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ABSTRACT 
 

Early Component-Based Reliability Assessment  
using UML Based Software Models 

 
William B. Smith V 

 
In the last decade, software has grown in complexity and size, while development 
timelines have diminished.  As a result, component-based software engineering is 
becoming routine.  Component-based software reliability assessment combines the 
architecture of the system with the reliability of the components to obtain the system 
reliability.  This allows developers to produce a reliable system and testers to focus on the 
vulnerable areas.   
 
This thesis discusses a tool developed to implement the methodology previously created 
for early reliability assessment of component-based systems.  The tool, Early 
Component-based Reliability Assessment (ECRA), uses Rational Rose Unified Modeling 
Language (UML) diagrams to predict the reliability of component-based software.  
ECRA provides the user with an easy interface to annotate the UML diagrams and uses a 
Bayesian algorithm to predict the system reliability.  This thesis presents the 
methodology of ECRA, the steps taken to develop it, and its applications.   
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Chapter 1: Introduction 
 
Software Reliability Engineering (SRE) started in the early 1970s thanks to pioneering 
works of Mora, Shoo, Cout, and many others [3].  Since its conception, the field of 
software reliability engineering has grown in importance.  At the same time, so has the 
complexity and size of software projects. 
 
In the last 30 years, software has gone from applications that require a large computer to 
applications that control the everyday conveniences that we know and love.  As a result, 
we have come to depend on software to perform reliably and correctly.  We expect the 
lights to turn on, the phone to ring, and email to be delivered.  While it can be correctly 
argued that these items also depend on hardware to succeed, the fact remains that 
computer software has become a major source of outages in phone, communications, and 
email delivery in the last decade [4].  Software reliability engineering’s goal is to prevent 
and/or reduce the chances of these outages from occurring.  A short power failure due to 
a glitch in the software at the relay station may be a small inconvenience, but a glitch in 
the control system of a scram shutdown of a nuclear power plant or, as was the case with 
the Therac-25 radiation therapy machine [5], failure will result in loss of human life. 
 
This chapter will provide an introduction into software reliability engineering.  It will 
present a description of what software reliability engineering is, how it is performed, and 
the benefits of performing it.  Additionally, this chapter will provide an insight into how 
the work and research presented here will contribute to the field of software reliability 
engineering.  This chapter concludes with a short description into the content of the 
remaining chapters in this thesis. 
 

1.1 Introduction to Software Reliability Engineering 
 
Before we can define software reliability engineering, we first must define some key 
terms in the field.  Software reliability is defined as “the probability of failure-free 
software operation for a specified period of time in a specified environment” [6].  
Another term commonly used, ultrareliability, is used to refer to “failure intensities of 
less than 10-4 failures per execution hour” [7]. 
 
The definition of reliability and related ultrareliability, brings to question the difference 
between a failure and a fault.  A failure is defined as “any departure of system behavior in 
execution from user needs,” whereas a fault is defined as “a defect in system 
implementation that causes the failure when executed” [8]. To further elaborate, a 
software fault is “a defective, missing, or extra instruction or set of related instructions 
that is the cause of one or more actual or potential failures” [7].  This can be summarized 
to say that a failure is the result, and a fault is the cause. 



 2

 
When defining a failure and fault other key terms must be defined.  Failures are grouped 
in two manners.  The first is by the type of impact they have on the users.  Failures with 
the same type of impact on the users are said to be part of the same failure category.  The 
second manner is to group them by the magnitude the failure have to the users.  Failures 
that exhibit the same degree of impact to the users are said to be part of the same failure 
severity class.  This brings us to the final definition for failures, failure intensity, which is 
defined as “the number of failures per natural unit or unit of time” [7]. 
 
Faults provide the technical part of software reliability engineering with four key 
methods that assist in achieving reliability.  The first is fault prevention, which is to avoid 
fault occurrences by construction.  Fault removal is the act of detecting and eliminating 
faults with the help of verification and validation.  Fault tolerance provides redundancy to 
handle faults without causing failures.  Finally, fault forecasting estimates the presence of 
faults and the occurrences and consequences of the failure that the faults may cause 
through evaluation of the software [3]. 
 
The next set of terms that must be understood involve operational profiles and runs.  
First, an operation is defined as a “major system logical task of short duration, which 
returns control to system when complete” [7].  The operational profile is the set of 
operations and the probabilities of each operation occurring.  This set of operations must 
have a total probability of occurrence that is equal to exactly one.  A run, on the other 
hand, is the execution of a single operation and is characterized by an input state [7]. 
 
An input state is the complete set of all input variables for a single run and the possible 
values of each variable [7].  This should not be confused with the machine state, which is 
the set of all variables and their values that exist within the machine and may or may not 
be external to the particular program.  The input variable itself is defined as a “variable 
that exists external to a run and affects its executions” [7].  As such, it can be seen that 
the input state is a subset of the machine state.  The input states are also a subset of the 
input space, which contains the “set of all possible input states for a program” [7]. 
 
Through the previous definitions, we can now define what software reliability 
engineering is.  It is “the quantitative study of the operational behavior of software-based 
systems with respect to user requirements concerning reliability” [9].  As such, software 
reliability engineering includes [3]: 

1. Software reliability measurement, estimation, and prediction, which is 
accomplished through the various software reliability models discussed in the 
next chapter. 

2. The attributes, metrics, and impact on reliability of product design, 
development process, system architecture, and software operational 
environment. 

3. The application of this knowledge to assist in developing system software 
architecture definition, development, testing, use, and maintenance of the 
software. 
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This means that software reliability engineering enables both testers and developers to 
simultaneously [7]: 

1. Ensure that product reliability meets the users’ needs. 
2. Speeds the product to market faster. 
3. Reduces product development costs. 
4. Improves customer satisfaction. 
5. Increases productivity of testers and developers 
 

In the next section, we will describe how software reliability engineering is performed.  
This section will describe in more detail the various aspects of software reliability 
engineering that is performed in the field. 
 

1.2 Software Reliability Engineering Process 
 
The process and cost of applying software reliability engineering varies from project to 
project.  Depending on how well the company plans for and adapts to the new processes, 
the initial project may cost more money than it will save.  As the company adapts and 
refines their application process, the benefits of software reliability engineering will 
become more evident.  The specification of reliability requirements will allow “testers to 
concretely verify that the finished product meets the customers’ needs before it is 
released” [3].  This verification will result in increased satisfaction of the customers since 
the product matches their needs more precisely than before.  The expected knowledge of 
system use will also result in additional benefits.  Developers will be able to coordinate 
resources to high-usage areas of the system.  Additionally, testers will be able to use the 
expected system use and required reliability to control and direct testing to the sections of 
the system that need it.  This will result in the product being delivered sooner and at a 
lower cost. 
  
The remainder of this section will provide an overview of the software reliability 
engineering process.  It will discuss how software reliability engineering is applied to the 
various phases of the waterfall model.  Specifically, it will discuss software reliability 
engineering in the requirements/specifications, design, implementation, and maintenance 
phases of the waterfall model. 

1.2.1 Requirements 
 
In the early stages of development, the product is being considered and defined.  
Software reliability engineering activities in this phase vary from project to project.  The 
first activity is to develop a functional profile.  This profile defers from the operational 
profile that will be developed later.  A functional profile includes the tasks performed by 
the product and the environment factors that the product must deal with (i.e. hardware, 
operating system, etc.).  These tasks and factors are then assigned criticality values to 
weight their importance to the system. 
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Once the functional profile is completed, the next software reliability engineering activity 
is to define a failure with respect to the product and customer.  Failures are commonly 
grouped by the amount of impact the failure will have on the product, user, and/or 
customer.  These groups, called failure severity classes, are normally created with around 
three or four classes; however, more classes can be created.  It will depend on the needs 
of the customer for the actual amount to be created.  If the customer requires a fine 
resolution of failure effects on the user, more classes will need to be created, but at the 
cost of extra effort later in the life cycle. 
 
The next step will be to initially define the customer’s reliability needs.  In some cases, it 
may be necessary to include both hardware and software reliabilities in their needs.  
Depending on the product, there are a number of options available.  Some of the methods 
to generate reliability needs include analyzing a similar product from a competitor or an 
older version of the product to be developed.  In defining the customer’s needs, 
acceptable failure intensity should be assigned for each failure severity class.  These 
values could range from 0.01 failures per hour to 10-6 failures per hour depending on the 
type of application to be developed.  Once assigned, the reliability objective is then 
allocated between the hardware and software to produce the individual reliabilities. 
 
With the functional profile and reliability information at hand, various trade-offs can be 
realized.  These trade-offs can help minimize cost, maximize performance, and reduce 
the delivery date [10].  Thus the benefits of software reliability engineering can be 
realized at an early stage of development. 

1.2.2 Design 
 
In the design phase, the functional profile developed in the requirements is used to further 
guide the software reliability engineering process.  Developers will convert the functional 
profile into an operational profile that will be used throughout the remainder of the 
software reliability engineering process.  Development of the operational profile is 
perhaps the most expensive part of software reliability engineering process.  Depending 
on the amount of detail placed in the functional profile, the goal will be to convert each 
function into one or more operations.  In some cases, it may be necessary to create 
multiple operational profiles to accommodate different modes of operation. 
 
Once the operational profile is completed, it can then be used to guide the development of 
the system architecture.  The system architecture should be developed in a manner that 
will divide the system into multiple components.  The next step will be to assign 
reliability values among the components.  Using the reliability objectives defined in the 
requirements phase, the goal will be to define allocations that will satisfy the system 
reliability objective when allocations are combined. 

 
With the operational profile, system architecture, and component reliabilities, developers 
and testers will be able to better allocate resources.  Developers will be able to use the 
information generated to assign personnel and time lines to best accomplish development 
of the product.  Testers will also use the information to guide test case generation.  As 
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such, both the developers and testers will be able to move into implementation with a 
solid footing. 

