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Abstract 

Laser Induced Fluorescence Studies of Electrostatic Double Layers in Expanding Helicon 

Plasma 

Jerry Carr Jr. 

We report the first evidence of a laboratory double layer (DL) collapsing in the presence 
of an instability studied by Chakraborty Thakur et al. 1 with the use of time resolved laser 
induced fluorescence (LIF) studies. Higher time resolution studies then provided the first 
statistically validated proof of the correlation between the ion acoustic instability and a DL. 
Time-frequency analysis in the form of time resolved cross power spectra and continuous 
wavelet transforms were used to provide insight into beam formation. The implications of this 
work is that in the creation of strong DLs in expanding plasmas for plasma propulsion or other 
applications may be self-limited through instability growth.  

Over the past decade, experimental and theoretical studies have demonstrated the 
formation of stable, electrostatic, current-free double layers (CFDLs) in plasmas with a strong 
density gradient; typically a result of a divergent magnetic field. In this work, we present 
evidence for the formation of multiple double layers within a single divergent magnetic field 
structure. Downstream of the divergent magnetic field, multiple accelerated ion populations are 
observed through laser induced fluorescence measurements of the ion velocity distribution 
function. The formation of the multiple double layer structure is a strong function of the neutral 
gas pressure in the experiment. The similarity of the accelerated ion populations observed in 
these laboratory experiments to ion populations observed in reconnection outflow regions in the 
magnetosphere and in numerical simulations is also described. If ion energization during 
magnetic reconnection also results solely from acceleration in electric fields, these observations 
imply a prediction that the ion heating, i.e., the broadening of ion velocity distribution functions, 
reported in magnetic reconnection experiments is more accurately described by a superposition 
of differently accelerated ion populations. Therefore, the ion “heating” rate during reconnection 
should scale as the square root of the cube of the charge per unit mass (𝑞3 𝑚⁄ )1/2 for ions with 
varying charge-to-mass ratios. 

A new RFEA probe was benchmarked on the low pressure CFDL plasmas produced in 
WVU HELIX-LEIA. This work was the result of collaboration between the University of 
Tromsø (UiT) and WVU. LIF was used to confirm the RFEAs ability to detect a beam when one 
was present. The RFEA was also able to detect the presence of a beam when LIF techniques 
were limited by metastable quenching. The probe’s limitations in dealing with ion focusing are 
discussed as well. 

1 S. Chakraborty Thakur, Z. Harvey, I. A. Biloiu, A. Hansen, R. A. Hardin, W. S. Przybysz, and 

E. E. Scime, Phys. Rev. Lett., 102, 035004 (2009). 
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Chapter 1: Introduction 

The research presented here focuses on double layers (DL) which have been shown to 

occur in both space and laboratory plasma.  The goal of this investigation was to conduct 

additional studies on double layer formation. Fields such as space propulsion have benefited 

from past DL research with the invention and validation of the helicon double layer thruster 

(HDLT).1 Still, challenges remain that stem from not fully understanding the mechanism of DL 

generation. The observation of U shaped potentials in an expanding helicon device2,3 implies that 

one dimensional models of DL formation must be replaced entirely with multi-dimensional 

models.4 Current free double layer (CFDL) research continues to provide opportunities for the 

plasma physics community to expand its understanding of sheath-related physics. 

This dissertation encompasses both the development and enhancement of diagnostic 

methods as well as explorations of fundamental physics. Instabilities that govern the appearance 

of a DL31 (as evidenced by the presence of an accelerated beam of ions) were explored in greater 

detail with new time-frequency analysis methods. A new, modular, retarding field energy 

analyzer (RFEA) probe was also benchmarked, enabling DLs to be studied without the issues 

associated with metastable quenching that interfere with laser induced fluorescence techniques.  

These investigations also raised questions regarding previous observations in space 

plasmas where multiple accelerated ion populations are typically attributed to magnetic 

reconnection. These observations suggest that observations of ion heating during magnetic 

reconnection may not be evidence of true irreversible heating and might, instead, reflect 
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averaging over a complex collection of double layers.5 Thus, more caution must be used when 

analyzing ion velocity distribution measurements from systems in which magnetic reconnection 

occur in regions of divergent magnetic fields.   

  The rest of this chapter provides an overview of double layers with a particular focus on 

current free double layers (CFDLs). Relevant observations of CFDLs in both space and 

laboratory are discussed in preparation for explaining the new observations presented in Chapter 

5. For example, the THEMIS satellite array, which is designed to study substorms in the Earth’s 

magnetosphere, recently detected the presence of DLs in the plasma sheet. In the same region, 

complex ion beam structures are observed by plasma instruments aboard THEMIS. These ion 

beam structures are currently attributed to magnetic reconnection events which are identified in 

magnetic field measurements. Our laboratory observations will show that caution should be 

applied when interpreting complex ion beam structures as evidence of magnetic reconnection if 

other substantiating measurements are unavailable. Chapter 3 covers the diagnostics used to 

gather the data while Chapter 4 provides a detailed description of the signal processing 

techniques employed for time resolved measurements. A summary of the major results and 

suggestions for future work are presented in Chapter 6.  

1.1 Double Layers 

In its simplest form, a double layer (DL) consists of two spatially separated charge layers, 

one positive and one negative. A DL acts very much like a sheath. However, whereas a 

conventional sheath appears at the surface of an object inserted into the plasma or at the plasma 

boundary, a DL is a freestanding structure that can appear anywhere within the plasma. Figure 
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1.1 shows a schematic of a DL from Block’s review article on double layers.6 Note that even in 

quasi-neutral plasma, quasi-neutrality is violated within the DL. Whereas a sheath at a boundary 

is roughly a Debye length thick, DL thicknesses are predicted to be 10 – 50 times the Debye 

length.6 The Debye length is a measure of the shielding distance or thickness of a sheath and is 

defined as 

 𝜆𝐷 ≡ �
𝜖𝑜𝑘𝐵𝑇𝑒
𝑛𝑒2

�
1/2

 , (1.1) 
 

where 𝜖𝑜  is the permittivity of free space, 𝑘𝐵  is the Boltzmann constant, 𝑇𝑒  is the electron 

temperature, 𝑛 is the plasma density, and 𝑒 is elementary unit of charge.7 DLs often separate 

regions of plasma with widely different densities and temperatures and are an important 

mechanism for the acceleration of charged particles along magnetic fields in laboratory and 

astrophysical plasmas.  

  



4 
 

 

Figure 1.1. A cartoon showing the potential, electric field and space charge through a double layer. Figure obtained 

from Ref. [6]. 

Since 2002, several laboratory experiments have reported observations of spontaneous 

formation of current free double layers (CFDLs) in expanding plasmas with a diverging 

magnetic field. 8, 9, 10, 11, 12 These DLs are considered “current free” because no net current is 

injected into the plasma.  Instead, the DL spontaneously appears at low pressures in divergent 

magnetic field regions.  

 Through decades of in-situ measurements, CFDLs or other magnetic field aligned electric 

fields have been identified as a source of precipitating electrons13 and upwelling ions14 in the 
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Earth’s magnetosphere. In space and laboratory measurements, evidence for a CFDL is provided 

by a population of accelerated ions or electrons or direct measurements of the electric potential 

structure. In ion energy distribution function measurements by spacecraft, CFDLs have been 

identified in magnetospheric regions ranging from the auroral zone to the plasma sheet.15  

 DL review articles often focus on specific sub-topics within the broader DL research 

area. Raadu16,17 for example, addressed the basic physics of DLs through laboratory measure-

ments and noted implications for space and astrophysical plasmas such as the presence of 

instabilities in both. Hershkowitz’s review18 focused on early laboratory experiments. Elizer and 

Hora19 focused on rarefaction shocks. Charles et al.20 reviewed additional laboratory measure-

ments that emphasized the new discovery of CFDLs in expanding helicon plasma devices. 

Singh’s very recent review4 focused on explaining basic plasma processes found in CFDL 

formation while also discussing significant laboratory experiments, simulations and space 

observations. 

1.2 Space Observations of Current Free Double layers 

 Recent measurements from the THEMIS satellites have established the prevalence of 

double layers in the plasma sheet. The plasma sheet, shown in Fig. 1.2, is a relatively speaking 

high density collisionless plasma region in the ecliptic at the earthward end of the magnetotail.21 

Ion temperatures in the plasma sheet are ~ 5×107 K. Fig. 1.3 shows the location of the THEMIS 

(Time History of Events and Macroscale Interactions during Substorms) probes in the Earth’s 

magnetosphere. The THEMIS mission, which includes five identical satellites, was designed to 

examine the nature of the impulsive events that release solar wind energy stored within the 
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Earth’s magnetotail.22 Orbit apogees of the satellites (in units of Earth radii, RE) are 10 (probe 

A), 12 (probes D and E), 20 (probe C), and 30 (Probe B). Each spacecraft is equipped with 

electron and ion analyzers, a three-axis electric field instrument, and magnetometers. 

 

Figure 1.2. Cartoon of the Earth’s magnetosphere. Note the location of the plasma sheet.  Figure courtesy of ESA/C. 

T. Russell. 
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Figure 1.3. THEMIS satellites in their “aligned” configuration. Note THEMIS B’s position on the tailside of the 

reconnection site. (Courtesy of NASA). 

Evidence for DLs in the plasma sheet is shown in Fig 1.4a-1.4d.  The data show two 

bursty bulk flow events recorded on 24 Mar 2003 with THEMIS Probe D. Event 1 was recorded 

at 8192 samples/s, the high time resolution setting (Fig 1.4a-1.4c). Event 2 was recorded at only 

128 samples/s (Fig 1.4d). The parallel component of the electric field, 𝐸∥, and two components 

of the perpendicular electric field are shown in Fig 1.4a-1.4c as measured with three orthogonal 

dipole antennas. The 𝐸∥  measurement shows strong turbulence from -0.05 to 0.10 seconds, 

followed by a smooth ramping to a constant electric field. The constant value of 𝐸∥ persists from 

0.12 to 0.14 seconds. Ergun et al. (2009) refer to the unipolar 𝐸∥ structure adjacent to a turbulent 

region as a “signature” and points out that this signature is identical to those identified as double 

layers in the auroral ionosphere.15 
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Figure 1.4. (a) Parallel electric field sampled at 8192 Hz during Event 1. (b) and (c) are the perpendicular electric 

field. (d) Parallel electric field sampled at 128 Hz during Event 2. (e) and (f ) are the electron energy flux and  

parallel electric field of an auroral  DL sampled at 32768 Hz. Figure adapted from Ref. [15]. 

Fig. 1.4e-1.4f is a measurement of a DL in the auroral ionosphere obtained by the FAST 

(Fast Auroral SnapshoT) spacecraft for comparison to the plasma sheet data. The FAST satellite 

measured electromagnetic fields and charged particle distributions in the earth’s auroral zone.23 
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The FAST satellite was in a near-polar orbit with an 83º inclination, a 350 km perigee, and a 

4175 km apogee. The FAST satellite instrument complement included electron and ion 

spectrographs, 3-axis electric and magnetic field instruments.24 The electric field instruments 

detected an electron beam (Fig. 1.4e) consistent with a double layer-like potential structure (Fig 

1.4f), confirming the presence of an auroral double layer. The THEMIS electric field 

observations in the plasma sheet display the same characteristics. 

Ergun et al. (2009) then deduced the detection of tens of DLs throughout the plasma 

sheet in spite of the fact that THEMIS only has the ability to record with highest resolution for 

only 0.05% of the orbit. Previous researchers had expected that the observation of DLs should be 

statistically rare since the DLs occupy a very small spatial volume in the magnetosphere. Thus, 

Ergun et al. (2009) concluded that DLs occur frequently in the plasma sheet during magnetic 

activity.15  

1.3 Laboratory Studies of Double Layers 

   Nearly all recent laboratory DL experiments have been performed in helicon plasma 

devices. As stated previously, Charles et al.20 and Singh4 provide a thorough review of recent 

CFDL experiments. Chakraborty Thakur provides a thorough review of DL experiments prior to 

2010 at WVU.25 Here a few recent developments in laboratory DL experiments are reviewed as 

well as one of the theoretical models proposed as an explanation for the laboratory DL 

observations. The focus will be on experimental results along with a crude model that does not 

completely explain our multiple DL laboratory observations. However, the model does offer a 

possible explanation for the source of multiple double layers and the analysis of the 
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measurements includes suggestions for future investigations that might more clearly identify the 

physical processes that create the complex ion velocity distribution functions (IVDFs).  

1.3.1 Current Free Double Layer Observations at ANU 

Having obtained some of the first measurements of CFDLs in the laboratory over a 

decade ago, the Space Plasma, Power and Propulsion Group, at the Australian National 

University (ANU) recently moved on to DL experiments designed to investigate similar DL 

geometries as those explored by the FAST satellite.2,3 A schematic of their experimental device 

known as CHI KUNG is shown in Fig. 1.5. The CHI-KUNG sketch provides a general sense of 

how helicon plasma sources with expansion regions are configured.3 The dimensions vary by 

device (WVU helicon source is much larger). The expansion geometry sets up an abruptly 

diverging magnetic field after a uniform magnetic field in the source region.  

 

Figure 1.5. Schematic of the CHI KUNG expanding plasma device with diverging magnetic field lines. Diagnostics 

include the RFEA and rf compensated Langmuir probe. The parabola shown by a solid line near the exit of the 

plasma source is the low potential edge of the DL. Figure obtained from Ref. [3]. 
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Shown in Fig 1.6a is the auroral model used to evaluate the path of the FAST satellite as 

it travelled through the downward current region. The downward current region is characterized 

by parallel electric fields which produce anti-earthward energetic electron fluxes (up to several 

keV) carrying the “downward” current in the auroral zone.24  Fig. 1.6b shows the experimental 

configuration used by the ANU group. The probe path through the DL in the divergent magnetic 

field at the end of the source is analogous to the path of the satellite. The U shaped potential 

structure identified by Ergun et al. (2003) demonstrated that DLs can exist in weakly converging 

magnetic fields. For the ANU experiments, a retarding field energy analyzer (RFEA) probe, 

described in greater detail in Chapter 3, mapped out the ion beam current and the plasma 

potential in the plasma. With the RFEA, the ANU group obtained the 2D equipotential and ion 

density contours shown in Figure 1.7. The double layer extends between the 46 V and 36 V 

contours in Fig 1.7a with the red line providing a contour fit to the low potential side. The ion 

density profile (Fig. 1.7b) shows that the areas of greatest density are located along the most 

divergent magnetic field line. Thus, the ANU laboratory experiments confirmed that a U shaped 

DL structure can be created in the laboratory with a weakly diverging magnetic field.  
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Figure 1.6. A schematic interpreting the observations from (a) the FAST satellite traveling through the downward 

current region. 𝑗+ represents the downward accelerated ion current (b) The laboratory probe traversing the 

experimental double layer. Figure obtained from Ref. [2]. 
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Figure 1.7. (a) 2D equipotential contours measured with the RFEA. The DL extends between the 36 and 46 V 

contours. The solid parabolic line represents a fit of the 36 V contour which is the low potential edge of the U-

shaped current-free double layer. The solid diverging line shows the most diverging magnetic field line exiting the 

source. (b) 2D contours of the ion density measured with the RFEA. Figure obtained from Ref. [3,4]. 

1.3.2 CFDLs in Expanding Helicon Plasmas Theory  

The one dimensional DL theory created by Lieberman and Charles was proposed to 

explain the early one-dimensional CFDL measurements.26,27 Their diffusion-controlled model 

coupled the dynamics of the particles in the non-neutral DL to the diffusive flows of the quasi-

neutral plasma in the source and expansion chambers. To ensure that the DL was current-free, in 
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addition to the conventional four DL populations described by Andrews and Allen,28 the model 

required another population of counter-streaming electrons, formed by the reflection of almost 

all of the accelerated electrons from the sheath at the insulated end wall of the source chamber. 

Several published accounts from the WVU Helicon Plasma Group have reported increased levels 

of upstream ionization during the observation of a DL consistent with this theory.25 ,29  

Singh argues in his review article that this diffusion controlled model is of limited 

validity because while it may be able to explain the parallel potential drop in the observed U 

shaped double layer, it does not explain the perpendicular potential drop.4 Singh bases his 

argument on an analysis of magnetization and transit times. A particle’s gyromotion about a 

magnetic field line is describable with a cyclotron motion of period  

 𝜏𝑠 =
2𝜋
𝜔𝑐𝑠

=
2𝜋𝑚𝑠

|𝑞𝑠|𝐵
 , (1.2) 

 

and radius, the Larmor radius, of  

 𝜌𝑠 =
𝑚𝑠𝑣⊥
|𝑞𝑠|𝐵

 , (1.3) 
 

where 𝑠 denotes species, 𝜔𝑐𝑠 = |𝑞𝑠|𝐵
𝑚𝑠

 , is the cyclotron frequency of the denoted species, 𝑚 is the 

mass, 𝑞  is the charge of the species, 𝐵  is the magnetic field strength and 𝑣⊥ is the velocity 

component perpendicular to the magnetic field (in this case the thermal velocity).30  
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Using data provided by Charles et al.,2,3 Singh compares the time it takes to transverse 

the parallel DL to the cyclotron period, a measure of how much influence the background 

magnetic field has on a particle. For the CHI KUNG experiment, the ions are unmagnetized and 

the electrons are highly magnetized. The difference in magnetization implies that when the 

electrons exit the source, they will quickly follow the diverging magnetic field, and then attract 

ions through a self-consistent perpendicular electric field, setting up the large conical structure 

shown in Fig. 1.7b. 

Singh argues that when perpendicular electric fields develop near density gradients due to 

differing electron and ion Larmor radii, the perpendicular electric fields are shorted out by 

conducting boundaries in a laboratory plasma. The resulting parallel electric field may then be 

localized at a single DL or be spread out across multiple DLs. Singh makes the claim that the 

perpendicular electric field is the source of the potential drop that drives the CFDL in an 

expanding helicon source.4  

For the WVU expanding helicon device during typical DL studies, the upstream magnetic 

field is 7 X 10-2 Tesla, the thermal temperatures are 𝑇𝑖 ~ 0.2eV and 𝑇𝑒 ~ 0.6 eV, and the parallel 

scale length of the DL is ~ 30 cm. Using this information along with the mass of the argon ion 

and an electron in Eq. 1.2 and Eq. 1.3, the cyclotron period for the ions and electrons are 𝜏𝑐𝑖~ 37 

𝜇s and 𝜏𝑐𝑒 ~ 0.5 ns respectively. From the temperatures, the thermal velocities for the ions and 

electrons are ~ 690 m/s and ~ 106 m/s, giving parallel double layer transit times 𝜏𝑖 𝑡𝑟𝑎𝑛𝑠~ 430 𝜇𝑠 

and 𝜏𝑒 𝑡𝑟𝑎𝑛𝑠~ 290 ns. Unlike the CHI KUNG experiment, both ions and electrons are considered 

magnetized but the electrons are much more magnetized, (𝜏𝑐𝑖 < 𝜏𝑖 𝑡𝑟𝑎𝑛𝑠 and 𝜏𝑐𝑒 <<  𝜏𝑒 𝑡𝑟𝑎𝑛𝑠). The 

fact that both species are magnetized in the WVU helicon device mitigates Singh’s claim that the 
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perpendicular electric field is the driving force to all CFDL helicon sources. The ions are likely 

to follow the magnetic field lines into the double layer along with electrons. Consequently, the 

Lieberman and Charles diffusion controlled model used by Chakraborty Thakur et al. to explain 

upstream ionization has more validity in WVU expanding helicon plasma source. What is also 

true, however, is that the ion Larmor radius, (𝜌𝑖~  4 mm at the beginning of the DL, ~ 10 cm at 

the low potential side) may be substantial enough for the ions to sample some of these other 

nonparallel potentials that may be present in the DL.      

1.3.3 Double Layer Laboratory Studies at WVU 

The WVU Helicon Plasma Group has also made substantial contributions to CFDL 

laboratory research. Chakraborty Thakur25 and Scime et al. 31  provide a thorough review of 

previous WVU research. Sun et al.32 provided the first published observation of supersonic ion 

flows in WVU’s expanding helicon experiment and was followed by more detailed observations 

of a CFDL that are described in Ref. [10]. This present work finds its inspiration largely in trying 

to go beyond the studies published in Biloiu et al.33 and Chakraborty Thakur et al.29 A brief 

synopsis of those studies will be given here, with specific facets reviewed in the relevant portions 

of Chapter 5. 

 Chakraborty Thakur et al.29 performed a series of pivotal experiments that investigated 

the effect of only changing the antenna frequency on the formation of the ion beams downstream 

of a low pressure expanding helicon argon plasma. All other source parameters such as the 

magnetic field in the source and expansion chambers, the power supplied to the driving antenna, 

and the neutral gas pressure were held fixed. The velocity of the ion beam in the source 
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(upstream, black squares) and in the diffusion chamber (downstream, red circles) is shown as a 

function of the antenna frequency in Fig. 1.8.  Above the antenna frequency threshold of 11.5 

MHz, the ion beam appears downstream of the plasma source and the beam velocity decreases 

with increasing driving frequency. The decrease in downstream ion beam velocity with 

increasing driving frequency suggests that the ion beam velocity would be even larger at lower 

driving frequencies if whatever mechanism that prevents ion beam formation did not appear at 

the antenna frequency of 11.5 MHz. An electrostatic double probe was also used to measure the 

frequency spectrum of the electric field fluctuations for plasmas with and without a stable double 

layer. The electrostatic fluctuation measurements pointed to a beam-driven, ion acoustic 

instability as the mechanism responsible for suppression of the DL at low antenna frequencies.29 
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Figure 1.8. Upstream (black squares) and downstream (red circles) ion beam velocity versus antenna frequency. 

The velocities have been corrected for Zeeman shifts and the angle of the downstream LIF probe. The downstream 

ion beam vanishes for lower antenna frequencies. Figure obtained from Ref. [29]. 

We suggest the following interpretation of these observations. At antenna frequencies 

below 11.5–12 MHz, a strong DL forms and accelerates an ion beam to velocities greater than 

the sound speed. The accelerated ion and electron beam currents exceed a threshold for 

excitation of a current-driven instability and large electrostatic fluctuations develop; thereby 

destroying the strong potential gradient necessary for the DL and the DL collapses. The 

instabilities appear as large amplitude noise on Langmuir probe and RFEA measurements in 

steady-state discharges. The DL is stronger (the relative intensity of the ion beam is larger and 

the ion beam velocity is larger) at lower antenna frequencies because the coupling of rf energy 

into the plasma improves at lower antenna frequencies. Thus, it is at the higher antenna 

frequencies that the ion beam persists in both the pulsed and steady-state discharges.  

