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ABSTRACT 
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Identification Systems 
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1 Introduction 

1.1 Overview 

Humans have used body characteristics such as face, and voice for thousands of years to recognize each 

other. Reliable recognition is important for many applications, such as law enforcement, border control, or 

access control. Law enforcement agencies charged with the responsibility of investigating the evidence 

from cases involving violent crime, missing persons and mass disaster scenarios, have exploited 

biometrics for decades as key forensic recognition tools. With the evolution in information technology and 

the huge volume of cases that need to be investigated by forensic specialists, automation of forensic 

identification became inevitable. 

1.1.1 Automated Dental Identification System (ADIS) 

Post-Mortem (PM) identification i.e. identification after death, is a more difficult problem than Ante-

Mortem (AM) identification, since few biometric characteristics can resist early decay of body tissues as 

well as withstand severe conditions usually encountered in mass disasters. Dental features are the best 

candidates for PM identification. 

Recent disasters have brought the significance of automated dental identification systems. For example in 

9/11 attack, many victims were identifiable only from pieces of their jaw bones. Forensic Dental experts 

manually using dental records were able to identify about 20% of the 973 victims identified in the first 

year after 9/11 attack �[80]. Identifying the 2,749 victims of 9/11 disaster �[81] took around 40 months �[80]. 

The number of Asian tsunami victims identified during the first 9 months was only 2,200 (out of an 

estimated total of 190,000) �[82]. Most of those identified Tsunami Victims were based on manual dental 

information, about 75% of the tsunami victims in Thailand were identified using dental records, compared 

to just 0.5% using DNA �[82]. As can be concluded that manual dental identification is very powerful 

postmortem identification but it is also very time consuming process. 

In 1997, the Criminal Justice Information Services Division (CJIS) of the Federal Bureau of Investigation 

(FBI) created a dental task force (DTF) whose goal is to improve the utilization and effectiveness of the 

National Crime Information Center's (NCIC) Missing and Unidentified Persons (MUP) files. The DTF 

recommended the creation of a Digital Image Repository (DIR) and an Automated Dental Identification 

System (ADIS). The proclaimed ADIS is an automated biometric system that when fed with raw subject 

dental record or records, will find a minimum set of candidate (or reference) records that have high 

similarities to the subject(s). Then, a forensic expert can examine the radiographs of the few candidates 

instead of the entire DIR. 
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We view ADIS as a collection of the following components (as shown in Figure 1): 

(i) Record Preprocessing component which handles dental records cropping into dental 

films, grayscale contrast enhancement of films, classification of films into bitewing, 

periapical, or panoramic views, segmentation of teeth region from films, teeth contour 

extraction and finally annotating teeth with labels according to their location. 

Figure 1: ADIS block diagram 



1. Introduction 

������������ � 	
���������������3 

(ii) Potential Matches Search component which manages archiving and retrieval of dental 

records based on high-level dental features (e.g. number of teeth and their shape 

properties) or dimensionality reduction and produces a candidate list. 

(iii) Image Comparison component which mounts for low-level tooth-to-tooth comparison 

between subject teeth -after alignment- and the corresponding teeth of each candidate, 

thus producing a short match list. 

1.1.2 Automated Ear Identification System (AEIS) 

With the recent popularity in the biometric field, there has been a push to develop and study other possible 

characteristics that can be used for AM identification. Although we most closely identify with methods 

that we as humans would use to identify each other, automated computer based systems are able to utilize 

many other physical characteristics in the same manner. Ear structure is one such possible characteristic 

because the human ear has many variations between individuals, including the various curves and 

dimensions of the ear �[99]. This was the motive behind building an Automated Ear Identification System 

(AEIS). We view AEIS as a collection of the following components (as shown in Figure 2): 

Figure 2: AEIS block diagram 

• Face and Ear localization and tracking among the different input frames,  
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• Enhancement step of super resolution, also this enhancement step includes contrast and brightness 

adjustment, size (or dimension) normalization, and background elimination.  

• Feature extraction which starts by the origin point detection followed by different feature point’s 

measurements. 

• According to the operational mode either these measurements are stored as a feature 

representation of the case; or the distance between the subject features and each reference case is 

used to retrieve the top matched cases from the database. 

1.2 What is New in This Dissertation? 

This dissertation introduces new approaches for different stages of ADIS, and AEIS (as discussed 

later in details): 

• For ADIS, we propose an automated hierarchical approach to the problem of cropping dental image 

records into films. We propose a three-stage approach for cropping. In the first stage, we extract the 

background layer of the image record, extract connected components and classify them as either 

round-corner or right-corner connected components. In the second stage, we perform arch detection 

and dimension analysis, realization of this stage differs according to the corner type. In the third stage, 

we perform topological assessment of the cropping results in order to eliminate spurious objects. 

• For ADIS, we address the problem of teeth contour extraction using active contour without edges. 

This technique is independent of the gradient of images for extracting the contour of teeth. It is based 

on the intensity properties of the overall region of the tooth image. It extracts a very smooth and 

accurate tooth contour. Also, the starting contour can be in any part of the image and does not have to 

be around the boundary of the tooth. 

• For ADIS, an important problem in automated dental identification is automatic classification of teeth 

into four classes (molars, premolars, canines, and incisors). An equally important and related problem 

is the construction of a dental chart, which is a data structure that guides tooth-to-tooth matching. 

Dental chart is a key to avoid illogical comparisons that inefficiently consume the limited 

computational resources and may mislead decision-making. In other words, constructing dental chart 

improves the identification performance. We tackle this composite problem using a two-stage 

approach. The first stage utilizes low computational-cost, appearance-based features for assigning an 

initial class. The second stage applies a string matching technique, based on teeth neighborhood rules, 

to validate initial teeth-classes and hence to assign each tooth a number corresponding to its location 

in the dental chart, even in the presence of missing tooth. 
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• For ADIS, Potential Matches Search component is a fast search engine for a large database, which 

produces a longer candidate list as an input to the Image Comparison component. First, we use 

principal component analysis to reduce the dimensionality of each labeled segment (feature-based 

approach). This approach needs teeth registration, this task is accomplished using a novel projection 

based approach to estimate the rotation difference between teeth images. Second, we use shape-based 

features descriptors approaches. We fuse the Euclidian distances between corresponding teeth 

features, and hence calculate the match score between the subject record and the reference records. 

• For AEIS, we develop different essential components for an automated ear identification system. The 

proposed system is an automation of the Iannarelli system, which has been manually ear used for 

more than 40 years. We present different image processing techniques, which help the image 

enhancement and hence ear curves extraction. We extract curves that represent different anatomical 

structure of the ear; that we use to calculate the different Iannarelli measurements, and hence identify 

or verify the person identity. 

The contributions of this thesis are summarized as follows:  

• Automate the methodology to segment dental films from records using morphological tool, and shape 

analysis.  

• Develop a new teeth contour extraction method using active contour without edges. 

• Generalize the teeth labeling technique to work even in the presence of a missing segment using string 

matching with don’t care character. 

• Boost the teeth labeling performance by considering the film class. 

• Develop a new image registration method that can estimate the rotational difference based on circular 

projection. We used this method to align the different teeth segments to vertical models.  

• Develop a methodology for the Potential Match Search Component based on appearance based, as 

well as different shape based. We fuse different tooth-to-tooth classifiers scores, to reach a record-to-

record matching score; hence to retrieve reference records of high resemblance. 

• Automate Iannarelli ear identification system that has been used manually for years. 
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1.3 Problem Statement 

In pursue of our research effort on developing a research prototype of an Automated Dental Identification 

System (ADIS) and Ear Identification System (AEIS), we identify the following challenging problems: 

• Problem One: Record Cropping: is an automatic global segmentation of dental films from their 

corresponding records. On one hand, we want segmentation results to be as accurate as possible since 

inaccuracy in cropping of dental records is likely to hinder the performance of subsequent processing 

steps and accordingly the overall performance of the entire identification system. On the other hand, 

we want the computational cost to be reasonably low, especially with the large volume of records that 

need to be processed. 

- Given: 

o Different dental records have different scanned resolutions. 

o A dental record D, with f radiographic films, a heterogeneous back ground.  

o The background can have different color, texture, and sometimes contain text. 

- Problem One: 

o To decompose dental image records into their constituent radiographic films. 

• Problem Two: Tooth Contour Extraction is another level of segmentation, to extract the contour of 

the teeth. Tooth contour is one of the most important features for dental recognition. This is a very 

challenging task due to the fact that tooth can be defined by fuzzy contour. In other words, due to the 

smooth gray-level transient between the tooth and background, there is no sharp cutoff edge. 

- Given: 

o A dental record D, with f cropped radiographic films, and each film contains Q dental 

ROIs. 

o Each of the Q dental ROIs corresponds to a tooth (tq), and each tooth has a contour. 

o Tooth usually has smooth edges, and presented in a noisy background. 

- Problem Two: 

o To segment a smooth and accurate tooth contour, in the presence of noise, and the 

absence of sharp contour gradient. 

o To use a fast method, so as not to affect the overall system timeline performance. 
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• Problem Three: Teeth Labeling is an automatic classification of teeth into incisors, canines, 

premolars and molars as part of creating a dental chart that guides tooth-to-tooth matching. We seek to 

label teeth as such in order to avoid illogical comparisons between teeth, which inefficiently consume 

computational resources and may also mislead match decision-making. In other words, constructing 

dental chart improves the identification performance. 

- Given: 

o A training database of labeled dental Regions of Interest (ROIs) each assigned a class 

label ωk ∈ {‘I’, ‘C’, ‘P’, ‘M’}, where ‘I’ stands for Incisor, ‘C’ stands for Canine, ‘P’ 

stands for Premolar, and ‘M’ stands for Molar. 

o Adult Dental Atlas with specific teeth arrangement. 

o A dental record D, with f radiographic films, and each film contains Q dental ROIs, 

o Each of the Q dental ROIs corresponds to an input tooth (tq), 

o Cases of missing tooth. 

- Problem Three: 

o To assign a tooth-class label ωk to each tq (Initial teeth classification). 

o To assign a label to each tooth based on teeth neighborhood rules, even in the absence of 

a segment (missing tooth) 

o To validate the initial teeth-classes and hence to assign each tooth a number 

corresponding to the tooth location in the dental chart. 

• Problem Four: Potential Matches Search is to search the dental database in a very fast manner 

to find a candidate list. This candidate list must have a very high probability of containing the 

target record, and have a suitable length compared to the original database size. Alignment is a 

key step for appearance-based features, same as extracting tooth contour for shape-based. Finally 

classifier fusion between multiple subject teeth and their corresponding reference teeth to reach 

matching score between the subject and each of the reference records.  

- Given: 

o A Subject dental record Ds, with fs radiographic films, and each film contains Qs dental 

ROIs, 



1. Introduction 

������������ � 	
���������������8 

o Each of the Qs dental ROIs corresponds to a tooth view (ts), and each tooth view is 

assigned a label corresponding to the tooth location in the dental chart.  

o A data base of references, each reference record Dr with fr radiographic films, and each 

film contains Qr dental ROIs, 

o Each of the Qr dental ROIs corresponds to a tooth view (tr), and each tooth view is 

assigned a label corresponding to the tooth location in the dental chart. 

o There exist multiple views for some teeth either in the subject or the reference records. 

- Problem Four: 

o To determine the probability of match pM (ts, tr) between subject tooth (ts) and reference 

tooth (tr). 

o To determine the probability of match pM(S, R) between the subject record S and each of 

the reference records R. 

o To form a candidate list that contains those reference records of high matching 

probability. 

• Problem Five: Automated Ear Identification System (AEIS) is to search the ear database to find a 

reference image, and hence to identify, or verify the identity of a person using ear biometric. 

- Given: 

o A Subject video sequence. This sequence contains face profile images at different angles. 

o A data base of references, each reference consists of video sequence, which in turn 

contains face profile images at different angles. 

- Problem Five: 

o Accurately calculating different Iannarelli distances; this problem can be further divided 

into detection of the origin calculation point, plus detection of the outer and inner ear 

curves. 

o To determine the probability of match pM(ES, ER) between the subject segmented ear 

image ES and each of the reference segmented ears ER. 

o To form a match list that contains those reference records of high matching scores. 
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1.4 Research Objectives 

This research is broadly oriented towards developing: (i) Automated Dental Identification System (ADIS) 

that facilitates the task of the dental expert and cut down their searching time for missing, wanted and 

unidentified persons. (ii) Automated Ear Identification System (AEIS) that researched the ability to 

identify a person from surveillance cameras using ear biometrics. ADIS research problems, we studied, 

are part of the integral research framework of ADIS supported under the US National Science Foundation 

(NSF) and the US National Institute of Justice (NIJ) awards numbers EIA-0131079 and 2001-RC-CX-

K013 respectively. AEIS research problems, we studied, are part of the integral research framework of ear 

identification system supported under the Technical Support Work Group (TSWG) award number 

W91CRB-05-C-0028. 

The objectives of this research are: 

• To automate the process segmenting films from records, using a fast and accurate morphological 

segmentation method with accuracy greater than 95%. 

• To segment a smooth representative tooth contour for more than 85% and to reduce this process 

time to faction of second. 

• To achieve better teeth classification accuracy greater than 85% by considering film type 

(periapical and bitewing), as well as considering other appearance based classifiers. To achieve 

correct teeth labeling, even in absence of one segment (missing tooth). 

• To enhance the scalability of ADIS, by accomplishing high hitting rate and relatively short 

candidate list. Finally as we are working with large databases which involves hundred records (or 

thousands teeth), this searching engine needs to achieve record-to-record decision in a fraction of 

a second. 

• To automatically measure distinctive ear features with a view to identify or confirm the identity of 

the owner. 
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1.5 Dissertation Organization 

The dissertation consists of six chapters and two appendices organized as follows: 

• Chapter 1 is titled “Introduction,” gives a general introduction to ADIS, and AEIS and 

illustrates the different problems that we will present in this dissertation. 

• Chapter 2 is titled “Literature review,” presents the history of using dental identification 

and the development of the first automated dental identification system (ADIS). Then it 

presents a literature review about ear biometric system. Finally it presents a literature 

review about image based retrieval and multimodal biometric system. 

• Chapter 3 is titled “Different Preprocessing Techniques for ADIS,” explains three 

methods related to ADIS record preprocessing namely record cropping, teeth contour 

extraction and teeth labeling. 

• Chapter 4 is titled “ADIS Potential Match Search,” presents new techniques to achieve 

fast dental record retrieving which directly address the scalability problem of ADIS. 

• Chapter 5 is titled “Automated Ear Identification System (AEIS),” presents novel 

approaches for automation of Iannarelli ear identification system. 

• Chapter 6 is titled “Conclusions and Future Work,” concludes the dissertation and gives 

some suggested future work as extension to our presented work. 