1.2.3 Implementation 
 
In the implementation and maintenance phases, the software reliability engineering 
process varies the most.  It is in these phases that most of the models presented in chapter 
two are applied.  In general, the goal in implementation is to control the number of faults 
introduced into the system.  This can be best accomplished by applying development 
practices that address fault management.  These practices include [3]: 

• Practicing a development methodology. 
• Constructing modular systems. 
• Employing reuse. 
• Doing unit and integration testing 
• Conducting inspections and reviews 
• Controlling change 

 
As implementation progresses, testers will be able to apply test cases as necessary.  
Testing data will allow developers to continue to remove faults and improve reliability of 
the product.  Additionally, developers will be able to use the various models discussed in 
chapter two to assist in monitoring reliability of the product.  Through the models and 
testing, developers will be provided with the necessary data to justifiably decide when to 
approve sections and when to rework sections of the product.  By consistent monitoring 
of reliability testing, development of the product will move at an accelerated rate and the 
product will be released to the satisfaction of the customer. 

1.2.4 Maintenance 
 
As already stated in implementation, the software reliability engineering process in 
maintenance varies a great deal with a wide choice of software reliability models as 
discussed in chapter two.  The primary goal of software reliability engineering process in 
maintenance is to monitor reliability in the field.  This requires a method to track the 
failures and execution times across all sites.  There are multiple approaches to gathering 
failure data.  One method is to use a trouble tracking system.  These systems are often 
database type applications that can be used to store information about the failures that 
have been encountered in the field and also the modifications users have requested.  
These systems assist in collecting failure data, but will never be able to gather 100% of 
the failures due to the fact that the all failures would have to be reported.  A more costly 
approach is to interview users at various sites.  This approach will assist in better 
understanding any dissatisfaction that the users may have with the product.  A more 
thorough approach to failure data collection is to incorporate data collection tools within 
the product itself.  The systems using the product would contact a remote system to report 
any failure data as it occurs.  The data stored on the remote system can then be analyzed 
to gather the overall failure data. 
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Once the failure data is collected, the calculated field reliabilities can then be compared 
to the failure objectives of the system.  If the case turns out to be one with significant 
differences between the field and test reliabilities, the reason may be one of many factors 
[3]: 

• The definition of what the customer perceives as a failure is different from the 
definition used in testing the product. 

• Inaccurate data collection during system test and/or field trial. 
• The field and test operational profiles differ, the environment not accurately 

reflecting field conditions. 
If it turns out that the operational profile is incorrect, it will be necessary to find the flaws 
in the profile before any further releases can be tested. 

Additional releases can be accomplished by following the same approach already given 
throughout the life cycle.  The functional and operational profile in most cases will still 
be applicable to the new release with only small changes required.  The lessons learned in 
the maintenance phase can be applied to continually refine your company’s software 
reliability engineering process and constantly increase the benefit software reliability 
engineering can present to projects. 
 

1.3 Contribution to Software Reliability Engineering 
 

The work presented in this thesis differs from most traditional software reliability models 
by the ability to apply it at an early stage of program development.  The tool allows direct 
interaction with Rational Rose, a case tool often used in the early stages of development.  
Through the use of system architecture and operational profiles, it can estimate the 
reliability of the released system before code development even begins.  Additionally, the 
tool could be used in cost and comparison exercises.  It provides an easy to use method of 
comparing different components that perform the same task, but may have different 
reliabilities and costs.  Thus, the impact of each component to the finished product can be 
assessed and a cost-based decision could be made. 

On another side, the tool developed could also become applicable outside the field of 
software reliability engineering.  If another field is able to model their system using the 
same types of software engineering diagrams, the system reliability calculations could be 
useful to their system.  This is due to the fact that the tool provides a “diagram-based 
mixed with statistical methods” approach that may be applied to many fields of 
engineering as time progresses. 
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1.4 Thesis Outline 
 
The remainder of this thesis is separated into six chapters.  The next chapter, Chapter two 
discusses some of the other research options that have been investigated to address 
software reliability.  These options include methodologies and models that relate to the 
many fields of software reliability engineering from component-based systems to 
reliability growth models. Chapter three continues by discussing the methodology of the 
approach we have taken.  It covers the assumptions and calculations of the model that this 
thesis is based upon. The next three chapters, chapters four through six, respectively 
describe the requirements, design, and testing of the system we developed.  These 
chapters present the process and implementation methodology behind the current version 
of our tool.  Finally, Chapter seven concludes with a summary of the work we have done 
thus far and also discusses future work planned around our tool. 
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Chapter 2: Related Work 
 
Software reliability engineering requires the use of specialized models and tools.  These 
models take into account the principal factors that affect reliability fault introduction, 
fault removal, and system use [7].  Since each of these factors are “probabilistic in nature 
and operate over time” [7], software reliability engineering models are usually 
represented in the form of random processes.  These random processes vary from model 
to model and, as such, are often used to classify the models into groups.  Additionally, the 
definition of time may vary with the different models.  Some models use calendar time as 
its input, which is not realistic unless the testing is constantly being performed.  Other 
models define time as the number of tests that have been run.  Again, this may not be 
realistic unless all the tests require the same amount of processing time.  Finally, a 
majority of the models use execution time to represent the time parameter.  Unlike 
calendar time and the number of tests, execution time best portraits the system being 
tested; unfortunately, it is the hardest to measure.  A majority of all models, independent 
of the definition of time, assume that failures are independent of each other and these 
failures are often the “results of two processes: the introduction of faults and their 
activation through selection of input states” [7]. 
 
Since software reliability engineering practices vary from company to company and each 
project is unique in its goals, not all models available will be applicable to every project.  
The deciding factors include the input and output parameters of each good software 
reliability engineering model, along with the goals of the model.  A good software 
reliability engineering model will have the following characteristics [7]: 

1. gives good projections of future failure behavior 
2. computes useful quantities 
3. simple 
4. widely applicable 
5. based on sound assumptions 

Additionally, the model must be able to handle program evolution and incomplete failure 
data, and be immune to hardware changes.  Finally, the data collection for the model 
should be easily obtained and a program implementing the model is readily available. 
 
The remainder of this chapter discusses two areas of software reliability engineering that 
are applicable in the field.  The next section discusses software reliability growth models.  
It will give an overview of what they are and briefly discuss some of the models 
available.  The remaining section concludes this chapter with a look into component-
based software reliability engineering and the various models available in the component-
based field. 
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2.1 Software Reliability Growth Models 
 
Most easily applicable models in software reliability engineering are reliability growth 
models.  These are mathematical models of system reliability change as testing and 
debugging occurs [11].  As such, software reliability growth models are often used as “an 
indication of the number of failures that may be encountered after the software has 
shipped and thus as an indication of whether the software is ready to ship” [12]. 
 
The process of using software reliability growth models is similar to normal development 
testing with some additional metrics gathered.  The process begins with the testing of 
faulty software.  During each phase of testing, a number of bugs are discovered.  At the 
end of the phase, the amount of testing time and the number of failures encountered are 
recorded.  The software is then repaired and the testing sequence starts over.  The metrics 
gathered at the end of each testing phase is then processed into a reliability growth model.  
Depending on the model used, the results of the model will predict how many bugs will 
be discovered in the next round of testing and how long it will take to discover them.  
This information can then be used as an indicator of whether further testing will be cost 
efficient, and also the reliability of the current system. 
 
Generally, software reliability growth models can be classified into two types: concave 
and s-shaped.  This classification is determined by graphing the prediction results as 
shown in the figure below. 
 

 
Figure 1 - Software Reliability Growth Model Types 

 
Both concave and s-shaped models assume that as the number of failures detected and 
repaired increases, the failure detection rate decreases.  This asymptotic behavior is based 
on the assumption that [12]: 

1. A finite number of failures exist in a finite amount of code.  In some cases, the 
repair of a failure may actually introduce an additional finite number of failures 
into the code.  Depending on the model used, the new failures may be 
incorporated into the model or neglected all together. 
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2. The failure detection rate is proportional to the remaining failures in the code.  As 
failures are repaired, fewer failures are left in the code. As such, the detection rate 
decreases and it requires more time to detect new failures. 

 

2.1.1 Concave Models 
 
Concave models are primarily defined by a defect detection rate that is proportional to the 
number of defects in the code, where this proportionality is assumed throughout the entire 
testing process [12].  These models have been used since the early years of software 
reliability engineering.  Some of the more notable concave models include: Goel-
Okumoto, Hossain-Dahiya/Goel-Okumoto, and Weibull models. 
 
The Goel-Okumoto model was developed in 1979.  Since its development, modifications 
of the Goel-Okumoto model have produced many other software reliability growth 
models.  This model assumes that the defect detection rate per error is constant and the 
number of faults at the beginning of a test is a random variable [13].  The Goel-Okumoto 
model has two parameters: ‘a’ and ‘b’.  Parameter ‘a’ represents the expected total 
number of defects in the code.  Parameter ‘b’ represents the shape factor, i.e. the rate at 
which the failure rate decreases.  Through the combination of the two parameters the total 
expected number of defects at time t is: )1()( bteatu −−= where a ≥ 0 and b > 0. 
 
Hossain-Dahiya/Goel-Okumoto model builds on the Goel-Okumoto model.  This model 
makes the same assumption that the Goel-Okumoto model does with respect to the defect 
detection rate per error being constant; however, the Hossain-Dahiya/ Goel-Okumoto 
model assumes that there are no failures at time 0 [13].  Additionally, the model has three 
parameters: ‘a’, ‘b’, and ‘c’.  Parameters ‘a’ and ‘b’ are the same parameters used in the 
Goel-Okumoto model.  Parameter ‘c’ is a control parameter that can be calculated using 
‘a’ and ‘b’.  These parameters are combined to calculate the total expected number of 

defects at time t using: 
)*1(

)1()( bt

bt

ec
eatu −+

−=  where a ≥ 0, b > 0, and 0 ≤ c < 1 [12].  This 

calculation is equivalent to the Goel-Okumoto model as ‘c’ approaches zero. 
 