Once the rf power coupling efficiency drops at higher antenna frequencies, a stable, but 

weaker, DL forms; the electrostatic noise is significantly reduced; and the ion beam appears 

downstream. Consistent with this hypothesis are the measurements of the upstream bulk ion 

speeds and the downstream ion beam velocities shown in Fig. 1.8 The downstream ion beam 

velocity clearly increases with decreasing antenna frequency (the DL is getting stronger) until 

the beam abruptly vanishes downstream. The upstream beam velocity is relatively constant at the 

higher antenna frequencies and then begins to drop at the same threshold antenna frequency (11 

MHz) for which the downstream beam vanishes. In the time resolved studies, two ion beam 

velocity and amplitude cases were obtained through two different divergent magnetic field 
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mirror ratios. For the larger beam velocity and amplitude case, the instability grows while the DL 

collapses (the ion beam vanishes). For smaller beam velocity and relative amplitude case, the ion 

beam persists throughout the discharge and no electrostatic fluctuations are observed; consistent 

with the higher beam velocity results obtained in the steady-state discharge experiments. 

Because the growth of the instability disrupts the DL, these measurements provide a 

unique means of experimentally studying the physics related to the formation of a current-free 

DL in expanding plasmas. These experiments are not the first to indicate the presence of low 

frequency instabilities associated with current-free DLs 34  or with DLs created in divergent 

magnetic fields.35 However, to the best of our knowledge, complete collapse of a DL correlated 

with the appearance of intense electrostatic instabilities had not been reported previously in a 

laboratory experiment. These results suggested that creation of strong DLs in expanding plasmas 

for plasma propulsion36,37 may be self-limited through instability growth and also demonstrated a 

mechanism for the collapse of naturally occurring DLs. The nature of this instability is discussed 

in greater detail in Section 4.1 and additional results and analysis motivated by this work are 

presented in Section 5.1. 
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Chapter 2: Helicon Plasma Sources 

2.1 Introduction to Helicon Plasma Sources 

Helicon plasma sources have been studied for over forty years with a large spike of 

research activity occurring within the last 20 years.1 The large spike in research activity results 

from applications that take advantage of the helicon sources’ ability to provide low temperature, 

high density plasmas. Helicons have proven useful in the fields of propulsion,2, 3, 4, 5 plasma 

processing,6,7 studying space relevant phenomena,8,9 and basic plasma physics.10,11 

Helicon wave investigations are usually the starting point for any discussions of the 

generation of helicon plasmas, even though it is unclear what exact mechanism is responsible for 

coupling rf power into a plasma. Helicon waves were first explored in the early 1960’s in 

gaseous plasmas 12  and solid systems. 13  Woods, 14  Klozenbreg et al., 15  and Davies et al. 16 

published studies on the basic theory of helicon waves. In the early 1970’s, Rod Boswell 

developed the first helicon plasma source while at Flinders University of Australia.17 Boswell 

observed densities of the order of 1013 cm-3 and the signature argon “blue core.”18 Boswell and 

co-workers19,20,21 performed several experiments that explored the structure and propagation of 

helicon waves during the 1980’s. The spike of publications began in the early nineties from 

different groups investigating plasma thrusters, plasma processing, space relevant phenomena, 

and basic plasma physics.  Helicon Double Layer Thrusters (HDLTs) are one example of 

increased research activity in the field of helicon applications. Takahashi et al. 22  recently 

measured the axial thrust of one these devices. Boswell et al.23 have concluded more research is 

needed in environments representative of space, but still the HDLT may prove to be a low-cost, 
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long-lifetime, electric propulsion device. Review articles covering the earlier decades of helicon 

plasma physics research can be found in Boswell and Chen,24 Chen and Boswell,25 and Scime et 

al.26  

2.2 Physics of Helicon Plasma Sources 

 Helicon waves are bounded right handed circularly polarized electromagnetic waves. The 

frequency range of propagation is 𝜔𝑐𝑖 ≪ 𝜔 ≪ 𝜔𝑐𝑒 where 𝜔𝑐𝑖 is the ion cyclotron frequency, 𝜔𝑐𝑒 

is the electron cyclotron frequency and 𝜔 is the wave frequency. Unbounded or free right-hand 

circularly polarized electromagnetic waves are commonly referred to as whistler waves because 

of their characteristic descending tones. 27  An engineer in the German army named H. 

Barkhausen reported these tones during World War I. 28  While eavesdropping on allied 

communications, he determined that the whistlers were coming from the atmosphere. However, 

it took the work of Storey29 to suggest that these waves are generated by lightning. Aigrain 

originally coined the term “helicon” in 1960 as a description of bounded right hand circularly 

polarized waves in a solid rod of sodium.30 The dispersion relation for a helicon wave is 

 𝑁2 ≈
𝜔𝑝𝑒2

𝜔𝜔𝑐𝑒𝑐𝑜𝑠𝜃
 , (2.1) 

Here, 𝑁 ≡  𝑘‖ 𝑐 𝜔,⁄   is the parallel index of refraction, 𝑘‖ is the wave number parallel to the 

magnetic field, 𝑐  is the speed of light, 𝜔𝑝𝑒  is the electron plasma frequency, 𝜔  is the wave 

frequency, 𝜔𝑐𝑒 is electron cyclotron frequency and 𝜃 is the angle at which the wave propagates 

with respect to the magnetic field. Storey also determined that high frequency helicon waves 
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travel faster than lower frequency waves emanating from the same source; the group velocity is 

(𝑑𝜔 𝑑𝑘⁄ )𝑚𝑎𝑥 = 𝜔 4𝜔𝑐𝑒⁄ . Thus, helicon waves share the same “whistling” characteristic as 

whistler waves. 

 Classic helicon waves have an operating frequency 𝜔 constrained to obey 𝜔𝐿𝐻 ≪ 𝜔 ≪

𝜔𝑐𝑒  and 𝜔𝜔𝑐𝑒 ≪ 𝜔𝑝𝑒2 , where 𝜔𝐿𝐻  is the lower hybrid frequency, 𝜔𝑝𝑒 = (𝑛𝑒2 𝜀𝑜𝑚𝑒⁄ )1/2 is the 

electron plasma frequency, 𝜔𝑐𝑒 = 𝑒𝐵 𝑚𝑒⁄  is the electron cyclotron frequency and 𝑛, 𝑒, 𝜀𝑜, 𝑚𝑒 

and  𝐵 are the plasma density; elementary electron charge; dielectric permittivity of vacuum; 

electron mass; and the uniform background magnetic field strength, respectively. The lower 

hybrid frequency is  

 
1

 𝜔𝐿𝐻2
=

1
𝜔𝑝𝑖
2 + 𝜔𝑐𝑖

2 +
1

𝜔𝑐𝑒𝜔𝑐𝑖
 , (2.2) 

where 𝜔𝑝𝑖 = (𝑛𝑍2𝑒2 𝜀𝑜𝑀⁄ )1/2 is the ion plasma frequency, 𝜔𝑐𝑖 = 𝑍𝑒 𝑀⁄  is the ion cyclotron 

frequency, and 𝑍𝑒,𝑀are the ion charge and mass, respectively. The second term contains the 

effects due to electron inertia. The first term is negligible in higher density plasmas, allowing the 

lower hybrid frequency to be approximated by 𝜔𝐿𝐻 ≈ �𝜔𝑐𝑒𝜔𝑐𝑖 in a high density plasma. The 

plasma density and parallel wave number obey a fixed relationship for a pure helicon wave 

propagating in a region of a given magnetic field strength31 

 𝑘 = �𝑘⊥2 + 𝑘∥2 ≈
𝜔
𝑘∥
∙
𝜔𝑝2

𝜔𝑐𝑒𝑐2
= 𝑒𝜇0𝑣𝑝 �

𝑛
𝐵
�, (2.3) 
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where, 𝑘 is the wave number of the helicon wave, 𝜇0 is the magnetic permeability in vacuum and 

𝑣𝑝 = 𝜔 𝑘‖⁄  is the helicon wave phase velocity along the tube. Typically, 𝑘⊥ is fixed by the tube 

radius 𝑎, such that 𝐽1(𝑘⊥𝑎) = 0, where 𝐽1 is the Bessel function of the first kind.  

 Efficient helicon source operation has several desirable characteristics for industry 

applications and scientific inquiry. These characteristics include very high plasma densities at 

relatively low temperature for a given rf input power. Consequently, the physical process 

responsible for efficient helicon source operation has been extensively studied over a wide 

variety of operating regimes. Possible explanations for this high efficiency includes collisional 

processes, 32 , 33  Landau damping, 34 , 35  helicon wave penetration, 36  antenna localized 

acceleration,37,38 mode conversion near the lower hybrid frequency,39 and nonlinear trapping of 

fast electrons.40,41 An active area of research for helicon plasma sources focuses on both strong 

wave damping and high efficiency operation, neither of which is explainable by either Landau 

damping or collisional processes. Fast electrons are also being studied because they may play a 

critical role in ionizing the background gas in a helicon source. Fast electrons would appear as a 

non-Maxwellian component of the electron distribution function. 

 The mechanism responsible for efficient plasma creation and loss in helicon sources is 

not completely understood, even in the case of a uniform magnetic field. Other parameters, such 

as neutral pressure, antenna design, and magnetic field strength, can influence the axial plasma 

density profile downstream of the antenna. This work focuses on the case of non-uniform 

magnetic fields, specifically expanding magnetic field geometry, where helicon sources have 

played a key role in recent studies of spontaneously forming double layers.  



27 
 

2.3 HELIX-LEIA  

The helicon plasma source used for these experiments consists of two regions: the small 

diameter Hot hELIcon eXperiment, (HELIX) where the plasma is produced and the large 

expansion region known as the Large Experiment on Instabilities and Anisotropies (LEIA). The 

plasma created in HELIX flows into LEIA (Fig. 2.1). The magnetic field in LEIA is weaker than 

in HELIX, so the plasma expands into LEIA along divergent magnetic field lines. LEIA has a 

high beta plasma where “beta” is the ratio of particle pressure to magnetic field pressure, i.e., 

𝛽 = 𝑛𝑘𝐵𝑇𝜇0 𝐵2⁄  with 𝑘𝐵 the Boltzmann constant. The 𝛽𝑖𝑜𝑛 for LEIA and HELIX are ~.2 and ~4 

x10-4, respectively. The high beta nature of the LEIA plasma makes it ideally suited for 

laboratory investigations of both heliospheric and magnetospheric physics. The magnetic field 

expansion geometry in the region between HELIX and LEIA also enables studies of 

spontaneous, current-free, electrostatic double layer formation at low neutral pressures. Detailed 

descriptions of the early development of HELIX can be found in the dissertations of Keiter,42 

Balkey 43  and Kline. 44  More recent detailed reports of modifications to the HELIX-LEIA 

experiment and measurements of the source parameters are found in the dissertations of Sun,45 

Keesee,46 Hardin,47 Biloiu48 and Chakraborty Thakur.49 
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Figure 2.1. HELIX (foreground) and LEIA (large aluminum chamber). HELIX resides inside a Faraday cage, not 

show here for photography purposes, to provide rf shielding. The large electromagnets surrounding LEIA are 

approximately 3 m in diameter. 

2.3.1 Plasma Chamber 

A schematic of the HELIX-LEIA system is shown in Fig. 2.2. The HELIX vacuum 

chamber is comprised of a 61 cm long, 10 cm diameter Pyrex™ tube connected to a 91 cm long, 

15 cm diameter stainless steel chamber. The stainless steel chamber opens into a 1.8 m inner 

diameter, 2 m outer diameter, 4.5 m long expansion chamber. The stainless steel chamber has 

one set of four 6 inch ConflatTM crossing ports in the center of the chamber and four sets of four 
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2.75 inch ConflatTM crossing ports. The 2.75 inch ConflatTM crossing ports are spaced evenly on 

either side of the set of the 6 inch ConflatTM crossing ports. There are two turbo molecular pumps 

located at the end of LEIA not attached to HELIX. The other end of the HELIX chamber not 

attached to LEIA is connected to a glass cross. The three legs of the glass cross are terminated 

with another turbo-molecular drag pump, an ion gauge, and a 12 inch stainless steel flange fitted 

with a 4 inch viewport to allow optical access of the plasma along the HELIX-LEIA axis of 

symmetry. LEIA has several ports for access with scanning internal probes, the reentrant probe, 

and other diagnostics. 

 



30 
 

 

Figure 2.2. Schematic (side view) of the HELIX-LEIA plasma chamber along with labels corresponding to the 

locations of various diagnostics such as the Langmuir and electrostatic probe(C), RFEA (G) and collection for LIF 

(G through E).More details in Chapter 3. 

2.3.2 Vacuum System 

Three turbo-molecular drag pumps maintain the vacuum pressure in the chambers. Each 

of the pumps is backed by its own diaphragm roughing pump. All three turbo pumps are 

separated from the vacuum chamber by gate valves. The gate valves are on an interlock system 

designed to close if the pressure rises beyond a threshold value. While the HELIX turbo pump is 
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maintained at a constant rotational frequency of 549 Hz, the other two turbo pumps are run at 

rotational frequencies of 400 Hz or 600 Hz. There is a slight pressure gradient along the HELIX 

chamber because of the pressure differential, while the pressure in LEIA is nearly constant. For 

the current free double layer studies, the gate valve for the HELIX turbo remained shut allowing 

the neutral pressure to increase in the source region enough to maintain a stable plasma.  The two 

LEIA turbos were operated on the 600 Hz setting in order to reduce ion-electron and ion-neutral 

collisions that quench the metastable states needed for laser induced fluorescence.50,51 Without 

gas flowing into the system, the three turbo pumps maintain a base pressure of 10-7 Torr. 

The neutral gas pressure is measured with a series of pressure gauges. A Balzers PKR250 

full range pressure gauge is located at one branch of the glass cross and is used by the HELIX 

pumping station. Another Balzers PKR250 full range pressure gauge is located on the LEIA 

pumping station. These Balzers gauges have the ability to measure a full range of pressures by 

combining a cold cathode gauge for pressures below 10-2 Torr and a Pirani gauge for pressures 

above 10-2 Torr. The Balzers pressure gauges require a correction depending on which gas 

species is used. A Baratron® capacitance manometer pressure gauge is located at approximately 

the middle of HELIX, 35 cm downstream of the antenna. The Baratron® gauge pressure 

measurement is independent of the gas species. 

Two MKS1179 mass flow valves regulate the gas flow rate into the system. Typical flow 

rates while using only one valve are 2.5-6.5 SCCM (standard cubic centimeters per minute) for 

the CFDL studies in this work. The two flow valves allow for the possibility of regulating a 

mixture of gases and both flow valves are controlled by a single PR-4000 power supply. There 

are two gas inlet locations in HELIX. One location is adjacent to the Balzers pressure gauge on 
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the glass cross. This inlet location is referred to as the “end feed.” The second inlet location is at 

a 2.75” cross port on the stainless steel portion of the HELIX chamber closest to the antenna. 

This inlet location is referred to as the “middle feed” and it allows for a more direct gas flow into 

the plasma chamber near the antenna instead of relying on diffusion overcoming the pumping at 

the end gas feed location. All experiments presented here used argon gas introduced with the 

middle feed. Plasmas are created at neutral pressures (with rf on) ranging from 0.1 to 100 mTorr.  

2.3.3 Magnetic Field 

Ten HELIX water-cooled electromagnets produce an almost uniform, steady state, axial 

magnetic field of 0-1300 Gauss in the source. These HELIX magnets were donated to WVU by 

the Max Planck Institüt in Garching, Germany. Each of the 10 magnets has 46 internal copper 

windings with a resistance of 17 mΩ and an inductance of 1.2 mH. Two Xantrex XFR power 

supplies, connected in parallel, provide a total current of up to 400 Amperes to the HELIX 

magnets. The magnets rest on an adjustable rail system that allows adjustments in axial position 

and are arranged in an orientation that keeps the field uniform throughout the HELIX magnet 

array. For the results in sections 5.1 and 5.2, the magnets were water-cooled by building water. 

For the results in section 5.3, the HELIX magnets were chilled by a Neslab System III Heat 

Exchanger.  

Seven LEIA water-cooled electromagnets produce a steady state axial magnetic field of 

0-150 Gauss in the expansion chamber. These LEIA 9’ diameter magnets were custom built with 

each magnet containing five sets of aluminum tubing wound into five two-coil “pancakes” of 

four layers each, for a total of 40 turns per magnet. The aluminum tubing has 0.5” x 0.5” square 
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cross section, hollowed out to allow for water cooling, and wrapped in insulating paper. For the 

results in sections 5.1 and 5.2, the magnets were water-cooled by a closed loop system 

maintained with a Neslab NX-300 chiller. For the results in section 5.3, the LEIA magnets were 

chilled by building water. The LEIA magnets are powered with a DC EMHP power supply 

capable of delivering up to 200 Amperes, resulting in a magnetic field of 0-130 Gauss.  

Figure 2.3 shows the HELIX-LEIA system drawn to scale (Fig. 2.3 a) with experimental 

measurements and numerical calculations of the magnetic field profile. Fig. 2.3b shows an axial 

field gradient of 10 Gauss/cm over a distance of 70 cm in between HELIX and LEIA. Fig. 2.3c 

shows the on-axis magnetic field strength and its gradient in the HELIX-LEIA combined system 

as calculated with a two dimensional numerical model. This simulation was validated with point 

measurements along the system axis. The simulation was performed assuming a 600 Gauss field 

in HELIX and two different LEIA fields, 14 Gauss (solid line) and 70 Gauss (dash-dot line). The 

simulation plot also shows the spatial variation of the contour lines of constant magnetic flux 

(flux tubes). 
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Figure 2.3. (a) HELIX-LEIA device drawn to scale with the magnetic field profiles shown. (b) Magnetic field 

strength and magnetic field gradient versus axial position over the entire length of the HELIX-LEIA device. (c) 

Contours of constant magnetic field flux showing the increased divergence that results when the magnetic field in 

the LEIA decreases from 70 G (dash-dot line) to 14 G (solid line), for a constant 600 G magnetic field in HELIX. 

Figure is adapted from Ref. [47]. 
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2.3.4 Rf Antenna and Matching Network 

The antenna, shown in Fig. 2.4, is tightly wrapped around the Pyrex tube at 37 cm from 

the end of the source chamber. Rf power of up to 2.0 kW over a frequency range of 6-18 MHz is 

coupled into a 19 cm half wave, helical antenna to create the steady state plasma. Additional 

details of the antenna and matching network can be found in the dissertations of Balkey52 and 

Sun.53 The rf system is comprised of a 50 MHz Wavetek model-80 function generator that 

supplies a rf signal to a 30 dB ENI 1000 amplifier. The amplifier delivers up to 2 kW of power 

within the frequency range of 6-18 MHz. A 𝜋 matching network is connected to the amplifier 

with a high frequency co-axial cable. The purpose of the matching network is to match the 50 Ω 

output impedance of the amplifier to the antenna/matching network system. The matching 

network consists of three tuning capacitors and a load capacitor. All of the capacitors are high 

voltage Jennings vacuum capacitors. Two of the tuning capacitors have a range of 4- 250 pF. The 

remaining tuning capacitor has a range of 5-500 pF. The large load capacitor has a range of 20-

2000 pF. The three tuning capacitors are connected in parallel to each other and in series with the 

antenna. The load capacitor is in parallel with the tuning capacitors and the antenna. The 

capacitors are connected to the antenna with silver-plated copper rods. Fig. 2.5 shows the 

antenna/matching network system. The real impedance of the matching network must equal the 

50 Ω output impedance of the amplifier while the imaginary part of the combined matching 

network-antenna circuit must be zero to maximize the forward power coupled to the antenna and 

to minimize power reflected back to the amplifier. For a 𝜋 matching network, Chen calculated 

the required capacitances for the load and tuning capacitors to be 
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 𝐶𝐿 =
1

2𝜔𝑅
�1 − �1 −

2𝑅
𝑅0
��
1/2

 , (2.2) 

and 

 𝐶𝑇 = �𝜔𝑋 −
1 − 𝑅 𝑅0⁄

𝐶𝐿
�
−1

, (2.3) 

where R is the real resistance of the antenna, and 𝑋 = 𝜔𝐿  is the reactive impedance of the 

antenna. 

 

Figure 2.4. Diagram of a m = +1 helical antenna and the actual design of the antenna.61 Figure is adapted from Ref. 

[47]. 
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Figure 2.5. Matching circuit for the helicon antenna for HELIX. CL is the load capacitor and CT  denotes the three 

tuning capacitors. Figure is adapted from Ref. [47]. 

Once the discharge is initiated, the effect of the inductive load of the plasma on the 

antenna has to be considered. For a typical helicon plasma source in the “helicon” or “inductive” 

mode, Eq. 2.3 becomes    

 𝐶𝑇−1 = 𝜔2𝐿 −
�1 − 𝑅

𝑅0
�

𝐶𝐿
 , (2.4) 

where 𝐿 is the total inductance in the antenna portion of the matching network-antenna circuit. 
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2.3.5 HELIX-LEIA Plasma Parameters 

Characteristic electron temperature and density in HELIX for these experimental 

parameters are Te = 5.8 eV and n = 2 x 1012 cm-3 as measured with rf compensated cylindrical 

Langmuir probes located 50 cm downstream of the antenna.  

