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ABSTRACT 
 

Investigation of Combustion Phenomena in a Single-Cylinder Spark- Ignited 
Natural Gas Engine with Optical Access 

Vishnu Padmanaban 

 

More demanding efficiency and emissions standards for internal combustion (IC) engines require 

novel combustion strategies, alternative fuels, and improved after-treatment systems. However, their 

development depends on improved understanding of in-cylinder processes. For example, the lower 

efficiency of conventional spark-ignited (SI) natural-gas (NG) engines reduces their utilization in the 

transportation sector. Single-cylinder optical-access research engines allow the use of non-intrusive 

visualization techniques that study in-cylinder flow, fuel-oxidizer mixing, and combustion and emissions 

phenomena under conditions representative of production engines. These visualization techniques can 

provide qualitative and quantitative answers to fundamental combustion-phenomena questions such as the 

effects of engine design, operating conditions, fuel composition, fuel delivery strategy, and ignition 

techniques.   

 

The thesis is divided in two main parts. The first part focuses on the setup of a single-cylinder research 

engine with optical access including the design of its control system and the acquisition of in-cylinder 

pressure data and high-speed combustion images. The second part focuses on measurements of the turbulent 

flame speed using the high-speed combustion images. Crank-angle-resolved images of methane combustion 

were taken with a high-speed CMOS camera at a rate of 15,000 Hz. The optical engine was operated in a 

skip-firing mode (one fired cycle followed by 5 motored cycles) at 900 RPM and a load of 5.93 bar IMEP. 

The images show that flow turbulence and flame stretch resulted in flame velocities several order of 

magnitude higher compared to the laminar flame velocity. In addition, both in-cylinder pressure and optical 

data were used to determine the cycle-to cycle variability of the combustion phenomena. 
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Chapter 1 

Introduction 

The use of natural gas in the transportation sector is well established with over 17 million natural gas 

vehicle (NGVs) worldwide and about 150,000 vehicles in the United States (U.S.) alone [1]. There are 

some 24,000 natural gas (NG) refueling stations worldwide and global demand in 2013 accounted for 

around 2% of total energy use in on-road transportation. Approximately one million heavy-duty vehicles 

(HDVs) are sold in the United States every year, but less than 1 percent are powered by natural gas. 

However, NG became suddenly abundant in U.S. due to the booming shale gas industry, which reduced its 

price to as low as one-third of diesel fuel. U.S. Department of Energy (DOE) website indicates that only 

0.12% of the NG consumed in the country in 2014 was used to power vehicles [2]. This shows that the 

compressed natural gas (CNG) and liquefied petroleum gas (LPG) motor fuels market has a very little sway 

over the NG specifications, operations and market.  

Figure 1.1 Consumption of natural gas in the U.S. [3] 

 
It is expected that the low price and large availability of NG in U.S. will prompt the commercial 

trucking industry to invest in new NG–powered trucks over the coming decades. A recent assessment by 

the U.S. DOE. indicates that NG vehicles could constitute up to 20 percent of the new 2025 heavy duty 

vehicle market [2], potentially displacing a significant amount of diesel fuel combusting vehicles. Also, the 
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U.S. Energy Information Administration’s Annual Energy Outlook 2015 projects that natural gas will be 

the fastest-growing fuel in the transportation sector, with an average annual demand increase of 10 percent 

from 2012 to 2040 [4]. Heavy-duty vehicles are the leading edge of this projected expansion, with a 

projected average annual growth rate for natural gas of 14 percent [2]. 

 
Figure 1.2 Consumption of alternative fuel by AFVs in the U.S. [5] 

 

Figure 1.2 presents the consumption of alternative fuel and electricity by the alternative fuel vehicles 

(AFVs) in U.S. from 1995 to 2011, in millions of gasoline gallon equivalent (GGE). This figure shows that 

CNG-powered vehicles dominated the alternative-fuel fleet, suggesting them as an economically viable 

alternative for the commercial vehicle manufacturers. Greater use of alternative fuels in public 

transportation vehicles would yield environmental benefits such as reduced tailpipe emissions of air 

pollutants that were shown to affect public health, reduced risk of soil and water contamination from diesel 

fuel spills, and quieter operation, while also reducing the diesel fuel consumption. For example, engines 

operating with alternative fuels generally emit lower levels of non-methane hydrocarbons (NMHC), oxides 

of nitrogen (NOx), and particulate matter (PM) than current diesel engines. This is especially true for 

alternative fuel comparisons involving ferryboats and locomotives, which typically have reduced (if any) 

diesel emission controls installed on their engines. 
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1.1 Background  
 

More stringent IC engine emissions regulations, the depletion of fossil-fuel reserves and climate-effects 

considerations continue to stimulate the spark engine development. These stringent efficiency and emission 

regulations require novel combustion strategies and improved after treatment systems. Single cylinder 

optically-accessible engines can help the development of such novel strategies by improving the 

fundamental understanding of in-cylinder processes. Such engines allow the use of non-intrusive 

visualization techniques that study in-cylinder flow, fuel-oxidizer mixing, and combustion and emissions 

phenomena under conditions representative of production engines. The  experimental data obtained from 

engines with extended optical access (“optical engines”) is used for both the validation of engine 

computational models that accelerate engine development and the development of new combustion 

strategies as they provide a detailed insight into the physical processes occurring inside the combustion 

chamber.  However, the operation of optical engines presents numerous challenges as compared to 

production (metal) engines. In addition, there are a few design differences between an optical engine and a 

production engine. First, optical research engines have simplified chamber geometries to facilitate optical 

access while minimizing image distortion issues. Further, the optical components (i.e., glass windows) 

cannot resist the thermal stress accumulated during continuous engine operation. As a result, optical engines 

can run only for a few minutes and usually in a skip-firing mode (one fired engine cycle followed by n 

motored cycles, where n ≥ 1). Furthermore, the location of the piston ring pack on an optical engine usually 

differs from that on an all-metal engine, due to the use of dry lubrication methods in the extended portion 

of the optical piston. In addition to these design aspects, the use of materials such as quartz, sapphire and 

titanium in optical engines has a significant impact on engine combustion characteristics. The reason for 

this is that the thermal conductivity of the aforementioned materials is significantly lower than the thermal 

conductivity of steel or aluminum. Therefore, it is very important that an adequate control of intake 

temperature, fueling and ignition systems is established in the test setup to ensure the longevity of optical 

and metal components, repeatable experimental results, and also that the optical engine experiments are 

representative of the metal engine and hence could provide us with deep a meaningful insight on a physical 

phenomenon taking place inside the combustion chamber. Figure 1.3 shows the difference between an 

optical (Figure 1.3a) and standard metal configuration of the same type of engine (Figure 1.3b) to give the 

readers an idea about the major differences in build and component types in either of the configurations.  
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                                        a                                                         b                                            c 

Figure 1.3 Typical (a) optical engine configuration, (b) standard metal engine configuration (single 

cylinder GDI engine [6]), and (c) a 3D-CAD view of an elongated piston with optical access [7]  

 

1.2 Motivation 

While computational fluid dynamics (CFD) simulations are becoming ubiquitous and can dramatically 

reduce engine development time and cost, engine manufacturers cannot achieve their targets on engine 

efficiency and emissions without spending a large amount of time on extensive engine testing and 

calibration. The reason is the lack of fundamental combustion knowledge with respect to the complex 

physical and chemical processes that are taking place inside the engine combustion chamber. For example, 

two combustion strategies with similar initial conditions can achieve the same power output, but have 

completely different efficiency and emissions. Engines with optical access and visualization techniques 

such as the one discussed in this thesis help improving the fundamental knowledge by providing essential 

qualitative and quantitative insight into the combustion process.   

In addition, recent energy shortages and a larger concern with respect to the environmental protection 

increased the interest in alternative fuels f. The use of alternative fuels in IC engines showed promising 

results compared to gasoline or diesel fuel. For example, alternative-fuel combustion is generally soot-free 

compared to conventional petroleum fuels. NG is one of the alternative fuels of interest.  NG is a mixture 

with methane is its major constituent (75-98% of methane; 0.5-13% of ethane; and 0-2.6% of propane [6]. 

NG combustion produces less soot emissions than diesel fuel due to a simpler molecular structure, and no 

need for fuel evaporation [7]. NG completely mix with air, which eliminates potential regions with local 

rich mixture and reduces CO emissions. Also, NG produces less CO2 emissions than gasoline for the same 

power output, due to its higher hydrogen to carbon ratio [8]. The high octane number of NG (average of 

the Research Octane Number (RON) and the Motor Octane Number (MON) is between 120 and 130) 

greatly reduces the knocking potential, allowing a spark ignition engine to be operated with a higher 
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compression ratio than an equivalent gasoline engine. This increases engine thermal efficiency and lowers 

fuel consumption. The RON for a particular fuel composition is determined from laboratory tests performed 

with a special research engine with a variable compression ratio. Motor Octane Number (MON) also uses 

a similar test engine, but with a preheated fuel mixture, a higher engine speed and variable ignition timing. 

Additionally, NG has a lower lean limit than gasoline, which can further reduce CO and HC emissions and 

increase the thermal efficiency. However, the number of fundamental studies in the literature that explain 

these observation and can be used to predict engine efficiency and emissions is limited compared to those 

dedicated to gasoline or diesel fuel. This motivates the present study of investigating the combustion 

phenomena occurring inside a spark-ignition NG engine with extended optical access. 

1.3 Optical diagnostic techniques in combustion 
 

This section gives an overview of optical methods and their application to various aspects of 

combustion analysis. These optical visualization techniques were deemed helpful in gaining a fundamental 

insight of the physio-chemical processes taking place inside the combustion chamber and hence, have aided 

in developing advanced combustion chamber for production type engines. There are numerous methods 

applied in engine and combustion research, however, just a few of them have the potential of being applied 

in practical engine development. The decision for application of a specific optical technique is based on 

information one needs to study and hence the efforts and chances to gain the required results with a given 

method. The following table lists the common optical diagnostic techniques adopted by combustion 

researchers across the globe.  

Method Physical information Device 
Single-cylinder with 

extended optical access 

Mixture formation, combustion process 

Spray characteristics, flame characteristics, 

emissions formation 

 

High-speed cameras, 

lasers 

Endoscopic imaging in 

metal engine 

Spray-combustion chamber interaction 

Local flow velocity, temperature field, soot 

concentration 

Lasers, high-speed 

cameras, endoscopes 

Table 1.1 Analysis techniques in transparent research engines and standard engines [6] 

 

 Method Particles Physical information Device 

Particle Image Velocimetry 

(PIV) 

Fuel droplets Flow field Camera 
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Laser Doppler 

Anemometry (LDA) 

Particles, droplets Local flow velocity Photodiode, multiplier 

Laser Induced Fluorescence 

(LIF) 

Fluorescent 

molecules 

Species concentration CMOS/CCD camera 

Laser Induced 

Incandescence (LII) 

Soot particles Soot distribution Solid state laser with 

CMOS camera 

Table 1.2 Laser-based in-cylinder analysis techniques [6] 

The most common way of visualizing the combustion chamber is through the use of a see-through 

piston. For example, a large piston window allows the simultaneous inspection of the fuel sprays as well as 

observation of the entire flame field. Spray–t- spray and flame-to-flame uniformity are especially of interest 

in Diesel combustion studies. In case of SI engines, the optical analysis supports the following research 

areas: 

1. Emissions formation 

2. Stability: flame kernel formation, flame front propagation under the influence of turbulent in-

cylinder flow  

3. Efficiency: knock initiation site analysis  

4. Abnormal combustion: engines with high power density combustion systems are under risk of 

uncontrolled self-ignition events. Such irregular ignition and combustion is identified with optical 

diagnostic procedures 

Endoscopes (Figure 1.4) are optical instruments for image transfer by means of long, rod-shaped lenses 

or by coherent optical fiber bundles, used mainly for combustion studies in standard metal engines. Such 

combustion chamber windows are designed to withstand the pressure and temperature conditions of usual 

engine operating modes. With adequate design and material selection, window applications include full 

load operation in both Diesel and gasoline engines. 
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Figure 1.4 Endoscope insertion in the cylinder head of a diesel engine [6] 