The Weibull model is similar to the Goel-Okumoto model.  This model states that even 
with an infinite amount of time, not all failures can be discovered [14].  The model will 
calculate the mean number of undetectable errors and is often used to predict and 
evaluate test effort.  The model has three parameters: ‘a’, ‘b’, and ‘c’.  Parameters ‘a’ and 
‘b’ are the same parameters used in the Goel-Okumoto model and parameter ‘c’ is a scale 
parameter.  The Weibull calculation is then )1()( xeatu −−= where cbtx −= , a ≥ 0, b > 0, 
and c > 0.  This calculation is equivalent to the Goel-Okumoto model when [12] c=1.



 11

2.1.2 S-Shaped Models 
 
S-Shaped models, unlike concave models, assume that the initial phase of testing is 
ineffective, but as testing progresses, the defect detection rate increases and the model 
starts to behave similar to the concave model for the remainder of testing.  Two notable 
S-Shaped models are Gompertz [15] and Goel-Okumoto S-Shaped [12] models. 
 
The Gompertz model assumes that “the testing/debugging effort is homogeneous 
throughout the entire test phase effort and that fixes are not accumulated in batches 
before being implemented” [15]. As such, a solid test plan and rapid repair of defects is 
required for use of this model.  Use of the Gompertz model allows for modeling of 
reliability, mean time to failure, and cumulative failure count [15]. Calculation of the 
Gompertz model is expressed by: 

pTCABR = where R is the software reliability as a 
function of Tp, which represents the test period, i.e. Tp = 0, 1, 2, 3� etc. Parameter A, B, 
and C all represent Gompertz constants that will require additional calculations to 
compute where A ≥ 0, 0 ≤ B ≤ 1, and 0 < C < 1.  [15] suggests a spreadsheet approach to 
performing these calculations. 
 
The Goel-Okumoto S-Shaped model is an extension of the concave Goel-Okumoto 
model presented in the previous section.  This model makes the same assumption of bugs 
fixed when found as the Gompertz model.  The calculation is somewhat simpler:  

)*)1(1()( btebtatu −+−= where a ≥ 0, b > 0.  With this model, u(t) represents the 
number of defects at time t, parameter a represents the expected total number of defects 
in the code, and parameter b represents the shape factor, which is the rate at which the 
failure rate decreases [16].  As a result of parameters ‘a’ and ‘b’, it may be necessary to 
have knowledge of previous development experience for an accurate fit. 

 

2.1.3 Software Reliability Growth Applications 
 
There are a number of applications available both professionally and academically that 
perform software reliability growth calculations.  In some cases, these programs allow 
use of multiple software reliability growth models for possible calculations.  Among the 
applications available are: CASRE and ReliaSoft’s RG. 
 
CASRE is built on another program called SMERFS, in which CASRE provides a 
graphical user interface to extend the usefulness of SMERFS.  The tool, which is in its 
third version, estimates failure intensity from failure data.  CASRE accepts the number of 
failures that occur during a certain amount of test time.  It handles both execution and 
calendar time.  CASRE will then apply the data to either a logarithmic or an exponential 
model to calculate the failure intensity of the software. 
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ReliaSoft’s RG is a commercially available package designed for reliability growth 
analysis.  The tool works with Microsoft Windows operating systems and uses Non-
Homogeneous Poison Processes (N.H.P.P), Duane, Lloyd, Lipow, Gompertz, Modified 
Gompertz, and Logistic models to perform analysis calculations [17].  The tool provides 
Maximum Likelihood Estimation and Risk Regression methods to produce Reliability 
Growth Plots, MTBF Growth Plots, and Failure Rate Plots.  RG provides multiple wizard 
interfaces to allow for easy creation of reliability growth analysis. 
 
 

2.2 Component-Based Software Reliability Models 
 
Component-based software reliability models are used to predict reliability of 
component-based systems.  Component-based systems differ from traditional systems in 
the fact that the system is divided into separate logical units.  These units may consist of 
commercial off-the-shelf programs or parts of previous programs being reused.  The 
characteristics of component-based systems can include [18]: 

• Systems that have significant aggregate functionality and complexity. 
• Components are self-contained and possibly execute independently. 
• Components will be used “as is” rather than modified. 
• Components must be integrated with other components to achieve required 

system functionality. 
 
Due to the unique architecture of component-based systems, the old methodology of 
black-box testing can be replaced with one that takes into consideration the individual 
components and structures of the system.  Component-based software reliability models 
must then be able to predict reliability based on the reliability of each individual 
component and usage patterns in the given application. 
 
One of the best guides to component-based software reliability models can be found in 
[19].  In this paper, the authors separate the various models in this field into three 
categories: state-based, path-based, and additive models.  Each category has a wide range 
of models available.  The next three sections will discuss each individual category.  
Additionally, a final section will be included to discuss some models that have been 
implemented. 
 

2.2.1 State-Based Models 
 
State-based models use control flow graphs, created through the use of Discrete Time 
Markov Chains, Continuous Time Markov Chains, or Semi-Markov Process to represent 
the architecture of the system [19].  These models assume that the future behavior of the 
software system is conditionally independent of the past behavior given the knowledge of 
the controlling module at any point in time.  State-based models can be further classified 
as either composite or hierarchical.  Composite state-based models use the given 
architectural model and failure behavior to predict reliability, while the hierarchical 
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approach solves for the architectural model and uses the solved model along with given 
failure behavior to predict reliability.  Among some of the models classified in this area 
are the Littlewood model, the Laprie model, and the Gokhale et al. model [19]. 
 
The Littlewood model uses an irreducible semi-markov process to model the architecture 
of the component-based system.  This model assumes that the software system consists of 
a finite number of modules and the transfer of control between modules can be specified 
by a probability pij.  Additionally, the time spent in a module can be described as a 
general distribution function Fij(t) with a finite mean of mij [19].  The failure behavior in 
the Littlewood model consists of two types: failure during execution of the module 
represented as λi, and failure during transfer of control between two modules represented 
as vij.  By combining this data, the failure rate according to the Littlewood model is [19]: 
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The Laprie model, like the Littlewood model, assumes the system is made up of n 
components.  Transfer of control between the individual components is described through 
the use of a continuous time Markov chain.  Additionally, the time spent within each 
component is represented by µi.  The failure behavior in the Laprie model assumes the 
components fail with a constant failure rate λi.  The Laprie model then assumes that the 
“failure rates are much smaller than execution rates” [19] resulting in the exchange of 
control occurring before the failure occurs.  As a result, the system failure rate is modeled 

as: �
=

=
n

i
iis

1
*λπλ  where n is the number of components, πi is the proportion of time 

spent in component i and λi is the failure rate for component i [19]. 
 
The Gokhale et. al. model is a hierarchical state-based model.  It uses an absorbing 
discrete time Markov chain to describe the software system.  To determine the transition 
probabilities pij, the model requires the use of a coverage analysis tool called ATAC [20].  
The time spent in each component is “computed as a product of the expected execution 
time of each block and the number of blocks in the module” [19].  The failure behavior in 
the Gokhale et al. model is modeled through the use of an “enhanced non-homogeneous 
Poisson process using a time-dependent failure intensity λi(t) determined by block 
coverage measurements” [19] acquired by ATAC.  The overall reliability in the model is 
given by: 

∏
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 and xi represents the total expected time per execution 

spent in module i [19]. 
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2.2.2 Path-Based Models 
 
Path-based models use reliability with respect to the various execution paths that software 
can take.  These models tend to require a completed program for testing to generate the 
required path information about the program.  The path information is then combined 
with the failure behavior to predict reliability.  Two notable path-based models are the 
Shooman model, and Scenario-Based Reliability Analysis model. 
 
The Shooman model is one of the first models to estimate reliability of component-based 
systems using a path-based approach.  This model assumes that the execution paths of the 
system are known along with the frequencies of occurrence for each path, denoted by fi.  
The Shooman model characterizes failure behavior by calculating the failure probability 
on each path, denoted by qi.  This information is combined to produce the system 
probability of failure on any test run to be:  

i

n

i
io qfq *
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=  where n is the number of components in the system [19]. 

 
The Scenario-Based Reliability Analysis (SBRA) model, unlike other path-based models, 
allows for reliability calculations in the early stages of development before an executable 
of the system is available.  It uses an analysis technique that is based strictly on execution 
scenarios.  The SBRA model can be used “to identify critical components and critical 
component interfaces and to investigate the sensitivity of the application reliability to 
changes in the reliabilities of component and their interfaces” [21].  The model begins 
with the creation of scenarios, which are sets “of component interactions triggered by 
specific input stimulus” [21].  To define the scenarios, SBRA model uses sequence 
diagrams similar to these used in the unified modeling language (UML).  These diagrams 
provide the necessary information to calculate “the average execution time of a 
component in a scenario, the average execution time of a scenario, and possible 
interactions among components” [21].  Once the scenarios are completed, additional 
information about the probability of a scenario occurring, the individual component and 
transition reliabilities are used to create a “Component Dependency Graph (CDG)” [21].  
The CDG is a modified control flow graph that has been adapted to apply to component-
based applications.  Creation of the component dependency graph is accomplished by 
following an outlined protocol that uses the information gathered from the previously 
defined scenarios.  An analysis algorithm defined in [21] is then applied to the completed 
CDG to obtain the reliability analysis results. 
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2.2.3 Additive Models 
 
Additive models, which could also be used for software reliability growth modeling, 
estimate reliability by combining the reliability data of the individual components.  These 
models assume that the “components’ reliability can be modeled by a non-homogeneous 
Poisson process, allowing for the system reliability to be expressed as the sum of its 
components’ reliability” [19].  Additive models focus more on the failure data of the 
individual components than the architecture of the system.  An additive model example is 
the Xie and Wohlin model. 
 