• Appendix I is titled “Dental Glossary”, gives definitions for the most common 

terminology used in dental identification. 
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2 Literature Review 

Biometrics System is an automated method of recognizing an individual based on physiological or 

behavioral characteristics. Biometrics is being used in many locations to enhance the security and 

convenience of the society. Example deployments within the United States Government include the FBI’s, 

the US-VISIT program, etc. Law enforcement agencies have exploited biometric identifiers, for decades, 

as a means for forensic identification. 

Forensic identification is the application of forensic science and technology to identify specific objects 

(peoples) from the traces they leave. Forensic science is a scientific method of gathering and examining 

evidence. Crimes are solved with the use of pathological examinations that gather fingerprints, palm 

prints, tooth bite prints, blood, etc. Some people return this science to the time of Romans, where a 

criminal charge meant presenting the case. Both persons representing the two sides of the case gave 

speeches, and the one with best argument (best forensics skills) would win �[1]. One of the first recorded 

applications of medical knowledge to the solution of crime, in 1248 Chinese book “Hsi DuanYu” or the 

Washing Away of Wrongs, described ways to distinguish between death by drowning and death by 

strangulation �[2]. 

Forensic identification can be classified as Post-Mortem (PM) identification, i.e. identification after 

death, or Ante-Mortem (AM) identification. AM identification techniques includes but not limited to 

fingerprints, face, ear, or from other traces using other biometric techniques, while PM identification is 

carried out using �[3]:  

(i) Presumptive identification which include visual: May not be possible due to disfigurement or 

fragmentation due to disaster trauma, and it is the least reliable due to emotional stress and subjective 

assessment required of family member. 

(ii) Finger/foot prints: can not survive in case of severe fires with disaster, or late discovery of the body.  

(iii) Radiological: is useful only if the AM medical radiographs are available. 

(iv) DNA: is becoming standard in military; however the civilian sector is still lagging behind. Still the 

development of DNA is providing forensic investigators a very promising PM identification tool. 

(v) Dental: is widely used in criminal investigations and mass disasters, based on PM versus AM dental 

feature comparison. 

Under severe circumstances encountered in mass disasters, such as those (e.g. aircraft accidents, Tsunami, 

hurricanes, etc.) or if identification is being attempted more than a couple of weeks after death (e.g. late 
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corpse discovery), soft tissues of the human body would have decayed to unidentifiable status. Because of 

their survivability, diversity and availability, the best candidates for biometric PM identification under 

such severe conditions are dental features. 

This chapter is organized as follows, section 2.1 introduce literature review about dental identification, 

while section 2.2 introduce the first automated dental identification system (ADIS). Section 2.3 presents 

literature review about ear biometrics. In section 2.3, and 2.4 we present a review about image retrieval 

from database, and multimodal biometric system which we are going to use for dental image retrieval 

(chapter 4). 

2.1 Dental Identification 

The most important role of the forensic dentist is the identification of deceased individuals. The dental 

expert compares the PM and AM dental records and establishes (to a high degree of certainty) that 

whether they belong to the same person or not. A range of conclusions can be reached when reporting a 

dental identification. The American Board of Forensic Odontology recommends that these be limited to 

the following four conclusions �[5]:  

• Positive identification: The antemortem and postmortem data match in sufficient detail, with no 

unexplainable discrepancies, to establish that they are from the same individual.  

• Possible identification: the antemortem and postmortem data have consistent features but, because 

of the quality of either the postmortem remains or the antemortem evidence, it is not possible to 

establish identity positively.  

• Insufficient evidence: The available information is insufficient to form the basis for a conclusion.  

• Exclusion: the antemortem and postmortem data are clearly inconsistent.  

2.1.1 History of Dental Identification 

One of the first reported cases of postmortem dental identification is the recognition of Dr. Warren 

body in 1776. This patriot was killed during the Battle of Breeds, and was buried in an unmarked grave by 

the British forces. Ten months later, his family wants to recover his remains. The grave was having two 

bodies, but Paul Revere recognized Warren’s via artificial teeth special shapes. Warren was buried later 

with honors 1776. Dental identification was first used in the United States court to prove a murder crime 

of Dr. Parkman on 1850. Dr. Parkman disappeared after meeting with Dr. Webster that owed him a 

fortune. Portions of a porcelain denture were recovered from Dr. Webster’s laboratory furnace. Dr. Keep 

who was the dentist for Dr. Parkman, identified those fragments of porcelain denture, and integrated them 

to Dr. Parkman’s jaw plastic model. Dr. Webster was convicted of murder, and was executed 1880 �[4]. 
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Ndiokwelu et al �[6] reported that in 1887, Gordon recommended to keep AM dental charts as a mean to 

help identify missing persons. In other words, this was the first step to have established dental forensic 

identification systems. 

2.1.2 Dental Identification Process 

Keiser-Nielsen in �[7] presented a six-digit code for dental description of each tooth. This code is intended 

to simplify the establishment of AM/PM data files in a computer and consists of two digits for designating 

the individual tooth, two digits for describing the surface or surface combination involved (if any), and 

two digits for describing treatment type and material. Then a data comparison can be carried manually or 

by computer of one postmortem versus antemortem set. 

Jones �[8] introduced another dental identification process that is based on the fact that changes in the 

characteristics of teeth are unidirectional; that is, once any change (decay and dental work) happened to 

any tooth, it will never return to original condition, however this dental work can change. For his proposed 

system, he considered 5 surfaces of each tooth as either intact (no decay, no restoration) or changed in 

some way (filling, crown, missing, and so forth). He formalized a well known heuristic rule that if a 

postmortem examination indicates that a surface is intact then any antemortem records with that surface 

altered cannot possibly be a match. The same obviously applies for tooth present postmortem, tooth 

missing antemortem. Those rules are still used as exclusion rules by forensic experts.  

Examples of the used antemortem and postmortem forms are presented in Figure 3, where "M" mesial; 

"O" occlusal or incisal; "D" distal; "F" facial, labial, or buccal; and "L" lingual. A sixth box, "X," indicate 

whether the tooth is present or absent �[8]. 
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Figure 3: Dental antemortem (AM) form 

2.1.3 Computer Aided Dental Identification System 

Mass disasters which produce multiple fatalities consume the resources of forensic science teams. Even 

under ideal circumstances, the positive identification of a large number of victims is extremely stressful, 
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time-consuming, and costly. This increasing requirement for dental based identification motivated the 

development of assisting computer software. Lorton et al in �[9] described the Computer-Assisted 

Postmortem Identification (CAPMI) system that was developed at the U.S. Army Institute of Dental 

Research to facilitate rapid identification of human remains. CAPMI System was originally developed by 

the U.S. Army Institute of Dental Research (USAIDR) in 1983, to automate the process of repetitive 

chart-by-chart comparison of traditional identification. Both non-dental and dental characteristics are 

compared to produce lists of probable antemortem records for the submitted postmortem one, thereby 

permitting forensic science examiners to concentrate his efforts on making positive identifications. 

The CAPMI system has been effectively used in actual disaster identification problems (for example, the 

Gander, Newfoundland, crash of an Arrow Airlines' aircraft in December 1985 �[9]). Figure 4 shows an 

example of an Optical Mark Read (OMR) form which is used for CAPMI. It includes fields of non-dental 

information as height, weight, eye and hair color, age, sex, and blood type. The CAPMI system uses a 

combination of the following primary descriptors may be entered: mesial (M), occlusal (O), distal (D), 

facial (F), lingual (L), missing (X), crown (C), or unerupted (U), as well as additional modifiers, such as 

pontic (PON), root canal therapy (RCT), or a dental restorative material code, may be added. If a tooth has 

had no restoration, no entry is made in the data base. CAPMI interprets this "no entry" as a virgin tooth. A 

list of used codes is given in Table 1. 

X  missing  AU  gold 
U  unerupted and/or impacted  CO  acrylic or other non-metal 
CAR  carious  PG  porcelain or acrylic to metal 
ANOM  anomaly  PJ  porcelain jacket 
M  mesial  SS  Stainless steel 
O  occlusal or incisal  TE  temporary 
D  distal  3/4  three-quarter crown 
F  facial  PON  pontic 
L  lingual  RCT  root canal 
C  crown  DEC  deciduous 
AM  amalgam  PTD  partial denture 

Table 1-Codes for use with OMR form depicted in Figure 4 
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Figure 4: OMR form for use with the CAPMI system at a disaster scene �[9] 
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The limitations of the CAPMI system are similar to the limitations of any forensic science identification 

technique. An antemortem database for comparison purposes must both exist and be available. A high 

degree of accuracy must be assured by dental experts at a step before using the CAPMI process, in filling 

the required OMR form. 

2.1.4 WinID 

WinID �[10] is representing an extension to the CAPMI system. WinID is also a dental computer 

system that matches the data of missing persons (filled in special forms) to that of unidentified 

human remains. WinID makes use of dental and anthropometric characteristics to rank possible 

matches. Information about restored dental surfaces, physical descriptors, and pathological and 

anthropologic findings can be entered into the WinID database. WinID stores data in a Microsoft 

Access Database, and provides extensive data filtering and data sorting capabilities.  

WinID codes are an extension of CAPMI codes. A primary codes and up to five secondary codes 

may be specified. A dash (-) is placed between the primary and secondary codes. Figure 5 shows 

an example of AM record uded by WinID program, where the dental portion of the data entry form 

should be filled out by a Board Certified Forensic Odontologist. A list of used codes is given in Table 2. 

 
Primary Codes Secondary Codes 

M - Mesial A – Annotation 

O - Occlusal B – Deciduous 

D - Distal C – Crown 

F - Facial E – Resin 

L - Lingual G – Gold 

I – Incisal H – Porcelain 

U – Unerupted N - Non-Precious 

V – Virgin P – Pontic 

X - Missing R - Root Canal 

J – MissCr  MPM S - Silver Amalgam 

/ - No Data T - Denture Tooth 

 Z – Temporary 

Table 2-Codes used by WinID 
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Figure 5: Antemortem dental record used by WinID 

With a given pair of antemortem and postmortem records, WinID and CAPMI will each return the same 

number of dental hits, the same number of dental mismatches and the same number of possible hits. The 

WinID comparison algorithm was finalized only when it returned the exact values that CAPMI yielded in 

a given situation. A significant difference between the two systems is that WinID can rank comparisons 

between records in two more ways than CAPMI. WinID will return a ranked list of identifier matches 
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(defined as matches of non-dental data as race, sex etc.). Lewis in �[11] conducted a comparison study 

between those two principal computer programs are CAPMI4 and WinID2 (version 3 of this program is 

now available). She ran them on a sample of 100 simulated victims and 105 simulated postmortem 

fragments. CAPMI4 provided 48 correct matches and WinID2 provided 71 correct matches. In addition, 

comparisons were made within WinID2 to determine which of its three dental data sets was the most 

successful for suggesting correct matches. 

However, none of these systems provide the desired level of automation, as they require a significant 

amount of human intervention. For example, in both CAPMI and WinID feature extraction, coding, and 

image comparison are carried-out manually. Moreover, the dental codes used in these systems are entirely 

based on dental work. Hence, CAPMI and WinID are more like sorting tools that help to cut down the 

time of forensic experts, but not identification systems. While forensic odontologists rely on teeth 

orientation, type of restorative materials, and radiographic appearance as basis for positive identification. 

These properties are neither incorporated in CAPMI nor in WinID. Thus, the amount of automation 

offered by these dental identification systems resembles that of an automated fingerprint identification 

system, whereby a forensic expert is required to identify and classify the minutiae points of fingerprints 

before the system can produce a list of candidate matches to the subject. 

2.2 Automated Dental Identification System (ADIS) 

ADIS is required to speedup the postmortem identification process. It is estimated that at any point in time 

there are over 100,000 unsolved MUP cases in the National Crime Information Center (NCIC), 60 % of 

which have remained unsolved for 90 days or longer. Technically speaking, this large number of unsolved 

cases hinders the capabilities of search techniques currently employed. The benefit of ADIS to the society 

will surpass saving millions of dollars to also include psychological benefits of families of missing 

persons when knowing the disposition of their loved ones without having to wait extended period of time 

�[19]. 

In 1997, the Criminal Justice Information Services (CJIS) division of the Federal Bureau of Investigation 

(FBI) formed a Dental Task Force (DTF), which recommended the creation of: 

• Digital Image Repository (DIR): later in May of 2005, (CJIS) Management approved the creation 

of the National Dental Image/Information Repository (NDIR) to facilitate the identification of 

Missing, Unidentified, and Wanted persons. The NDIR became available in February 15, 2006 

and is housed on Law Enforcement Online (LEO) and is permitting law enforcement agencies to 

store, access and supplement dental records which were housed in the Missing, Unidentified, and 

Wanted Persons (MUP) files in the National Crime Information Center (NCIC) system. The NCIC 
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system is a nationwide computerized database of documented criminal justice information 

maintained and supported by CJIS. Data in NCIC is exchanged in a shared-management 

partnership with criminal justice officials of local, state and federal governments in the United 

States, its possessions, and Canada �[12]. 

• Automated Dental Identification System (ADIS) with goals and objectives similar to the 

Automated Fingerprint Identification System (AFIS). AFIS later on turned to Integrated AFIS, 

more commonly known as IAFIS, which is a national fingerprint and criminal history system 

maintained by the (CJIS) Division. The IAFIS provides automated fingerprint search capabilities, 

latent searching capability, electronic image storage, and electronic exchange of fingerprints and 

responses. As a result of submitting fingerprints electronically, agencies receive electronic 

responses to criminal ten-print fingerprint submissions within two hours and within 24 hours for 

civil fingerprint submissions �[13]. 

2.2.1 ADIS Overview 

The proclaimed dental identification system is fully automated system that when fed with raw subject 

dental records will find a minimum set of match reference records, ideally one, for each of the subject 

records. The forensic dental expert can examine the dental records of those few candidates to make a final 

decision on the identity of the missing or unidentified person �[24]. 

Automated Dental Identification System (ADIS) is comprised of two stages of (1) search and retrieval 

stage based on potential similarities to produce a candidate list and (2) verification stage for matching 

based on low level comparison of dental images to produce a short match list (as shown in Figure 6). 

Some of the challenges behind developing ADIS were described in �[23]�[26]. 

Figure 6: ADIS overview 
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2.2.2 ADIS Architecture 

Nassar and Ammar �[22] proposed a prelude research prototype of ADIS, which we later extended and 

refined - as depicted in Figure 1- to become the conceptual framework of the ADIS prototype �[19]. At a 

high level of abstraction, we view ADIS as a collection of the following components: (i) the Record 

Preprocessing component, (ii) the Potential Matches Search component, (iii) the Image Comparison 

component �[29]�[31]�[32]�[37]. 