Parameter (units) HELIX LEIA 

𝐵(Gauss) 500-1200 5-70 

𝑝𝑛𝑒𝑢𝑡𝑟𝑎𝑙(mTorr) 1.5-10 0.15-1 

𝑛(x 1012cm-3) 0.1-10 0.001-0.1 

𝑇𝑒(eV) 4-12 2-8 

𝑇𝑖(eV) < 1 < 1 

𝜆𝐷𝑒𝑏𝑦𝑒(𝑐𝑚) 5 x 10-3 – 8 x 10-4 3 x 10-2 – 6.5 x 10-2 

𝑟𝑒(cm) 4 x 10-2 – 2 x 10-2 5 x 10-2 – 1.5 

𝑟𝑖(cm) 3 x 10-1 – 6 x 10-1 4-60 

𝜔𝑝𝑒(1010 rad/s) 1.8-18 0.18-18 

𝜔𝑐𝑒(109 rad/s) 5.2-34 52-340 

𝜔𝑐𝑖(106 rad/s) 0.12-0.3 1.2 x 10-3 – 1.6 x 10-2 
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Chapter 3: Standard Plasma Diagnostics 

 Standard plasma diagnostics can be divided in to three broad categories: ex situ, in situ 

intrusive and in situ nonintrusive. Ex situ measurements are typically made with samples of 

plasma reactor contents, where the contents are removed from the system and studied in a 

different environment. Technically, all in situ measurements are intrusive. However the intrusive 

effects can be considered negligible in some cases compared to the overall system behavior; this 

is the case that is denoted as “in situ nonintrusive.” The term “in situ intrusive” is reserved for 

cases where the perturbation introduced by the measurement is not negligible and must be 

considered during analysis. All measurements of the HELIX-LEIA plasma in this work are in 

situ. 

 The five diagnostics used in this work are Langmuir probes, electrostatic probes, 

retarding field energy analyzers (RFEAs), continuous wave laser induced florescence (CW LIF), 

and time-resolved LIF. Langmuir probes are an example of an in situ intrusive measurement. A 

Langmuir probe is simply a conductor that is inserted into the plasma and the current drawn by 

the probe is measured as a function of varying bias voltage. The probe perturbs the plasma, but 

the perturbation is often negligible if the probe size and bias voltages are carefully chosen. A 

RFEA probe is typically a much larger obstruction than a Langmuir probe and its perturbative 

effects cannot be ignored during data analysis. LIF (CW or time–resolved) is an in situ 

nonintrusive diagnostic as long as the injection of the laser light source and the emitted 

fluorescence light is collected outside of the vacuum chamber.  These are well established 

diagnostic techniques that have been applied to the HELIX-LEIA apparatus with specific 

modifications for the experiments described in this work. 
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3.1 Langmuir Probe 

 Irving Langmuir is credited with the first technical description and the theoretical 

framework for this type of electrostatic probe. 1  Consequently, it now carries the name 

“Langmuir probe.” From measurements drawn by a Langmuir probe, the electron temperature 

and density of a plasma is determined. Analysis of Langmuir probe can prove to be challenging, 

especially in cases of drifting, non-Maxwellian, or collisional plasmas, all which require 

comparison of the measurements with complex theoretical models. Thorough reviews on 

Langmuir probe theory and operation can be found in articles by Chen,2 Schott,3 Hutchinson,4 

Hershkowitz,5 and Demidov et al.,6 Sheridan et al.,7 and others. The subsections that follow will 

give a brief overview of the theory, design, and data analysis relevant to the probes used in these 

experiments. 

3.1.1 Langmuir Probe Theory 

 By sweeping through different bias voltages and collecting the current drawn by a 

Langmuir probe immersed in a plasma, an I-V trace, also known as an I-V characteristic, is 

obtained. Fig. 3.1 is diagram of an ideal I-V trace.8 
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Figure 3.1. Idealized Langmuir probe I-V characteristic. Figure obtained from Ref. [4] 

Quasi-neutral plasmas typically cause the probe to charge negatively because the 

electrons have a higher flux than the ions due to their lighter mass and higher mean velocities. 

The floating potential, labeled 𝑉𝑓 on the horizontal axis of Fig 3.1, is the voltage to which the 

probe charges such that the current drawn by the probe vanishes. The floating potential is not the 

electric potential of the plasma. This latter potential is called the plasma or space potential, 𝑉𝑝. If 

the probe is at the plasma potential, the collected current is nearly the maximum electron current 

possible. Using a high impedance voltage source to control the probe’s bias voltage, different 

regimes are observed.  As the applied voltage becomes more negative than the floating potential, 

the probe repels electrons and attracts more ions; resulting in a negative current value. The ion 

saturation current regime is achieved by making the applied potential even more negative, to the 

(Amps) 
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point where all of the electrons are repelled and the ion current reaches an absolute maximum. 

Varying the applied bias voltage in the opposite direction, more positive than the floating 

potential, the probe shifts into the electron saturation current regime. The bias voltage at which 

the slope of the I-V trace begins to decrease near the electron saturation current (the 2nd knee) is 

the plasma potential. When the applied bias voltage is at the plasma potential, there is no 

potential difference between the plasma and the probe. Since electrons are more mobile than 

ions, the magnitude of the electron saturation current is much greater than the ion saturation 

current. 

Further understanding of the different regions of the I-V characteristic clarifies how the 

shape of the I-V trace is dependent upon the plasma density, the electron temperature and the 

shape of the probe. Assuming the particle distribution is Maxwellian, the plasma is collisionless, 

and there is no magnetic field, the current in the region by the 1st knee in Fig 2.1 around the 

floating potential is approximated by, 

 
𝐼(𝑉𝑜 − 𝑉𝑝) = 𝑛𝑒𝑒𝐴𝑝 �
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(3.1) 

 

where 𝑉𝑜  is the applied voltage, 𝑉𝑝  is the plasma potential, 𝑛𝑒  is the plasma density, 𝑒  is the 

electronic charge, 𝑇𝑒 is the electron temperature, 𝑚𝑖 is the ion mass, 𝑚𝑒 is the electron mass, 𝐴𝑠 

is the area of the sheath, and 𝐴𝑝 is the surface area of the probe.4 A good approximation of the 

ratio 𝐴𝑠 𝐴𝑝⁄  is ≈ 1 if the probe size is much larger than the thickness of the sheath surrounding 

the probe. The sheath is a region of spatially varying potential, created when the charges in the 
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plasma shield the potential applied to the probe.9 As 𝑉𝑜 becomes more negative, the first term in 

the brackets of Eq. 3.1 is negligible. Keeping the second term in the brackets, Eq. 3.1 is 

 𝐼𝑠𝑖 = −0.61𝑒𝑛𝑒𝐴𝑝�𝑇𝑒 𝑚𝑖⁄  , (3.2) 
 

where 𝐼𝑠𝑖  and 𝐽𝑖  are the ion saturation current and the ion current density respectively in an 

unmagnetized plasma. 

 Plasma density and the electron temperature are the two unknowns in Eq. 3.1. The 

electron temperature is obtained by taking the derivative of Eq. 3.1 with respect to the voltage 

seen by the plasma, = 𝑉𝑜 − 𝑉𝑝 , giving  

 
𝑑𝐼(𝑉)
𝑑𝑉

≅
𝑒
𝑇𝑒

(𝐼 − 𝐼𝑠𝑖) +
𝑑𝐼𝑠𝑖
𝑑𝑉

. (3.3) 
 

The second term is dropped because 𝑑𝐼𝑠𝑖/𝑑𝑉 ≪ 𝑑𝐼(𝑉)/𝑑𝑉  in the saturation regime. 

Consequently, Eq. 3.3 is rewritten to provide an estimate of electron temperature, 

 
𝑇𝑒 =

𝑒[𝐼(𝑉) − 𝐼𝑠𝑖]
𝑑𝐼(𝑉)
𝑑𝑉

 . 
(3.4) 

 

The electron temperature is determined by performing a linear fit to the semi-logarithmic based 

plot of  𝑙𝑛(𝐼 − 𝐼𝑠𝑖) versus 𝑉 and taking the inverse of the slope of the fit. The calculated electron 

temperature along with measured ion saturation current is then used to solve for the plasma 

density via Eq. 3.2. 
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 There are some differences between the ideal I-V trace and an experimentally obtained I-

V trace for a cylindrical Langmuir probe in high density plasmas such as a helicon source. In the 

helicon source, a cylindrical Langmuir probe cannot achieve true electron saturation because the 

sheath surrounding the probe continues to expand and collects more electrons as the voltage is 

increased.8 Without the second knee in the I-V trace, the plasma potential cannot be directly 

measured either and has to be approximated. 

 For 𝑇𝑖 < 𝑇𝑒, there is a useful relationship between the plasma potential and the floating 

potential. The ion current at the floating potential is 

 𝑗𝑖 =
1
4
𝑛𝑒�

8𝑘𝐵𝑇𝑒
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 , (3.5) 

 

and the electron current at the floating potential is 
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Since the total current on the probe is zero at the floating potential, Eq. 3.5 is set equal to Eq. 3.6. 

After some manipulation of terms, the plasma potential is expressed as10 
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𝑘𝐵𝑇𝑒

2𝑒
𝑙𝑛 �

𝑇𝑒𝑚𝑖

𝑇𝑒𝑚𝑒
� =  𝑉𝑓 +

𝑘𝐵𝑇𝑒
2𝑒

𝑙𝑛 �
𝑚𝑖

𝑚𝑒
� , (3.7) 

 

For argon ions, where 𝑚𝑖 = 40𝑚𝑝 and 𝑚𝑝is the mass of a proton, Eq. 3.7 becomes 

 𝑉𝑝 = 𝑉𝑓 + 5.6𝑇𝑒 . (3.8) 
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This shows that for argon, the difference between the plasma and the floating potentials is 

approximately six times the electron temperature and that the slope 𝑑𝐼/𝑑𝑉𝑎𝑝𝑝𝑙𝑖𝑒𝑑 can used as 

reasonable approximation to calculate the electron temperature rather than having to use the 

slope of 𝑑𝐼/𝑑𝑉. 

Magnetic fields have been ignored up until this point in the discussion of Langmuir probe 

theory. The introduction of magnetic fields causes ions and electrons to gyrate about the field 

lines, limiting cross field transport and restricting the flux of particles to the probe. The 

importance of the magnetic field effects is determined by the ratio of the gyroradius to the 

characteristic dimension of the probe. If this ratio is much less than unity for a given species, that 

species will be impeded from interacting with the probe. Eq. 3.1-3.4 must then be modified to 

account for cross field transport and collisions.4 For an ion temperature of 0.3 eV and a magnetic 

field strength of 1000 Gauss in HELIX, the gyroradius for an ion is ≈  3.5 mm which is 

comparable to the probe tip length of 2 mm and larger than the tip diameter of 0.5 mm. Including 

magnetic field effects on the ions, Hutchinson4 showed that Eq. 3.2 must be adjusted: 

 𝐼𝑠𝑖 = −0.49𝑒𝑛𝑒𝐴𝑝�𝑇𝑒 𝑚𝑖⁄  . (3.9) 
 

 This discussion of Langmuir probe theory has also ignored the effect strong rf fields have 

on probe measurements.  Rf fields in the helicon source cause both acceleration and deceleration 

of the electrons towards the probe. The sloshing of the electrons back and forth in the sheath 

introduces error in the Langmuir probe measurements for the floating potential and a broadening 

of the electron distribution function.11 To minimize these effects on measurements, the Langmuir 
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probes must be rf compensated. Sudit and Chen 12  developed an rf compensation method 

involving an addition of a floating electrode. The floating electrode is exposed to the plasma 

potential fluctuations and connected to a probe tip through a small capacitor, forcing the probe 

tip to follow the potential oscillations and thereby reduce the sheath impedance. 

 The Langmuir probe used in these experiments has such an electrode. However, it is not 

directly exposed to the plasma. A set of rf chokes are also connected in between the probe tip 

and the voltage source. The chokes increase the impedance of the current measurement circuit at 

the rf frequency.  

       

3.1.2 Langmuir Probe Design  

 Fig 3.2 shows a schematic of the Langmuir probe used in these experiments. The probe 

tip is a graphite rod, 0.5 mm in diameter and available commercially for mechanical pencils. The 

graphite rods are inserted into 0.6 mm alumina shaft and attached by a set screw to a copper 

base. The copper base has a 10 nF capacitor and a chain of rf chokes connected to it. A Boron 

Nitride (BN) cap with a hole in the center allows the alumina shaft and the exposed graphite tip 

to extend into the plasma, while the capacitor and rf choke assembly remains protected. The 

threaded BN cap screws into a threaded stainless steel probe shaft. The rf chokes are 0.25 Watt, 

shielded, resonant, inductors from Lenox-Fugle International, Inc. Each of the inductors is 

designed to block a particular range of rf frequencies. 
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Figure 3.2. The Langmuir probe including a) graphite probe tip, b) alumina shaft, c) set screw, d) threaded boron 

nitride cap, e) copper base, f) capacitor, g) chain of rf chokes and h) stainless steel probe shaft. Figure obtained from 

Ref. [13]. 

 From the copper base, the rf chokes are placed in the following order (units of MHz): 26, 

53, 26, 13.2 and 6.8. The end of the rf chokes is then soldered to a shielded, coaxial probe wire. 

The probe wire is attached to the BNC vacuum feedthrough at the far end of the probe shaft. 

Thermaflex tubing is used to cover the chain of rf chokes.13 A picture of the Langmuir probe 

head14 used in HELIX is shown in Fig 3.3. To minimize the plasma perturbation, the shaft of the 

Langmuir probe inserted into the plasma is less than 1 mm in diameter. 
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Figure 3.3. The Langmuir probe head. The exposed graphite tip is 2 mm long and runs the length of the alumina 

tube into the boron nitride cap. The capacitor and the inductor chains are shown schematically. Figure obtained from 

Ref. [14]. 

 Varying of a bias voltage and measurement of the corresponding probe currents that build 

an I-V trace is accomplished with a Keithley 2400 SourceMeter. The source meter is controlled 

by custom software created in LabWindowsTM via a GPIB interface. Fig 3.4 shows a schematic 

drawing of the Langmuir probe measurement circuit. In the experiments reported here, the 

Langmuir probe measurements were obtained 50 cm downstream from the antenna at location C 

shown in Fig. 2.2. 
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Figure 3.4. The Langmuir probe measurement circuit. Figure obtained from Ref. [14]. 

3.2 Electrostatic Probe 

 The electrostatic probe used for electrostatic fluctuation measurements is essentially an 

uncompensated multi-tip Langmuir probe. The spatial separation between the different tips 

allows for the measurement of differences in floating potential due to a propagating wave. Rf 

compensation is avoided in these probes to allow for a full range of observable fluctuation 

frequencies, including up to the rf driving frequency. Observed fluctuations are assumed to be 

fluctuations in floating potential, not electron temperature. Typically, emissive probes are used to 

measure electron temperature fluctuations. 15 However, emissive probes do not work well in 

steady state helicon plasmas with densities of the order of 1013 cm-3.  

3.2.1 Electrostatic Probe Theory 

 Without a bias voltage, the conducting tips of the electrostatic probe are allowed to 

charge up to the floating voltage at which point no current flows to the probe. When the plasma 

surrounding the probe undergoes a change due to electrostatic wave activity, the particle flux to 

the probe changes as well. The changing particle flux leads to fluctuations in the probe’s 
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measured floating potential. By recording the floating potential fluctuations across two tips of the 

probe, the local electric field is determined and the wavelength of the travelling electrostatic 

wave can be determined. The local electric field calculation comes from 𝐸 = ∆𝜑 𝑑⁄ , where 

∆𝜑 = 𝜑1(𝑥1) − 𝜑2(𝑥2) is the difference in floating potential at the location of the two probe tips 

and 𝑑 = 𝑥1 − 𝑥2 is the spatial separation of the two probe tips. For a measured phase difference 

of Δθ and the probe tip separation 𝑑 between the two probe tips, the wave number of a travelling 

wave is given by 𝑘 =  𝛥𝜃/𝑑 . A power spectrum calculated from the fluctuating floating 

potential time series data provides a measure of the strength of the fluctuations at the frequencies 

of interest. By knowing the frequencies and the wavelengths of the wave, a dispersion relation (ω 

versus k) for the wave is determined. 

3.2.2 Electrostatic Probe Design 

 The electrostatic probe used to collect data in HELIX consists of four tungsten 0.55 mm 

diameter tips. Fig. 3.5 shows the orientation of the tips in a 4-bore alumina shaft. Using the 

numbering system in the figure, each tip has the following exposed tip lengths: 1.) 3.04 mm, 2.) 

3.04 mm, 3.) 2.67 mm, and 4.) 3.07 mm. The distances between the labeled tip numbers are 

given in Table 3.1.  The tungsten tips protrude from an alumina shaft that is 2.38 mm in diameter 

and extends 69.69 mm from the BN cap. The probe was located 50 cm downstream the antenna 

at location C shown in Fig. 2.2. 
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Figure 3.5. End view of the electrostatic double probe. The dark portions represent the locations of the tungsten tips 
in the 4-bore alumina. 
 

 

 

 

Tip Numbers Distance (mm) 

3 and 1 1.92 

3 and 2 1.92 

3 and 4 2.65 

4 and 1 2.15 

4 and 2 2.18 

2 and 1 2.79 
Table 3.1. Distances between the tips of the electrostatic multi-tip probe used in HELIX. 

  

A second electrostatic probe was used to collect data downstream in LEIA and it 

consisted of only two tungsten 0.55 mm diameter tips in two 1-bore alumina shafts. One tip has 

an exposed tip length of 1.94 mm and an alumina shaft length of 66.72 mm from the exposed 

tungsten to the BN cap. The other has a 1.98 mm tip length and an alumina shaft length of 66.14 

mm from the exposed tungsten to the BN cap. The two tungsten tips are separated by 3.9 mm. 

This probe was located 80 cm from the base of the HELIX-LEIA junction at location G shown in 

Fig. 2.2. 
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Inside the base of the BN cap of both electrostatic probes, the tungsten wires are 

connected with beryllium copper inline barrel connectors to the wires that bring the signals out to 

the vacuum BNC feedthrough. Thermoflex is used to cover the signal wires and keep them from 

touching inside the probe shaft. The signals from the selected tips are sent to a digitizer or an 

oscilloscope and stored on a computer for further processing. For these experiments, the probes 

were operated in either a one-tip or two-tip configuration. In the two-tip configuration, the tips 

would either be oriented parallel or perpendicular to the background magnetic field as shown in 

Fig 3.6. 

 

Figure 3.6. Possible electrostatic probe orientations with respect to the direction of the magnetic field: for HELIX 

multi-tip probe (a) parallel, (b) perpendicular and for LEIA double probe (c) parallel, (d) perpendicular.  

3.2.3 Electrostatic Probe Analysis 

 Identification of waves in a plasma is typically accomplished through measurements of 

the wave frequency, propagation direction, and wavelength.  The wavelength of a wave in a 

plasma is determined from probe measurements by measuring the phase difference between 
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measurements performed at different spatial locations. Real signals contain noise and/or multiple 

wave harmonics. The cross power spectrum of the two measured time series is used to determine 

the phase difference for specific wave frequencies. The cross power spectrum of two time series 

is the product of the Fourier transform (FT) of one time series and the complex conjugate of the 

FT of the other time series. Let the two time series be represented by 𝑓1(𝑥1, 𝑡) and 𝑓2(𝑥2, 𝑡). The 

FT of each series is defined as 

 Φ1(𝑥1,𝜔) = � 𝑓1(𝑥1, 𝑡) cos(𝜔𝑡)𝑑𝑡
∞

−∞
− 𝑖� 𝑓1(𝑥1, 𝑡) sin(𝜔𝑡)𝑑𝑡

∞

−∞
 (3.10) 

 

and 

 Φ2(𝑥2,𝜔) = � 𝑓2(𝑥2, 𝑡) cos(𝜔𝑡)𝑑𝑡
∞

−∞
− 𝑖� 𝑓2(𝑥2, 𝑡) sin(𝜔𝑡) 𝑑𝑡

∞

−∞
, (3.11) 

 

where 𝑥1 and 𝑥2 are the respective probe tip locations. The cross power spectrum, P12, of the two 

signals is the product of Eq. 3.10 and the complex conjugate of Eq. 3.11;  

 𝑃12(𝑑,𝜔) = Φ1(𝑥1,𝜔)Φ2
∗(𝑥2,𝜔), (3.12) 

 

where 𝑑 = 𝑥1 − 𝑥2 is the spatial separation of the probe tips. Expanding Eq. 3.12 and collecting 

the real and imaginary terms,  

 
𝑃12(𝑑,𝜔) = (𝑅𝑒{Φ1}𝑅𝑒{Φ2} + 𝐼𝑚{Φ1}𝐼𝑚{Φ2})

+ 𝑖(𝐼𝑚{Φ1}𝑅𝑒{Φ2} − 𝑅𝑒{Φ1}𝐼𝑚{Φ2}). (3.13) 
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In the complex plane, the angle between the real and imaginary vectors of the cross power 

spectrum is the phase difference of the two time series: 

 Θ(𝜔) = tan−1 �
(𝐼𝑚{Φ1}𝑅𝑒{Φ2} − 𝑅𝑒{Φ1}𝐼𝑚{Φ2})
(𝑅𝑒{Φ1}𝑅𝑒{Φ2} + 𝐼𝑚{Φ1}𝐼𝑚{Φ2})�. (3.14) 

 

 These calculations implicitly assume a large signal to noise ratio. If the signal to noise 

ratio is low, ensemble averages of cross power spectra can significantly improve the precision of 

the phase measurements. The random error decreases as 1/√𝑀 where 𝑀 is the number of data 

samples obtained.16  

Although maximizing 𝑀  is desirable, the need for larger data records presents a 

challenge. To address this issue, a Lecroy WaveRunnerTM 604Zi oscilloscope with the ability to 

perform onboard averages of fast Fourier transforms (FFTs) was used. Briefly, Fourier analysis 

of discrete signals is accomplished through the discrete Fourier transform (DFT) and the FFT is a 

recursive algorithm that implements DFTs more efficiently. A more detailed description of DFTs 

and FFTs can be found in Section 4.2.1. The oscilloscope was set to record the two time series 

and then store averages of the real and imaginary parts of the cross power spectra. After 

collecting 500 averages of both quantities, the average cross power spectrum was constructed, 

 
𝑃12����(∆𝑥,𝜔) = �𝑅𝑒{Φ1}𝑅𝑒{Φ2} + 𝐼𝑚{Φ1}𝐼𝑚{Φ2}�������������������������������������������

+ 𝑖�𝐼𝑚{Φ1}𝑅𝑒{Φ2} − 𝑅𝑒{Φ1}𝐼𝑚{Φ2}�������������������������������������������, (3.15) 
 

without the need to store all of the time series measurements. 

