
Graduate Theses, Dissertations, and Problem Reports 

2005 

Measurements based performance analysis of Web services Measurements based performance analysis of Web services 

Venu Datla 
West Virginia University 

Follow this and additional works at: https://researchrepository.wvu.edu/etd 

Recommended Citation Recommended Citation 
Datla, Venu, "Measurements based performance analysis of Web services" (2005). Graduate Theses, 
Dissertations, and Problem Reports. 4144. 
https://researchrepository.wvu.edu/etd/4144 

This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research 
Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is 
permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain 
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license 
in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses, 
Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. 
For more information, please contact researchrepository@mail.wvu.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The Research Repository @ WVU (West Virginia University)

https://core.ac.uk/display/230482532?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F4144&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd/4144?utm_source=researchrepository.wvu.edu%2Fetd%2F4144&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu


 
 
 

 
Measurements based Performance Analysis of Web Services 

 
 

Venu Datla 
 
 

Thesis submitted to the 
College of Engineering and Mineral Resources 

at West Virginia University 
in partial fulfillment of the requirements for the degree of 

 
 
 

Master of Science 
in 

Computer Science 
 
 
 

Committee Members 
Dr. Katerina Goseva – Popstojanova, Ph.D., (Commitie Chair) 

Dr. V. Jagannathan, Ph.D. 
Dr. James D. Mooney, Ph.D. 

 
 

Lane Department of Computer Science and Electrical Engineering 
 
 
 
 

Morgantown, West Virginia 
2005 

 
 
 

 
 



ABSTRACT 

 

Measurements based Performance Analysis of Web Services 
 

Venu Datla 
 

    Web services are increasingly used to enable interoperability and flexible integration 
of software systems. In this thesis we focus on measurement-based performance analysis 
of an e-commerce application which uses Web services components to execute business 
operations. In our experiments we use a session-oriented workload generated by a tool 
developed accordingly to TPC-W specification. The empirical results are obtained for 
two different user profiles, Browsing and Ordering, under different workload intensities. 
In addition to variation in workloads we also study the applications performance when 
Web services are implemented using .NET and J2EE. Unlike the previous work which 
was focused on the overall server response time and throughput, we present Web 
interaction, software architecture, and hardware resource level analysis of the system 
performance. In particular, we propose a method for extracting component level response 
times from the application server logs and study the impact of Web services and other 
components on the server performance. The results show that the response times of Web 
services components increase significantly under higher workload intensities when 
compared to other components. From the hardware resource measurements it is obvious 
that the higher response times of Web services components are due to parsing XML 
messages and contention for database resources. The results of our study identify 
software components and hardware resources which are potential bottlenecks in the 
system and thus provide valuable information for capacity planning of web and e-
commerce applications. 

 

 

 

 

 

 

 

 

 

 



ACKNOWLEDGEMENT 

 
    I would like to express my gratitude to my advisor Dr. Katerina Goseva – 

Popstojanova for her support and guidance through my thesis. I am also grateful to her 

for introducing me to new and interesting technologies in software development. 

 

    I am also grateful to my other committee members, Dr. Jugannathan and Dr. Jim 

Mooney for their support. I would like to thank NASA IV & V Facility, Fairmont, West 

Virginia which provided financial support for my graduate studies through NASA Office 

of Safety and Mission Assurance (OSMA) Software Assurance Research Program 

(SARP). Finally I would like to thank my family and friends for their constant help and 

support. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



TABLE OF CONTENTS 
 
 
 

Chapter 1: Introduction............................................................... 1 

Chapter 2: Related Technologies ................................................ 3 

Chapter 3: Related Work and Our Contributions .................... 6 
3.1. Related work on Web services performance ....................................................... 6 

3.2. Related work on quality of Web based systems .................................................. 8 

3.3. Contributions ......................................................................................................... 9 

Chapter 4: Prototype description.............................................. 12 
4.1. Software architecture .......................................................................................... 12 

4.2. Implementation details ........................................................................................ 14 

4.3. Deployment details............................................................................................... 14 

Chapter 5: Workload Description............................................. 17 

Chapter 6: Measurement methodology .................................... 25 

Chapter 7: Experimental results ............................................... 27 

Chapter 8: Performance of .NET and J2EE Web services ..... 33 
8.1 Prototype Description........................................................................................... 33 

8.2 Experimental Results............................................................................................ 33 

Chapter 9: Conclusion................................................................ 35 

References.................................................................................... 37 

Appendix 1 .................................................................................. 42 

Appendix 2 .................................................................................. 45

 
 

 



 

 v

List of Figures 
 
Structure of a SOAP message         4 

UML deployment diagram of the travel agency application               15 

DTMC for the travel agency application      22 

Response time for Search Web interaction          27 

Response time for Shopping cart Web interaction      27 

Response time for Login Web interaction        28 

Response time for Home Web interaction        28 

Response time for Search Results Web interaction       29 

Response time for Credit Check Web interaction      29 

Response time for Process Order Web interaction       30 

CPU Utilization in Ordering and Browsing Profiles at Application Server 2   31 

Database Disk activity in Ordering and Browsing Profile at Server 3     31 

Performance of Flights Web service in J2EE and .NET     34 

Performance of Currency Web service in J2EE and .NET     34 

Performance of Credit Web service in J2EE and .NET     34 

 
 
List of Tables 
 
Comparison of Benchmarks and workload models     18 

Mix of Web interactions for Browsing and Ordering profiles    23 

 
 

 

 

 

 

 

 

 



 

 1

Chapter 1: Introduction 
 

    Modern Web applications are large-scale, distributed and depend on various inter-

enterprise and intra-enterprise services for execution. Since these services are developed 

on different platforms, programming languages and technologies their integration with 

the application becomes a complex task. The Web services architecture facilitates 

interoperability and flexible integration of systems developed on heterogeneous 

environments. The interface of a Web service is described in a machine processable 

format. Other software systems can communicate with the service using XML messages 

that are conveyed via Internet protocols such as HTTP, SMTP, and FTP. The interface 

details of a Web service can be published in a repository to allow other users and 

applications to discover the service. Individual services can be assembled to create 

composite value added Web services and applications. The technologies that enable Web 

services description, communication and discovery are WSDL, SOAP and UDDI. For 

more detailed descriptions the reader is referred to [8], [21]. 

 

    With service oriented architecture, interoperability and ease of integration, Web 

services have become a popular choice for developing Web applications. Enterprise 

application development technologies like .NET and J2EE have incorporated support for 

Web services in their specifications. Companies like Amazon, Google, and Microsoft 

have released Web service interfaces for some of their Internet services. 

 

    The Web services technology has a lot of potential for application-to-application 

communication since it promotes interoperability and extensibility among these 

applications. Of course, Quality of Service (QoS) provided by Web services will play a 

major role in their success and adoption rate. Although some emerging standards address 

methods for achieving message delivery guarantees (WS-Reliability [28]) and integrity 

and confidentiality (WS-Security [37]), the current state of practice in description and 

discovery of Web services does not include specification of QoS attributes such as 

performance, reliability, availability, and security. In other words, Web services 

technology has not yet addressed questions such as will the Web service meet the 



 

 2

performance requirement of 2 ms response time or will the Web service be available 

when needed? Until these questions are addressed, it is unrealistic to expect that 

businesses will discover Web services in a UDDI registry based on functional 

requirements and invoke that service without having any assurance that the QoS 

requirements will be met. 

 

    In this work we present a measurement-based study of performance of an e-commerce 

application that uses Web services to execute business operations. We focus on software 

architectural view of the e-commerce prototype and analyze the performance aspects of 

Web services components under controlled workload conditions.  We also measure the 

impact of the application execution on the hardware resources of the system. As there are 

many Web services development platforms available, the natural question arises on 

which software performs better than the other. In our research we compared the 

performance of Web services implemented and deployed in different application servers. 

Particularly, we compare Web services performance at hardware and software 

architecture level in J2EE and .NET platforms. 

 

    The thesis is organized as follows. In chapter 2 we describe in detail technologies and 

standards related to Web services. Related work on performance evaluation of Web 

services and our contributions are discussed in chapter 3. The description of the 

prototype, including the software architecture, implementation, and deployment details, is 

given in chapter 4. The workload used in our experiments and the measurement 

methodology are described in chapters 5 and 6, respectively. Chapter 7 presents the 

experimental results. In Chapter 8 we compared the performance of J2EE and .NET Web 

services. Finally, the concluding remarks are given in chapter 9. 

