
Graduate Theses, Dissertations, and Problem Reports 

2010 

Predicting species composition in an eastern hardwood forest Predicting species composition in an eastern hardwood forest 

with the use of digitally derived terrain variables with the use of digitally derived terrain variables 

Richard D. Flanigan 
West Virginia University 

Follow this and additional works at: https://researchrepository.wvu.edu/etd 

Recommended Citation Recommended Citation 
Flanigan, Richard D., "Predicting species composition in an eastern hardwood forest with the use of 
digitally derived terrain variables" (2010). Graduate Theses, Dissertations, and Problem Reports. 2957. 
https://researchrepository.wvu.edu/etd/2957 

This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research 
Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is 
permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain 
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license 
in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses, 
Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. 
For more information, please contact researchrepository@mail.wvu.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The Research Repository @ WVU (West Virginia University)

https://core.ac.uk/display/230482462?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F2957&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd/2957?utm_source=researchrepository.wvu.edu%2Fetd%2F2957&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu


PREDICTING SPECIES COMPOSITION IN AN EASTERN HARDWOOD  
FOREST WITH THE USE OF DIGITALLY DERIVED TERRAIN VARIABLES  

 
 

By 
 

Richard D Flanigan 
 

A Thesis submitted to the 
Davis College of Agriculture, Natural Resources and Design 

at West Virginia University 
 

in partial fulfillment of the requirements 
for the degree of 

 
Master of Science 

In 
Forestry 

 
 
 

John Brooks Ph.D. co-Chair 
Michael P. Strager, Ph.D. co-Chair 

Tim Warner, Ph.D.  
Jeff Simcoe, M.S. 

 
Division of Forestry and Natural Resources 

 

Morgantown, WV 
 
 
 

2010 
 
 
 
 

Keywords: Forest species composition, landform modeling, terrain analysis,  
GIS /spatial analysis 

Copyright 2010 Richard D. Flanigan 
  



Abstract 

PREDICTING SPECIES COMPOSITION IN AN EASTERN HARDWOOD  
FOREST WITH THE USE OF DIGITALLY DERIVED TERRAIN VARIABLES  

 

Richard D. Flanigan 

 

This thesis addresses the need for improved classification of remotely sensed imagery in the 
complex hardwood forests of West Virginia.  A geographic information system (GIS) was used 
in conjunction with forest plot data to develop a model to predict species composition in the 
eastern hardwood forest of West Virginia.  The study area was located on the West Virginia 
University Research Forest (WVURF) in northern West Virginia.  Terrain variables including 
aspect, curvature and slope change drastically at a local scale within the forest to greatly 
influence species composition.  Light Detection and Ranging (LiDAR) data was collected for 
the entire WVURF, which produced an extremely detailed digital elevation model (DEM), 
with 1 m spatial resolution.  Individual tree crown polygons were created from the LiDAR data 
so that individual trees could be co-registered to the DEM eliminating the bias of misplaced 
inventory points.  Forest-plot data was collected and each individual tree crown polygon that 
was created from the LiDAR was assigned actual ground data.  Terrain variable values were 
then sampled for each plot.  The data was analyzed using a classification and regression tree 
(CART) to produce a binomial decision tree that was used within GIS to create a prediction 
grid of species distribution based on terrain variables.  With the decreasing price of data 
acquisition and with new technology this method is likely to become more widespread and 
useful to various management agencies.
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C h a p t e r  1  

INTRODUCTION 

Tree species of the Appalachian region are ecologically notable for their comparatively 

high diversity and high economic value.  Yellow-poplar (Liriodendron tulipifera), black cherry 

(Prunus serotina), northern red oak (Quercus rubra), white oak (Quercus alba), chestnut oak 

(Quercus prinus), American beech (Fagus grandifolia), black birch (Betula nigra), black oak 

(Quercus velutina), cucumber-tree (Magnolia acuminata), hickory spp (Caryas spp.), red 

maple (Acer rubrum), scarlet oak (Quercus coccinea), sugar maple (Acer saccharum) and 

American basswood (Tillia americana) are major components of forests throughout the 

Appalachian region.  The complexity and interaction of these communities is problematic and 

costly for land managers in meeting their goals and objectives.  It is important for land 

managers to have working knowledge about the spatial distribution of these species across the 

landscape in order to minimize the cost of acquiring field data and to make sound management 

decisions.   