2.2.2.1 Record Preprocessing 

The record pre-processing component handles the following tasks:  

(a) Records Cropping �[39], which is the first segmentation level, where the dental films are segmented 

from the input records. This is our first problem and more details are given in section 3.1. 

(b) Film Enhancement: A tooth maps to an area with mostly “bright” gray scales (except for the pulp 

tissue) while the gum maps to areas with “mid-range” gray scales, and air maps to “dark” gray scales. 

Thus, a “significant” contrast in gray scales within a “small” area of a dental radiograph indicates a 

transition from one object to another. In order to assist the coming preprocessing steps, Hajsaid et al �[20] 

�[28]�[40] introduces a gray scale contrast stretching to transform poor quality dental film in a way that 

insures an appreciable degree of contrast between the dominant gray scales used in capturing the different 

classes of objects; in other words to compensate for possible poor contrast. 

(c) Film Type Classification: In the context of ADIS database, there are three types of dental images 

according to the way they capture the dental features. When taking radiographs of the teeth, the dental 

arches are divided into different regions to get a clear view of individual teeth. Each film placement is 

corresponding to a film type, and is designed to record specific teeth. Some commonly used film types are 

�[51]: 

Bitewing Film: records two-thirds (the crown portion) of opposing molar and premolar teeth, as shown in 

Figure 7-a. 

Periapical Film: either records teeth of the lower or upper jaw. It records the whole tooth (crown and root). 

It has different placement to record all teeth. Figure 7-b shows an upper periapical for the incisors and 

canine region. Periapical films are further classified into upper and lower. 

Panoramic Film: records all the teeth at the same time, as shown in Figure 7-c. 

Zhou and Abdel-Mottaleb �[17]�[27] classify those types based on the number, location and relationship 

between extracted vertical and horizontal edges. 
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Figure 7: Different dental radiographic films 

(d) Detecting whether the film is vertically flipped or not, Quereshi �[46] usng a classifier based on molar 

root shape and jaw texture analysis. 

(e) Segmentation of teeth regions from films, which is a second level of segmentation (as shown in Figure 

8). This is a critical step for the remaining pre-processing steps that is why we had many realizations for it. 

Jain and Chen �[14] proposed a semi-automated method based on integral projection and can be used with 

bitewing and panoramic views. Nomir and Abdel-Mottaleb �[16] proposed an automated method based on 

iterative adaptive threshold and then integral projection, however it can be used with bitewing views only. 

Zhou and Abdel-Mottaleb �[17] used automated method based on mathematical morphology followed by 

integral projection with the same limitation of handling bitewing views only. Hajsaid et al �[20] proposed 

automated method based on mathematical morphology, which can handle both bitewing and periapical 

views. Nassar et al. �[34] introduced performance evaluation criteria for different segmentation methods. 

 

Figure 8: Tooth region segmentation 
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(f) Teeth contour extraction: the third segmentation level, where the target is to segment each tooth from 

the isolated region, this is recognized as teeth contour extraction �[43]. This is our second problem and 

more details are given in section 3.2. 

(g) Annotating teeth with labels that is corresponding their location. This is our third problem and more 

details are given in section 3.3. 

2.2.2.2 Potential Match Search 

This component manages archiving and retrieval of dental records based on high-level dental features (e.g. 

teeth intensity and shape descriptors) and produces a candidate list. The discriminative feature of this 

search engine is being very fast so as to be able to search a large database, with optimum accuracy. The 

forensic experts used to use dental and non-dental feature to reduce their search domain; in other words, 

they are implementing a similar technique to potential match search component, by using these features to 

reduce their search space. They used non-dental features as (sex, race, age, etc.) and dental features as 

presence/ absence of dental work and missing teeth. 

In ADIS implementation, we allow the dental experts to use the same set of non-dental feature as (sex, 

race, age, etc.) to reduce the database, and then we use the potential match search component to search the 

reduced database to produce a relatively short candidate list. The Image Comparison component then 

handles another level of dental image comparison against this candidate list to produce a match list. The 

current in use image comparison component takes about 10 minutes to make record to record comparison. 

To search a database of 50 records directly using the image comparison, the system will run for about 8 

hours. That is why we usually need this kind of fast image retrieving component that can reduce the 

database to a short candidate list. Implementing a fast and accurate potential match search is our fourth 

problem and more details are given in chapter 4. 

2.2.2.3 Image Comparison 

The Image Comparison component mounts for teeth alignment and comparison between subject and the 

corresponding teeth of each candidate, thus producing a short match list. Figure 9 illustrates the main steps 

of this component. In ROI pair selection step, guided by the output of the teeth-labeling step of the record-

preprocessing component, we select corresponding segmented teeth pair (regions of interest “ROI”) for 

subject and candidate records. In the alignment step, we conduct pair-wise region of interest (ROI) 

alignment. More details about alignment in section 4.2. We start with a hypothesis that the two objects 

(ROI) are matched, and accordingly we apply appropriate transformations that restore major geometric 

discrepancies between them. In the low-level feature extraction step, we use a set of nonlinear filters to 

map an the ROI in the corresponding feature spaces. 
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In the micro-decision step �[21], we use Bayesian classification layer that computes the posterior 

probability of match between a pair of ROI’s using the differences between spatially corresponding 

features of the ROI-pair. As a dental record usually comprises multiple films that may show more than a 

single view of a given tooth, we refer to the process of determining the match status of a subject/reference 

tooth-pair based on comparison of multiple views of this tooth-pair as micro-decision making. 

Finally in the macro-decision step, with many micro-decisions, we combine these micro-decisions into a 

macro-decision that determines the match status of the subject/candidate record-pair and accordingly 

whether the candidate record should be placed on the match list. We also provide a ranking score to sort 

the match list. 

Figure 9: A block diagram of the image comparison component 

2.2.3 webADIS Architecture 

In developing an environment that integrates the various ADIS components, Chekuri et al. �[38]�[42]�[45] 

adopted the 3-tier architecture. In the 3-tier architecture, volumes of data are maintained at a database 

layer; business rules (and logic) are processed (and validated) at the server tier, which also handles 

transactions with the client layer (the front end). Figure 10 illustrates the 3-tier architecture of webADIS, 

where a web browser component at the client tier communicates with a web server component at the 

middle tier, a central component (ADIS Server) handles transaction dispatching to the respective server 

components as well as to the database tier as needed.  
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Figure 10: Architecture of webADIS; the web accessible ADIS environment 

There are several benefits for using the 3-tier architecture in developing an environment like webADIS:  

• First, the middle tier provides a layer of abstraction and hence client applications do not depend 

on the type of database server that actually stores the data. So any changes made to the database-

tier would only require changes in middle tier. 

• Second, a component in the business layer can be accessed by any number of components in 

presentation layer (clients), therefore any component implementation changes made at the 

business-tier will not mandate changes in components of other two tiers.  

• Third, this decoupling of tiers -according to roles facilitates dynamic load balancing of servers, 

thus a server shares its load with other servers at times of bottlenecks. 

Finally, 3-tier implementations can be designed to make business objects and data storage so close (in a 

network sense) that the network load is eliminated, thus reducing inefficient utilization of network 

bandwidth. 
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2.3 Ear Identification System 

The Iannarelli System has been in use for more than 40 years 

�[116], and is based upon the 12 measurements illustrated in Figure 

11. Each photograph is aligned during development so that the 

lower tip of a standardized vertical guide on the development 

easel touches the upper flesh line of the cocha area whilst the 

upper tip touches the outline of the antitragus. 

This method has the capability of identifying about 17 million 

different persons. Assuming an average standard deviation in the 

population of four units, and then the measurements provide for a 

space of (412 =~17 million) distinct points. With the current 

automation, we can reach better measurement accuracy, so we can 

assume the average standard deviation in the population of ten 

units, then the measurements will provide a space of (1012 =~ 

Tera) distinct points. 

Chang et al. have built multi-modal recognition using both the ear and face.  Their research was based on 

the concept of Eigen faces and Eigen ears and used a principal component analysis (PCA) evaluation 

protocol. They reported a performance of 69.3% for face versus 72.7% for ear, in one experiment, 

compared to 90.9% for the multi-modal system �[110]. 

Burge and Burger have researched automating ear biometrics; they used a 300 by 500 grayscale image of 

the subject’s head in profile using a CCD camera. They located the ear by using deformable contours on a 

Gaussian pyramid representation of the image gradient. Then they made Edge extraction, Curve extraction 

and finally they build a graph model. They used a novel graph matching based algorithm for 

authentication, which takes into account the possible error curves �[108] 

Hurley et al. have used force field transformations for ear recognition. The image is treated as an array of 

Gaussian attractors that act as the source of the force field. The directional properties of that force field are 

exploited to automatically locate a small number of potential energy wells and channels. This feature 

extraction technique is used to form an ear biometric system, which was found to be robust and reliable 

�[110]�[111] the reported a very high recognition rate of 98.4%. 

Zhang et al. built a hybrid system for ear recognition purpose �[112]. This system combines Independent 

Component Analysis (ICA) and Radial Basis Function (RBF) network. The original ear image database is 

decomposed into linear combinations of several basic images. Then the corresponding coefficients of 

Figure 11: Iannarelli measurement �[116] 



2. Literature Review 

������������ � 	
���������������27 

these combinations are fed up into RBF network instead of an original feature vector comprised of pixel 

values of grayscale images. The local features extraction of ICA and the adaptability of RBF neural 

network are then combined.  

Abdel-Mottaleb and Zhou introduced a novel system for ear identification based on the face profile 

images �[113]. The system consists of two major steps: 1) Ear detection from face profile based on 

template matching, where they used to module the ear by its external curve; 2) 2-D feature extraction 

based on force field transformation, then recognition based on these features. 

Chen and Bhanu also used model-based (template matching) based technique for Ear-detection �[114]. The 

model template is represented by an averaged histogram of shape index. The detection is a four-step 

process: step edge detection and thresholding, image dilation, connect component labeling and template 

matching.  

Chen and Bhanu then developed another shape model-based technique for locating human ears in side 

face range images �[115]; where the ear shape model is represented by a set of discrete 3D vertices 

corresponding to ear helix and anti-helix parts. They started by locating the edge segments and grouped 

them into different clusters which are potential regions containing ears. For each cluster, they register the 

ear shape model with the edges. The region with the minimum mean registration error is declared as the 

detected ear region. 

The ear can be pressed against some material, e.g. glass, and the ‘earmark’ can be used as a biometric. 

This has been used in crime solving. In England four delinquents have been judged between the year1996 

and 1998, by using only the earmarks. However in the Netherlands the court decided that the earmarks are 

not reliable enough for judging �[109]. 

Cases of the ear being only partially occluded by hair, it is possible to 

recognize the hair and segment it out of the image. This can be done 

using thermogram images. A thermogram image is one in which the 

surface heat of the subject is used to form an image. Figure 12 is a 

thermogram of the external ear. The subject's hair in this case has an 

ambient temperature between 27.2°c and 29.7°c, while the external 

anatomy of the ear ranges from 30.0°c to 37.2°c. Removing hair is 

done by segmenting out the low temperature areas �[108]. 

In chapter 5, we present novel approaches for automation of Iannarelli 

ear identification system. This is our fifth and last problem in this 

dissertation. 
Figure 12: Ear thermogram�[117] 
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2.4 Content-based image retrieval 

To build ADIS potential match search component, we are using Eigen image (color, or appearance-based 

feature) of segmented tooth, as well as Edge direction histogram and Moment Invariant (shape-based 

features) of tooth contour for dental image retrieval. This section is reviewing the literature of image 

content retrieval in general, while more details on the features used for ADIS potential match search 

component are given in chapter 4. 

Content-based image retrieval has been an active research area since the early 1990’s. Many image 

retrieval systems, both commercial and research, had been built. The image features used by these systems 

can be generally classified as: color, texture, shape, spatial layout, and faces (or other specific object) �[83]. 

2.4.1 Color Features 

Color features are often easily obtained or calculated directly from the pixel intensities. Different color 

spaces as RGB (Red Green Blue) and HSV (Hue Saturation and Value) can be used. Example of color 

features are: 

A) Global color histogram over the whole image: 

An image histogram refers to the probability mass function of the image intensities. This is extended for 

color images to capture the joint probabilities of the intensities of the three color channels. 

Computationally, the color histogram is formed by discretizing the colors within an image and counting 

the number of pixels of each color. 

B) Fixed subimages color histogram over fixed parts of the image: 

Each image is divided in cells (sub-images) and for each cell a color histogram is calculated. 

Ex.: FOCUS (Fast Object Color-based qUery System), where each image is divided in cells of 100x100 

pixels and for each cell a color histogram in the HSV space, coarsely quantized along the saturation and 

value axes, is computed. The peaks of all local histograms are determined and combined in a list of unique 

peaks for the whole image by merging multiple copies of the same peak.  

C) Region color histogram over a segmented region: 

Image is divided into regions with associated color and texture. In other word specific regions are 

segmented and color histograms are calculated for these regions. 

Ex. blobworld system is based on finding coherent image regions which roughly correspond to objects. 

Each image is segmented into regions by fitting a mixture of Gaussians to the pixel distribution in a joint 

color-texture-position feature space. Each region ("blob") is then associated with color and texture 
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descriptors. To match the color of two regions, the quadratic distance between their histogram is computed 

in such a way to give high score to two regions with similar colors, even if the colors fall in different 

histogram bins. 

D) Spatial chromaticity histogram: 

Bin i gives the ratio h(i) of pixels having color i, the relative coordinates of the baricenter b(i) of these 

pixels, and the standard deviation �(i) of these pixels’ distance to the baricenter. 

E) Correlation histogram: 

In the context of MIR (Multimodal Information Retrieval System), for the scenery pictures (where no face 

is detected) a color correlation histogram is computed. If {i, j, k} is a color triple in the 2 x 2 x 2 quantized 

HSV space, then hijk  ̀denotes the number of occurrences of three pixels of these colors as the vertices of a 

isosceles right triangle with the smaller sides of length l. The color correlation histogram fijk  ̀ is hijk /̀ 

(4*hi), where hi is the ith bin of the traditional color histogram. 

F) Farthest neighbor histogram: 

The rationale behind this feature is to capture how abrupt the color changes are in an image. In 

photographs they tend to be smoother than in drawings. Therefore, drawings tend to score higher than 

photographs in this test. 

Ex. WebSeer system picks a threshold T between 0 and 255 and counters C and S are initialized to 0. For 

each inner pixel P of the image, top, bottom, left, and right neighbor. For each neighbor, the absolute 

difference of its R value is calculated from the R value of P, and the maximum M of those four absolute 

differences is chosen. If M > 0, increase S. If, in addition, M > T, increase C. The score of the image is 

C/S. 