 

 

 

 

 

 



 

 3

 

Chapter 2: Related Technologies 
 

Extensible Markup Language (XML) is the basis for most of the Web service languages. 

It is a standard for representing and exchanging data. XML documents are written in 

plain text resulting in portability and flexibility. In XML format data is represented in 

hierarchical constructs called elements. To define the structure of an XML document the 

syntax of the document is represented using XML Schema language. An XML parser is 

used to validate an XML document against the XML schema. Commercial and open 

source implementations of XML parsers are available in C, C++, Java and several other 

programming languages. XML parsers play an important role in Web services and their 

performance. Parsing the XML content of messages send to/from a Web service affects 

the service and response times of a service. Another factor affecting the performance of a 

service is the size of message. 

 

Web Service Description Language (WSDL) is an XML grammar for specifying the 

properties of a Web service such as what it does, where it is located, and how it is 

invoked. It describes the messages exchanged by the service, operations supported by the 

service, protocol bindings and endpoints of the service, etc. The language uses XML 

Schemas to define platform independent data types used in the messages [6]. XML 

namespaces are used to unambiguously describe a data type or message. WSDL also 

defines the type of SOAP communication used for the service (RPC style or Document 

Style) [24]. Currently, WSDL does not specify the quality parameters of a service. New 

standards and frameworks are being developed for specification of QoS in the service 

definition. Generally WSDL descriptions are published in a service registry for automatic 

discovery. 

 

Simple Object Access Protocol (SOAP) is a standard for sending messages and making 

remote procedural calls over the Internet. It is a light weight XML based protocol and is 

independent of the programming language, object model, operating system, and platform. 

It uses HTTP as the transport protocol and XML for data encoding. However, other 



 

 4

transport protocols, such as FTP, SMPT, or even raw TCP/IP sockets, may also be used. 

SOAP defines two types of messages, request and response, to allow service requesters to 

request a remote procedure and service providers to respond to such requests. 

 

A SOAP message is contained in a SOAP Envelope. A SOAP envelope contains a header 

and a body. The header element is optional. It is used to convey additional information 

regarding data such as transactions, billing, formats etc. The SOAP Body is the actual 

place which contains the XML data to be communicated. A SOAP message must contain 

a body element .The structure of a SOAP message is shown in Figure 1. 

 

Figure 1: Structure of a SOAP message 

Errors can also be represented in SOAP messages using the SOAP Fault element. This 

element can be used to convey exceptions that occur when servicing a request. SOAP 

messages use different encoding schemes to structure data. An encoding style specifies a 

set of rules for serializing data types in the message. Two styles of soap encoding are 

Document and RPC. When using RPC the structure of SOAP message must conform to 

the method definition. When using Document style of encoding the serialization rules are 

specified in the form of an XML schema. 

 

Universal Discovery, Description, and Integration (UDDI) provides a standard way for 

businesses to publish and discover Web services. Unlike WSDL and SOAP which are 

standards from W3C, the standardization process of UDDI specification is taken up by 

    SOAP Envelope

SOAP Header           
(optional) 

SOAP Body 



 

 5

OASIS [27]. The UDDI specification consists of an XML schema for UDDI data 

structures and description of UDDI APIs specifications. A UDDI stores the service 

definitions of a business service in XML format. It stores the following information of a 

service in the business registry [29]:  

 

• Business Entity: This contains the information of a business organization that 

publishes the service and is similar to white pages. 

• Business Service: This information contains categories of services representing 

Yellow pages. 

• Binding Template: This is similar to green pages. Information regarding the technical 

details of a service is represented using a template. 

• tModels: The tModel is used to specify the description of service interfaces. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 6

 

Chapter 3: Related Work and Our Contributions 
 

    Software performance can be analyzed using different approaches such as 

measurements, analytical modeling and simulation. In measurements approach 

performance metrics are collected by exercising the actual system with a real or synthetic 

workload. This kind of analysis is not feasible in early stages of system development. In 

such cases an alternative method for evaluating performance is to build analytical 

performance models. There are several analytical approaches to building performance 

models of the system like queuing networks, layered queuing networks, Petri nets etc. 

The analytical models are solved to obtain performance characteristics of the system. 

Analytical modeling is a cost-effective method for performance evaluation. One 

disadvantage of analytical models is that for large scale systems the model might be 

complex to build and solve. A third alternative approach for software performance 

analysis is to generate a simulation model which mimics the behavior of the system. The 

accuracy of the simulation model depends on how closely it represents the original 

system. 

 

3.1. Related work on Web services performance 

 

   Performance is an important quality aspect of Web services because of their distributed 

nature. Surprisingly, few researchers have focused on performance evaluation of Web 

services in the past. The throughput and overall system response time of two variants of 

J2EE Pet store application [34], one implemented using Java Messaging Service (JMS) 

and the other using Web services, were studied in [11]. The application server used in the 

experiments is Web Logic Server 7.0 and the database server is Oracle 9i. In this work 

the workload was generated using the Siege tool [26]. The performance data was 

collected by logging the timestamps that indicate invocation times, request completion 

times. It was shown that the JMS version has better performance than the Web services 

version of the application. The Web services implementation also has higher garbage 

collection activity. 



 

 7

 

   A similar study was presented in [20]. The authors empirically compared two versions 

of an electronic book inventory system implemented using Active Server Pages (ASP) 

and Web services. The Web Server used is Internet Information Server version 5.0. The 

workload generator used in this study was S-client [2]. Performance of the system is 

analyzed using load generated from two variants of S-client. In first case the load consists 

of a fixed number of clients. In the second case the Web server was overloaded with 

requests. For each version of workload the throughput and response times for each 

implementation were compared. The results showed that the ASP implementation has 

higher throughput and lower response time than the Web services implementation. 

 

    Analytical performance modeling techniques have been used to identify performance 

problems in Web applications in [4] and [13]. Layered Queuing Network (LQN) model 

was used in [4] to calculate response times of a Web service based clinical decision 

support system. The LQN model was built based on the software architecture. The model 

was not validated with actual measurements. 

 

 Queuing network model for performance evaluation of an e-commerce application was 

proposed in [13]. The application chosen for study is the one specified in 

SPECAppServer2002 [2] benchmark. It models an e-business system that has the 

following functionalities: manufacturing, supply chain management, ordering and 

inventory management. Performance of this system was measured under three varying 

workload conditions: low, moderate and heavy. The estimates of the response times, 

throughput, and utilization were compared with actual measurements. Although this 

application was not implemented using Web services, the paper describes performance 

evaluation of a large scale J2EE application which is related to our work.     Another 

related work on analytical modeling of QoS attributes (i.e., response time, reliability, and 

cost) of workflows and Web service processes was based on reduction rules [3]. 

 

    A simulation technique for analyzing performance of composite Web services was 

proposed in [5]. In this paper the authors considered a scenario of an online book store 



 

 8

and used the simulation tool JSIM to build the simulation model of this scenario. The 

service time, communication latency, and waiting time for each Web service in the 

scenario were measured by load testing. The results from the simulation model were 

found to be close to the results obtained from the actual service execution. 

 

 With widespread adoption of Web services enterprise application development 

frameworks like J2EE and .NET have incorporated support for Web services 

technologies in their architectures. In [16] the authors discuss how results of performance 

benchmarking applications like Java pet store [34], which favor J2EE technology, might 

be flawed. The paper discusses in detail about J2EE and .NET platform’s support for 

implementing Web services. 

 

3.2. Related work on quality of Web based systems 

Quality of Web based systems has been studied widely in many research works. In this 

section we explain research studies which address quality of service issues in Web 

applications. 

  

Reliability and Availability of a large scale J2EE Web application was analyzed in [7]. 

The application used is Pet-store [34], a sample J2EE application developed by Sun 

Microsystems. The workload generator used in this study is a variant of TPC-W[35]. This 

paper describes a method for determining faulty components of the application. In this 

method a client request is traced as it passes through the system. Data mining techniques 

are used to identify failure paths from the component traces.  

 

In [10] the authors study performance of an ecommerce Stockbrokerage application 

implemented using Enterprise Java Beans technology. Performance of two versions of 

this application was studied by deploying them on five different application servers: 

Borland Enterprise Server, Interstage Application Server, SilverStream Application 

Server, WebLogic Server, WebSphere Application Server, and JBOSS. The results show 

the application exhibits significantly different performance characteristics in each 



 

 9

deployment environment. Our work is different from this one as we use SOAP based 

Web services in addition to EJB’s. 