 Traditional methods of inventory often include various types of intensive field work 

that can be costly and time consuming for large scale landowners on an annual basis.  In the 

highly complex forest of the Appalachian region, the ability to achieve a suitable statistical 

inventory over large areas can be a very intensive projectundertaking, typically limiting owners 

to place their holding on an approximate ten year inventory cycle.  Approximately 10% of their 

properties are evaluated in any given year, and of the 10% inventoried, assumptions are 

generated between inventory years to determine compositions within these areas.   
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 In conjunction with technological advances being made in Geographic Information 

Systems (GIS) and remote sensing, it is imperative that processes be developed to best utilize 

these tools.  Within the disciplines of forestry and resource management the improvement of 

species classification opens the door to a more complete and accurate inventory process 

through the use of more sophisticated remotely sensed data such as LiDAR and high resolution 

aerial imagery.  As these technologies become more affordable and cost effective, the use of 

them in everyday forest management should become more cost effective giving land managers 

more robust and accurate data. 

The goal of this study is to investigate the use of terrain variables in a GIS with 

Classification and Regression Tree (CART) analysis, to predict the occurrences of the species 

in the Appalachian region, and to provide a time efficient snap shot of the species composition 

of the entire forest.  
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CHAPTER 2: LITERATURE REVIEW 

The distribution of plants and animals in space and time has been a focus of many 

biogeographical and ecological studies (Franklin 1995; Guisan and Zimmermann 2000; Guisan 

and Thuiller 2005).  Species distribution modeling is founded in the quantification of species-

environment relationships, where species and community distributions are explained by 

topographic and climatic variables (Franklin 1995; Guisan and Zimmermann 2000; Guisan and 

Thuiller 2005).  Advances in geographic information science have produced alternatives for 

mapping vegetation beyond traditional methods, such as field surveying and photo 

interpretation.  As a result, predictive modeling of species distribution has become a 

widespread tool in the areas of conservation biology, climate change research, land-use/land-

cover change assessment, and biodiversity estimates (Guisan and Zimmermann 2000; Guisan 

and Thuiller 2005).  Predictive vegetation modeling is defined as predicting the vegetation 

distribution across a landscape based on the spatial correlation of vegetation with 

environmental variables (Franklin 1995; Guisan and Zimmermann 2000).  An increasing 

number of machine learning and statistical methods have been integrated with mapped 

environmental data to model distributions of species and other biodiversity attributes important 

for conservation planning across multiple scales (Franklin 1995; Guisan and Zimmermann 

2000). 

Predictive vegetation modeling requires digital maps of the environmental variables of 

interest, in addition to spatially attributed vegetation data (usually sample locations) (Franklin 

1995; Guisan and Zimmermann 2000).  Some statistical methods are based on the idea of 
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Gaussian species responses along environmental gradients as used in ordination-based 

regression models (Thuiller et al. 2003).  Recent work illustrates that asymmetric and other 

complex (non-Gaussian) response curves are more frequently observed in vegetation 

associations with environmental variables (Thuiller et al. 2003).  Statistical methods that can 

effectively model non-Gaussian and non-linear species responses to indirect (e.g. slope, aspect) 

and direct (e.g. moisture, temperature) environmental variables are highly beneficial in 

predictive vegetation modeling.  The number of methods used is becoming increasingly 

flexible in order to describe complex response curves (Austin and Smith 1989).  