The Xie and Wohlin model assumes that each component is a single system that is 
combined in series to produce the total system.  Using the philosophy of a series circuit, it 
can then be said that failure of a component will result in failure of the entire system.  
Thus, the Xie and Wohlin model examines the individual component failure intensity, 
denoted by λi(t), to obtain the system failure intensity at time t as:  
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= λλ  where n is the number of components in the system. 

 

2.2.4 Component-Based Reliability Applications 
 
There are two applications that are currently being developed that will provide an 
implementable solution to modeling reliability of component-based systems.  Unlike the 
models discussed in the previous three sections, these applications can address reliability 
prediction at an earlier stage of development.  These applications include: PECT [22] and 
SREPT [23], both of which are the result of projects in academia. 
 
PECT, which stands for Prediction-Enabled Component Technology, is an application 
currently being developed as part of the PACC2 project at the Software Engineering 
Institute [22].  The goal of PECT is to develop an add-on for another tool called ComTek.  
ComTek is a component design and modeling environment, in which users can create and 
execute component-based programs.  PECT will interface with ComTek to obtain the 
architecture of the software system.  It will then take a path-based approach to calculate 
the average contribution of each component to the system.  At this point, PECT can 
perform one of two actions.  Depending on the knowledge about the components and 
system reliabilities available, PECT can calculate system reliability or reliability of the 
individual components.  Knowledge of the system reliability will allow PECT to 
calculate the individual component reliabilities by proportioning the system reliability 
with the average contribution of each component.  On the other hand, knowledge of the 
individual components reliabilities will allow PECT to extrapolate the total system 
reliabilities by adding the proportional reliability of each component with respect to the 
average contribution of each component to the system. 
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SREPT [23], which stands for Software Reliability Estimation and Prediction Tool, is an 
application developed at Duke University.  Its primary goal is to “track the quality of a 
software product during the software life-cycle, right from the architectural phase all the 
way up to the operational phase of the software” [23].  As such, SREPT is a software 
reliability growth tool, but its models are designed to account for component-based 
systems.  SREPT uses a state-based approach and provides multiple techniques to model 
the software system.  Its architecture modeling list includes using Discrete Time Markov 
Chains, Semi-Markov, Stochastic Petri Nets, and also Directed Acyclic graphs.  SREPT 
executes its model of the system to calculate the time for and the average number of visits 
to each component.  It then associates the architecture of the system with the user-defined 
failure probabilities for each component to produce the overall system reliability.  
Additionally, SREPT can provide release time information and, unlike most software 
reliability growth models, allows for reliability predictions to take into account finite 
fault removal times. 
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Chapter 3: ECRA Methodology 
 
The Early Component-based Reliability Assessment (ECRA) tool was developed as an 
implementation of the methodology originally discussed in [1, 2].  The goals of the 
ECRA tool are as follows: 

• The development of a probabilistic technique for reliability prediction that is 
applicable in the early phases of development, before an executable version of the 
system is available.  

• The ability to study the impact of individual components and interfaces to the 
reliability of the application, thus allowing a quantifiable method in selecting 
components when alternative reusable assets are available to result in maximum 
system reliability. 

 
The tool makes three assumptions.  First, the tool assumes the existence of knowledge 
about failure rates for components.  This information traditionally is not available in 
component libraries, but we speculate that over time, information about failure histories 
could become available in the form of specification sheets provided with the purchase of 
the component.  Second, the methodology of the tool is simplified by the assumption of 
independence of failures among different components.  To help realize this assumption, 
there are some proposals to build applications that include component wrappers to isolate 
each component [24].  The final assumption we made further simplifies our tool.  We 
assume that component failure follows the principle of regularity, in which components 
are expected to fail at the same rate whenever the component is invoked. 
 
To work with these goals and assumptions, the ECRA tool models the software system 
by annotating UML diagrams that can be created using Rational Rose from Rational, Inc.  
The ECRA tool uses three distinct diagrams available in UML: Use Case, Sequence, and 
Deployment Diagrams.  Each diagram’s annotation will be described in the following 
sections and this chapter will conclude with an explanation of how the annotations are 
combined to produce system reliability. 
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3.1 Annotating Use Case Diagrams 
 
A use case diagram (UCD) describes system behavior (use cases) and provides a high 
level view of how the system interacts with external entities (actors).  In our case, this 
diagram will be used to define the operational profile of the system.  In annotating a 
UCD, we look at two parameters.  The first is the probability that an actor will use the 
system denoted by qi, where ∑qi = 1 (i = 1 to the number of actors).  The second 
parameter is the probability of an actor using a selected system behavior, denoted by Pix. 
Again, ∑ Pix = 1 for actor qi where x represents each actor/use case connection.  This data 
is then combined to produce the probability of a system behavior occurring during 
execution of the software system.  The probability of a system behavior x occurring is 
given by:  

P(x) = Pixqi
m

i
*

1
�

=

, (1)

where m represents the number of actors that use the given system behavior.  This value 
is used to predict the probability of a sequence diagram occurring. 
 
 

3.2 Annotating Sequence Diagrams 
 

 
Figure 2 - Annotated Sequence Diagram 

A sequence diagram (SD) depicts a time-based sequence of how groups of components 
interact to accomplish a given system behavior.  There exists at least one SD per system 
behavior (use case).  There are some instances in which more than one SD may exist for a 
single system behavior.  In this case our methodology divides the probability P(x) by the 
number of sequence diagrams used to represent the given system behavior. 
 
Annotations of an SD in ECRA depict the amount of time each component is in a busy 
state or period.  A busy period, shown in Figure 2, is defined as the interval of time that 
starts with an entering interaction and ends with the corresponding exit interaction [2].  
We denote busy periods bpij as the number of busy periods that the component Ci shows 
in the Sequence Diagram j.  By representing the failure probability for component Ci as 
θi, we can estimate the probability of component i in the scenario j failing as θij using the 
following equation [2]: 
 

θij = Prob(failure of Cij) = 1 - (1- θi)bpij (2)
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3.3 Annotating Deployment Diagrams 
 
A deployment diagram (DD) shows the physical configuration of the software application 
in terms of the various processors and connections that the application will be targeted to 
run.  This diagram is the central point of the ECRA methodology.  When combined with 
the information about the sequence diagrams, the system architecture can be defined.  
The DD allows annotations of both component and connection failure probabilities.  
These probabilities, denoted as θi and ψi respectfully, are represented by a mean failure 
probability and the 95% confidence interval of the failure probability to model the beta 
probability distribution of the component or connection.  Our model includes information 
about connection reliability to take into account communication failures.  To represent 
communication reliability between component l and m, we must first count the number of 
interactions that the two components exchange in the SD j, denoted as |Interact(l,m,j)|.  
Then we estimate the reliability ψlmj using the failure probability of the connection, 
denoted ψi as follows [1]: 
 

)|,,(|)1( jmlInteract
ilmj θψ −=   (3)

 
 

3.4 Combining Component and Connection Failures 
 
Using the data from the UCD, SD, and DD, the ECRA tool can combine the information 
to produce an equation for the reliability of the whole system.  By combining equations 1, 
2, and 3, we obtain the following equation [1]: 
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This equation is used in the ECRA tool with the Bayesian reliability prediction algorithm, 
which uses random variables for θi and ψi to produce values for θs.  By using multiple 
simulations, ECRA can produce a histogram of the results to represent the predicted 
system reliability.  ECRA will also calculate the mean and 95% confidence interval of the 
simulation results to produce a beta curve for validation of the Bayesian model. 
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Chapter 4 System Requirements for Tool 
 

4.1 Requirement Decisions and Tradeoffs 
In the development of the requirements for the ECRA tool, described in section 4.2, 
various design decisions and alternative options presented themselves.  These decisions 
and options included integration options to file formats.  This section will focus on the 
benefits and alternative options that were available. 
 
Decision: Interface with an existing tool for UML diagram creation or provide diagram 

creation within ECRA tool. 
Results:  Choose to interface with Rational Rose from Rational, Inc.  Rational Rose is a 

well established UML design tool in the software engineering world.  It 
provides the ability to create the necessary UML diagrams required to perform 
the reliability calculations.  Also, by interfacing with Rational Rose, 
development time will be dramatically reduced. 

 
Decision: Provide a method to specify UML annotations. 
Results: Choose to use a dialog-type user interface.  This allows for a smaller learning 

curve for the user and a reduced development time.  The other option was to 
provide a method to graphically annotate the UML diagrams.  The graphical 
option could not be completed within the development timeframe and may be 
useful in the future. 

 
Decision: Provide seamless integration with a mathematical and graphical tool 
Results:  Choose to use MatLab from Mathworks as both the mathematical tool and 

graphical tool.  MatLab provides easy integration into most major computer 
languages and has a large library of mathical and graphical functions.  Another 
option available was Mathmatica, but the developer was not as familiar with 
that tool for it to be useful. 

 
Decision: Provide a method to run script files containing the UML annotation data. 
Results:  Choose to use an XML-Based file format to use scripts.  This choice does have 

the downfall of it not being user friendly, and a better option may have been to 
use Excel files.  The excel files would have provided the user with a better 
interface, but would have required additional parsers.  The decision to use the 
XML files does cost user friendliness, but provides but integration with the 
ECRA tool. 

 
Decision: Provide a method to load and save simulation data. 
Results:  The choice to use XML-based files for running scripts also applied to loading 

and saving data.  In this case, the use of xml files over a different format 
provides the ability for future integration with other tools. 
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4.2 Detailed Requirements 
 
The ECRA tool provides a method to perform reliability assessment of a software system 
using Rational Rose diagrams and the methodology discussed in Chapter three.  The 
requirements for the tool are separated into three sections: Rational Rose extraction, 
system inputs, and system outputs. 
 