G) Eigen image: 

This representation offers a description relative to an average of a few prototypes by using the 

eigenvectors of a covariance matrix as an orthogonal coordinate system of the image space. First a pre-

processing step is needed in order to normalize the input image for position, scale and orientation. In 

representing a new image region, only eigenvectors corresponding to the largest eigenvalues are used, in 

other word the image is projected into a lower dimensional space. 

Eigen image is the color (appearance-based) feature that we use in implementation of the Potential Match 

Search Component; more details are given in chapter 4. 

H) Color moments: 
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The image is divided into subimages (or regions) and within each subimage, the first moment (average 

color) is computed. Higher order moments can also be used. 

Ex. ASSERT system uses five grey level features with each pathological bearing region (PBR) in images. 

These features are the grey level mean and standard deviation, and bins 6 , 9, and 16 from a 16-bin 

histogram. 

I) Dominant colors: 

This is represented by the most frequent color (MFC) vector.  

Ex. C-Bird system uses a feature descriptor and a layout descriptor. A feature descriptor is a set of four 

vectors: a color vector, a most frequent color (MFC) vector, a most frequent orientation (MFO) vector, 

and a chromaticity vector. A 512-bin RGB histogram is stored in the color vector. The centroides of the 

regions associated with the 5 most frequent colors form the MFC vector and the centroides of regions of 

the 5 most frequent edge orientations form the MFO vector. The 36-dimensional chromaticity vector is 

then computed. 

J) Color coherence vector: 

Color-coherence vector (CCV) is describing the color content of an image. CCV is made of coherence 

pairs, each pair giving the number of coherent and incoherent pixels of a particular discretized color in the 

color space. 

Ex. PicHunter system incorporates some redundancy information of color spatial distribution along with 

conventional color histogram. Besides a 64-bin HSV histogram, two other vectors – a 256-length HSV 

color auto-correllogram (CORR) and a 128-length RGB color-coherence vector (CCV) – are describing 

the color content of an image. CCV is made of 64 coherence pairs, each pair giving the number of 

coherent and incoherent pixels of a particular discretized color in the RGB space. In order to classify 

pixels in one of the two categories, the image is first blurred slightly by replacing each pixel value with 

the average value of the pixels in its 3 x 3 neighborhood. Then, pixels are grouped in connected 

components. A pixel will be classified as coherent if the connected component it belongs to is larger than 

a fixed threshold. 

K) Number of regions with that color: 

The colors of each image are quantized into number of colors bins. Values are associated with each color 

bin: the percentage of the image with colors in that bin, and the number of dots of that color found. 
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Ex. BDLP system quantizes the colors of each image into 13 colors bins. Six values are associated with 

each color bin: the percentage of the image with colors in that bin, and the number of ‘very small’, 

‘small’, ‘medium’, ‘large’, and ‘very large’ dots of that color found. 

L) Greyness and Background proportion: 

Greyness is the percentage of gray valued pixels to the total number of pixels. 

The background proportion is the percentage of the background in the total number of pixels, where the 

supposed background is the bin with the highest frequency in the hue or the gray value histogram. 

Ex. ImageRETRO system clusters the images into 15-bin hue histogram, and then calculates many color 

features including greyness and background proportions. 

M) Color channel variance: 

This feature represents variances in each of the color channels of segmented regions. 

Ex. Shoebox system uses extracted features as the average color in HSV color space, and the variances in 

each of the color channels of regions. The regions are either resulting from color segmentation, or a fixed 

partioning of the image, or the overlay of both. 

2.4.2 Shape Features 

There is no universal definition of what shape is either. Impressions of shape can be conveyed by color or 

intensity patterns, or texture, from which a geometrical representation can be derived. This is shown 

already in Plato’s work Meno �[84]. Here, we are considering shape as something geometrical. Therefore, I 

am considering for example edge orientation over all pixels as texture, but edge orientation at only region 

contours as shape information. Shape descriptors are diverse �[85]. Examples of shape are (Template 

matching, Elastic models, Radius vector, Elementary descriptors, Curvature scale space, Bounding box/ 

ellipse, Generalized Hough transform, Number of regions, number of holes, Angles between edges, and 

cross ratios of them, Convex parts), as well as: 

A) Edge direction histogram 

Edge direction histogram is captures the general shape information in the image. Because the feature is 

local, it is robust to partial occlusion and local disturbance in the image. The major disadvantage is that 

two perceptually very different images may have similar edge histogram. A histogram of the edge 

directions is used to represent the shape attribute. The edge information contained in the database images 

is generated in the preprocessing stage using edge operator (as Canny �[64] edge Sobel edge operators). A 

histogram intersection technique is used for shape-based retrieval; more details are given in chapter 4. 
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B) Fourier descriptors 

Fourier descriptors (FD) method is one of the most widely used shape description methods. FDs are 

obtained by applying Fourier transform on shape boundary, the Fourier transformed coefficients are called 

the Fourier descriptors of the shape. By considering the contour of a 2D object as a closed sequence of 

successive boundary pixels (xs, ys), where 0 � s � N-1 and N is the total number of pixels on the 

boundary. Then three types of contour representations, i.e., curvature, centroid distance, and complex 

coordinate function, can be defined. The Fourier transforms of these three types of contour representations 

generate three sets of complex coefficients, representing the shape of an object in the frequency domain 

�[86]. FD is backed by the well-developed and well-understood Fourier theory. The advantages of FD over 

many other shape descriptors are (i) simple to compute; (ii) each descriptor has specific physical meaning; 

(iii) simple to do normalization, making shape matching a simple task �[87]. Other advantages of FD 

method include easy normalization and information preserving �[86]. With FD, global shape features are 

captured by the first few low frequency terms, while higher frequency terms capture finer features of the 

shape. The main feature is that this method is in variant to translation, rotation, scale, and starting point. 

The disadvantage of Fourier descriptors is local features cannot be located, because in Fourier transform 

only the magnitudes of the frequencies are known, and not the location �[87]. Rui et al. �[88] proposed a 

distance measurement to classify similarity transformed characters using Fourier transformed coefficients. 

This distance measurement is the weighting sum of the variance of magnitude ratios and the variance of 

phase difference between two sets of Fourier coefficients. The Fourier coefficients are derived from 

Fourier reconstructed shape boundary rather than from original boundary. This is not different from FD 

derived from a smoothed boundary. 

C) Moment Invariants 

The first significant work considering moments for pattern recognition was performed by Hu �[89]. Based 

on these moments, Hu derived a set of seven moment invariants to translation, rotation, and scale. These 

moments are combinations of second and third order normalized central moments. We are using Hu’s 

seven moments as tooth contour (shape-based) descriptors for dental image retrieval; more details are 

given in chapter 4. 

D) Tensor Scale Descriptor 

Tensor Scale Descriptor (TSD) exploits the notion of local structure thickness, orientation, and anisotropy 

as represented by the largest ellipse centered at each image pixel and within the same homogeneous 

region. Miranda et al. �[90] proposed a method for TSD that uses the normalized histogram of the local 

orientation (the angle of the ellipse) at regions of high anisotropy and thickness within a certain interval. 
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They showed by experiment that TSD is invariant to translational, rotation and to some reasonable level of 

scale changes. TSDs are compared by using a correlation-based distance function �[91]. 

2.4.3 Texture Features 

Although a precise definition of texture is untraceable, the notion of texture generally refers to the 

presence of a spatial pattern that has some properties of homogeneity. In particular, the homogeneity 

cannot result from the presence of only a single color in the regions, but requires interaction of various 

colors. Examples of texture features are (Atomic texture features, Random field decomposition, Local 

binary patterns (LBP), Edge statistics, Histogram of polynomial of local intensities, Wavelet, Gabor, 

(Multi-scale) Intensity surface derivatives. 

2.4.4 Layout Features and Faces (or other specific object) 

Layout features is about the absolute or relative position of color, texture, or shape information. Higher 

level features are increasingly more specific, and thus less widely used. 

Faces are frequently present in photo pictures and relatively often used as a feature �[83]. This can be 

extended to the detection of object that can specify the picture nature. Automatic object recognition is 

needed, but most successful computer vision object recognition systems can only handle particular 

objects, such as industrial parts, that can be represented by precise geometric models. Content-based 

retrieval requires the recognition of generic classes of objects and concepts. A limited amount of work has 

been done in this respect, but no general methodology has yet emerged �[92]. 

2.5 Multimodal Biometrics 

ADIS can be described as a multi-biometric system that may use one or more instances of a single 

identifier, as well as more than one biometric identifier (as dental radiograph includes several teeth and 

sometimes the same tooth presences in more than one film of the same record). The future of the AEIS 

system is to utilize more instances of multiple biometric identifiers (e.g. face and ear image). In 

implementing the potential match search (Chapter 4), we need to move from tooth-to-tooth level matching 

score to record-to-record matching score. This section is reviewing the literature of multimodal biometrics 

specifically on how to fuse multiple classifiers in order to reach an overall score.  

Based on the inputs, a biometric system can be classified as �[100]: 

• Uni-biometric: is a system that uses only single biometric identifier i.e., it relies on the evidence 

of a single source of information for authentication (e.g., single fingerprint, face, or single ear) 
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• Uni-modal biometric system: is a subset of Uni-biometric system that uses only single biometric 

identifier, single representation, single classifier and single matcher. 

• Multi-biometric: is a system that uses more than one biometric identifier i.e., it relies on the 

evidence from independent or weakly correlated identifiers (e.g., fingerprint from different 

fingers, the two ears, or the different teeth images) 

• Multi-modal biometric system: is a subset of Multi-biometric system that uses more than one 

correlated biometric measurement (e.g., multiple impression of the same finger, video sequence 

for the same ear, or different images of the same tooth), multiple classifiers, multiple matchers, or 

any combination thereof. 

Most biometric systems deployed in real-world applications are Uni-modal, These systems have to 

contend with a variety of problems such as �[93]:  

(a) Noise in sensed data: A fingerprint image with a scar, or a voice sample altered by cold are examples 

of noisy data. Noisy data could also result from defective or improperly maintained sensors (e.g., 

accumulation of dirt on a fingerprint sensor), unfavorable ambient conditions (e.g., poor illumination of a 

user’s face in a face recognition system), or poor quality of dental radio-graphic film. 

(b) Intra-class variations: These variations are typically caused by a user who is incorrectly interacting 

with the sensor (e.g., incorrect facial pose), or different radio-graphic film orientation (e.g. the postmortem 

film is taken at a different angle from the antemortem one). 

(c) Inter-class similarities: In a biometric system comprising of a large number of users, there may be 

inter-class similarities (overlap) in the feature space of multiple users. This is a typical case in dental 

feature space. 

(d) Non-universality: The biometric system may not be able to acquire meaningful biometric data from a 

subset of users. A fingerprint biometric system, for example, may extract incorrect minutiae features from 

the fingerprints of certain individuals, due to the poor quality of the ridges. For dental identification 

system, we are facing the same problem for cases missing segments. 

Some of the limitations imposed by uni-modal biometric systems can be overcome by including multiple 

sources of information for establishing identity; as incase of multi-biometric systems, which are expected 

to be more reliable due to the presence of multiple, (fairly) independent pieces of evidence �[95]. These 

systems are able to meet the stringent performance requirements imposed by various applications. Maltoni 

et al. �[100] presented an example of how the system performance enhanced by considering multi-classifier 

system:  
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Considering a two class classification problem (in the context of ADIS molar/ premolar), and an N 

classifier system (Eigen Images, teeth contour descriptors, and teeth texture descriptors); and majority 

vote between the classifier of whether the teeth belongs to molar class or premolar class. If p is the 

probability that a single classifier correctly classify the input tooth, then the probability of correct 

classification for the multi-classifier system is: 
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2.5.1 Integration Strategies 

For a generic biometric system, it generally has four important modules �[99]: 

o Sensor module which captures the trait in the form of raw biometric data; 

o Feature extraction module which processes the data to extract a feature set that is a 

compact representation of the trait; 

o Matching module which employs a classifier to compare the extracted feature set with the 

templates residing in the database to generate matching scores; 

o Decision module which uses the matching scores to either determine an identity or 

validate a claimed identity.  

In multi-biometric system information integration/fusion can occur at any of the following levels �[97] (as 

shown in Figure 13) 

(a)  At the data (sensor level) or feature level: Either the data itself or the feature sets 

originating from multiple sensors/sources are fused. As an example, for ADIS, fusion at 

the feature level can occur if we fuse the different Eigen teeth weights to come with one 

general feature vector to represent the whole record. Method like Weighted Summation 

and Concatenation can be used for this fusion �[98]. 

(b)  At the matches score level: The scores generated by multiple classifiers pertaining to 

different modalities are combined. As an example, the match scores generated by the face 

and ear modalities of a user may be combined via the simple min rule in order to obtain a 

new match score which is then used to make the final decision. The previous example 

architecturally is considered as parallel fusion. Other architecture combinations are serial 

fusion (cascading), or hieratical (treelike) �[100]. 
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(c)  At the rank level: This type of fusion is relevant in identification systems where each 

classifier associates a rank with every enrolled identity (a higher rank indicating a good 

match). Thus, fusion entails consolidating the multiple ranks associated with an identity 

and determining a new rank that would aid in establishing the final decision. As an 

example, for ADIS, we can let each tooth give an identity rank, and then fuse the resulted 

ranks to come up with the whole record rank �[97].  

(d) Fusion at the decision level: The final output of multiple classifiers are consolidated via 

techniques such as majority voting, behavior knowledge space, etc…�[96].  

 

Figure 13: Different levels of fusion: (a) fusion at the feature level, and (b) fusion at matching score 

(confidence or rank) level, and (c) fusion at decision (abstract label) level, taken from �[99]. 

Biometric systems that integrate information at an early stage of processing are believed to be more 

effective than those systems which perform integration at a later stage. Since the feature set contains richer 



2. Literature Review 

������������ � 	
���������������37 

information about the input biometric data than the matching score or the output decision of a matcher, 

fusion at the feature level is expected to provide better recognition results. However, fusion at this level is 

difficult to achieve in practice because the feature sets of the various modalities may not be compatible 

�[94] (e.g., eigen-coefficients of teeth and contour descriptor coefficients). Fusion at the decision level is 

considered to be rigid due to the availability of limited information. Thus, fusion at the match score level 

is usually preferred, as it is relatively easy to access and combine the scores presented by the different 

modalities. 