 

Performance and scalability of J2EE based websites was measured in [5]. The prototype 

implemented here is an online auction website similar to ebay. The application was 

implemented in four different versions. The versions differ in the EJB type used for 

implementing the business logic layer. The auction website was tested by generating a 

workload similar to the one specified in TPC-W benchmark [35]. For each version the 

performance measurements are made by deploying the application on different 

application servers. The application servers considered are JBOSS, JOnAS. The 

throughput of the system was measured in each case. The results show that JOnAS server 

performs better that JBOSS. 

 

3.3. Contributions 

 

    In this thesis we focus on measurement-based study of Web services performance. For 

this purpose we developed a three tier e-commerce prototype of an online travel agency.    

Our intention is not to test stand alone Web services, but to examine how they perform 

when integrated into applications.     The functionalities of our e-commerce system that 

require interaction with other, most likely heterogeneous, systems (e.g., planning 

itineraries, currency conversion, and validation of credit card information) are 

implemented as Web services.  

 

  Since the traffic in e-commerce environments is based on sessions, request-based 

workload generators used in [6], [20] are not suitable for our application. Therefore, we 

have developed a session-based workload generation tool based on TPC-W benchmark 

specification [35]. TPC-W is oriented toward business-to-consumer e-commerce 

interactions and tests many important elements of most e-commerce applications [15]. It 

should be emphasized that implementing the TPC-W benchmark is a complex task that 

involves managing a wide spectrum of software and communication technologies [9]. 

Our implementation of the workload generator adapts the workload designed for an 



 

 10

online bookstore given in TPC-W to suit the requirements of our application (i.e., online 

travel agency). 

 

    Unlike the previous work [4], [11], and [20] which analyzed the overall throughput and 

response times of Web service based applications, we measure the performance at 

architectural level, that is, we study the impact of Web services and other components on 

the performance of the system. For this purpose we have instrumented the application to 

record the component execution events in the Application server logs and developed 

scripts in AWK [25] scripting language to automate the task of extracting response times 

for each component from the Application server logs. To the best of our knowledge, the 

method for data extraction from Application server logs has not been used earlier for 

studying Web services performance. In addition to the architectural level measurements, 

we study the impact of the application on the hardware resources of the deployment 

environment.  

 

 Web services implementation and deployment is supported by several application 

development platforms. In this thesis we analyze and compare the performance of Web 

services implemented using .NET and J2EE. Although performance of applications 

developed in different platform architectures is compared in other works [10], [5] they 

did not compare performance of Web services in .NET and J2EE. 

 

    In our experiments we use two different workload profiles, Ordering and Browsing, 

and compare the corresponding components response times, as well as hardware resource 

usage for different workload intensities. It should be noted that although the overall 

throughput and system response time were measured under increasing load in [11] and 

[20], different workload profiles were not considered. The empirical results presented in 

this thesis contribute toward quantifying the overhead introduced by Web services and 

help identifying software components and hardware resources which are bottlenecks in 

the system. In particular, we show that Web services components have significantly 

higher response time under Ordering profile. This information is valuable for system 

designers due to the fact that customers in Ordering profile tend to have more ordering 



 

 11

activity and generate revenue. From this perspective, our work is complementary to the 

work presented in [14] which was focused on priority-based resource management 

policies aimed at increasing the business-oriented metrics such as revenue per second. 

The results of our research work are presented in [39]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 12

 

 

Chapter 4: Prototype description 
    In this chapter we describe the software architecture, implementation and deployment 

details of our prototype e-commerce application - an online travel agency which offers 

flight booking services to its customers. Specifically, the application provides online 

customers with facilities to search for flights, choose flights that match their preferences, 

and purchase tickets securely. 

 

4.1. Software architecture 

 

    Our prototype is designed in a three-tier architecture which is suitable for development 

of e-commerce systems because they are distributed and typically span several systems 

such as Web servers, application servers, and database servers. Based on the logical 

functionality, in three-tier architecture, the application is organized into user interface 

layer, business logic layer, and data layer. The user interface layer of our application 

consists of a set of Web pages: Home page, Search page, Search Results page, 

Shopping Cart page, Customer Login page, Check Credit page, and Process Order 

page. The last three Web pages are secured using HTTPS protocol since they transmit 

sensitive information such as credit card information and passwords. 

 

    The business logic layer contains components that implement the core functions of the 

travel agency application. The main components in this layer are: 

 

Flights-WS  is a Web service that takes flight details like start date, end date, origin, 

destination and number of passengers from the customer and returns a SOAP message 

containing a list of matching flights. This Web service is hosted locally. The first version 

of our prototype integrated the publicly available Web service [22] which has the same 

functionality. However, this service had poor availability. Furthermore, when it was 

available the service responded with server error whenever more than five simultaneous 



 

 13

search requests were generated. Due to these reasons we decided to implement the 

Flights-WS and host it locally. 

 

Credit-WS is a Web service which validates customer's credit card information. This 

Web service is hosted locally. 

 

Currency-WS is a locally hosted Web service which calculates the exchange rates 

between two currencies. The WSDL of a similar but publicly hosted Web service is 

located at [23]. 

 

Customer-EJB component stores the customer information such as name and ID for the 

duration of the customer session. 

 

Login-EJB component performs the login function by validating customer's username 

and password. 

 

Order-EJB component is responsible for maintaining the persistence of customer orders. 

Persistence is an important aspect since the order information should be preserved even 

after the customer logs out of the system. 

 

    It should be noted that components that require interoperability in order to interact with 

other (possibly heterogeneous) systems are implemented as Web services Flights-WS, 

Credit-WS, Currency-WS. 

 

    The data layer of our application consists of a backend relational database management 

system that stores persistent information in the form of tables. The components of the 

business logic layer, Flights-WS, Credit-WS, Order-EJB, Customer-EJB, and Login-

EJB manipulate the data in the corresponding database tables to process requests from 

the user interface layer. 

 

 



 

 14

4.2. Implementation details 

 

    Our online travel agency application is implemented using J2EE [32], a widely used 

standard which facilitates development of scalable, robust, multi-tiered enterprise 

systems. The user interface layer is written in Java Server Pages (JSP) which is a J2EE 

technology for creating dynamic Web content. We use Tomcat v5.0 as a Web server. 

 

    The business logic layer components are implemented using Web services and 

Enterprise Java Beans (EJB). Starting from version 1.4, J2EE has added support for Web 

services in the form of JAX-RPC API which we use to create the Web service 

components Credit-WS, Flights-WS, and Currency-WS. The other business logic layer 

components, Order-EJB, Customer-EJB, and Login-EJB, are implemented as EJB 

which is a J2EE standard for developing server side components. 

 

    Finally, we use Oracle 9i Release 2 as a database server. 

 

4.3. Deployment details 

 

    The UML deployment diagram of our prototype application is shown in Figure 2. The 

Web server and EJB components run on the same machine with a 3 GHz Pentium 4 

processor and 1 GB RAM. The application server which hosts the Web services 

components Flights-WS, Currency-WS, and Credit-WS runs on another system with a 

3GHz Pentium 4 processor and 1GB RAM. The database server runs on a different 

machine with the same configuration and 120 GB disk drive. We use a 1.2 GHz Pentium 

M processor with 512 MB RAM system to run the workload generator. All these 

machines run Windows 2000 operating system and are connected through Ethernet LAN 

with 100 Mbps speed. 

 

    We decided to develop all Web services and host them locally due to two main 

reasons. First, as explained in Section 5.1, during our initial experiments we found that 

some of the public Web services have low availability and reliability. This does not seem 



 

 15

to be an isolated incident. In [19] it was reported that in 2001 48 % of the production 

UDDI registry had links that were unusable. A more recent study [12] reported similar 

findings - during six months period (August 2003 - January 2004) 67 % of the public 

Web services registered in the UDDI registry were invalid (i.e., their WSDL files were 

either inaccessible or not registered. This state of the practice prevents integration of 

public Web services in any application which relies on them to achieve high 

dependability. 