 

1.4 Objective 

The global objective of this research is to develop an experimental platform that can be used to study 

engine fundamental combustion phenomena. The specific goal in this study is to test this experimental 

platform against similar flame speed measurements using natural gas as fuel. This study is divided in two 

main parts. The first part focuses on the setup of a single-cylinder research engine with optical access 

including the design of its control system and the acquisition of in-cylinder pressure data and high-speed 

combustion images. The second part focuses on measurements of the turbulent flame speed using the high-

speed combustion images. Accurate interpretations of the combustion phenomena using combustion 

visualization can help engine designers accelerate the introduction of NG engines in the heavy-duty vehicle 

market. 
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Chapter 2 

 

Review of Literature 

 
 
2.1 Natural gas combustion in large bore engines 
 

Natural gas consumption is forecasted to be doubled between 2001 and 2025, with the most robust 

growth in demand expected among the developing nations [9]. Similarly, natural gas vehicles (NGVs) have 

been implemented in a variety of applications as part of efforts to improve urban air quality in the United 

States, particularly within California [10-12]. Two technologies have been widely being used for NG heavy 

duty engines, namely lean-burn combustion and stoichiometric combustion. Older technology NGVs are 

equipped with lean-burn engines and oxidation catalysts to effectively control CO and formaldehyde 

emissions. Current heavy-duty NGVs are equipped with spark-ignited stoichiometric combustion engines, 

with water cooled exhaust gas recirculation (EGR) technology, and three-way catalysts (TWC) in order to 

meet the more stringent 2010 NOx emission standards from the US Environmental Protection Agency 

(USEPA). Stoichiometric combustion engines with TWC are superior to lean-burn combustion engines 

with oxidation catalysts for reducing NOx emissions [13, 14]. However, stoichiometric engines with TWCs 

produce higher CO emissions than lean-burn engines [14]. Particulate Matter (PM) emissions from both 

stoichiometric and lean-burn combustion NG engines are very low due to the almost homogeneous 

combustion of the air–gas mixture, and the absence of large hydrocarbon chains and aromatics in the fuel 

[15]. For NGVs, one issue that has been shown to be important with respect to emissions is the effect of 

changing the composition of the fuel. This is part of a broader range of issues which are classified under 

the term interchangeability, which is the ability to substitute one gaseous fuel for another in a combustion 

application without materially changing operational safety, efficiency, performance or materially increasing 

air pollutant emissions. Changes in the NG composition used in NGVs can affect the reliability, efficiency, 

and exhaust emissions. Studies conducted with small stationary source engines, heavy-duty 

engines/vehicles, and light-duty vehicles have shown that NG composition can have an impact on emissions 

[16-19]. Karavalakis et al. [20] showed higher NOx emissions when they tested a 2002 lean-burn NG waste 

hauler on lower methane number/higher Wobbe number fuels. Hajbabaei et al. [21] reported NOx and non-

methane hydrocarbon (NMHC) emission increases for fuels with low methane contents when they tested 

two transit buses equipped with lean-burn NG engines. However, they did not find any fuel effect on NOx 

emissions when they tested a bus with a stoichiometric combustion engine and a TWC. The effect of NG 



9 
 

composition on exhaust emissions was also confirmed by Feist et al. [22] where they found NOx and total 

hydrocarbon (THC) emissions increases with higher Wobbe number fuels under lean-burn engine 

combustion, while the stoichiometric engines showed no clear trends for NOx and THC emissions with 

different fuels [23,24]. 

 

2.2 Fuel composition effects 
 

Natural gas is considered to be a promising alternative fuel for passenger cars, truck transportation and 

stationary engines providing positive effects both on the environment and energy security. The US 

government is continually pushing the use of natural gas engines in order to reduce foreign oil dependence 

and achieve lower greenhouse gas (GHG) emissions. The most important GHGs are carbon dioxide (CO2), 

methane (CH4), and nitrous oxide (N2O), with the transportation sector being the main contributor of the 

overall GHG emissions in the US [25]. Therefore, the introduction of natural gas as a potential alternative 

to conventional liquid fuels in the heavy-duty vehicle segment (viz., vehicles with gross vehicle weight 

ratings ranging from 3.9 to 15 tons and over), which consumes a large amount of fuel, is a fast growing 

market. Currently, California supplies 85–90% of its needs with NG imported domestically from the 

Rockies, from southwest states, such as Texas, and from Canada [26]. Natural gas is a mixture of various 

hydrocarbon molecules such as methane (CH4), ethane (C2H6), propane (C3H8), and butane (C4H10), and 

inert diluents such as molecular nitrogen (N2) and carbon dioxide (CO2). Several parameters affect the 

natural gas composition such as demographic location, season, and treatments applied during production or 

transportation [26-30]. Moreover, additional mixing of different gases occurs during pipeline transmission 

[31, 32]. Therefore, its thermodynamic properties are dependent on the composition of the gas [33]. To 

obtain the thermodynamics properties accurately, the effect of the gas compositions must be also 

considered. Many researchers working on the natural gas engines demonstrated that natural gas composition 

significantly affects engine performance and emissions. It was also reported that the heating value (HV), 

thermal efficiency, and concentration of un-burnt hydrocarbon (UHC) and other emission particles would 

highly depend on the source of supply of natural gas as the main fuel [34, 35]. The most important 

compositional parameters that affect the quality of natural gas include methane number (MN) and Wobbe 

number (WN). A 100% methane composition is given 100 as MN and as the higher hydrocarbons 

percentage increases, the MN decreases. Methane is a dominant component in the natural gas and hence is 

an important parameter for consideration. The MN of the mixture is defined as the percentage of methane 

in a methane hydrogen mixture. The WN is a measure of the fuel energy flow rate through a fixed orifice 

under given inlet conditions. It is calculated as the ratio of the heating value divided by the square root of 

the specific gravity. Generally, the WN is a good criterion for natural gas because it correlates well with 

the ability of an internal combustion engine to use a particular gas. [36-38]. The earliest research on 
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implication of natural gas composition in SI engines should be traced back to the middle of 1980s, when 

natural gas was employed as the secondary fuel in gasoline engine. Elder et al. [39] carried out experimental 

and theoretical investigations at the University of Auckland to determine the effects of varying fuel 

compositions on vehicle fuel consumption, power output and pollutant emissions. King [40] analyzed the 

impact of natural gas fuel composition on fuel metering and engine operational characteristics. He 

developed a fuel metering model to analyze the impact of fuel composition on carbureted, premixed, and 

direct-injected engine configurations. The change in physical properties of the fuel was found to have a 

profound effect on fuel metering characteristics. He found that fuel composition affects fuel metering 

configurations. However, these variations were minor compared to the fuel property effects. Moreover, he 

reported that fuel composition also affects the lean- flammability-limit of the mixture which, when 

combined with fuel metering variations, can cause a lean-burn engine to misfire. Also, fuel temperature 

variations affected fuel metering and must also be considered. The results indicated that closed-loop mixture 

control is essential for stoichiometric engines and very beneficial for lean-burn engines. Thiagarajan et al. 

[41] experimentally investigated effect of varying gas composition on the performance and emissions of a 

SI engine. The pipeline natural gas composition was varied by adding volumes of propane (up to 20%) or 

nitrogen (up to 15%). They found that brake power, fuel conversion efficiency and before catalyst emissions 

of CO, NOx and hydrocarbons were not affected by propane addition as long as stoichiometric combustion 

was maintained. In addition, nitrogen addition at the stoichiometric condition significantly reduced before 

catalyst NOx emissions and increased after catalyst CO emissions. Limited information is available on the 

unregulated emissions from NGVs, including gaseous toxic pollutants and PAHs (polycyclic aromatic 

hydrocarbons). Kado et al. [42] found that the carbonyl emissions from CNG (compressed natural gas) 

buses were primarily formaldehyde. Formaldehyde emissions from these buses were much greater than 

those of diesel buses fitted with OCs, and CRTs (continuously regenerating traps). Ayala et al. [43] also 

found that formaldehyde emissions were reduced by OCs on CNG buses by over 95% over the CBD 

(Central Business District) cycle. Okamoto et al. [44] and Kado et al. [42] performed mutagenic tests on 

the exhaust from transit buses operating on CNG. They both reported lower mutagenic activity for CNG 

buses equipped with OCs, compared to buses without OCs. Kado et al. [42] also found that mutagenic 

activity using the TA98NR test strain decreased, indicating the possible presence of nitro-PAH in the PM 

emissions. Turrio-Baldassarri et al. [45] showed that a spark ignition heavy-duty urban bus NG engine with 

a TWC produced 20 times lower formaldehyde, more than 30 times lower PM emissions, and 50 times 

lower PAH emissions, compared to a diesel engine without after treatment. 
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2.3 Cycle to cycle variations in SI engine 
 

Today, engine designers are seeking every kind of solution aimed at the reduction of fuel consumption 

and emission levels. The cycle to cycle variation (CCV) in combustion significantly influences the 

performance of spark-ignition engines.  The process variables such as pressure and heat release in an 

internal combustion engine undergo cycle-to-cycle variations. SI engines superficially operating under 

steady-state conditions do not maintain perfectly stable operation i.e. a comparison between one cycle and 

another reveals random variations in. In general, combustion in spark-ignition engines varies considerably 

from cycle to cycle. Many studies have been carried out in order to find the main causes of this effect. These 

variations are associated with considerable variations in flame speed and combustion duration. Very early 

in the combustion event taking place within the cylinder, cyclic variation in peak cylinder pressure, the rate 

of pressure rise and the work done by the gas are observed by the researchers [46]. The CCV may become 

severe under lean-burn conditions, and for highly dilute mixtures with exhaust gas recirculation [47]. Cycle-

to-cycle variations have been observed in spark ignition, compression ignition, and HCCI engines. The 

CCV may reduce the power output of the engine, lead to operational instabilities, and result in undesirable 

engine vibrations and noise. Cyclic variation of automobile engine combustion is a fundamental 

characteristic of the power plant that is the primary means of transportation in this country. The extremes 

of this variation reduce drivability and gas mileage, and can be responsible for significant air pollutant 

emissions from the engine. There have been many studies of cyclic variation from various perspectives. 

