
Graduate Theses, Dissertations, and Problem Reports 

2011 

Time-Dependent Performance of Buried Pipes in a Consolidating Time-Dependent Performance of Buried Pipes in a Consolidating 

Soil Medium Soil Medium 

Laura A. Sesack 
West Virginia University 

Follow this and additional works at: https://researchrepository.wvu.edu/etd 

Recommended Citation Recommended Citation 
Sesack, Laura A., "Time-Dependent Performance of Buried Pipes in a Consolidating Soil Medium" (2011). 
Graduate Theses, Dissertations, and Problem Reports. 4786. 
https://researchrepository.wvu.edu/etd/4786 

This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research 
Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is 
permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain 
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license 
in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses, 
Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. 
For more information, please contact researchrepository@mail.wvu.edu. 

https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F4786&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd/4786?utm_source=researchrepository.wvu.edu%2Fetd%2F4786&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu


Time-Dependent Performance of Buried Pipes in a Consolidating 
Soil Medium 

 
 

Laura A. Sesack 

 

 

Thesis submitted to the 

College of Engineering and Mineral Resources 

at West Virginia University 

in partial fulfillment of the requirements 

for the degree of 

 

 

Master of Science 

in 

Civil & Environmental Engineering 

 

 

Hema J. Siriwardane, Ph.D., Chair 

Udaya B. Halabe, Ph.D. 

John D. Quaranta, Ph.D. 

 

Morgantown, West Virginia 

2011 

 

 

Keywords: HDPE pipe; PVC pipe; Consolidation; Creep; FEM 
 



ABSTRACT 

 

Time-Dependent Performance of Buried Pipes in a Consolidating Soil Medium 

Laura A. Sesack 

 

 Buried pipes are used for several applications, including water conveyance, highway 
drainage, and the transport of sewage.  Throughout the years, it has become increasingly popular 
to use pipes made of thermoplastic materials due to ease of fabrication, resistance to chemical 
corrosion, light weight, and low cost. The objective of this research was to investigate the 
deformations of buried double-corrugated high-density polyethylene (HDPE) and solid-wall 
polyvinylchloride (PVC) pipes surrounded by a consolidating soil medium.  The finite element 
method was used to calculate the pipe deflections throughout a time period of fifty years. 
Combined influence of creep and soil consolidation was considered in the analyses, and the 
results from these analyses were then compared to the deformations of pipes only influenced by 
the creep of the pipe material. Variables of this study included pipe diameter, height of backfill, 
pipe backfill material, construction methods, trench-widths, and boundary conditions. 

Results show that approximately 90% of pipe deformations occurred during the first year 
of installation for both the creep analyses and the combined creep and consolidation analyses.  
However, throughout the first year, the pipe influenced by both the creep and consolidation 
condition deformed at a much slower rate.  Pipes influenced only by the creep condition showed 
a slightly higher deformation than pipes influenced by both creep and consolidation.  This may 
be due to the instantaneous loading of the pipe, when there is no consolidation.  When a pipe is 
surrounded by a consolidating soil medium, the load on the pipe changes as the pore pressure 
dissipates as a function of time. Results from the analyses of the combined influence of creep 
and consolidation are not significantly different from those results obtained from the analyses of 
creep only behavior of buried HDPE and PVC pipes under the self-weight of soil. 
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CHAPTER 1: INTRODUCTION  

 

1.1 Background   

 

Buried pipes have been used for water, sewer, and storm water conveyance. It is 

becoming more popular for these buried pipes to be made of thermoplastic materials, such as 

high-density polyethylene (HDPE) and polyvinylchloride (PVC) (Zhang, 1998).  Factors 

encouraging the use of thermoplastic materials for buried pipes include ease of fabrication, 

resistance to chemical corrosion, light weight of the materials, and low cost (Zhang, 1998; 

Masada & Sargand, 2007).  Buried pipe design and construction methods have been improved to 

enhance pipe performance.  The service life of HDPE and PVC pipes are a major concern in the 

design of plastic piping systems (Zhao et al., 2001).  Failures of buried pipes include 

compression of the pipe, elastic instability, or buckling (Zhao et al., 2001).   

The soil-pipe interaction and pipe backfill material selection are key aspects in flexible 

buried pipe design. Compared to rigid pipes, flexible pipes have lower strength. The ability of 

flexible pipes to support vertical loadings is a result of the passive pressures induced on the pipe 

as the sides of the pipe move outward against the soil (Spangler, 1941).  As defined by the 

American Association of State Highway and Transportation Officials (AASHTO), a buried pipe 

is a composite structure made of a plastic ring surrounded by a soil envelope.  Soil-pipe 

interaction is influenced by factors such as soil type, soil density, moisture content, pipe stiffness 

and depth of installation (Moser, 1990).  Factors influencing the selection of materials for pipe 

backfill include depth of cover, depth of water table, pipe materials, and compaction methods 

(Moser, 1990).   

 

1.2 Buried Pipe Performance 

 

Buried pipe performance is a function of external loading, geometry, and material 

properties of both pipe and soil (Watkins, 2000).  Performance limits are directly related to 

stress, strain, deflection, or buckling (Moser, 1990).  The forces acting on a buried pipe are 

statically indeterminate and are unable to be determined if the soil is not uniform (Watkins, 
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2000).  The soil load acting on a flexible pipe may be reduced because the soil arches over the 

pipe, relieving the pipe of some stress.  External loading and the soil arching phenomenon are the 

causes of flexible pipe deformation (Watkins, 2000).  From the results of a parallel plate test 

gathered by the American Society for Testing and Materials (ASTM), allowable stiffness of a 

plastic pipe is calculated at a 5% vertical deflection (Suleiman et al, 2003). Pipe deflection 

occurs instantaneously and continues to develop over the years due to creep of the pipe and soil 

consolidation acting around the pipe.   

A typical pipe profile and geometric details are given in Figures 1.1 and 1.2, respectively.  

A typical cross-section of a buried pipe with trench backfill is shown in Figure 1.3, and a cross-

section of a buried pipe under an embankment loading is shown in Figure 1.4.  Figures 1.5 and 

1.6 show three-dimensional views of a pipe buried under a trench backfill loading and 

embankment loading, respectively. 

 

 

 

  

Figure 1.1: Typical cross-section of a pipe (Watkins, 2000) 
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where 

 ID = Inner Diameter 

 OD = Outer Diameter 

 r      = Radius 

 
 

Figure 1.2:  Diameters of a pipe (Watkins, 2000) 
 

 

Figure 1.3:  Typical cross-section of a buried pipe with trench backfill 
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Figure 1.4: Typical cross-section of a buried pipe with embankment 
 

 

 

Figure 1.5:  3-Dimensional view of a buried pipe under trench loading 
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Figure 1.6:  3-Dimensional view of a buried pipe under embankment loading 
 

1.3 Problem Statement 

 

In the present study, the combined influence of creep behavior of buried HDPE and PVC 

pipes and the effects of surrounding soil consolidation on the pipe response is investigated. 

Creep is defined as the continuous deformation of a material subjected to a constant load.  The 

rate of creep is a function of temperature, stress, and time (Moser, 2008).  Soil consolidation 

occurs when a load acts on a saturated soil.  Total stress remains constant as effective stress 

increases and pore pressure decreases (Helwany, 2007).  The rate of consolidation is a function 

of the permeability of soil, compressibility of the soil, and length of the drainage path (Helwany, 

2007; Das, 2006).   

Two different pipe installations are considered in this study: (a) pipe installed in a trench, 

and (b) pipe installed under an embankment. Pipes installed in a trench at depths of 10 feet to 20 



6 
 

feet (Figure 1.7(a)) are considered in the analysis. Trenches are generally used for shallow depths 

up to 20 feet (Spangler & Handy, 1982).    For fill heights greater than 30 feet, embankment 

loading (Figure 1.7(b)) is considered in the analysis. The worst case scenario for a buried pipe is 

when it is under an embankment loading (Watkins, 2000).    Embankment loads acting on a 

buried pipe could potentially be greater than the weight of the overlying soil (Spangler & Handy, 

1982).  

  

                 
(a) Trench Construction                   (b)  Embankment Construction 

 

Figure 1.7:  Soil and pipe cross-sections under different construction methods 

 

Various trench-width ratios, pipe diameters, pipe backfill materials, and drainage 

conditions are considered in the analysis.  The trench-width ratio (Nr) is defined as the ratio of 

the trench-width to the average diameter of the pipe, and the trench-width is shown in Figures 

1.3 and 1.4. Granular and cohesive materials are the two different backfill materials considered 

in this study.  Drainage boundaries are present at the soil-pipe interface and the surface.  Pore 

pressure dissipates due to these flow boundaries, allowing soil consolidation to occur (Helwany, 

2007).  Figure 1.8 illustrates these boundary conditions considered in the analyses. The finite 

element program, ABAQUS, was used to study the long-term performance of HDPE and PVC 

pipes under the influence of a gravity load of the soil. 
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Figure 1.8:  Surface drainage and soil/pipe interface drainage conditions 
  

1.4 Previous Studies 

 

There is limited literature on the performance of buried pipes under the combined 

conditions of soil consolidation and creep of pipe material.  Many studies have been performed 

on the design of thermoplastic pipes (Gassman et al., 2005; Sargand et al, 2005).  However, there 

is limited information on the long-term performance of corrugated HDPE pipes, despite the 

ample literature available on the material properties (Kang, 2009).  

Throughout the years, finite element analysis has been used to study soil-structure 

interaction mechanics (Moser, 1990).  Two-dimensional finite element analyses have been 

utilized to study the deflection of pipes and strains acting on the pipe (Dhar, 2004).  Studies have 
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also been done to evaluate the short-term and long-term soil-structure interactions of buried 

pipes using the finite element soil models (Kang, 2009; Selig, 1988).  

 

1.5 Scope of Work 

 

ABAQUS (Simulia, 2010), a commercial finite element program, was used to study the 

behavior of solid-wall PVC and double-wall corrugated HDPE pipes under a gravity loading.  

Creep of the pipe and soil consolidation acting around the pipe were the two time-dependent 

processes analyzed in the study.  These two conditions were studied for a time period of 50 

years.  The scope of the study is limited to the following conditions: 

• Burial Depth (Z): 10 feet, 20 feet, 30 feet, and 50 feet 

• Trench-Width Ratio, Nr (= W/Davg): 1.5, 2.0, and 2.5 

• HDPE Pipe Diameters: 24-inch, 36-inch, 48-inch, and 60-inch 

• PVC Pipe Diameters: 18-inch and 24-inch 

• Backfill Materials: clay and granular stone 

 

1.6 Research Objectives  

 

The primary objectives of the proposed research project are to:  

• Perform a literature review to gather information on the soil-pipe interface and the effects 

of consolidating soil acting around a pipe; 

• Investigate creep properties of a buried pipe and consolidation properties of surrounding 

soil; 

• Consider pipes made of HDPE and PVC materials; 

• Determine the effect of soil consolidation on the behavior of buried HDPE and PVC 

pipes under different drainage conditions; 

• Analyze the long-term performance of 24-inch to 60-inch diameter double-wall 

corrugated HDPE pipes under two different time-dependent conditions: (a) creep and (b) 

creep with consolidating soil; 
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• Analyze the long-term performance of 18-inch to 24-inch solid wall PVC pipes under 

two different time-dependent conditions: (a) creep and (b) creep with consolidating soil; 

• Study the performance of HDPE and PVC pipes under different trench backfill heights, 

trench-width ratios, pipe backfill materials, and drainage conditions; 

• Impose boundary conditions to simulate drainage at the ground surface and around the 

pipe; 

• Study different types of construction methods under different backfill heights: 10 feet to 

20 feet – trench replacement; 30 feet to 50 feet – embankment (Figure 1.7, see section 

1.3) 

• Compare the pipe deflections of the creep models versus the combined creep and 

consolidation models; 

• Evaluate current specifications that pertain to this project, and propose necessary 

recommendations for future studies, if any. 
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CHAPTER 2: PERFORMANCE OF BURIED FLEXIBLE PIPES  

 

2.1 Introduction 

  

 In recent years, flexible pipes have been commonly used for drainage water conveyance 

due to the light weight of the material, cost efficiency, and chemical resistance (Sargand et. al., 

2005).  In the early years of buried pipe design, it was believed that rigid pipes, such as steel and 

concrete, could withstand greater loads because these materials were assumed to have greater 

strength.  However, for most small-scale projects, thin-walled flexible pipes are more beneficial 

to use than rigid pipes due to the lightweight of the material, easy installation, low cost as 

compared to pipes made of concrete and metal, and flexible nature (Masada & Sargand, 2007). 

The study presented in this report only considers flexible pipes, specifically HDPE and PVC 

pipes, as stated in Chapter 1. 

 One of the most important aspects of buried pipe design is the soil-pipe interaction 

(Lewis, 1998).  Pipe design is usually based on the performance of the pipe material in 

laboratory tests (Moore & Hu, 1996).  The structural performance of a buried pipe is closely 

related to the nature of the surrounding soil (Gassman et al., 2005). 

In this chapter, the following aspects of buried pipe design are presented:  

• Factors influencing pipe performance; 

• Characteristics of flexible pipes; 

• Soil-pipe interaction; 

• Soil-arching phenomenon. 

 

2.2 Previous Studies 

 

Many studies have been performed on plastic pipes (HDPE and PVC); however, there is 

a lack of comprehensive field performance data for large-diameter flexible pipes under real 

loading conditions over long periods of time (Sargand, et. al., 2005). The long-term effects of a 

100-foot buried 24-inch diameter HDPE pipe have been reported in the literature (Hashash & 
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Selig, 1990).  In this experiment, a crushed limestone compacted to 100% of the dry unit weight 

(standard Proctor test, AASHTO T-99) was used as the backfill material. It was observed that the 

pipe response to the backfill stabilized shortly after construction.  The vertical diameter of the 

pipe decreased by 4.3% and the horizontal diameter increased by 0.6% (Sargand et al., 2005).  

The field performance of 42-inch diameter HDPE pipe under a 52-foot gravel backfill has been 

reported in the literature (Sargand et al., 2005).  According the reported information, the 

horizontal deflection stabilized after about 40 days, but the vertical deflection took much longer 

to stabilize.  The vertical soil pressure at the crown and invert decreased while the lateral soil 

pressure at the springline increased.  It has been reported that the pipe deflected by -10% in the 

vertical direction and 3% in the horizontal direction (Sargand et. al., 2005).   