 

Figure 2: UML deployment diagram of the travel agency application 



 

 16

 

    Second, by hosting all software components locally we avoid accounting for network 

latency which is beyond our control. This, however, does not limit the scope of our 

research since our goal is to study the contribution of software components to the 

response time of e-commerce interactions at the server-side rather than to study end-to-

end response time as perceived by the user. Even more, hosting all components locally 

supports experiments with higher workload which may not be possible with publicly 

hosted Web services components. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 17

Chapter 5: Workload Description 
    A key issue in performance evaluation of software systems is the workload 

characterization which should closely represent the behavior of real users. The design of 

synthetic workload is affected by several factors like request rate, request size, session 

length, think time, open or closed loop model and so on. An excellent survey presented in 

[1] analyzes in details popular Web workload benchmarking tools such as httperf [17], 

SPECweb99 [30], Surge [18], S-Client [2], TPC-W [35], and Web Stone[38]. Table 1 

compares the characteristics Web benchmarks and workload models. Next we explain in 

detail benchmarking tools and specifications for Web workload. 

 

• Httperf [17] is an open loop Web benchmarking tool developed by researchers at HP 

labs. The characteristic feature of open loop models is that clients make requests 

independent of the server responses. This model is more appropriate for performance 

evaluation of Websites as it closely follows real Web traffic patterns. The tool 

generates either a request based or session based workload. It is capable of generating 

workloads based on traces from Web server logs. Httperf supports HTTP 1.0 and 

HTTP 1.1 protocols. Cookies and basic SSL requests are also handled by the tool. 

 

• SURGE [18] generates Web workloads using various analytical distributions. It is 

capable of generating self similar workload and mainly useful for dealing with static 

requests. The main limitation of this benchmark is that it does not account for 

dynamic requests. This benchmark follows a closed loop model. In a closed loop 

model clients generate requests only after receiving response from previous requests. 

The workload also addresses the burstiness feature exhibited by real Web traffic. The 

SURGE benchmark supports both HTTP 1.0 and HTTP 1.1 protocols. 

 

• S-Clients [2] workload is designed to measure Web server capacity and performance. 

The workload is particularly useful for stress testing a Web server system. It does not 

exercise other tiers of the Web system like backend databases. Hence the workload 

generated by S-Clients is not realistic. Also the tool does not support HTTP 1.1 

protocol.  



 

 18

 

• WebStone [30] workload includes facilities for generation of static and dynamic 

services. The benchmark is request based and it is not useful for session-oriented 

workloads. The only protocol supported by Webstone is HTTP 1.0. It does not handle 

encryption and authentication. The workload follows a closed loop model. 

 

• SPECweb99 [38] is a benchmark from SPEC organization for evaluating the 

performance of Web servers. It is a successor of an earlier Web benchmark 

SPECweb96. It can generate both static and dynamic Web requests and supports 

secure request generation using SSL. The workload generated by this tool has fixed 

number of clients per experiment. Hence it represents a closed loop model. The tool 

supports generation of workload to test commercial Web server features like 

advertising and user registration. 

 

• TPC-W [35] is a benchmark aimed at evaluating the performance of websites which 

communicate with backend database for serving requests. The workload generated by 

TPC-W is closed loop and is session-oriented. The workload intensity in TPC-W 

depends on the size of database tables. Since TPC-W is only a specification 

benchmark developers can customize their implementations according to their 

program environments. TPC-W introduces cost based metrics which can be used for 

comparing performance of different Web server systems. 

 

 SPECweb99 

[30] 

WebStone[38] SURGE[18] Httperf[17] TPC-W[35] 

Organization Standard 

Performance 

Evaluation 

Corporation 

SGI Bardford & 

Crovella. 

Boston 

University, CS 

Dept 

HP Transaction 

Processing 

Performance 

Council 



 

 19

 SPECweb99 

[30] 

WebStone[38] SURGE[18] Httperf[17] TPC-W[35] 

Type of 

request 

supported 

Static/Dynamic Static Static Static/Dynamic Static/Dynamic 

Metrics 

measured 

(Primary 

Metric)Maximum 

number of 

simultaneous 

connections 

under specific 

error rate and 

throughput 

requirements 

(Primary 

Metric)Maximum 

server throughput 

and average 

response time 

Session-

oriented 

metrics 

Session and 

request oriented 

statistics 

(Primary Metric) 

WIPS- web 

interactions per 

second 

$/WIPS- cost 

metric 

Protocols 

supported 

HTTP/1.0 

HTTP/1.1 

HTTP/1.0 HTTP/1.0 

HTTP/1.1 

HTTP/1.0 

HTTP/1.1 

HTTP/1.0 

HTTP/1.1 

Secure 

(SSL) 

Connections 

Yes Not officially 

supported 

.Patched version 

has support for 

SSL 

No Yes Yes 

Wokload 

Generation 

mechanism 

POSIX threads or 

processes 

Preconfigured 

number of user 

processes acting 

as clients 

User 

Equivalent 

represented by 

a thread 

A process 

implementing 

an event-driven 

approach with 

non-blocking 

I/O 

As threads 

knows as 

'emulated 

browsers' making  

requests to SUT 



 

 20

 SPECweb99 

[30] 

WebStone[38] SURGE[18] Httperf[17] TPC-W[35] 

Goal of 

benchmark 

Comparing Web 

server 

performance 

Measure 

performance of 

Web servers 

Generating 

representative 

workloads 

based on 

analytical 

models of Web 

use. To show 

self similarity 

A robust tool 

for measuring 

Web server 

performance 

(ability to 

generate and 

sustain server 

overload) 

Evaluating 

performance of 

e-commerce web 

sites. 

Session 

oriented 

workload 

No No Yes Yes Yes 

Scalability Has certain 

degree of 

scalability but 

cannot sustain 

when the 

distributed 

system is under 

stress 

Not able to 

sustain high loads

Not scalable. 

Clients have to 

be distributed 

on different 

client nodes for 

scalability 

Must be run of 

distinct nodes 

to achieve 

scalability 

Depends on 

database table 

size and scaling 

factors in TPC-

W specification 

Table 1: Comparison of Benchmarks and workload models 

 

    In this work we analyze the performance of e-commerce applications using 

synthetically generated workload which allows us to run controlled experiments. For our 

application the workload should emulate the activity of online customers interacting with 

the e-commerce Web site through a browser. The customer behavior under these 

conditions is session oriented. Benchmarking tools such as SPECweb99 and S-Client are 

request-based and do not capture the concept of customer sessions. We decided to use the 

TPC-W [35], a benchmark from Transaction Processing Performance Council (TPC), 

which specifies a session-based workload for simulating customer activities for an online 

bookstore application. TPC-W is a well designed benchmark oriented toward business-to-



 

 21

customer e-commerce applications which was studied and evaluated in [9], [15]. Its main 

features include generation of multiple online browser sessions, dynamic page generation 

with database access and update, authentication through secure socket layer (SSL) or 

transport layer security (TSL), and enforcement of ACID properties on database 

transactions. Another advantage of TCP-W benchmark is the capability of generating 

different Web interaction mixes which consists of different percentages of browse and 

ordering operations. 

 

    It is important to emphasize that TPC-W benchmark is a specification, not a tool that 

can readily be used for workload generation.     As a part of this research effort, we have 

developed a workload generation tool accordingly to TPC-W specification. This is a 

complex task that requires knowledge of wide spectrum of software and communication 

technologies [9]. It should be noted that our implementation adapts the workload 

designed originally in TPC-W specification for an online bookstore to suit the 

requirements of an online travel agency. 

 

    Workload characterization in TPC-W is based on the customer's view of the system 

and it can be described with a Discrete Time Markov Chain (DTMC) which characterizes 

the customers request patterns. DTMC consists of a set of user states; each request is 

represented as a transition from one state to another. Accordingly to the Markov property, 

the transition to the next state is a function of the current state and the transition 

probability. The probabilities associated with transitions are determined from the 

workload profiles (i.e., Web interaction mixes).  Note that in [15] the DTMC model is 

called a Customer Behavior Model Graph (CBMG). 

 

    The DTMC which defines the user sessions for our application is show in Figure 3. 

Each customer session starts in the Home state and navigates through the states of the 

DTMC. For each user session the emulated browser (client) in TPC-W generates a 

random number from a negative exponential distribution which represents the User 

Session Minimum Duration (USMD). The user session ends when the USMD has elapsed 

and the next Web interaction is Home Web interaction. Because there will be on average 



 

 22

a non-zero time between the USMD elapsing and the next selection of Home Web 

interaction, the actual average duration of user sessions will be somewhat greater than 

USMD. The user session does not end until the next Home Web interaction in order to 

maintain the required mix of Web interactions (i.e., workload profile). A new customer 

session is started as soon as the workload generator terminates the current session. The 

clients in TPC-W workload follow the closed loop model. In this model the workload 

consists of a fixed number of clients which generate new request only after the response 

on the previously submitted request is received from the server. 