     Even when using the cross power spectrum technique, aliasing in frequency and space 

remains a concern. In power spectrum measurements at a single spatial location, aliasing occurs 
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when a periodic signal’s frequency is larger than the Nyquist frequency (𝜈𝑁𝑦𝑞𝑢𝑖𝑠𝑡 is half the 

sampling frequency) of the data acquisition system. In an FFT of an aliased time series 

measurement, the periodic signal spectral power will appear downshifted in frequency. 

Additional spectral peaks at harmonics of the artificially downshifted frequency are also likely to 

appear in the FFT. For the sampling rate of 100 MHz, 𝜈𝑁𝑦𝑞𝑢𝑖𝑠𝑡 is 50 MHz.  The fast digitization 

rate of 100 MHz was chosen so that the large periodic signal at the rf antenna frequency of 9 

MHz and its first harmonic are well-resolved. Above 25 MHz, the amplitude of the fluctuation 

spectrum is small and there was no need for active filtering of signals above the Nyquist 

frequency. 

Spatial aliasing occurs when the wavelength of the wave is smaller than the separation 

distance between the two tips. Fig 3.7 depicts a situation where the measured phase differences 

of two waves are the same even though their wavelengths are not.17 The minimum resolvable 

wavelength is determined by the probe tip separation distance: 𝜆𝑚𝑖𝑛 = 2𝑑 where 𝑑 is the probe 

separation distance. For a maximum phase difference of π and a tip separation of 0.279 cm 

(largest gap reported in Table 3.1), the maximum measureable wave number is ± 5.63 rad/cm. 

 

Figure 3.7. An illustration of spatial aliasing for a pair of fixed probes. The black dots and dashed lines represent the 

spatial location of the probe tips while the color sinusoids represent the wave amplitudes at an instant in time. Figure 

obtained from Ref. [17]. 
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Some electrostatic probe studies were able to take advantage of newly constructed high-

speed, differential signal amplifiers (shown in Fig. 3.8).  With a design courtesy of the UW-

Madison MST group, WVU constructed these filtered amplifiers to study lower frequency 

signals (~ tens of kHz) while high frequency signals were present. The amplifiers have three 

parallel outputs with input filter corner frequencies of 215 kHz, 615 kHz, and 1.9 MHz, 

respectively. For the measurements presented here, the 215 kHz channel was used. 

 

Figure 3.8. High speed differential amplifier. Design courtesy of the UW-Madison MST group. 

3.3 Retarding Field Energy Analyzer (RFEA) 

 Retarding field energy analyzers (RFEAs) have been used over the last several decades to 

measure ion energy distributions (IEDs) in a variety of plasma reactor configurations. 

Chakraborty Thakur in Ref. [18] details the previous RFEA work of the WVU HELIX group 

while including a review of the history and theory of this diagnostic. A brief overview of the 

RFEA diagnostic is presented here, with the focus on a new probe design and data analysis 
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techniques that resulted from a recent collaboration with the Space Physics Group at the 

University of Tromsø (UiT). 

 All RFEAs share the basic principle of placing a grid in front of a beam of ions and 

increasing the potential of that grid until the ion beam flux stops. The integral of the IED is 

obtained by measuring the current of the collected ions as a function of the grid potential. The 

IED is then obtained by detailed analysis of the current-potential characteristic. The IED,  the 

density of ions in energy space as a function of energy for a given point in space and a moment 

in time, contains nearly the same information as the ion velocity distribution function (IVDF), 

the density of ions in phase space as a function of velocity for a given point in space and a 

moment in time.    

3.3.1 RFEA Theory 

The schematic in Fig. 3.9 shows the working principles of a RFEA. This particular 

schematic is based on the RFEA used by WVU in previous experiments; its construction was 

completed by WVU researchers and based on design schematics provided by the Australia 

National University (ANU) group.18,19,20 Particles follow the magnetic field lines towards the 

entrance slit in the probe that admits plasma. The parallel component of the ion flux is measured 

by making the plane of the aperture normal to the local magnetic field. A grid just behind the 

entrance slit (or in some designs, the entrance slit itself) is biased to a sufficiently large and 

constant negative potential (𝛷𝑒) to repel most of the electrons entering from the plasma. The 

next grid the ions face is biased with an applied discriminator potential (𝛷𝐷) that ranges from 

zero to a large positive value to repel ions. Ions must have a kinetic energy larger than 𝑒𝛷𝐷 in 

order to cross this retarding grid. The third grid after the entrance slit is biased to a constant 
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negative potential (𝛷𝑆) to suppress any secondary electrons produced by the ion bombardment 

on the collector and to repel any secondary electrons created by ion impact on the second grid. 

The collector current decreases as the potential on the discriminator increases and more ions are 

repelled. 

 

Figure 3.9. The WVU RFEA schematic. The aperture is on the left and the vertical dotted lines represent the four 

grids. The dark line shows typical voltages applied to each grid. The dashed line shows the typical range of voltages 

applied to the discriminator grid. This figure is adapted from Ref. [18]. 

There are several theories that describe how the collector current measured as a function 

of the discriminator potential depends on the energy of the ions and relates to the ion velocity 

distribution function.18,21,22,23,24,25 The typical, and incorrect, approach is to assume that first 

derivative of the collector current (𝐼𝐶) with respect to the varying potential (𝛷𝐷) applied to the 

retarding grid gives the ion velocity distribution (𝑓(𝑣)). To illustrate this relationship, consider a 
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one dimensional IVDF while dropping the directional subscript. For a given point in space and 

moment in time, the total ion density is computed with either the IED (𝑔(𝐸)) or the IVDF: 

 � 𝑔(𝐸)𝑑𝐸
∞

−∞
= � 𝑑𝑛

∞

0
= � 𝑓(𝑣)𝑑𝑣

∞

−∞
 . (3.16) 

 

Only the kinetic energies of ions with mass m are considered. Consequently, the variables of 

integration are related through 

 𝑑𝐸 = 𝑑 �
1
2
𝑚𝑣2� = 𝑚𝑣𝑑𝑣, (3.17) 

 

and the IVDFs and IEDs of the ions entering the RFEA are related through a constant of 

integration, 

 𝑓(𝑣) = (𝑚𝑣)𝑔(𝐸). (3.18) 
 

The total ion current density in the entrance plane of the analyzer (𝐼𝑖𝑜𝑛) in this one dimensional 

case is given by 

 𝐼𝑖𝑜𝑛 = 𝑒�𝑣𝑓(𝑣)𝑑𝑣 =
𝑒
𝑚
�𝑓(𝑣)𝑑𝐸 . (3.19) 

 

With RFEAs, ions with energies larger than the potential applied to the discriminator grid pass 

through. Letting 𝐸 → 𝜀  to allow for a smooth transition to the commonly used notation and 

redefining“𝐸” to be the minimum energy for ions entering the RFEA,  Eq. 3.19 becomes  
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 𝐼𝑖𝑜𝑛 =
𝑒
𝑚
�𝑓 ��

2𝜀
𝑚
�
1
2�

� 𝑑𝜀 . (3.20) 

 

All the ions reaching the entrance slit pass unhindered through the grids when the discriminator 

potential (𝛷𝐷) is zero i.e. it is grounded and contribute to the current collected by the collector, 

𝐼𝐶 . 𝐼𝐶  decreases as 𝛷𝐷  is swept from zero to more positive values. At the cutoff energy, the 

minimum energy needed to overcome the discriminator bias, the current collected by the 

collector is   

 𝐼𝐶(𝐸) =
𝑒
𝑚
� 𝑓 ��

2𝜀
𝑚
�
1
2�

� 𝑑𝜀
∞

𝐸

 . (3.21) 

3.3.2 RFEA Design and Schematics 

 Fig. 3.10 shows the schematics of the RFEA probe for the experiments reported here. The 

probe was designed and constructed by researchers from the UiT and placed on the WVU 

HELIX-LEIA plasma experiment at location G in Fig 2.2. The experimental goal was to make a 

comparison of two plasma diagnostics, the RFEA and laser induced fluorescence on identical 

plasma parameters that result in a current free double layer. The UiT RFEA schematic is shown 

in Fig. 3.10 along with the two configurations used. The probe uses three grids and a collector. 

The front grid is either floating or grounded. The repeller grid (R) is biased to −100 V to repel 

electrons. The discriminator (D) discriminates ions based on velocity and a collector (C) is 

biased to −9 V to collect the ion current. The suppressor grid was eliminated from these 

configurations because there was not a clear difference between measurements that did or did not 
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employ a suppressor grid. For some measurements, the positions of the repeller and the 

discriminator were swapped to investigate any effects of ion focusing into the collector.  

 

 

Figure 3.10.: a) The UiT RFEA. b). Schematics of the grids in the RFEA for the repeller in front of the 

discriminator. c). Schematics of the grids in the RFEA for the discriminator in front of the repeller. Both 

configurations have the front grid either floating or grounded. 

3.3.3 RFEA Data Analysis 

 To extract the IVDF from the measured current versus discriminator curve, the 

measurements are fitted to an analytic function that describes the expected current for a given 

discriminator voltage based on some assumptions about the IVDF, e.g., one or two populations, 

flow or no flow, etc.. For a velocity distribution consisting of two ion populations, one a 

background, stationary population accelerated into the RFEA by the difference between the 
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grounded front grid of the RFEA and the local plasma potential and the other an ion beam 

population, the collected current is described by  

 

𝐼𝑐(𝛷𝐷) = � 𝑒2
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(3.24) 

 

where the 𝑝  subscript denotes a background population, the 𝑏  subscript denotes a beam 

population, 𝑛  is the density, 𝑇  is the ion temperature, 𝑚  is the ion mass, Ep is drift energy 

acquired by the bulk ion population as it is accelerated to the RFEA through the sheath in front 

of the grounded front grid, and Eb is energy of the ion beam population. Fig 3.11 shows a 

comparison between the results of a fit of Eq. 3.24 to a RFEA measurement and a LIF 

measurement of the IVDF at the same location and for the same plasma parameters. The red 

curve is the IVDF obtained from the fit and shown in units of laser frequency for comparison 

with the LIF measurement. The green line is the LIF measurement and clearly shows the 

presence of an ion beam population in addition to a background ion population. The two 

measurement techniques are in good agreement. 



67 
 

 

Figure 3.11. The two ion velocity distributions obtained from fitting Eq. 3.24 to the RFEA data (red) compared to 

LIF measurements (green) of the IVDF at the same axial location (position F in Fig. 2.2). The Figure is obtained 

from Ref. [18]. 

 An alternate approach for analysis of the RFEA data is to fit the I-V trace with a 

Savitzky-Golay-filter. A Savitzky-Golay-filter is a windowing filter that fits a polynomial 

centered on every data point. Then the derivative of the fitted function is plotted against the 

discriminator voltages to approximate the IED. Comparisons of LIF measurements of beam 

energies to RFEA measurements of the IED based on the Savitzky-Golay-filter are presented in 

Section 5.4. 
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3.4 Continuous Wave Laser Induced Fluorescence 

 A thorough review of the history of laser induced fluorescence (LIF) for dye laser 

systems can be found in Ref. [26]. Only a brief overview will be given here. In LIF, a laser is 

tuned to a natural absorption line of an atom or ion to induce emission from the upper pumped 

state to either the same initial state (resonant LIF) or a different third state (non-resonant LIF). In 

1966, Yardley and Moore were the first to observe LIF from molecules other than the lasing 

medium of a laser.27 Almost ten years later, Stern and Johnson provided the first experimental 

evidence of LIF in a plasma using a single frequency argon laser and creative positioning of the 

laser relative to the target plasma.28 Hill et al.29 made use of a non-resonant transition and were 

the first to use the capability to tune the laser wavelength to obtain velocity selective LIF 

measurements in 1983. Spectroscopic techniques that rely on measurements of the emission line 

shape suffer from being limited by the resolution of the resolving instrument, typically a 

spectrometer. Hill et al. instead measured the absorption line shape with a velocity resolution 

determined by the natural line width of the laser and the ion transition. The LIF system for 

HELIX-LEIA employs the techniques developed by Hill et al. along with a non-resonant scheme 

so as to easily differentiate between the induced emission and laser light. 

 The width of an absorption line depends on a variety of possible broadening mechanisms. 

Typical broadening mechanisms include the natural line width, Stark broadening, power 

broadening, Doppler broadening and Zeeman broadening. Doppler broadening and Zeeman 

broadening are the two most significant broadening mechanisms in the HELIX-LEIA 

experiment. All other possible broadening mechanisms are negligible for the parameters of these 
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experiments. 30 It is through the Doppler broadening of the absorption line that the velocity 

distribution function (VDF) is determined. 

 A LIF measurement of a VDF in a plasma is obtained by scanning the frequency of a 

narrow line width, tunable laser across an absorption line of an ion or neutral species while the 

intensity of the fluorescent emission from the excited state is measured as a function of the laser 

frequency. Typically, only metastable excited states or ground states are populated enough to be 

used for the initial state. Moving ions or neutrals absorb the Doppler shifted laser light in their 

rest frame, pumping an electron to a higher energy, typically short-lived, excited state. Later, the 

electron spontaneously decays into a lower energy level. By using injection and collection 

optical paths that cross in only one spot, LIF measurements are localized to a specific location in 

the plasma. LIF measurement spatial resolutions of ~ 1 mm-3 are easily accomplished. Analysis 

of the VDF measurement yields the ion or neutral temperature, the density of the absorbing state 

(if the LIF system is fully calibrated), and the net drift velocity. The Doppler broadening of an 

ion absorption line for a Maxwellian distribution is given by 

 𝐼(𝜐) = 𝐼𝑜𝑒𝑥𝑝 �
−𝑚(𝜐 − 𝜐0∗)2𝑐2

2𝑘𝐵𝑇𝜈𝑜2
� , (3.25) 

 

where 𝐼(𝜈) is the absorbed photon flux as a function of frequency 𝜈, 𝐼𝑜 is the maximum photon 

flux absorption and 𝜈𝑜∗ = 𝜈𝑜 + 𝜈𝑜𝑣/𝑐 is the proper frequency of the transition when viewed from 

the laboratory frame.  

 Zeeman splitting yields linearly polarized 𝜋 lines (𝛥𝑚 =  0) and circularly polarized 𝜎 

lines (𝛥𝑚 =  ±1) for absorption between the initial and the upper states in the presence of 

strong magnetic fields. Fig. 3.12 shows the details of typical Zeeman splitting for the primary 
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611.6616 nm absorption line of argon. The 𝜋 lines are symmetrically distributed around the zero 

magnetic field transition while the 𝜎  lines include two clusters of lines, 𝜎 +  and 𝜎 − . The 

amplitude envelope of each of 𝜎 +  or 𝜎 −  clusters is asymmetric. However, each cluster is 

distributed symmetrically around the central line which denotes the zero magnetic field 

transition. The frequency shift of each cluster from the central line depends linearly on the 

magnetic field strength. The strength of the magnetic field at the measurement location can be 

determined from the measured shift of the 𝜎 clusters. 

 

 

Figure 3.12. Schematic of the σ and π transitions for the 611.6616 nm argon ion absorption line. The height of each 

line corresponds to the statistical weighting of each transition as a function of wavelength. Figure obtained from Ref. 

[32]. 

 Each Zeeman component is also Doppler broadened in a thermal distribution of particles. 

For large magnetic fields, accurate temperature measurements are only possible if the LIF signal 

is de-convolved into each of its individual Zeeman components.31 The Zeeman splitting of 𝜋 
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lines and the two sets of 𝜎 lines in HELIX-LEIA is much less than Doppler broadening of these 

same lines.32 This allows each cluster of 𝜎 lines and the cluster of 𝜋 lines to be treated as a single 

Doppler broadened line shifted from the proper frame wavelength by the statistically weighted 

average Zeeman shift of the individual lines in the cluster (zero shift in the case of the cluster of 

𝜋 lines). VDFs parallel and perpendicular to the background magnetic field lines are selected by 

the choice of the laser injection relative to the magnetic field. For perpendicular injection, the 

laser is polarized parallel to the magnetic field, allowing only the 𝜋 lines to be excited. For 

parallel injection, the laser is circularly polarized so that only one cluster of 𝜎 lines is excited. 

3.4.1 LIF of Argon II with a Dye Laser 

  Two continuous wave ring dye laser systems were used to obtain the LIF data presented 

in this work: a Coherent 899 ring dye laser and a Matisse-DR ring dye laser (with which the vast 

majority of these data were collected). A complete description of the Coherent 899 ring dye laser 

can be found in Ref. [26] while the Matisse-DR system is described here. The Matisse-DR ring 

dye laser was introduced as an upgrade to the Coherent 899 laser with increases in power, 

scanning range and laser control. The Matisse-DR dye laser has a line width of less than 20 MHz 

RMS (root mean square) and it is pumped by a Millennia Pro 10s diode laser.  The Millennia Pro 

10s pumps the Matisse-DR ring dye laser using Rhodamine 6G dye that fluoresces from 550 nm 

to 660 nm. 

For LIF measurements of the argon IVDF, the LIF laser system is tuned to 611.6616 nm 

(vacuum wavelength) to pump the Ar II 3d2G9/2 metastable state to the 4p2F7/2 state, which then 

decays to the 4s2D5/2 state by emitting 460.96 nm photons. The LIF scheme is shown in Fig 3.13.  
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Figure 3.13. LIF scheme for Ar II using the ring dye laser. 

The LIF system configuration used on WVU HELIX-LEIA is shown in Fig. 3.14. The 

Matisse-DR dye laser beam is split and 99% is modulated with either an acousto-optic modulator 

(AOM) at 40 kHz or a mechanical chopper at 1 kHz. For good time resolution, time resolved 

experiments require more frequent modulated light pulses than the mechanical chopping can 

provide, while a mechanical chopper allows for more laser light to be injected into the plasma. 

Once modulated, the laser light is coupled into a multimode, non-polarization-preserving, optical 

fiber for transport from the laser laboratory to injection optics aligned along the magnetic axis of 

the helicon source-expansion chamber system. As the laser frequency is swept over as much as 

60 GHz, the fluorescent emission from the pumped excited state is collected and transported by 

an optical fiber to a filtered (1 nm bandwidth around the fluorescence wavelength) narrowband, 

high-gain, Hamamatsu photomultiplier tube (PMT). Since the PMT signal is composed of 

background spectral radiation, electron-impact-induced fluorescence radiation, and electronic 

noise, a Stanford Research SR830 lock-in amplifier is used to eliminate signals uncorrelated with 

the laser modulation. Lock-in amplification is essential since electron-impact-induced emission 
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is several orders of magnitude larger than the fluorescence signal. The remaining 1% of the dye 

laser beam is sent to another beam splitter for diagnostic purposes. 

 

Figure 3.14. The continuous wave LIF diagnostic apparatus. 

The diagnostic beam is split into two paths. One beam is coupled into a Bristol 

Instruments 621-VIS wavelength meter for laser wavelength measurements. The other beam 

passes through an iodine cell for a consistent zero-velocity reference measurement. Fluorescent 

emission from the iodine cell is detected with a photodiode for each frequency scan of the laser. 

The Salami reference iodine spectrum was compared to the experimentally obtained iodine 

spectra in the ranges of interest of each LIF scheme to identify the appropriate iodine lines to be 
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used as a zero velocity reference for the LIF measurements.33 Fig. 3.15 shows that the iodine line 

closest to the zero velocity reference for the Ar II absorption line at 661.6616 nm (or 16348.91 

cm-1) with a sufficiently strong intensity is the 16348.94 cm-1 line. The difference between the 

argon ion and the iodine line corresponds to a shift of 1.08 GHz. 

 

Figure 3.15. Iodine spectra for ~ ±15 GHz relative to 611.6616 nm. This spectrum was obtained from two partially 

overlapping 20 GHz wide laser scans represented by the solid line. As given in Ref. [33], the reference iodine 

spectrum in the spectral ranges of interest for Ar II is shown as the dotted line. Figure adapted from Ref. [11]. 
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A typical LIF measurement of an Ar II IVDF in LEIA, 126 cm downstream of the 

antenna (position D in Fig. 2.2), is shown in Fig. 3.16. The bulk velocity for the Ar II IVDF is 

calculated from the absolute shift of the measured IVDF according to  

 𝑉 = 𝜆𝑜∆𝜈𝑡𝑜𝑡𝑎𝑙, (3.26) 
 

where the velocity 𝑉 is in meters per second for the rest frame wavelength, 𝜆𝑜, in nanometers 

and the total frequency shift, ∆𝜈𝑡𝑜𝑡𝑎𝑙, in gigahertz. The total frequency difference is equal to the 

difference between the LIF signal peak and the iodine reference line (1.46 GHz in this example) 

plus the 1.08 GHz shift in the peak of iodine reference line from the non-shifted absorption line 

at 611.6616 nm while subtracting the Zeeman shift due to the magnetic field at the measurement 

location (for these experimental conditions, the 𝜎+ Zeeman shift is 1.03 GHz). Thus, the total 

frequency shift is 1.51 GHz, corresponding to a bulk velocity of ~ 925 m/s. The argon IVDF is 

well fit with a single Gaussian function, according to Eq. 3.25. The parallel ion temperature is 

determined to be 0.16 eV from the full width at half maximum (FWHM). 
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Figure 3.16. Typical LIF measurement of the argon IVDF, measured in LEIA, 126 cm downstream of the antenna 

(position D in Fig. 2.2). The black line is the raw LIF signal, while the red line is a single Gaussian fit to the data 

and the purple line is the iodine reference spectrum. This figure was obtained from Ref. [11]. 

3.4.2 Re-entrant Probe 

 The re-entrant probe that enters LEIA from the side of the vacuum chamber can be 

placed at a given location with a rotatable vacuum feedthrough. The rotatable feedthrough was 

constructed for use with Langmuir and LIF collection probes in LEIA (see Fig. 3.17). The 
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feedthrough design was based on the schematics discussed in greater detail in Ref. [34]. The 

feedthrough was modified to use a QF-40 flange instead of the original design for QF-50 for 

compatibility with existing probe hardware at WVU. The ball, sealed with two O-rings, enables 

angular motion of the probe. Linear motion is provided by a double O-ring seal that is connected 

to the end of the ball by the QF-40. 

 

Figure 3.17. Mechanical drawing of the UCLA tilting port, modified for use at WVU. Figure is adapted from Ref. 

[32]. 