It has been reported in the literature that the peaking deflections of HDPE and PVC pipes 

were proportional to the compaction of the backfill soil (Masada & Sargand, 2007).  Sargand et 

al. (2005) founded that flexible pipes experiencing peaking deflections during the initial 

backfilling stage are useful in minimizing the long-term pipe deflections.  Peaking deflections 

can be expressed as a function of average pipe radius, average moist unit weight, friction angle 

of backfill soil, lateral pressure generated by the soil compaction, and bending stiffness of the 

pipe (Masada & Sargand, 2007). 

The structural behavior of a solid-wall PVC pipe buried in sand backfill influenced by a 

soil trench loading has been reported in the literature (Cho & Vipulanandan, 2004).  It was 

recorded that after 30 days of loading, the deflections in the pipe increased by 16%.  The 

deflections remained unchanged after 60 days of loading.  A surface loading (qo) of 112 psi was 

applied.  The vertical stress on the crown of the pipe was 0.46 qo, and the vertical stresses on the 

crown of the pipe remained unchanged after 60 days of loading (Cho & Vipulanandan, 2004).  

Large-diameter thermoplastic pipes are relatively new and long-term full-scale field tests 

are costly and labor intensive (Sargand et. al., 2005). Therefore, numerical studies such as the 

one presented in this report could provide useful information needed for the design of buried 

pipes as well as field tests.   
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2.3 Factors Influencing Pipe Performance 

 

The performance limit of a buried pipe is defined as its ability to handle increasing loads 

without deforming beyond a certain percentage (Watkins, 2000).  A pipe may fail due to external 

soil pressures (Watkins, 2000). However, depending on the soil-pipe interaction mechanism, part 

of the soil weight may be supported by the surrounding insitu soil (Watkins, 2000).   

Three parameters considered in buried pipe design are loading (i.e. depth of burial), soil 

stiffness in the pipe zone, and pipe stiffness (i.e. elastic modulus) (Moser, 1990).  The overall 

performance of a buried pipe is highly influenced by the properties of the backfill material (Dhar, 

2004).  In this study, two different types of pipe backfill material were considered: granular stone 

and clay materials.  For thermoplastic pipes, dense backfill materials provide better soil support, 

which can depend on the level of compaction.  Common compaction practices are not sufficient 

enough to provide uniform compaction around the pipe, especially when a small trench-width is 

involved (Chu, 2010). 

 

2.4 Pipe Deflections 

 

Determining the deflection of a pipe is a very important aspect of buried pipe design.  

One way of calculating pipe deflection is given by Equation 2.1 (Howard, 1977), which is given 

below.   

essSoilStiffnessPipeStiffn
LoadOnPipetionPipeDeflec

+
= ................................... (2.1)

 

 

2.4.1 Surrounding Soil 

  

 A buried pipe’s structural performance is related to the nature of the surrounding soil.  

The pipe and soil form a system where each type of material reacts with the other material’s 

response.  Loading on the pipe begins immediately after installation (Gassman et al., 2005).  

Successful performance of a pipe is based upon proper trenching, backfilling, and compaction.  
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The flexible pipe will deform as the surrounding soil deforms.  Failure modes in plastic pipes 

include (Gassman et al., 2005): 

• Compression buckling in the circumferential plane (hoop compression); 

• Compression buckling in the longitudinal plane; 

• Local compression buckling due to point loadings. 

 

 Ring deflection and longitudinal (beam) deflection are both possible deformations of 

plastic pipes as shown in Figure 2.1 (Gassman et al., 2005).  Improper bedding can cause 

compression buckling in the crown of the pipe (see crown of pipe in Figure 1.1) and also 

circumferential cracking below the pipe.  Leaks at joints, reduction of the hydraulic capacity of 

the pipe, and reduction of support due to shallow cover can all be results of excessive pipe 

deflection (Gassman et al., 2005).  

 

 

 

Figure 2.1: Illustration of ring deflection 
 

2.4.2 Parallel Plate Loading Test 

 

The parallel plate loading method (ASTM Standards, D 2412) is a standardized test for 

evaluating the bending stiffness and strength of thermoplastic pipes (McGrath & Shafer, 2003).  

A schematic diagram of the parallel load test is shown in Figure 2.2.  AASHTO M294 uses the 
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test to ensure that corrugated HDPE pipe has a minimum pipe stiffness at 5% deflection 

(McGrath & Shafer, 2003).    

 Laboratory tests and field performance are important aspects for buried pipe design.  

Parallel plate loading tests and hoop compression tests are performed to evaluate the effective 

modulus, pipe stiffness, stress relaxation, and creep of polyethylene pipes (Moore & Hu, 1996; 

McGrath & Shafer, 2003).  A loading rate of 12 mm/min is used in the parallel plate loading test, 

and the load is divided by the vertical deflection, defining pipe stiffness at 5% vertical deflection 

(Moore & Zhang, 1998; McGrath & Shafer, 2003).  Pipe stiffness can be expressed by the 

following parameters (Moser, 1990): 

 

Stiffness factor = EI    ................................... (2.2) 

 

Ring stiffness = EI/r3    ................................... (2.3) 

 

Pipe stiffness = 6.7 EI/r3   ................................... (2.4)
  

where  

 E = modulus of elasticity (lb/in2) 

 I = moment of inertia of the wall cross-section per unit length of pipe (in4/in) 

 r = mean radius of pipe (in) 

 

Pipe stiffness can also be expressed as (Moser, 1990): 

3

7.6
r

EIFPS
v

f ==
δ    

................................... (2.5)
 

where 

 PSf = pipe stiffness (psi) 

 E = modulus of elasticity (psi)   

 I = moment of inertia of the pipe wall (in4/in) 
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 r = mean radius (in) 

 F = force applied over unit length (lbs) 

 δv = vertical change in the pipe diameter (in) 

 δv = vertical change in the pipe diameter (in) 

 

 

Figure 2.2: Parallel plate testing (ASTM 2412 Test) for flexible pipes 

 

 

2.5 Soil Stiffness 

  

 Performance of a buried pipe is highly influenced by the strength of the soil surrounding 

the pipe.  Soil compaction and soil type contributes to the performance of a buried pipe, and the 

soil envelope around the pipe is extremely important (Moser, 1990).  Aspects of the soil-pipe 

interaction and the calculations involved in order to predict the relationship between the pipe and 

soil are discussed in the following section. 
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2.5.1 Spangler’s Iowa Formula 

 

Spangler (1941) recognized that flexible pipes perform well when buried in soil, despite 

their lower stiffness as compared to rigid pipes (Moser, 1990). The redistribution of loads around 

the pipe and the passive pressures created when the sides of the pipe move outwards in the soil 

allow the flexible pipe to support vertical loadings (Moser, 1990).   

In 1941, Spangler published his work incorporating the effects of surrounding soil on the 

deflection of a pipe (Moser, 1990).  It was assumed that Marston’s theory of loads was 

applicable and the soil load was uniformly distributed (Moser, 1990).  The horizontal pressure h 

on each side of the pipe would be proportional to the deflection of the pipe into the soil.  The 

elastic modulus of the soil was considered to be constant.  Figure 2.3 illustrates the basis of the 

derivation of the Iowa formula (Spangler, 1941) for the deflection of buried pipes. The Iowa 

formula (Spangler, 1941) was then derived as shown below: 

 

4

3

061.0 erEI
rKWDX cL

+
=∆

   
................................... (2.6) 

 

where 

DL = deflection lag factor 

 K = bedding constant 

 Wc = Marston’s load per unit length of pipe (lb/in) 

 r = mean radius of the pipe (in) 

 E = modulus of elasticity of the pipe material (lb/in2) 

 I = moment of inertia of the pipe wall per unit length (in4/in) 

 e = modulus of passive resistance of the side fill [lb/(in2)(in)] 

 ΔX = horizontal deflection or change in diameter (in) 
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Figure 2.3: Basis of Spangler’s derivation of the Iowa formula for deflection of buried pipes 
(Moser, 1990) 

 

2.5.2 Deflection Lag Factor   

 

The deflection lag factor, DL, is also needed to calculate pipe deflections.  Spangler 

(Spangler, 1941) noted that soil consolidation at the sides of the pipe continues with time after 

installation of the pipe.  Deflections could increase by as much as 30% over a time period of 40 

years due to soil consolidation (Moser, 1990).  In order to consider this increase in deflection, the 

deflection lag factor was incorporated.  The value used for this factor is 1.5 as a conservative 

approach (Moser, 1990).   
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2.5.3 Modulus of Soil Reaction 

  

The stiffness of a soil is characterized by its modulus of soil reaction, E’.  This modulus 

increases with depth as discussed in the literature (Hartley & Duncan, 1987).  The Iowa formula 

is the most common formula used to calculate deflections for design purposes (Moser, 1990).  

However, the use of E’ introduces a large degree of uncertainty due to its empirical nature 

(Hartley & Duncan, 1987).  E’ is similar to a soil modulus (Young’s Modulus) and behaves in 

the same manner (Hartley & Duncan, 1987). Three procedures on how to calculate E’ can be 

found in the literature (Hartley & Duncan, 1987). 

The use of E’ values as well as a simplified method of calculating the backfill load on a 

pipe can somewhat predict the initial deflection of a flexible pipe under backfill heights up to 50 

feet.  A pipe’s vertical diameter decreases and its horizontal diameter increases due to 

overbearing loads (Howard, 1977; Moser, 1990).  The strain or deformation of an element can be 

determined from the ratio of the load or stress on the member to its modulus of elasticity 

(Howard, 1977).  

 

2.6 Magnitude of Loads 

 

The ability of a buried pipe to support the vertical load caused by the overbearing soil is 

an extremely important aspect of buried pipe design.  This support of the vertical soil load is 

based upon the redistribution of loads to the surrounding soil, as well as the passive pressure 

caused by the pipe moving outward into the soil (Moser, 1990).  The development of passive soil 

support at the sides of the pipe is caused by the pipe deflection (Spangler & Handy, 1982). 

 

2.6.1 Gravity Loading (Geostatic Loading) 

 

Gravity load throughout the soil is introduced in the soil model during the first step of the 

analysis, which is the geostatic step.  The geostatic step ensures that the loads and initial stresses 

are in equilibrium and produce zero deformations (Helwany, 2007). 
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2.6.2 Pore Pressure 

 

The self-weight of the soil causes pressures to be placed on the buried pipe.  These 

overburden soil pressures are the main cause of the creep of the pipe.  When a load acts on a pipe 

buried in saturated soil, an increase in pore pressure around the pipe occurs (Helwany, 2007). 

Due to pore pressure development around the pipe, the soil undergoes consolidation, which can 

potentially cause additional loads onto the pipe (Lewis, 1998). In this study, both the creep 

response and soil consolidation were considered in determining time-dependent pipe deflections.  

 
2.6.3 Soil Arching 

 

Soil arching is the phenomenon that occurs when part of the weight of the soil is 

transferred between the soil prism over the conduit (Figure 2.4) and adjacent soil prisms 

(Spangler, 1994).  The load acting on the pipe can be greater than the total weight of the 

overlying soil plus the surface loads, causing negative arching, as seen in Figure 2.5 (b).  Positive 

arching occurs when the load acting on the pipe is significantly less than the combined surface 

load and overburden soils weight as shown in Figure 2.5 (a) (Spangler & Handy, 1982).  

Depending upon the stiffness of the soil and pipe properties, the arching mechanism may 

contribute to the external load on a pipe. The magnitude of pipe deflections and pipe stresses 

depend on the external loads and soil-pipe interactions. The design of corrugated HDPE pipes is 

based upon deflections and wall stresses (Kang et al., 2009).   
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Figure 2.4: Schematic of soil prism over conduit 

 

  

(Note: Fv = generated friction forces) 

                                (a)                                                                                   (b)  

(a) Thermoplastic pipe in embankment installation 

(b) Rigid pipe in embankment installation (interface condition, full-bonded) 

 

Figure 2.5: Mechanism of soil arching within soil-pipe system (Kang, 2009) 
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2.7 External Soil Loadings 

  

 This study considers the following loadings: (a) trench backfill loading and (b) 

embankment loading.  Trench backfill loads are considered for backfill heights of 10 feet to 20 

feet.  A trench loading can be seen in Figure 2.6. Embankment loading is considered for backfill 

heights greater than 30 feet, and an embankment loading can be seen in Figure 2.7.  In both 

trench and embankment loadings, it takes time for the full load to mobilize on the pipe 

depending upon time-dependent properties of the pipe (Moser, 1990).   

 

2.7.1 Trench Loading 

 

In this study, trench loading is considered for backfill heights of 10 feet to 20 feet, 

representing a ditch conduit (Spangler, 1958).  The forces on the buried structure will be less 

than those caused by embankment loading. Trench installation method is common for shallow 

conduits (Spangler & Handy, 1982).  When a trench backfill is placed over a pipe, a large portion 

of the weight of that soil is supported by shear forces (see Figure 2.6) acting along the backfill at 

the contact surface of the native soil (Spangler, 1958).  In this study, it was assumed that no 

friction exists between the trench backfill and insitu soil, causing the entire weight of the backfill 

to be placed on the pipe, as seen in Figure 2.6.  This would be the worst-case scenario of trench 

backfill loading. 

 

2.7.2 Embankment Loading 

 

In this study, embankment loading is applied for fill heights of 30 feet to 50 feet, and the 

soil loading can be seen in Figure 2.7. The worst case scenario for a buried pipe is to construct an 

embankment over the pipe (Watkins, 2000).  Pipes placed under embankment loadings are 

referred to as projecting conduits (Spangler, 1958; Spangler & Handy, 1982).  This method is the 

easiest to construct, but the loads acting on the conduit could potentially be greater than the 

weight of the overlying soil (Spangler, 1958). 
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Figure 2.6: Trench backfill loading  
 

 

Figure 2.7: Embankment loading 
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2.8 Soil-Pipe Interaction 

 

The performance of a flexible pipe depends on the composite action between the pipe and 

backfill soil.  It is important for this system to achieve structural stability. Proper installation of 

flexible pipes is extremely important so that the structural performance is not compromised 

(Chu, 2010). 

The soil-pipe interaction depends on the pipe properties, soil type, moisture content, soil 

density, and depth of installation (Moser, 1990).  Pipe performance is highly affected by this 

interaction, and the interaction between the pipe and soil is a function of pipe and soil properties 

(Moser, 1990).  The soil-pipe system is quite complex and is statically indeterminate (Lewis, 

1998).   