 

 

Figure 3: DTMC for the travel agency application 

 
    The TPC-W workload is made up of a set of Web interactions which can be classified 

as either Browse or Order depending on whether they involve browsing and searching 

on the site or whether they play an explicit role in the ordering process. In our case the 

browsing category consists of Home, Search, and Search Results interactions, while 

the ordering category consists of Shopping Cart, Customer Login, Check Credit, and 

Process Order interactions. In this thesis we run experiments with two different 

workload profiles. The Browsing profile describes the behavior of customers who spend 

most of their time browsing and searching and rarely place orders for tickets. In this 

profile 79% of requests are for interactions in browsing group and only 21% are for 



 

 23

interactions in the ordering group. In the Ordering profile customers tend to have more 

ordering activity, that is, 50% of requests are for browsing interactions and 50% for 

ordering interactions. The detailed mixes of Web interactions for these two profiles are 

shown in Table 2. 

 Browsing profile (79-21) Ordering profile (50-50) 

Browse 71% 50% 

     Home 21.0% 17.0% 

     Search 30.0% 17.5% 

     Search results 28.0% 15.5% 

Order 21% 50% 

     Shopping cart 12.0% 14.0% 

     Customer login   3.2% 13.0% 

     Check credit   2.9% 11.5% 

     Process order   2.9% 11.5% 

Table 2: Mix of Web interactions for Browsing and Ordering profiles 

 

    The workload generated accordingly to TPC-W specification consists of three phases: 

ramp-up interval, steady-state interval, and ramp-down interval [35]. During the ramp-up 

interval the system initializes its components and reaches a steady-state. The data must be 

collected over a measurement interval during which the throughput level is in a steady-

state condition that represents the true sustainable performance of the application. In our 

experiments the duration of the ramp-up, steady-state, and ramp-down intervals are 5, 30, 

and 1 minute, respectively. 

 

    Another important requirement imposed by the TPC-W specification is that the size of 

the database tables must be scaled accordingly to the number of clients. For both 

Ordering and Browsing profiles we run experiments with 50, 100, 150, and 200 clients. 

Therefore, following the TPC-W specification [30], we populate the database with a 

customer table of size 576,000 rows. TPC-W specification also requires average think 

time and average user session duration to be reported, which in our case are 7 seconds 

and 11 minutes, respectively. Finally, TPC-W imposes restrictions on the response times 



 

 24

for each type of Web interaction shown in Figure 3 and requires reporting of the 90th 

percentile response time during the steady-state measurement interval. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 25

Chapter 6: Measurement methodology 
    For each Web interaction the TPC-W benchmark measures at the client-side (i.e., 

Emulated Browser) the Web Interaction Response Time (WIRT) which is defined as the 

difference between the time measured after the last byte of the last HTTP response that 

completes the Web interaction is received by the Emulated Browser (EB) from the 

System Under Test (SUT) and the time measured before the first byte of the first HTTP 

request of the Web interaction is sent by the EB to the SUT. 

 

    Our goal is to measure the response time at software architectural level which will 

allow us to study how each software component contributes towards server--side 

response time for each Web interaction. The Web interactions presented in Figure 3 

involve executing from one to three different software components (see Section 5.1) as 

listed below.  

 

• Home interaction: Home page and Customer-EJB 

• Search interaction: Search page 

• Search Results interaction: Search Results page and Flights-WS 

• Shopping Cart interaction: Shopping Cart page 

• Customer Login interaction: Customer Login page 

• Check Credit interaction: Check Credit page, Login-EJB, and Currency-WS 

• Process Order interaction: Process Order page, Credit-WS, and Order-EJB 

 

    We extract information about the response times of components participating in each 

Web interaction from the Application server logs. J2EE Application servers record 

application events in ASCII log files using the java.util.logging API [33]. An application 

event may be a request for Web page, execution of an EJB method, a request for a Web 

service, error, exception and so on. The format of the records in the application server 

logs is shown in Figure 4. It contains the time stamp of the event, log level that identifies 

priority of the message, name of the application server, component that logs this message, 

key value pairs containing thread ID, message ID, and the message.  



 

 26

 

Figure 4: Format of a record from the Application server log 

 

    In default server settings only critical events such as errors and exceptions are logged. 

We modified the application server settings to enable the Web container and EJB 

container to log time stamps of all relevant events in our application. Then, the 

application components were instrumented by adding statements which call the 

java.util.logging API. This API persists components response times in the application 

server logs. Since during our experiments many events were recorded in the application 

server logs, their size was in range of hundreds of Mega bytes. Of course, extracting the 

response times for each execution of each component cannot be done manually. 

Therefore, we wrote scripts in AWK scripting language [25] which parse the application 

server logs and automatically extract component level response times. 

 

    In addition to software architecture level measurements, we also study the hardware 

resource usage of Web services based e-commerce application. For hardware resource 

level measurements we use Windows 2000 performance monitoring tool. In particular, 

we use the Performance Logs and Alerts utility to create counter logs which record data 

about hardware usage and activity of system services. Since the components of our e-

commerce application are deployed across several machines (see Figure 2), on each 

machine we record     the percentage of non-idle processor time spent in user mode 

(%User Time) and the rate of read and write operations on the disk (Disk Transfers/sec).  

 

    In this thesis we measure and compare the performance of Web services implemented 

using .NET and J2EE. For these experiments we use the same methodology and 

workload as described above. But in this case we run the experiments by deploying .NET 

implementation of the Web services on server2 in Figure 2. 

 



 

 27

Chapter 7: Experimental results 
    First, we analyze the response times of the Search, Shopping Cart, and Customer 

Login interactions which serve only static html content. Since response times of these 

interactions are similar, we discuss only the results of the Search interaction. As it can 

be seen from Figure 5, which shows the 90th percentile response times for Search 

interaction, the response times for Ordering and Browsing profiles are approximately 

the same for 50, 100, 150 customers. For 200 customers the response time in Ordering 

profile is higher than in Browsing profile. This is due to the fact that the CPU utilization 

of the machine hosting the Web server has slightly higher utilization for Ordering than 

for Browsing profile. The response times of Shopping Cart and Customer interactions as 

shown in Figures 6 and 7 show similar behavior. 

0

20

40

60

80

100

R
es

po
ns

e 
Ti

m
e 

(m
s)

50 100 150 200 50 100 150 200

Ordering Profile Brow sing Profile

No. of Customers

Search Page
 

Figure 5: Response time for Search Web interaction 

 

0

20

40

60

80

100

R
es

po
ns

e 
Ti

m
e 

(m
s)

50 100 150 200 50 100 150 200

Ordering Profile Brow sing Profile

No. of Customers 

ShoppingCart Page
 

Figure 6: Response time for Shopping Cart interaction 



 

 28

 

0

20

40

60

80

100

R
es

po
ns

e 
Ti

m
e 

(m
s)

50 100 150 200 50 100 150 200

Ordering Profile Brow sing Profile

No. of Customers

Login Page
 

Figure 7: Response times for Login interaction 

 
    Next, we discuss the performance of the Home interaction which involves processing 

of Customer-EJB component and the html content of the Home page. The contributions 

of each component to the overall response times of Home interactions for both profiles 

and different number of customers are shown in Figure 8. It is obvious that the response 

times increase almost linearly with the increase of the number of clients for both profiles. 

The response times for Ordering profile, however, are approximately 10 % higher than 

for Browsing profile. It should be noted that in our implementation, the Customer-EJB 

component retrieves customer information from the database only during first visit to the 

Home page. In all subsequent requests, the Customer-EJB does not make database calls; 

hence the calls to this component are relatively inexpensive. 

0
20
40
60
80

100
120
140

R
es

po
ns

e 
Ti

m
e 

(m
s)

50 100 150 200 50 100 150 200

Ordering Profile Brow sing Profile

No. of Customers

Customer-EJB Home Page
 

Figure 8: Response times for Home Web interaction 



 

 29

    Finally, we consider the remaining three interactions, Search Results, Credit Check, 

and Process Order, which involve calls to Web services components. Figures 9, 10 and 

11 show the distribution of the response times of these interactions across different 

components used to process the corresponding interaction, for the two workload profiles 

under different workload intensities. Several common observations can be drawn from 

Figures 9, 10 and 11. 