 The design of the collection optics in the re-entrant probe is shown in Fig. 3.18. The 

probe contains miniature collection optics in a glass tube inserted into the plasma through the 

rotatable feedthrough. When the laser is injected from the HELIX end of the experiment, parallel 

to the axis of the chamber, the fluorescent emission is collected by the re-entrant probe to obtain 

parallel measurements of the IVDF in LEIA. A ¼” plano-convex lens focuses the emission from 
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the 461 nm line into the fiber. The fiber is then connected to the same PMT used for typical LIF 

measurements in HELIX chamber. 

 

Figure 3.18. Schematic of the re-entrant probe. Figure adapted from Ref. [8]. 

3.5 Time Resolved LIF 

 An overview of time resolved LIF measurement techniques developed by the WVU 

HELIX group and others is provided in Ref. [11]. The greatest time resolution that can be 

achieved when using LIF is the lifetime of the optically pumped upper state. For the LIF scheme 

used for these experiments, the lifetime is a few nanoseconds.  However several limiting factors 

prevent temporal investigations from achieving such time resolution. These limitations include 

the sampling speed of the data acquisition system, the RC time constants of the electronics, 

particular plasma conditions, and the ability to collect a sufficient number of LIF photons for a 

decent signal to noise ratio. The digital oscilloscope used here is the Tektronix TVS641 

waveform analyzer. Typically, the sampling rate is set to 50 kHz. The biggest limiting factor 

comes from the need for a 1 ms integration time on the lock-in. As noted in previous studies by 

the WVU HELIX group,35 to get sufficient signal to noise, a combination of a high enough 

number of on-pulses for a given time constant of integration must be achieved. The acousto-optic 

modulator (AOM) was used in all time resolved LIF measurements instead of a mechanical 
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chopper because it had the capability to deliver more pulses of laser light within a fixed time 

window. The mechanical chopper has an upper frequency limit of 1 kHz while typical AOM 

measurements were performed at 40 kHz.  

  Another way to improve upon the signal to noise ratio with time resolved LIF is to 

average many measurements together. Similar to CW LIF, the laser frequency is fixed while a 

large number of LIF measurements are obtained for a single frequency step in the IVDF 

measurement. A typical time resolved LIF scan across a bimodal IVDF requires 50-75 frequency 

steps for good velocity resolution. Time resolved LIF experiments were performed in a pulsed 

plasma source. The pulsed operation of 5 Hz at a 50% duty cycle was accomplished by 

amplitude modulation of the driving frequency of the plasma antenna. The LIF system 

configuration used for time resolved LIF with a lock-in amplifier is shown in Fig. 3.19. A typical 

time resolved LIF measurement of a double layer for experimental parameters similar to those 

used in these experiments is shown in Fig. 3.20.36  
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Figure 3.19. The time resolved LIF diagnostic configuration. The reference beam path is removed from the drawing 

for simplicity. 
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Figure 3.20. Example of a LIF-determined argon ion velocity distribution function during a 100 ms plasma pulse 

with 1 ms time resolution. The top portion is surface plot showing a fast (~ 7.1 km/s) and a slow (~ 0.4 km/s) ion 

population. The bottom portion is a contour plot showing the time lag of ~ 28 ms in the appearance of the fast ion 

population. This figure was obtained from Ref. [36]. 

 Correlation between two time series such as an LIF signal and an electrostatic fluctuation 

signal presents additional challenges due to the need for synchronous recording and identical 

sampling speeds. Either the two signals must be recorded on the same digitizer or there must be a 

time stamp system that can be used to align both time series to a common time base. For these 

experiments the LIF and electrostatic fluctuation signals were recorded with the same digitizer. 
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A key point is that the lock-in amplifier introduces 1 ms time resolution, or an effective sampling 

speed of 1 kHz. This frequency limit prevents any correlation studies with electrostatic signals at 

frequencies above 1 kHz. 

 Higher frequency sampling is achieved by removal of the lock-in amplifier and AOM 

from the LIF system and recording the plasma emission for a fixed laser frequency during the 

plasma pulse. A large number of averages of the signal are recorded to reduce the noise arising 

from the spontaneous plasma emission at the fluorescent wavelength. The PMT signal and 

electrostatic probe signals were recorded with a LeCroy WaveRunnerTM 604Zi oscilloscope. The 

WaveRunner has the capability of performing onboard averages of FFTs. For each plasma pulse 

the oscilloscope records both time series and then stores averages of the real and imaginary parts 

of the cross power spectra between the two signals. To investigate the correlation between the 

particular portions of the IVDF, e.g., the bulk and beam populations, and the electrostatic 

fluctuations, the average cross power spectrum was recorded for those laser frequencies at which 

peaks in the IVDF appeared during measurements in CW plasmas. 
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Chapter 4: Signal Processing Techniques 

As noted earlier, an instability with properties consistent with those of an ion acoustic 

instability was observed whenever formation of the double layer was suppressed in previous 

steady-state HELIX experiments.1 The characteristics of the instability were determined through 

analysis of the frequency spectra of electrostatic waves in the plasma. In this Chapter, the 

essential aspects of those earlier studies are reviewed and described to place the time-resolved, 

spectral measurements presented in this work in context and to justify the need to introduce 

analysis methods capable of generating time resolved frequency spectra.   

A common analogy used in the signal processing literature to describe the inadequacy of 

having only one piece of information, i.e., a frequency spectrum, to analyze a time series 

measurement is based on the way human beings hear music.2 Let a musical score represent a 

time series. Each note in the score conveys four pieces of information: frequency (vertical 

location on the score), position in time (horizontal location), duration (tempo and the type of 

note), and intensity (denoted by accent, crescendo, decrescendo, etc.). Omitting three of these 

four parameters, i.e., keeping only one descriptive characteristic of the score, makes the music 

unrecognizable. At the beginning of every score, global information such as “C major” is given. 

The dominant tones (major peaks in the power spectrum) within the piece of music make up 

chords that define the major and minor scales. Since many pieces of music share this C major 

characteristic, a musical score cannot be identified by this one feature. Time-resolved 

information, i.e., what frequencies occur at what times, is needed to uniquely identify a musical 

composition. By itself, a frequency spectrum of a time series measurement does not fully 
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describe the time series measurement – particularly if some of the signals embedded in the time 

series are not stationary. 

 The time-frequency analysis techniques described in this chapter provide a means of 

recovering time resolved frequency spectra information (what frequencies occur at what times) 

from time series measurements. The discussion begins with brief review of the short time Fourier 

transform (STFT) method, which is a natural extension of the conventional Fourier analysis 

method used to extract the frequency spectrum of an entire time series. The STFT method 

delivers coarse-grained time and frequency information for a single time series. The wavelet 

transform, discussed next, is an adaptive time-frequency analysis method that optimizes the time 

resolution information for each frequency embedded in a time series. The strengths and 

weaknesses of the different signals processing techniques are demonstrated through application 

to measured time series. The most appropriate analysis methods are then employed in the time-

resolved double layer studies in the HELIX-LEIA system described in Chapter 5.     

4.1 The Ion Acoustic Instability and Double Layer 
Formation 

In 2009, Chakraborty Thakur et al. demonstrated that slight variations in the coupling of 

rf power into a helicon source could, for constant magnetic field strengths and neutral pressure, 

affect the strength of a spontaneously forming double layer in an expanding helicon source 

plasma.1 Chakraborty Thakur et al. observed that as the rf coupling improved and the potential 

drop across the double layer increased, i.e., the double layer grew stronger, a threshold was 

reached and the double layer vanished. The rf coupling was varied in those experiments by 

changing the antenna driving frequency. At lower driving frequencies the coupling was better 
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than at higher driving frequencies. The threshold for double layer formation appeared at driving 

frequencies between 11 and 12 MHz. Below 11.5 MHz, the double layer (DL) vanished. At the 

same time the double layer vanished, it was observed that Langmuir probe measurements were 

extraordinarily noisy. Each measurement had to be repeated many times to obtain reliable 

average density and electron temperature values. Above source frequencies of 12 MHz, a single 

measurement was sufficient.3 Shown in Fig. 1 are multi-tip probe measurements of the power 

spectra of the upstream electric field fluctuations versus driving frequency. For driving 

frequencies below 11.5 MHz, the spectra are dominated by a wave at a fundamental frequency of 

17.5 kHz and its harmonics. Coincident with the appearance of the current-free DL, there is a 

dramatic reduction in the amplitude of the floating potential fluctuations both upstream and 

downstream of the expansion region. From phase measurements between the probe tips, it was 

determined that the 17.5 kHz wave propagates primarily in the axial direction with a wavelength 

of approximately 3 cm. 
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Figure 4.1. The power spectrum of the electrostatic instabilities versus antenna frequency obtained 50 cm 

downstream of the antenna. The instability at 17.5 kHz and its harmonics appears only for the lower antenna 

frequencies. Figure obtained from Ref. [1]. 

The Bohm criterion for ions entering a sheath (or DL) is that their minimum speed be the 

Bohm sound speed, defined as �𝑘𝐵𝑇𝑒/𝑚𝑖 for ions.4 We note that if the Bohm criterion for ions 

entering a sheath with speeds larger than the ion sound speed is satisfied for a DL, it is possible 

that current driven instabilities will be excited in the DL, e.g., ion acoustic and cyclotron 

instabilities. Since there are at least four different populations of particles, excitation of a two-

stream instability is also possible. Among these instabilities, the threshold for the Buneman 
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instability yields the same current criterion as the Bohm criterion.1 Other instabilities, e.g., the 

Pierce instability, may trap ions in a narrow strongly varying potential and form a laminar DL.5 

Once formed, the charge separation of the DL can persist without the presence of the Pierce 

instability since the charge distribution of a DL is one of the solutions of the Bhatnagar-Gross-

Krook (BGK) equation. Ion-acoustic driven DLs, characterized by an ion hole on the low 

potential side and a potential difference equal to or less than the electron temperature,6 are also 

observed to coincide with the existence of ion acoustic instabilities in computer simulations.7 

Experimentally, ion cyclotron instabilities have been observed in a triple plasma (TP) device DL 

experiments in an inhomogeneous magnetic field.8 

For observed waves, their axial propagation rules out drift waves as the source of the 

instabilities. The short parallel wavelength and multi-harmonic excitation are inconsistent with 

the characteristics of the ionization instability observed in other DL experiments.9 The multiple 

harmonics spanning frequencies below and above the ion cyclotron frequency are inconsistent 

with electrostatic ion cyclotron waves. Given that the wavelengths are much larger than the 

Debye length but much shorter than the system size, the fact that they propagate along the 

background magnetic field, and that excitation of the waves appears to be associated with a 

threshold particle drift velocity ion beam speed comparable to the ion sound speed, the waves are 

most likely due to a beam driven ion acoustic instability.10 

The dispersion relation for the ion acoustic mode, for ion temperatures much smaller than 

the electron temperature, is 

 𝜔2 =
1

(1 + 𝛾𝜆𝐷𝑒2 𝑘2)
�
𝛾𝑘𝐵𝑇𝑒
𝑚𝑖

� 𝑘2 , (4.1) 
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where 𝜔 is the wave frequency, 𝑘 is the wave number, 𝜆𝐷𝑒 is the electron Debye length, 𝛾 is the 

ratio of the specific heats, 𝑘𝐵 is the Boltzmann constant, and 𝑇𝑒 is the electron temperature. 

For large values of 𝑘, the frequency asymptotically approaches the ion plasma frequency. 

For frequencies much less than the ion plasma frequency (~60 MHz, in this experiment) and for 

values of 𝑘 smaller than 1 𝜆𝐷𝑒⁄ , (12 cm-1 for these experimental conditions) the wave frequency 

is linear in 𝑘 and the phase velocity is approximately given by the ion sound speed. 

 
𝜔
𝑘

= ±�
𝛾𝑘𝐵𝑇𝑒
𝑚𝑖

 , (4.2) 

 

For these experimental conditions, the ion sound speed is 6.4 km/s. The measured average phase 

velocity of the 17.5 kHz wave is 7±1 km/s, which strongly suggests that these waves are ion 

acoustic waves. 

In previous experiments,11 it was shown that formation of a DL in pulsed helicon source 

plasma occurs a few milliseconds after the initiation of the discharge (see Fig. 3.20 for an 

example of a time-resolved IVDF measurement of a beam and background ion population). The 

primary scientific objective of the experiments reported here is to determine if there is a causal 

relationship between the DL and the observed ion acoustic waves. In other words, does the 

appearance of the DL trigger the growth of the waves and if they waves grow large enough, can 

they force the collapse of the DL? To address the issue of a causal relationship, the complete 

IVDF and the plasma floating potential fluctuation amplitude were measured as a function of 

time throughout 100 ms long discharges pulsing at a repetition rate of 5 Hz with a 50% duty 

cycle. Through careful source tuning, plasmas were created at the same source parameters which 
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yielded cases with and without DLs in steady-state. Because conventional Fourier analysis of the 

time series measurements of the plasma floating potential does not provide a measure of the 

evolution of instabilities in a pulsed plasma, new analysis methods were developed for frequency 

spectra measurements in pulsed plasmas.  

4.2 Fourier and Wavelet Transform Methods for Signal 
Processing 

Selecting the most appropriate signal processing technique requires a thorough 

understanding of the signal to be analyzed. For these discussions, the term “signal” refers to a 

measurement of a physical quantity. Signals are classified as deterministic or nondeterministic 

depending upon their reproducibility. Signals that are deterministic can be generated repeatedly 

with identical results; nondeterministic signals, i.e., random signals, cannot. 

There are two types of deterministic signals: periodic and transient. Periodic signals 

repeat themselves exactly after a certain period of time (sinusoidal signals for example).   

Transient signals are defined as signals that appear for only a short period of time but can still be 

represented analytically. A good example of a transient signal source is a damped oscillator.  

Nondeterministic signals are generally described in statistical terms simply because they don’t 

explicitly follow mathematical expressions. There are two types of nondeterministic signals: 

stationary and non-stationary. The statistical properties of a stationary signal do not change with 

time while the statistical properties of a non-stationary signal changes with time. 

Signal classification methods are not rigid or exclusive; no real signal is ever completely 

deterministic. A real signal may have several of the characteristics described above. However,                                                                                                                                                        
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even imperfect classification is extremely valuable for selection of the most appropriate signal 

processing method.12  

Typically, a signal processing technique transforms a time-domain signal into another 

domain, with the goal of extracting additional information embedded within a time series; 

information that is otherwise not readily observable in the original form of the time series. In 

general, signal processing techniques compare a time series measurement to a template function 

to determine their level of “similarity.” The inner product of a signal with a well-chosen template 

function quantifies the degree of similarity. Mathematically, in the Lebesgue space 𝐿2(ℝ), an 

inner product between two functions is  

 〈𝑝, 𝑞〉 ≡ � 𝑝(𝑡)𝑞∗(𝑡)𝑑𝑡
∞

−∞
, (4.3) 

  

where ()∗  denotes the complex conjugate and ℝ  is the real number line. 13  Usually, the 

comparison is made with a time domain signal, 𝑥(𝑡) and a set of template functions {𝜓𝑛(𝑡)}𝑛∈ℤ 

where ℤ is set of integers. The inner product of these two functions returns a set of coefficients 

that can be expressed (using Eq.4.3) as either12 

 𝑐𝑘 = � 𝑥(𝑡)
∞

−∞
𝜓𝑘∗(𝑡)𝑑𝑡 , (4.4) 

 

or in the more general from, 

 𝑐𝑘 = 〈𝑥,𝜓𝑘〉. (4.5) 
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Like a scalar product between two vectors, the inner product between 𝑥(𝑡) and {𝜓𝑘(𝑡)}𝑘∈ℤ is 

greatest when the two functions are most similar. Both the Fourier transform and the wavelet 

transform take advantage of inner products to quantify the degree of similarity. 

4.2.1 The Fourier Transform 

The Fourier transform is probably the most widely used signal processing tool in 

engineering and science. The Fourier transform takes a continuous time series (𝑥(𝑡)) in the time 

domain and delivers the frequency composition of the signal by transforming it into the 

frequency domain. Jean Baptiste Joseph Fourier, a French mathematician, discovered the 

principles behind this relationship in 1807. Objections from some of his contemporaries such as 

Joseph-Louis Lagrange kept Fourier from publishing this finding until 1822 in his book, The 

Analytic Theory of Heat.  

Expressed in the inner product form presented in Eq. 4.3, the Fourier Transform is 

 𝑋(𝜈) = 〈𝑥, 𝑒𝑖2𝜋𝜈𝑡〉 = � 𝑥(𝑡)𝑒−𝑖2𝜋𝜈𝑡𝑑𝑡
∞

−∞
 , (4.6) 

 

where 𝜈 is the frequency of a purely sinusoidal template function. Eq. 4.6 assumes that the signal 

has finite energy, 𝜀. The energy of a signal, 𝑥(𝑡), is defined as the integral of the squares of all 

the signal’s values. In order for there to be an inverse Fourier transform, the energy of a signal 

must converge14  

 𝜀 = � |𝑥(𝑡)|2𝑑𝑡
∞

−∞
< ∞ . (4.7) 
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The term “energy” is used because the sum of squares is a common occurrence in physics when 

various types of energy are calculated.15 The inverse of the Fourier transform, to take a signal 

from the frequency domain to the time domain, is  

 𝑥(𝑡) = � 𝑋(𝜈)𝑒𝑖2𝜋𝜈𝑡𝑑𝜈
∞

−∞
 . (4.8) 

  

 Note that Eq. 4.7 necessitates the knowledge of the complete history of the signal from 

−∞ to ∞ in order to generate one frequency. Conversely, Eq. 4.8 states that each value of 𝑥(𝑡)  

at one instant, 𝑡, can be thought of as an infinite superposition of complex exponentials, i.e. 

infinite non local waves. Without going any further, it is very apparent that Fourier transforms 

are well suited for deterministic, periodic signals and not transient or nonstationary signals. 

Equations 4.7 and 4.8 are intended for use with continuous signals. However, real signals 

are acquired through discrete sampling over a finite interval at discrete time intervals, ∆𝑇, over a 

total measurements time T. Fourier analysis of discrete signals is accomplished through the 

discrete Fourier transform (DFT)  

 𝐷𝐹𝑇{𝑥𝑛} = 𝑥�𝑘 =
1
𝑁
� 𝑥𝑛

𝑁−1

𝑛=0

𝑒−𝑖2𝜋𝜈𝑘𝑛Δ𝑇 , (4.9) 
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where 𝑁 = 𝑇
∆𝑇

  is the number of samples, 𝑛  is the sample index, 𝑥𝑛  is the nth sample of a 

discretely sampled physical quantity, and 𝜈𝑘 = 𝑛
𝑇

, 𝑘 = 0, 1, 2, … ,𝑁 − 1  are the discrete 

frequency components. The inverse DFT is 12 

 𝐷𝐹𝑇−1{𝑥�𝑘} = 𝑥𝑛 =
1
Δ𝑇

� 𝑥�𝑘

(𝑁−1)/𝑇

𝜈𝑘=0

𝑒𝑖2𝜋𝜈𝑘𝑛Δ𝑇 . (4.10) 

 

Calculating the DFT of a real signal is computationally intensive. The DFT of 𝑁 samples 

requires the multiplication of a 𝑁 × 𝑁 matrix and the number of calculation steps is on the order 

of 𝑁2. Thus, considerable computational cost results from improving the time resolution of a 

measurement that is to be Fourier analyzed. DFT analysis of signals in science and engineering 

was rare until the Cooley-Tukey algorithm provided a computationally efficient way to 

implement the DFT in 1965. The Cooley and Tukey algorithm is a variant of what is now known 

as a Fast Fourier Transform (FFT). Other versions of the FFT existed as long ago as 1805, when 

Carl Friedrich Gauss created a version of the FFT that predated the work done by Fourier by ~2 

years. 16  However, the Cooley-Tukey FFT (simply referred to as the FFT) has become the 

dominant FFT technique due to its need for fewer operations, reducing the number of 

calculations to 𝑁 log(𝑁) . The FFT is a recursive algorithm and is easily implemented 

computationally. 

As mentioned previously in Section 3.2.3, the Nyquist frequency serves as an upper limit 

of resolvable frequencies with the issue of aliasing. The lowest frequency that can be resolved 

with an FFT, ∆𝜐, is given by 
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 Δυ =
𝜈𝑠
𝑁

=
1
𝑇

 , (4.11) 
 

where 𝜈𝑠 is the sampling frequency. Note that the frequency resolution is determined solely by 

the acquisition time, a limit that will be discussed later. 

As noted earlier with the continuous Fourier transform, it is the amplitude of the complex 

coefficients of each frequency component that quantifies how “much” of a given frequency is 

“in” the measured signal. The unnormalized power spectrum  

 𝑆𝑥𝑛𝑥𝑛(𝜔𝑘)  = 𝐹𝐹𝑇{𝑥𝑛} ∗ 𝐹𝐹𝑇∗{𝑥𝑛} (4.12) 

 

is simply the amplitude of each discrete frequency component written in a mathematically 

compact form. The power spectrum Fig 4.1 is a good example of power of the FFT technique. 

The peaks in Fig. 4.1 clearly show what frequencies are present within each of the measured time 

series, an analysis that is impossible to perform in the time domain if more than one frequency 

component contributes to the time series.  Although Fig 4.1 shows the presence of a 17.5 kHz 

wave and harmonics when the antenna frequency was lower than 11 MHz, there is no way to 

determine from the FFT analysis when the wave activity appears within the time series.  Two 

methods for deriving time-frequency domain information from a single time series are short-time 

Fourier transforms and wavelet transforms.    
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4.2.2. The Short-Time Fourier Transform 

 The short-time Fourier transform (STFT) was created to address the temporal resolution 

limitations of the Fourier transform. The basis functions in the Fourier transform extend over an 

infinite time period, thus all information about the time dependence of any Fourier frequency 

component amplitude and phase are lost in the Fourier transform process. Dennis Gabor was the 

first to write about the STFT in 1946. The STFT uses a time localized Fourier transform within a 

sliding window. Using the inner product notation, the STFT is 

 
𝑆𝑇𝐹𝑇(𝜏, 𝜈) = 〈𝑥,𝑤𝜏,𝜈〉 = �𝑥(𝑡)𝑤𝜏,𝜈

∗ (𝑡)𝑑𝑡

= �𝑥(𝑡)𝑤(𝑡 − 𝜏)𝑒−𝑖2𝜋𝜈𝑡 , 
(4.13) 

 

where 𝜏 is the moment in time where the sliding window function is centered, and 𝑤(𝑡) is the 

sliding window function. As Eq. 4.13 is advanced along the timeline, additional time-localized 

Fourier transforms are performed. The consecutive sliding window Fourier transforms repeats 

the process on the entire time series to be processed. Fig 4.2 shows a schematic for the STFT 

process. The STFT obtains the largest values at particular frequencies where the sliding window 

overlaps with intervals with the large contributions to the time series by components with that 

frequency.  
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Figure 4.2. Illustration of short-time Fourier transform (STFT) on a test signal, x(t). Figure obtained from Ref. [12]. 