Granular and clay backfill materials are considered in this study.  Granular material is 

commonly used as bedding for flexible pipes because this material is self-compacting.  It also 

reduces the stress acting on the wall of the pipe.  The modulus of soil reaction of granular 

material considered in this study is higher than that of the insitu soil, which results in the ability 

to carry greater loads without deforming the pipe (Chu, 2010).  When the insitu soil is in poor 

condition, adequate lateral support is not provided when the flexible pipe deforms vertically and 

horizontally.  This results in the need of additional trench-width so additional bedding material 

can be placed (Chu, 2010).   
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CHAPTER 3: TIME DEPENDENT PROPERTIES OF PIPE AND BACKFILL 

 

3.1 Background of HDPE pipes 

 

High-density polyethylene (HDPE) pipes are made of a lightweight material, allowing for 

easier installation as compared to rigid pipes (Zhang, 1998).  HDPE pipes are flexible, durable, 

and are effective in managing water transportation.  The American Association of State Highway 

and Transportation (AASHTO M294, 2007) has classified available polyethylene pipes.  In the 

study presented in this report, double-wall corrugated pipes were considered. A typical double-

wall corrugated pipe consists of a circular cross-section with a corrugated outer surface and a 

smooth inner surface.  The outer corrugations provide superior structural integrity, and the 

smooth inner surface provides excellent pipe flow (ADS, 2006).  Figure 3.1 (a) shows a 

schematic diagram of a double-wall corrugated HDPE pipe and Figure 3.1 (b) shows a cross-

section of the pipe. Pipe diameters ranging between 24-inch to 60-inch are the focus of this 

study.  

 

3.2 Background of PVC Pipes 

 

PVC is flexible, easy to handle, lightweight, and resistant to chemical damage and 

corrosion (CertainTeed, 2008).  Gravity pipes made of PVC are used to serve sanitary sewers, 

storm sewers, and highway drainage applications (CertainTeed, 2008).  Two types of gravity 

PVC pipes include solid-wall pipes and profile-wall pipes.  Solid-wall PVC pipes are the focus 

of the study.  These pipes are manufactured as per ASTM D3034 and F679 standards (Diamond 

Plastics, 2005).  The inner and outer surfaces are smooth and the wall thickness is uniform.  

These solid-wall pipes are used for pressure and non-pressure applications.   
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3.3 Introduction to Time-Dependent Behavior of Pipes
  

It is important to understand the effects of creep on buried pipes made of HDPE and PVC 

materials.  Thermoplastic materials such as HDPE and PVC possess the time-dependent property 

of creep.  Creep is defined as the increase of strain in a material caused by a constant applied 

load over a period of time (Moser, 1990; Arvidsson & Gronvall, 2004).  Creep of a material 

could result in failure over time.  Therefore, understanding creep, as well as stress relaxation and 

visco-elastic behavior of thermoplastic materials, is an important aspect of buried pipe design.   

In the following sections, creep, stress relaxation, and the power law models used for 

PVC and HDPE will be discussed.  The sectional properties of double-corrugated HDPE pipes 

and solid-wall PVC pipes will also be discussed. 

 

 

(a) Schematic of a double-wall corrugated HDPE pipe (Gondle, 2008)
 

 

(b) Section of A-A of a double-wall corrugated HDPE pipe (Gondle, 2008)
 

Figure 3.1: Typical Double-wall corrugated HDPE pipe 
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3.3.1 Creep Behavior of Pipes 

 

Creep is defined as the continuous deformation that a material undergoes when subjected 

to a constant load (Moser, 1990; Arvidsson & Gronvall, 2004).  The parameters of creep include 

stress, strain, and time (Hult, 1966; Somoyaji, 2001).  The total strain at a given time can be 

expressed as (Horvath, 1998): 

 

co εεε +=                             ………………… (3.1) 

where 

 ε  = total strain at some time t after application of stress 

cε  = the time-dependent component (creep) of strain at time t after application of stress 

 oε  = the immediate strain of an application of stress 

 

In a usual creep test, a tensile test specimen is subjected to a constant tensile force at a 

fixed temperature.  The strain is recorded, and a strain versus time graph is created, as shown in 

Figure 3.2.  A strain rate versus time graph can also be seen in Figure 3.2.  The engineering 

theory of creep is based on idealized materials with well-defined creep properties (Hult, 1966, 

Arvidsson & Gronvall, 2004).  

As shown in Figure 3.1, primary creep occurs when the creep rate is decreasing, 

secondary creep occurs at a constant creep rate, and tertiary creep occurs when the creep rate 

increases subsequently (Hult, 1966; Callister, 1991).  At the beginning of the initial loading, the 

creep rate is very high.  Because the initial creep rate is high, the strain developed during the 

loading may differ from the strain at the instantaneous loading (Hult, 1966; Somoyaji, 2001).  

The strain developed during secondary creep is large compared with the strain developed during 

primary creep.  This is true for many materials.   
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The time-dependent modulus or creep modulus for a linear visco-elastic material can be 

expressed as seen in the following equation (Arvidsson & Gronvall, 2004; Callister, 1991): 

)(
)(

t
tE

ε
σ

=
                              

........................... (3.2)
 

where 

E(t) = Young’s Modulus  

σ(t) = stress 

ε(t) = strain        

 

 

Figure 3.2: Graphs from strain and strain rate due to constant stress creep test  
(Hult, 1966) 
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3.3.2 Stress Relaxation of Pipes 

 

Stress relaxation is the inverse of creep (Arvidsson & Gronvall, 2004), and can be 

defined as the decrease in stress with time in a material held at constant deformation (Moser, 

1990).  Stress relaxation occurs when a tensile stress decreases with time if the deflection of a 

material is to be kept constant (Somayaji, 2001; Callister, 1991; Moser, 1990; Hult, 1966). 

In a typical stress-relaxation test, an instantaneous elongation (δ) is applied to a stress-

free bar of length L and cross-sectional area A, as seen in Figure 3.3. While δ will increase with 

time in a creep test, the δ is kept constant in a stress-relaxation test, which will cause the axial 

load (P) to decrease with time (Hult, 1966, Callister, 1991). 

 

 

Figure 3.3: Constant strain loading  
(Hult, 1966) 

 

3.4 Power Law Models for Pipes 

  

 Power law models have been used to simulate creep behavior in various applications, 

including buried pipes.  A number of power law models can be used to simulate creep behavior 

of a plastic pipe (Pertroff, 1993; Hashash, 1991; Chua, 1986; and Janson, 1985).  The power law 

models for HDPE and PVC pipes are discussed in the following section. 
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3.4.1 Power Law Models for HDPE Pipes 

 

Several models have been proposed based on the creep behavior of HDPE pipes (Moore, 

1995; Hashash, 1991; Chua, 1986; and Janson, 1985).  Previous studies (Gondle, 2006) have 

shown that the creep model proposed by Hashash (1991) for HDPE pipes provide conservative 

results on the long-term performance.  The following relationship has been reported on the basis 

of laboratory test results (Hashash, 1991).   

0.0859( ) 96,300E t t−=                              ........................... (3.3) 

where E(t) is expressed in psi and t is given in minutes.  

 

This equation can be expressed in different units as: 

0859.038.586,51)( −= ttE                        .......................... (3.4)                                 

where E(t) is expressed in psi and t is measured in days.  This equation was used in the modeling 

study presented in this report. 

Equation 3.3 can be used to compute the modulus value at 50 years. The computed value 

is very close to the AASHTO recommended 50-year modulus value of 22,000 psi (AASHTO, 

2002). 

 

3.4.2 Power Law Models for PVC Pipes 

 

Stress relaxation tests were performed on PVC pipes and the relaxation modulus as a 

function of loading time over 10,000 hours was presented in the literature (Janson, 1985).   The 

following power law model was developed (Janson, 1995):  

0.0567( ) 394,043E t t−=                            ........................... (3.5) 
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where E(t) is expressed in psi and t is given in hours. This equation can be expressed in different 

units as:   

0567.099.067,329)( −= ttE                 ........................... (3.6) 

where E(t) is expressed in psi and t is measured in days. This equation was used in the modeling 

study presented in this report. 

 

3.5 Properties of Double-wall Corrugated HDPE Pipes 

 

In this section, the geometric and material details of double-wall corrugated pipes will be 

discussed.  The section properties of dual-walled corrugated HDPE pipes are shown in Table 3.1. 

 

3.5.1 Geometric and Material Details of Double-wall Corrugated HDPE Pipes 

 

In this section, details of the procedure used in modeling of HDPE corrugated pipes are 

presented. Though the pipe sizes from 24-inch to 60-inch were considered in the study, this 

section presents numerical details only for a 24-inch pipe. The numerical procedure for all other 

pipe sizes is similar to what is presented below. 

For a 24-inch nominal pipe diameter: 

 Minimum pipe stiffness @ 5% deflection (K) = 34 psi (235 kN/m2) 

 Inside Diameter (ID)     = 24.08 in (611 mm) 

 Outside diameter (OD)    = 27.80 in (706 mm) 

 Moment of inertia (Id)     = 0.137 in4/in 

 Distance from inner wall to neutral axis (C)  = 0.74 in (18.8 mm) 

 Flexural modulus of the pipe (Ed)   = 110,000 psi (758,423 kN/m2) 

 Mean diameter (Dmean) = Inside diameter (ID) + 2C 

        = 24.08 + 2(0.74) = 25.56 in  

 Mean radius (Rmean) = 12.78 in  
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Table 3.1: Section properties of dual-wall corrugated HDPE pipes (ADS Inc., 2006)

Nominal 
Diameter  

Inside 
Diameter  

Outside 
Diameter 
Average  

Inner Liner 
Thickness, 
Minimum  

Minimum Pipe 
Stiffness at 5% 

Deflection  

Weight 
Lbs/20ft 
(kg./6m)  

Area 
in

2
/in  

“I” 
in

4
/in  

“C” 
in  

6” 
(150 mm)  

6.00” 
(152 mm)  

6.92” 
(176 mm)  

0.020” 
(0.5 mm) 

50 psi 
340 kN/m

2
 

17.00 lbs 
(7.71 kg)  

0.085 
(2.15 mm

2
/mm)  

0.0021 
(0.035 cm

4
/cm)  

0.19 
(4.94 mm)  

8” 
(200 mm)  

7.90” 
(200 mm)  

9.11” 
(233 mm)  

0.024” 
(0.6 mm) 

50 psi 
340 kN/m

2
 

30.80 lbs 
(13.97 kg)  

0.108 
(2.75 mm

2
/mm)  

0.005 
(0.078 cm

4
/cm)  

0.25 
(6.36 mm)  

10” 
(250 mm)  

9.90” 
(251 mm)  

11.36” 
(287 mm)  

0.024” 
(0.6 mm) 

50 psi 
340 kN/m

2
 

46.20 lbs 
(20.96 kg)  

0.137 
(3.48 mm

2
/mm)  

0.008 
(0.134 cm

4
/cm)  

0.30 
(7.58 mm)  

12” 
(375 mm)  

12.15” 
(308 mm)  

14.45” 
(367 mm)  

0.035” 
(0.9 mm)  

50 psi 
345 kN/m

2
 

65.20 lbs 
(29.60 kg)  

0.217 
(5.5 mm

2
/mm)  

0.035 
(0.574 cm

4
/cm)  

0.43 
(10.92 mm)  

15” 
(375 mm)  

14.98” 
(380 mm)  

17.57” 
(448 mm)  

0.039” 
(1.0 mm)  

42 psi 
290 kN/m

2
 

92.50 lbs 
(42.00 kg)  

0.272 
(6.91 mm

2
/mm)  

0.055 
(0.901 cm

4
/cm)  

0.52 
(13.21 mm)  

18” 
(450 mm)  

18.07” 
(459 mm)  

21.20” 
(536 mm)  

0.051” 
(1.3 mm)  

40 psi 
275 kN/m

2
 

128.60 lbs 
(58.38 kg)  

0.273 
(6.93 mm

2
/mm)  

0.081 
(1.327 cm

4
/cm)  

0.057 
(14.48 mm)  

24” 
(600 mm)  

24.08” 
(612 mm)  

27.80” 
(719 mm)  

0.059” 
(1.5 mm)  

34 psi 
235 kN/m

2 
 

220.30 lbs 
(99.93 kg)  

0.324 
(8.23 mm

2
/mm)  

0.137 
(2.245 cm

4
/cm)  

0.74 
(18.8 mm)  

30” 
(750 mm)  

30.00” 
(762 mm)  

35.10” 
(892 mm)  

0.059” 
(1.5 mm) 

28 psi 
195 kN/m

2
 

308.6 lbs 
(140.00 kg)  

0.378 
(9.6 mm

2
/mm)  

0.277 
(4.539 cm

4
/cm)  

0.86 
(21.84 mm)  

36” 
(900 mm)  

36.00” 
(914 mm)  

41.70” 
(1059 mm)  

0.067” 
(1.7 mm)  

22 psi 
150 kN/m

2
 

396.8 lbs 
(180.00 kg)  

0.401 
(10.19 mm

2
/mm) 

0.400 
(6.555 cm

4
/cm)  

1.00 
(25.4 mm) 

42” 
(1050 mm)  

41.40” 
(1054 mm)  

47.70” 
(1212 mm)  

0.070” 
(1.8 mm)  

20 psi 
140 kN/m

2
 

570.10 lbs 
(230.00 kg)  

0.458 
(11.64 mm

2
/mm)  

0.572 
(9.373 cm

4
/cm)  

1.21 
(30.73 mm)  

48” 
(1200 mm)  

47.60” 
(1209 mm)  

53.60” 
(1361 mm)  

0.070” 
(1.8 mm)  

18 psi 
125 kN/m

2 
 

625.00 lbs 
(283.50 kg)  

0.495 
(12.58 mm

2
/mm) 

0.570 
(9.341 cm

4
/cm)  

1.17 
(29.72 mm) 

60” 
(1500 mm)  

59.5” 
(1512 mm)  

66.30” 
(1684 mm)  

0.070” 
(1.8 mm)  

14 psi 
95 kN/m

2 
 

903.90 lbs 
(410.00 kg)  

0.578 
(14.68 mm

2
/mm) 

0.860 
(14.09 cm

4
/cm)  

1.32 
(33.66 mm) 



32 
 

The thickness of the pipe is the difference between the inside and outside radius as shown 

below.  