There are different approaches to incorporating ancillary data into a classification 

process to improve classification accuracy, such as geographical stratification, post-

classification sorting and classifier operations (Jensen, 2005).  In this study, the classification 

and regression tree (CART) model was selected based on the following considerations; 

traditional expert classification systems are often hindered by the lack of expert knowledge or 

difficulties in defining classification rules; the CART model can be used to help develop a rule-

based classification system, where expert knowledge is inadequate, using training data and 

machine learning processes; and CART tools are available in common statistical software.  

CART is a nonparametric procedure that creates binary split rules in a stepwise method.  

A training data set is needed to serve as the input data for the CART model.  Classification 

results are highly dependent on the selection of the training set.  The classification accuracy can 

potentially be increased significantly if sample points are selected using expert knowledge of 

the most representative areas of the classes (Domac and Süzen 2006).  In a study performed by 

Fekedulegn et al. (2004) it was determined that aspect has a profound effect on species 
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composition in an Appalachian forest.  Yellow-poplar and black cherry showed a strong 

preference for north and east oriented aspects while chestnut oak and white oak showed a 

strong preference for south and west oriented aspects.  Northern red oak had mild aspect 

preference indicating its ability to grow and compete in a variety of environments (Fekedulegn 

et al., 2004).  Terrain shape has also been found to be strongly related to vegetation 

distributions in a forested setting (Elliott et al., 1999).  Bolstad et al. (1998) found a significant 

relationship between basal area and terrain shape for both yellow-poplar and chestnut oak.  In 

addition, they observed that species composition changes gradually with terrain shape resulting 

in notable overlap between forest types (Bolstad et al., 1998, McNabb, 1993; and McNabb 

1989).  This indicates that species such as yellow-poplar and chestnut oak will not be confined 

to coves or ridges but will also be found in some abundance outside these areas.  Soil organic 

matter content, elevation, and terrain shape were shown to explain 33% of the variation in 

species distributions in a study performed on the Coweeta Hydrologic Laboratory in North 

Carolina (Elliot et al., 1999).  

A separate study conducted by Iverson et al. (1997) showed a direct relationship 

between soil moisture and species distribution in a southeast Ohio study.  Elliot et al. (1999) 

describes soil moisture as a direct function of precipitation, terrain shape, and soil 

characteristics.  Slopes with an aspect of north-northeast have the highest moisture levels while 

slopes with an aspect of south-southwest have the lowest moisture levels due to high amounts 

of direct solar radiation (Iverson et al., 1997).  Chestnut oak and the oak genus are generally 

more tolerant of moisture stress, allowing them to persist on drier sites (Fekedulegn et al., 

2003; and Iverson et al., 1997).  Yellow-poplar was found to be exploitive and concentrated in 
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more moist areas with concave shapes (Elliot et al., 1999; Fekedulegn et al., 2003; Iverson et 

al., 1997).  Tree height of yellow-poplar has also been shown to be directly related to terrain 

shape (McNabb, 1989).  

CARTs have been shown to be adequate for predicting the presence and absence of 

four species of oak in California (Vayssieres et al., 2000).  One advantage in using CART 

analysis is that it is a non-parametric data-driven approach that eliminates the potential for 

user-introduced bias, and thus reduces the risk of using simplifying assumptions (Vayssieres et 

al., 2000).  The output includes a tree diagram, with the branches determined by splitting rules, 

and a series of terminal nodes that contain the prediction (Prasad et al., 2006).  CART is 

designed to work with data that might have multiple variables for a single outcome, as is the 

case in a forested environment, rather than trying to force the outcome to be derived from a 

single overriding variable, commonly employed by many parametric techniques (Prasad et al., 

2006; Vayssieres et al., 2000).  Prasad et al. (2006) found that CART analyses are favorable 

among biological applications, such as species prediction.  Some studies have found that 

classification trees can sometimes be too complex to effectively interpret species distributions 

(Guisan and Zimmermann 2000; Muñoz and Felicísimo 2004). 
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CHAPTER 3: METHODOLOGY 

3.1 Study Area 

West Virginia University (WVU) Research Forest is a 3,123.06 hectare forest located in 

Monongalia and Preston counties of West Virginia (Figure 1).   