The discrete version of the STFT used for discrete time series measurements is:17  

 

𝑆𝑇𝐹𝑇(𝑚,𝜔) = 𝐷𝐹𝑇(𝑚,𝜔) = � 𝑥
∞

𝑛=−∞

(𝑛)𝑤(𝑛 −𝑚)𝑒−𝑖𝜔𝑛 , 

  

 0 ≤ 𝜔 < 2𝜋, 

(4.14) 

 

where 𝜔  is the frequency of the sinusoidal template function. Since Eq. 4.13 is a discrete 

convolution, it can be rewritten as  

 

𝑆𝑇𝐹𝑇(𝑚,𝜔) = 𝐷𝐹𝑇(𝑚,𝜔) = � 𝑥(𝑛 −𝑚)
∞

𝑛=−∞

𝑤(𝑚)𝑒−𝑖𝜔𝑛 , 

  

 0 ≤ 𝜔 < 2𝜋 

(4.15) 
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by the commutative property. The analysis described in Section 5.2 uses a technique similar to 

Eq. 4.15 cross power spectra calculated for a series of discrete time windows. The time resolved 

cross power spectrum presented in Section 5.2 used a window width of 10 ms centered at 5 ms 

steps, e.g., 5, 10, 15…90, 95, throughout the 100 ms pulse.  

Although STFTs enable Fourier analysis to provide some time-frequency information, 

STFTs do have some significant limitations. As with all discrete and bounded functions, the time 

resolution, ∆𝑡 , and frequency resolution,  ∆𝜔 , are inextricably linked. The Heisenberg-Gabor 

uncertainty principle sets the lowest limit of the product of the two resolutions to be18 

 ∆𝑡∆𝜔 ≥
1
2

 (4.16) 

 

Fig. 4.3 shows a diagram of how the resolution limits of the STFT method impacts the 

information that can be extracted from a time series measurement.2 The boxes drawn in Fig. 4.3a 

show that for a given window function, the time and frequency resolutions over the entire time-

frequency plane are fixed. The shaded portion represents the results of the STFT analysis in the 

time-frequency domain. If the shaded box is lowered by one grid point, a longer width window 

in time would improve the technique’s capacity to identify lower frequency signals. Conversely, 

if the STFT is shifted upwards by one grid point, a smaller time window would be sufficient to 

distinguish between different high frequency elements. 
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Figure 4.3. Time-frequency windows used in (a) a STFT and (b) a wavelet transform. Figure adapted from Ref. [2]. 

Various shapes of window functions have been developed over the past few decades, 

each of them specifically tailored for a particular type of signal. The Gaussian window, first used 

by Gabor, was designed for analyzing transient signals. Hamming and Hann windows are 

applicable to narrowband random signals, while the Kaiser-Bessel window is better suited for 

separating two signal components with frequencies very close to each other but with very 

different amplitudes. The choice of the window function directly affects the time and frequency 

resolution of the STFT analysis.12 

The Hamming window was chosen for the experiments presented here because of the 

need for random signal detection while maintaining good frequency resolution.17 The formula for 

the Hamming window is  

 𝑤(𝑛) = 0.54 + 0.46 cos �
2𝜋𝑛
𝑁

�. (4.17) 

 



102 
 

The weaknesses of the Hamming window are that it only has a “fair” ability to combat spectral 

leakage and does not generate particularly accurate spectral component amplitudes. Both of these 

weaknesses are somewhat ameliorated in this work by averaging over a large number of power 

spectra generated by STFT analyses of independent time series measurements. 

 Although STFTs allow Fourier analysis to provide some time-frequency information, the 

fixed frequency resolution for all center frequency bands is a significant limitation. Fig 4.3b 

shows how the wavelet approach combats the inflexibility of a STFT by using local base 

functions that are stretched and translated with a flexible resolution in both frequency and time. 

The wavelet transform is essentially a generalized version of the STFT.     

4.2.3 The Wavelet Transform 

 The first publication of what is now called a “wavelet” occurred in 1909 in Alfred Haar’s 

dissertation, where he created a set of rectangular basis functions. However the idea of stretching 

and squeezing the window function along with the name “wavelet” surfaced in the mid 70’s 

through the work of Jean Morlet and the team at the Marseille Theoretical Physics Center 

working under Alex Grossmann in France. The biggest advancement in the field occurred when 

Stéphane Mallat collaborated with Yves Meyer in 1988 to develop multi-resolution analysis 

(MRA) for wavelets. MRA made it possible to combine wavelet theory with the power of the 

fast discrete signals processing techniques found in engineering. MRA also gave researchers a 

mathematical framework to create their own base wavelets. Scientists such as Ingrid Daubechies 

were able to add new wavelet families and make other significant contributions to the field.19 

Their work triggered the proliferation of wavelets into a myriad of disciplines such as audio and 

image processing (compression, denoising and detection)15 while providing a new signal analysis 
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tool for manufacturing,12 understanding climate data, 2,20,21 astronomy, biology and medicine.19 

The first published account of the use of wavelets to study a laboratory plasma was by van 

Milligen et al. in 1995.22 By combining wavelet analysis with bicoherence, they were able to 

measure structure in a turbulent plasma. More recent papers in plasma physics continue to 

employ the continuous wavelet transform because of its ability to detect intermittent events in the 

time-frequency domain.23,24,25,26 

 Similar to a short time Fourier transform, a continuous wavelet transform,  𝑊 , is 

expressed as an inner product using Eq. 4.4 and 4.5. 

 𝑊(𝑠, 𝜏) = 〈𝑥,𝜓𝑠,𝜏〉 = � 𝑥(𝑡)𝜓𝑠,𝜏
∗ �

𝑡 − 𝜏
𝑠

� 𝑑𝑡
∞

−∞
 , (4.18) 

 

where 𝜏  represents the translation position, s is the scale parameter that controls the dilation and 

𝜓𝑠,𝜏 is the “daughter wavelet” or simply “wavelet” and is derived from 

 𝜓𝑠,𝜏 �
𝑡 − 𝜏
𝑠

� =
1
√𝑠

𝜓 �
𝑡 − 𝜏
𝑠

� , 𝑠 > 0, 𝜏 ∈ ℝ (4.19) 

 

where 𝜓 is the “mother wavelet,”  “analyzing wavelet,” or “wavelet function.” Substituting Eq. 

4.19 into Eq. 4.18 yields  

 𝑊(𝑠, 𝜏) =
1
√𝑠

� 𝑥(𝑡)𝜓∗ �
𝑡 − 𝜏
𝑠

� 𝑑𝑡
∞

−∞
 . (4.20) 
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The scale parameter 𝑠, is inversely proportional to the signal's local frequency and depends on 

the properties of the mother wavelet.2,27 

A wavelet is a waveform of finite duration with a mean of zero. These two requirements 

come from the admissibility condition, which insures mother wavelets are well localized and 

oscillate.28 Fig. 4.4 provides a visual comparison12 between a sine wave and a wavelet, in this 

case a Daubechies 4.  

 

Figure 4.4. Representation of (a) a sine wave and (b) a Daubechies 4 wavelet. Figure obtained from Ref. [12]. 

The 𝑠−1/2 normalizing factor in Eq. 4.20 ensures that every wavelet has the same unit 

energy as it undergoes the dilation process. This allows the wavelet transforms to be comparable 

at each scale. Fig 4.5 provides an illustration of the translation and dilation process outlined by 

Eq. 4.20, with Fig 4.5a being the original mother wavelet centered at t = 0,  Fig 4.5b shows the 

mother wavelet  undergoing translation,  Fig. 4.5c shows the mother wavelet  undergoing 

dilation, and Fig. 4.5d showing the mother wavelet undergoing translation and dilation. 
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Figure 4.5. Illustration of translation (by the time constant 𝜏) and dilation (by the scaling factor 𝑠) while maintaining 

constant energy.  (a) The original mother wavelet centered at 𝑡 = 0,  (b) The mother wavelet  undergoing translation,  

(c) The mother wavelet  undergoing dilation, and (d) The mother wavelet undergoing translation and dilation. Figure 

adapted from Ref. [12].  

4.2.4. Implementation Methodology 

 Daubechies outlines two classes of wavelet transforms in her book, Ten Lectures on 

Wavelets: the continuous wavelet transform and the discrete wavelet transform.29 The discrete 

wavelet transforms are further divided into orthonormal and non-orthonormal categories. 

Orthonormal discrete wavelets transforms used in MRA are better suited for data compression 

and reconstruction because of the compact support (efficient way of storing a signal’s energy) 

they provide. Continuous wavelet transforms are not orthonormal and consequently are not as 
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suited for compression. However, continuous wavelet transforms vary 𝑠  and 𝜏  continuously, 

unlike their discrete wavelet transform counterparts, making them better suited for capturing 

smooth variations in a time series. For these reasons, only continuous wavelet analysis is used in 

the analysis of the experiments described in this work. Along with the many articles written on 

the subject, the textbooks by Walker,15 Strang and Nguyen30 cover discrete wavelet transforms 

from very valuable perspectives and in greater detail. 

 Two approaches are used to obtain the continuous wavelet transform of a signal. One 

method is to obtain the wavelet coefficients, {𝑊(𝑠, 𝜏)}, analytically with the application of Eq. 

4.17.  The algorithm works as follows: Start with a wavelet and calculate the inner product of the 

signal and the wavelet for the first time interval of the measurement. Shift the wavelet by 𝜏 and 

repeat the inner product calculation. The time shifts and corresponding inner product calculations 

continue until the end of the time series is reached. At that point, the scale of the wavelet is 

adjusted by a given value and the above procedure is repeated for all of the scales.12  

The second approach uses the convolution theorem and FFTs to complete the calculation. 

The convolution theorem in discrete form states that for two functions in the time domain, 𝑓 and 

𝑔 and their convolution, 𝑓 ∗ 𝑔,  

 {𝑓 ∗ 𝑔} = 𝐷𝐹𝑇−1(𝐷𝐹𝑇{𝑓}𝐷𝐹𝑇{𝑔}). (4.21) 

 

 

The continuous wavelet transform of a discrete sequence  𝑥𝑛  is defined as the convolution 

between  𝑥𝑛  and the discrete version of the wavelet, 𝜓 
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 𝑊𝑛(𝑠) = � 𝑥𝑛′𝜓∗ �
(𝑛′ − 𝑛)𝛿𝑡

𝑠
�

𝑁−1

𝑛′=0

 , (4.22) 

    

where 𝑛,𝑁,  and 𝛿𝑡  are the time index, total number of samples, and the data time step, 

respectively. 24 Since 𝑊𝑛 is the result of a convolution,  

 𝑊𝑛(𝑠) = �𝑥�𝑘𝜓�∗(𝑠𝜔𝑘)𝑒𝑖𝜔𝑘𝑛𝛿𝑡
𝑁−1

𝑘=0

 , (4.23) 

 

where 𝜓� is Fourier transform of the wavelet function and where the angular frequency is given 

by 

 𝜔𝑘 = �
  
2𝜋𝑘
𝑁𝛿𝑡

∶ 𝑘 ≤
𝑁
2

−
2𝜋𝑘
𝑁𝛿𝑡

∶ 𝑘 >
𝑁
2

� . (4.24) 

 

FFTs allow calculations of the continuous wavelet transform to be performed very efficiently 

and this method is used to numerically calculate the wavelet transforms by computer. 20 

However, the analytic approach of Eq. 4.20 is used to describe the analysis methodology because 

of its relative simplicity. 

 The wavelet power spectrum is calculated from 

 𝑆(𝑠, 𝜏) = 𝑊(𝑠, 𝜏)𝑊∗(𝑠, 𝜏) , (4.25) 

and the wavelet phase is  
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 𝜙𝑛(𝑠, 𝜏) = tan−1
𝐼𝑚[𝑊(𝑠, 𝜏)]
𝑅𝑒[𝑊(𝑠, 𝜏)]. (4.26) 

 

4.2.5 Wavelet Function Selection 

Along with orthogonality, there are additional factors to consider when selecting a 

mother wavelet for the continuous wavelet transform.  

A) Real or Complex: Wavelet functions can be either. Complex wavelet functions are 

better at capturing oscillatory behavior and also provide phase information. Real 

wavelet functions are useful for isolating discontinuities and peaks.  

B) Width: Like the STFT, a wavelet function’s resolution is determined by the balance 

between its width in Fourier space and its width in the time domain thanks to the 

Heisenberg-Gabor uncertainty principle (Eq. 4.16). The larger the width in either 

domains, the more resolution in that domain. 

C) Shape:  The wavelet transform is an inner product, so the greater the similarity 

between the wavelet and the localized portion of signal it acts on, the greater chance 

for detection of an event. 

With the consideration of these factors, the complex Morlet wavelet was chosen for the plasma 

fluctuation investigations presented in this work. The Morlet wavelet is smooth, continuous, well 

adapted to plasma fluctuations and non-stationary signals. As one of the more commonly used 

wavelets for time series analysis, the Morlet wavelet has proven its efficiency in other plasma 

fluctuation investigations.23,24,25,26,31 
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 The Morlet wavelet is constructed by taking a plane wave and adding a Gaussian 

modulation 

 𝜓(𝜂) = 𝜋−1/4𝑒𝑖𝜔𝑜𝑒−𝜂2/2 , (4.27) 

 

where 𝜂 is the dimensionless time parameter and 𝜔𝑜is the dimensionless frequency parameter. 

Fig 4.6 shows four mother wavelets for the purposes of comparison in the time domain and the 

frequency domain.20 On the left side of the figure, the time domain plots, the dashed lines 

represent the imaginary parts and the solid lines represent the real parts of the wavelets. Fig. 4(a) 

shows a Morlet wavelet for a dimensionless frequency of 𝜔𝑜 = 6. Like the Morlet wavelet, the 

Paul wavelet is also complex, while the derivatives of a Gaussian (DOG) are real. 
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Figure 4.6. Four different wavelet functions. Left column is in the time domain with solid lines indicating the real 

part of the wavelet and the dashed lines indicating the imaginary portion. Right column is in the frequency domain. 

(a) is the complex Morlet wavelet chosen for the experiments presented here. (b) Paul m = 4 (c) DOG m = 2 also 

known as the Mexican Hat and (d) DOG m = 6. DOG stands for derivative of a Gaussian. Figure obtained from Ref. 

[20]. 
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4.3 Time-Frequency Analysis Examples 

In a recent investigation of the well-documented evolution of ion heating in the edge of 

the WVU HELIX plasma source,32,33 new time resolved fluctuation measurements in pulsed 

plasmas were performed to investigate possible ion heating mechanisms. 26 Fig 4.7 shows the 

result of a continuous wavelet transformation of a time series obtained from a single tip 

electrostatic probe placed at various radial locations in the plasma column. The principal 

frequency components of the fluctuations (essentially integrated over all wave numbers since the 

measurements are from a single probe tip) versus time at r = 4.5 cm are shown in Figure 4.7a. 

The continuous wavelet transform of the time series sampled at 50 MHz employed a complex 

Morlet function with a large center frequency and broad bandwidth. 

In Figure 4.7a, the driving wave dominates the frequency spectrum at 9.5 MHz. 

However, close inspection (Figure 4.7b) in the 100 – 300 kHz range reveals multiple frequency 

peaks, the largest occurring at approximately 245 kHz. For purposes of comparison, the wavelet 

transform amplitude at 245 kHz versus time is shown in Figure 4.7c for two radial locations. The 

continuous wavelet transform analysis provides, in contrast to a classic Fourier transform 

analysis, the time evolution of the frequency resolved fluctuation amplitude. The 245 kHz 

fluctuation amplitude is substantially larger and increases in amplitude in a manner consistent 

with the temporal evolution of the simultaneously measured edge ion temperature. 
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Figure 4.7. (a) Continuous wavelet transform of the first 5 ms of the electrostatic fluctuations measured at a radial 

location of 3.5 cm. The narrow spectral feature at 9.5 MHz is the primary rf wave for the source. (b) Expanded view 

of the lower frequency portion of the spectrum shown in (a). The amplitude of the peak at ~ 245 kHz increases 

rapidly over the first2 ms of the discharge. (c) The amplitude of the wavelet power spectrum at 245 kHz for radial 

locations of 0 cm (light gray) and 3.5 cm (black). Figure obtained from Ref. [26]. 

Although these measurements confirmed that the temporal behavior of the edge ion 

temperature is consistent with the growth of few hundred kilohertz, short wavelength waves in 

the plasma edge, they did not demonstrate the excitation of ~ 10 MHz waves by the source 

antenna. Evidence for the excitation of 10 MHz waves appears in the details of the averaged 

fluctuation power spectrum measured during the pulsed discharge. Shown in Figure 4.8 is the 

averaged power spectrum (500 averages) based on a 5 ms wide acquisition window centered on 

12.5 ms into the discharge at a radial location of 3.5 cm. The primary driving frequency at 9.5 

MHz is evident as is a higher frequency, electrostatic sideband 245 kHz above the driving 
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frequency of the discharge. The higher frequency wave satisfies the frequency matching 

condition for parametric excitation by the primary rf wave in the helicon discharge. Examination 

of power spectra obtained from additional 5 ms windows centered on 2.5 ms, 7.5 ms, and 17.5 

ms into the pulse indicates that the upper sideband amplitude tracks the temporal evolution of the 

245 kHz wave amplitude during the initial 20 ms of the plasma pulse. Because the continuous 

wavelet transform is based on a single time series measurement, noise is introduced and the 

frequency resolution is decreased because of the increased time resolution. A FFT based method 

using 100’s of averages loses time resolution but gains frequency resolution.   

 

Figure 4.8. Spectral power versus frequency acquired during a 5 ms wide sampling window 12.5 ms into the 100 ms 

pulsed discharge. The peak of the driving frequency has been cut off to highlight the sideband wave at 9.745 MHz. 

Figure obtained from Ref. [26]. 

Thus, as shown with these Scime et al. experiments, both the wavelet and STFT analysis 

methods for obtaining time-resolved fluctuation information have particular strengths and 

together they provide a detailed picture of the evolution of the frequency components imbedded 

in a set of time series measurements.  



114 
 

Chapter 4 References 

1 S. Chakraborty Thakur, Z. Harvey, I. A. Biloiu, A. Hansen, R. A. Hardin, W. S. Przybysz, and 

E. E. Scime, Phys. Rev. Lett. 102, 035004 (2009). 

2 K.M. Lau and H. Weng, Bull. Amer. Meteor. Soc., 76, 2391 (1995). 

3 E. E. Scime, I. A. Biloiu, J. Carr, Jr., S. Chakraborty Thakur, M. Galante, A. Hansen, S. 

Houshmandyar, A. M. Keesee, D. McCarren, S. Sears, C. Biloiu, and X. Sun, Phys. Plasmas 

17, 055701 (2010). 

4 L. P. Block, Astrophys. And Space Sci. 55, 59 (1978).   

5 S. Iizuka, K. Saeki, N. Sata, and Y. Hatta, Phys. Rev. Lett. 43, 1404 (1979). 

6 C. Chan, N. Hershkowitz, and T. Intrator, Phys. Rev. Lett. 57, 3050 (1986). 

7 T. Sato and H. Okuda, Phys. Rev. Lett. 44, 740 (1980). 

8 M. J. Alport, S. L. Cartier, and R. L. Merlino, J. Geophys. Res. 91, 1599 (1986). 

9 A. Aanesland, C. Charles, M. A. Lieberman, and R. W. Boswell, Phys. Rev. Lett. 97, 075003 

(2006). 

10 S. P. Gary and N. Omidi, J. Plasma Phys. 37, 45 (1987). 

11 I. A. Biloiu and E. E. Scime, Appl. Phys. Lett. 95, 051504 (2009). 

12 R.X. Gao and R. Yan, in Wavelets: Theory and Applications for Manufacturing, (Springer 

Science+Business Media, LLC, New York, 2011). 

13 C.K. Chui, in An Introduction to Wavelets, (Academic Press, San Diego, 1992).   

14 R. N. Bracwell, in The Fourier Transform and Its Applications, (McGraw-Hill Book Company 

1978). 

                                                           



115 
 

15 J.S. Walker, in A Primer on WAVELETS and Their Scientific Applications, (Chapman & 

Hall/CRC Taylor & Francis Group, LLC, Boca Raton, 2008). 

16 M. T. Heideman, D. H. Johnson, C. S. Burrus, IEEE ASSP Mag. (October 1984). 

17 A. V. Oppenheim and R.W. Schafer, in Discrete-Time Signal Processing, (Prentice-Hall, 

Upper Saddle River, 1999). 

18 P. Flandrin, in Time-Frequency/Time-Scale Analysis, (Academic Press, San Diego, 1999). 

19 B. B. Hubbard, in The World According to Wavelets: The Story of a Mathematical Technique 

in the Making, (A K Peters, Natick 1998). 

20. C. Torrence and G. P. Compo, Bull. Amer. Meteor. Soc., 79, 61 (1998). 

21 C. Torrence and P. J. Webster, J. Climate, 12, 2679 (1999). 

22 B. Ph. van Milligen, C. Hidalgo, and E. Sánchez, Phys. Rev. Lett., 74, 395 (1995). 

23 F. Brochard, T. Windisch, O. Grulke, and T. Klinger Phys. Plasmas, 13, 122305 (2006). 

24 T. Kobayashi, S. Inagaki, S.-I. Itoh, K. Ida, S. Oldenbürger, H. Tsuchiya, Y. Nagayama, K. 

Kawahata, H. Yamada, M. Sasaki, A. Fujisawa, K. Itoh1, and the LHD Experiment Group 

Plasma Phys. Control. Fusion 53, 095012 (2011). 

25 S. Oldenbürger, S. Inagaki, T. Kobayashi, H. Arakawa, N. Ohyama, K. Kawashima, Y. 

Tobimatsu, A. Fujisawa, K. Itoh, and S.-I. Itoh, Plasma Phys. Control. Fusion, 54, 055002 

(2012). 