The ECRA tool need to interface with three types of diagrams in Rational Rose: use case, 
sequence, and deployment diagrams.  The use case diagram requires abstraction of the 
names of each actor and use case, along with knowledge of each connection that may 
exist between the two.  The sequence diagram involves the name of each diagram and 
modules within the diagram.  Additionally, the tool is required to calculate the number of 
busy periods for each module in each diagram.  Finally, the deployment diagram requires 
abstraction of the name of each processors and processes, along with knowledge of each 
connection between the individual processors. 
 
The inputs into the ECRA tool consist primarily of the Rational Rose diagrams and user 
input.  With respect to the use case diagram, the ECRA tool requires the user to specify 
the probability of an actor using the system, where the total probability of all actors using 
the system will equal exactly one.  It will also require the user to assign probabilities to 
each of the connections an actor may have, where the total probability of all connections 
for a single actor equals exactly one.  With respect to the sequence diagrams, the ECRA 
tool requires the user to link each sequence diagram to the use case procedure that it is 
supposed to represent.  There is at least one sequence diagram for each use case 
procedure.  Additionally, the user is required to specify the failure probability of 
confidence interval of each module in each diagram.  Finally, with respect to the 
deployment diagram, the ECRA tool allows users to link processes to modules within 
each sequence diagram.  There is at least one process for every module in the sequence 
diagrams.  The tool also requires the user to specify the failure probability and confidence 
interval of each connection in the deployment diagram. 
 
The outputs of the ECRA tool involve calculation results and graphs.  The tool should 
calculate the parameters of prior beta distributions of each process and connector.  This 
includes: 

• θ for all components 
• ψ for all connectors 
• ai and bi for all components and connectors 

 
The tool also produces a histogram plot of the calculation results, along with a file 
containing these results.  Additionally, ECRA will produce a plot comparing the prior 
probability density function of the system failure probability θs and the normalized 
histogram from simulation observations.  The ECRA tool also calculates the failure 
probability and the 95% confidence interval of the system. 
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Chapter 5: Program Design 
 
The ECRA tool was developed using Visual Basic 6 programming language.  Through 
the use of Visual Basic, generation of user interfaces, communication with Matlab, and 
parsing of XML code was made possible.  The program consists of a main interface that 
will allow the user to load saved simulations, create and load script files, and start new 
simulations.  The process to start a new simulation will work similar to a setup program, 
where the user will be guided through a series of steps and questions to produce the 
simulation results.  The user will also be able to save the simulation settings for later 
modification and execution.  The goal of this design is to produce a user friendly 
interface that requires minimal training to use. 

 
Figure 3 - Overview of Process 

The overall process of running the simulation is shown in Figure 3.  It begins with the 
user creating UML diagrams in Rational Rose.  The user will create an overall use case 
diagram to represent the system to be developed.  For each use case bubble, the user 
creates one or more sequence diagrams.  The sequence diagrams represent the various 
actions that are performed during execution of a single use case bubble.  Finally, the user 
creates a deployment diagram.  The deployment diagram contains processors with 
processes and connectors connecting the processors.  There will be one process for each 
unique node represented in the sequence diagrams.  Once the user has completed and 
verified the diagrams, he or she uses the Unisys XML plug-in for Rational Rose to export 
the UML model to an XML file.  Once the XML file is generated, the user can then open 
the ECRA tool to start the UML annotations.  By selecting the XML file from Rational 
Rose, the user will be presented with a series of forms that will allow the user to annotate 
the UML diagrams.  Once completed with the annotations, the user specifies the length of 
the simulation, and where to save the results.  The ECRA tool will then open Matlab and 
run the simulation.  Once the simulation has finished, ECRA will display two graphs of 
the results.  The first graph will be a histogram showing the failure probability and 95% 
confidence interval of the system simulated.  The second graph will display the curve of 
the histogram and the beta curve generated to represent the system.  This graph will allow 
the user to judge the performance of the system.  For more information on the design of 
the ECRA tool, please read Appendix B: Programmer’s Manual. 
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Chapter 6: Testing 
 
The ECRA tool was tested using the web application presented in [1].  The application 
was first modeled in Rational Rose, and then exported to an XML file.  Testing of the 
ECRA tool was separated into three sections: functionality, robustness, and user-
friendliness.  Each section consisted of several tests that are described below. 
 
To test the functionality of the ECRA tool required testing three branches.  The first 
branch was to annotate the file using the series of questions.  This branch was executed 
and using the information about the web application presented in [1], the UML model 
was annotated.  The annotations were then saved to a file for later testing purposes.  The 
second branch to test was creating and loading of script files.  This test began with the 
creation of script file using the XML version of the Rose model.  The created script file 
was then opened using a standard text editor.  Next, the script file was filled in with the 
necessary information and saved.  Once saved, the file was opened in the ECRA tool.  
The ECRA tool then allowed the user to verify the contents of the script file.  The third 
and final branch was to load a saved simulation file.  The file created in the first test was 
loaded and its contents were verified by the ECRA tool.  At the conclusion of each of the 
three tests, the ECRA tool opened Matlab and ran the simulation.  The simulation itself 
could take a great deal of time, depending on the number of trails to run and the processor 
speed and memory of the computer being run on.  Once the simulation was completed, 
ECRA displayed the graphical results of the test. 
 
To test the ECRA tool’s robustness, various tests were used.  The first involved the 
ECRA tool’s ability to handle corrupt files.  To perform this test, the XML file created in 
Rational Rose was edited in a standard text editor.  Random sections of the file were 
removed.  The edited file was then loaded into ECRA.  The ECRA tool parsed the file 
and informed the user that the file was not correctly formatted.  This test was also 
repeated for loading of script and simulation files.  In each case, the ECRA tool informed 
the user that the file was not correctly formatted.  The next test of robustness was to test 
invalid user input.  This test consisted of testing each form where the user could enter 
text.  In the section of ECRA involving annotation of the diagrams, the user would 
specify number values within a certain range.  To test the error control of the input fields, 
each field was tested by entering a number within the range, a number on the upper and 
lower bound of the range, a negative and positive number out of the range, and a series of 
characters.  The tests that involved a valid number which included entering a number 
within the range and on the upper and lower bound of the range were allowed to be 
entered.  While with the tests that involved an invalid number, the ECRA tool informed 
the user that the number was invalid and defined valid input.  The final test of robustness 
was to test the areas where the user could select information from a list.  In this case, the 
test consisted of selecting the same item multiple times or selecting no items at all.  
Depending on which form the user was in during the test, the selection of matching items 
would only affect the simulation results, while selecting no items at all would either 
result in the user being required to select an item or the simulation ignoring the input. 
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The final test of the ECRA tool was to gain an initial understanding of the user-
friendliness of the program.  The test was performed using an inexperienced computer 
user.  This user had no prior experience with the ECRA tool or software development in 
general.  The hope was by using a user outside of the software development field, a worse 
case scenario could be realized about the ECRA tool.  To assist the user in using the 
ECRA tool, the generation of the UML model and XML file in Rational Rose was 
presented to them up front.  The user was then given a brief overview of the goal of the 
program and a sheet of paper with the answers to the series of questions.  The user was 
then given free run of the program.  The user was able to create the simulation and view 
the results.  The user found that the entering of information was not difficult.  Next, the 
user was told to create and edit a script file.  Again, the user had the XML file of the rose 
model to start with and the sheet of paper with the answers to the series of questions.  The 
user was immediately able to create the script file.  To edit the file, the user required 
some instruction on how to open the file for editing.  Once the file was open, the user 
then tried to work through the file and enter the information.  After some time, the user 
was able to finish the file and run the simulation.  The user found that using the script file 
method took more time, and liked the series of questions method much better.  Overall, 
the user found using the ECRA tool took some time to understand, but was not overly 
difficult.  Through the evaluation of this inexperienced user, it is believed that the ECRA 
tool will prove easier to user within a software development environment. 
 
By testing the functionality, robustness, and user-friendliness of the ECRA tool, it was 
found to meet its specifications and perform correctly under the simulation conditions it 
was presented to.  Future testing may prove useful with the use of a larger and more 
complicated UML models.  
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Chapter 7: Summary and Future Work 
 
The ECRA tool discussed in this thesis has been successfully implemented and meets its 
requirements.  The tool has already been demonstrated at two locations.  Since its release, 
users of the tool have encountered few problems and have successfully produced 
reliability assessments of component-based systems.  It is our hope that through the 
development of this tool and model, practitioners will be able to apply software reliability 
assessment at earlier stages of the life cycle model than currently available.  Additionally, 
ECRA will hopefully assist practitioners in developing cost-effective reliable software 
system. 
 
Through the use of Rational Rose and ECRA, a methodology to apply reliability 
assessment in the early stages of development can be realized.  This early assessment will 
allow developers to predict and prevent problems before the problems escalate in cost 
and significance.  Additionally, Rational Rose is a widely acceptable software 
development tool.  As such, the incorporation of Rational Rose into the ECRA tool 
assists in an easy transition for developers in use the ECRA methodology.  At the same 
rate, the interface between Rational Rose and ECRA is accomplished through the use of 
the XMI standard, which is to be applied to all UML development tools allowing for 
possible interfaces between ECRA and tools using the XMI standard. 
 
The current version of the ECRA tool is compatible with Windows 98/ME, NT, 2000, 
and XP operating systems.  This version requires MatLab 6.1+ and Rational Rose 2000 
with the Unisys XMI plug-in for full capability.  Future versions of ECRA will integrate 
MatLab into the program.  Also, future versions of Rational Rose are to include the 
capability to export directly to XML.  In time, the ECRA tool may even be integrated into 
Rational Rose. 
 
