhauser, et al., 1997), which may also contribute to cellular toxicity at distal cells.  

Our results (Figure 4.2) indicate that off-target inhibition of oxygen consumption was 

sustained over 24 hours in response to a range of doses (1.0 – 100 µM) of deguelin when 

it was used as a monotherapy.  While inhibition of oxygen consumption was sustained 

over a wide dosing range, a significant decrease in HepG2 viability occurs only at doses 

greater than 10 µM.  This suggests that deguelin’s inhibition of oxygen consumption may 

not be contributing to the decrease in HepG2 viability.  It is known from the Warburg 

Effect that cancer cells can utilize aerobic glycolysis for ATP production, whereas 

differentiated cells primarily produce ATP via oxidative phosphorylation that requires 

sufficient amounts of oxygen (Warburg, 1956).  In the absence of oxygen, it is difficult 

for differentiated cells to produce enough ATP from anaerobic glycolysis for survival, 

thus many undergo apoptosis under hypoxic conditions.  However, cancer cells, such as 
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HepG2, can survive in an oxygen-deficient environment due to their reliance on aerobic 

glycolysis to produce ATP [for a review, see Vander Heiden et al., 2009].  Therefore, the 

Warburg Effect, in conjunction with our results, supports that deguelin’s activity at 

separate intracellular sites may be causing decreased viability, whereas inhibition of 

oxygen consumption is possibly an undesirable alternative activity of deguelin that limits 

its usefulness as a possible therapeutic (Lee et al., 2005; Oh et al., 2007, 2008).   

To better understand the discrepancies in HepG2 viability and oxygen 

consumption in response to deguelin, we investigated the post-translational 

phosphorylation response of several key proteins involved in cell recovery or pro-

apoptotic signaling cascades (Figure 4.3).  We found that p38MAPK phosphorylation in 

response to deguelin is significantly different over several orders of magnitude (0.1 – 100 

µM) of dose.  For 0.1 – 10 µM doses of deguelin, the relative phosphorylation response 

of p38MAPK is significantly increased.  With regard to HepG2 viability, the 0.1 – 10 µM 

dosing range is ineffective, indicating p38MAPK as a possible protein involved in an 

endogenous defense mechanism that improves survival against deguelin.  This is further 

supported by the decrease in relative phosphorylation of p38MAPK in response to 100 

µM dose of deguelin that coincides with decreased viability at this dose, indicating the 

cell may not be able to effectively respond to a high dose of deguelin.  This preliminary 

data suggests that a directed mixtures approach utilizing p38MAPK as a secondary target, 

thereby capitalizing on the endogenous response to deguelin, may be advantageous.  

However, it should be noted that due to the limited number of proteins measured in this 

study, there may be activity at other proteins/cascades that could be influencing the 

overall pharmacodynamic response to deguelin. 
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While monotherapies for cancer have proven to be successful when a single target 

controls the cell’s fate, many carcinomas are often more complex, with intricate signaling 

networks governing proliferation (Toschi and Janne, 2008).  This complex survival 

framework, capable of facilitating uncontrolled proliferation, can withstand the inhibition 

of a single target by switching to an alternate mode for survival.  However, by utilizing 

the endogenous response to a single insult (primary therapeutic), a second inhibitor may 

be used as a mixture with the primary therapeutic for a more effective treatment.  

Combinatorial approaches have previously been shown to improve various cancer 

therapies (Engelman et al., 2007; Fitzgerald et al., 2006; Ma et al., 2005; Namiki et al., 

2006; Stommel et al., 2007; Toschi and Janne, 2008; Yasui et al., 2007).  To this end, we 

combined a selective p38MAPK inhibitor, SB202190, with deguelin to suppress the 

endogenous p38MAPK response to deguelin alone (Figure 4.4). Additionally, when used 

as a therapeutic mixture, efficacy of deguelin was maintained (Figure 4.5). While 

SB202190 has been shown to be a selective p38MAPK inhibitor, we recognize that 

inhibitors are not perfect and may alter the activity of undesired intracellular proteins 