 

2
IDODt −

=
                                     ........................... (3.7) 

Where 

 t = thickness of pipe (in) 

 OD = outside diameter of pipe (in) 

 ID = inside diameter of pipe (in) 

 

The wall thickness for a 24-inch diameter pipe can be expressed as: 

int 86.1
2

08.2480.27
=

−
=                   ........................... (3.8) 

 

Wall corrugations are difficult to model, so the geometry of the pipe is simplified to be a 

rectangular plain section without changing the structural stiffness of the pipe. The cross-section 

of the pipe is idealized as a rectangular section, and the moment of inertia can be calculated as 

follows: 

 

inintI 4
33

5362.0
12
86.1

12
===                ........................... (3.9) 

The material stiffness of the pipe needs to be changed in order to maintain the pipe 

stiffness because the geometric stiffness of the pipe was simplified into a rectangular plain 

section.   The following formula shows this modification: 
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ppdd IEIE =
                          ........................... (3.10) 

Where 

 Ed = elastic modulus of corrugated section for dual-wall pipe 

 Ep = elastic modulus of idealized rectangular section 

 Id = moment of inertia of corrugated section for dual-wall pipe 

 Ip = moment of inertia of idealized rectangular section 

 

psi
I

IE
E

p

dd
p 28105

5362.0
137.0110000

=
×

== ........................... (3.11) 

 

This procedure was done to calculate the thicknesses and material stiffness for each size 

of pipe.  As indicated in the previous section, geometric and material properties were modified in 

the idealized pipe (Figure 3.4) in order to keep the actual pipe stiffness values. The section 

properties of the pipe diameters used in this study are shown in Table 3.2.  Table 3.3 shows the 

modified geometric and material properties for the pipes used in this study. 
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(a) Double-wall corrugated HDPE pipe 

 

 

                (b) Section A-A                                                        (c) Idealized section 

where  

ID = Inside Diameter 

OD = Outside Diameter 

t = thickness of the idealized rectangular section 

 

Figure 3.4: Cross-section of a double-wall corrugated HDPE pipe  
(Gondle, 2008) 
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Table 3.2: Sectional properties for HDPE used in research study (ADS Inc., 2006) 

 

Nominal 
Diameter  Inside 

Diameter  
Outside 

Diameter 
Average  

Inner Liner 
Thickness, 
Minimum  

Minimum Pipe 
Stiffness at 5% 

Deflection  
Weight 
Lbs/20ft 
(kg./6m)  

Area 
in

2
/in  

“I” 
in

4
/in 

“C” 
in 

24” 
(600 mm)  24.08” 

(612 mm)  27.80” 
(719 mm)  0.059” 

(1.5 mm)  
34 psi 

235 kN/m
2  

220.30 lbs 
(99.93 kg)  

0.324 
(8.23 mm

2
/mm)  

0.137 
(2.245 cm

4
/cm)  

0.74 
(18.8 mm)  

36” 
(900 mm)  36.00” 

(914 mm)  41.70” 
(1059 mm)  0.067” 

(1.7 mm)  
22 psi 

150 kN/m
2 

396.8 lbs 
(180.00 

kg)  
0.401 
(10.19 

mm
2
/mm) 

0.400 
(6.555 cm

4
/cm)  

1.00 
(25.4 mm) 

48” 
(1200 mm)  47.60” 

(1209 mm)  53.60” 
(1361 mm)  0.070” 

(1.8 mm)  
18 psi 

125 kN/m
2  

625.00 lbs 
(283.50 

kg)  
0.495 
(12.58 

mm
2
/mm) 

0.570 
(9.341 cm

4
/cm)  

1.17 
(29.72 mm) 

60” 
(1500 mm)  59.5” 

(1512 mm)  66.30” 
(1684 mm)  0.070” 

(1.8 mm)  
14 psi 

95 kN/m
2  

903.90 lbs 
(410.00 

kg)  
0.578 
(14.68 

mm
2
/mm) 

0.860 
(14.09 cm

4
/cm)  

1.32 
(33.66 mm) 
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Table 3.3: Modified geometric and material properties for pipes used in this study  

 

 

3.6 Properties of Solid-wall PVC Pipes 

 

In this study, only 18-inch diameter and 24-inch diameter solid-wall PVC pipes were 

considered.  The sectional properties of PVC pipes used in this research study are shown in 

Table 3.4.  Table 3.5 shows the section properties used in this study for the different sized solid-

wall PVC pipes.  

 

 

 

Properties  
Double-wall Corrugated HDPE Pipe  

24-inch  36-inch  48-inch  60-inch  

Inside Diameter (ID) 24.08 in  
(612 mm) 

36.00 in  
(914 mm) 47.60 in  

(1209 mm) 59.50 in  
(1511 mm) 

Outside Diameter (OD) 27.80 in  
(706 mm) 41.70 in  

(1059 mm) 53.60 in  
(1361 mm) 66.30 in  

(1684 mm) 
Distance from inner wall to 

neutral axis (C) 0.74 in  
(18.8 mm) 1.00 in  

(25.4 mm) 1.17 in  
(29.7 mm) 1.32 in  

(33.5 mm) 

Actual moment of Inertia, Id 0.137 in4/in  
(2.245 cm

4
/cm) 

0.400 in4/in  
(6.555 cm

4
/cm) 

0.570 in4/in  
(9.341 cm

4
/cm) 

0.860 in4/in  
(14.09 cm

4
/cm) 

Actual Elastic Modulus, Ed 110,000 psi  
(758,423 kN/m2) 

110,000 psi  
(758,423 kN/m2) 

110,000 psi  
(758,423 kN/m2) 

110,000 psi  
(758,423 kN/m2) 

Thickness, t 1.86 in  
(47.2 mm) 2.85 in  

(72.4 mm) 3.0 in  
(76.2 mm) 3.4 in  

(86.4 mm) 

Moment of Inertia, Ip 0.5362 in
4
/in 

(8.787 cm4/cm)  
1.929 in4/in  

(31.61 cm4/cm) 2.25 in4/in  
(36.87 cm4/cm) 3.28 in4/in  

(53.75 cm4/cm) 

Elastic Modulus, Ep 28105 psi  
(193777 kN/m2) 22808 psi  

(157256 kN/m2) 27867 psi  
(192136 kN/m2) 28882 psi  

(199134 kN/m2) 
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Table 3.4: Specification Data for PVC Pipes (Diamond Plastics, 2005) 

 

Table 3.5: Sectional properties of PVC pipe used in research study (Diamond Plastics, 2005) 

Nominal Pipe Size Outside Diameter  Wall Thickness  
SDR26/PS115  Wall Thickness 

SDR35/PS46  
18” 

(457.2 mm)  18.701” 
(475 mm)  0.671” 

(17.0 mm)  0.499” 
(12.7 mm)  

24” 
(609.6 mm)  24.803” 

(630 mm)  0.889” 
(22.6 mm)  0.661” 

(16.8 mm)  
 

 

3.7 Introduction to Time-Dependent Behavior of Soil 

 

Soil consolidation occurs when a load is applied to a saturated soil medium (Das, 2006).  

This consolidation may cause additional stresses acting on the pipe.  The interaction between the 

soil and pipe structure is a key factor that influences the load acting on the pipe (Helwany, 2007). 

Consolidation settlement can be analyzed by using mathematical methods derived in the 

literature (Terzaghi, 1925; Das, 2006). Another approach to analyzing the process of 

consolidation is by the use of numerical methods. Due to the advancement of computers, finite-

element programs are frequently used in the analysis of consolidation problems (Lewis, 1998).  

Details of the Finite element methods (FEM) will be discussed in Chapter 5. 

Nominal Pipe Size Outside Diameter  Wall Thickness  
SDR26/PS115  Wall Thickness 

SDR35/PS46  
18” 

(457.2 mm)  18.701” 
(475 mm)  0.671” 

(17.0 mm)  0.499” 
(12.7 mm)  

21” 
(533.4 mm)  22.047”  0.791” 

(20.1 mm)  0.588” 
(14.9 mm)  

24” 
(609.6 mm)  24.803” 

(630 mm)  0.889” 
(22.6 mm)  0.661” 

(16.8 mm)  
27” 

(685.8 mm)  27.953” 
(710.0 mm)  1.002” 

(25.4 mm)  0.745” 
(18.9 mm)  

30” 
(762 mm)  32.000” 

(812.8 mm)  1.148” 
(29.2 mm)  0.853” 

(21.7 mm)  
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3.7.1 Soil-Pipe System 

The relative displacements between the soil and pipe play an important role in the soil-

pipe interaction.  Both soil and pipe have different stress-strain characteristics. In the initial 

stages of soil consolidation, it is difficult to determine the resultant stresses at the soil-pipe 

interface due to higher stresses occurring in the pipe and lesser stresses occurring in the 

surrounding soil (Helwany, 2007). 

Most consolidation problems that have been analyzed do not consider the interaction 

between the structure and soil (Lewis, 1998).  The load transfer mechanism between the soil and 

pipe is complex due to the interfaces between the soil and structure.  Also, the mathematics 

involved in such an analysis are quite complex (Lewis, 1998). To study the interaction between 

the soil and structure, the finite element method can be used to incorporate interface elements 

between the soil and pipe (Lewis, 1998). 

 

3.7.2 Elastic Settlement 

Compression of soil is caused by the deformation of soil particles, relocation of these 

particles, and the expulsion of water or air present in the voided areas (Das, 2006).  The 

immediate settlement of the soil is also referred to as elastic settlement.  It is caused by the 

elastic deformation of soil without change in moisture content.  The magnitude of this settlement 

depends on the flexibility of the pipe and the type of soil material (Lewis, 1998). If the ground is 

considered to be perfectly flexible, i.e. saturated clay, the pressure will be uniform and the 

foundation will have a sagging profile.  For a perfectly rigid structure, the foundation will 

undergo a uniform settlement and the contact pressure will be redistributed.  In a clay soil, elastic 

settlement occurs immediately (Das, 2006).  

 

3.7.3 Background of Soil Consolidation 

The dissipation of the excess pore pressure from the soil medium under a load is called 

consolidation (Das, 2006). Consolidation is a time-dependent process, and depends upon the 

length of the drainage path, permeability of the soil, and compressibility of the soil (Helwany, 

2007). Figure 3.5 graphically shows the stages of consolidation of a soil mass. Primary 



39 
 

consolidation is caused by volume changes that occur in saturated cohesive soils due to the 

dissipation of pressure in the water that exists in the voids.  Secondary consolidation settlement 

is caused by the plastic adjustment of saturated cohesive soils (Das, 2006). The soil consolidation 

process has been described in detail in the literature (Das, 2006; Terzaghi, 1925). 

 

Primary consolidation is caused by the dissipation of pore pressure throughout a saturated 

cohesive soil which leads to a change in volume. In a saturated soil layer, an increase in stress 

results in a sudden increase in the pore water pressure (Das, 2006).  This causes settlement due to 

reduction in volume of the soil media.  It takes a long period of time for the pore water 

dissipation to be completed due to the low hydraulic conductivity of clay.  Consolidation will 

continue over a long period of time (Das, 2006).   

Primary Consolidation 

 

Secondary consolidation can be defined as the continuous deformation of a soil medium 

after the excess pore pressure has been dissipated (Das, 2006).  This is caused by the time-

dependent deformation characteristic of soil particles, which is not related to excess pore 

pressure dissipation (Helwany, 2007). The settlements that occur due to this secondary 

consolidation are small compared to the primary consolidation (Terzaghi, 1925). 

Secondary Consolidation 

 

3.7.4 Influence of Pore Pressure on Buried Pipes 

Pore pressure increases when a saturated soil is loaded.  This excess pore pressure 

dissipates from the boundaries of the soil layer over a time period (Das, 2006; Helwany, 2007).  

The excess pore pressures are the driving forces for water flow according to Darcy’s law (Lovisa 

et al., 2010).  This excess pore pressure generates a hydraulic gradient which causes flow.   

When pore pressure develops in highly permeable materials, such as gravel, due to rapid 

loading conditions, the excess pore pressure dissipates rapidly.  Conversely, when silts and clays 
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are loaded, the excess pore pressure slowly dissipates because of the low permeabilities of these 

materials (Fetter, 2001).  Consolidation continues to occur until all of the pore water pressure 

dissipates from the soil (Helwany, 2007). Depending upon the type of application, pipe backfill 

materials can be granular stone or cohesive soils. As such, the pore pressure dissipation around a 

buried pipe may influence the pipe deflections.  

 

Figure 3.5: Time vs. deformation plot during consolidation  
(Das, 2006) 
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CHAPTER 4: INFLUENCE OF SOIL CONSOLDATION ON THE PERFORMANCE OF 

PIPES 

 

4.1 Introduction 

Finite element method (FEM) has been used throughout recent years to analyze complex 

problems (Simulia, 2010; Cook et al, 2003; Watkins and Anderson, 1999; Hibbitt et al, 1970).  In 

the present research work, the finite element software ABAQUS was used to analyze the time-

dependent behavior of buried high-density polyethylene (HDPE) pipes and polyvinylchloride 

(PVC) pipes. In this chapter, mathematical details of the finite element formulation for creep 

analysis of the pipe and soil consolidation are presented.  FEM has been used in the past to 

simulate various construction methods (i.e. trench and embankment conditions), pipe backfill 

materials, different pipe diameters, and materials (Sargand et al., 1993). 

In this study, two-dimensional transient analyses were performed to investigate the 

performance of HDPE and PVC pipes over a time period of 50 years.  Creep of the pipe and 

consolidation of the surrounding soil were the two time-dependent processes considered in the 

analyses.  Backfill heights ranging from 10 feet to 50 feet were considered, as well as trench-

width ratios ranging from 1.5 to 2.5.  The trench-width ratio is defined as the ratio of the trench-

width to the nominal pipe diameter.  

 

4.2 Previous Studies 

The finite element method has been used to model pipe-soil interaction in the past 

(Gondle and Siriwardane, 2008; Gondle, 2006; Mada, 2005; Watkins and Anderson, 1999; 

Moore, 1994; Moser, 1990; Sandhu and Wilson, 1969). To simulate pipe-soil interaction, special 

elements for the interface (interface elements) were also used (Lewis, 1998).  Finite element 

formulations can also be used with realistic constitutive models that fully represent saturated 

consolidating soil.  Finite element formulation for liner elastic soil consolidation was reported as 
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early as late 1960s (Sandhu and Wilson, 1969; Lewis, 1998). Several recent analyses of pipe soil 

systems by using the finite element method can be found in the literature. 