 

Figure 1. Location of WVU Research Forest in WV 
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By the year 1936, the entire region encompassing the WVU Research Forest had been 

completely clearcut with repeated heavy burns that still affect  the forest we see today (Carvell, 

1973).  The loss of American chestnut (Castanea dentata), due to chestnut blight, was critical 

since it comprised the most commercially valuable component of these stands (Carvell, 1973).  

Today’s forest consists of 70-year-old stands that have had various silvicultural treatments 

applied to them.  The transitions between the different forest types on the WVU Research 

Forest are more gradual than is typical in other areas of the state, and this gradual phenomenon 

is primarily due to relatively high mean annual precipitation of 129 cm that is evenly 

distributed throughout the year (Fekedulegn et al. 2004).  This distinctive characteristic of the 

study area and the surrounding region results in large overlaps of species that typically would 

not be found in such abundance on common sites.  

3.2 Data 

3.2.1 Creating Predictors from Terrain 

A one meter Digital Elevation Model (DEM) was derived from LiDAR data collected 

on the study area in 2006.  The DEM is a high resolution continuous elevation data set for the 

entire study site.  This elevation grid layer was then resampled from its original one meter cell 

size to a ten meter cell size by cubic convolution; to closely resemble the size of the fixed area 

inventory points.  Cubic convolution produces an output cell value that is computed by fitting a 

smooth surface to the nearest 16 (4x4) input cells (Wu et al, 2008).  The cubic convolution 

methodology preserves much of the high level detail of the original one meter data set.  All 

subsequent grids and analysis were based on the resampled 10m DEM. 
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Five terrain variable grids were created using tools from the Spatial Analyst Toolbox 

found in ArcGIS 9.2 (ESRI 2007).  These resulting grids included continuous aspect (Figure 

2), slope (Figure 3), overall curvature (Figure 4), plan curvature (Figure 5), and profile 

curvature (Figure 6).  A brief description of these variables and their ranges for the study area 

can be found in Table 1. 

 

Figure 2. Aspect Grid 
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Figure 3. Slope Grid 

 

 

Figure 4. Curvature Grid 
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Figure 5. Plan Grid 

 

Figure 6. Profile Grid 
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Table 1. Variable Ranges 

 

 

 

 

 

 

Variable Name  Variable Range of Values 

Aspect The aspect grid represents the orientation of the surface in 

regard to its cardinal direction 

(Beers et. Al. 1966) 

0-360o 

Slope The departure from a completely horizontal plane given an 

increase or decrease in Y for a unit change in X 
0 – 47o 

Curvature Representation of a grid cell elevation in relation to the eight 

adjacent grid cells around it.  Curvature is calculated by 

subtracting the each individual adjacent cell from the center 

cell and summing the values. A grid cell that is found to be at 

a lower position than the grid cells around would result in a 

negative value and be considered concave 

(-29) - 31 

Plan The curvature of the surface perpendicular to the slope 

direction 
(-12) – 16 

Profile The curvature of the surface in the direction of the slope (-21) – 20 
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3.2.2 Field Data Collection 

Field data was collected and provided by ImageTree Corporation located in 

Morgantown, WV.  A stratified random sample approach was used to select the sampling 

points within 181 fixed area sample plots (Figure 7).  Sample plots had of a radius of 12.44m 

and covered an area of 0.0486 hectares.  A survey grade Trimble GPS unit was used to 

navigate to the predefined points generated prior to the foresters entering the field.   