(Muniyappa and Das, 2008).  Additionally, SB202190 has been shown to be toxic in a 

human leukemia cell line 24 hours post-exposure at higher doses (50 μM) (Nemoto et al., 

1998). In this study, we found that SB202190 (350 nM) alone did not significantly 

decrease HepG2 viability 24 hours post-exposure (Figure 4.5).  It should be noted that the 

diverse role of p38MAPK signaling, for example the conflicting results during 

ischemia/reperfusion injury (for review, see Steenbergen, 2002), after cellular stress or 

xenobiotic exposure can vary based on the model system used (Cuadrado and Nebreda. 

2010).          
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By using this directed mixtures approach, the undesired alternative action of 

deguelin (inhibition of oxygen consumption) can be ameliorated without sacrificing 

efficacy.  From Figure 4.6, SB202190 treatment alone decreased oxygen consumption 

slightly, but treatment with the various mixtures led to an increase in oxygen 

consumption when compared to deguelin alone, thus minimizing deguelin’s undesired 

effect on oxygen consumption.  Most notably, the highest mixture dose showed an 

increase in oxygen consumption when compared to 100 µM of deguelin alone, while 

maintaining efficacy (less than 15% viability).  These results are consistent with previous 

studies that monitored mitochondrial bioenergetics in response to ETC inhibitors (Arvier 

et al., 2007; Dumas et al., 2003; Roussel et al., 2003).  Desquiret and coworkers (2008) 

found that dexamethasone, a synthetic glucocorticoid, inhibits mitochondrial activity 

(specifically complex I and II) in HepG2 cells. Since glucocorticoid stimulation activates 

G protein-coupled receptor (GPCR), they hypothesized that GPCR mediated kinase 

pathways may be key players in regulating rapid glucocorticoid activity at ETC 

complexes. From this, they co-exposed HepG2 cells to dexamethasone and SB202190 

(since p38MAPK is downstream of GPCR), and found that SB202190 increased 

Complex I activity by 80%, when compared to HepG2 cells exposed to dexamethasone 

alone, which demonstrates the vital role p38MAPK plays in mediating mitochondrial 

bioenergetics after xenobiotic exposure. By using our proposed mixtures approach, the 

undesired alternative action of deguelin (inhibition of oxygen consumption) was 

diminished by inhibiting p38MAPK. 

As a proof of principle, the novel mixtures approach presented here exploits the 

endogenous intracellular response to a primary therapeutic, revealing a secondary target 
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for a combinatorial therapeutic regimen. By using this endogenously selected mixture, 

the cell’s native response mechanism against a primary therapeutic is inhibited, making 

the intracellular signaling network less effective at cell recovery and decreasing viability.  

From this directed mixtures approach, a primary therapeutic’s efficacy can be 

maintained, while potentially decreasing undesired side effects.  Additionally, by using 

this approach, previously unsuccessful therapeutics derived from toxins can be revisited.  

This ultimately speaks to the significance of pharmacodynamic mixtures that target 

kinase responses as an avenue of future research.    
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5. Future directions: Expanding concepts to human interaction 

 The work presented in this dissertation was meant to understand early cellular 

changes, whether that be alterations in cellular bioenergetics or pathway perturbations, 

and use the resulting mechanistic information to formulate new toxicity prediction 

models. With better prediction models that harness the mechanistic information from well 

planned, high-throughput in vitro experiments, many more individual chemicals and 

mixtures can be properly assessed for toxicity risk assessment. The success of the 

prediction models presented in this dissertation may greatly impact xenobiotic high-

throughput mixtures risk assessment in vitro, as well as pharmaceutical adverse drug 

reaction analyses. Additionally, this fundamental research may be expanded to human 

research interaction studies, where intercommunication and team dynamics may 

contribute to responses of individuals on a team (human mixtures). Preliminary research 

regarding this new application is presented in this chapter. 