Several sources of CCV in a spark ignition engine have been identified. They include (a) turbulence 

intensity of the flow field in the cylinder, (b) variations in the fuel air ratio, (c) amount of residual or 

recirculated exhaust gases in the cylinder, (d) spatial inhomogeneity of the mixture composition especially 

near the spark plug, and (e) spark discharge characteristics and flame kernel development. It has been 

estimated that elimination of the CCV may lead to about 10% increase in power output for the same fuel 

consumption in a gasoline engine [48]. There have been many studies on the analysis of CCV in internal 

combustion engines. Some of these studies have revealed that any process that increases the burning 

velocity of the combustible mixture will result in a reduction of the CCV. Stone et al. [49] highlight that 

total elimination of cyclic variation is not desirable for engine management systems that retard the ignition 

when incipient knock is detected. If there were no cyclic variation, there would be no foresight for the 

engine management system to detect when the onset of knock will occur.  Galloni [50] studied the different 

parameters that could affect the cyclic variation in a SI engine. The engine under consideration used three 

different shapes of combustion chamber, featuring four cylinders with two vertical valves per cylinder. The 

fuel was introduced upstream the inlet valves by means of plate four hole injectors capable of producing 

droplets with a Sauter mean-diameter of about 130 nm. The author proposed that laminar flame speed, 

turbulence intensity and velocity magnitude have been considered among the factors that affect the extent 
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of the engine cyclic variation. The influence of these parameters was investigated. Correlating these features 

of the charge with the measured coefficient of variation in the indicated mean effective pressure, a 

mathematical relationship was obtained by means of a multiple regression, by the author [50]. Further Reyes 

et al. [51] evaluated the relative influence of the equivalence fuel/air ratio and the engine rotational speed 

on the cycle-to-cycle variations produced in a single-cylinder spark ignition engine fueled with natural gas, 

through a thermodynamic combustion diagnostic model that includes genetic algorithms for parameter 

adjusting.  The single cylinder air cooled engine under study had a flat piston bowl arrangement. A 

traditional estimator of the cycle-to-cycle variation is the Coefficient of Variation in Indicated Mean 

Pressure, COVIMEP. In this paper, the authors propose complementary considering the variation of the mass 

fraction burning rate of each individual cycle to characterize cyclic variation, The authors propose that 

standard deviation of mass fraction burned could be used as an indicator of cyclic dispersion of combustion 

events [51]. Kaleli et al. [52] used the approach controlling spark timing for consecutive cycles to reduce 

the cyclic variations of SI engines. A stochastic model was performed between spark timing and in cylinder 

maximum pressure by using the system identification techniques. The combustion process begins before 

the end of the compression stroke with spark event. Then, this process continues through the early part of 

the expansion stroke and, ends after the point in the cycle at which the peak cylinder pressure occurs. If the 

choice of ignition point versus crank angle is too late, then although the work done by the piston during the 

compression stroke is reduced, so is the work done on the piston during the expansion stroke, since all 

pressures during the cycles will be reduced. If the spark timing is controlled for consecutive cycles instead 

of the open loop system by predicting the pressure related parameters of the one step ahead cycle, it will be 

possible to reduce the cyclic variations. For the faster cycles, the ignition timing should be retarded and it 

should be advanced for slower cycles. The experiments for this study were performed on a FORD MVH-

418 spark ignition engine with electronically controlled fuel injectors [52]. Finally Ji et al. [53] studied the 

cyclic variation of large-bore multi point injection engine fueled by natural gas with different types of 

injection systems. The studied engine was a 12-cylinder natural gas engine mainly used for power 

generation. The quality of mixture formation was correlated closely with cycle-to-cycle combustion 

variation (COV), so COV was used to evaluate the influence of the shape and location of the injection 

nozzle as well as end of ignition (EOI) timing on mixture formation. According to the structural 

characteristics of the studied engine, four types of injection system with different shapes and locations were 

proposed to measure and analyze cylinder pressure in the same working conditions. The influence of the 

shape and location of the injection nozzle as well as EOI timing on mixture formation and combustion 

process was studied in the research. Experimental results showed that the mixture formation quality of high 

power gas engine which has weak airflow in the cylinder could be improved by optimizing the shape and 
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position of the nozzle as well as EOI timing. Improvement of mixture formation can promote combustion 

process finally.   

Methane which is the main composition of natural gas has unique tetrahedral molecular structure with 

larger C–H bond energies, thus demonstrates some unique combustion characteristics such as high ignition 

temperature and low flame propagation speed, leading to the poor lean-burn ability and slow burning 

velocity. These may lead to the incomplete combustion, high misfire ratio and large cycle-by-cycle 

variations when utilizing natural gas in the spark ignition engine especially under lean mixture operating 

condition. One effective way to solve this problem is to mix the natural gas with a fuel that possesses the 

high burning velocity. Hydrogen is an excellent additive to improve the combustion of natural gas due to 

its low ignition energy and high burning velocity.  Ma et al. conducted a work in a turbocharged lean burn 

natural gas S.I. engine with hydrogen enrichment, to investigate the effects of hydrogen addition on the 

combustion behavior and cycle by-cycle variations in a turbocharged lean burn natural gas spark ignition 

engine. They found that hydrogen addition contributes to reducing the duration of flame development, 

which has highly positive effects on reducing cycle-by-cycle variations [54]. Wang et al. studied the effect 

of hydrogen addition on cycle-by-cycle variations of the natural gas engine. Their results showed that the 

peak cylinder pressure, the maximum rate of pressure rise and the indicated mean effective pressure 

increased and their corresponding cycle-by-cycle variations decreased with the increase of hydrogen 

fraction at lean mixture operation [55]. Huang et al. [56] analyzed the cycle-by-cycle variations in a spark 

ignition engine fueled with natural gas hydrogen blends combined with EGR. The authors show that the 

cylinder peak pressure, the maximum rate of pressure rise and the indicated mean effective pressure 

decrease and cycle-by-cycle variations increase with the increase of EGR ratio. Interdependency between 

the above parameters and their corresponding crank angles of cylinder peak pressure is decreased with the 

increase of EGR ratio. For a given EGR ratio, combustion stability is promoted and cycle-by-cycle 

variations are decreased with the increase of hydrogen fraction in the fuel blends. Recently, Reyes et al. 

[51] characterized mixtures of natural gas and hydrogen (in different propositions) in a single-cylinder spark 

ignition engine by means of a zero dimensional thermodynamic model. A thermodynamic combustion 

diagnostic model based on genetic algorithms is used to evaluate the combustion chamber pressure data 

experimentally obtained in the mentioned engine. The model is used to make the pressure diagnosis of 

series of 830 consecutive engine cycles automatically, with a high grade of objectivity of the combustion 

analysis, since the relevant adjustment parameters (i.e. pressure offset, effective compression ratio, top dead 

center angular position, heat transfer coefficients) are calculated by the genetic algorithm. Results indicate 

that the combustion process is dominated by the turbulence inside the combustion chamber (generated 

during intake and compression), showing little dependency of combustion variation on the mixture 
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composition. This becomes more evident when relevant combustion variables are plotted versus the mass 

fraction burned (MFB) of each mixture. 

The formation of the flame kernel and the following flame growth through a laminar like phase depend 

on: the local air fuel ratio, the mixture motion and the exhaust gas concentrations in the spark-plug gap at 

the time of ignition and in the spark-plug region immediately after ignition. Cyclic variations occur because 

the bulk flow, turbulence, residual amounts and gasoline supplied to each cylinder vary from cycle to cycle. 

Moreover, within the cylinder, the mixing of air fuel and exhaust gas residuals is not complete, therefore 

the mixture is not homogeneous at the spark time. The turbulent nature of the flow in the cylinder causes 

random spatial and time-dependent fluctuations in the variables characterizing the mixture and its flow 

field. These fluctuations cause a random value of the mixture concentration in the spark-plug region, a 

random convection of the spark kernel away from the electrodes, a random heat transfer from the burning 

kernel, etc. [57-59]. In particular, the random displacement of the flame kernel during the early stages of 

combustion seems to play a major role in the origination of cycle variation in combustion.  

Ozdor et.al. commented that despite many years of experimentation and research a full understanding 

of cyclic variation was still lacking, back then. They also mentioned previous studies which have shown 

that it may be possible to achieve a 10% increase in power for the same fuel consumption if cyclic variations 

could be eliminated. However, the elimination of cyclic variation may not be truly desirable even if it were 

possible, which still remains true till date [60]. According to Ozdor [61], Matekunas [62] and Heywood 

[47], the cyclic variations can be characterized by the parameters in four main categories; pressure related 

parameters, combustion related parameters, flame front related parameters and exhaust gas related 

parameters. Pressure related parameters are the in-cylinder maximum pressure (Pmax), the crank angle at 

which the in-cylinder maximum pressure occurs (qPmax), the maximum rate of pressure rise (dP/dq) max, 

the crank angle at which the maximum rate of pressure rise occurs q(dP/dq) max, indicated mean effective 

pressure (IMEP) of individual cycles. Combustion related parameters are about the heat release, burnt mass 

fraction and combustion duration characteristics. Flame front related parameters are about the formation, 

progression and the speed of the flame. The last category is on the subject of the concentration of exhaust 

gases in the exhaust. Moreover, even if many factors do not cause cyclic variation, they determine the 

sensitivity of the engine to the factors which give origin to the phenomenon. For example, the overall 

weakness of the mixture [63], the spark-plug and the spark-timing and the in cylinder mixture motion do 

not cause cyclic dispersion in combustion themselves but affect the extent of cyclic variation caused by 

other factors [64-66]. The conclusion seems to be that anything that tends to slow down the flame 

propagation process, especially in its development stage, tends to increase the cyclic dispersion in 

combustion. In a completely different perspective, Pischinger and Heywoood investigated how heat losses 

to the spark plug electrodes affect the flame kernel development in an SI engine [67]. A conventional spark 
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plug and a spark plug with smaller electrodes were studied in M.I.T.'s transparent square piston engine. The 

purpose was to learn more about how the electrode geometry affects the heat losses to the electrodes and 

the electrical performance of the ignition system, and how this affects the flame development process in an 

engine. The spark plug with the smaller electrodes was shown to reduce the heat losses to the electrodes, 

and thereby extend the stable operating regime of the engine. At conditions close to the stable operating 

limit, cycle-by-cycle variations in heat losses cause significant cyclic variations in flame development. 

Cyclic variations in heat loss are due to cyclic variations in the contact area between flame and electrodes. 

The contact area is largely controlled by the local flow field in the spark plug vicinity: cycles in which the 

flame is convected away from the electrodes have a smaller contact area than cycles in which the flame 

remains centered in the spark gap. 

The cyclic variations are due to the variations in combustion process. Although the engine runs under 

steady state conditions, there are variations in the pressure traces during the combustion process especially 

due to the variations in the rate of flame development and the combustion duration for consecutive cycles. 

While the combustion for some cycles occurs at optimum conditions, it may occur faster for some cycles 

and slower for others. The faster combustion cycles have higher in cylinder maximum pressure values (Pmax) 

than slower cycles, and the crank angle at which the in cylinder peak pressure qPmax occurs closer to TDC. 

Conversely, as the rate of combustion decreases, the Pmax decreases and the qPmax increases.  

 
2.4 Optical-access engines for combustion studies 

 
The visualization of in-cylinder mixing processes and combustion characterization remain a challenge 

from the very beginning of the IC engine. A particular interest is in the evolution of the combustion process 

of alternative fuels used pure or in blends with fossil fuels, in engines adopting more or less conventional 

configurations or new ignition systems, which could help to make possible further steps in the development 

of systems characterized by ever-lower emissions and fuel consumption levels. Visualization studies today 

still serve this purpose – after over a century of application, studies in optically accessible engines continue 

to provide new perspectives in engine research [68].  
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Figure 2.1 Schematic diagram of Bowditch’s slotted, extended piston design [69, 70] 

 

With regards to experimental engine research, single-cylinder, optical-access engines have been widely 

used as they allow the application of both qualitative and quantitative, non-intrusive, optical diagnostic 

techniques to gain a detailed insight of the mixing, combustion and emissions formation processes occurring 

in-cylinder. Although earlier work performed on optical engines provided useful experimental data enabling 

an improved understanding of fundamental in-cylinder physical phenomena and for the validation of CFD 

models, the value of optical engine data was often deemed to be rather limited from the engine developer’s 

point of view since optical engines were not considered to be fully representative of standard all-metal 

engines. In particular, certain compromises are often made such as the use of simplified piston bowl 

geometries in order to maximize engine optical access. Furthermore, single-component fuels rather than 

standard commercial fuels are often employed due to laser diagnostic constraints. Non-standard piston rings 

manufactured from specialist materials are also used on optical engines due to the need to dry-run these 

engines (i.e. the upper cylinder liner on the optical engine is not lubricated) and as a result, it is often 

claimed that engine blow-by is more significant in optical engines compared to standard engines. 
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In this section of the review of optically accessible engines, the unique characteristics of these special 

research engines and how these characteristics evolved to enable measurement of the desired quantities in 

a SI engine will be discussed. The basic architecture of the modern day optical accessible piston assembly 

was designed in 1958 by F.W. Bowditch of the General Motor Corporation, shown in Figure. Bowditch’s 

essential innovation involved slotting the piston extension to allow the combustion chamber to be viewed 

from below via a 45° mirror and a quartz piston top. In this way, a large degree of optical access could be 

obtained in overhead valve designs without significant modifications to the combustion chamber geometry. 