 

Figure 7. Sample Plots 

Once plot center was located from the GPS, data collection commenced starting with 

the most northern tree on the sample plot.  A Hagloff laser was used to determine the slope and 

horizontal distance from plot center to each tree to ensure it was within the boundary of the 

plot.  Diameter at breast height (DBH) was measured for all tally trees on the plot and it was 

noted if the individual trees were dead or alive.  Tree crowns were matched with tree crown 

polygons that were derived from the first return LiDAR data by Imagetree Corporation 

technicians.  All tree crowns, or groups of crowns that were visible, were matched with the 

polygons to help mitigate any co-registration issues between the tree crown polygons and the 
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LiDAR data.  The registration process is outlined in figure 8.  The red blocky polygons 

represent automated generated tree crown polygons from the LIDAR, the blue circles are 

proportionally sized to represent the DBH of measured primary trees.  The yellow boxes and 

corresponding lines represent secondary or understory trees that were measured with the 

yellow line indicating what primary tree the secondary trees were located under.   

 

  

Figure 8. Tree Match 

The total basal area for each individual inventory point was calculated by summing the 

basal area for all species tallied within the inventory point, this allowed species-specific basal 

area percentages to be calculated for each inventory point.  For example; 11.14 sq meters total 

basal area and 5.57 sq meters basal area of Yellow-poplar would equate to Yellow-poplar 

making up 50% of the total basal area of the inventory point.  Inventory points were then 

overlaid on the five terrain input grids which were used as predictor variables for species 
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composition.   The value of each grid was captured for each inventory point and recorded to a 

table for further analysis.   

3.2.3 Classification and Regression Tree  

Classification and regression trees (CART) are nonparametric, data-driven algorithms 

that generate a tree through binary recursive partitioning, where a node, representing a single 

variable, is split in order to divide the data into increasingly homogeneous subsets (Muñoz and 

Felicísimo 2004).  The variables are automatically tested until the split is found for which the 

resulting branches are the most homogeneous or a minimum number of observations remain in 

the subset (Miller 2005).  The end of the branch, known as the terminal node, is defined by the 

hierarchical rules that precede it.  The CART classification was set up so that the terminal 

nodes indicate the percentage of basal area that is predicted to be present based on the 

preceding variables.  

The parameters for the regression tree were set so that the final tree size was 

determined with the use of Mallow’s Cp statistic, which determines the best statistical fit of all 

possible model combinations.  The tree models resulted in terminal nodes ranging from 11-19 

for the prominent species found on the research forest (yellow-poplar, black cherry, chestnut 

oak, northern red oak and white oak).  An example of a final tree is shown in Figure 9.   
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Figure 9: Black Cherry Pruned Tree 

 

3.2.4 Prediction grid creation  

Once a final tree was determined within S-Plus (Insightful 2008) the tree was then 

imported into ArcView 3.3 ( ESRI 2002) via the StatMod extension (Garrard 2002) producing 

a prediction grid for each individual tree species.  Grids were produced at the same 10m 

resolution as the previously created predictor variable grids.  The resulting prediction grids 

show the estimated percentage of basal area as determined by the CART analysis.  Zonal 

statistics were then calculated to summarize the average predicted percentage of species and 

the standard deviation within each of the validation tracts.   
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3.2.5 Validation data 

            Validation data was comprised of three individual stands on the WVURF that were 

100% tallied prior to harvest activity.  These stands are known as the Lick Run tract 14.67 

hectares, the Blaney tract 57.47 hectares and the Fire Tower tract 14.16 hectares (Figure 10).  

Total basal area was calculated for each individual tract.  The percentage that each individual 

species contributed to each tract was then calculated.  

 

Figure 10. Validation Stands 
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CHAPTER 4: RESULTS 

 Table 2 shows the measured and predicted estimates for each of the validation stands.  

Yellow-poplar was the most prominent species within two of the three test tracts and was 

found to have an r-square value of 0.851 and a root mean square error (RMSE) of 33.47.  

Figure 11 shows the prediction grid for yellow-poplar. Northern red oak had an r-square value 

of 0.940 with a RMSE of 16.80.  Table 3 shows the linear regression outputs for all species and 

validation stands. 