 

5.1 Introduction 

 Perturbations of biological processes by chemical stress exposure can elicit early 

cellular changes, leading to an adaptive stress response for continued survival or adverse 

response leading to toxicity (Andersen, 2010). The term "stress" is not exclusive to 

exogenous xenobiotics, but also extends to external stimuli that initiate endogenous stress 

signaling biomolecules, such as cytokines, hormones, and catecholamines, to name a few 

(Boelsterli, 2007). In light of this classification, the same high-throughput approach for 

measuring xenobiotic chemical stress for individual compounds or chemical mixtures 
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may be applied to human interaction studies to understand the dynamic molecular 

response to social stress and teamwork. With this approach, teams can be constructed to 

reduce individual "stress," improve teamwork, and develop models incorporating human 

interaction stress responses for risk assessment.    

 In the presence of stress-inducing stimuli, there is bimodal communication between 

the brain and body, which is coordinated by the autonomic nervous system (ANS), endocrine 

and immune systems (McEwen, 2005; McEwen, 2007). This bimodal communication relies 

on dynamic chemical messengers released to promote adaptation (allostasis) in response to 

environmental, psychological, and physiological stressors (Chida and Hamer, 2008). The 

initiation of these messengers can be measured as early as seconds to minutes after an 

individual perceives a situation or stimuli as a threat (Sapolsky et al., 2000). The perception 

of threat and allostatic responses to external stimuli, whether they are real or imagined, can 

vary depending upon individual inherent (genetic makeup or development), behavioral 

(lifestyle choices and mechanisms for coping), and historical (previous trauma or major life 

events) factors (McEwen, 1998; Juster et al., 2010). These components drive individual 

resiliency or sensitivity to stress. Sensitivity to repeated acute stressors over time can lead to 

chronic stress and disease states. The Allostatic Load (AL) model has been used over the last 

two decades to better understand the physiology of stress, especially as it relates to effects of 

stress in the workplace and at home (McEwen and Stellar, 1993; Ganster and Rosen, 2013). 

The AL model has numerous potential applications for various fields of study to monitor 

individuals and teams that are under substantial amounts of stress, whether it be medical 

(doctors, nurses, paramedics), business and management (market traders, both small and 

large companies), athletic teams, or military units.       
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 Research investigating social relationships as they relate to physical health has 

been well documented (House et al., 1988; Umberson and Montez, 2010). Supportive 

relationships and interactions have been shown to improve immune, endocrine, and 

cardiovascular responses to stress and reduce overall AL (Cohen, 2004; Kiecolt-Glaser et 

al., 2005). With this in mind, allostatic responses to a perceived threat, competition, or 

risk taking may be different when a task is performed as a team rather than an individual.  

 In the presence of acute stress-inducing stimuli, the AL model proposes the 

following mechanism for primary processes for initial adaptation to stress. Primary 

processes of the AL model include psychological (fear or anxiety), physiological 

(cortisol, catecholamines, cytokines), and psychosomatic (fatigue or sleep disturbance) 

mediators (McEwen, 2003; Ganster and Rosen, 2013). Recent trends in AL research 

suggest moving away from single biomarkers to a more inclusive and comprehensive 

multiplex approach (Khan, 2012; Ganster and Rosen, 2013), casting a wide net on 

multiple physiological pathways (neuroendocrine, immune, metabolic, and 

cardiovascular) to elucidate an individual's acute and/or chronic stress response, similar 

to the recent NRC report suggestions (NRC, 2007).  

 To this end, we initiated a human research study to monitor individual and team 

physiological metrics and elucidate adaptive biomolecular responses relevant to 

teamwork stress and performance. In this study, we enrolled Air Force Reserve Officers’ 

Training Corps (ROTC) cadets to perform a mock hostage rescue mission alone and as 

part of a four person team. During the study, we measured an array of salivary 

biomarkers related to the various pathways of an individual's stress response for potential 

elucidation of the major and minor physiological mediators driving adaptive stress 
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responses while on a team. We hypothesized that individual salivary responses would 

increase as part of a team, due to increased demands and forced social interaction to 

complete a task. This work opens the door for a new avenue of mixtures research, where 

interaction with other individuals in combination with emotional, physical, or chemical 

exposure, can be considered as a component that may alter an individual’s response. 