Bowditch reports successfully operating this engine at compression ratio up to 10.7:1 at engine speeds of 

1200 rpm. In developing this engine, Bowditch addressed many of the design challenges that optical 

designer will struggle with today. The shape and size of the quartz piston top, was selected considering 

mechanical, thermal and optical stress requirements. The operational difficulties that Bowditch encountered 

with this engine are likewise familiar to modern researchers. Excessive oil leakage past the valve guides 

was found to eventually foul the mirror, a problem that was resolved with special valve stem seals. 

Likewise, oil coming up from the crankcase was problematic, and required a special ring pack to resolve.  

Post 1945 work on SI engines, an engine design incorporating a large quartz head window similar to 

that used by Rassweiler and Withrow [71] was employed by Nakanishi, et.al [72]. Few decades later, 

researchers from MIT’s Sloan Automotive Laboratory [73] studied the combustion process in SI engine 

using flame photographs. In a SI engine, the combustion is initiated with the assistance of spark discharge 

and propagating a turbulent flame through a premixed air-fuel mixture. The researchers believed that the 

details of the flame propagation process influence the efficiency of energy conversion and engine 

performance, as well as pollutant formation. They studied the structure of flame development and its 

propagation, with the use of a square cross section engine [74] where two of the cylinder walls were quartz 

windows to permit full optical access to the cylinder volume throughout the entire engine cycle. The engine 

had a CR of 4.8:1, was run at a speed of 1380 rpm and was fired in short bursts of approximately 16 cycles. 

After approximately 3 fired cycles, the combustion was reasonably stable. Similar ‘burst’ firing strategies 

to obtain stable operation or desired surface temperatures in optical engines have been subsequently 

employed by others [75-77]. From the study, it was summarized that, from the set of photographs 

illustrating important aspects of flame development in a SI engine, both bulk gas motion and smaller scale 

turbulence were seen to have an influence on the flame kernel within a few degrees after ignition. The flame 

kernel can be convected away from the spark gap, the direction and extent of motion varying cycle by cycle. 

Around the same year, Richman and Reynolds developed the transparent cylinder research engine having 

a compression ratio which could be varied from 6.25 to 11, and a speed up to 3000 rpm. The innovative 

features of this engine were the use of electro hydraulic valve actuators and thin walled transparent cylinder 

fabricated from single crystal sapphire. Further after, due largely to the expense of full transparent liners, a 
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number of researchers chose instead to employ a transparent ring of limited height for the upper portion of 

the liner.  In parallel the drawback to the transparent liner designs with the lack of optical access into the 

combustion chamber of pent roof design, was rectified by placing optical windows in to the gables of engine 

head.  

A quickly removable liner concept is now an integral part of such modern optically accessible engines. 

With excellent optical access to the entire combustion chamber, and the ability to rapidly clean the optical 

windows, the next step towards making the most realistic engine measurements involved adopting piston 

shapes matching prototype engines. More recently, the optical engines developed by Lotus Engineering 

Ltd., in conjunction with Loghborough University and another one developed by Toyota Central R&D Labs 

has features incorporated to take measurements similar to production engines. The first engine features the 

hydraulically actuated Lotus Active Valve Train system such that there is no obstruction from a timing belt 

assembly.  Additionally, the transparent liner and gable windows are incorporated into a single piece, 

providing seamless access to the combustion chamber. The design targets for this engine were a maximum 

cylinder pressure of 60 bar and a maximum speed of 5000 rpm. To achieve this speed, the developers used 

both primary and secondary balancing shafts for the crankcase [78].  To enable still higher speeds, the 

Toyota design abandoned the usual balancing approach, and implemented a system based on twin, vertically 

opposed pistons [79], minimizing the bending forces on crankshaft. 
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Figure 2.2 High-speed optical engine developed by Lotus Engineering Limited and Loughborough 

University ([79]) 
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Chapter 3 

 

Experimental Setup 

 
This chapter describes the engine setup and explains the testing procedure. This study was performed 

in one of the engine laboratories in the WVU Evansdale campus. Figure 3.1 shows a schematic of the 

experimental setup, which consists of a single-cylinder research engine, dynamometer, control and 

instrumentation hardware for measuring and modifying the operational conditions of the engine.  

A 75-kW dynamometer (McClure 4999 Trunnion type) maintains a constant engine speed regardless 

of the engine load. The test setup includes an air flow measurement device, temperature measurement 

devices, fuel delivery equipment, different engine sensors (for e.g., cam sensor, crank sensor, etc.), and a 

central engine controller unit. A laminar flow element (LFE) measures intake flow rate, K-type 

thermocouples measure the temperatures of engine coolant, engine oil, intake air, and exhaust gas. A 100-

kg load cell with a strain gauge arrangement (TEDEA-Huntleigh 104H Coated) measures the engine torque. 

Further, an emissions bench with different types of gas analyzers for measuring the constituent species 

concentration in the exhaust gas is present. An aftermarket engine management system (Megasquirt Model 

3X), containing the pre-programed engine maps with desired operating parameters, is synced with all the 

essential engine sensors to monitor/control the engine operation.   

An in-house build skip firing controller (based on Arduino Nano prototyping platform) receives input 

from the engine encoder and the engine management system to allow the fuel injector to skip certain number 

of engine cycles. Additionally the skip firing controller provides burst of signals for triggering the camera 

for image acquisition during the fired engine cycles. These controls are vital for experiments conducted in 

an optical engine. 

 

3.1 The research engine 
 
The single cylinder research engine (Ricardo/Cussons, Model Proteus) was built to meet the need for a 

robust single cylinder machine in the 100-150 mm bore and 120-165 mm stroke range. Such an engine 

enables a wide variety of research areas to be investigated and in particular to replicate commercial multi-

cylinder engines without incurring the problems and costs of adapting a multi cylinder engine for research 

purposes. The engine, which is based on a Volvo TD 120 engine, has a classic toroidal bowl in piston 

combustion chamber in conjunction with a helical swirl. In addition, the same engine could be adapted for 
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both DI/IDI operations as well as photographic build for in cylinder flame observations. The engine is 

mounted on an integral base frame with separate oil and cooling modules. The control instrumentation is 

provided in a remote console. The original diesel configuration was modified to a high-compression spark 

ignition (SI) engine. As a result, the original diesel pump and injector were removed from the engine and 

the intake system has been modified to accommodate a port fuel injector. In addition, the original diesel 

injector mount was modified to fit a NG spark plug. 

 
3.1.1 Base engine 

 

The base engine can be modified for direct injection (DI), in-direct injection (IDI) and photographic 

investigations by replacing the cylinder head, piston and combustion chamber components. Table 3.1 lists 

the general specifications of the base engine. The reported maximum intermittent power of the engine is 

55kW, obtained on a load range curve at 36.7 rev/sec at a boost ratio of 3.0 and inlet air temperature 65°C. 

Figure 3.2 shows images of the test facility. 

Bore 130.2 mm 

Stroke 150 mm 

Swept Volume 1.997 liters 

Connecting Rod Length 275 mm between centers 

Valve timings Inlet opens 12 BTDC 

Inlet closes 40 BTDC 

Exhaust opens 54 BTDC 

Exhaust closes 10 ATDC 

Rated speed 1,200 rpm 

Compression Ratio 10 :1  

Combustion chamber Flat piston  

Table 3.1 Engine specifications in the photographic build 
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Figure 3.1 Schematic arrangement of the engine test setup 
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Figure 3.2 Different views of the testing facility   
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3.1.2 Optical experiment test procedure 
 

A Bowditch extended piston mounted inside a special engine extension “sandwiched” between the 

crankcase base and the cylinder head provides the optical access to the engine combustion chamber from 

below. However, this special arrangement of photographic piston and its corresponding liner does not 

contain the regular oil-feed channels. Hence, it is recommended by the manufacturer that the photographic 

engine build be run for just the minimum time necessary to obtain the conditions required for combustion 

imaging. The only method of lubrication for the extended piston assembly is the application of a small 

amount of molybdenum disulphide anti-scuffing paste to the walls of the upper liner. This provides enough 

lubrication for a few minutes of operation and hence need to be re-applied every run of the engine. However, 

this also means that the cylinder head needs to be removed any time a new application of anti-scuffing paste 

is needed. In addition, the application of a larger volume of the lubricating paste would lead to fouling of 

the optical windows and hence would distort the quality of the images recorded with the high speed camera.  

There are significant differences between the optical engine configuration and the DI/IDI engine 

configurations. These differences mainly arise from the design of the Bowditch piston. The Bowditch piston 

produces a lower compression ratio than the conventional piston; 10:1 compared to 13.3:1. In addition, the 

flat quartz piston creates a cylindrical bowl, compared to the original toroidal bowl. Further, the thermal 

conductivity of quartz is much lower than the one of the original aluminum piston, which can promote the 

formation of hot spots. Finally, the optical liner used with the Bowditch piston has a greater clearance than 

the stock thermodynamic liner, which results in greater blow-by. The Bowditch piston uses two of the three 

stock (thermodynamic) piston rings, which necessitate manual lubrication of the liner and piston rings at 

very frequent intervals during testing. Because of these numerous differences between the optical and 

thermodynamic engine configurations, a different operating protocol is required when performing optical 

engine measurements. To keep the quartz window from over-heating, the engine must be operated in a skip-

fired mode, where a fired cycle is followed by n motored cycles (with n ≥ 1) to reduce the heat transferred 

to the window and allow the window to cool between the fired cycles. Because of the numerous mechanical 

and instrument-related limitations, a specific optical testing protocol was followed to maximize the number 

of optical measurements, which is presented in figure 3.3. 
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Figure 3.3 Experimental protocol  

3.1.3 Dynamometer  
 

The 75kW DC dynamometer is mounted on trunnion bearings supported by pedestals. The unit is force 

ventilated by an electrically driven fan mounted on the base frame adjacent to the dynamometer. The dyno 

carries two torque arms each of which has a weight which can be adjusted in its slotted mounting hole to 

achieve static balance. The right hand torque arm is connected through a load limiting device to a 100-kg 

load cell that provides a continuous display of torque (Nm) at the control unit. The dynamometer was 

calibrated through a 10-point calibration ranging from 10 kg to 100 kg. The effective torque arm radius was 
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fixed at 407.8mm during the calibration. An arrangement of thyristor bank (KTK Model PS4O) powers up 

and drives the dynamometer, so that it can act as DC motor to drive the engine while it is motoring, or as a 

DC generator when the engine is fired (the DC power from the dynamometer is converted to 3 phase A.C. 

mode by the converter unit and fed back into the mains supply). A tach generator mounted on the 

dynamometer shaft provides a speed signal to the closed loop speed control system so that the speed selected 

at the control console is maintained by automatic adjustments to the motoring or loading torque.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        

 
3.1.4 Engine control unit 

 

The engine control unit is a racked panel consisting of three main sub systems: the safety shutdown 

unit (SSU), the dynamometer control unit and the speed/torque control unit.  

SSU is a safety trip system designed to protect the equipment based on the feedback of a certain fault 

conditions, such as dyno fault, under speed, over speed, oil pressure, or coolant temperature. In the event 

of any of these conditions being unsatisfactory, the appropriate warning light will start pulsing.   

The dynamometer control unit consists of start/auto, absorb and motor controls to facilitate the dyno 

operation. In the start/auto mode, the dynamometer automatically changes from motor to load and vice 

versa to maintain speed setting. In absorb mode, the dynamometer absorbs the power generated by the 

engine. The set speed is not maintained if engine power is below pumping and friction losses. Further, in 

the motor mode, dynamometer motors only. To start the dynamometer the SSU must be reset and coolant 

pump should be kept on. 