0
100
200
300
400
500
600
700
800
900

R
es

po
ns

e 
Ti

m
e 

(m
s)

50 100 150 200 50 100 150 200

Ordering Profile Brow sing Profile

No. of Customers

Flights -WS Search Results Page
 

Figure 9: Response times for Search Results Web interaction 

0
100
200
300
400
500
600
700

R
es

po
ns

e 
Ti

m
e 

(m
s)

50 100 150 200 50 100 150 200

Ordering Profile Brow sing Profile

No. of Customers

Currency-WS Login-EJB Check credit page
 

Figure 10: Response times for Credit Check Web interaction 

 

    First, for each interaction the overall interaction response times, as well as the 

corresponding components’ response times are approximately the same for the both 

profiles when the workload consists of 50, 100 and 150 clients. For each profile, the 

response time in case of 200 clients is significantly higher than the response time for 

150clients. This increase is mainly due to the increase of the response time of Web 



 

 30

services components. Furthermore, the response times of Web services components in the 

Ordering profile are nearly 20% higher than in the Browsing profile when the workload 

intensity is 200 clients. Next, for all workload intensities and both profiles 60-80% of the 

overall response times of Search Results, Credit Check, and Process Order 

interactions is spent in executing Web services components. It is interesting to notice that 

the values of the response times of Web services components are much higher than the 

response times of any other component in any interaction. Thus, it follows that the Web 

service components are the performance bottlenecks not only in Search, Credit Check, 

and Process order interactions, but in the whole system as well. 

0
100
200
300
400
500
600
700
800
900

R
es

po
ns

e 
Ti

m
e 

(m
s)

50 100 150 200 50 100 150 200

Ordering Profile Brow sing Profile

No. of Customers

Credit -WS Order -EJB Process Order Page
 

Figure 11: Response times for Process Order Web interaction 

 

    Web service calls are expensive because they communicate by XML based protocols 

such as SOAP. This type of communication requires Web service endpoint to convert the 

SOAP request messages into method calls to local objects, as well as to encode the results 

into SOAP messages before they can be transmitted to the Web service client. These 

parsing and encoding activities incur additional overhead on the performance of the 

system. Since parsing and encoding of XML messages are CPU intensive activities we 

analyze the CPU utilization on the machine where Web services components are 

deployed (i.e., Application Server 2 in Figure 2). 

 



 

 31

 

 

Figure 12: CPU Utilization in Ordering and Browsing Profiles at Application Server 2 

 

   As expected, we observe from Figure 12 that the CPU utilization increases with the 

number of clients for both Ordering and Browsing profiles. More interesting 

observation, however, is that the increase in CPU utilization for 200 clients with respect 

to 150 clients is significantly higher than between other workload intensities (i.e., 150 

and 100 clients, or 100 and 50 clients). Obviously, one of the reasons for increased 

response time of Web services components under higher workload is the overhead due to 

parsing and encoding the XML messages which leads to increased CPU utilization. 

 

 
Figure 13: Database Disk activity in Ordering and Browsing Profile at Server 3 

0.00

1.00

2.00

3.00

4.00

5.00

6.00

0
11

0
22

0
33

0
44

0
55

0
66

0
77

0
88

0
99

0

Time (sec)

%
Pr

oc
es

so
r U

til
iz

at
io

n 
 

(B
ro

w
si

ng
 p

ro
fil

e)

0.00

1.00

2.00

3.00

4.00

5.00

6.00

0
11

0
22

0
33

0
44

0
55

0
66

0
77

0
88

0
99

0

Time (sec)

%
Pr

oc
es

so
r U

til
iz

at
io

n 
 

(O
rd

er
in

g 
pr

of
ile

)

0

2

4

6

8

10

12

1
12

0
24

0
36

0
48

0
60

0
72

0
84

0
96

0

Time (sec)

D
is

k 
Tr

an
sf

er
s 

/ S
ec

   
(B

ro
w

si
ng

 P
ro

fil
e)

0

2

4

6

8

10

12

1
12

0
24

0
36

0
48

0
60

0
72

0
84

0
96

0

Time (sec)

D
is

k 
Tr

an
sf

er
s 

/ S
ec

   
(O

rd
er

in
g 

pr
of

ile
)



 

 32

    We also study the disk activity on the Database server (i.e., Server 3 in Figure2 ) 

because the Web services and EJB components in our application perform operations on 

the backend database to serve user requests. It can be observed from Figure 13 that the 

number of disk transfers per second for Ordering profile are higher than for Browsing 

profile regardless of the number of customers. Furthermore, the difference increases with 

the workload intensity, which clearly explains the increase in response times of Web 

services and EJB components. 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 33

Chapter 8: Performance of .NET and J2EE Web services 
 

8.1 Prototype Description 

For comparing the performance of J2EE and .NET Web services, we developed two 

versions of the e-commerce application described in Chapter 4. In the first version the 

Web services were implemented in Java using JAX–RPC API and deployed in Tomcat 

5.0 Web container. In the second version we used ASP.NET to implement the Web 

services components. The .NET Web services were deployed on IIS 5.0 Web server. 

Since our intention is to compare the performance of Web services we keep the rest of the 

application architecture same in our experiments. 

  

8.2 Experimental Results 

Performance of .NET and J2EE versions of the application was analyzed by exercising 

the components with TPC-W based workload generator which was described in chapter 

5.  Next, we compare performance of Web services implemented using .NET and J2EE. 

Figures 14, 15 and 16 show the performance of .NET and J2EE Web services in 

Ordering and Browsing profiles. From the results we observe that in both the profiles 

our J2EE and .NET Web services shows similar performance characteristics. For .NET 

version of Flights-WS, Currency-WS and Credit-WS components the difference of 

response times in Ordering and Browsing profiles is less than 5%. In case of J2EE 

version the response times of these Web services in Ordering profile are approximately 

10% higher than in Browsing profile. The results shows that .NET Web services perform 

slightly better in Ordering profile especially for higher workload intensities (150, 200 

clients).  One of the reasons for performance improvements in .NET is that we run all our 

experiments in Windows environment and the IIS Web server which processes requests 

for .NET Web services is tightly integrated with the Windows operating system. 



 

 34

 

 
Figure 14: Performance of Flights Web service in J2EE and .NET 

 

 
Figure 15: Performance of Currency Web service in J2EE and .NET 

 

 
Figure 16: Performance of Credit Web service in J2EE and .NET 

 

 

0

100

200

300

400

500

50 100 150 200

No. of customers

R
es

po
ns

e 
tim

e 
(m

s)
 

(O
rd

er
in

g 
Pr

of
ile

)

0

100

200

300

400

500

50 100 150 200

No of customers

R
es

po
ns

e 
tim

e 
(m

s)
 

(B
ro

w
si

ng
 P

ro
fil

e)

0

100

200

300

400

50 100 150 200

No. of customers

R
es

po
ns

e 
tim

e 
(m

s)
 

(O
rd

er
in

g 
Pr

of
ile

)

0

100

200

300

400

50 100 150 200

No of customers

R
es

po
ns

e 
tim

e 
(m

s)
 

(B
ro

w
si

ng
 P

ro
fil

e)

0

100

200

300

400

50 100 150 200

No of customers

R
es

po
ns

e 
tim

e 
(m

s)
 

(O
rd

er
in

g 
Pr

of
ile

)

0

100

200

300

400

50 100 150 200

No of customers

R
es

po
ns

e 
tim

e 
(m

s)
 

(B
ro

w
si

ng
 P

ro
fil

e)



 

 35

Chapter 9: Conclusion 
 

    In this thesis we present a measurement-based performance analysis of an e-commerce 

application which includes Web services components in the business logic layer. The 

experimental setup includes a prototype of an online travel agency with a three tier 

architecture deployed on several machines and a workload generator developed 

accordingly to the TPC-W specification. The empirical results are obtained for two 

different workload profiles, Ordering and Browsing, under different workload intensities 

of 50, 100, 150, and 200 clients. 

 

    In contrast to the related work which evaluated the overall application response time, 

our study includes measurements and analysis of server-side performance at different 

levels.  

• Software architectural level allows us to study the distribution of the Web interactions 

response time among different components used to process the interaction. 

 

• Hardware resource level provides additional insights and helps explaining the 

observed phenomena. 

 

    The results show that Web services components tend to become bottlenecks in the 

system, particularly in heavy load conditions. This phenomenon is attributed to the 

overhead introduced by the additional processing of the XML messages and, basically, is 

the price paid for the interoperability and flexibility of integration. One of the solutions to 

this problem is to develop more efficient XML parsers. Also, the application server 

vendors should incorporate better mechanisms to perform encoding and decoding of 

SOAP messages. 