 

5.2 Materials and Methods 

5.2.1 Subjects  

The present study enrolled 17 subjects (18-22 y of age) from West Virginia 

University’s Air Force Reserve Officers’ Training Corps (ROTC). Subjects were 

introduced to the study during a university ROTC course, where the background 

rationale, goals and risks were described in a power point presentation. Those in 

attendance who were interested in participating were asked to provide their email address 

to contact about availability for the study and to go over consent. A total of 17 subjects 

were originally enrolled in the study (16 male, 1 female). After the individual phase of 

the study, where subjects performed the tasks alone, one subject was dropped from the 

study due to sampling errors. A total of 16 subjects (15 male, 1 female) were used for the 

team portion of the study. Subjects were placed on teams using a random number 

generator and their schedule availability. This study received approval from the 

Institutional Review Board committee at West Virginia University and the United States 

Army Medical Research and Materiel Command (USAMRMC) Office of Research 

Protections. 
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5.2.2 Salivary biomarkers 

Saliva samples were collected immediately (less than 5 minutes) before the 

mission clock started. Samples were collected with saliva collection aids purchased from 

Salimetrics (State College, PA). All subjects had refrained from eating at least one hour 

prior to sample collection. Unstimulated saliva samples were collected using the passive 

drool method. Saliva samples were stored on ice (less than 3 h) before centrifugation (to 

remove saliva debris) and long-term storage at -80°C. Salivary cytokines were assayed 

using commercial kits. Salivary cytokines (GM-CSF, IFN-γ, IL-1β, IL-2, IL-4, IL-5, IL-

6, IL-8, IL-10 and TNF-α), were assayed using a commercial magnetic bead-based 

suspension array 10-plex cytokine kit (cat. no. LHC0001M) purchased from Life 

Technologies (Carlsbad, CA). Assay was performed in triplicate (25 µL/assay well) 

according to manufacturer's protocol and measured with a Bio-plex 200 platform (Bio-

Rad, Hercules, CA). All samples (individual and team) analyzed with cytokine kits were 

assayed over the course of a week.        

 

5.3 Results and Discussion 

The human body, especially endocrine, immune, and cardiovascular system, is 

exceedingly sensitive and responsive to social interactions (Heaphy and Dutton, 2008). 

These social interactions, whether they are with peers or those higher/lower in 

employee/team status, can have a substantial impact on workplace efficiency, 

performance, and, potentially, workplace-induced stress. As a key player in immune 

surveillance and response, the mouth is in constant contact with airborne pollutants that 
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are bacterial, viral, or chemical in nature (O'Connor et al., 2009).  To gain a better 

understanding of team dynamics and the impact of teamwork on an individual, we 

compared initial salivary cytokine responses when subjects performed our mock hostage 

rescue mission as an individual to initial salivary cytokine responses when they 

performed it as part of a team. As an individual, subjects' initial summed salivary 

cytokine responses (IL-1β, IL-10, IL-6, GM-CSF, IL-5, IFN-γ, TNF-α, IL-2, and IL-4) 

were lower than when performing the mission as part of a four person team (Figures 5.1-

2), with the exception of subject 4; thus agreeing with our hypothesis that the team 

scenario would induce higher initial salivary cytokine levels than when they arrived to 

perform the mission as an individual.  

 

Additionally, subjects' summed salivary cytokine levels were significantly 

different when comparing individual and team responses (P < 0.01, paired student's t-

test). However, in relation to performance, the time to complete the mock hostage rescue 

mission as an individual (Table 5.1) was not significantly correlated to any single or  

Figure 5.1 Initial salivary cytokine 

responses as an individual. Salivary 

samples were collected via passive drool 

method less than 5 minutes before the first 

mission started for the individual portion 

of the study. Samples were assayed using 

the multiplex bead-based ELISA. 