The torque-and-speed rack consists of digital and analogue displays reading the engine load (Nm) and 

speed (rev/sec).The signal received from the engine is conditioned and amplified through a dedicated signal 

conditioning system, whose detailed functionality is listed in the operating manual [80].  

3.1.5 Intake air system 

The engine is naturally aspirated through a 2”-diameter pipe system. A 2”-diameter laminar flow 

element (LFE; Meriam, Model 50MC2-2) ensures high accuracy, fast response time, and good repeatability 

of the intake air flow measurements (max 100 SCFM at a differential pressure of 5 inches of water). The 

intake air is filtered before passing through the LFE. As higher intake flow pulsations are expected from a 

single cylinder engine, pressure snubbers and orifices are placed downstream the LFE to dampen the 

pulsation effects produced by the intake valve motion. The LFE operation is detailed next. In addition to 

multiple internal flow straighteners to eliminate any turbulent flow, the LFE consists of an absolute pressure 

transducer positioned before and differential pressure transducer positioned across the flow straightening 

mechanism to calculate the volume flow of air flowing through. Included with the LFE is a NIST traceable 

calibration curve that provides the volumetric flow rate of air as function of the measured pressure. The 
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volumetric flow rate (Q) at standard conditions is determined from the differential pressure across the LFE 

using equation 3.1: 

                                                                     2( * ) ( * )actualQ B DP C DP= +                                          (3.1) 

where B and C are unique constants specified by the manufacturer after the LFE calibration. The flow rate 

calculated with equation 3.1 is then corrected for the difference in fluid viscosity relative to the viscosity at 

standard conditions:  

                                                                     
2( * ) ( * )* stdQ B DP C DP

f
µ
µ

= +                                       (3.2) 

where µstd is the viscosity of the viscosity of flowing gas at 70 F in micro-poise and µf is the viscosity of the 

flowing gas at the flowing temperature. Further, for the calculation of actual volumetric flow rate in standard 

conditions, the pressure and temperature correction factors are applied to the steps described above, to yield 

the final equation. 

                                                 2( * ) ( * )* * * fstd std
corrected

f std

PTQ B DP C DP
f T P

µ
µ

= +                              (3.3) 

A 30 gallon air tank is mounted 30” downstream of the LFE and 6” upstream of the intake to dampen 

the pressure fluctuations in the air intake system due to the cyclic opening and closing of inlet valve.  

3.1.6 Engine cooling and lubrication system 
 

Engine cooling is realized through a closed pressurized coolant system filled with a 50/50 mixture by 

volume of demineralized water and commercial anti-freeze. The pressurized header tank is a structure 

formed from rectangular steel tube constructed as an H-frame; when viewed from the engine the left hand 

leg and top section only form the engine coolant tank. The coolant is drawn from the bottom of the header 

tank and is pumped by an electrically-driven pump through the heat exchanger before passing out to the 

engine cylinder jacket. Out of the heating arrangement, the 6kW heater is used for the photographic build 

to achieve operating temperature before firing the engine. Temperature control of the coolant is achieved 

by a sensor in the vertical leg of the header tank, which is connected by a capillary actuator to an in-line 

valve controlling the raw water flow through the heat exchanger.  

Engine oil lubrication is realized through a separate temperature and pressure control loop. The 

lubricating oil is drawn from the engine oil sump by an electrically-driven pump and pumped through the 

heat exchanger, oil filter and temperature sensor pocket before delivery to the oil distribution manifold at 
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the engine. The oil temperature is controlled by a sensor which is connected by a capillary actuator to an 

inline valve controlling the raw water flow through the heat exchanger. A relief valve at the oil distribution 

manifold, maintains the oil pressure to 4 bar thereby delivering the excess oil back to the engine sump. The 

minimum oil pressure of 2 bar is monitored by a pressure switch also at the distribution manifold, which 

provides a signal to the SSU if the pressure fails. The engine oil sump also contains two 1.5 kW electrical 

heaters which are used to warm up the oil to working temperature prior to the start of the optical 

experiments. 

The fuel system consists of a chemically-pure methane gas bottle (Airgas CP Methane- 99.5% purity, 

Size 300) connected to the intake manifold through barbed connections and a hydrocarbon-fuel-resistant 

Buna-N rubber hose. The custom injection system uses 2 NG port fuel injectors (IG7 Navajo) that deliver 

the fuel to the intake manifold 55 mm from the intake valve. The injection duration is determined according 

to fuel maps set for a given operating conditions. Table 3.2 lists the detailed composition of the fuel used 

for this study.  

Fuel composition and characteristics Value 

Methane 99.5 vol % 

O2 <50 ppm 

H2O <10 ppm 

C2H6 <1000 ppm 

N2 <4000 ppm 

Molecular weight 16.0425 g/mol 

Specific volume 24.11 ft3/lb @ 70 ºF & 1 atm 

Table 3.2 Composition specification of chemically pure grade methane gas 

3.2 Data acquisition 
 
There are two data acquisition systems in the setup- high speed crank angle resolved in-cylinder data 

acquisition system and a 10 Hz sampling frequency, python based software to acquire and log other 

essential engine parameters such as temperature profiles, intake flow, engine load and emissions 

concentration.  

 

 
3.2.1 In-cylinder data 

 
Piezoelectric sensors (Kistler, Model 6011) are used for in-cylinder pressure measurement. A charge 

in sensor capacity (37 pC/bar) corresponding to a pressure change is output from the pressure transducers 
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to a Kistler charge amplifier type 5010. The signal is amplified and related to a voltage, which is then output 

to a DAQ card (National Instruments, Model SCB-68). A rotary optical incremental type shaft encoder 

(BEI, Model H25D) coupled to the crankshaft pulley measures engine speed and transmits the digital 

information (1800 clock pulses per rotation and 1 Z-pulse every rotation of the encoder) to the DAQ card. 

Additional inputs acquired by the DAQ card for combustion analysis are intake and exhaust gas temperature 

from K-type thermocouples. A high-speed multifunction M Series data DAQ board optimized for superior 

accuracy at fast sampling rates (National Instruments, Model PCI-6250) conveys the analog signals to a PC 

for analysis. In-house built software analyzes the data to provide preliminary combustion information. The 

Z-pulse mark provided from the shaft encoder helps identify the TDC offset of the engine. The accuracy of 

TDC offset is very important for the IMEP calculation and heat release calculation. From the acquired 

pressure data, suitable post processing code is executed in MATLAB to calculate the combustion related 

parameters such as apparent heat release rate, mass fraction burned, and indicated mean effective pressure 

(IMEP) variability.  

 
 

3.2.2 Other engine parameters 
 
An in-house data acquisition software (SCIMITAR) that was developed by Center for Alternative 

Fuels, Engines and Emissions (CAFEE) engineers on a Python software platform is installed on a Windows 

PC and used for the monitoring and time series logging of the essential engine parameters. Devices such as 

transducers, thermocouples and strain gauges transmits a suitable current or voltage signal which is 

proportional to the magnitude of the physical quantity measured. Over-the-shelf DAQ systems (Labjack, 

Model UE9 and ICPCON, Model 7010Z) are used as the hardware interface that receive the signals from 

the various engine and dynamometer sensors and send them to the PC. Module blocks programmed in the 

SCIMITAR software allow calibration and data logging of the engine sensors used for various 

measurements. The DAQ devices communicate with the PC through Ethernet-based routers. The model 

and technical specifications of the different data acquiring equipment are tabulated below in Table 3.3. 

 

Parameter Specification 

Engine Temperatures – coolant, oil, 

intake manifold, exhaust manifold 

Model: Omega K type, ungrounded 

Output: 0 - 25mV 

Absolute pressure  Model: Viatran 0-15 psi 

Output: 0-5 V 

Differential pressure Model: Ashcroft XLdp 5” WC 

Output: 4- 20 mA 
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Engine load Model: TEDEA 301-23, 100 kg 

Output: 0-10V DC  

Table 3.3 Technical specifications of the sensors used for data acquisition 

 
 

3.3 Image acquisition 
 

A high-speed camera (Photron, Model Fastcam SA5) acquires images of the combustion events through 

an f/1.4D 50-mm Nikon lens. The system is composed of the camera body, AC power supply, and the PFV 

controls software. The camera is mounted on a bridge shown in figure 3.2 and secured in place to minimize 

the effect of vibration during engine operation. A linear slider mechanism helps focusing the camera on the 

area of interest inside the combustion chamber.  

 
3.3.1 Optical measurement system 
 

The high-speed camera captures the combustion process from the SOI to the EOC. The camera was 

operated at 15,000 frame-per second (fps), which corresponds to 2.77 frames per crank-angle degree (CAD) 

at an engine speed of 900 rpm. The maximum image resolution at this framing rate was 512 x 512 pixels, 

which resulted in a 113 mm x 113 mm area. The camera exposure times was set to 58.82 µs (1/17,000 s). 

The camera body contains integrated chip (IC) based memory for image recording, equipped with a Gigabit 

Ethernet interface, as shown in figure 3.4. The interface permits full camera control and data download is 

possible via fast Ethernet connection to a PC. The external synchronization/trigger signals, input/output 

connector are also housed at the back of the camera. For all cases no additional filters were used. A circular 

window in the center of a Bowditch piston allows camera access from below via a mirror placed at a 45° 

angle. Figure 3.5 shows a schematic diagram of the photography system setup. 
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Figure 3.4 Sketch of rear panel of the Photron SA5 high speed camera [81] 

 
 

 

 
Figure 3.5 Schematic showing the optical measurement system [82] 

 
3.3.2 Image acquisition software 
 

Photron PFV Version 3.6.4 software controls camera operation (i.e., frame rate, active pixel array size, 

shutter speed, and camera triggering). The flame front propagation was recorded after SOC. The images 

were exported as .raw or .avi movies and subsequently compiled into a series of still images (*.tiff) for 

image processing using Matlab Image Processing toolbox.  
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3.4 Engine management system 
 

        An aftermarket electronic engine control unit (ECU; Megasquirt, Model V3.0X/3.5.7) was used to 

control and monitor the optical engine operation in the SI configuration. The ECU was used only for 

controlling the fuel injection rate and spark ignition timing based on the set operating conditions. These 

two parameters are determined by the software program supplied with the Megasquirt- known as Tuner 

Studio. Since the mixture entering the chamber is homogeneous, fuel injection duration is based on a mass 

per cycle setting, calculated from a desired equivalence ratio value. Calibration of the injector flow rate is 

included in Section 3.5. The ECU allows the adjustment of fuel through volumetric efficiency tables and 

adjustment of ignition timing (spark advance) as functions of engine speed (RPM) and engine load 

(manifold pressure, MAP). A higher volumetric efficiency value increases the amount of fuel being injected 

during the intake stroke and a lower volumetric efficiency decreases the amount of fuel. The Tuner Studio 

program lets us choose between different options of control algorithms for the calculations of pulse-width 

for the injectors. In the present study, Alpha-N algorithm was chosen. Alpha-N uses throttle position (alpha) 

and RPM (N) to calculate the amount of fuel to inject as opposed to using MAP sensors or other control 

algorithms. At each of the mapped operating condition of the engine, the ECU looks up in to the VE table, 

AFR table and thus places its correction, deciding upon how much fuel to be injected and what would be 

the pulse-width for that particular injection event. Similarly, ignition map specifies the spark advance (in 

CA °BTDC) to be commanded to the spark plug, for each cell in the operating map.  

Tuner Studio requires two signals from the engine to determine timing for engine and peripheral system 

events relative to piston position and stroke. A 6 tooth crankshaft encoder and a Hall-effect half-shaft 

encoder are the two signals generated for the ECU software. The toothed wheel is marked along the 

flywheel of the engine. The Hall Effect sensor, used for CAM timing is mounted on to the existing fuel 

pump setup in the DI diesel configuration of the Proteus.  