We are currently searching for practical test cases to demonstrate the feasibility of the 
ECRA approach.  This executable implementation of our model will allow us to further 
test and refine the reliability approach we have taken.  It is our hope that the research we 
have completed will provide a methodology for future development in the component-
based reliability field. 
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A.1.0 System Requirements and Limitations 
The ECRA program requires the following minimum system features: 

• MatLab 6.1.0.450 
• Rational Rose Professional 2001 (version 7.5.0103.1920) 

Unisys Rose XML Tool (Plug-in for Rational Rose) 
• Windows 98/ME, NT, 2000 or XP-based System 

1024x768 Screen Size 
Pentium II 400 MHz 
256 MB RAM 
20 MB of free hard drive space 
Internet Explorer 6.0 

 
The current version of ECRA has the following limitations in the Rational Rose 
Diagrams: 

• Maximum of one Use Case Diagram 
o Maximum of 21 Actors 
o Maximum of 21 Use Case Bubbles 

• Maximum of one Deployment Diagram 
o Maximum of 15 Processors 
o Maximum of 15 Connections 

• Maximum of 16 Sequence Diagrams 
o Maximum of 15 Nodes per Sequence Diagram 
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A.2.0 Exporting UML Diagrams in Rational Rose 
The following screen shots were taken from Rational Rose Enterprise Edition 2001 from 
Rational Software Corporation.  To export your UML diagrams perform the steps below. 
 

1. Create Use Case, Sequence, and Deployment Diagrams in Rational Rose. 
2. Upon completion of model, Choose File � Export UML 1.1 to XMI as shown 

in figure 3. 

 
Figure 4 - Rational Rose File Menu 
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3. Choose ASCII/MBCS as the Character Set as shown in figure 4 and click Ok. 

 
Figure 5 - Export Character Set 

4. Upon completion, the screen shown in figure 5 will appear.  A XML file will 
now exist in the same directory as your model file with the name: 
model_name.xml where model_name is the name of your UML model. 

 

 
Figure 6 - Export Completion 

A.3.0 Running Simulations in ERA 
The ECRA tool provides two methods to perform annotation of the UML diagrams.  The 
first method is the Wizard Mode.  This mode is the default method of data entry, and is 
described in section A.3.1.  The second mode is the Advanced Mode.  This mode uses an 
ECRA generated XML file to allow saving and easy changing of values.  The Advanced 
Mode is described in section A.3.2. 
 

A.3.1 Using Wizard Mode 
1. To begin data entry, click on the setup simulation button as shown in figure 6. 

 

 
Figure 7 - ECRA Start Wizard Mode 
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2. Choose the XML file created by Rational Rose as shown in figure 7. 
 

 
Figure 8 - Opening Rational Rose XML File 

3. Complete each section, and click the next button to continue to the next 
section. 

4. After completion of data entry the screen shown in figure 8 will appear.  Enter 
the file name or select a location to save the results by clicking on the … 
button.  Enter the number of trials to perform during the Matlab simulation.  
Click next to continue. 

 

 
Figure 9 - Saving Simulation Results 

5. After clicking the next button as shown in figure 9, you will be given the 
chance to save your simulation settings to an xml file.  This will allow 
rerunning simulations by using the Advance Mode described in section A.3.2.  

 
Figure 10 - Saving Simulation Settings 
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After saving simulation settings, click on the Start Simulation button shown in 
figure 10 to begin the simulation. 

 
Figure 11 - Starting Simulation 

6. Upon completion of the simulation, click the next button.  Then click the view 
results button shown in figure 11 to view a histogram of the results. 

 
Figure 12 - Viewing Results 

7. This will open a new window displaying the histogram of results along with a 
comparison of the beta curve and simulation results, as shown in figure 12. 

 

 
Figure 13 - Histogram of Results 
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A.3.2 Using Advanced Mode 
 

1. Select File�Generate Script File as shown in figure 13. 
 

 
Figure 14 - Generating Script File 

2. Choose the Rational Rose XML file to open as shown in figure 7 on page 19. 
3. Choose where to save the script file as shown in figure 14. 

 
Figure 15 - Saving Script File 

4. Open the xml file created by the ECRA program using any text editor such as 
Notepad, or WordPad. 
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5. Fill in the missing data where requested.   
• For the use case diagram section, enter data where this line is: 

<Probability note = "Enter value between 0 and 1">###</Probability> 
• For the deployment diagram section, enter data where these lines are: 

<FailureProbability note = "Enter value between 0 and 1">###</FailureProbability> 
 
<ConfidenceInterval_Low note = "Enter value between 0 and 1">### 
</ConfidenceInterval_Low> 
 
<ConfidenceInterval_Hi note = "Enter value between 0 and 1">### 
</ConfidenceInterval_Hi> 
 

• For the sequence diagram section, enter the processorID and processID for 
each process in each diagram.  The processorID and processed can be 
found by view the deployment diagram section.  

 
Ex. The following process C1 has a processorID of 0 and processed of 0 

<Processor ID="0" Name="Client"> 
   <Process ID="0" Name="C1"> 
 
 These values are entered in the following lines: 

<ProcessorID note = "Enter value corresponding to Processor id=?">###</ProcessorID> 
<ProcessID note = "Enter value corresponding to Process id=?">###</ProcessID> 
   

In the case that the process in the sequence diagram does NOT correspond 
with a process in the deployment diagram, use -1 for both the processorID 
and processID. 
 
In addition to the processorID and processID, enter the number of times 
each connection is used in each diagram by placing the value in this line: 

<ConnectionUse note = "Enter the number of times this connection is used">### 
</ConnectionUse> 
 
6. Save file.  Open in Internet Explorer to easily navigate file. 
7. Open the ECRA program. 
8. Choose File->Load Script File as shown in figure 15. 

 
Figure 16 - Load Script File 

9. Continue with steps 3 – 8 in section A.3.1 to finish the simulation. 
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A.3.3 Additional Features 

A.3.3.1 Loading Saved Results 
To load a previously run simulation, choose File�Load Saved Results as shown 
in figure 16.  Select the *.dat file to open and follow step 8 in section A.3.1. 

 
Figure 17 - Loading Saved Results 

 

A.3.3.2 Exiting ECRA program 
To exit the ECRA program, click the cancel button during data entry or click the 
File�Exit button when not in a data entry screen. 
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A.4.0 Troubleshooting 
 
Problem: Unable to Export UML model in Rational Rose. 
Solution: Verify Unisys Rose XML Tool is installed. 
 
Problem: ECRA program does not load. 
Solution: Verify Matlab 6.0 is installed and resolution is at least 1024x768 
 
Problem: Rational Rose XML file does not open in ECRA.  
Solution: Verify that UML diagrams do not exceed limitations discussed in section 1.0.  

Export XML file again. 
 
Problem: Unable to load script file in ECRA.  
Solution: Verify XML file is correctly formatted by loading in Internet Explorer.  If 

unable to fix formatting, regenerate the file. 
 
Problem: Click on View Results button and nothing happens. 
Solution: Look on the taskbar for a window called Figure 1.  Click on that window. 
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B.1.0 System Requirements 
 

B.1.1 Production Requirements 
o MatLab 6.1.0.450 
o Rational Rose Professional 2001 (version 7.5.0103.1920) 

Unisys Rose XML Tool (Plug-in for Rational Rose) 
 

o Windows 98/ME, NT, 2000 or XP-based System 
1024x768 Screen Size 
Pentium II 400 MHz 
256 MB RAM 
20 MB of free hard drive space 
Internet Explorer 6.0 

 

B.1.2 Development Requirements  
o Above Production Requirements plus 
o Microsoft Visual Basic 6.0 (SP5) 

References: 
• Visual Basic for Applications 
• Visual Basic runtime objects and procedures 
• Visual Basic objects and procedures 
• OLE Automation 
• Microsoft XML, version 2.0 
• Matlab Automation Server Type Library 

Controls: 
• Microsoft Windows Common Controls 5.0 (SP2) 
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B.2.0 Code Overview 
 
The ECRA project consists of four types of files: forms, generic modules, class modules, 
and Matlab files.  The section provides a description of these four types of files.  The 
following diagrams (17 – 20) explain the flow of control throughout the ECRA tool. 
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Figure 20 - Sequence Flow Diagram 



 45
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Figure 21 - Deployment Flow Diagram 
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B.2.1 Forms 
This section contains screenshots and descriptions of the various events associated with 
each form.  The forms are displayed in the order that the user will view them. 
 

B.2.1.1 frmSplash.frm 
Requirements Prior to Opening: None 
Screen View: 

 
Figure 22 - Splash Screen 

 
Events: 
Name: Form_Load() 
Description: Loads form into memory, also sets version and product labels 
Name: Form_Unload(Cancel As Integer) 
Description: Verifies resolution is correct.  Loads frmChecklist 
Name: Timer1_Timer() 
Description: Opens Matlab Program 
Name: Timer2_Timer() 
Description: Unloads Form 
  

B.2.1.2 frmChecklist.frm 
Requirements Prior to Opening: Matlab Loaded 
Screen View: 

 
Figure 23 - Start Screen 
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Events: 
Name: Form_Load () 
Description: Loads form into memory, also sets Position variable 
Name: Form_Activate() 
Description: Chooses next action to perform by looking at position variable.  Hides 

form when needed and increments position variable 
Name: Form_Unload(Cancel As Integer) 
Description: Calls generic procedure CloseProgram 
Name: cmdStart_Click() 
Description: Updates position variable and calls form_activate 
Name: cmdRun_Click() 
Description: Updates position variable and calls form_activate 
Name: cmdEnd_Click() 
Description: Starts simulation and hides form 
Name: Function OpenFile() As Boolean 
Description: Runs Matlab file plotHist.m 
Name: mnuFileReset_Click 
Description: Updates position variables and calls form_activate 
Name: mnuFileGenerateScript_Click() 
Description: Lets user choose XML file to parse and also XML file to write settings 

to.  Uses WriteFile Class to generate XML settings file. 
Name: mnuFileLoadScript_Click() 
Description: Lets user choose XML file to open.  Uses ReadFile Class to load 

simulation settings. 
Name: mnuFileLoadResults_Click() 
Description: Lets user choose DAT file to open.  Sets global variable FileName and 