 

    

 

Figure 11. Yellow poplar prediction grid 
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Table 2. Measured and Predicted Estimates 

 

 

 

 

 

 Lick Run Tract Blaney Hollow Tract Fire Tower Tract 

SPECIES 

Measured Predicted Measured Predicted Measured Predicted 

% Basal Area 
% Basal 

Area 
% Basal Area % Basal Area % Basal Area % Basal Area 

American Beech 0.04 0.14 0.01 0.17 0.00 0.19 

Black Birch 1.51 5.01 0.30 2.39 2.68 5.89 

Black Cherry 7.18 4.59 0.40 3.65 5.26 6.50 

Black Oak 1.82 2.12 2.96 2.81 0.47 0.30 

Chestnut Oak 5.38 5.97 16.23 15.08 3.98 6.11 

Cucumber tree 2.27 0.17 0.01 0.22 1.01 0.27 

Hickory 0.01 0.54 0.02 0.35 1.49 0.17 

Red Maple 6.53 12.75 4.17 11.56 24.94 12.76 

Northern Red Oak 24.00 25.30 2.04 29.89 30.01 21.69 

Scarlet Oak 8.15 1.36 5.70 9.35 0.07 1.89 

Sugar Maple 0.06 0.33 0.00 0.54 3.92 0.25 

White Oak 0.49 6.34 0.18 5.02 0.45 4.98 

Yellow-poplar 41.22 22.20 64.87 18.58 17.04 46.30 

Basswood 0.00 0.19 0.01 0.16 0.00 0.27 
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Species r^2 Line Formula  RMSE 
American Beech 0.988 y = -1.1945x + 0.1872  0.15 

Black birch 0.930 y = 1.4731x + 2.2248  3.00 
Black cherry 0.296 y = 0.226x + 3.948  2.50 

Black oak 0.958 y = 1.0187x - 0.0357  0.22 
Chestnut Oak 0.986 y = 0.7728x + 2.4642  1.44 

Cucumber 0.320 y = -0.0232x + 0.2457  1.29 
Hickory spp. 0.738 y = -0.1883x + 0.4472  0.85 
Red Maple 0.351 y = 0.0359x + 11.931  8.98 

Northern Red Oak 0.940 y = -0.2705x + 30.683  16.80 
Scarlet Oak 0.027 y = 0.1757x + 3.382  4.57 
Sugar Maple 0.514 y = -0.0482x + 0.4383  2.15 
White Oak 0.348 y = 2.6426x + 4.4583  5.10 

Yellow-poplar 0.851 y = -0.5811x + 52.877  33.47 
Basswood 0.544 y = -6.1542x + 0.233  0.21 

 

Table 3. Linear Regression Outputs 
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CHAPTER 5: DISCUSSION AND CONCLUSION 

The results indicate that the terrain variables used in this project are reasonably 

effective in predicting major tree species distribution and abundance for the majority of the 

study area. American beech and chestnut oak proved to be the most accurately modeled species 

in this study in terms of the best linear fit.  This is most likely due to the site specific 

characteristics preferred by these species (ridge tops and generally drier sites).  In an earlier 

study, similar findings were recorded by Fekedulegn et al. (2004).  American beech was 

consistently over predicted in the model but it occupied such a small portion of the study area 

the difference it represented did not have a major effect on its r-square value of 0.988.  

Chestnut oak conversely comprised much more of the test stands and was predicted relatively 

well.  This is primarily observed because chestnut oak is predominately confined to specific 

areas, which helps to somewhat eliminate confusion when producing the final model for this 

species based on terrain variables.   

 The abundance or site specificity of a given species could potentially create a problem 

with the technique presented here as evident with the confusion observed between yellow-

poplar and northern red oak.  Northern red oak and yellow-poplar proved to be the most 

difficult of the species to accurately model and predict in terms of their abundance and 

distribution.  Northern red oak and yellow-poplar comprised 68% of the total combined basal 

area for the validation stands and make up a major component of the study area as a whole.  