4.3 Finite Element Analysis  

In this section, a brief description of the mathematical formulation of the finite element 

method is presented. More details of the finite element formulations can be found elsewhere 

(Desai & Abel, 1972; Cook et at, 2003; Zienkewicz and Taylor, 1987;  Gondle, 2008; Simulia, 

2010).  The governing element equation can be expressed as the following: 

 

[ ]{ } { }RrK =                                ........................ (4.1) 

Where 

[K] = global stiffness matrix 

{r} = global displacement vector 

{R} = global load vector 

The stiffness matrix is a function of the structural geometry, element dimensions, element 

properties, and element shape functions (Desai & Abel, 1972; Cook et at, 2003; Zienkewicz and 

Taylor, 1987).  In this research study, two-noded beam elements were used to model pipe 

bending behavior. Isoparametric quadrilateral elements are used to model soil behavior in the 

pipe-soil system.  A typical beam element is shown in Figure 5.1. Each node in the beam element 

has two degrees of freedom, as shown in this figure.  

 

Figure 4.1: Two-noded beam element  
(Gondle, 2008) 
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For a two-dimensional beam element, the stiffness matrix [k] and the vector of nodal 

unknowns can be expressed as:  
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........................ (4.3)

 

 

where E is the elastic modulus and I is the moment of inertia of the beam section. Governing 

equations for a beam element can be expressed as:  

[ ]{ } { }QqK =                                   ........................ (4.4) 

where 

[K] = beam element stiffness matrix 

{q} = displacement vector = { }Tuu 2211 θθ  

{Q} = load vector = { }TMPMP 2211  
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A typical iso-parametric element used in the modeling of soil mass is shown in Figure 4.2. The 

displacements at any point in the element can be expressed as: 

 

u = ∑
=

4

1i
iiuN

                                 
........................ (4.5) 

v = ∑
=

4

1i
iivN
                                   

........................ (4.6)
 

where  

ui  : represents the nodal displacements in the x-direction,  

vi : represents the displacements in the y-direction, and  

Ni : represents the interpolation functions in the local coordinate system. 

The nodal displacements can also be expressed in matrix form as: 

 

{ } [ ]{ }qNU =                                   ........................ (4.7) 
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(a) Global coordinate system  

 

 

(b) Local coordinate system  

Figure 4.2: Coordinate systems  
(Gondle, 2008; Desai and Abel, 1972) 
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Ni (i=1 to 4) are interpolation functions, which can be expressed as  

1 (1 )(1 )
4i i iN rr ss= + +                       ........................ (4.9) 

 

The variables r and s represent the local coordinate system. The constitutive relationship can be 

expressed as: 

 

{ } [ ]{ }εσ C=                              ........................ (4.10) 

                                                                                  

where {σ} represents the stress vector: 

{ } { }Txyyyxx τσσσ =                          ........................ (4.11) 

{ε} represents the strain:

 { } { } [ ]{ }qBT
xyyyxx == εεεε

                   ........................ (4.12) 

 

[C] is the constitutive matrix: 

 

[ ]
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


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
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The strain-displacement relationships can be used to derive the strain vector {ε}: 

x
u

xx ∂
∂

=ε
                                   ........................ (4.14) 

 

y
v

yy ∂
∂

=ε
                                  

........................ (4.15) 

 

x
v

y
u

xy ∂
∂

+
∂
∂

=γ
                             

........................ (4.16)
 

Where 

ε xx  = normal strain along x-axis 

ε yy = normal strain along y-axis 

γxy = shear strain 

The strain vector can be expressed in terms of nodal displacement vector as: 

{ } [ ]{ }B qε =                              ........................ (4.17) 

 

Here the matrix [B] is the strain-displacement transformation matrix. This matrix consists of 

global derivatives of interpolation functions, Ni, which are expressed in local coordinates. The 

element equations can be expressed as: 

[ ]{ } { }QqK =                                 ........................ (4.18) 

Where [ ] [ ] [ ][ ]
T

k B C B dv= ∫∫∫  
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and { } [ ] { } [ ] { } { }
T T

iQ N Y dV N T dS P= + +∫∫∫ ∫∫  

Here Y is the body force vector, T is the surface traction vector, and Pi is the point load 

vector. 

 

4.4 Creep Formulation in the Finite Element Analysis  

The time-dependent elastic modulus E(t) is needed in order to model the creep behavior 

of buried pipes (Gondle and Siriwardane, 2008; Gondle, 2006; Callister, 1991).  The time-

hardening law and strain-hardening law are the two versions of hardening used with the power-

law model.  The time-hardening law is used in this study.  The following equation represents the 

time-hardening creep law in the finite element model (Gondle, 2006; Simulia, 2010): 

nm
cr

tAσε =
⋅

                                         ........................ (4.19) 

 

Where 

 𝜀̇𝑐𝑟 = creep strain rate  

 A = determines the level of overall creep deformation 

 n = describes the dependence of the creep rate and stress level 

 m = changes the curvature of the curve 

 

 The creep constants used for the HDPE pipe were obtained through a back calculation 

procedure as described elsewhere (Hashash, 1998; Gondle, 2006; Gondle and Siriwardane, 

2008).  The following power-law model was used in this study. 



49 
 

0859.0)1(
0859.0 38.586,51

1
38.586,51)(

)( t
ttE

t σσσε 







=== − ........................ (4.20)

 

The creep strain rate can be obtained as shown below: 

 

10859.0)1(0859.0
38.51586

1)()( −





== tx

dt
tdt σεε

      
........................ (4.21) 

 

9141.0)1(6 )10665.1( −−= tx σ  (time units in days)      ........................ (4.22) 

 The creep model used for PVC pipes is described in the literature (Janson, 1985). The 

creep constants used for the PVC pipe were obtained through a back calculation procedure 

similar to that presented earlier.  Janson’s power-law model (1985) can be expressed as: 

0567.0)1(
0567.0 99.329067

1
99.329067)(

)( t
ttE

t σσσε 





=== − ........................ (4.23)

 

The creep strain rate can be obtained as shown below: 

 

10567.0)1(0567.0
99.329067

1)()( −





== tx

dt
tdt σεε

    
........................ (4.24) 

 

9433.0)1(7 )10723.1( −−= tx σ  (time units in days)        ........................ (4.25) 
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A summary of creep constants used for HDPE and PVC pipes is presented in Table 4.2.  

 

Table 4.1: Creep constants used for PVC and HDPE pipe materials 

Pipe Material A n m 

HDPE 1.665 x 10-6 1 -0.9141 

PVC 1.723 x 10-7 1 -0.9433 

*note that these are in units of days 

 

4.5 Finite Element formulation of Soil Consolidation 

 The mathematical details of the finite element formulation of the soil consolidation 

problem can be found elsewhere (Booker, 1977; Bentler, 1998; Gudehus, 1977, Biot, 1940). A 

brief summary is given below. Equations of equilibrium provide governing equations for coupled 

flow and deformation (i.e., consolidation) process.  The equilibrium equation can be expressed 

as:  

 

0, =jijσ                                     ........................ (4.26) 

where 

 σij : total stress tensor at a point in the soil  

The pore pressure and the effective stresses are related through the   principal of effective stress 

as shown below. 

 

0,
'
,, =+= jwjijjij pσσ                             ........................ (4.27) 
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where 

 jij ,σ = total stress 

 '
, jijσ = effective stress 

 jwp , = pore pressure 

 

Fluid flow in the porous medium is governed by the Darcy’s Law, as presented below.  

jiji hkv ,=                                      ........................ (4.28) 

where 

 ijk = permeability matrix 

 jh, = total head gradient in the xj direction 

 

The complete mathematical derivation of governing equations can be found elsewhere in 

the literature (Lewis and Schrefler, 1998).  The finite element equations for a linear elastic 

consolidation solution can be written as (Lewis and Schrefler, 1998): 

 

0 0

0

uK R u u fd
TH p p pdtR Mc w w f

            + =       
               ........................ (4.29) 

where 

u and pw are the vectors of nodal values of unknown displacements and pore 

pressure 
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 [K] is the stiffness matrix: 

TK B C B dV
V

=       ∫                                ........................ (4.30) 

[R] is the coupling matrix: 

TR B mdV
V

α=   ∫                             ........................ (4.31) 

[B] is strain-displacement matrix 

[C] is the constitutive stress-strain matrix  

[ Hc ] is the permeability (hydraulic conductivity) matrix and is given by 

  

kTH N N dVc p p
wV µ

 = ∇ ∇  ∫   
      

........................ (4.32) 

 

[M] is the compressibility matrix which is given by 

n nTM N N dVp pK ks wV

α −
= +   ∫   

 
      

........................ (4.33) 

  fu and fp are load vectors which can be written as  

( )( )1u T Tf N n n g dV N t dSu s w u
V S

ρ ρ= − + +∫ ∫

 

 
........................ (4.34) 
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( ) k qu T Twf N g dV N dSp u
w wV S
ρ

µ ρ
= ∇ −∫ ∫

 

 
........................ (4.35) 

and  

Nu and Np are shape functions.  
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CHAPTER 5: METHOD OF ANALYSIS 

 

5.1 Introduction 

In order to investigate the combined influence of the time-dependent behavior of buried 

pipes and soil consolidation, the finite element method was used as the method of analysis in this 

research study. The method of analysis used in the finite element modeling of creep and 

consolidation is presented in this chapter.  Different numerical procedures were used to 

understand soil consolidation and creep of buried pipes and these procedures are also presented 

in this chapter.  

 

5.2 Creep and Consolidation Analysis 

 The creep of the pipe and soil consolidation are the main time-dependent components 

considered in this study. The method of analysis is described below. 

5.2.1 Parts and Properties 

Four parts were created in the analyses: pipe backfill soil, insitu soil, trench backfill soil, 

and the pipe, as shown in Figure 5.1. The soil (backfill, trench, and insitu) and pipe parts were 

assembled to construct the pipe-soil system. Table 5.1 shows the soil properties and Table 5.2 

shows the pipe properties used in this study.  In this analysis, the permeability of soil remains 

constant over the 50-year consolidation time period (i.e., duration of the analysis).  However, it is 

possible to incorporate time-dependent permeability in the analysis as the void ratio is reduced 

during the consolidation process (Booker & Small, 1977).  Figures 5.2 and 5.3 show an example 

of different material types in a typical cross-section.  Figure 5.2 shows an HDPE pipe buried in a 

clay backfill and Figure 5.3 shows a PVC pipe with a granular backfill material.    

5.2.2 Steps in the Analysis 

First, the geostatic step was activated to ensure that equilibrium is achieved throughout 

the soil (Helwany, 2007).  For the trench backfill loading analyses (see Chapter 2, section 2.7.1), 

the trench was excavated, and then replaced in order to simulate pore pressure development 
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around the pipe.  Table 5.3 shows the time-steps used in the analysis of the trench backfill 

loading.   

During the embankment loading condition, the soil was present from the beginning. 

Gravity loading condition was used to simulate pore pressure development around the pipe. 

Table 5.4 shows time steps used for the embankment loading procedure. 

 

 

Figure 5.1: Cross-section of a pipe-soil model 
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Table 5.1: Soil properties used in the present study 

Soil Type  
 

Elastic 
Modulus, 

psi 

(kN/m2) 

Poisson’s 
Ratio  

Void 
Ratio  

Dry 
Density, 

pci 

(kg/m3) 

Permeability, 

inch/day 

(mm/day)  

Insitu Soil  
 

700 

(4826) 
0.35 0.60  

0.0501 

(1387) 

0.03404  

(0.865) 

Trench 
Backfill   

700 

(4826) 
0.35 0.60  

0.0501  

(1387) 

0.03404  

(0.865) 

Pipe Backfill  Granular  
3000 

(20684)  
0.30  0.57  

0.0845 

(2339)  

340.412  

(8646) 

 
Clay  

700 

(4826) 
0.35 0.60  

0.0501  

(1387) 

0.03404  

(0.865) 

 

Table 5.2: Pipe properties used in the present study 

    
Creep Parameters 

Pipe 
Material 

Density, 

pci 

(kg/m3) 

Elastic Modulus, 

psi 

(kN/m2) 

Poisson’s 
Ratio A n m 

PVC 
0.0499 

(1381) 

400000 

(2757903) 
0.41 1.723 x 10

-7
 1 -0.9433 

HDPE 
0.0347 

(960) 
Dependent on 
pipe diameter 0.46 1.665 x 10

-6
 1 -0.9141 
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Figure 5.2: Soil and HDPE pipe properties used in the present study 
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Figure 5.3: Soil and PVC pipe properties used in present study 
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Table 5.3: Steps used for trench backfill loading analyses 

TRENCH BACKFILL LOADING 

Step  Procedure  Time Period (days)  Increment Size  

Geostatic  Geostatic  --  -- 

Trench Excavation Soils (Transient) 0.01 0.01 

Trench Replacement Soils (Transient) 0.01 0.01 

One Day  Soils (Transient) 1  0.05  

One Month  Soils (Transient) 30  1  

One Year  Soils (Transient)  360  30  

Five Years  Soils (Transient) 1800  360  

Fifty Years  Soils (Transient) 18000  1800  
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Table 5.4: Steps used for embankment loading analyses 

EMBANKMENT LOADING 

Step  Procedure  Time Period (days)  Increment Size  

Geostatic  Geostatic  --  -- 

One Day  Soils (Transient) 1  0.05  

One Month  Soils (Transient) 30  1  

One Year  Soils (Transient)  360  30  

Five Years  Soils (Transient) 1800  360  

Fifty Years  Soils (Transient) 18000  1800  

 

 

5.2.3 Modeling of Interfaces 

The soil-pipe system shown in Figure 5.4 consists of different parts (i.e., components), 

and each of these parts were meshed independently. As such, it is necessary to define the 

interactions between these different parts. Since the soil-pipe system is considered as one single 

continuous medium, tie interactions were used to join the soil-pipe interfaces, as shown in Figure 

5.4(a). The trench backfill was allowed to slip freely against the insitu soil elements. The bottom 

boundary of the trench backfill was tied to the top boundary of the pipe-backfill.  For the 

embankment loading condition, only the soil-pipe interface was considered, as shown in Figure 

5.4(b).  
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(a) Trench loading 

 

(b) Embankment loading 

Figure 5.4: Finite element mesh show interfaces 
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5.2.4 Loading and Boundary Conditions 

A gravity loading was applied throughout the soil to act as the self-weight of the soil, as 

shown in Figure 5.5.  When a saturated soil mass is analyzed, two types of boundary conditions 

need to be specified: (a) displacement boundary conditions and (b) hydraulic boundary 

conditions (Helwany, 2007).  The vertical component of the displacement is fixed on the bottom 

and the horizontal component of displacement is fixed on the sides of the model, as shown in 

Figure 5.5.  As shown in this figure, y-symmetry was applied to the elements at the base of the 

model and x-symmetry was applied to the elements at the sides of the model. 