2.5.2 Combination Strategies 

Kittler et al. �[101] developed a common theoretical framework for classifier combination and show that 

many existing schemes can be considered as special cases of compound classification. They demonstrated 

the commonly used classifier combination schemes such as the product rule, sum rule, min rule, max rule, 

median rule, and majority voting. They formulated the problem as follows: 

Consider a pattern recognition problem where: 

• pattern Z is to be assigned a class 

• m possible classes (w1,..,wm) 

• R classifiers each representing the given pattern by a distinct measurement vector 

• measurement vector used by the ith classifier is xi, where i=1…R 

• each class wk is modeled by the probability density function P(xi | ωk) 

• each class wk  has a priori probability of occurrence is denoted P(ωk) 

Using Bayes decision rule, the class of novel pattern Z whose measurements are: {xi , i = 1, .., R} should 

be assigned to class wj provided the a posteriori probability of that interpretation is maximum if: 

Z → ωj | p(ωj | x1, .., xR) = 
><k

max  p(ωk | x1, .., xR)   (2.1) 

The Product rule: assuming the representations used are conditionally statistically independent, then  
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thus accordingly Bayes decision rule: 
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The Sum rule: assuming that the a posteriori probabilities computed by the respective classifiers will not 

deviate dramatically from the prior probabilities. Thus, p(ωk | xi) = p(ωk) (1 + δki), substituting p(ωk | xi) in 

the product rule (2) and expanding the product then neglecting any terms of second and higher order: 

ZΣ →ωj | (1-R) p(ωj) +�
=

R

i
ijp

1

)|( xω  = 
><k

max  {(1-R) p(ωk) +�
=

R

i
ikp

1

)|( xω } (2.3) 

The decision rules, product rule (2) and sum rule (3), constitute the basic schemes for classifier 

combination. 

The Max rule: starting with the sum rule (3), if approximating the sum of posteriors using their maximum: 

Zmax → ωj | (1-R) p(ωj) + )|(max ij
i

pR xω
><

 = 
><k

max {(1-R) p(ωk) + )|(max ik
i

pR xω
><

} (2.4) 

Under the assumption of equal priors: 

Zmax → ωj | )|(max ij
i

p xω
><

 = 
><k

max { )|(max ij
i

p xω
><

}  

The Min rule: starting with the product rule (2), and bounding the product of posterior probabilities: 

Zmin → ωj | (p(ωj))-(R-1) + )|(min iji
pR xω

><
 = 

><k
max  {(p(ωk))-(R-1) + )|(min iki

pR xω
><

} (2.5) 

under the assumption of equal priors: 

Zmin → ωj | )|(min iji
p xω

><
 = 

><k
max { )|(min iji

p xω
><

}  

The Majority vote rule: starting by the sum rule (3) and by hardening the posteriors according to 

p(ωk | xi) = ∆ki = 
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All the above combination strategies and their relationships are represented in Figure 14. 
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Figure 14: Classifier combination schemes, taken from �[101]. 

In conclusion, a large number of combination strategies are available. According to Maltino et al.�[100], it 

is not well understood which one of them will perform better, and if so under what circumstances. 

Traditionally, selection of a particular combination is based on experimental assessment of a set of 

combination strategies and schemes. 
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3 Different Preprocessing Techniques for ADIS 

3.1 Cropping (Global Segmentation) 

Dental radiographic films of an individual are usually composed into a digital image record. In order to 

achieve high level of automation in postmortem identification it is necessary to decompose dental image 

records into their constituent radiographic films, which are in turn segmented to localize dental regions of 

interest. In this section an automatic hierarchical treatment to the problem of cropping dental image 

records into films is proposed. This proposed approach is heavily based on concepts of mathematical 

morphology and shape analysis. Among the many challenges that face automatic cropping are non-

standard assortments of films into records, variability in record digitization as well as randomness of 

record background both in intensity and texture. 

3.1.1 Introduction 

Though performing the film cropping task may seem trivial for a human observer, it is desirable to 

automate this process and to integrate it with the prototype ADIS system. In this section, we focus on the 

global segmentation (cropping) problem of dental X-ray records and seek a solution to achieve a good 

tradeoff between accuracy and complexity. On one hand, we want segmentation results to be as accurate 

as possible since inaccuracy in cropping of dental records is likely to hinder the performance of 

subsequent processing steps and accordingly the overall performance of the entire identification system. 

On the other hand, we want the computational cost to be reasonably low, especially with large volume of 

records that need to be processed. 

  

Figure 15: Sample dental records that show the heterogeneity among records of a typical dental record database. 
Note the varying background intensity, orientation and connectedness from record to record. 

Fast and accurate cropping of dental X-ray records is a nontrivial challenge due to the heterogeneity of 

dental records. Traditionally, dental X-ray records are digitized by different facilities where human 

intervention is inevitable during the digitization process. Therefore, characteristics of dental X-ray records 
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vary not only from database to database but also from image to image. Figure 15 illustrates the 

heterogeneity among records of a typical dental record database �[47]�[48].In order to develop an 

abstraction for varying characteristics of dental X-ray records, we classify the ambiguity sources of 

digitization process into the following three categories: 

A) Intensity-related: Dental X-ray films are usually placed on the top of a uniform background; 

but we occasionally observe textured background. Dental fillings, which exist in a moderate 

portion of X-ray films, could have identical intensity values to the background color. 

B) Geometry-related: Dental films have rectangular shape and two types of corners: round or 

right. However, the width, height and corner type of dental films change from record to 

record and sometimes vary within the same record. In some records, some portion of the 

border of dental films could get smeared out and become indistinguishable from the 

background. 

C) Topology-related: Ideally we would like all dental films to be separated from each other 

during the digitization phase (more convenient from segmentation perspective). However, in 

typical databases used in forensic odontology, significant portion of the records contain films 

that are connected to each other. 

These three classes of ambiguities jointly contribute to the difficulty of cropping dental X-ray records. 

Two aspects motivate our approach: First, archness of round-corner films provides valuable clues for 

segmentation. Even if several round-corner films are placed side-by-side in parallel, the arc segments still 

remain distinguishable. Second, the straight orientation of dental X-ray films significantly reduces the 

solution space - i.e., it is sufficient to consider only horizontal and vertical lines for cropping purpose. By 

fully exploiting geometric a priori information of dental films, we show that cropping can be achieved in 

a robust yet computationally efficient fashion. 

 

Figure 16: A block diagram illustrating the three-stage approach for dental record cropping 

We use a three-stage approach for cropping as depicted in Figure 16: First a preprocessing stage whereby 

we extract the background layer of the image record, extract connected components and classify them as 



3. Preprocessing Techniques for ADIS 

������������ � 	
���������������42 

either round-corner or right-corner connected components. The second stage performs arch detection and 

dimension analysis, realization of this stage differs according to the outcome of the preprocessing stage. 

The third stage is a post-processing stage that performs topological assessment of the cropping results in 

order to eliminate spurious objects.  

In sub-section 3.1.2 we introduce the notations and terminology that we will use through the remainder of 

the cropping section. In sub-sections 3.1.3, 3.1.3, and 3.1.5 we elaborate on the preprocessing stage, the 

arch detection and dimension analysis stage, and the post-processing stage respectively. Finally in section 

�3.1.6 we present the experimental results and discussion on these results. 

3.1.2 Notation and Terminology 

In this sub-section, we introduce some notations and definitions for later use on the cropping section. 

The dental X-ray record is a gray-scale image (or we convert it to gray-scale) denoted by X (i, j) ∈ [0, 

255] where (i, j) ∈ � = [1, H] × [1, W] (H, W are the height and width of the image). The dimension of 

individual dental films is denoted by h, w. 

Level set and its size 

Level set Lk is a binary image defined by ( ) ( )
�
	

 =

=
else

kjiX
jiLk 0

,1
, . The size of a binary image Lk, denoted 

by |Lk|, is simply the total number of ones in the image. 

Connected Film Set and Boundary film 

Multiple films that are not completely separated form a connected film set. Within a connected film set, a 

film is called boundary film if removing it does not affect the connectivity of remaining in the set. 

Morphological area-open and area-close operators 

Area open operator is the extension of morphological opening - it consists of three consecutive filters, 

namely erosion, small objects removal and dilation �[49]�[50].  

Area close operator is the extension of morphological closing - it consists of three consecutive filters, 

namely dilation, small objects removal and erosion. 

90o V-corner and 180o V-corner 

90o V-corner refers to the corner formed by a straight line and an arc segment; 

180o V-corner refers to the corner formed by two adjacent arc segments; (as shown in Figure 17). 
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Inner L-corner and Outer L-corner 

Inner L-corner refers to a right-corner with one quadrangle of white and three quadrangles of black; outer 

L-corner refers to a right-corner with one quadrangle of black and three quadrangles of white (as shown 

in Figure 17). 

Note: Inner and outer L-corners can be detected by using morphological hit-or-miss operators (a specific 

case with window size of 3 is shown in Section �3.1.3.2.). 

  

(a) 90o V-corner and 180o V-corner (b) Inner L-corner and Outer L-corner 
Figure 17: a) 90o V-corner and 180o V-corner; b) inner L-corner and outer L-corner 

3.1.3 Record Cropping Preprocessing 

3.1.3.1 Background Extraction 

Although background typically consists of uniform color such as white, gray or black, intensity alone is 

not sufficient to distinguish the background from dental films. For example, the empty (no tooth) areas in 

a film often appear as dark regions and could become confused with black background. Similarly, dental 

filling often appear as bright regions in a film and could cause problem when the background is white as 

well. A more robust approach of extracting the background color is to count on geometric clues such as 

the shape of dental films. Since any dental film can be bounded by a rectangle, the boundary of 

background largely consists of vertical and horizontal lines. 

Suppose the histogram of input image X (i, j) and the largest three peaks are n1, n2, n3. We consider their 

corresponding level sets ∂ Lk, k = n1−n3 and apply morphological filtering to extract the boundary of 

those three sets Lk. For dental films whose boundary is largely rectangular, the fitting ratio of ∂ Lk by 

vertical or horizontal lines reflects its likelihood of being the true background. Specifically, we propose to 

extract vertical and horizontal lines from ∂ Lk by direct run-length counting and define the fitting ratio 

by: 
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where Rk is the binary image recording the extracted vertical and horizontal lines. The set with the largest 

fitting ratio among the three level sets is declared to be the background Lb. As soon as background is 

detected, we do not need intensity information but only the geometry of Lb for further processing (as 

shown in Figure 18).  

 

(a) original dental record 
 
 
 
 
 

 

(b) level set L1, fitting ratio r1=0.09 
 
 
 
 
 
 
 

(c) level set L2, fitting ratio r2=0.05 
 
 
 
 
 
 
 

(d) level set L3, fitting ratio r3=0.36 
Figure 18: Background extraction example 

3.1.3.2 Arc Detection 

The complement of detected background bL  consists of non-cropped dental films as well as various 

noises. The noise could locate in the background (e.g., textual information such as the date) or within 
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dental films (e.g., dental fillings that have similar color to the background). To eliminate those noises, we 

propose to apply morphological area-open operator to bL and Lb sequentially. Suppose the  

  

(a) Original dental record (b) Extracted background 

  
(c) filtered background (d) Layered representation 

Figure 19: a) original dental record; b) extracted background; c) filtered background; d) layered representation 

Euler number of filtered bL  is N, then we can label the N connected components in bL  by integers 1 − N 

(as shown in Figure 19). For each connected component (a binary map), we need to classify its corner 

type since a record could contain the mixture of round-corner and right-corner films. 

The striking feature of a round-corner film is the arc segments around the four corners. In the continuous 

space, those arc segments are essentially 90o-turning curves (they link a vertical line to a horizontal one). 

In the discrete space, we propose to use the following Hit-or-Miss operator: 
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to detect corner pixels first and then morphological area-close operator to locate arc segments. The area-

close operator is suitable here because it connects the adjacent corner pixels around a round corner to 

makes them stand out as an arc segment. By contrast, the corner pixels around a right corner will be 

suppressed by the area-close operator (as shown in Figure 20).  

  

(a) Dental record with both round-corner and right-
corner films 

(b) arc detection result 

Figure 20: Arc detection for corner-type classification 

3.1.3.3 Dimension Analysis 

For round-corner films, detected arc segments will be shown sufficient for cropping purpose in the next 

section. However, the location uncertainty of right-corner film boundary is more difficult to resolve 

because the inner boundary could disappear in the case of parallel superposition. We use purely geometric 

approach for estimating the dimension (h, w) of right-corner films. This dimension analysis approach is 

based on the heuristic observation that concatenation of two right-corner films could only give rise to 

inner L-corners. Therefore, the distance between any two outer L-corners must be: 

di = mi*h + ni*w, i = 1 − k1     (3.1.3) 

where (mi, ni) are a pair of nonnegative integers. Moreover, since the borders of right-corner films would 

not all align to each other in the case of non-parallel concatenation, it is reasonable to assume that min 

{di} ∈ {h, w}. In Figure 17, if the two outer corners corresponding to min {di} are marked by A, B, then 

the closest corner to A, B must form a rectangular area of p*h*w, where p is an unknown positive integer. 
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To further resolve the uncertainty of p, we note the constraint on film ratio
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had conducted an experiment, calculating the aspect ratio of 494 manually cropped dental films, and it 

proves that this constraint is valid (more details are shown in the experiment sub-section 3.1.6). Such 

constraint often reduces p to be at most two viable possibilities (combinations of h and w) when A or B is 

linked to an inner L-corner. If we denote the distance between any two inner L-corners by: 

d'i = m'i*h + n'i*w, i = 1 − k2 > k1    (3.1.4) 

then the weighting coefficients m'i, n'i could be arbitrary integers. By comparing the solutions (m'i, n'i) 

given by different combinations of (h, w), we pick out the one whose solution is closest to integers to be 

the most likely dimension. 

3.1.4 Cropping Methodology 

Preprocessing classifies each connected component in Lb to be either round-corner or right-corner. In this 

section, we present tailored cropping techniques for round-corner and right-corner components 

respectively. For round-corner component, we demonstrate that two types of V-corners associated with 

arc segments are sufficient for cropping. While for right-corner component, we use recursively crop out 

films one-by-one based on the estimated film dimension (h, w). 

3.1.4.1 Round-corner Component 

When multiple round-corner films are placed side by side, they form two types of V-corners as defined 

above. For 90o V-corner, its straight edge indicates where the cropping should occur. For 180o V-corner, 

we note that it is symmetric with respect to the target cropping line Figure 17. Therefore, the cropping of 

round-corner films can be fully based on locating and classifying the two types of V-corners. A V-corner 

is characterized by the intersection of two segments where the curvature experiences a sharp change. Such 

geometric singularity can be identified by local analysis of digital arc segment. Specifically, we define 

“curvature index” at a location (i, j) to be the maximum length of consecutive white pixels in bL  as we 

traverse its eight nearest neighbors in a clockwise order. The position is declared to be a V-corner if its 

curvature index is above 5 and it is close to one of the detected arc segments in corner-type classification. 