26 E. E. Scime, J. Carr Jr., M. Galante, R. M. Magee, and R. Hardin, Phys. Plasmas, 20, 032103 

(2013). 

27 M. Farge, Annu. Rev. Fluid Mech., 24, 395 (1992). 

28 Y. Meyer, in Wavelets: Algorithms & Applications, (Society for Industrial and Applied 

Mathematics, Philadelphia, 1993). 

                                                                                                                                                                                           



116 
 

29 I. Daubechies, in Ten Lectures on Wavelets, (Society for Industrial and Applied Mathematics, 

Philadelphia, 1992). 

30 G. Strang and T. Nguyen, in Wavelets and Filter Banks, (Wellesley-Cambridge Press, 

Wellesley 1997). 

31 X. Shi, J. Boman, and M. G. Shats,  Rev. Sci. Instrum., 72, 503 (2001). 

32 J. L. Kline, E. E. Scime, R. F. Boivin, A. M. Keesee, and X. Sun, Plasma Sources Sci. 

Technol. 11, 413 (2002). 

33 J.L. Kline, E.E. Scime, R.F. Boivin, A.M. Keesee, X. Sun, and V.S. Mikhailenko, Phys. Rev. 

Lett., 88, 195002 (2002). 

 

                                                                                                                                                                                           



117 
 

Chapter 5: Experimental Results and Discussion 

5.1 Time Resolved LIF Double Layer Studies  

Experimental results presented in Chapter 4 showed that in HELIX, large amplitude, low 

frequency fluctuations appear in the helicon source plasmas when the double layer structure 

vanishes.  Other previous experiments demonstrated that formation of the DL in pulsed helicon 

source plasmas occurs a few ms after the initiation of the discharge (see Fig. 3.20 for an example 

of a time-resolved IVDF measurement of a beam and background ion population). To determine 

if there is a causal relationship between the DL and the observed ion acoustic waves, the 

complete IVDF and the plasma potential fluctuation amplitude were measured as a function of 

time throughout 100 ms discharges (5 Hz repetition rate, 50% duty cycle) with and without a DL 

in steady-state plasmas at the same source parameters. 

5.1.1 Beam Formation and Collapse 

Shown in Fig. 5.1a is a measurement of the complete IVDF 5 ms into a pulsed discharge 

for an antenna frequency of 9.0 MHz, a source magnetic field of 1000 G, an expansion chamber 

magnetic field of 17 G, and a neutral pressure of 0.98 mTorr.1 For this set of parameters, the 

mirror ratio (upstream to downstream) is 60. The IVDF measurement includes 80 distinct laser 

frequencies and was averaged over 200 plasma pulses with a lock-in amplifier integration time of 

1 ms (yielding an effective time resolution of a few milliseconds). Shown in Fig. 5.1b is the 

average of 200 measurements of the time-resolved floating potential fluctuation amplitude 

measured in the plasma source approximately 100 cm upstream of the DL. Note the appearance 
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of a well-defined, coherent oscillation after the large peak in fluctuation amplitude at 21.7 ms 

into the pulsed discharge. The initial wave amplitude is quite large and the envelope of the 

fluctuations decays exponentially after the initial large peak. The fact that this fluctuation 

waveform survives averaging over 200 pulses demonstrates the highly reproducible nature of 

these pulsed helicon discharges.  

 

Figure 5.1.  For an antenna frequency of 9.0 MHz, mirror ratio of 60. (a) The downstream IVDF 5.5 ms after the 

start of the 100 ms long pulsed discharge. Both the background population (left) and ion beam (right) are evident. 

(b) Time series of the fluctuating floating potential from a single tip of the multi-tip probe averaged over 200 pulses. 

The large spike in fluctuation amplitude begins at 21.7 ms into the discharge. The large spike at t = 100 ms is the 

termination of the pulse. Figure obtained from Ref. [1]. 
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Just before the large spike in fluctuation amplitude, at 21.5 ms, the ion beam completely 

vanishes (Fig. 5.2). For this large mirror ratio case, the initial ion beam velocity, when the beam 

first appears in the measured IVDF, was 8.7 km/s and the background ion population to beam 

density ratio is roughly 1:1. The time difference between the collapse of the DL (termination of 

the ion beam) and the peak in fluctuation amplitude, ~ 0.2 ms, is consistent with the 0.14 ms 

required for a wave to propagate from the DL location to the fluctuation measurement location at 

the local sound speed. 

 

 

Figure 5.2. Same case as Fig. 5.1 but further in time, the downstream IVDF 21.5 ms (0.2 ms prior to the spike in 

fluctuation amplitude in Fig. 5.1b) after the start of the 100 ms long pulsed discharge. The background population is 

evident, but the ion beam has vanished. Figure obtained from Ref. [1]. 

For the same source magnetic field, the same neutral pressure, but for a larger expansion 

chamber magnetic field of 33 G (which previous experiments demonstrated lead to reduced ion 

beam velocity, i.e., a weaker DL, because the mirror ratio of 30 is smaller than the previous 
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case 2), the ion beam persists throughout the discharge. The IVDF 25.5 ms into the pulsed 

discharge is shown in Fig. 5.3a and a clear ion beam is still discernible. Note that for this case, 

the background ion population to ion beam density ratio is greater than 2:1 and the initial ion 

beam velocity was 7.3 km/s. The floating potential fluctuation amplitude versus time for these 

plasma conditions is shown in Fig. 5.3b. By 21.7 ms into the discharge, the time at which the 

large spike in fluctuation amplitude appeared in the previous case, the plasma potential 

fluctuation amplitude is nearly zero.  

 

Figure 5.3. For an antenna frequency of 9.0 MHz mirror ratio of 30. (a) The downstream IVDF 25.5 ms after the 

start of the 100 ms long pulsed discharge. Both the background population (left) and ion beam (right) are evident. 

(b) Time series of the fluctuating floating potential from a single tip of the multi-tip probe averaged over 200 pulses. 

Figure obtained from Ref. [1]. 
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As shown in the composite image in Fig. 5.4a, for the larger mirror ratio, the initial beam 

population is actually larger than the background ion population at this measurement location. As 

the beam decays, the background ion population becomes much larger than the beam population. 

The floating potential fluctuation amplitude versus time is shown beneath the time-resolved 

IVDF in Fig. 5.4a and there is a clear anti-correlation between the fluctuation amplitude and the 

beam amplitude. When the fluctuation amplitude peaks, the beam amplitude is a minimum; 

leading to a “ripple” in both the IVDF and wave amplitude versus time. Shown in Fig. 5.4b are 

the same measurements for the smaller mirror ratio case. For the smaller mirror ratio, the 

relatively less dense (compared with the background ion population) and slower ion beam 

persists throughout the pulse and no instability is excited. The potential measurements shown in 

Fig. 5.4b are plotted on the same scale as used in Fig. 5.4a and it is clear that the fluctuation 

amplitude is much smaller for the smaller mirror ratio case. 
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Figure 5.4 (a) For a mirror ratio of 60 (corresponding to Figs. 5.1 and 5.2), the upper surface plot is the IVDF versus 

time measured downstream of the DL. The ion beam appears at the start of the plasma pulse at a velocity of ~8.7 

km/ s and is larger than the background population. The lower surface plot is the floating potential versus time 

measured upstream of the DL. (b) The same measurements as in part (a) for a mirror ratio of 30 (corresponding to 

Fig. 5.3). Figure obtained from Ref. [1]. 
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5.1.2 Analysis of Time Resolved Double Layer Study 

Low pressure, CFDL operational plasma parameters similar to those used in Chakraborty 

Thakur et al.12 were obtained and investigated with time resolved LIF studies. For the 9 MHz 

driving frequency case, a DL once again did not appear during CW operation but large 

electrostatic instabilities were detected, consistent with Chakraborty Thakur et al. The time 

difference between the collapse of the DL (termination of the ion beam) and the peak in 

fluctuation amplitude, ~ 0.2 ms, was consistent with the 0.14 ms required for a wave to 

propagate from the DL location to the fluctuation measurement location at the local sound speed. 

Time resolved measurements in these pulsed discharges indicate that the double layer initially 

forms for all tested mirror ratios and persists throughout the pulse duration for the moderate 

mirror ratio case of 30. These data further support the hypothesis that for particularly strong 

double layers, the instability appears early in the discharge and the double layer collapses. 

These observations of beam collapse motivated additional, higher time resolution 

experiments. Establishment of a causal link between DLs and the instability requires that the 

beam population, and not the background, show evidence of statistically significant correlation 

with the instability. With an instability wave of 17.5 kHz and a sub 1 kHz bandwidth limit on 

LIF measurements imposed by the lock-in amplifier, higher time resolution LIF studies were 

required.     
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5.2 High Time Resolution Studies 

Downstream of the expansion region, a clear ion beam (evidence of a double layer) is 

seen only for higher magnetic mirror ratios. To investigate the ion beam formation with 

improved time resolution, LIF measurements were obtained using the smallest possible time 

constant on the lock-in amplifier. The plasma was pulsed at 5 Hz with a 50% duty cycle. Fig. 5.5 

shows the three dimensional time resolved LIF scans obtained for two different magnetic field 

mirror ratios, one that resulted in a DL and one that did not. The same data are shown in Fig. 5.6 

compressed into a two-dimensional plot for added clarity. Fig 5.5a is for a downstream magnetic 

field of 34 Gauss while Fig 5.5b is for a downstream field of 17 Gauss. The source parameters 

shared by both cases are: a driving frequency of 9 MHz, an upstream magnetic field of 700 

Gauss, 750 W rf power measured at the output of the rf amplifier, and a downstream pressure of 

10-5 Torr. There was a slight difference in the upstream operating pressure (1.8 mTorr versus 1.5 

mTorr for Figures 5.5a and 5.5b, respectively), that arose from the difference in the downstream 

magnetic field. Both pressures ware still within ranges typical of those for which DLs have been 

observed in previous HELIX-LEIA experiments. The DL only appears in the larger mirror ratio 

case of Fig 5.5b.  
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Figure 5.5. (a) The measured ion velocity distribution as a function of time and velocity (laser frequency) for an 

antenna frequency of  9.0 MHz and a magnetic field of 34 Gauss in the expansion chamber; a mirror ratio of 22. For 

the downstream IVDF. Only the background population is evident after 200 averages. (b) The measured ion velocity 

distribution as a function of time and velocity (laser frequency) for an antenna frequency of  9.0 MHz and a 

magnetic field of 17 Gauss in the expansion chamber; a mirror ratio of  44. For the downstream IVDF, both the bulk 

and beam populations are evident after 200 averages. The beam at times eclipses the bulk in signal intensity, but 

remains comparable in magnitude throughout most of the discharge. 

 

  

(a) 

(b) 
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Figure 5.6. (a) Same data as shown in Fig 5.5a, but in two dimensions for clarity. (b) Same data as shown 5.5b but 

in two dimensions for clarity. The beam population velocity clearly increases in the initial 40 ms seconds, then 

maintains a steady velocity throughout the rest of the pulse. Velocity values for the bulk and beam populations using 

the non-lock-in LIF technique were chosen based on these data. 

The IVDF in Fig. 5.5a contains a single slow population moving at 300 m/s, the 

background plasma flowing into the LEIA chamber at the sound speed. By comparison, Fig. 5.5b 

(a) 

(b) 
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shows two populations, the background and the beam. The background plasma has a speed of 

300 m/s throughout the pulse while the beam starts at 6.5 km/s and gradually increases up to 8 

km/s. Note that there is a hint of a second, lower energy, ion beam population in Fig. 5.5b. 

Although the LIF signal clearly contains significant short timescale fluctuations, the 1 ms time 

constant on the lock-in amplifier still limited fluctuation analysis of LIF data to frequencies 

much less than 1 kHz.  

5.2.1 Beam – Fluctuation Cross Correlation 

Obtained for the larger magnetic field mirror (44) ratio case, Fig. 5.7 is a measurement of 

the cross power spectrum calculated for an entire 100 ms long time series measurement of the 

floating potential from the two tips of the electrostatic probe located in the source at location C 

in Fig 2.2 and sampled at 500 kHz.  Fig 5.7 does not have any wave activity across the two tips. 

However a nonstationary wave that appears at the beginning of the pulse and nowhere else 

would be completely obscured by this measurement. 
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Figure 5.7. One hundred averages of a cross power spectrum from the 2 tips of the electrostatic probe. The 

maximum value of the vertical axis has been truncated to emphasize the peak at ~ 2 kHz and the lack of a peak in 

the tens of kilohertz band and beyond. Cross power spectrum peaks in amplitude for the lower frequencies occur at 

50 (max) and 100 Hz. 

Evident in Fig 5.8 is a large amplitude fluctuation at approximately 17 kHz. Note that this 

is the same experimental configuration that results in the DL accelerated ion beam. Since the 

power spectrum measurement encompasses the entire plasma pulse, there is no way to determine 

if the wave exists throughout the entire discharge or if it only appears at certain times in the 

discharge. The time-frequency analysis is required to determine a true causal relationship 

between these waves and the beam. 
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Figure 5.8. Five hundred averages of the FFT magnitude of a single tip of the electrostatic probe. The maximum 

value of the Y axis in this plot has been truncated to highlight the peak at ~ 17 kHz. The FFT magnitude peaks at the 

lower frequencies occur at 180 (max) and 90 Hz. 

5.85.8To obtain true cross power spectrum measurements between the LIF and 

electrostatic signals, the Lock-in/AOM system was removed to maximize the frequency 

bandwidth of the LIF signal. As outlined in Section 3.5 and Chapter 4, the laser was set to 

specific frequencies which corresponded to the peak of the background and the peak of the beam 

signal as identified in the measurements shown in Fig. 5.6. The raw PMT signal and the 

electrostatic probe signal were then acquired with the same oscilloscope and processed with 

identical algorithms. After dividing the full time record into smaller intervals, the frequency-

resolved cross power spectrum between specific ion velocity components (laser frequencies) and 

the probe fluctuations was determined as a function of time throughout the discharge. Shown in 

Figure 5.9 is the time resolved cross power spectrum between the LIF signal at the velocity of 
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the peak of the ion beam and the electrostatic probe for the operating conditions used to obtain 

the beam observed in the IVDF shown in Fig 5.6b. Shown in Figure 5.10 is the time resolved 

cross power spectrum between the bulk of the ion distribution and the electrostatic probe for the 

exact same plasma conditions.   

 

Figure 5.9. Five hundred averages cross power spectrum between the magnitude of the LIF signal at the peak of the 

beam in the ion velocity distribution and a single tip of the electrostatic probe. 
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Figure 5.10. Five hundred averages of the cross power spectrum between the magnitude of the LIF signal at the 

peak of the bulk of the ion velocity distribution and a single tip of the electrostatic probe. The maximum value of the 

color map is not scaled to the peak of the very large correlation that appears at low frequency so as to emphasize the 

cross power magnitudes at 2 kHz and 17 kHz. 

For the beam-fluctuation comparison, there is a clear peak near 17 kHz in the cross power 

spectrum. The 17 kHz feature does not appear until approximately 40 ms into the pulse – the 

same time at which the beam velocity stabilizes in the data shown in Fig. 5.6. Throughout the 

rest of the pulse, the amplitude of the 17 kHz feature in the cross power spectrum intensifies and 

fades with some regularity. The centroid frequency of the feature also increases up to 

approximately 18 kHz by the end of the plasma pulse. Stronger correlations exist at lower 

frequencies, approximately 300-400 Hz, and the magnitude of the cross correlation at the lower 

frequencies also increases and decreases throughout the pulse.  The cross correlation between the 

bulk of the ion population and the electrostatic signal (shown in Fig. 5.10) is dramatically 



132 
 

different. No significant features at any frequencies are observed. Note that the discontinuities in 

the intensity versus time are due to the discrete nature of the analysis. 

These results are consistent with previous observations that suggest an ion acoustic or 

beam driven instability plays an important role in beam formation in expanding plasmas. Even 

though the time resolved cross power spectra are un-normalized, this study is the first to prove a 

correlation between DL and the ion acoustic instability. 

5.2.2 Wavelet-Based Fluctuation Analysis 

 The cross-correlation analysis shown in Fig. 5.8 clearly identifies a correlation between 

the electrostatic fluctuation signal at 17 kHz and the LIF signal from the beam population. 

However, the discrete nature of the method of analysis, FFTs over short time intervals, is 

somewhat unsatisfying in terms of demonstrating conclusively that the amplitude of the wave 

signal is modulated in time. Therefore, a continuous wavelet transform was applied to the time 

series data from the electrostatic probe to avoid discontinuities in the measurements. Fig 5.11 

shows the results of the wavelet analysis of the electrostatic probe data. The time axis is 

continuous in the wavelet analysis, at the cost of a modest loss of frequency resolution. The non-

stationary wave behavior is clearly captured in time by the wavelet analysis. Both the discrete 

FFT analysis and the wavelet analysis are consistent with the claim made in Section 5.1.2; as the 

wave activity oscillates, so does the beam amplitude. The continuous wavelet transform analysis 

indicates that the wave grows to some threshold amplitude then collapses and the process 

repeats. The period of this behavior is ~10 ms. These measurements also agree with Singh’s 

prediction in his 2011 review article; the nature of the ion-acoustic mode leads to oscillatory 

behavior of turbulence and relaxation, causing the DL to appear, disappear and then reappear.3 
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Figure 5.12. The continuous wavelet transform (top) of a single time series measurement (bottom) for the same 

experiment conditions as used for Fig. 5.6b. 

5.3 Observations of Multiple Ion Beams4 

Fig 5.6b has another interesting feature that almost went unnoticed. At 5.5 GHz, there is a 

smaller population of ions moving faster than the bulk but slower than the main beam. Certain 

plasma operating parameters would occasionally deliver a third population. Over the years, the 

WVU group became more proficient in tuning to source parameters that would show the 

presence of multiple beams. However, without a complete theoretical understanding of the origin 

of the extra ion beams, the phenomenon remained more a curiosity than a focus of intense study.  
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When recent space observations in the Earth’s plasma sheet provided evidence of complex IVDF 

structures that look nearly identical to the laboratory observations, a detailed study of the 

multiple beam phenomenon was initiated. This section describes multiple ion beam observations 

in three different realms of plasma physics and considers the possible implications of multiple 

beam formation in divergent magnetic fields. 

5.3.1 Laboratory Observations 

Shown in Fig. 5.12(a) is an LIF measurement of the IVDF in the expansion region, 38 cm 

downstream of the plasma source and expansion chamber junction. Three ion populations are 

evident in the measurement: a low speed “bulk” population and two ion “beam” populations. The 

source parameters are a driving frequency of 9 MHz, an operating pressure of 1.8 mTorr, an 

upstream magnetic field of 700 Gauss, and a downstream magnetic field of 19 Gauss. The ion 

gyroradius in the source is approximately 0.5 cm and 13 cm in the expansion chamber. Operating 

pressures of 1.8 mTorr are atypically low for this experimental facility and stable, steady-state, 

operation of the plasma source required large levels of total rf power (800 W, measured at the 

output of the rf amplifier) and careful minimization of the reflected rf power (less than 50 W, 

measured at the input to the matching network).  
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Figure 5.12. (a) LIF measured IVDF (circles) as a function of velocity in the expansion chamber 38 cm downstream 

of the plasma source. A three Maxwellian component fit (solid line) yields identical ion temperatures of ~ 0.16 eV 

for all three components. (b) Same data as (a) minus the fit to the stationary background population. A very small 

third accelerated population appears around 2,500 m/s. 

The LIF-measured ion population upstream of the expansion region is well described by 

a single Maxwellian velocity distribution with a bulk ion temperature of 0.2 eV and a bulk flow 

towards the expansion region of ~ 300 m/s. Previous studies demonstrated that a DL forms at the 

junction between the source and the expansion chamber. The DL is localized in the region of the 

strongest magnetic field gradient where the density gradient is also largest.5 The highest energy 
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population evident in Figure 5.12a, with a flow speed of ~ 8,000 m/s, corresponds to an argon 

beam energy of ~ 13 eV. Based on Langmuir probe measurements, the electron temperature in 

the source is ~ 6 eV. Since the DL potential energy is roughly twice the electron temperature, 

these DLs are what are commonly called “weak” DLs. The second accelerated ion population 

that appears around ~ 4,200 m/s corresponds to an accelerating potential of ~ 4 V. An enhanced 

flux of ions in a narrow energy band is consistent with observations of ion beams in space 

plasmas typically attributed to DLs6 (whereas fluxes over a broad band of energy are typically 

attributed to stochastic acceleration in the electric fields arising from turbulent wave activity7). 

Additional LIF measurements along the axis of the experiment show that while the 

intensity of the LIF signal decreases with distance from the acceleration region (consistent with 

quenching of the metastable argon ion state by electron-ion collisions as seen in previous 

experiments8,9), the velocities of accelerated ion peaks in IVDF measurements are unchanged 

with distance (over 10’s of cm) from the acceleration region (see Figure 5.13). Although 

collisions with background electrons do depopulate the initial metastable state necessary for the 

LIF measurement, the momentum loss to the electrons and any background neutrals is negligible 

over the distances of these measurements. The persistence of the beam energies downstream of 

the DL is also independently confirmed with retarding field energy analyzer (RFEA) 10 

measurements. These axially resolved LIF measurements confirm that the ion beams are created 

upstream of the measurement location and can travel for tens of centimeters without significant 

degradation in beam energy. 
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Figure 5.13. Smoothed fits to LIF measured IVDFs for a single double layer case as a function of velocity in the 

expansion chamber at three different downstream locations. Over more than 11 cm, there is no change in the 

velocity of the accelerated ion population. 

To understand how it is possible for ion beams at different energies to appear at a single 

downstream measurement location, we note that this is not the first time multiple accelerated ion 

populations have been observed in a helicon plasma. In a series of experiments on the 

Magnetized Nozzle eXperiment, multiple double layers were intentionally created by introducing 

grounded apertures upstream from a magnetic nozzle. 11 Axially resolved LIF measurements 

demonstrated that ions accelerated in the sheath formed by the aperture traveled nearly 30 cm to 

the magnetic nozzle where they were further accelerated by the double layer at the magnetic 

nozzle. Between the grounded aperture and the magnetic nozzle, a single accelerated ion 

population and the background ions created beyond the aperture were both observed with LIF. 