 

 

Figure 5.5: Loading and boundary conditions 
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5.2.5 Element Type and Mesh 

Meshing techniques in ABAQUS include structured, swept, and free as discussed 

elsewhere (Helwany, 2007).  In this study, a structured mesh was used to mesh the insitu and 

trench backfill soils.  A free mesh was used for the pipe backfill soil.  Four-noded plane-strain, 

quadrilateral, bilinear displacement, and bilinear pore pressure (CPE4P) elements were used for 

the soil elements, and 2-noded linear beam (B21) elements were used for the pipe.  The CPE4P 

elements were used for the soil because they can handle both pore fluid and stress.  This is 

necessary for consolidation analysis.  Beam elements account for shear, moment, and thrust 

forces (Desai & Abel, 1972; Cook et al., 2003).   

 

5.2.6 Drainage Conditions 

Figure 5.6 shows the drainage boundary conditions used in the analysis. There are two 

drainage boundaries: (a) surface drainage, and (b) drainage at the pipe-soil interface.   The 

drainage around the pipe causes the pore pressure to dissipate, allowing soil consolidation to 

occur (Helwany, 2007). A summary of the boundary conditions considered in this research study 

are shown in Table 5.5. 
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Figure 5.6: Drainage conditions 
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Table 5.5: Boundary conditions used in present study 

Step  Description  

Geostatic Equilibrium is obtained; gravity load is 

applied. 

Trench Excavation Removal of trench backfill soil. 

Trench Replacement Replacement of trench backfill soil. 

One Day Pore pressure dissipates at different rates, 

depending on the permeability. 

The pipe continues to creep throughout the 

duration of the 50 years. 

One Month 

One Year 

Five Years 

Fifty Years 
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5.3 Creep Analysis 

 The creep of the pipe is the main time-dependent component considered in this study.  

The method of analysis for the creep procedure is described below. The properties shown in 

Tables 5.6 and 5.7 were used in this study. The assembly, steps, time periods, and increment 

sizes are the same as the creep and consolidation analysis.  However, the procedure used for the 

creep analysis is the ‘visco’ procedure (Simulia, 2010).  Tables 5.8 and 5.9 show these steps.  

The interaction process is also the same as the creep and consolidation analysis presented in the 

previous section (refer to Figure 5.4). 

The loading and boundary conditions were the same as in the previous analysis, as shown 

in Figure 5.5.  Drainage conditions were not considered. Four-noded plane strain, quadrilateral, 

reduced integration (CPE4R) elements were used for the soil elements, and 2-noded linear beam 

(B21) elements were used for the pipe.   
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Table 5.6: Soil properties used in current study 

 

Soil Type  
 

Elastic 
Modulus,  

psi 

(kN/m2) 

Poisson’s 
Ratio  

Dry 
Density, 

pci 

(kg/m3) 

Insitu Soil  
 

700 

(4826) 
0.35 

0.0501 

(1387) 

Trench 
Backfill   

700 

(4826) 
0.35 

0.0501  

(1387) 

Pipe Backfill  Granular  
3000 

(20684)  
0.30  

0.0845 

(2339)  

 
Clay  

700 

(4826) 
0.35 

0.0501  

(1387) 

 

Table 5.7: Pipe properties used in current study 

    
Creep Parameters  

Pipe 
Material  

Density, 

pci  

(kg/m3)  

Elastic Modulus, 

psi  

(kN/m2) 

Poisson’s 
Ratio  A  n  m  

PVC  
0.0499 

(1381)  

400000 

(2757903)  
0.41  1.723 x 10

-7 
 1  -0.9433  

HDPE  
0.0347 

(960) 
Dependent on 
pipe diameter  0.46  1.665 x 10

-6 
 1  -0.9141  
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Table 5.8: Trench loading time steps used for creep analysis 

 

TRENCH BACKFILL LOADING 

Step  Procedure  Time Period  Increment Size  

Geostatic  Geostatic  --  -- 

Trench Excavation Visco 0.01 0.01 

Trench Replacement Visco 0.01 0.01 

One Day  Visco 1  0.05  

One Month  Visco 30  1  

One Year  Visco 360  30  

Five Years  Visco 1800  360  

Fifty Years  Visco 18000  1800  
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Table 5.9: Embankment loading time steps used for creep analysis 

 

EMBANKMENT LOADING 

Step  Procedure  Time Period  Increment Size  

Geostatic  Geostatic  --  -- 

One Day  Visco 1  0.05  

One Month  Visco 30  1  

One Year  Visco 360  30  

Five Years  Visco 1800  360  

Fifty Years  Visco 18000  1800  
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CHAPTER 6: RESULTS AND DISCUSSIONS 

 

6.1 Introduction 

 This research study involved the use of two-dimensional finite element analysis in order 

to evaluate the long-term performance of double-corrugated HDPE pipes and solid-wall PVC 

pipes influenced by creep of pipe material and consolidating soil medium. Time-dependent 

analyses were performed on 24-inch to 60-inch HDPE pipes and 18-inch to 24-inch PVC pipes.  

Backfill heights ranging from 10 feet to 50 feet were selected. When the trench backfill height 

was 10 feet to 20 feet, a trench excavation and replacement procedure was performed.  

Embankment loading was simulated on backfill heights ranging from 30 feet to 50 feet.  Two 

pipe backfill materials, namely granular stone and clay, were considered. The deflection of the 

pipe undergoing creep was studied and compared with the pipe deflecting under the influence of 

both creep of the pipe and soil consolidation. Trench-width ratios (see Chapter 1 for definition) 

ranging from 1.5 to 2.5 were selected.   

 

6.2 Results of HDPE Pipes Influenced by Creep and Soil Consolidation 

 Analyses were performed on 24-inch, 36-inch, 48-inch, and 60-inch diameter double-wall 

corrugated HDPE pipes under a gravity loading (simulating the self-weight of the soil).  Backfill 

heights of 10 feet, 20 feet, 30 feet, and 50 feet were considered, as well as trench-width ratios of 

1.5, 2.0, and 2.5.  The deformation of HDPE pipe caused by the combination of creep of the pipe 

material and the consolidation of soil around the pipe was the focus of this study.  These 

deformations were compared to the deformations caused only by the creep of the HDPE pipe 

material.  In this section, the response of a 60-inch double-corrugated HDPE pipe buried under 

different trench-width ratios, trench backfill heights, and pipe backfill material (granular and 

clay) is presented. Summary of results for other pipe sizes is given in this section.  Table 6.1 

shows the case studies performed on HDPE pipes buried in clay. Table 6.2 shows the case 

studies performed on HDPE pipes buried in granular stone.  These case studies were performed 

based on two separate loading conditions (loading due to trench backfill and due to embankment 

construction) and details are given below. 
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Table 6.1: Case studies for HDPE pipe placed in clay backfill material 

HDPE Creep + Consolidation Analyses: Clay Pipe Backfill 

 

Diameter: 24-

inch 

Diameter: 36-

inch 

Diameter: 48-

inch 

Diameter: 60-

inch 

# of Cases 

Trench-Width 

Ratio 
1.5 2.0 2.5 1.5 2.0 2.5 1.5 2.0 2.5 1.5 2.0 2.5 

Depth: 10 feet X X X X X X X X X X X X 12 

Depth: 20 feet X X X X X X X X X X X X 12 

Depth: 30 feet X X X X X X X X X X X X 12 

Depth: 50 feet X X X X X X X X X X X X 12 

 

Table 6.2: Case studies for HDPE pipe placed in granular stone backfill material 

HDPE Creep + Consolidation Analyses: Granular Pipe Backfill 

 

Diameter: 24-

inch 

Diameter: 36-

inch 

Diameter: 48-

inch 

Diameter: 60-

inch 

# of Cases 

Trench-Width 

Ratio 
1.5 2.0 2.5 1.5 2.0 2.5 1.5 2.0 2.5 1.5 2.0 2.5 

Depth: 10 feet X X X X X X X X X X X X 12 

Depth: 20 feet X X X X X X X X X X X X 12 

Depth: 30 feet X X X X X X X X X X X X 12 

Depth: 50 feet X X X X X X X X X X X X 12 
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6.2.1 Trench Loading 

 Trench backfill loading was considered for backfill heights of 10 feet and 20 feet.  Figure 

6.1 shows the displacements of a 60-inch diameter HDPE pipe at the end of 50 years for soil 

influenced by self-weight at a trench–width ratio of 2.0 and a backfill height of 20 feet placed in 

granular stone backfill material.  

 

 

Note: Displacements are given in inches 

Figure 6.1: Displacements of a 60-inch HDPE pipe buried in granular material under 20 feet of 
trench backfill and a trench width ratio of 2.0  

 

6.2.2 Embankment Loading 

 Embankment loading was considered for pipes buried at trench backfill heights of 30 feet 

and 50 feet.  Figure 6.2 shows the 50 year deformation of a 60-inch diameter HDPE pipe for soil 

influenced by the self-weight of soil at a trench–width ratio of 2.0 and a backfill height of 50 feet 

placed in granular stone backfill material. 
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Note: Displacements are given in inches 

Figure 6.2: Displacements of a 60-inch HDPE pipe buried in granular material under 50 feet of 
trench backfill and at a trench width ratio of 2.0  

 

6.2.3 Influence of Pipe Backfill Material 

A comparison of displacements for a 60-inch diameter HDPE pipe with a trench-width 

ratio of 2.0 under different backfill materials and backfill heights are presented. Figure 6.3 

compares the deflection of HDPE pipe buried in different pipe backfill materials: granular and 

clay backfill material. As can be seen from this figure, pipes placed in clay material deflect more 

than pipes placed in granular stone backfill material.   Figures 6.4 and 6.5 compare the pipe 

deflections of an HDPE pipe installed under increasing backfill heights.  As the backfill height 

increases, the deflection of the pipe also increases.   
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Figure 6.3: Vertical pipe deflection for a 60-inch HDPE pipe installed at a depth of 50 feet 
 

 

 

Figure 6.4: Deflections of a 60-inch HDPE pipe with clay backfill material  

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 10 20 30 40 50 60

Ve
rt

ic
al

 D
ef

le
ct

io
n 

(%
)

Time (Years)

Granular
Clay

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 10 20 30 40 50 60

Ve
rt

ic
al

 D
ef

le
ct

io
n 

(%
)

Time (Years)

10 ft
20 ft
30 ft
50 ft



75 
 

 

Figure 6.5: Deflections of a 60-inch HDPE pipe with granular stone backfill material  
 

6.2.4 Influence of Trench-Width Ratio 

Figures 6.6 and 6.7 compare the vertical deflection of the 60-inch HDPE pipe under 

increasing backfill heights, as well as trench-width ratios of 1.5, 2.0, and 2.5.  There is not a 

significant difference of pipe deflections based upon the trench-width ratio when the pipe is 

placed in clay backfill.  For the HDPE pipe buried in granular material, it can be noted that a 

greater trench-width ratio gives a lesser deflection.  These results indicate that smaller trench- 

width ratios may be used without causing significant increase in pipe deflections. However, the 

influence of trench width ratio on pipe deflections depends on pipe diameter and the backfill 

material. 
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Figure 6.6: Effect of trench-width for a 60-inch HDPE pipe with clay backfill material 
 

 

Figure 6.7: Effect of trench-width for a 60-inch HDPE pipe with granular backfill material 
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6.2.5 Influence of Pipe Diameter 

In order to investigate the influence of pipe diameter, a trench width ratio of 2.0 was 

selected. Figures 6.8 and 6.9 compare the deflection of various HDPE pipe diameters installed at 

different depths.  As expected, the numerical models show that larger diameter pipes deflect 

more than the smaller diameter pipes.  Also, as the backfill height increases, the pipe deflection 

increases. The pipe deflection did not reach 5% in any of the cases, which is considered as the 

failure criterion. These results show that a 60-inch HDPE pipe can be buried to depths as high as 

50 feet without causing significant pipe deflections.  

 

Figure 6.8: Deflection of various HDPE pipe diameters with clay backfill material  
 

0

0.5

1

1.5

2

2.5

0 10 20 30 40 50 60

De
fo

rm
at

io
n 

(in
ch

es
)

Backfill Height (ft)

24 inch 36 inch 48 inch 60 inch



78 
 

 

Figure 6.9: Deflection of various HDPE pipe diameters with granular stone 
 

 

6.3 Creep Response of HDPE Pipes 

The creep response of a 60-inch double-corrugated HDPE pipe buried under different 

trench-width ratios, trench backfill heights, and pipe backfill material (granular and clay) is 

presented in this section.  Only a limited number of cases were completed for the creep study 
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heights.  As the backfill height increases, the deflection of the pipe also increases.   These figures 

show that the pipe deflections are smaller than 5% during the 50-year period. 
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Figure 6.10: Vertical pipe deflection for a 60-inch HDPE pipe installed at a depth of 50 feet 
 

 

 

Figure 6.11: Deflections of a 60-inch HDPE pipe with clay backfill material  
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Figure 6.12: Deflections of a 60-inch HDPE pipe with granular stone backfill   
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Appendix B). 
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Figure 6.13: Comparison of pipe deflection under trench backfill height of 50 feet with clay  
backfill 

 

6.5 Summary of Results for HDPE Pipes 
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width ratio on pipe deflections depends on pipe diameter and the backfill material. 
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Table 6.3: Deflection of HDPE pipe (inches) 

HDPE Creep + Consolidation Analyses: Clay Pipe Backfill  

 
Diameter: 24-inch Diameter: 36-inch Diameter: 48-inch Diameter: 60-inch 

Trench-

Width 

Ratio 

1.5 2.0 2.5 1.5 2.0 2.5 1.5 2.0 2.5 1.5 2.0 2.5 

Depth: 

10 feet 
0.110 0.095 0.093 0.138 0.145 0.126 0.254 0.135 0.174 0.148 0.135 0.153 

Depth: 

20 feet 
0.165 0.198 0.131 0.173 0.154 0.183 0.151 0.155 0.206 0.138 0.148 0.200 

Depth: 

30 feet 
0.585 0.586 0.586 0.832 0.831 0.831 1.07 1.05 1.05 1.27 1.29 1.29 

Depth: 

50 feet 
1.00 1.00 1.00 1.44 1.44 1.44 1.89 1.84 1.84 2.29 2.29 2.29 
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Table 6.4: Deflection of HDPE pipe (percentage) 

 

 

Table 6.5 shows the pipe deflections for HDPE pipes with granular stone backfill under 

the combined influence of creep and consolidation. Table 6.6 shows pipe deflections for the 

same cases as a percentage of pipe diameters. As can be seen from these tables, none of the pipes 

with granular stone backfill reach 5% pipe deflection under the combined influence of creep and 

consolidation. The conclusions that can be drawn from the results for granular backfill materials 

are similar to those for clay backfill materials, and none of the pipes reach 5% pipe deflections 

under the self-weight of soil. 