 

    Another interesting observation is that under higher workload the response time for the 

Ordering profile becomes significantly worse than the response time for the Browsing 

profile. This is an important observation due to the fact that the customers in the 

Ordering profile generate more revenue to the organization as they have higher 



 

 36

purchasing activity. The main reasons for worse response time in Ordering profile are 

the higher database activity and contention for database resources which affect the 

performance of the EJB components and even more the performance of Web services 

components. To improve the performance of components that access the backend 

databases, application developers can use techniques such as database connection 

pooling. 

 

    In summary, analyzing the performance of e-commerce applications at different levels 

(i.e., Web interaction, software architecture, and hardware resource levels) provides 

insightful information about potential bottlenecks (i.e., software components and 

hardware resources) and enables system designers and application developers to improve 

performance in a cost effective manner. The wide adoption of new technologies such as 

Web services, to large extent, will depend on the capability to assess and even more to 

provide guarantees for their QoS. We believe that the research work presented in this 

thesis is a step towards this goal. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 37

References 

[1] M. Andreolini, V. Cardellini and M. Colajanni, “Benchmarking Models and Tools for 

Distributed Web-server systems”, Performance Evaluation of Complex Systems: 

Techniques and Tools, Lecture Notes in Computer science, Springer-Verlag, Sep. 2002, 

Vol.2459, pp. 208-235. 

 

[2] G. Banga and P. Druschel, “Measuring the Capacity of a Web Server under Realistic 

Loads”, World Wide Web, May 1999, pp. 69-89. 

 

[3] J. Cardoso, J. Miller, A. Sheth, and J. Arnold, “Modeling Quality of Service for 

Workflows and Web Service Processes”', Technical Report, LSDIS Lab, Computer 

Science Department, The University of Georgia. 

 

[4] C. Catley, D. Petriu and M. Frize, “Software Performance Engineering of a Web 

Service-based Clinical Decision Support Infrastructure”', 4th International Workshop on 

Software and Performance, Redwood Shores, California, 2004, pp. 130-138. 

 

[5] E. Cecchet, J. Marguerite, W. Zwaenepoel , “Performance and scalability of EJB 

applications”, Proceedings of the 17th ACM SIGPLAN conference on Object-oriented 

programming, systems, languages, and applications,  Seattle, 2002. 

 

[6] S. Chandrasekaran, J. Miller, G. Silver, B. Arpinar, and A. Sheth, “Performance 

Analysis and Simulation of Composite Web Services”, International Journal of 

Electronic Commerce & Business Media Vol.13, No.2, 2003, pp.18-30. 

 

[7] M. Chen, E. Kiciman, E. Fratkin, E.Brewer and A. Fox. “Pinpoint: Problem 

Determination in Large, Dynamic, Internet Services”, Proceedings of the International 

Conference on Dependable Systems and Networks (IPDS Track), Washington D.C., 

2002. 

 

 



 

 38

[8] F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi, and S. Weerawarana, 

“Unraveling the Web Services Web”, IEEE Internet Computing, March-April 2002, pp. 

86-93. 

 

[9] D. Garcia and J. Garcia, “TPC-W E-commerce Banchmark Evaluation”, IEEE 

Computer, February 2003, pp. 42-48. 

 

[10] I.Gorton, “Evaluating the Performance of EJB Components”, IEEE Internet 

Computing, May/June 2003, pp.18-23. 

 

[11] K. Juse, S. Kounev, and A. Buchmann, “PetStore-WS: Measuring the Performance 

Implications of Web Services”, 29th International Conference of the Computer 

Measurement Group (CMG) on Resource Management and Performance Evaluation of 

Enterprise Computing Systems, December 2003. 

 

[12] S. M. Kim and M. Rosu, “A Survey of Public Web Services”, 13th International 

World Wide Web Conference, New York, USA, May 2004, pp. 312-313. 

 

[13] S. Kounev and A. Buchmann, “Performance Modeling and Evaluation of Large-

Scale J2EE Applications”, 29th International Conference of the Computer Measurement 

Group (CMG) on Resource Management and Performance Evaluation of Enterprise 

Computing Systems, December 2003. 

 

[14] D. Menasce, V. A. F. Almeida, R. Foneca, and M. A. Mendes, “Business-oriented 

Resource Management Policies for E-commerce Servers”, Performance Evaluation, 

Vol.42, No.2-3, 2000, pp. 223-239. 

 

[15] D. Menasce, “TPC-W, A Benchmark for E-Commerce”, IEEE Internet Computing, 

May-June 2002, pp. 83-87. 

 

[16] G. Miller, “NET vs. J2EE”, Communications of the ACM, June 2003, pp. 64-67. 



 

 39

 

[17] D. Mosberger and T. Jin, “httperf -- A tool for measuring Web server performance”, 

ACM Performance Evaluation Review, Dec. 1998, pp. 31-37. 

 

[18] B. Paul and C. Mark, “Generating Representative Web Workloads for Network and 

Server Performance Evaluation”, ACM SIGMETRICS, June 1998, Madison, WI, pp. 151-

160. 

 

[19] S. Run, “A Model for Web Services Discovery with QoS”, ACM SIGecom 

Exchanges, Vol.1, Issue 1, March 2003, pp.1-10. 

 

[20] M. Tian, T. Voigt, T. Naumowicz, H. Ritter, and J. Schiller, “Performance Impact of 

Web Services on Internet Servers”, International Conference on Parallel and Distributed 

Computing and Systems, Marina Del Rey, USA, Nov. 2003. 

 

[21] A. Tsalgatidou and T. Pilioura, “An Overview of Standards and Related Technology 

in Web Services”, Distributed and Parallel Databases, Vol.12, 2002, pp.135-162.  

 

[22] Airfares Web service endpoint: http://ws.netviagens.com/webservices/AirFares.asmx 

 

[23] CurrencyConverter service: http://www.webservicex.net/CurrencyConvertor.asmx 

 

[24] Frank Cohen, “Discover SOAP encodings impact on Web service performance”, 

http://www-106.ibm.com/developerworks/webservices/library/ws-soapenc/ 

 

[25] GNU AWK utility, http://www.gnu.org/software/gawk/gawk.html. 

 

[26] Jeffrey Fulmer, Siege -- An Open Source Stress Tester, 2002. 

http://www.joedo.org/siege/index.html. 

 

[27] OASIS, Organization for the Advancement of Structured Information Standards. 



 

 40

http://www.oasis-open.org 

 

[28] OASIS Web Services Reliable Messaging, 

http://docs.oasis-open.org/wsrm/2004/06/WS-Reliability-CD1.086.pdf. 

 

[29] Sean MacRoibeaird, Universal Description, Discovery and Integration, 

http://wwws.sun.com/software/xml/developers/uddi/ 

 

[30] Standard Performance Evaluation Corp, SPECweb99.  

http://www.spec.org/osg/web99. 

 

[31] Sun Java™ System Application Server Platform Edition 8 Administration Guide, 

Logging. http://docs.sun.com/source/817-6088/logging.html. 

 

[32] Sun Microsystems -- Java 2 Platform Enterprise Edition Specification v1.4, 

http://java.sun.com/j2ee/j2ee-1\_4-fr-spec.pdf. 

 

[33] Sun Microsystems, Java Logging API's,  

http://java.sun.com/j2se/1.4.2/docs/guide/util/logging. 

 

[34] Sun Microsystems, Inc. Java Petstore Application. Documentation. 

 http://java.sun.com/blueprints/code/\\jps131/docs/index.html. 

 

[35] TPC-W Transactional Web Commerce Benchmark, Transaction Processing 

Performance Council. http://www.tpc.org/tpcw. 

 

[36] Universal Description, Discovery and Integration (UDDI), OASIS Technical Report, 

http://xml.coverpages.org/uddi.html 

 

[37] Web Services Security Specification,  

http://www-106.ibm.com/developerworks/webservices/library/ws-secure. 



 

 41

 

[38] WebStone. http://mindcraft.com/webstone 

 

[39] D Venu, K Goseva-Popstojanova, “Measurement based Performance Analysis of E-

commerce Applications with Web services components”, IEEE International Conference 

on E-business Engineering, 2005. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 42

Appendix 1 
 

Application Server log format for SUN J2EE 1.4 Application Server: 

The J2EE1.4 application server stores log information in the file 'server.log'. The file is 

located in the 'logs' directory. The application server uses the java.util.logging API to log 

messages. Each log record has the following format: 

 
[#|yyyy-mm-ddThh:mm:ss.SSS-Z|LogLevel|ProductName_Version|LoggerName|KeyValuePairs  

|MessageId :Message|#] 

 

1) Each record is delimited by the characters [#   and   #]. 