Further classification of V-corner into 90o and 180o can be done based on symmetry analysis. For a 90o V-

corner, neither horizontal nor vertical lines passing the V-corner divide the corner symmetrically. While 

for 180 o corner, there exists a symmetric axis which tells the place to cut. We note that unlike generic 
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symmetry detection problems, the direction of symmetric axis is known to be either horizontal or vertical. 

Therefore, symmetry analysis can be conveniently carried out by correlation or differential techniques. 

3.1.4.2 Right-corner Component 

The cropping of right-corner films is based on the following intuitive observation with the boundary 

films. Due to the special location of boundary films, they can be properly cropped out with a higher 

confidence than the rest. Moreover, cropping out boundary films could make other non-boundary films 

become boundary ones and therefore the whole process of cropping boundary films can be recursively 

performed until only one film is left. 

To implement recursive cropping, we require reliable detection of boundary films. It follows from the 

definition of boundary films that they must satisfy: 1) any boundary film contains a pair of outer L-

corners; 2) the distance between the L-corner pair is either h or w. Therefore, detected outer L-corners in 

dimension analysis give useful clue for locating boundary films. We note that since the area of connected 

film set Acfs and the film dimension are both known, the number of films contained in the set it 

approximately known 
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n cfs . The iteration number of recursive cropping is given by n − 1. 

3.1.5 Post-processing 

Cropping techniques presented in the previous section mainly target separating connected films. There are 

other factors that can not be handled by cropping and may affect final segmentation results. For example, 

some dental films are contaminated before digitization such that a portion of film becomes 

indistinguishable from the background (as shown in Figure 19). The accuracy of cropping itself could also 

degrade due to errors in dimension analysis. For example, in the case of right-corner films, there might be 

some leftovers after cropping out �
�

�
�
�

�

hw

A cfs films. Consequently, it is desirable to have a post-processing 

stage to consummate the segmentation results. 

One of prior information about dental films is that they are all convex sets, regardless of the corner-type. 

Such knowledge implies that the hole or cracks of any segmented component be filled in by finding its 

convex hull. Therefore, the first step in post-processing is to enforce the convexity of all connected 

components after cropping. Secondly, we propose to check the size and shape of each convex component. 

If the size of a component is too small or its shape significantly deviates from rectangle, we detect its 

outer L-corners and check if they correspond to one border of the film. If yes, we conclude that the film 
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was contaminated and derive its boundary using dimension information. Otherwise, we decide it is likely 

to be a non-film object and put it back to the background layer. 

3.1.6 Experimental Results 

First: we started by an experiment studying one of the dental film properties, film size (aspect ratio). 

Since dental films have 5 different sizes, so the ratio of width to height (aspect ratio) will have 5 different 

values (0.64, 0.66, 0.77, 0.5, 0.75) �[51], but the films can slightly rotate while added to the record. By 

studying the aspect ratio of 494 films (periapical and bitewing types), we found it is to range between 

0.7233 and 2. Moreover calculating the minimum of (aspect ratio, and inverse aspect ratio) for these 

films, which we call it “minimum side ratio”; we found it to range between 0.49 and 0.91. By studying 

the probability density function of those cases; we found that 94.13% have aspect ratio between 0.6 and 

0.8, while app. 3% have minimum side ratio less than 0.6, and app. 3% have minimum side ratio greater 

than 0.8. 

A performance assessment experiment: We evaluate both the yield and timeliness aspects of our film 

cropping approach using a randomly selected test sample of 100 dental records (images) from the CJIS 

ADIS database �[47]�[48], the total film count in the test set is 722. We verified that the test sample has 

variability in background and contains films with both corner types (48 round-corner, and 52 right-corner 

records). We marked the cropped segments using the following convention: a perfect segment contains 

exactly one film, an under segmented (under cropped) region contains several whole films (Figure 21), 

and an erroneous segment is that contains part of the film, or region from the background texture, or both. 

In Figure 22, we summarize the yield analysis: 73.7% of the films were perfectly cropped, 23.8% were 

under segmented, and only 2.5% films developed into erroneous segments. Further cropping-yield 

analysis show that in the right corner records perfect segmentation rate is 70.1%, under segmentation rate 

is 28.2%, and erroneous segmentation rate is 1.7%. While in round corner records these rates are 76.9%, 

19.9%, and 3.2% respectively. We measured the record cropping time of our algorithm using MATLAB 

implementation running on a 2.0 GHz 512 MB RAM Intel Pentium IV PC platform. The average 

cropping time is 30 kpix/sec and it varies depending on the number of films in the record and the amount 

of separation between films. 

An exploratory experiment to examine potential future yield-boosting opportunities: Some film geometric 

properties, like the minimum sides ratio ‘γ’, may provide clues to judge cropped segments. We found that 

by checking the rule γ > 0.49, we could mark under segments, containing ~14.8% of the films, as γ-

violating. Furthermore, by observing that most records comprise films of about the same area (except for 
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panoramic films), we could also mark under segments, containing ~8.4% of the films, as area-violating. 

In the future we may exploit these properties for defining additional post-processing rules whose 

violations call for further subsequent processing and hence boost the yield performance. Figure 22 is 

showing an example of how the technique performs. 

 

Figure 21 Record cropping example 

 

Figure 22: Experimental results 
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3.2 Teeth Contour Extraction 

Dental features extraction is one of the major pre-processing steps. In this section, the problem of teeth 

contour extraction using level sets and active contour without edges are addressed. Preliminarily 

experimental results prove that the active contour without edges approach for teeth contour extraction 

achieves higher accuracy and requires significantly less time as compared to the other approaches 

currently being used within the context of ADIS. 

3.2.1 Introduction 

After the dental films are cropped from dental records, they passed through the enhancement step 

followed by a film type classification step. According to the film type (bitewing, upper periapical, or 

lower periapical), each cropped film is segmented to multiple teeth, as shown in Figure 23, which is 

recognized as a local segmentation problem of isolating each tooth in order to facilitate the extraction of 

features like crown contour (crown is part of the tooth above the gum line) and root contour (root is part 

of the tooth below the gum line "inside the bone") for identification use. Haj said et al. �[20] use an 

automated approach for segmenting dental x-rays films into multiple teeth segments based on 

mathematical morphology.  

 

Figure 23: Local segmentation 

Last, segmenting each tooth from the isolated region, this is recognized as teeth contour extraction (as 

shown in Figure 24). Jain and Chen �[14]�[25] propose a semi-automatic contour extraction method. First, 

the crown center is marked inside the rectangle tooth segment and then edge detection algorithm is used 

to extract the contour of teeth. Later Chen and Jain �[18] extract the teeth contour using the active contour 

models (snake). A new dynamic energy term was used for the directional snake �[52] to discriminate 

boundaries of adjacent teeth. Zhou and Abdel-Mottaleb �[17] also have used active contour models (snake) 

for extracting the contour of the teeth. Active contour models based on edges (snakes) are driven by the 

gradient of the images. In many teeth images, the gradient between the teeth and the background is not 

prominent, and hence the techniques like snakes will not be able to extract the exact tooth contour. Also, 

snakes are Lagrangian formulations where the contour is represented in a parametric form. Parametric 
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representations typically fail to evolve in noisy conditions �[53]. Further, the parametric contours are 

unable to split and merge on encountering local minima in the image �[54]-�[57]. 

In this section, we show how we started using level sets then we moved to a novel technique using Active 

Contour without Edges for teeth contour extraction. The latter technique is independent of the gradient of 

images for extracting the contour of teeth. It is based on the intensity of the overall region of the tooth 

image. Also, the starting contour can be in any part of the image and does not have to be around the 

boundary of the tooth as in case of snakes. Preliminarily experimental results on the teeth images show 

that the proposed technique using active contour without edges performs extremely well (even compared 

to level sets) for extracting the teeth contour. 

Figure 24: ADIS modified architecture 
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The remainder of the section is organized as follows: Sub-section 3.2.2 introduces some of the notations 

and terminology that will be used throughout the rest of this section. The technique for extracting the 

teeth contour using level sets and active contour without edges are explained in sub-section 3.2.3 and 

3.3.3 respectively. The experimental results and a discussion on these results are reported in sub-section 

3.3.4. 

3.2.2 Notations and Terminology 

Some notations and definitions are introduced in this section.  

Teeth segmentation: Teeth segmentation means partitioning an image into its constituent regions and 

extracting the objects of interest. In the context of ADIS, segmentation is a step required to identify the 

extent of teeth comprised in a digital image of a dental radiographic film. 

Tooth segment: A tooth segment represents a Region of Interest (ROI) that contains distinctive features 

used in the subsequent steps of identification. A qualified ROI is defined as a rectangular area in the 

image of a dental film that bounds one tooth as shown in Figure 23. 

Tooth contour extraction: Tooth contour extraction follows the segmentation of teeth and extracts the 

tooth contour from its background. 

3.2.3 Teeth Contour Extraction using Level Sets 

Malladi et al. �[53] proposed a shape modeling (A level set) approach. This approach to shape modeling 

retains some of the attractive features of active contour models (snake) and overcomes some of their 

limitations. Level set can split and merge freely to represent more than one object, can have self-

intersection, and can represent sharp of other discontinuities.  Level sets can be applied to model 

arbitrarily complex shapes, which include shapes with significant protrusions. The interface (front) is a 

closed, non-intersecting, hyper-surface flowing along its gradient field with constant speed or a speed that 

depends on the curvature F(k). It is moved by solving a “Hamilton-Jacobi” type equation written for a 

function in which the interface is a particular level set: 

( ) 0=∇+
∂

∂ ψκψ
F

t
     (3.2.1) 

A speed term synthesized from the image is used to stop the curve evolution in the vicinity of object 

boundaries. The resulting equation of motion is solved by employing entropy-satisfying upwind finite 

difference schemes. The segmentation problem is now reduced to finding an appropriate function F(k). 

We can factor F(k) = K(F0 + F1), where F0 is the advection term (inflation force) and is usually a 

constant, F1 is the curvature of the curve provides the smoothing constraints on the level sets and reduces 
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the total curvature of level sets, K is a stopping term, to slow evolution near the object boundaries. 

Generally, the form is F(k) = K (� + � k), , and the evolution equation for � (x, y, t) is given by: 

( ) ψεκαψ ∇+−= Kt      (3.2.2) 

where � is a very small constant, the term � acts like a balloon force and it pushes the curve outward 

towards the tooth boundary. The goal of the stopping term K is to slow the evolution when it reaches the 

boundaries. The stopping function used for the evolution of level sets is derived by the Gaussian 

smoothed image gradients. k is the curvature of the curve and is calculated by: 

( )2
3

22
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yx
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ψψ

ψψψψψψψ
κ

+

+−
−=     (3.2.3) 

where �x is the gradient of the image in the x direction; �y is the gradient in the y direction; �xx is the 2nd 

order derivative in the x direction; �yy is the 2nd order derivative in the y direction; and �xy is the 2nd order 

derivative first in the x direction and then in the y direction. 

 

 
Figure 25: Teeth contour extraction using the level set approach 

The previously mentioned technique based on the Level Set approach (active contour with edges) was 

used for teeth contour extraction. Here, the curve evolution is driven by the gradient of the image. Figure 

25 shows the extracted contour on segmented teeth images. It is evident from the results that the contour 
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extracted using Level Sets is not smooth. Also, when edges are not prominent in the teeth images, the 

stopping function is not able to terminate the evolution of the level sets, and thus an incorrect tooth 

boundary is extracted. This was the motive behind investigating the performance of active contours 

without edges algorithm. 

3.2.4 Teeth Contour Extraction using Active Contours without Edges 

To advance the research in this area, of extracting the contour of a tooth, a novel method using active 

contours without edges �[58] based on the Mumford-Shah functional for image segmentation �[59] has been 

used. This is a region based segmentation technique where the evolution of the contour is guided by a 

model fit error term. Here an embedding function � (x, y, t) evolves from inside the tooth image under 

the influence of a model fit error term and stops on the boundary of the tooth. The image is assumed to be 

made of two regions viz. the foreground and background of approximately piecewise constant distinct 

Intensities. The embedding function � (x, y, t) is designed as a signed distance function, |� (x, y)| = 

distance of (x, y) to the curve: 
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Let C0 be the contour separating the two regions. Let the energy of the fitting be defined as: 

 
(3.2.5) 

 

where C is any contour in the image, and c1 and c2 are the mean intensities of the image, I0, inside and 

outside of the contour C, respectively. The above equation will be minimized only when the contour C = 

C0, i.e. when the contour C is segmenting the boundary of the object. It will be nonzero when the contour 

is either inside or outside the object. Thus, in this formulation, the embedding function, � (x, y, t), is 

evolved from inside the tooth image under the influence of the above mentioned model fit error term. It 

stops on the boundary of the tooth. 

The contour is initialized as a circle centered at the center of the image. Then the evolution equation is 

given by: 
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where �1, �2 and � are constant (In our implementation �1, and �2 are both one and � is 2). The first term 

(curvature of the curve
�
�

�

�

�
�

�

�

∆
∆

ψ
ψ

div
), is calculated as: 
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where �x is the gradient of the image in the x direction; �y is the gradient in the y direction; �xx is the 2nd 

order derivative in the x direction; �yy is the 2nd order derivative in the y direction; and �xy is the 2nd order 

derivative first in the x direction and then in the y direction. The curvature term provides the smoothing 

constraints on the evolution of the contour by minimizing the total curvature of the contour. The second 

term, the model fit error term, drives the evolution of the contour. The model fit error is minimized when 

the contour divides the image in such a way that the mean intensities c1 and c2 are having the maximum 

difference. 

 

Figure 26: Evolution of the active contour without edges 

Figure 26 shows an example of how the proposed technique evolves over time to segment different teeth 

contours. In some dental images a part of the neighboring tooth may also be erroneously included in the 

segmented result (note that local segmentation precedes the contour extraction process). To avoid this, a 

post processing step was used after contour extraction. The contour on the left and right side of the tooth 

is always convex in shape. Hence, whenever the contour was becoming concave due to neighboring tooth 

image, that part of the contour was deleted. 

3.2.5 Experimental Results 

We tested the proposed Teeth Contour Extraction using Active Contours without Edges with different 

types of teeth and the preliminary experiment proves the concept. Figure 27 shows the results that were 

obtained using this algorithm on molars, pre-molars, canines and incisors. As can be seen, a very smooth 
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and accurate teeth contour is obtained using this algorithm. Also, the contour extraction procedure is 

extremely fast (Converges in 0.16 second/tooth using a MATLAB environment). 