  

HDPE Creep + Consolidation Analyses: Clay Pipe Backfill 

 
Diameter: 24-inch Diameter: 36-inch Diameter: 48-inch Diameter: 60-inch 

Trench-

Width 

Ratio 

1.5 2.0 2.5 1.5 2.0 2.5 1.5 2.0 2.5 1.5 2.0 2.5 

Depth: 

10 feet 
0.458 0.396 0.388 0.383 0.403 0.350 0.529 0.281 0.363 0.247 0.225 0.255 

Depth: 

20 feet 
0.688 0.825 0.546 0.481 0.428 0.508 0.315 0.323 0.429 0.230 0.247 0.333 

Depth: 

30 feet 
2.438 2.442 2.442 2.311 2.308 2.308 2.229 2.188 2.188 2.117 2.150 2.150 

Depth: 

50 feet 
4.167 4.167 4.167 4.000 4.000 4.000 3.938 3.833 3.833 3.817 3.817 3.817 
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Table 6.5: Deflection of HDPE pipe (inches) 

HDPE Creep + Consolidation Analyses: Granular Pipe Backfill 

 
Diameter: 24-inch Diameter: 36-inch Diameter: 48-inch Diameter: 60-inch 

Trench-

Width 

Ratio 

1.5 2.0 2.5 1.5 2.0 2.5 1.5 2.0 2.5 1.5 2.0 2.5 

Depth: 

10 feet 
0.111 0.098 0.093 0.166 0.170 0.156 0.389 0.221 0.244 0.284 0.287 0.283 

Depth: 

20 feet 
0.200 0.184 0.152 0.276 0.254 0.256 0.359 0.352 0.360 0.443 0.451 0.456 

Depth: 

30 feet 
0.385 0.356 0.342 0.589 0.555 0.540 0.804 0.745 0.728 1.00 0.977 0.957 

Depth: 

50 feet 
0.645 0.592 0.566 0.993 0.929 0.900 1.36 1.25 1.21 1.74 1.64 1.60 
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Table 6.6: Deflection of HDPE pipe (percentage) 

HDPE Creep + Consolidation Analyses: Granular Pipe Backfill 

 
Diameter: 24-inch Diameter: 36-inch Diameter: 48-inch Diameter: 60-inch 

Trench-

Width 

Ratio 

1.5 2.0 2.5 1.5 2.0 2.5 1.5 2.0 2.5 1.5 2.0 2.5 

Depth: 

10 feet 
0.463 0.408 0.388 0.461 0.472 0.433 0.810 0.460 0.508 0.473 0.478 0.472 

Depth: 

20 feet 
0.833 0.767 0.633 0.767 0.706 0.711 0.748 0.733 0.750 0.738 0.752 0.760 

Depth: 

30 feet 
1.604 1.483 1.425 1.636 1.542 1.500 1.675 1.552 1.517 1.667 1.628 1.595 

Depth: 

50 feet 
2.688 2.467 2.358 2.758 2.581 2.500 2.833 2.604 2.521 2.900 2.733 2.667 
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6.6 Results of Solid-Wall PVC Pipes Influenced by Creep and Soil Consolidation 

 Analyses were performed on 18-inch and 24-inch diameter solid-wall PVC pipes under a 

gravity loading (simulating the self-weight of the soil).  Backfill heights of 10 feet, 20 feet, 30 

feet, and 50 feet were considered, as well as trench-width ratios of 1.5, 2.0, and 2.5.  The 

deformation of PVC pipes caused by the combination of creep of the pipe material and the 

consolidation of soil around the pipe was the main focus of this study.  In this section, the 

response of a 24-inch solid-wall PVC pipe buried under different trench-width ratios, trench 

backfill heights, and pipe backfill material (granular and clay) is presented. Summary of results 

for other pipe sizes is given in this section.  Table 6.7 shows the case studies performed on PVC 

pipes with clay backfill.  Table 6.8 shows the case studies performed on PVC pipes with granular 

stone backfill.  These cases were analyzed by using the finite element method for two separate 

loading conditions (loading due to trench backfill and due to embankment construction) and 

results are given below. The numerical procedures are presented in an earlier section of this 

report (see Section 6.2 regarding HDPE pipes). 

 

Table 6.7: Cases for PVC pipe buried in clay and influenced by creep and soil consolidation 

PVC Creep + Consolidation Analyses: Clay Pipe Backfill 

 
Diameter: 18-inch Diameter: 24-inch 

# of Cases 
Trench-Width 

Ratio 
1.5 2.0 2.5 1.5 2.0 2.5 

Depth: 10 feet X X X X X X 6 

Depth: 20 feet X X X X X X 6 

Depth: 30 feet X X X X X X 6 

Depth: 50 feet X X X X X X 6 
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Table 6.8: Cases for PVC pipe buried in granular material and influenced by creep and soil 

consolidation 

PVC Creep + Consolidation Analyses: Granular Pipe Backfill 

 
Diameter: 18-inch Diameter: 24-inch 

# of Cases 
Trench-Width 

Ratio 
1.5 2.0 2.5 1.5 2.0 2.5 

Depth: 10 feet X X X X X X 6 

Depth: 20 feet X X X X X X 6 

Depth: 30 feet X X X X X X 6 

Depth: 50 feet X X X X X X 6 
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6.6.1 Trench Loading 

 Trench backfill loading was considered for backfill heights of 10 feet and 20 feet.  Figure 

6.14 shows the displacements of a 24-inch diameter PVC pipe at the end of 50 years for soil 

influenced by self-weight at a trench-width ratio of 2.0 and a backfill height of 20 feet with 

granular stone backfill material.  

   

 

Note: Displacements are given in inches 

Figure 6.14: Displacements of a 24-inch PVC pipe buried in granular material under 20 feet of 
trench backfill and at a trench width ratio of 2.0  
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6.6.2 Embankment Loading 

 Embankment loading was considered for pipes buried at trench backfill heights of 30 feet 

and 50 feet.  Figure 6.15 shows the 50 year deformation of a 24-inch diameter PVC pipe for soil 

influenced by the self-weight of soil at a trench-width ratio of 2.0 and a backfill height of 50 feet 

with granular stone backfill material.  

 

Note: Displacements are given in inches 

Figure 6.15: Displacements of a 24-inch PVC pipe buried in granular material under 50 feet of 
trench backfill and a TW ratio of 2.0  
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6.6.3 Influence of Pipe Backfill Material 

A comparison of displacements for a 24-inch diameter PVC pipe with a trench-width 

ratio of 2.0 under different backfill materials and backfill heights are presented. Figure 6.16 

compares the deflection of HDPE pipe buried in different pipe backfill materials: granular and 

clay backfill material. As can be seen from this figure, pipes in clay material deflect more than 

pipes in granular stone backfill material.   Figures 6.17 and 6.18 compare the pipe deflections of 

a PVC pipe installed under increasing backfill heights.  As the backfill height increases, the 

deflection of the pipe also increases.   

 

 

Figure 6.16: Vertical pipe deflection for a 24-inch PVC pipe installed at a depth of 50 feet 
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Figure 6.17: Pipe deflections for a 24-inch PVC pipe with clay backfill material  
 

 

Figure 6.18: Pipe deflections for a 24-inch PVC pipe with granular stone backfill 
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6.6.4 Influence of Trench-width Ratio 

Figures 6.19 and 6.20 compare the vertical deflection of the 24-inch PVC pipe under 

increasing backfill heights, as well as trench-width ratios of 1.5, 2.0, and 2.5.  There is not a 

significant difference of pipe deflections based upon the trench-width ratio when the pipe is in 

clay backfill material.  For the PVC pipe buried in granular material, it can be noted that a 

greater trench-width ratio gives a lesser deflection.  These results indicate that smaller trench-

width ratios may be used without causing significant increase in pipe deflections. However, the 

influence of trench-width ratio on pipe deflections depends on pipe diameter and the backfill 

material. 

 

 

Figure 6.19: Effect of trench-width ratio for a 24-inch PVC pipe with clay backfill 
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Figure 6.20: Effect of trench-width ratio for a 24-inch PVC pipe with granular backfill 
 

 

6.6.5 Influence of Pipe Diameter 

In order to investigate the influence of pipe diameter, a trench width ratio of 2.0 was 

selected. Figures 6.21 and 6.22 compare the deflection of various PVC pipe diameters installed 

at different depths.  As expected, the numerical models show that larger diameter pipes deflect 

more than the smaller diameter pipes.  Also, as the backfill height increases, the pipe deflection 

increases. The pipe deflection did not reach 5% in any of the cases shown in these figures, which 

is considered as the failure criterion. These results show that a 24-inch PVC pipe can be buried to 

depths as high as 50 feet without causing significant pipe deflections.  
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Figure 6.21: Deflection of various PVC pipe diameters with clay backfill material  
 

 

Figure 6.22: Deflection of various PVC pipe diameters with granular stone backfill 
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section.  Only a limited number of cases were completed for the creep study since the objective 

of this study was to investigate the combined influence of creep and consolidation. Results for all 

of the cases investigated are presented in Appendix A, and a summary is presented below. 

A comparison of creep displacements for a 24-inch diameter PVC pipe with a trench-

width ratio of 2.0 under different backfill materials and backfill heights are presented for a 50-

year period in Figures 6.23 to 6.25.  Figure 6.23 compares the deflection of PVC pipe buried in 

different pipe backfill materials: granular and clay backfill material. As can be seen from this 

figure, pipes buried in clay material deflect more than pipes buried in granular material.   Figures 

6.24 and 6.25 compare the pipe deflections of a PVC pipe installed under increasing backfill 

heights.  As the backfill height increases, the deflection of the pipe also increases.   These figures 

show that the pipe deflections are smaller than 5% during the 50-year period. 

 

 

Figure 6.23: Vertical pipe deflection for a 24-inch PVC pipe installed at a depth of 50 feet 
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Figure 6.24: Pipe deflections for a 24-inch PVC pipe with clay backfill material  
 

 

Figure 6.25: Pipe deflections for a 24-inch PVC pipe with granular stone backfill 
 

 

 

0

0.5

1

1.5

2

2.5

3

3.5

0 10 20 30 40 50 60

Ve
rt

ic
al

 D
ef

le
ct

io
n 

(%
)

Time (Years)

10 ft

20 ft

30 ft

50 ft

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

10 15 20 25 30 35 40 45 50 55 60

Ve
rt

ic
al

 D
ef

le
ct

io
n 

(%
)

Time (Years)

10 ft
20 ft
30 ft
50 ft



97 
 

6.8 Combined Influence of Creep and Consolidation 

Figure 6.26 compares the vertical deflection of a 24-inch PVC pipe under different 

conditions: (a) only creep of the pipe material and (b) the combined influence of creep and soil 

consolidation.  Buried pipes influenced by both time-dependent properties of creep and soil 

consolidation have a slightly lesser deflection than those only influenced by creep. This could be 

due to the fact that the soil weight acts instantaneously on the pipe when there is no 

consolidation, which in turn gives rise to higher creep rates at the beginning. 

 

 

Figure 6.26: Comparison of pipe deflection for 24-inch PVC pipe under 50 feet of backfill in a 
trench-width of 2.0 with clay backfill 
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6.9 Summary of Results for PVC Pipes 

Analyses of cases shown in Table 6.7 and Table 6.8 were completed in a manner similar 

to what was presented in the previous section. Table 6.9 shows the pipe deflections for PVC 

pipes with clay backfill under the combined influence of creep and consolidation. Table 6.10 

shows pipe deflections for the same cases as a percentage of pipe diameters. As can be seen from 

these tables, none of the pipes reach 5% pipe deflection under the combined influence of creep 

and consolidation. As can be seen from these tables, even for the cases corresponding to trench- 

width ratio of 1.5, the pipes did not reach 5% deflections under the self-weight of soil. These 

results suggest the possibility of using smaller trench-width ratios. However, the influence of 

trench-width ratio on pipe deflections depends on pipe diameter and the backfill material. 