 

2) The attributes of the record are separated by '|' character. 

 

3) The first field of the record contains timestamp in the format 'yyyy-mm-

ddThh:mm:ss.SSS-z .  SSS denotes the millisecond and z denotes the time zone. 

 

4) The Log Level indicates the priority or importance of the message. This application 

server identifies seven log levels- FINEST, FINER, FINE, CONFIG, INFO, WARNING, 

SEVERE. The default log level is the INFO level. 

 

5) The productName_Version for this application server is 'j2ee-appserver1.4’. 

 

6) Logger name is the name of the logger object a j2ee component uses to log the 

message. 

 

7) The Key value pairs are key names and values, typically a thread ID such as 

_Thread=14. 

 



 

 43

8) Each message is identified by a unique Message ID. The message ID has the format 

<Subsystem><4CharacterIntegerID>. The subsystem is a module that generates the log 

messages. 

 

The subsystems are: 

 ADM   –  Admin 

 ACC   –  Application client container 

 CORE  -  Core 

 DPL  –  Deployment 

 DTX  –  Java transactions API 

 EJB   –  Enterprise java bean 

 Install   –  Installer 

  IOP   –  Internet Inter-ORB protocol 

 JMS  –  Java messaging service 

 JTS   –   Java transaction services 

 LCM    –  Life cycle module 

 LDR   –   Class loader 

 MDB  –  Message driven bean container 

 RAR  –  Resource Adapter 

 SEC   –   Security services 

 VRFY  –  Verifier tool 

 UTIL   –   Utility services 

 WEB   –  Web container 

 

The log settings for the application server can be modified from the admin console or by 

making changes to server.xml file in the config directory of the domain. The users can 

change log levels for each subsystem. An application can customize the log messages by 

adding custom log handlers. 

 

Sample server log entries: 
 



 

 44

[#|2004-03-18T20:00:13.812-0500|INFO|j2ee-

appserver1.4|javax.enterprise.system.tools.admin|_ThreadID=10;|ADM1041:Sent the event to 

instance:[ApplicationDeployEvent -- deploy __ejb_container_timer_app]|#] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 45

Appendix 2 
 

1. WSDL for Flights Web service 
  <?xml version="1.0" encoding="UTF-8" ?>  

- <definitions name="AirFaresService" targetNamespace="http://157.182.194.109:18080/Airfares" 
xmlns:tns="http://157.182.194.109:18080/Airfares" xmlns="http://schemas.xmlsoap.org/wsdl/" 
xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"> 

- <types> 
- <schema targetNamespace="http://157.182.194.109:18080/Airfares" 

xmlns:tns="http://157.182.194.109:18080/Airfares" xmlns:soap11-
enc="http://schemas.xmlsoap.org/soap/encoding/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" 
xmlns="http://www.w3.org/2001/XMLSchema"> 

  <import namespace="http://schemas.xmlsoap.org/soap/encoding/" />  
- <complexType name="ArrayOfstring"> 
- <complexContent> 
- <restriction base="soap11-enc:Array"> 
  <attribute ref="soap11-enc:arrayType" wsdl:arrayType="string[]" />  

  </restriction> 
  </complexContent> 
  </complexType> 
  </schema> 
  </types> 

- <message name="SearchFlights_getFares"> 
  <part name="String_1" type="xsd:string" />  
  <part name="String_2" type="xsd:string" />  
  <part name="String_3" type="xsd:string" />  
  <part name="String_4" type="xsd:string" />  
  <part name="String_5" type="xsd:string" />  

  </message> 
- <message name="SearchFlights_getFaresResponse"> 
  <part name="result" type="tns:ArrayOfstring" />  

  </message> 
- <portType name="SearchFlights"> 
- <operation name="getFares" parameterOrder="String_1 String_2 String_3 String_4 String_5"> 
  <input message="tns:SearchFlights_getFares" />  
  <output message="tns:SearchFlights_getFaresResponse" />  

  </operation> 
  </portType> 

- <binding name="SearchFlightsBinding" type="tns:SearchFlights"> 
  <soap:binding transport="http://schemas.xmlsoap.org/soap/http" style="rpc" />  
- <operation name="getFares"> 
  <soap:operation soapAction="" />  
- <input> 
  <soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" use="encoded" 

namespace="http://157.182.194.109:18080/Airfares" />  
  </input> 

- <output> 
  <soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" use="encoded" 

namespace="http://157.182.194.109:18080/Airfares" />  
  </output> 
  </operation> 



 

 46

  </binding> 
- <service name="AirFaresService"> 
- <port name="SearchFlightsPort" binding="tns:SearchFlightsBinding"> 
  <soap:address location="REPLACE_WITH_ACTUAL_URL" />  

  </port> 
  </service> 
  </definitions> 

 

2. WSDL for Currency Web service 
  <?xml version="1.0" encoding="UTF-8" ?>  

- <definitions name="cservice" targetNamespace="http://157.182.194.109:18080/currency" 
xmlns:tns="http://157.182.194.109:18080/currency" xmlns="http://schemas.xmlsoap.org/wsdl/" 
xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"> 

  <types />  
- <message name="CurrencyService_conversionRate"> 
  <part name="String_1" type="xsd:string" />  
  <part name="String_2" type="xsd:string" />  

  </message> 
- <message name="CurrencyService_conversionRateResponse"> 
  <part name="result" type="xsd:double" />  

  </message> 
- <portType name="CurrencyService"> 
- <operation name="conversionRate" parameterOrder="String_1 String_2"> 
  <input message="tns:CurrencyService_conversionRate" />  
  <output message="tns:CurrencyService_conversionRateResponse" />  

  </operation> 
  </portType> 

- <binding name="CurrencyServiceBinding" type="tns:CurrencyService"> 
  <soap:binding transport="http://schemas.xmlsoap.org/soap/http" style="rpc" />  
- <operation name="conversionRate"> 
  <soap:operation soapAction="" />  
- <input> 
  <soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" use="encoded" 

namespace="http://157.182.194.109:18080/currency" />  
  </input> 

- <output> 
  <soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" use="encoded" 

namespace="http://157.182.194.109:18080/currency" />  
  </output> 
  </operation> 
  </binding> 

- <service name="Cservice"> 
- <port name="CurrencyServicePort" binding="tns:CurrencyServiceBinding"> 
  <soap:address location="REPLACE_WITH_ACTUAL_URL" />  

  </port> 
  </service> 
  </definitions> 

 

3. WSDL for Credit Web service 
<?xml version="1.0" encoding="UTF-8" ?>  

- <definitions name="creditservice" targetNamespace="http://157.182.194.109:18080/credit" 
xmlns:tns="http://157.182.194.109:18080/credit" xmlns="http://schemas.xmlsoap.org/wsdl/" 



 

 47

xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"> 

  <types />  
- <message name="ccheck_check"> 
  <part name="String_1" type="xsd:string" />  
  <part name="String_2" type="xsd:string" />  
  <part name="String_3" type="xsd:string" />  

  </message> 
- <message name="ccheck_checkResponse"> 
  <part name="result" type="xsd:string" />  

  </message> 
- <portType name="ccheck"> 
- <operation name="check" parameterOrder="String_1 String_2 String_3"> 
  <input message="tns:ccheck_check" />  
  <output message="tns:ccheck_checkResponse" />  

  </operation> 
  </portType> 

- <binding name="ccheckBinding" type="tns:ccheck"> 
  <soap:binding transport="http://schemas.xmlsoap.org/soap/http" style="rpc" />  
- <operation name="check"> 
  <soap:operation soapAction="" />  
- <input> 
  <soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" use="encoded" 

namespace="http://157.182.194.109:18080/credit" />  
  </input> 

- <output> 
  <soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" use="encoded" 

namespace="http://157.182.194.109:18080/credit" />  
  </output> 
  </operation> 
  </binding> 

- <service name="Creditservice"> 
- <port name="ccheckPort" binding="tns:ccheckBinding"> 
  <soap:address location="REPLACE_WITH_ACTUAL_URL" />  

  </port> 
  </service> 
  </definitions> 

 

 
 
 


	Measurements based performance analysis of Web services
	Recommended Citation

	Measurements based Performance Analysis of Web Services

		2005-07-26T12:58:31-0400
	John H. Hagen
	I am approving this document


	Text2: iii
	Text1: iv