Horizontal line represents mean for the 4 

individuals on their eventual team 

(organized by team to easier 

visualization). Error bars represent S.E.M. 
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summed salivary cytokine response (Table 5.2). This relation was also true for initial 

salivary cytokine concentrations when performing the mission as part of a team.   

The mechanism driving salivary cytokine responses after social interaction 

exposure has yet to be elucidated. The whole-organism signaling response (intra- and 

inter- cellular, as well as disparate organ system communication) involves a complex 

spatiotemporal coordination of multiple components, whether they be proteins or 

biomolecules, to integrate the stressful stimuli and produce a response. Neural-immune 

(e.g, brain-cytokine) communication between the immune system and the central nervous 

system (CNS) involves the coordination of many key players, such as the vagus, 

glossopharyngeal, and trigeminal nerves, HPA axis, SNS, peripheral nervous system 

Figure 5.2 Initial salivary cytokine 

responses as a team. Salivary samples 

were collected via passive drool 

method less than 5 min before the first 

mission of the team portion of the 

study. Samples were assayed using the 

multiplex bead-based ELISA. 

Horizontal line represents mean for the 

4 individuals on a team (during the 

team portion of the study). Error bars 

represent S.E.M. 
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(PNS), and their corresponding downstream targets (tissues and organs) (Romeo et al., 

2001; Navarro et al., 2006; Thayer and Sternberg, 2010). The parasympathetic nervous 

system (both afferent and efferent activity) in particular has been shown to be a major 

player in neural-immune communication (Sternberg, 2006). It has been suggested that the 

vagus nerve is highly innervated with IL-1 receptors (Goehler et al., 1997), and the 

presence of afferent branches of vagus nerve (pharyngeal and laryngeal) in the mouth and 

pharynx, as well as the overall gustatory system (Berthoud, 2008), may act as sensory 

nerves for salivary IL-1β related to local immune responses or social and psychological 

stressors. In addition to the vagus nerve, immune to brain communication may be relayed 

by glossopharyngeal nerve afferents present in the posterior oral cavity (Watkins and 

Maier, 2005; Goehler, 2008). In a study relating the glossopharyngeal nerve and immune 

to brain communication, rats that underwent a bilateral glossopharyngeal nerve 

transection were exposed to either lipopolysaccharide (LPS) or IL-1β via injection into 

the soft palate (ISP) (Romeo et al., 2001). Sham rats exposed to LPS or IL-1β via ISP 

showed a febrile dose-response. However, rats with bilateral glossopharyngeal nerve 

transection had a reduced febrile response after LPS or IL-1β exposure, suggesting the 

critical role of the glossopharyngeal nerve for immune to brain communication from the 

oral cavity. The trigeminal nerve is also a key player in immune to brain communication. 

The trigeminal nerve provides afferent somatosensory innervation to the face and oral 

cavity in mammals (Byers and Dong, 1989). To investigate the relationship between 

acute oral inflammation and brain communication, Navarro and colleagues (Navarro et 

al., 2006) injected LPS into periodontal tissue and measured their febrile response. They 

found that local periodontal inflammation induced a febrile response and maxillary 
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trigeminal nerve transection attenuated this febrile response, suggesting the trigeminal 

nerve is involved in oral inflammation to brain communication.  

 

5.4 Conclusion 

Military teams experience work environments that are both dynamic and 

complex, under potentially life threatening circumstances, which indicates a high 

workload (Cannon-Bowers et al., 1992; Urban et al., 1995). Even though these military 

units undergo advanced physical and mental training in preparation for future missions, 

performance may decline when it is most critical (i.e., during a mission) (Sandal et al., 1998). 

Selection of a team that will withstand and adapt to any external stressors and work as a 

cohesive unit toward mission success is imperative; both metrics and methods for selecting 

these individuals are needed. In this study, we have shown that for a mock hostage rescue 

mission in an urban setting, summed initial salivary cytokine responses increase when the 

mission was performed with teammates as opposed to individually, suggesting a relationship 

between potential social stress and salivary cytokines. 
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