Downstream of the second double layer, three distinct ion populations were evident: doubly 

accelerated ions, an accelerated ion population comprised of the ions created between the 

aperture and the magnetic nozzle that were then accelerated by only the double layer at the 

nozzle, and background ions. Thus, these earlier experiments demonstrated that multiple ion 
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beams will appear in IVDFs when additional ionization occurs between accelerating structures, 

i.e., new ions are created throughout the experiment by electron impact ionization and those 

created between the DLs are accelerated downstream by only the second DL (and electrons 

accelerated into the region between the DLs also provide additional ionization12). The important 

distinction between the experimental results reported here and the earlier experiments is that 

here, the multiple ion beams spontaneously appear in a simple divergent magnetic field.  

These experimental results are consistent with a number of theoretical predictions. Over 

forty years ago, one dimensional particle-in-cell (PIC) simulations of ion acoustic shocks in the 

region of a strong density gradient predicted the formation of DLs at the location of the density 

gradient and, if the density gradient was steep enough, the formation of wave-like perturbations 

in density and plasma potential upstream of the shock.13 Such a wave-like potential structure 

could explain these observations. Although more recent PIC simulations have typically yielded 

only solitary DL structures,14 the recent review by Singh15 suggests that when perpendicular 

electric fields develop near density gradients due to differing electron and ion Larmor radii, the 

perpendicular electric fields are shorted out by conducting boundaries in a laboratory plasma. 

The resulting parallel electric field may then be localized at a single DL or be spread out across 

multiple DLs. It is also possible that the electric field structures responsible for these 

observations are separated radially and that the finite gyroradii of the ions enables different ions 

to sample different radially localized acceleration regions. Unfortunately, as we are unable to 

access the last few centimeters of the helicon source before the expansion chamber we are unable 

to perform LIF measurements of the axial flow at different radial locations near the end of the 

helicon source. Such measurements are planned in future experiments. However, RFEA 

measurements of the ion energy distribution function at different radial locations indicate that the 
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acceleration regions are quite broad radially and therefore support the interpretation that these 

measurements are indicative of discrete, axially separated, acceleration regions.  

Because the ion beams are relatively cold, it is possible to isolate the beams from the bulk 

ion population. Maxwellian fits (shown in Figure 5.12a) to each of the three well-defined 

populations yield identical ion temperatures of ~ 0.15 eV. As noted previously, the large “bulk” 

ion population is the locally created “downstream” plasma.5 In Figure 5.12b, the background ion 

population in Figure 5.12a has been subtracted from the full measurement to highlight just the 

portion of the IVDF accelerated by the DL region. After the subtraction, it is clear that there are 

at least three accelerated ion populations; not just two. 

5.3.2 THEMIS B Observations 

The spontaneous formation of electrostatic structures capable of generating multiple 

accelerated ion populations in simple expanding magnetic field is a remarkable and new result. 

The mere possibility that such simple magnetic geometries are capable of producing complex 

IVDFs has important implications for the interpretation of IVDF measurements in all plasmas. 

For example, complex IVDFs seen in space are often assumed to be a signature of magnetic 

reconnection. Shown in Fig 5.14 are two IVDF measurements obtained by the THEMIS 

spacecraft during a bursty bulk flow event on 26 Feb 2008. Details of the THEMIS spacecraft 

and the ion distribution measurement process are discussed in Ref. [ 16,17]. The THEMIS 

measurements are shown as a function of velocity along the bulk flow direction. At zero 

velocity, the THEMIS measurements are contaminated with a large background signal due to 

photoemission and spacecraft charging. Therefore, the low energy portion of the distribution has 

been removed in Fig. 5.14 and replaced with a dashed line; isolating the ion beams as was done 
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with the laboratory measurements. In both THEMIS measurements, two accelerated ion 

populations are clearly visible. As in Figure 5.12, the accelerated ion populations are 

superthermal (their flow speeds are much greater than their thermal speeds). Similar complex ion 

velocity distributions are observed routinely by THEMIS, i.e., the data shown in Figure 5.14 are 

by no means unique or exceptional. 

 

Figure 5.14. The ion velocity distribution function along the outflow direction (reduced to one dimension by 

integrating over the over two velocity components) for a bursty bulk flow event on 26 Feb 2008 at (a) 11:12:52 and 

three seconds later at (b) 11:12:55. A large background signal in the measurement at zero velocity due to 

photoemission and spacecraft charging has been deleted from the figure (the dashed line corresponds to the 

contaminated region of the distribution). Two accelerated ion populations appear in both measurements. 
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5.3.3 Reconnection Simulations 

As further evidence that complex IVDFs arising during magnetic reconnection are 

evidence of discrete electric field regions, an IVDF from an implicit two-and-a-half dimensional 

PIC simulation of magnetic reconnection obtained from the University of Colorado-Boulder is 

shown in Figure 5.16. The simulation includes a guide field (equal in strength to the reconnecting 

field) and the computational domain size is 𝐿𝑥  ×  𝐿𝑦  =  40  𝑑𝑖 ×  20 𝑑𝑖 (where  𝑑𝑖 = 𝑐/𝜔𝑝𝑖 is 

the ion inertial length, 𝑐 is the speed of light, 𝜔𝑝𝑖 = �4𝜋𝑛𝑒2/𝑚𝑖 in cgs units is the ion plasma 

frequency, and 𝑒  is the electron charge). Periodic boundary conditions are assumed in the 𝑥 

direction and perfect electric conductor boundaries are set at 𝑦 =  0  and 𝑦 =  𝐿𝑦.  The 

reconnection simulation starts with a classic Harris sheet18 of high density particles surrounded 

by background particles with a density an order of magnitude lower and a magnetic field profile 

given by a hyperbolic tangent function. Additional details about the simulation and physics 

assumptions inherent in the model are discussed in Ref. [19]. The 𝑥 direction is along the bulk 

outflow direction and the distribution has been integrated over the direction perpendicular to the 

bulk flow. The velocities are normalized to the reference Alfvén speed 𝑣𝐴  =  𝐵𝑜/(𝜇𝑜𝑛𝑖𝑜𝑚𝑖)1/2, 

where 𝐵𝑜 is the background magnetic field strength, 𝑚𝑖  is the ion mass, and 𝑛𝑖𝑜  is the initial 

maximum Harris-sheet ion density. The simulation distribution function is sampled at 20𝑑𝑖 

downstream of the reconnection site along the outflow axis many ion cyclotron periods after the 

onset of reconnection. As in the laboratory and space measurements, multiple accelerated ion 

populations appear in the IVDF (as well as a background ion population). The total ion 

distribution at this location includes one population crossing the separatrix without sampling the 

Hall electric field near the X-line and other populations that have been accelerated by discrete 
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Hall electric field structures that appear near the X-line and along the separatrices.20  Further 

downstream, the populations merge into a single, broad, “hot”, IVDF. 

 

Figure 5.16. Ion velocity distribution (as a function of velocity normalized to the initial Alfvén velocity) along the 

outflow direction from a particle-in-cell numerical simulation of magnetic reconnection. The distribution is obtained 

20 ion inertial lengths downstream of the reconnection site and is integrated over the other two coordinate 

directions. The ion velocity distribution includes two accelerated ion populations plus a stationary background 

population. 

5.3.4 Implications of Multi-Beam Results for Reconnection Driven 
Ion Heating Studies 

Clearly, the appearance of a complex IVDFs can be a signature of magnetic reconnection. 

However, based on these new laboratory observations, we conclude that the mere existence of a 

complex IVDF is not sufficient to posit the existence of magnetic reconnection. Such IVDFs 

could simply result from plasma expansion and production in a divergent magnetic field (or 

flows of different source plasmas into a common divergent field region).  
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Consider the rapid and intense ion heating typically associated with magnetic 

reconnection in laboratory experiments.21  The heating occurs more rapidly than any collisional 

or viscous timescale in the plasma and the “heated” ion population is well described by a high 

temperature Maxwellian distribution plus a power-law high-energy tail.22  How the ions are 

heated so rapidly remains an open question in reconnection dominated experiments. However, 

nearly all such heating measurements are fundamentally unable to resolve structure within the 

IVDF at the spatial scale of a reconnection layer. Either the spatial resolution of the diagnostic 

technique exceeded the reconnection scale, the technique employed line integrated 

measurements, or the velocity resolution of the technique was insufficient to differentiate 

between complex structure and a broad, hot, velocity distribution.23,24  Even diagnostic methods 

with spatial resolution comparable to reconnection layer scale still average over large spatial 

regions because of the large ion gyroradius of the heavy impurity species used for the 

measurement.25  Therefore, although broad IVDFs are usually interpreted to be indicative of ion 

heating, typical observations are equally consistent with unresolved IVDFs containing multiple 

accelerated ion populations.26,27 

As an example of how the presence of ion beams could be misinterpreted as ion heating, 

consider that a large fraction of the ion temperatures reported by space-based instruments are 

based on a straightforward and automatic calculation of the 2nd moment of the entire measured 

IVDF. Although the LIF-measured temperature of each ion beam population in Fig. 5.12a is 0.16 

eV, the average kinetic energy in the frame of the flow, i.e., the 2nd moment of the IVDF, yields 

an ion temperature of well over 1 eV. Thus, similar naïve analysis of the IVDF shown in Figure 

5.12a would conclude that the downstream ion temperature was an order of magnitude hotter 

than the upstream temperature, even though no significant heating of the ions actually occurred. 



144 
 

It is only because THEMIS, with its very high time resolution ion instrument, is capable of 

resolving relatively small spatial scales that the ion beams are resolvable in the data of Fig. 5.14. 

If we assume that ion dynamics during phenomena such as magnetic reconnection are not 

dominated by thermal processes or wave-particle interactions, but instead result from reversible 

acceleration in discrete electric fields (as has been shown to occur for single test particles in 

simulations28) of varying magnitude and orientation, the rate of ion energization (heating) should 

depend solely on the energy gained by ions falling through such electric fields: 

 
Δ �𝑚𝑣

2

2 �

Δt
≈ �𝑑𝑞3𝐸3/2𝑚 , (5.1) 

 

where 𝐸 is the electric field in the DL of thickness 𝑑 and the heating rate is determined by the 

transit time of the ions in the DL. In other words, the energization rate of ions of different 

charge-to-mass (𝑞/𝑚)  ratios should scale as (𝑞3/𝑚)1/2  and should be independent of the 

magnitude of the magnetic fluctuation amplitude. In the Madison Symmetric Torus (MST), the 

ion temperature during magnetic reconnection doubles or triples in less than 10 𝜇s. Heating 

models based on cyclotron heating from magnetic fluctuations and viscous damping of 

reconnection flows have been proposed. Yet, two decades of measurements have failed to find 

any significant correlation between ion heating levels and the levels of magnetic fluctuations 

(levels of ion heating have been shown to correlate with the overall change in stored magnetic 

energy during magnetic reconnection29 ). Recently, the MST experiment reported that their first 

studies of ion heating for impurity ions of different charge-to-mass ratios demonstrated that the 

parallel ion heating rate depends on the (𝑞/𝑚) ratio during magnetic reconnection.30  However, 

the overall (𝑞/𝑚) ratio range was too limited to distinguish between (𝑞3/𝑚)1/2 or linear (𝑞/
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𝑚) scaling. We hypothesize that ions passing through a multitude of tightly packed and 

randomly oriented reconnection sites with a distribution of total energization “strengths” might 

rapidly acquire a distribution of three-dimensional velocities that appear to result from a single 

hot near-Maxwellian parent distribution. Fig. 5.16a shows the latest scaling model proposed by 

the MST group to explain ion heating rates. Increase in temperature is plotted against the atomic 

number of the particle divided by its mass (𝑧/𝑚). Figure 5.16b shows a model of scaling 

predicted by acceleration in a randomly oriented electric field. This series of reversible 

accelerations leads to a continuous increase in temperature (heating) with no appreciable way 

discern its origin. These two plots demonstrate the equivocal nature of the MST model. 

 

 

Figure 5.16. (a) Santosh Kumar et al. (submitted); MST ion heating data plotted against 𝑧/𝑚  (b) Scaling predicted 

by acceleration in randomly oriented electric fields model. 
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5.4 Comparison of RFEA and LIF Data 

 Although LIF has provided some remarkable new results presented in this work thus far, 

it is not without limitations. The RFEA provides another measurement technique to interrogate 

ion populations in places where LIF cannot function due to metastable quenching. RFEAs can 

also provide plasma potential measurements     

Fig 5.17 shows several axial LIF measurements performed in the LEIA expansion 

chamber. As the axial position 𝑧 increases (the scan location moves further downstream of the 

DL), the signal of the beam decreases. At the 𝑧  = 79 cm, very little evidence of the beam 

remains. Two possible reasons for this are (1) the beam is no longer present and (2) a beam is 

present but there are no longer enough metastable ion states to generate LIF signal. The latter has 

shown to be true in other devices, but LEIA is much larger than those experiments, with more 

chamber length to interrogate. The RFEA probe was thus used at the following source 

parameters to see if it had the ability to detect a beam where LIF could not: 900 G in the HELIX, 

0 G in LEIA, rf frequency of 9.5 MHz, rf power of 650 W, flow of 3.0 SCCM, HELIX Pressure 

of 0.7 mTorr, and 9.9 x 10-5 Torr in LEIA. 
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Figure 5.17. LIF measurements at 900 G in the source, 0 G in the expansion chamber, rf frequency of  9.5 MHz, rf 

power of  650 W, flow of 3.0 SCCM, Pressure in source 0.7 mTorr, and  9.9 x 10 -5 Torr in the expansion chamber. 

The beam, when detected remains at 10 km/s. 

Figure 5.18a shows an actual RFEA measurement in the center of LEIA, 80 cm 

downstream. The black curve comes from the configuration shown in Fig. 3.10b, where the 

plasma sees the repeller before the discriminator. The red curve was obtained by placing the 

discriminator first (Fig. 3.10c). Shown in Fig. 5.18b are the derivatives of the RFEA signal 

versus discriminator voltage. As noted earlier, in the case of an undrafted, pure Maxwellian 

velocity distribution, the derivative yields the ion energy distribution. The background and beam 

populations in both figures 5.17 and 5.18b show a similar spread in energies for both 

populations. The beam population amplitude decreases with increasing downstream distance in 

the LIF measurements but the energy remains unchanged, consistent with previous observations 

attributed to metastable quenching. The RFEA beam signal at 80 cm downstream is much larger 

than in the LIF measurements, again consistent with the beam continuing on downstream but 

becoming invisible to LIF interrogation because of depopulation of the initial metastable state 

needed for LIF.  
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Figure 5.18. RFEA measurements obtained at z = 80cm. (a) The I-V trace and (b) the corresponding derivative as a 

function of voltage. Figure courtesy of the UiT group. The black curve is for the RFEA configuration with the 

repeller is placed ahead of the discriminator and the red curve is when the discriminator is placed first. (c) the LIF 

signal for z = 40 cm in Fig. 5.17, re-plotted as an ideal RFEA for comparison purposes. 

Note two features from the grid placement comparison: (1) The repeller-first 

configuration has wider populations in terms of voltage (analogous to energy) and (2) the 

populations in the repeller-configuration are shifted downward in energy when compared to the 
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discriminator-first configuration. Both observations indicate additional lower energy ions were 

collected by the repeller–first probe.31,32 The repeller-first geometry lacks the ability to focus the 

ions as well as the other configuration, presumably because it is creating a larger sheath, letting 

more low energy ions into the probe.  

Fig. 5.19 shows how the same IVDFs in Fig 5.17 would appear if measured with an ideal 

RFEA, assuming a plasma potential voltage of 15 V and by assuming 

 𝑉 =
𝑚𝑖𝑣2

2𝑒
+ 𝑉𝑝 , (5.2) 

 

 where 𝑉 is the ideal RFEA voltage, 𝑣 is the velocity of the ion, 𝑚𝑖 is the mass of the ion, 𝑒 is the 

fundamental unit of electric charge and 𝑉𝑝 = 15V is the floating potential of the plasma. The I-V 

trace that the ideal RFEA would measure for each IVDF is shown in Fig. 5.17a. Note that the 

artificially generated IVDF I-V curves are cut off for velocities less than then plasma potential as 

there is no way for ions moving away from an ideal RFEA to enter the probe. Shown in Fig. 

5.18c is the z =40 cm LIF data from Figure 5.19 again re-plotted as an ideal RFEA measurement. 

The background population in Fig. 5.18c is reflected across the V =15 V axis to allow for to 

better be able to compare the widths in energy space generated by the two different techniques. 

The LIF measurement clearly yields an ion energy distribution much narrower, colder, than the 

RFEA measurements. The artificially “hot” RFEA measurements have been noted before in 

previous studies.33 
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Figure 5.19. LIF data presented in the form of ideal RFEA measurements. (a) The I-V trace and (b) the 

corresponding derivative as a function of voltage. Figure courtesy of the UiT group. 

Comparing background temperatures quantitatively, the repeller-first RFEA measurement 

gave an ion temperature of 6.5 eV while the discriminator-first system gave an ion temperature 

5.1 eV. The LIF temperature measurements were 0.5 eV at 79 cm and 0.7 eV at 36 cm on the z 

axis. 
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Chapter 6: Summary 

The time resolved LIF DL studies described in this work are consistent with the 

hypothesis that the creation of strong DLs in expanding plasmas for plasma propulsion or other 

applications may be self-limited through instability growth. These results suggest that a similar 

mechanism might play a role in the collapse of naturally occurring DLs. The two cases examined 

employed pulsed plasma whose source parameters were selected based on steady-state DL 

stability experiments by Chakraborty Thakur et al. 1 The plasma conditions for both pulsed 

plasma cases were identical except that one used a high magnetic mirror ratio and the other had a 

moderate magnetic mirror ratio. At the moderate magnetic mirror ratio, a DL was observed in 

steady state plasmas but there was no evidence of an instability. In pulsed plasmas, time resolved 

LIF measurements revealed the presence of a DL in both cases at the start of the discharge. 

However, in the higher magnetic mirror ratio case, the DL collapsed once the electrostatic 

fluctuations appeared. 

 In higher time resolution studies, in which the LIF signal was acquired with a much 

larger frequency bandwidth, a clear correlation between the instability and the ion beam resulting 

from the DL was measured. Only the ion beam portion of the ion velocity distribution was 

correlated with the instability amplitude. The background population demonstrated no 

statistically significant correlation with the instability. These correlation measurements provide 

the first statistical evidence that laboratory CFDLs are linked to self-limiting instability growth. 

A continuous wavelet analysis of the fluctuation measurements provided clear evidence for the 

appearance, increase in amplitude, and then disappearance of the instability several times in a 

single plasma pulse.    
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During the DL stability studies, surprising measurements of the spontaneous creation of 

multiple beams in a simple divergent magnetic field in a laboratory were obtained. The structure 

of the measured ion velocity distributions is remarkably similar to ion velocity distributions 

observed in regions of magnetic reconnection in space and in numerical simulations. These 

observations suggest there is no significant difference in IVDFs arising from reconnection or a 

simple divergent magnetic field. It is only because the space observations, such as the THEMIS 

observations, include magnetic field measurements, that it is possible to identify the THEMIS 

event as a bursty bulk flow associated with magnetic reconnection. The similarity between the 

ion velocity distributions measured in these experiments and those observed in simulations and 

in space has other far-reaching implications:  

(1) Ion heating commonly associated with magnetic reconnection may be more 

accurately described as the superposition of multiple ion populations accelerated 

by a collection of electrostatic fields. 

(2) The complex structures in ivdf measurements seen in space and simulation, i.e., 

multiple beams of varying relative magnitudes, do not necessarily require 

impulsive phenomena, such as magnetic reconnection, for creation. 

(3) If the ion dynamics during magnetic reconnection are also dominated by 

acceleration in electric fields of varying magnitude and orientation, the rate of ion 

energization (heating) during magnetic reconnection should depend solely on the 

energy gained by ions falling through such electric fields. 

Through a collaboration between UiT and WVU, a new RFEA probe was benchmarked 

on the low pressure CFDL plasmas produced in WVU HELIX-LEIA. LIF was used to confirm 
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the RFEAs ability to detect a beam when one was present. The RFEA was also able to detect the 

presence of a beam when LIF techniques were limited by metastable quenching. A series of 

experimental tests described in this work provided a clear sense as to which RFEA configuration 

best handles the issue of ion focusing. Placing the discriminator in front of the repeller, so that 

low energy ions were reflected immediately after the probe entrance, reduced the artificial 

broadening of the measured IED due to ion focusing effects. 

A natural extension to this work will be to investigate multi-beam parameters with time 

resolved data acquisition techniques. High time resolution LIF will require identification of the 

laser frequencies at which the three populations (beam, secondary beam, and background) signal 

are maximum and then recording of the fluctuation and time series data at those particular 

frequencies. Wavelet and Fourier analysis should be performed on the signals in same manner it 

was presented in Chapter 4, but an additional analysis methodology, the cross-wavelet power 

spectrum, should be considered. For two time series 𝑋  and 𝑌 , the cross-wavelet spectrum is 

defined by2  

 𝑊𝑛
𝑋𝑌(𝑠) = 𝑊𝑛

𝑋(𝑠)𝑊𝑛
𝑌∗(𝑠) , (6.1) 

 

where 𝑊𝑛
𝑋 is the wavelet transform of 𝑋  and 𝑊𝑛

𝑌∗ is the complex conjugate of the wavelet 

transform of 𝑌. The cross-wavelet spectrum is complex therefore it may be more beneficial to 

record the cross-wavelet power, |𝑊𝑛
𝑋𝑌(𝑠)| . The cross-wavelet power spectrum provides a 

continuous measurement of correlation between two signals, and will provide a measure of the 

time dependent correlation between ion beam components and electrostatic fluctuations 

throughout the plasma pulse. 
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A missing piece of information in all these experiments is the electron energy distribution 

function (EEDF). This difficult measurement is possible with a carefully rf compensated 

Langmuir probe. The EEDF is determined from a plot of the second derivative of the I-V trace 

versus the applied voltage.3 Such a measurement would provide additional details of the DL 

formation mechanism and would enable additional comparisons with results from the ANU 

group.4 Another important additional measurement that should be pursued is to map out the 

potential structure throughout the expansion region.5 Such a measurement presents significant 

engineering challenges, but it could be accomplished with a doglegged RFEA probe similar to 

the one used in CHI-KUNG.  
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