Calls cmdEnd_Click 
Name: mnuFileExit_Click 
Description: Calls generic procedure CloseProgram 
Name: OpenFile() As Boolean 
Description: Lets user choose XML file to open.  Uses ParseFile Class to parse XML 

file.  Returns true if file successfully parsed. 
Name: SaveSettings() 
Description: Queries user to save simulation settings.  If yes, uses WriteFile Class to 

save simulation settings.  Will allow user to retry should WriteFile fail. 
Name: Reverse() 
Description: Updates position variable 
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B.2.1.3 frmUCD.frm 
Requirements Prior to Opening: None 
Screen View: Hidden Form 
Events: 
Name: Form_Load() 
Description: Loads form into memory, updates local position variable using global 

UCDposition, and sizes form to 0. 
Name: Form_Activate() 
Description: Chooses next action to perform by looking at position variable.  Unloads 

form when needed and increments local position variable. 
Name: Form_Unload(Cancel As Integer) 
Description: Calls calculateUCProb, shows frmChecklist, and updates global 

UCDposition 
Name: calculateUCProb 
Description: Uses variable arrays UseCaseActor(x), UseCaseUseCase(x), and 

UseCaseConnection(x) to calculate the total probability the given Use 
Case bubble will occur.  Saves results to UseCaseUseCase(x).Prob 

Name: Reverse() 
Description: Updates position variable 
 

B.2.1.4 frmUCDActorProb.frm 
Requirements Prior to Opening: None 
Screen View:  

 
Figure 24 - Use Case Actor Probability Screen 

 
Events: 
Name: Form_Load 
Description: Loads form into memory.  Uses variable array UseCaseActor(x) to 

display actor names.  Loads any saved data.  Sizes and aligns form 
elements. 

Name: Form_Unload(Cancel As Integer) 
Description: Verifies to total probability = 1.  Stores probabilities and shows frmUCD 
Name: cmdPrev_Click() 
Description: Calls frmUCD.Reverse() and Form_Unload() 
Name: cmdCancel_Click() 
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Description: Calls generic procedure CloseProgram 
Name: cmdNext_Click 
Description: Calls Form_Unload() 
Name: txtProb_GotFocus(Index As Integer) 
Description: Highlights data when focused 
Name: txtProb_Change(Index As Integer) 
Description: Verifies value between 0 and 1 and recalculates total probability 
Name: txtProb_LostFocus(Index As Integer) 
Description: Calls txtProb_Change(Index) 
 

B.2.1.5 frmUCDActorConn.frm 
Requirements Prior to Opening: global variable CurrentActor to be set 
Screen View: 

 
Figure 25 - Use Case Actor Connection Prob. Screen 

Events: 
Name: Form_Load 
Description: Loads form into memory.  Uses global variable CurrentActor, and arrays 

UseCaseUseCase(x), and UseCaseConnection(x) to display actor name, 
and use cases bubbles that actor is connected to.  Loads any saved data.  
Sizes and aligns form elements. 

Name: Form_Unload(Cancel As Integer) 
Description: Verifies to total probability = 1.  Stores probabilities in 

UseCaseConnection(counter_in).Prob.  Uses CurrentActor, and arrays 
UseCaseUseCase(x), and UseCaseConnection(x) to save data.  Shows 
frmUCD 

Name: cmdPrev_Click() 
Description: Calls frmUCD.Reverse() and Form_Unload() 
Name: cmdCancel_Click() 
Description: Calls generic procedure CloseProgram 
Name: cmdNext_Click 
Description: Calls Form_Unload() 
Name: txtProb_GotFocus(Index As Integer) 
Description: Highlights data when focused 
Name: txtProb_Change(Index As Integer) 
Description: Verifies value between 0 and 1 and recalculates total probability 



 50

Name: txtProb_LostFocus(Index As Integer) 
Description: Calls txtProb_Change(Index) 
 

B.2.1.6 frmSDProc.frm 
Requirements Prior to Opening: None 
Screen View: Hidden Form 
Events: 
Name: Form_Load() 
Description: Loads form into memory, updates local position variable using global 

SDposition, and sizes form to 0. 
Name: Form_Activate() 
Description: Chooses next action to perform by looking at position variable.  Unloads 

form when needed and increments local position variable. 
Name: Form_Unload(Cancel As Integer) 
Description: Shows frmChecklist, and updates global SDposition 
Name: Reverse() 
Description: Updates position variable 
 

B.2.1.7 frmSDUCconnection.frm 
Requirements Prior to Opening: None 
Screen View: 

 
Figure 26 - Use Case – Sequence Diagram Connection Screen 

Events: 
Name: Form_Load() 
Description: Loads form into memory.  Uses global array SequenceDiagram(x) and 

UseCaseUseCase(x) to display Sequence Diagram and Use Case names.  
Loads any saved data.  Sizes and aligns form elements. 

Name: Form_Unload(Cancel As Integer) 
Description: Compares choices for matches.  Updates UseCaseUseCase(x).Prob if a 

use case is chosen more than once. Shows frmSD 
Name: cmdPrev_Click() 
Description: Calls frmSD.Reverse() and Form_Unload() 
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Name: cmdCancel_Click() 
Description: Calls generic procedure CloseProgram 
Name: cmdNext_Click 
Description: Calls Form_Unload() 

 

B.2.1.8 frmSDProc.frm 
Requirements Prior to Opening: global variable CurrentSD to be set 
Screen View: 

 
Figure 27 - Sequence Diagram – Deployment Diagram Connection Screen 

Events: 
Name: Form_Load() 
Description: Loads form into memory.  Uses global variable CurrentSD and array 

DeploymentProcessor(x) to display node names, and fill processor and 
process dropdown boxes.  Loads any saved data.  Sizes and aligns form 
elements. 

Name: Form_Activate 
Description: Looks at local variable finished to decide whether to unload. 
Name: Form_Unload(Cancel As Integer) 
Description: Stores results in variable CurrentSD, then finds correct location to store 

in global array SequenceDiagram(x).  Shows frmSD 
Name: cmdPrev_Click() 
Description: Calls frmSD.Reverse() and Form_Unload() 
Name: cmdCancel_Click() 
Description: Calls generic procedure CloseProgram 
Name: cmdNext_Click 
Description: Calls Form_Unload() 
Name: cmbProcessor_Click(Index As Integer) 
Description: Updates processes dropdown when user changes the selection of 

processor. 
Name: txtBP_GotFocus(Index As Integer) 
Description: Highlights data when focused 
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Name: txtBP_Change(Index As Integer) 
Description: Verifies value greater than 0 
Name: txtBP_LostFocus(Index As Integer) 
Description: Calls txtBP_Change(Index) 
Name: Reverse() 
Description: Sets local variable finished to false 
 

B.2.1.9 frmSDProcProc.frm 
Requirements Prior to Opening: global variable CurrentSD to be set 
Screen View: 

 
Figure 28 - Deployment Diagram Connection Use Screen 

Events: 
Name: Form_Load() 
Description: Loads form into memory.  Uses global variable CurrentSD and array 

DeploymentProcessor(x) to display connections.  Loads any saved data.  
Sizes and aligns form elements. 

Name: Form_Unload(Cancel As Integer) 
Description: Stores results in variable CurrentSD.Connections(i).  Shows frmSDProc 
Name: cmdPrev_Click() 
Description: Calls frmSDProc.Reverse() and Form_Unload() 
Name: cmdCancel_Click() 
Description: Calls generic procedure CloseProgram 
Name: cmdNext_Click 
Description: Calls Form_Unload() 
Name: txtCon_GotFocus(Index As Integer) 
Description: Highlights data when focused 
Name: txtCon_Change(Index As Integer) 
Description: Verifies value greater than 0 
Name: txtCon_LostFocus(Index As Integer) 
Description: Calls txtCon_Change(Index) 
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B.2.1.10 frmDD.frm 
Requirements Prior to Opening: None 
Screen View: Hidden Form 
Events: 
Name: Form_Load() 
Description: Loads form into memory, updates local position variable using global 

DDposition, and sizes form to 0. 
Name: Form_Activate() 
Description: Chooses next action to perform by looking at position variable.  Unloads 

form when needed and increments local position variable. 
Name: Form_Unload(Cancel As Integer) 
Description: Shows frmChecklist, and updates global DDposition 
Name: Reverse() 
Description: Updates position variable 
 

B.2.1.11 frmDDConnections.frm 
Requirements Prior to Opening: None 
Screen View:  

 
Figure 29 - Deployment Diagram Connection Probability Screen 

 
Events: 
Name: Form_Load() 
Description: Loads form into memory.  Uses global arrays ProcessorConArray(x) and 

DeploymentProcessor(x) to display connections.  Loads any saved data.  
Sizes and aligns form elements. 

Name: Form_Unload(Cancel As Integer) 
Description: Stores results in global array ProcessorConArray(x). Shows frmDD. 
Name: cmdPrev_Click() 
Description: Calls frmDD.Reverse() and Form_Unload() 
Name: cmdCancel_Click() 
Description: Calls generic procedure CloseProgram 
Name: cmdNext_Click 
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Description: Calls Form_Unload() 
Name: txtFP_GotFocus(Index As Integer)  �Same for txtCI1 and txtCI2 
Description: Highlights data when focused 
Name: txtFP_Change(Index As Integer)  �Same for txtCI1 and txtCI2 
Description: Verifies value between 0 and 1 
Name: txtFP_LostFocus(Index As Integer)  �Same for txtCI1 and txtCI2 
Description: Calls txtFP_Change(Index) 
 

B.2.1.12 frmDDComponents.frm 
Requirements Prior to Opening: global variable CurrentDD to be set 
Screen View:  

 
Figure 30 - Deployment Diagram Component Probability Screen 

Events: 
Name: Form_Load() 
Description: Loads form into memory.  Uses global variable CurrentDD to display 

processes.  Loads any saved data.  Sizes and aligns form elements. 
Name: Form_Unload(Cancel As Integer) 
Description: Stores results in global variable CurrentDD and then finds correct 

location in global array DeploymentProcessor (x) to store results. Shows 
frmDD. 