 

 

Figure 27: Teeth contour extraction using active contour without edges 

The snakes algorithm as implemented by Chen and Jain �[30] was also used to extract the contour of the 

teeth images in dental films. Figure 28 (a) and (c) shows the contour extracted from two dental films 

using their technique. As is evident from the results, the snake is not able to detect the contour of many 

tooth entities in the dental films (e.g. lower left tooth in Figure 28 (c)). The extracted contour does not 

represent the real teeth contour but, rather, is an approximate shape of the teeth. This is perhaps due to the 

previously mentioned limitations of the snake-based evolution techniques. The contour extracted for the 

same set of films using the proposed active contour without edges technique is shown in Figure 28 (b) 

and (d). It can be seen that the contour is extracted for most of the tooth images in the films and the real 

boundaries of the crown of the teeth images are perfectly segmented. The error in the extracted contour in 

Figure 28 (d) for the lower molar (red color) is due to incorrect teeth image segmentation in the previous 

stage. 
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Figure 28: (a) and (c) contour extracted using the snake-based algorithm; 
(b) and (d) contour extracted using active contour without edges 

The aforementioned procedure was used to extract the teeth contour of images from CJIS Division’s 

Digitized Radiographic Images databases �[47]�[48]. These databases have two types of dental radiographs. 

The radiographs obtained when the person is alive are labeled as Ante-mortem (AM) radiographs and 

those obtained after the death of the person are labeled as Postmortem (PM) radiographs. From this 

database a total of 10 AM and 10 PM records were randomly selected. Each record contains 

approximately 3 films. There are a total of 340 teeth represented in these films. The teeth contour 

algorithm was executed on these images and the results were manually categorized into the following four 

types: (a) Perfectly segmented tooth (whole tooth) (P), (b) Perfectly segmented crown (PC), (c) Contour 

that can be corrected at a later stage (C), (d) Error in contour extraction (E). Table 3 summarizes the 

performance of the proposed contour extraction technique. 

Records Correct or partially correct contour 

extraction (%) 

Errors in contour 

extraction (E) 

Average 

time/tooth (sec) 

 Perfect 

contour (P) 

Perfect crown 

contour (PC) 

Partially 

corrected (C) 

  

10 (AM) 56.2 14.05 16.75 13.0 0.15 

10 (PM) 60.0 11.61 14.83 13.56 0.17 

20 (Total) 58.10 12.83 15.79 13.28 0.16 

Table 3: Performance of the proposed teeth contour extraction algorithm 
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Figure 29 shows an example for each of the above mentioned categories.  

 
Figure 29: Contour extracted using active contour without edges. 

(a, b) Perfectly segmented (P), (c, d) Perfect Crown (PC), 
(e, f) Correctable error (C), (g, h) Error in contour (E) 

Figure 30 shows several examples of the extracted teeth contour on other dental films. 

 

Figure 30 A few more examples of extracted teeth contour using active contour without edges. 
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3.3 Teeth Labeling 

An important problem in automated dental identification, is automatic classification of teeth into four 

classes (molars, premolars, canines, and incisors) as part of creating a data structure that guides tooth-to-

tooth matching, thus avoiding illogical comparisons that inefficiently consume the limited computational 

resources and may mislead decision-making. We tackle this problem by first using low computational-

cost, appearance-based on features to assign an initial class, and second a string matching technique, 

based on teeth neighborhood rules, is applied validate initial teeth-classes and hence assign each tooth a 

number corresponding to its location in the dental chart. The proposed approach works very fast, as it 

does not need any complex feature extraction steps, and achieves accurate teeth labeling even in the 

absent of one tooth. 

3.3.1 Introduction 

The problem of automatic construction of dental charts was addressed in �[15]�[33], where Mahoor and 

Abdelmottaleb deal only with bitewing films (2 class problem) to classify molar and premolars. They 

used the Fourier Descriptors of teeth contour and Bayesian classification. They assigned labels based on 

the location of premolar and molars. The teeth arrangement without missing tooth should match one of 

these patterns: 

PM, PMM, PMMM, PPM, PPMM and PPMMM (left quadrant image) 

MP, MMP, MMMP, MPP, MMPP and MMMPP (right quadrant image) 

They discard the cases with only molar or premolar teeth such as M, MM, MMM, P and PP. 

Jain and Chen �[36] used a hidden Markov model (HMM) as an underlying representation of the dental 

atlas, where the states representing the available teeth have discrete observations, namely the class of each 

tooth, and the states representing the missing teeth have continuous observations (They can assign one or 

two missed teeth according to the distance between neighboring teeth). 

All these techniques use teeth contour features (shape based); while automatic extraction of teeth contour 

is computationally intensive, and to the best of our knowledge, none of the techniques exploited in teeth 

contour extraction, so far, achieves this task reliably �[43] 

The proposed approach for constructing dental charts relies on low computational-cost, appearance-based 

features to initially independently classify each segmented tooth of a dental film, i.e. without considering 

neighboring teeth. The proposed technique is an extension to what Nassar presented �[60], where we 

consider: 
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• The film type, where with periapical films, a tooth tq is initially assigned a class label �k � { ’I’, 

’C’, ’P’, ’M’ }, where ’I’ stands for an Incisor, ’C’ stands for a Canine, ’P’ stands for a Premolar, and ’M’ 

stands for a Molar, while with bitewing film, the initial classes are ’P’, ’M’. 

• Testing the performance of Linear Discriminant Analysis (LDA) for the teeth classification of 

FisherTeeth is an interesting approach that is worth pursuing.  

• Validating and possibly correct initial teeth class assignments, even in the presence of missed 

tooth, we use teeth class-neighborhood rules that govern the assortment of teeth in a human mouth. 

This section is organized as follows, sub-section 3.3.2 introduce the notations and terminology that will 

be used through the remainder of this section. In sub-sections 3.3.3, 3.3.4 and 3.3.5 we elaborate on the 

input segment normalization steps and the initial class assignment using reconstruction based on PCA, 

followed by using the Linear Discriminant Analysis (LDA) for the initial class assignment. In sub-section 

3.3.6 we show how we can make validation based on string matching techniques including ‘don’t care’ 

character. In sub-section 3.3.7 we present the experimental results on the performance of the different 

class assignment methods and a discussion on these results. 

3.3.2 Notation and Terminology 

Dental Atlas: An adult has 32 permanent teeth (8 incisors, 4 canines, 8 premolars and 12 molars). Each 

tooth has a specific structure and position in the mouth. Figure 31 shows left half of the upper jaw. 

 
Figure 31: Dental atlas, taken from �[61] 
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Periapical and Bitewing Different Placements �[62] (as shown in Figure 32) 

Central incisor periapical – records the crowns and roots of the central incisors and the mesial (side 

towards the midline) aspect of the lateral incisor  

Lateral incisor periapical – records the crown and root of the lateral incisor  

Canine periapical – records the crown and root of the canine tooth (The lateral and canine views are often 

combined into one projection on each side.)  

Premolar periapical – records the crowns and roots of the distal (side away from midline) of the canine, 

1st and 2nd premolar (bicuspid) teeth and 1st molar teeth  

Molar periapical – records the crowns and roots of the 1st, 2nd and 3rd molar teeth  

Premolar bitewing – records the crowns of the distal (side away from midline) of the canine, 1st and 2nd 

premolar (bicuspid) teeth and 1st molar teeth  

Molar bitewing – records the crowns of the 1st, 2nd and 3rd molar teeth 

 
Figure 32: Periapical and bitewing different placements, taken from �[62] 

Numbering systems for Adult: have been developed in order to have a standard way of referring to 

particular teeth (there are more than 32 different systems). Two are commonly in use in the US today: 1) 

Universal Numbering System, which has been adopted by the American Dental Association, and 2) 

Palmer Notation Method, which is used by some orthodontists, pedodontists (child dental specialist), and 

oral surgeons. While internationally the two-digit FDI World Dental Federation notation is widely used 

�[63]. Table 4 shows the difference between those systems. 
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Universal Numbering System 

Upper (Maxillary) Left Upper (Maxillary) Right 
16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 

M M M P P C I I I I C P P M M M 

M M M P P C I I I I C P P M M M 

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 

Lower (Mandibular) Left Lower (Mandibular) Right 
 

Palmer Notation 
8 7 6 5 4 3 2 1 1 2 3 4 5 6 7 8 

8 7 6 5 4 3 2 1 1 2 3 4 5 6 7 8 

 

FDI Two-Digit Notation 

28 27 26 25 24 23 22 21 11 12 13 14 15 16 17 18 

38 37 36 35 34 33 32 31 41 42 43 44 45 46 47 48 

Table 4: Different teeth numbering systems 

3.3.3 View Normalization 

In practice, dental radiographic films show teeth that need not comply with the standardizing assumptions 

on view that we made. On one hand, crowns need not appear on the topside of the segmented regions, as 

in the case with upright films showing teeth of the upper jaw (or flipped films showing teeth of the lower 

jaw). While some of the teeth segmentation algorithms annotate teeth as either upper or lower, and thus 

partly solve the first type of deviations from standard view �[14]�[16]�[17], other teeth segmentation 

algorithms do not discriminate between upper and lower teeth �[20]. To accommodate the different teeth 

segmentation algorithms, a simple test is conducted for bitewing films (For periapical films; the film type 

classification stage differentiates between upper and lower periapical films). This test advises based on 

whether the center of the segmented tooth is closer to the top or the bottom part of the bitewing film. On 

the other hand, the lateral surfaces of radiographed teeth do not necessarily appear as predominantly 

vertical lines. In view normalization, there are two types of transformations that we usually need to 

address. First is the photometric (or intensity) transformation. 
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The photometric transformation was addressed at earlier step of dental record preprocessing (film 

enhancement). Hajsaid et al. �[20], proposed a grayscale contrast stretching transformation using a 

parametric sigmoid transform. Thus they mapped an input grayscale g to TEnh (g, �, 	, gth) according to: 
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where �, and 	 designate compression and expansion factors, respectively, gth is a threshold grayscale 

between the compression and the expansion regions of TEnh, gTH is the image of gth under TEnh, gmin and 

gmax are the minimum and maximum grayscales of the input image, respectively. We choose gth such that 

its proportionality to the new grayscale range [0; 255] resembles that of gTH to the grayscale range of the 

input image. Thus gTH = 255.(gth-gmin)/(gmax-gmin). 

The next step towards normalizing the view of a segmented tooth is to ensure that its lateral surfaces 

appear predominantly vertical. Starting with a tooth with an upward oriented crown as an input image (as 

shown in Figure 33-a), the view normalization task proceeds in the following steps: 

 

Figure 33: illustration of the orientation adjustment and Region of Interest (ROI) confinement steps of a segmented tooth 
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• An edge image is calculated from the input image (using Canny edge detection �[64]), as shown in 

Figure 33-b. The choice of the width of the smoothing kernel is such that to avoid any excessive 

number of edge points due to intensity variations not related to the tooth surfaces. 

• Using the gradients of the input image, the orientation at each of the remaining edge points is 

estimated, and accordingly classified as either horizontal or vertical. Hence a histogram of 

orientations of the vertical edge points is computed (as shown in Figure 33-c) 

• The mean of the vertical orientations is computed, and its negative is used as the rotation angle 

for the input image such that the lateral surfaces of the tooth appear predominantly vertical (as 

shown in Figure 33-d). 

• By analyzing the vertical and horizontal span of the tooth, the tooth ROI is confined to a square 

area, whose edge is just above the predominantly horizontal line segment belonging to the crown 

and such that the lateral sides of the tooth are also contained in the square area (as shown in 

Figure 33-e).  

• The resulting square images are then resized to a fixed sized image of nxn pixels. Based on 

experimental study in section 3.3.7, we used n = 32. 

3.3.4 Teeth Reconstruction and Classification 

In designing a classification system, there are many factors that determine the choice of a set of features. 

The computational cost and reliability of automatic feature extraction are two key factors that determine 

our choice of practically feasible features. By visually inspecting images of radiographed teeth of the four 

different classes, one can easily find similarities between teeth of the same class and discrepancies 

between teeth of different classes. These similarities (and differences) are primarily broadly manifested in 

teeth peripheries. However, reliable automatic extraction of teeth contours is a very difficult problem and 

its current solutions are still inaccurate �[43]. This motivates us to consider alternative reliable appearance-

based, low computational-cost approaches.  

The key idea behind the initial stage of classification in Nassar’s approach �[60] was to establish four 

image subspaces corresponding to the four teeth classes, then to use the projections of a novel tooth onto 

these subspaces as basis for classification. Because of some resemblance between his method for teeth 

classification and the eigenfaces (at least at the abstraction level) �[65], he referred to the resulting basis 

vectors defining the teeth subspaces as the eigenteeth. With these image subspaces constructed, he 

achieved initial teeth classification as depicted in Figure 34, which can be summarized as follows: 
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Figure 34: EigenTeeth reconstruction and initial classification 

• An input tooth tq is view-normalized (as described in subsection 3.3.3) to compensate for possible 

geometric variations that may cause significant differences between that tooth and the exemplar sets 

used for constructing the four subspaces. 

• The view-normalized input tooth tqN is projected onto the four image subspaces. Hence, we obtain 

four coefficient sets wI, wC, wP, and wM, corresponding respectively to the projections of tqN onto the 

incisors subspace, the canines subspace, the premolars subspace, and the molars subspace. The weight 

sets are given by: 

}'','','',''{],....[)( 21 MPCIuuuutw kKi
T

qN kkkkkk
∈×−= ωµ ωωωωωω  (3.3.2) 

where ��k is the mean vector, and ui�k is the ith eigenvector of class �k, �k � {I; C; P; M}. 

• The obtained weight sets are used in conjunction with the sample mean of each of the four teeth 

classes to reconstruct the view-normalized tooth tqN in the four image subspaces, thus obtaining the 

approximations ( MPCI TTTT ˆ,ˆ,ˆ,ˆ ) according to: 

}'','','',''{,.]....[ˆ
21 MPCIwuuuuT k

T
Ki kkkkkkk

∈+= ωµ ωωωωωωω   (3.3.3) 
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• Select K eigenvectors for each set whose corresponding eigenvalues are the largest. Based on 

experimental study in section 3.3.7, we used K = 15. The eigenvectors are then arranged in a 

descending order according to their corresponding eigenvalues. 

• The image of a view-normalized tooth tqN and each of its four approximations ( MPCI TTTT ˆ,ˆ,ˆ,ˆ ) 

are feed to a least square error classifier. ��k , the square of the representation error between tqN and 

each of the four approximation, is defined as follows: 

}'','','',''{,)ˆ( 2 MPCItT kqNkk
∈−= � ωε ωω , 

The least square error classifier assigns tqN to ωk based on the minimum representation error as 

follows: 

}'','','',''{},{minarg| MPCIkt kkq k
k

∈=→
><

ωεω ωω
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(a) EigenIncisors (b) EigenCanines 

  

(c) EigenPremolars (d) EigenMolars 
Figure 35: EigenTeeth first principal components representation. 
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Figure 35 shows image representations of the first 15 eigenvectors of each of the four subspaces resulting 

from the PCA of four sample sets. These image representations are originally gray images. We selected to 

use pseudo colors instead, to help presenting the presentation. The image (in green) on the upper left 

corner of each set represents the sample average (�k, �k 
 {I; C; P; M}). The eigenvectors arranged 

according to their corresponding eigenvalues such that the first EigenIncisor, for instance, is to the 

immediate right of the average incisor and so on. 