 

3.5 Fuel Injector 
 

The methane fuel is transported from the pressure regulator to the intake manifold through a CNG 

rubber hose. The natural gas injectors deliver a precise volume of gas to the intake manifold during the 

intake stroke, where methane is mixed with the incoming air. Figure 3.9 represents a schematic waveform 

containing injection characteristic parameters such as duty cycle, pulse width, opening/closing time, etc. 

Characteristic Unit Value 

Pressure bar (psi) 0.5 to 3 ( 7 to 43) 

Rated voltage (at coil) volt 10.8 to 14.4 
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Resistance ohm 2 

Suggested peak current time ms 3.0 

Suggested holding current A 1.6 

Minimum injection pulse ms 2.6 

Opening / Closing response time 

@14V 

ms 1.9 /1.4 

Static flow rate with max nozzle 

diameter 

SLPM 120 @ 1 bar inlet P 

180 @ 2 bar inlet P 

240 @ 3 bar inlet P 

Calculated max flow rate with max 

nozzle diameter 

kg/h 9.8 @ 1 bar inlet P 

13 @ 2 bar inlet P 

Leakage (with air) cc/h <=15 

Table 3.4 Technical Specifications of IG7 Navajo CNG injector used for the study 

The important technical specifications of the fuel injector used in the study is given in Table 3.4. In 

order to verify this precision accuracy, a bench test was conducted to measure the amount of flow variation 

when injected from a known command of pulse-width from the ECU. The flow was measured through a 

NIST standard 2” LFE with a sampling frequency of 10 Hz through SCIMITAR. Figure 3.7 shows the 

calibration plot provided for the injector with 4 seats working. In this setup, only two injectors were used. 

The results of injector flow, thus yielded from bench testing were similar to the manufacturer’s calibration 

trend in terms of flow (Fig. 3.6) and linearity of the plotted region (Fig. 3.9).  

 

Figure 3.6 Manufacturer calibration flow curves for the injector IG7 with 4 seats working 
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Figure 3.7 Injector flow curve plotted from bench testing at lab  

 

 

 

Figure 3.8 Schematic waveform of injector events per cycle basis 
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Figure 3.9 Linearity region in the flow calibrated injector performance curves 

3.6 Skip firing controller 
 

A skip-firing controller is required to protect the optical engine such that the upper extension of the 

piston assembly does not get overheated and to reduce the effect of fouling on the optical components due 

to repetitive firing every engine cycle (no applicable for this study as methane premixed combustion do not 

produce soot). In the present study, an electronically-operated skip-firing controller based on the Arduino 

platform was developed in-house. The controller intercepts the fuel injector command sent by the ECU, 

then allows the injector command pulse to pass through a solid state relay only once every ‘n’ cycles. Using 

the cam sensor as a reference, the controller starts the skip functionality by counting the number of pulses 

to from the instance it receives the first cam signal pulse. In addition, the controller monitors the engine 

encoder signal to trigger and synchronize the camera with the combustion events taking place inside the 

cylinder, on a scale of 0.1° crank angle resolution. In addition to skipping the injector pulse, the controller 
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also provides the TTL signals required for triggering the high speed camera. Specifically, the controller 

provides a pulse enough for the camera to remain exposed for the entire duration of the combustion event 

and subsequently provides bursts of multiple trigger pulses which would remain cascaded inside the long 

pulse. Each pulse inside the signal burst is synchronized with the engine encoder and allows the camera to 

capture one frame per pulse. A diagrammatic schematic of the skip firing controller logic and the triggering 

schematic for the camera is depicted in Fig. 3.10 and Fig.3.11 respectively. 

The camera memory-gate function can be employed to ensure the synchronization of the data 

acquisition system with the main cycle events and maximize the available camera memory space. However, 

this feature was not used in the present study, although the skip firing controller was designed to operate in 

conjunction with the memory gate function. The memory gate option prevents recording images 

continuously, which at the current frame acquisition rate would fill the camera memory in approximately 

50 engine cycles. Instead, image acquisition was triggered only for the fired portion of the engine operation. 

This also permitted increasing the number of cycles over which images are recorded by an order of 

magnitude. 

 

 
Figure 3.10 Schematic of the skip firing controller logic 

 

 



37 
 

 
Figure 3.11 Triggering schematic for camera 

 
 

3.7 Exhaust Gas Analysis 
 

A gas analysis system consisting of heated probes, heated transfer lines, temperature control units, and 

gas analyzers was used to measure the concentration of gaseous components in the exhaust gas stream. 

These raw-gas analyzers are setup in accordance with the CFR Title 40 regulations. A basic schematic 

diagram of the raw box analyzers is shown in figs. 3.15 –3.17. The heated probes are flooded probe type 

for supplying exhaust gases to the analyzer, at heated temperatures. The probes are fitted at the sampling 

plane according to the 10x diameter rule from the mixing region. Total hydrocarbons (THC), NOx, CO2 

and CO concentrations were measured in the raw exhaust. These probes were connected to heated lines 

which transfer the sampled exhaust to the gas analyzers. The hydrocarbon line and probe were kept at a 

wall temperature of 375°F±10°F (191°C ± 5.5°C) while the other probes and lines were heated to 

175°F±10°F (79°C ± 5.5°C). The temperatures were kept high to prevent condensation of water or volatile 

organic compounds in the sample lines for the NOx and CO samples and hydrocarbon compounds for the 

THC sample. All data were recorded at a sampling frequency of 10 Hz. CO and CO2 emissions were 

measured using a non-dispersive infrared (NDIR) analyzer (Horiba, Model AIA-210). NOx emissions were 

measured using a chemiluminescence-based detector (Eco Physics, Model CLD 844 CM). THC emissions 

were measured using a flame ionization detector (FID; Horiba, Model FIA 236). Dedicated temperature 

control modules (Omega, Model CNI-32) were used to control in a closed-loop system the temperatures of 

the various probes and transfer lines as per CFR 40 regulations [83].  Individual temperature controllers 

were assigned set points and when the temperature feedback from the transfer line and probes fell below 

this set point value the controllers send a signal to a solid state relay. The relay switches power to the 

respective heating unit to bring the temperature up to the set point and the controller disconnects the power 

through the relay once temperature set point has reached. 
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3.7.1 Emissions sampling manifold 
 

The emissions from the exhaust manifold is routed to individual component gas analyzers via a 

sampling manifold. The sampling manifold receives the gas sample through heated lines maintained at a 

temperature of 375 F and distributes them to specific gas analyzers, comprising an arrangement similar to 

that of the inside of raw analyzer boxes, as discussed in the forthcoming sections. 

 

3.7.2 CO and CO2 emissions analyzer 
 

The operating principle of the CO/CO2 analyzer is based upon the infrared wavelength being capable 

of absorbed by CO/CO2 gases. Two equal infra-red energy beams are sent through corresponding optical 

chambers. One chamber is filled with a reference gas and sealed and the other chamber consists of the 

continuously-flowing sample gas. The IR beam is interrupted by a chopper at a given frequency. As the 

beam passes through the gas filled chambers it gets absorbed by the flowing gases and the detector placed 

on the far end of the chamber reads the reduced intensity of the beam. The quantity of the IR beam thus 

absorbed would be proportional to the concentration of the flowing gas. The detector measures the intensity 

of radiation from the reference cell as well the sample cell and converts the difference in radiation as change 

in capacitance, which in turn is converted to sample concentration. A schematic illustration of the CO/CO2 

gas analyzer operating principle is illustrated in fig. 3.12. 

  

 

Figure 3.12 Schematic illustration of NDIR operating principle [84] 
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Upon entering the CO2 sampling system, the sample is drawn through a heated filter by a heated pump. A 

rotameter regulates the sampled gas flow through the NDIR analyzer at the required values (2” of water). 

 

3.7.3 THC emissions analyzer  
 

The hydrocarbon sample is drawn from heated probes through the sampling manifold and stainless steel 

transfer lines maintained at 375 F (190.5°C) to prevent condensation of hydrocarbons in the transfer tubes. 

The analyzer consists of a burner which is supplied with fuel (60% hydrogen and 40% helium) and air. The 

sample gas passes through the burning flame and undergoes an ionization process producing electrons and 

positive ions. These electrons are collected by an electrode, which causes a current to flow through the 

external circuit. The ionization current produced is proportional to the number of carbon atoms entering the 

burner which is a measure of the hydrocarbon content of the sample. Schematic illustration of the THC gas 

analyzer operating principle is illustrated in fig. 3.13. 

 

 

 

Figure 3.13 Schematic illustration of FID operating principle [85] 
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3.7.4 NOx emissions analyzer 
 

This analyzer works on the principle of chemiluminescence measurement technique. 

Chemiluminescence is the emission of light as the result of a chemical reaction that does not involve an 

increase in its temperature. The NOx analyzer consists of an ozone generator, NO converter, reaction 

chamber, photo electric diode and signal processing electronics. The reaction between ozone and NO leads 

to the formation of highly excited state NO2 which returns to its ground state by emitting a photon. 

                                                                   *
3 2 2NO O NO O+ → +                                                        (3.4) 

                                                       *
2 2 ( )NO NO photons redlight→ +                                                (3.5) 

 

A photodiode measures the intensity of photons emitted and the measurements correlates with the NOx 

concentration of the sample gas. Schematic illustration of the THC gas analyzer operating principle is 

illustrated in fig. 3.14. 

 

 

Figure 3.14 Schematic illustration of CLD operating principle [86] 

 
The exhaust gas is sampled through heated probe from a sampling manifold via transfer line. The line 

is maintained at 240 °F (115.5 °C) to avoid water condensation. To perform the NOx (NO+NO2) 

measurement, the analyzer employs a converter which converts all the NO2 in the sample to NO on a heated 

vitreous carbon bed before passing them through the reaction chamber. This step is bypassed if the analyzer 

is on NO mode. 
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Figure 3.15 Flow schematic for CO2 analyzer box [87] 
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Figure 3.16 Flow schematic for THC analyzer box [87] 
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  Figure 3.17 Flow schematic for NOx analyzer box [87] 
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Chapter 4 

 

Results & Analysis 

 
 
4.1 In-cylinder pressure analysis  
 

In-cylinder pressure is used to monitor and analyze the IC engine operation. The pressure analysis is 

based on the first law of thermodynamics and relies on two parameters: the cylinder volume and the working 

fluid pressure. Pressure measurements were synchronized with the signal received from the engine encoder, 

which sends a signal every 0.1 CAD. The cylinder volume is calculated at the corresponding CAD using 

equations 4.1 and 4.2. Accurate calibration of the absolute crank position is extremely important since it 

has a very strong influence on IMEP and heat release rate calculations. Determination of TDC aids in such 

calibration, which carries a significant influence on pressure trace [88].  

 

                                                 𝑉𝑉 = 𝑉𝑉D

𝑟𝑟c−1
+ 𝜋𝜋𝜋𝜋

2

4
 (𝑙𝑙 + 𝑎𝑎 − 𝑠𝑠)                                          (4.1) 

 

                                                                   2 2 2cos ( sin )s a l aθ θ= + −                                              (4.2) 

where VD is the cylinder volume at BDC, rc is the compression ratio, B is the bore diameter, l is the 

connecting rod length and a is the crank radius. 