 

Table 6.9: Deflection of PVC pipe (inches) 

 

PVC Creep+ Consolidation Analyses: Clay Pipe Backfill 

 
Diameter: 18-inch Diameter: 24-inch 

Trench-

Width Ratio 
1.5 2.0 2.5 1.5 2.0 2.5 

Depth: 10 

feet 
0.057 0.044 0.040 0.054 0.042 0.042 

Depth: 20 

feet 
0.084 0.046 0.036 0.064 0.030 0.037 

Depth: 30 

feet 
0.338 0.338 0.339 0.0430 0.431 0.432 

Depth: 50 

feet 
0.576 0.578 0.578 0.744 0.746 0.747 
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Table 6.10: Deflection of PVC pipe (percentage) 

 

PVC Creep + Consolidation Analyses: Clay Pipe Backfill 

 
Diameter: 18-inch Diameter: 24-inch 

Trench-

Width Ratio 
1.5 2.0 2.5 1.5 2.0 2.5 

Depth: 10 

feet 
0.317 0.244 0.222 0.225 0.175 0.175 

Depth: 20 

feet 
0.467 0.256 0.200 0.267 0.125 0.154 

Depth: 30 

feet 
1.878 1.878 1.883 0.179 1.796 1.800 

Depth: 50 

feet 
3.200 3.211 3.211 3.100 3.108 3.113 

 

Table 6.11 shows the pipe deflections for PVC pipes with granular stone backfill under 

the combined influence of creep and consolidation. Table 6.12 shows pipe deflections for the 

same cases as a percentage of pipe diameters. As can be seen from these tables, none of the pipes 

with granular stone backfill reach 5% pipe deflection under the combined influence of creep and 

consolidation. The conclusions that can be drawn from the results for granular backfill materials 

are similar to those for clay backfill materials, and none of the pipes reach 5% pipe deflections 

under the self-weight of soil. 
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Table 6.11: Deflection of PVC pipes (inches) 

 

PVC Creep + Consolidation  Analyses: Granular Pipe Backfill 

 
Diameter: 18-inch Diameter: 24-inch 

Trench-

Width 

Ratio 

1.5 2.0 2.5 1.5 2.0 2.5 

Depth: 10 

feet 
0.056 0.042 0.037 0.066 0.052 0.049 

Depth: 20 

feet 
0.105 0.069 0.056 0.116 0.080 0.074 

Depth: 30 

feet 
0.200 0.170 0.157 0.256 0.223 0.211 

Depth: 50 

feet 
0.334 0.284 0.260 0.431 0.374 0.351 
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Table 6.12: Deflection of PVC pipe (percentage) 

 

PVC Creep + Consolidation Analyses: Granular Pipe Backfill 

 
Diameter: 18-inch Diameter: 24-inch 

Trench-

Width 

Ratio 

1.5 2.0 2.5 1.5 2.0 2.5 

Depth: 10 

feet 
0.311 0.233 0.206 0.275 0.217 0.204 

Depth: 20 

feet 
0.583 0.383 0.311 0.483 0.333 0.308 

Depth: 30 

feet 
1.111 0.944 0.872 1.067 0.929 0.879 

Depth: 50 

feet 
1.856 1.578 1.444 1.796 1.558 1.463 

 

 

6.10 Comparison of HPDE and PVC Pipe Materials 

This research study compared the vertical deflections of both HDPE and PVC pipe 

materials.  The vertical deflections of 24-inch HDPE and PVC pipes buried under 20 feet of 

trench backfill, and under the influence of both creep and soil consolidation, are compared in 

Figure 6.27.  In Figure 6.28, the deflections of both pipe materials buried under 50 feet of trench 

backfill are compared. 
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Figure 6.27: Comparison of both pipe materials: 24-inch diameter with granular backfill under a 
trench backfill height of 50 feet and with a trench-width ratio of 2.0  

 

 

Figure 6.28: Comparison of both pipe materials: 24-inch diameter with clay backfill under a 
trench backfill height of 50 feet and with a trench-width ratio of 2.0 

0

0.5

1

1.5

2

2.5

3

0 10 20 30 40 50 60

Ve
rt

ic
al

 D
ef

le
ct

io
n 

(%
)

Time (Years)

HDPE

PVC

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 10 20 30 40 50 60

Ve
rt

ic
al

 D
ef

le
ct

io
n 

(%
)

Time (Years)

HDPE

PVC



103 
 

6.11 Influence of Drainage Conditions 

In this study, two drainage boundary conditions were used: one at the ground surface, and 

the other at the pipe/soil interface. In order to investigate the influence of draining conditions on 

pipe deflections, the soil/pipe interface drainage condition was suppressed and the deflection of 

the pipe was computed. The deflection of a 60-inch diameter HDPE pipe buried at a depth of 50 

feet and a trench-width ratio of 2.0 was selected for this study, and the results are shown in 

Figure 6.29. As can be seen from this figure, the worst-case scenario happens when both 

drainage boundary conditions are invoked. 

 

Figure 6.29: Comparison of drainage boundary conditions 
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CHAPTER 7: SUMMARY AND CONCLUSIONS 

 

7.1 Summary 

The objective of this research work was to investigate the time-dependent performance of 

buried pipes in a consolidating soil medium.  Two types of analyses were performed: buried 

pipes influenced by both creep and soil consolidation, and buried pipes only influenced by creep.  

The deflections of these pipes were compared to one another. Granular stone material and clay 

material were the two types of pipe backfill material considered in this study.  Different drainage 

conditions were simulated, as well as different external soil loadings, dependent on the depth of 

burial of the pipe.  Various pipe diameters and trench-width ratios were also considered.  The 

soil-pipe system was a very important aspect of this research study due to the interface and the 

process of soil consolidation around the pipe.   

For this study, solid-wall polyvinyl chloride (PVC) pipes with diameters ranging from 

18-inches to 24-inches and double-wall corrugated high-density polyethylene (HDPE) pipes with 

diameters ranging from 24-inches to 60-inches were selected.  Trench backfill heights of 10 feet, 

20 feet, 30 feet, and 50 feet were considered, as well as trench-width ratios of 1.5, 2.0, and 2.5.  

A gravity loading was placed throughout the soil to act as the self-weight of the soil.  This was 

the only load acting on the pipe.   

 

7.2 Conclusions 

The following conclusions were made based upon the results of the research work: 

• As the trench backfill height increases, the pipe deflections increase. 

• Pipes with clay backfill materials deflect more than the pipes with granular stone backfill 

material.  

• The creep analysis (without consolidation) gives slightly higher displacements than the 

creep and soil consolidation analysis since the load on the pipe is applied instantaneously. 

On average, about 80% of the pipe deflection occurs within the first day with only creep 
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being the time-dependent property acting on the pipe. In the consolidation analysis, the 

load on the pipe changes as the pore pressure dissipates as a function of time.  About 20% 

to 50% of the pipe deflection occurs within the first day. 

• A trench-width ratio of 1.5 causes the pipe to have a slightly higher deformation than the 

trench-width ratios of 2.0 and 2.5.  However, for some of the analyses (mainly pipes in 

clay pipe backfill material), the trench-width ratio does not cause a significant change in 

pipe deflection. 

• HDPE pipes deflect more than pipes made of PVC due to the material modulus. 

• Buried pipes have a higher deflection when surface and soil/pipe interface drainage 

occurs than when surface drainage is the only drainage boundary considered. 

 

7.3 Future Recommendations 

• Consider a soil model with changing permeability values and void ratios as the 

consolidation process occurs. 

• Consider controlled low strength material (CLSM) for the pipe backfill. 

• Perform the same study but consider rigid pipes; the soil-arching phenomenon may play 

an important role in the deflections of the pipes. 

• Consider different types of HDPE and PVC pipes, i.e. corrugated PVC pipes, single-wall 

corrugated HDPE pipes. 

• Study the effects of placing a geosynthetic above the conduit. 

• Allow the soil to be partially saturated instead of assuming 100% saturation. 
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APPENDIX A: CREEP RESULTS 

 

Analyses of cases shown in Table A.1 and Table A.2 were completed in a manner similar 

to what was presented in Chapter 6, Section 6.3 of the report.  Table A.1 shows the pipe 

deflections for HDPE pipes with clay backfill under the influence of creep.  Table A.2 shows 

pipe deflections for the same cases as a percentage of pipe diameters. As can be seen from these 

tables, none of the pipes reach 5% pipe deflection under the combined influence of creep and 

consolidation. As can be seen from these tables, even for the cases corresponding to trench-width 

ratio of 1.5, the pipes did not reach 5% deflections under the self-weight of soil. These results 

suggest the possibility of using smaller trench width ratios. However, the influence of trench-

width ratio on pipe deflections depends on pipe diameter and the backfill material. 

 

Table A.1: Deflection of HDPE pipe installed in clay material (inches) 

HDPE Creep Analyses: Clay Pipe Backfill 

 
Diameter: 24-inch Diameter: 60-inch 

Trench-Width 

Ratio 
1.5 2.0 2.5 1.5 2.0 2.5 

Depth: 10 feet -- 0.130 -- -- 0.337 -- 

Depth: 20 feet -- 0.176 -- -- 0.478 -- 

Depth: 30 feet -- 0.616 -- -- 1.60 -- 

Depth: 50 feet -- 1.02 -- 2.62 2.62 2.63 
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Table A.2: Deflection of HDPE pipe installed in clay material (percentage) 

HDPE Creep Analyses: Clay Pipe Backfill 

 
Diameter: 24-inch Diameter: 60-inch 

Trench-Width 

Ratio 
1.5 2.0 2.5 1.5 2.0 2.5 

Depth: 10 feet -- 0.542 -- -- 0.562 -- 

Depth: 20 feet -- 0.733 -- -- 0.797 -- 

Depth: 30 feet -- 2.567 -- -- 2.667 -- 

Depth: 50 feet -- 4.250 -- 4.367 4.367 4.383 

 

 

Table A.3 shows the pipe deflections for HDPE pipes with granular stone backfill under 

the influence of creep.  Table A.4 shows pipe deflections for the same cases as a percentage of 

pipe diameters. As can be seen from these tables, none of the pipes with granular stone backfill 

reach 5% pipe deflection under the combined influence of creep and consolidation. The 

conclusions that can be drawn from the results for granular backfill materials are similar to those 

for clay backfill materials, and none of the pipes reach 5% pipe deflections under the self-weight 

of soil. 
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Table A.3: Deflection of HDPE pipe installed in granular stone (inches) 

HDPE Creep Analyses: Granular Pipe Backfill 

 
Diameter: 24-inch Diameter: 60-inch 

Trench-Width 

Ratio 
1.5 2.0 2.5 1.5 2.0 2.5 

Depth: 10 feet -- 0.388 -- -- 0.316 -- 

Depth: 20 feet -- 0.144 -- -- 0.484 -- 

Depth: 30 feet -- 0.366 -- -- 1.09 -- 

Depth: 50 feet -- 0.599 -- 1.91 1.75 1.66 

 

Table A.4: Deflection of HDPE pipe installed in granular material (percentage) 

HDPE Creep Analyses: Granular Pipe Backfill 

 
Diameter: 24-inch Diameter: 60-inch 

Trench-Width 

Ratio 
1.5 2.0 2.5 1.5 2.0 2.5 

Depth: 10 feet -- 1.617 -- -- 0.527 -- 

Depth: 20 feet -- 0.600 -- -- 0.807 -- 

Depth: 30 feet -- 1.525 -- -- 1.817 -- 

Depth: 50 feet -- 2.496 -- 3.183 2.917 2.767 
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Analyses of cases shown in Table A.5 and Table A.6 were completed in a manner similar 

to what was presented in Chapter 6, Section 6.7, of the report. Table A.5 shows the pipe 

deflections for PVC pipes with clay backfill under the combined influence of creep.  Table A.6 

shows pipe deflections for the same cases as a percentage of pipe diameters. As can be seen from 

these tables, none of the pipes reach 5% pipe deflection under the combined influence of creep 

and consolidation. As can be seen from these tables, even for the cases corresponding to trench- 

width ratio of 1.5, the pipes did not reach 5% deflections under the self-weight of soil. These 

results suggest the possibility of using smaller trench-width ratios. However, the influence of 

trench-width ratio on pipe deflections depends on pipe diameter and the backfill material. 

 

Table A.5: Deflection of PVC pipe installed in clay backfill material (inches) 

PVC Creep Analyses: Clay Pipe Backfill 

 
Diameter: 24-inch 

Trench-Width Ratio 1.5 2.0 2.5 

Depth: 10 feet 0.090 0.080 -- 

Depth: 20 feet 0.107 0.087 -- 

Depth: 30 feet 0.468 0.471 -- 

Depth: 50 feet 0.772 0.777 -- 
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Table A.6: Deflection of PVC pipe installed in clay backfill material (percentage) 

PVC Creep Analyses: Clay Pipe Backfill 

 
Diameter: 24-inch 

Trench-Width Ratio 1.5 2.0 2.5 

Depth: 10 feet 0.375 0.333 -- 

Depth: 20 feet 0.446 0.363 -- 

Depth: 30 feet 1.950 1.963 -- 

Depth: 50 feet 3.217 3.238 -- 

 

 

Table A.7 shows the pipe deflections for PVC pipes with granular stone backfill under 

the influence of creep.  Table A.8 shows pipe deflections for the same cases as a percentage of 

pipe diameters. As can be seen from these tables, none of the pipes with granular stone backfill 

reach 5% pipe deflection under the combined influence of creep and consolidation. The 

conclusions that can be drawn from the results for granular backfill materials are similar to those 

for clay backfill materials, and none of the pipes reach 5% pipe deflections under the self-weight 

of soil. 
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Table A.7: Deflection of PVC pipe installed in granular stone backfill material (inches) 

PVC Creep Analyses: Granular Pipe 

Backfill 

 
Diameter: 24-inch 

Trench-Width Ratio 1.5 2.0 2.5 

Depth: 10 feet 0.066 0.049 -- 

Depth: 20 feet 0.098 0.067 -- 

Depth: 30 feet 0.280 0.234 -- 

Depth: 50 feet 0.458 0.383 -- 

 

Table A.8: Deflection of PVC pipe installed in granular stone backfill material (percentage) 

PVC Creep Analyses: Granular Pipe 

Backfill 

 
Diameter: 24-inch 

Trench-Width Ratio 1.5 2.0 2.5 

Depth: 10 feet 0.275 0.204 -- 

Depth: 20 feet 0.408 0.279 -- 

Depth: 30 feet 1.167 0.975 -- 

Depth: 50 feet 1.908 1.596 -- 
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APPENDIX B: COMPARISON OF TIME-DEPENDENT PIPE DEFLECTIONS 

 

Table B.1: Comparison of pipe deflections (percentage) 

24-inch HDPE Pipe with a TW of 2.0 in Clay  

  One 
Day  One 

Month  One 
Year  Five 

Years  Fifty 
Years  

Creep + Consolidation 
Conditions  

10 feet  18.2  79.4  86.4  91.9  100  

20 feet  10.0  77.0  87.2  92.3  100  

30 feet  43.2  84.6  92.6  95.6  100  

50 feet  41.9  81.7  92.8  95.8  100  

       

Creep Condition  

10 feet  81.7  86.0  90.7  94.5  100  

20 feet  77.4  82.6  88.4  93.1  100  

30 feet  86.9  90.1  93.5  96.1  100  

50 feet  86.9  90.1  93.5  96.1  100  
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Table B.2: Comparison of pipe deflections (percentage) 

24-inch HDPE Pipe with a TW of 2.0 in Granular Stone  

  One 
Day  One 

Month  One 
Year  Five 

Years  Fifty 
Years  

Creep + Consolidation 
Conditions  

10 feet  60.8  84.9  90.1  94.2  100  

20 feet  56.0  84.1  89.9  94.0  100  

30 feet  54.1  86.7  92.2  95.4  100  

50 feet  53.1  85.3  92.3  95.4  100  

       

Creep Condition  

10 feet  80.7  85.4  90.4  94.3  100  

20 feet  78.1  83.4  89.1  93.6  100  

30 feet  84.8  88.5  92.4  95.5  100  

50 feet  84.8  88.5  92.5  95.6  100  
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