Name: cmdPrev_Click() 
Description: Calls frmDD.Reverse() and Form_Unload() 
Name: cmdCancel_Click() 
Description: Calls generic procedure CloseProgram 
Name: cmdNext_Click 
Description: Calls Form_Unload() 
Name: txtFP_GotFocus(Index As Integer)  �Same for txtCI1 and txtCI2 
Description: Highlights data when focused 
Name: txtFP_Change(Index As Integer)  �Same for txtCI1 and txtCI2 
Description: Verifies value between 0 and 1 
Name: txtFP_LostFocus(Index As Integer)  �Same for txtCI1 and txtCI2 
Description: Calls txtFP_Change(Index) 
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B.2.1.13 frmOutputSettings.frm 
Requirements Prior to Opening: None 
Screen View:  

 
Figure 31 - Output Setting Screen 

Events: 
Name: Form_Load() 
Description: Loads form into memory.  Sizes and aligns form elements. 
Name: Form_Unload(Cancel As Integer) 
Description: Validates number of trials and filename.  Calculates number of samples 

and sets to run.  Saves data to global variables FileName, Ssamples, and 
Ssets.  Shows frmChecklist. 

Name: cmdSave_Click() 
Description: Lets user choose location to save results at.  Displays file path in textbox. 
Name: cmdPrev_Click() 
Description: Calls frmChecklist.Reverse() and Form_Unload() 
Name: cmdCancel_Click() 
Description: Calls generic procedure CloseProgram 
Name: cmdNext_Click 
Description: Calls Form_Unload() 
Name: txtFilePath_GotFocus 
Description: Highlights data when focused 
Name: txtSamples_GotFocus 
Description: Highlights data when focused 
 

B.2.1.14 frmRunSim.frm 
Requirements Prior to Opening: None 
Screen View: 

 
Figure 32 - Running Simulation Screen 
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Events: 
Name: Form_Load() 
Description: Loads form into memory.  Disables next button. 
Name: Form_Unload(Cancel As Integer) 
Description: Shows frmChecklist. 
Name: cmdNext_Click 
Description: Calls Form_Unload() 
Name: timerStart_Timer() 
Description: Disables timers and calls Run_Sim().  This allows the form to completely 

load before simulation begins. 
Name: Run_Sim() 
Description: Uses RunSimulation Class to create MatLab simulation files.  Updates 

status label and progress bar.  Also sends MatLab execution commands.  
Enables cmdNext button at completion. 

 

B.2.2 Generic Modules 
The ECRA project contains two generic modules: 

• modProcedures – contains CloseProgram, which asks the user if they really want 
to quit and closes ECRA if necessary. 

• modVariables – contains type definitions and global variables used to store data 
and control user navigation. 

 

B.2.3 Class Modules 
The ECRA project contains four class modules:  

• ParseFile – contains the procedures necessary to parse the XMI file produced 
from Rational Rose. 

• ReadFile – contains the procedures necessary to parse the XML file produced by 
ECRA that contains the simulation settings. 

• RunSimulation – contains the procedures necessary to produce the variable and 
equation file needed to run the MatLab simulation. 

• WriteFile – contains the procedures necessary to produce or save the simulation 
settings to an XML file. 
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B.2.3.1 ParseFile 
 
Methods: 
Name: Public Function ParseFile(FileName As String) As Boolean 
Description: Removes DTD information from XMI file by coping remaining 

information to app.path\temp.xml.  Calls parse(New File path). Deletes file 
and returns true if no errors occurred during the parsing process. 

Name: Private Sub parse(Name As String) 
Description: Opens XML document and calls the procedures below. 
Name: Private Sub parseDeploymentD(oXMLDoc As MSXML.DOMDocument) 
Description: Parse XML document for Deployment diagram information.  Saves 

information to global array DeploymentProcessor(x). 
Name: Private Sub parseUseCaseUC(oXMLDoc As MSXML.DOMDocument) 
Description: Parse XML document for Use Case diagram information about use case 

bubbles.  Saves information to global array UseCaseUseCase (x). 
Name: Private Sub parseActors(oXMLDoc As MSXML.DOMDocument) 
Description: Parse XML document for Use Case diagram information about actors.  

Saves information to global array UseCaseActor(x). 
Name: Private Sub parseUCConnections(oXMLDoc As 

MSXML.DOMDocument) 
Description: Parse XML document for Use Case diagram information about 

connections.  Saves information to global array UseCaseConnection(x). 
Name: Private Sub parseSDProcesses(oXMLDoc As MSXML.DOMDocument) 
Description: Parse XML document for Sequence diagram information.  Calculates busy 

periods.  Saves information to global array SequenceDiagram(x). 
Name: Private Sub parseProcessorConnection(oXMLDoc As 

MSXML.DOMDocument) 
Description: Analyzes global array DeploymentProcessor(x) to find unique 

connections.  Saves information to global array ProcessorConArray(x). 
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B.2.3.2 ReadFile 
 
Methods: 
Name: Public Function ReadFile(FName As String) As Boolean 
Description: Loads XML file FName, calls the procedures below, and returns true if no 

errors occurred while processing the file. 
Name: Private Sub readActors(oXMLDoc As MSXML.DOMDocument) 
Description: Parses XML file for Use Case actor information. Saves information to 

global array UseCaseActor(x). 
Name: Private Sub readUseCase(oXMLDoc As MSXML.DOMDocument) 
Description: Parses XML file for Use Case - use case bubble information. Saves 

information to global array UseCaseUseCase(x). 
Name: Private Sub readUCConnection(oXMLDoc As MSXML.DOMDocument) 
Description: Parses XML file for Use Case connection information. Saves information 

to global array UseCaseConnection(x). 
Name: Private Sub readDDProcessor(oXMLDoc As MSXML.DOMDocument) 
Description: Parses XML file for Deployment diagram information. Saves information 

to global array DeploymentProcessor(x). 
Name: Private Sub readDDConnection(oXMLDoc As MSXML.DOMDocument) 
Description: Parses XML file for Deployment diagram connection information. Saves 

information to global array ProcessorConArray(x). 
Name: Private Sub readSD(oXMLDoc As MSXML.DOMDocument) 
Description: Parses XML file for Sequence diagram connection information. Saves 

information to global array SequenceDiagram(x). 
 

B.2.3.3 RunSimulation 
 
Methods: 
Name: Public Sub Create_VariableFile() 
Description: Writes Matlab file called variables.m that contains the variables needed to 

run Matlab simulation.  Uses global arrays DeploymentProcessor(x) and 
ProcessorArray(x) 

Name: Public Sub Create_EquationFile() 
Description: Writes Matlab file called equation.m that contains the equation needed to 

run Matlab simulation.  Uses global arrays SequenceDiagram(x), 
UseCaseUseCase(x), and ProcessorArray(x) 
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B.2.3.4 WriteFile 
 
Methods: 
Name: Public Function WriteFile(Name As String) As Boolean 
Description: Creates XML file Name, calls the procedures below, and returns true if no 

errors occurred while writing the file. Uses global arrays UseCaseActor(x), 
UseCaseUseCase(x), UseCaseConnection(x), DeploymentProcessor(x), 
ProcessorConArray(x), and SequenceDiagram(x) 

Name: Private Sub WriteActor(newFile As Object, temp As Actor) 
Description: Writes a single actor to the XML file.   
Name: Private Sub WriteUseCase(newFile As Object, temp As UseCase) 
Description: Writes a single use case bubble to the XML file. 
Name: Private Sub WriteUCConnection(newFile As Object, temp As 

UCConnection) 
Description: Writes a single use case connection to the XML file. 
Name: Private Sub WriteProcessor(newFile As Object, Position As Integer, temp 

As Processor) 
Description: Writes a single deployment diagram processor along with its processes to 

the XML file. 
Name: Private Sub WriteProcessorCon(newFile As Object, Position As Integer, 

temp As PCArray) 
Description: Writes a single deployment diagram connection to the XML file. 
Name: Private Sub WriteSequence(newFile As Object, temp As Sequence) 
Description: Writes information for a single sequence diagram to the XML file, calls 

WriteSDProcess, and WriteSDConnections. 
Name: Private Sub WriteSDProcess(newFile As Object, temp As Process) 
Description: Writes a single sequence diagram process to the XML file. 
Name: Private Sub WriteSDConnections(newFile As Object, Position as Integer, 

temp As Integer) 
Description: Writes a single sequence diagram connection to the XML file. Uses global 

arrays DeploymentProcessor(x) and ProcessorConArray(x) 
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B.2.4 Matlab files 
The ECRA project uses seven Matlab files.  These files are either created statically or 
dynamically.  The static files are: 

• Alphabeta.m  
o This file calculates a and b using (beta incomplete with upper limit CI2)  

(beta incomplete with upper limit CI1)  
o Requires: CI1, CI2, and diff where diff = (1-fp)/fp 

• Setup.m 
o Starts simulation by calculating the a and b values for each component and 

connection. 
o Requires: variables.m and alphabeta.m  

• Runset.m 
o Runs a single simulation set and saves data to results(x,sample) 
o Requires: sample, samplelength, results, and equation.m 

• Closeure.m 
o Combines results into a single array called finalResults and writes to file. 
o Requires: filename 

• PlotHist.m 
o Reads file into single array called finalResults.  Plots histogram of results 

and calculates failure probability, and 95% confidence interval. 
o Requires: filename 

 
The dynamic files are: 

• Variables.m 
o Contains filename, number of connector, components, samples, 

samplelength, and connector and component data arrays. 
• Equation.m 

o Function that returns a single value using the passed parameters comO and 
conO, and simulation equation.  
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