It is necessary to ensure that the value of the dynamic compression ratio is determined correctly to 

ensure the correct computation of combustion parameters, [89]. The dynamic (compressive/tensile) and 

thermal loading of the extended piston-liner assembly on the optical engine changes the effective (static) 

compression ratio specified by the manufacturer. Increased blow-by rates in optical engines further increase 

the complexity of measuring the crevices volume, therefore motivating to pursue alternate methods for 

estimating compression ratio [96]. Several methods for estimating the dynamic compression ratio are 

available in the literature, whether based on in-cylinder pressure traces [90, 91] or measured flow rates [92, 

93]. The analysis of motored pressure traces (Figure 4.1) was preferred in this study since it eliminates the 

uncertainty associated with the evaluation of heat released from combustion [94]. Given that the 

temperature levels are lower compared to fired operation, the influence of combustion chamber deposits, 

which could influence heat transfer [95], would also be reduced by such analysis.  
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In-cylinder pressure data must be processed by suitable mathematical methods before it could be used 

for combustion analysis.  Piezoelectric transducers used for measuring the pressure of working fluids 

require referencing their output to the atmospheric pressure (i.e., “pegging”). Literature available for 

estimating the cylinder pressure pegging may be divided into two main groups: (i) methods which require 

additional absolute pressure reference and (ii) the methods which utilize the polytropic compression curve 

[97]. The latter method was used in this study. After referencing the cylinder pressure to an absolute value, 

the in-cylinder pressure is filtered to minimize the signal noise. The noise in the pressure signal can be due 

to (i) the conversion of pressure to electrical signal in the sensor (because of thermal effects, lack of linearity 

in sensor due to ageing, sensor resonance, etc.), (ii) the analog to digital conversion, (iii) signal transmission 

effects, or (iv) the combustion chamber resonance [98].  

 

Figure 4.1 Motoring trace after pegging for compression ratio calculation 
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Figure 4.2 Example of a combustion pressure trace for a fired cycle 

The compression ratio calculated from the motoring trace was 10.7. The final step in the processing of 

in-cylinder pressure data is filtering.  

 

Figure 4.3 In-cylinder pressure raw data (without filter) for combustion trace of 97 engine cycles 
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Figure 4.4 Zero phase digital filter for combustion traces of 97 cycles 

 

 

Figure 4.5 Butterworth filter (fourth order) for combustion traces of 97 cycles 
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The acquired pressure signal contains point to point variation due to the signal noise. It is therefore 

necessary to smoothen the pressure trace, to obtain a smooth mean-pressure cycle before carrying out heat-

release calculations and henceforth making any interpretations about the combustion process. Different 

averaging and filtering techniques can be found in literature for smoothing the signal, thus allowing a 

precise combustion diagnosis. However, there is not a consensus in the scientific community about the 

optimal way to proceed [99]. In this study, we have used MATLAB’s Butterworth filter and a zero-phase 

digital filter to analyze the combustion events (Figures 4.4 and 4.5). The zero-phase filter does a forward-

backward filtering, i.e., filter, reverse the signal, and filter again and then reverse again, to reduce phase 

distortions. On the other hand, a Butterworth filter has the advantages of being smooth and monotonically 

decreasing frequency response. Once the cut-off frequency of a Butterworth filter is specified, the steepness 

of the transition is proportional to the filter order. Higher order Butterworth filters approach the ideal low-

pass filter response. In the present study, a fourth-order Butterworth filter was chosen. One of the key issues 

t during pressure-trace filtering is the selection of the cutoff and stopband edge frequencies. For our 

analysis, we used 6000 and 0.2 as cut-off and stopband edge frequencies, respectively. This selection was 

based on the quality of the corresponding heat release rate. Once the higher-frequency noise was removed 

from pressure signal trace, the remaining physical information was representative of the actual pressure 

signal.  Figs. 4.4 and 4.5 show an example of large cycle-to-cycle variations in the pressure traces, due to 

cycle-to-cycle fluctuations in the in-cylinder fluid motion, turbulence, equivalence ratio, ignition energy 

etc. Such variations are the result of poor engine control, hence our motivation to design an accurate control 

system for our optical engine. 

After the pressure data was filtered, it is important to validate the accuracy of cylinder pressure vs crank 

angle data. Heywood [47] suggests the use of log P vs log V graph for a motored engine operation to check 

the quality of cylinder pressure data. On the log P vs log V graph, the combustion process would be a 

straight line of slope equal to the ratio of specific heats (gamma). Other parameters like SOC and EOC 

could be identified from the location of the departure of the curve from the straight line. Since both the 

compression of unburned gases prior to combustion and the expansion of the burned gases following the 

end of combustion are close to adiabatic isentropic processes, a behavior close to polytropic relation would 

be expected (PVn = constant) [100]. Fig. 4.6 and Fig. 4.8 shows the P-V plot and log P vs log V plot 

respectively for the combustion and expansion strokes. The indices of compression and expansion turned 

out to be 1.29 and 1.31 respectively. These calculated values are lower due to a variety of reasons. Firstly, 

the engine combustion chamber, by the virtue of its build itself is not ideally adiabatic and comprises of 

different means of heat losses from the cylinder walls. Also, there might be potential errors in pegging the 

cylinder pressure data. The combination of all these unaccounted effects could be the reason for the 

observed deviation in behavior. Fig. 4.7 shows an in-cylinder cut off view of the optical access engine.  
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Figure 4.6 P-V diagram of an engine cycle 

 
 

 

Figure 4.7 In cylinder cut off view of a typical single Cylinder Optically Accessible Engine  
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Figure 4.8 Log P vs log P, plot of a combustion cycle 

 
The correlation between pressure rise, burning rate, and flame propagation rate are determined by 

extracting both the mass fraction of burned gas and the fraction of volume enflamed as functions of crank 

angle, from the experimental data. The methods used for this purpose and some empirical correlations 

found, are discussed in this section. 

To start with the calculation of parameters determining combustion process , thermodynamic analysis 

are performed both on a cycle-to-cycle basis and also using data averaged for sets of consecutive cycles. 

The correlation developed by Woschni [101] was used for calculating the convective heat transfer 

coefficient.    

                                                                     h = 3.26 x B-0.2 x p0.8 x T-0.53 x w0.8                                       (4.3) 

 

where h is measured in W m-2 K-1, B in m, p in kPa, T in K and w in ms-1 is dependent on mean piston speed. 

w is the average gas velocity, Sp is the mean piston speed, Vd is the displaced volume, p is the in-cylinder 

pressure, pr, Vr and Tr are the working fluid pressure, volume and temperature at reference state and pm is 

the motored cylinder pressure. C1 and C2 are 2.28 and 0 for the compression period & 2.28 and 3.24e-3 for 

expansion period. 
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With the convective heat transfer coefficient values given by the above correlation, the convective heat 

transfer rate to the combustion chamber walls can be calculated using equations 4.4 and 4.5 

 

                                                               wdQ
dt

 = ( )*  –  b wA h T T 8                                                        (4.5) 

 

where A is the chamber surface area, Tb is the burned gas temperature and Tw is the cylinder wall 

temperature. An important advantage of the heat release analysis is that the inaccuracies in cylinder pressure 

data and heat release calculation could be found out, as it relates the pressure changes to the amount of fuel 

chemical energy within the cylinder.  

 

                                                           
1

1 1
wQdQ dV dPP V

d d d d
γ

θ γ θ γ θ θ
∂

= + +
− −

                                        (4.6) 

 

Figure 4.9 The apparent heat release rate for a representative combusting cycle  
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An expression used to represent the mass fraction burned versus crank angle curve was given by Wiebe 

[102] as a function in equation 4.7. 

 

                                                            ( )( ) 1
 1 –      /  

m
b ox exp a θ θ δθ

+
= − − 

                               (4.7) 

 

where θ is the crank angle, θo is the start of combustion, δθ is the total combustion duration (xb=0 to xb=1), 

and a=5 and m=2 are chosen adjustable parameters specific to a combustion process. The curve obtained 

from this plot, has a characteristic S-shape. The rate at which the charge mixture burns, increases from a 

low value immediately following the spark discharge to a maximum about half way through the burning 

process and then decreases to close to zero as the combustion process ends. Hence, the s-curve proves 

convenient to characterize different stages of combustion process by their duration in crank angles. 

 

 

Figure 4.10 Mass fraction burned from -5 deg to 50 deg combustion duration for a representative cycle 

 

Next, the MFB profile calculated according to Rassweiler and Withrow method [reference] is presented 

in figure 4.11. The Rassweiler and Withrow method is based on the assumption that, during engine 

combustion, the pressure rise ∆p consists of two parts: pressure rise due combustion (∆pc) and pressure 
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change due to volume change (∆pv): Δp= Δpc+Δpv. Assuming that the pressure rise ∆pc is proportional to 

the heat added to the in-cylinder medium during the crank angle interval, the mass fraction burned at the 

end of the considered i-th interval may be calculated as [47] formulated in equation 4.8: 

                                                                0

0

( )
( )

b

i

c
b

N

c

p
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∆
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∑

∑
                                                   (4.8) 

where 0 denotes the start of combustion, N – end of combustion (N is the total number of crank intervals). 

For the MFB calculations knowledge of ∆pc is necessary, and a pressure change due to volume variation is 

given by: 
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                                         (4.9) 

 

Figure 4.11 Mass fraction burned profile based on Rasswieler & Withrow method for a representative 

cycle 

It is also of interest to measure the cycle-to-cycle variability, derived from pressure data. In terms of 

available data, it is equal to the coefficient of variation in indicated mean effective pressure (IMEP), 

expressed statistically as in equation 4.10. It is well documented that vehicle drivability suffers when 

COVimep exceeds about 10% [47]. Also, the primary metric used to determine engine load is mean effective 
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pressure (MEP). The mean effective pressure is defined as work per cycle divided by displaced volume, 

yielding a value with units of pressure, and is calculated by integrating cylinder pressure versus volume (P-

V) data. The COVIMEP was 6.17%  

                                                                     *100imep
imep

imep

COV
σ
µ

=                                                       (4.10) 

 
Parameter Value 

Engine speed 900 RPM 

Gross IMEP 593 kPa 

Intake manifold pressure 98 kPa 

Intake air temperature 300 K 

Spark timing 20 BTDC 

Start of Injection 372 BTDC 

Injection pulse-width 18 ms 

Spark duration 1 ms 

Equivalence ratio 1.1 

Fuel injection rate 3.37 kg/h 

Air mass flow 52.5 kg/h 

Volumetric efficiency 79.8% 

Table 4.1 Engine operating parameters  

 
Figure 4.12 IMEP of combusting cycles 
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It is to be noted that a 1/5 skip-firing strategy was used for this study. Skip-firing technique is used as 

a means to allow sufficient cooling of the combustion chamber surfaces. The engine was operated under 

the following conditions as listed in Table.4.1. Figure 4.13 shows the engine load profile for a single set of 

5 skipped injections for every combustion event. 

 

 

Figure 4.13 Engine load profile for one set of skip fired operation  
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4.1.1 Co-relation of combustion with optical data 
 
 

 
                  Figure 4.14 Imaged region relative to the total cylinder head area (black circle), spark 

location, and engine valves. The region is limited by the piston bowl edge (red circle) 

 
In this section, a set of twenty images is used to describe the correlation between the combustion data 

and flame speed. These images are representative of each of the combustion events marked in figure 4.9. 

The red circle in Figure 4.14 shows the actual photographed region relative to the total in-cylinder radial 

area. After ignition, the flame front expanded radially developed from the location of the spark plug across 

the piston bowl. Due to the high spark luminosity at the spark plug location, the flame kernel luminosity 

was partially hidden in the first few images acquired after ignition. The flame front propagation in figure 

4.15 indicates a wrinkling flame structure. The air/fuel mixture burns in thin, laminar-flame-like layers, 

which are stretched and wrinkled by turbulence, whereas the principle structure is not changed by 

turbulence [103].  
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Figure 4.15 Raw flame images representative of combustion events from CAD -10 to CAD 50 
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4.2  Image processing 
 

 

                                  
                                    a                                                                                           b 

                                                     

Figure 4.16. Image processing steps: (a) raw image, (b) determination of area of interest, (c) signal 

thresholding, and (d) binarization 

 
A suitable post processing method was scripted in MATLAB to automatically load and process the 

images according to the following steps. Figure 4.16.a. shows a typical raw images. The first step in the 

image processing was to determine the area of interest, which is represented by the combustion bowl 

boundary (see Fig. 4.16.b). The next step was to identify the flame area using signal thresholding. 