Although both species grow best and are typically found in coves and moist sites, the 129.4 cm 

of annual precipitation received on the study area allows them to compete in the drier more 
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shallow soils of the forest; this effectively allows them to compete in virtually all areas within 

the study.  Undoubtedly this caused confusion between the two species as observed in the 

results.  Both exhibit a relatively strong r-square value, 0.940 for northern red oak and 0.851 

for yellow poplar, although both species also comprise the largest RMSE within the study.  

With the exception of northern red oak on the Lick Run tract, neither of these species was 

predicted accurately at the validation stand level (table 2).   

Species that occur in a low abundance or occur at site specific locations could be 

potentially missed during field sampling, or detected in the initial sampling and result in a false 

prediction throughout the forest.  Although CART is a non-parametric model, this research 

highlights a major flaw in the models tendency to falsely predict species occurrences where the 

species undoubtedly do not occur.  American basswood is an excellent example of this 

occurring.  This species was recorded on only one of the 181 inventory plots, but was still 

predicted to occur over the entire study area.  Species that can exploit and compete over a wide 

range of terrain and environmental variables, such as red maple, also proved difficult to 

accurately predict on the validation stands.  This can be attributed to the ability of red maple to 

grow and compete in all areas of the forest, resulting in the model being unable to predict this 

species based on terrain variables.  

The complexities of the eastern hardwood forest make it difficult to accurately classify 

individual tree distributions throughout the forest.  It has been shown that the terrain variables 

used can predict, with some certainty, the composition of some of the major forest species at 

the stand level.  With the ability to predict where a given species will or will not occur, a 

specific forest composition for a given area can be estimated to aid in management planning.   
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The level of accuracy achieved in this research would not have been obtainable without 

the high level of detail provided by the LiDAR data set.  This data set virtually eliminated co-

registration errors between the individual sample plots and the input variable grids that could 

have occurred if another DEM source were used.   This type of external data could potentially 

influence the modest results that were obtained, but also presents the question that with the vast 

amount of public data available currently could the results on this study be replicated with the 

use of another form of DEM data.  

Future strategies to improve model accuracy might include a different ground sampling 

strategy, the incorporation of auxiliary data from other sources such as aerial imagery, and the 

incorporation and the use of all LiDAR return data rather than the use of the last return only 

data.  Incorporation of these variables has the potential to reduce the confusion in predicting 

between species with similar growing characteristics.   

To enhance the ground sampling strategy, when stratifying the study area, marginal 

sites should have additional points allocated to them to account for the high variability that was 

not potentially captured in the initial inventory on the study area.  A different and perhaps a 

more efficient enhancement to improve the sampling strategy would be the use of a uniform 

grid that could improve complete coverage of all areas of the forest and possibly help mitigate 

the potential of over or under sampling areas.  The incorporation of the LiDAR first and mid 

returns could show vertical stratification differences between species that may help to refine 

predictor models between species.   

The focus of this research was to produce predictor variables derived solely from the 

LiDAR point data additional research should also incorporate the use of aerial imagery as a 
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predictor variable.  The addition of aerial imagery may help differentiate between species 

based on color signature or texture.   

The 10m DEM chosen in this project appeared to offer a sufficient resolution to capture 

the terrain characteristics that affect the complex species composition in an eastern hardwood 

forest setting.  Some interesting further exploration would be to examine the effect of grid cell 

size on the prediction of species.  Would a finer resolution of input grids increase the accuracy 

and precision of the models or add more noise and error?  If a smaller grid was used to more 

closely represent the footprint of individual trees would it be possible to predict and classify 

where individual tree species occur rather than generalizing at the stand/landscape scale as 

represented in this study?  The LiDAR data available for this study along with the ability to 

map individual tree crowns allows these additional possibilities in the optimal cell size or 

resolution for a wide array of studies.  Furthermore, would the addition of more variables such 

as vertical stratification derived from the LiDAR help to classify individual forest species more 

accurately?  
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