Specifically, all the values of the pixels in the area of interest that were lower than a certain percentage of 

the signal intensity in the most bright flame area were considered equal to zero (see Fig. 4.16.c).  Finally, 

the image was binarized with a thresholding of 0.1. A critical and frequent problem in when the image 

boundaries are not sharply demarcated is the choice of a correct threshold level. For example, the first image 

when the flame begins. In such a low intensity image, the intensity of grayscale pixels at different points 

across the dim intensity flame area is determined. The mean intensity of these dim pixels is taken as 

thresholding value. After the thresholding, morphological transformations were applied to fill holes and 
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remove small border objects. In order to decrease noise and smooth the contour, a low pass filter was 

applied. Further these steps, a circle of dimensions equal to that of the piston bowl edge is masked onto the 

binarized image. Now, the matrix of masked image is multiplied with the image matrix of the binary image. 

In doing so, all the white pixels (binary-1) inside the masked circle will be retained and those outside the 

region of interest will be turned black (binary-0). From the obtained flame images, geometric properties 

such as area and perimeter are computed using inbuilt MATLAB image processing functions. The above 

described procedure is iterated in a loop for all the images and thereafter written into a destination folder, 

after applying the processing steps. 

The burning rate can be extracted from the flame area. Assuming a spherical flame, the radii of the 

burnt gas area and the perimeter, Rs and Rp respectively, were determined using equation 4.11: 
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π

=

=
                                                                (4.11)                                     

where A and P are the flame area and perimeter, respectively, deduced from the monochromatic combustion 

images.  The wrinkling ratio W as defined by Renou and Boukhalfa [104] is also calculated according to 

equation 4.12: 
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Fig. 4.17 shows a plot of the computed wrinkling ratio growth with CAD, for a combustion cycle. A 

flame propagation (turbulent) speed is then derived from Rs: 

 

                                                                                 s
Rs

dRS
dt

=                                                             (4.13) 
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Figure 4.17 Characteristic plot of wrinkling ratio with the flame growth 

 

4.2.1 Flame radius  
 

At any given flame radius, the geometry of the combustion chamber and the spark plug location govern 

the flame front surface area, which is the area corresponding to the leading edge of the flame. Figure 4.18 

shows that the flame had already reached the combustion bowl boundary at -6.5º ATDC, which limits the 

number of frames that can be used to calculate the flame area. Further, by deducing the summation of area 

of pixels, in a fully flame spread spherical surface of the binary image, we can co-relate the pixels area in 

terms of metric units, given that the diameter of the combustion bowl is 76 mm and the depth of the window 

is 31.75 mm. Figure 4.19 shows the calculated growth in flame radius vs CAD. The frequency of acquisition 

of the images was 15,000. 
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Figure 4.18 Example of flame images used to determine burn rate parameters  
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Figure 4.19 The flame radius increase with CAD for a representative combusting cycle 

 

To test the correctness of our experimental setup and, we compared our flame images with images in 

the literature at similar operating conditions. Figure 4.20b shows the Planar Laser Induced Fluorescence 

(PLIF) images of methane-air pre-mixed combustion mixture performed by Kaminski et.al [105]. The 

middle row in Fig 4.20b show a similar degree of wrinkling at similar in-cylinder turbulence.  

 

 
 

Figure 4.20 a, b, c Evolution of flame front growth studied experimentally using PLIF by [105] 
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4.3 Flame propagation 
 

The combustion process in spark-ignition engines has been studied extensively in the last five decades. 

These studies have established that the initial, flame is relatively smooth [106-109]. As it grows, the flame 

front becomes increasingly influenced by the turbulent flow field through which it is spreading and 

eventually develops a highly wrinkled and possibly end up like a multiply connected structure [110]. 

Homogeneous (or pre-mixed) charge combustion in SI engines is an unsteady process in which an ignition 

flame kernel of size about 1 mm grows over a time of 1 ms into a fully developed flame front with a front 

to back thickness of approximately 10 mm that propagates through the chamber [111]. In agreement to this 

conclusion, as the flame developed progressively, it became more wrinkled and thereby increased the flame 

thickness, surface area and burning rate [112]. 

There is a wealth of experimental data available at atmospheric conditions, (include flame visualization) 

that yield information on the rate of entrainment of unburned gas into the flame front [113-115]. However, 

flame-related data are sparse at the elevated temperatures and pressures encountered in engines. The limited 

data available have been derived based on thermodynamic analysis of pressure development, with an 

assumption incorporating thin spherical flame growth, inside constant volume combustion bombs [116-

118]. The laminar burning velocity, SL is then given by,  

                                                                          
( )
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 =                                                             (4.14)                                                  

where mass burning rate is determined from the rate of pressure rise in the vessel and Af is the flame area. 

Since the laminar flame thickness under engine conditions is in the order of 0.2 mm [47] and is much less 

than the characteristic flame thickness observed in a spherical bomb vessel, the flame can be treated as 

negligibly thin. Other parameters which do lack to fully account for the physical phenomena taking place 

inside engines, include rate of flame stretch (a function of flame radius and curvature as well as turbulence) 

and flame development inside turbulent conditions of flow field, which will be addressed in the forthcoming 

sections [119, 120]. 

 
4.3.1 Flame speed calculation 
 

Spherically expanding flame method has been one of the methods to determine the laminar flame speed 

of the burning mixture. This spherical flamelet assumption in SI engines has often been found to be valid 

for low and midrange engine speeds, which are representative of this study [121]. Turbulent flame velocities 

have been directly derived from the post processed images. The surface area is calculated as a summation 

of pixels. The flame propagation speeds were calculated as the time derivative of the surface radius (vide 

equation 4.13). As observed from Fig. 4.21, the increasing flame wrinkling may have contributed to 
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increasing the flame speed. The flame speed thus measured directly from the engine, is a combination of 

two physical effects occurring in the flame kernel development – viz. flame stretching and flame wrinkling.   

 

Figure 4.21 Flame velocity for a representative flame images set. 

 

Figure 4.22 shows the cycle-to-cycle variability in turbulent burning velocity. The reason for this 

behavior in the flame speed can be attributed to the variations in spark energy and in-cylinder flow 

movement which influenced the growth of the initial flame kernel as well as the fully-developed turbulent 

flame. There is strong experimental evidence in the literature that the initial flame kernel growth is 

responsible for up to 50% of the total cycle-to cycle variations in a gasoline SI engine [142-144]. Since 

Fig.4.21 and Fig. 4.22 were constructed from the turbulent velocities measured directly from the 

experiments, the cycle variability in flame speed are a direct indicator of the combustion robustness. It can 

be seen how each cycle had differemt SOC and flame propagation characteristics. A possible explanation 

could be the cycle-to-cycle variation in the in-cylinder conditions, or the variability in engine spark/fueling 

parameters. This aspect needs further investigation for a detailed understanding of the cycle-to-cycle 

variations in NG SI engines.  
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Figure 4.22 Cyclic variability in flame speed vs CAD 

 

4.4 Intake flow measurement 
 

An intake surge tank is a solution to reduce pressure fluctuations inside the intake manifold. Figure 

4.23, which compares intake flow rate with and without a surge tank arrangement, shows that the intake 

surge tank reduced up to 83% the variations in the measured air flow rate.  

 

Figure 4.23 Effect of surge tank on intake flow fluctuations with 0.01” orifice snubbers 
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4.5 Emission characteristics 
 

Figure 4.24 shows the trend of observed CO2 emissions versus the engine load.   CO2 emissions 

decreased for the first 20 seconds of the measurement then stabilized. This trend can be explained by the 

time it takes for the exhaust flow to properly mix inside the collection manifold before reaching the 

analyzer.  Next, figure 4.25 shows HC and CO emissions. The plot shows good agreement of both the 

trends, which is considered an important parameter to validate the emissions data. The CO emissions are 

primarily influenced by the air fuel equivalence ratio. Since the engine was operated slightly richer than 

stoichiometric conditions, the CO emissions were significant, even with the skip fire ratio of 1/5. 

Hydrocarbon emissions are a direct result of incomplete combustion processes, including crevice effects 

and partial oxidation of combustion products.  

 

Figure 4.24 Measured emissions level from NDIR gas analyzer for one set of skip fired operation 
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Figure 4.25 Measured emissions level from FID gas analyzer for one set of skip fired operation 

 

 

 

 

 

 

 

 



68 
 

Chapter 5 

 

Conclusions 

 

The goal of this study was to develop an experimental platform for optical investigations of engine 

combustion phenomena based on a single-cylinder heavy-duty spark-ignited engine. The Ricardo Proteus 

research engine uses a Bowditch piston to provide optical access to the combustion chamber. This optical 

engine was used for a preliminary investigation of the flame speed in NG combustion. The first part focuses 

on the setup of a single-cylinder research engine with optical access including the design of its control 

system and the acquisition of in-cylinder pressure data and high-speed combustion images. The second part 

focuses on measurements of the turbulent flame speed using the high-speed combustion images. 

The optical engine control system can acquire operating parameters (engine speed and torque, air and 

fuel mass flows, engine fluids temperature), in-cylinder pressure data, combustion images, and engine 

emissions. The LFE used for intake flow measurements showed large variations in before the installation 

of pressure snubbers and a surge air tank close to the intake valve.  

Two different methods of digital signal processing, i.e., zero phase digital filter and fourth order 

butterworth filter, eliminated signal artefacts and smoothened the in-cylinder pressure signal for combustion 

analysis. The Butterworth filter showed superior performance compared to the zero-phase digital filter, 

indicating it as a method of choice for pressure analysis.  

Combustion natural luminosity was used for fundamental combustion analysis in the second part of the 

study. This visualization technique used a high-speed CMOS camera to acquire time resolved in-cylinder 

flame images of the burning mixture at 900 rpm, at close to stoichiometric conditions. A post processing 

technique based on the increase of flame area per unit time was developed in MATLAB and use to 

determine the flame speed. The flame front radius were calculated and reported as a function of the CAD 

during the first stages of the combustion process (i.e., up to the moment the flame reaches the piston bowl 

edge), for each of the engine cycle recorded. The turbulent burning velocity was derived from the growth 

radius. Subsequently, the processing was applied for several engine cycles to discuss the cycle-to-cycle 

variability with reference to the SOI and SOC. 

The following conclusions were drawn from the analysis of the acquired in-cylinder images: 

- Image analysis is a helpful tool to explain the results obtained from thermodynamic analysis. 
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- The flame edge at the operating conditions investigated in this study was irregular, but roughly 

spherical, supporting the flamelet assumptions. 

-  Flame stretch and the turbulent in-cylinder flow strongly affected the calculated flame speed. 

 

5.1 Future work 

It is recommended that the experiments could be repeated with different blends of natural gas with 

varying composition and thereby study the effect of fuel compositional changes on flame properties. The 

study could be extended for investigation of the effect of the equivalence ratio on the turbulent burning 

velocity of the flame. Flame stretching and curvature as well as Lewis number effects could also be studied 

over a wide parametric range.  

The current framework of skip firing controller based on Arduino are very sensitive to external RF 

interferences and hence requires proper insulation of the controller from the strong electric fields nearby, 

such as those coming from the dyno. There is a need for a more robust technique to synchronize both the 

image acquisition, data acquisition, fueling, and emissions systems simultaneously. One feasible approach 

could be to tap in to the PCI card for the digital signals of z pulse (1 pulse/ rev) and clock pulse (1 pulse/ 

0.1 CAD) from the rotary shaft encoder. These signals could be processed and suitably to output TTL 

signals for camera trigger and digital outputs to open the solid state relay for the injection circuit. Also, this 

type of master-slave synchronization technique would allow us to corelate the emissions data with the 

acquired images, to gain an insight in to the formation of pollutants, from an in-cylinder perspective. 

The optical portion of the engine limits us in taking experiments for more than a few minutes. The dry 

lubrication paste and coolant jackets are the only means of reducing the effect of thermal stress. In order to 

ensure, uniform cooling of the cylinder wall to get accurate representative data, it is recommended to modify 

the coolant system to allow precise control of raw water supply, during the course of bringing the engine 

to steady state operating condition.  
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