3.3.5 Teeth Classification using Linear Discriminant Analysis 

Because of some resemblance between the proposed method for teeth classification and the FisherFaces 

�[66] (at least at the abstraction level), we refer to the resulting basis vectors defining the teeth images 

subspace as the FisherTeeth. While PCA techniques choose a dimensionality reducing linear projection 

that maximizes the scatter of all projected samples, LDA choose another projection, in such a way that 

maximize the ratio of between-class (inter-class) and the within (intra-class) class scatter. Figure 36 

illustrates the proposed method. 
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Figure 36: FisherTeeth and initial classification 
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3.3.5.1 Samplers Preparation 

First representative teeth samples of each of the four teeth classes are selected. Figure 37 depicts a sample 

of exemplars from each teeth class, where different teeth segments sizes and intensity levels are noted. 

Second each selected tooth segment is view-normalized (as described in sub-section 3.3.3). 

 

Figure 37: Sample of the four teeth classes 

 
Figure 38: (a) Upward pointing crown; (b) conjugate of (a) under horizontal flipping 

Third we augment the exemplar sets with conjugates of the exemplars produced by horizontal flipping (as 

depicted in Figure 38), i.e. around a vertical axis. The value of this is to substitute for orientation biases in 

the sample, thus in effect we end up with equal number of exemplars from the left and side quadrants. 

3.3.5.2 Fisher Teeth 

With the sets of exemplars prepared, we proceed as follows: 

• Each training sampler is reshaped as a vector xi, where the dimension of xi is (n2), and as we 

resize to window of n.n, Based on experimental study in section 3.3.7, we used n = 32. 
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• The N training sampler images are arranged as {x1, x2…xN}, where each sample belong to one of 

the four classes. 

• The average (Mean) of each of the four samples is computed:  
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where kN  is the number of exemplars of class k, and ikx is the vector representation of the ith k 

exemplar. Also the general mean (�) for all the N samples is computed. 

• Let the inter-class scatter be defined as 
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and the intra-class scatter matrix defined as 
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• If Sw is nonsingular, the optimal projection Wopt is defined as follows: 
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where [w1,w2,…wm] is the set of generalized eigenvectors of (Opt=SB/SW), which is computed by first 

solving the eigenvalue problem .,....2,1, miwSwS iwiiB ==λ , where iλ  is the ith eigenvalue of 

(Opt=SB/SW).  

• Select K eigenvectors for each set whose corresponding eigenvalues are the largest. Based on 

experimental study in section 3.3.7, we used K = 15. The eigenvectors are then arranged in a 

descending order according to their corresponding eigenvalues. 

Figure 39 shows image representations of the first 16 eigenvectors resulting from the LDA of four sample 

sets. These image representations are originally gray images. The eigenvectors arranged according to their 

corresponding eigenvalues such that the first FisherTeeth, for instance, is the upper left incisor and so on. 
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Figure 39: FisherTeeth first principal components representation. 

3.3.6 Teeth Sequence Validation and Labeling 

As in most of the classification problems, the initial class labels assigned to each tooth are prone to errors. 

However, a dental film usually shows a number of teeth, and because the assortment of teeth in a human 

mouth follows a specific pattern, we rely on teeth neighborhood rules to validate the detected sequence of 

teeth class labels. We also seek to correct, if possible, sequences that do not conform to the reference 

pattern of possible sequences. And finally if we find the validated/corrected sequence unique, we assign a 

number to each tooth corresponding to its position in its dental quadrant (as described in Figure 40). In 

this figure, the lower sequence was correctly classified, so in the teeth labeling stage it was validated and 

labeled as (4P - 5P - 6M - 7M). The upper sequence wasn’t correct, in this case, so it was corrected to 

(CPPMM) and then labeled (3C - 4P - 5P - 6M - 7M). 

Our approaches for class validation is based on string matching with don’t care character. When 

validating bitewing sequences, the horizontal distance between teeth in the upper and lower jaws is taken 

into consideration. So let: 
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• X denote the 16 character reference string ’MMMPPCIIIICPPMMM’; and corresponds to labels ‘L8-

L7-L6-L5-L4-L3-L2-L1-R1-R2-R3-R4-R5-R6-R7-R8’ according to Palmer Notation Teeth 

Numbering System. 

• SF = s1…sj…sn such that; 161 ≤≤ n  and sj � (’I’, ’C’, ’P’, ’M’), denote the sequence of the initially 

assigned labels of the segmented teeth of the radiographic film F. 

• Incase of detecting a missed tooth (segment); SF = s1..sj.si..sn such that 161 ≤≤ n , si � (’I’, ’C’, ’P’, 

’M’), and sj = d, where ‘d’ is a don’t care and can be any value (‘I’, ‘C’, ‘P’, or ‘M’). SF denotes the 

sequence of the initially assigned labels of the segmented teeth from upper or lower jaw of a 

radiographic film. 

Figure 40: Block diagram of the two stages of teeth labeling 

Based on our understanding and studying to the problem of handling teeth labeling for a sequence that 

contains a missed tooth. To decide whether we have a missed segment (tooth) or not, we have to have the 

following: 

• Presence of 2 or more segments per sequence (one jaw). 

• The missing tooth is in the middle of the sequence; otherwise it will not affect the later 

processing. 
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• The missing tooth is leaving a gap with width (d). 

• So the proposed technique will detect a missing tooth if the gap width between two consecutive 

segments (d) > c.Wavg, where c is a constant that is experimentally defined to 0.39, and Wavg is the 

average width of the two neighbor segments (W1+W2)/2, as shown in Figure 41. 

 

Figure 41: Missing tooth detection 

We post the class validation problem as a string-matching problem with error �[73] and it may include one 

don’t care character �[67]�[68]. We seek to match the pattern SF to the text X with the possibility of error in 

the former. A number of string matching algorithms have been reported in the literature �[69]�[70]. 

Generally, string matching can be thought of as the maximization/ minimization of a certain cost function 

such as the edit distance. The use of edit distance began in the 1970s �[71]. A key paper by Wager and 

Fischer proposed the fundamental of edit distance algorithm for string matching with errors and they 

showed that it was optimal �[68]. Here we are interested in a simplified version of their edit distance 

algorithm, which allows only for exchange character (replace a letter from SF by the corresponding 

character from X). 

For the initially correct case, when SF is a factor of text X, SF will be assigned the corresponding label. 

For cases when SF consists of only one label, or two labels that are not having unique location as (‘MM’ 

and ‘II’); we assign class only (‘M’, ‘P’, ‘C’, ‘I’) and not number. Still assigning class only can guide the 

image comparison stage and reduce the number of required tooth-to-tooth registration.  

For cases, when SF is not a factor of X (due to an error in initial classification), we are interested in 

finding the closest match, and to change SF to SF’, where SF’ will be a factor of X. To measure the 

similarity (or difference) between the two strings, we need to define the cost of changing from one label 
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to another. One simple solution was to assign equal cost of say one (as suggested in �[73]) for each label 

change. This solution means assigning equal cost for changing the initial class to any new class. As we 

have the initial labeled assigned using least square error classifier, we used this prior information to 

defined the cost of changing the class label of the ith tooth from its initially assigned class ko to the label of 

class k (where k � (’I’, ’C’, ’P’, ’M’)) as follows: 
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There are instances where a match exists between S`
F (or SF) and X at more than a unique shift, e.g. if S`

F 

(or SF) � {‘MM’,’MMM’,’PP’}. This situation specifically appears when S`
F (or SF) exhibits no 

transitions between teeth classes. When we encounter such a situation with a periapical film, we declare a 

teeth-numbering tie. However, when we encounter such a situation with bitewing film, and if the 

sequence resulting from the opposite quadrant is unique, we attempt to determine a unique sequence. For 

example if we have one sequence as ‘MMM’ (can be ‘L8-L7-L6’ or ‘R6-R7-R8’), and the opposite 

quadrant has a sequence like ‘MMP’ or ‘PMM’ this means that the tie is solved. 

Moreover, with bitewing views we detect, and either correct or identify, instances where the resulting 

sequences of the upper and lower quadrants are inconsistent with one another, i.e. crisscrossed quadrants. 

For example having a case where is one sequence is ‘PPM’ corresponds to ‘R4-R5-R6’ and the other is 

‘MMM’ corresponds to ‘R6-R7-R8’. For these instances they can be corrected based on their cost 

functions, i.e. shifting one at a time and select the consistent sequence that has minimum overall cost. On 

the other hand films as the one shown in Figure 43 are declared as rejected bitewing film due to inverted 

upper and lower quadrants. The upper sequence is this case is labeled right (‘R5-R6-R7’), while the lower 
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sequence is labeled left (‘L7-L6-L5’). In other word one of them is labeled wrong that is why the system 

declared this as a bitewing tie. 

3.3.7 Experimental Results 

To setup the image subspaces for the four teeth classes, we prepared a data set of exemplars using the 

dental image database provided by the Missing and Unidentified Person Unit of Washington State Patrol 

�[47]. We segmented and preprocessed 100 molars, 100 premolars, 30 canines, and 60 incisors from 

records. We also used the exemplars produced by horizontal flipping of these preprocessed teeth. We 

have a total of 580 teeth exemplars for training. In selecting these teeth exemplars, we tried our best to 

avoid biased data sets. We evenly used teeth from upper and lower jaws. We used teeth from the right and 

left sides of the mouth. We used teeth images of film having different intensity and contrast. 

To select the optimal normalized teeth image size, we conducted a preliminary experiment based on the 

selected exemplars. We used 220 teeth for training and 130 teeth for testing. We found that moving from 

image size 16x16 to 32x32 enhances the classification performance. Moving to 64x64 didn’t enhance the 

classification performance any more, while it takes more processing time. We returned this to the 

geometric properties of segmented teeth, as going to a higher dimension means that we will magnify most 

of the teeth images. 

Based on the above mentioned setup, we conducted a second preliminary experiment to select K 

eigenvalues. To add up to 99% of the total eigenvalues, we have to use K = 104 eigenvalues. To add up to 

95%, we have to use K = 51 eigenvalues. We tested the performance of these subspaces versus the 

reduced subspaces �[66]. We varied the number of eigenvectors used as basis for the four subspaces and 

found that keeping the first 15 eigenvectors per subspace achieves the best teeth classification 

performance compared to keeping 5, 10, 20, 25, 51 or 104 eigenvectors. Ideally the performance should 

be better with the use of more eigenvectors, but this is not the case for the noisy teeth spaces. A second 

benefit of reducing the number eigenvectors is to reduce the classification time. The results reported 

herein are thus based on experiments using 15 eigenvectors per subspace. 

Third: to decide whether we have a missed segment (tooth), we conduct some segments measurements on 

a hundred of sequences (each of them consists of three neighbor teeth). We found that 99% the distance 

between the first and the third (width of the missing tooth) was greater than 0.39 of the average width of 

the first and the third. We decide to have c = 0.39. 
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We started by a small experiment studying the initial classification performance for the Fisher teeth 

compared to Eigen teeth/reconstruction method. We partitioned the training samplers, where we used (18 

Incisors, 32 Canines, 40 Premolars, and 40 Molars) for testing. 

  Assigned Class    Assigned Class 
  I C P M    I C P M 

I 2 0 0 16  I 11 3 0 4 
C 0 28 0 4  C 0 32 0 0 
P 0 0 40 0  P 0 0 40 0 T

ru
e 

C
la

ss
 

M 0 0 0 40  

T
ru

e 
C

la
ss

 

M 1 0 0 39 
(a) Eigen Teeth Classification  (b) Fisher Teeth Classification 

Table 5: Performance comparison 

The experiment result (Table 5) shows that the error rate for the suggested method is 6.2% compared to 

15.3% Eigen teeth/reconstruction method. Notice that the main advantage of the Fisher teeth method is in 

classifying Incisors which are rare in the available database. 

To test the proposed approach for teeth classification and numbering, we prepared a disjoint test set with 

the data set of exemplars described earlier. 1675 teeth were correctly segmented and used for the teeth 

labeling experiment (814 molars, 806 premolars, 30 canines, and 25 incisors). In preparing the test set we 

used the CJIS ADIS project dental image database �[48]. Table 6 lists the number of films and teeth used 

in our testing experiments categorized by film type. 

 

Table 6: Number of films and teeth used in testing 

For the Initial classification, we also pursued Fisher Teeth method, but it achieves almost the same 

performance as Eigen teeth/reconstruction method; hence we find no merit showing results due to Fisher 

Teeth method. Using two classes (molar and premolar) only with bitewing films boost the initial teeth 

classification of bitewing films from 65% to 80%, and hence enhance the overall initial teeth 

classification accuracy by 10%. 

The teeth classification confusion matrices for the three types films we tested are given in Table 7 (all 

films), Table 8 (bitewing films only), and Table 9 (periapical films only). We observe that overall, initial 

classification works with 75% accuracy, teeth class validation enhances the overall teeth classification 

accuracy to 87%. The accuracy of intra-quadrant numbering is 70%; however, 85% of assigned intra-

quadrant numbers are within one position from the true value. 

 

 No. of films No. of teeth 
Bitewing films 269 1321 

Periapical films 238 354 
Total 507 1675 
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  Assigned Class    Assigned Class 
  I C P M    I C P M 

I 12 4 9 0  I 11 5 8 1 
C 4 2 21 3  C 3 10 16 1 
P 28 8 751 19  P 5 15 752 34 T

ru
e 

C
la

ss
 

M 5 2 311 496  

T
ru

e 
C
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ss

 

M 4 3 128 679 
Overall Performance 75.28%  Overall Performance 86.69% 
(a) Eigen Teeth Classification  (b) After Validation 

Table 7: Confusion matrix for teeth classification in all films 

  Assigned Class    Assigned Class 
  I C P M    I C P M 

I 0 0 0 0  I 0 0 0 0 
C 0 0 12 0  C 0 4 8 0 
P 0 1 648 14  P 0 3 638 22 T

ru
e 

C
la

ss
 

M 0 0 249 397  

T
ru

e 
C

la
ss

 

M 0 0 98 548 
Overall Performance 79.11%  Overall Performance 90.08% 
(a) Eigen Teeth Classification  (b) After Validation 

Table 8: Confusion matrix for teeth classification in bitewing films 

  Assigned Class    Assigned Class 
  I C P M    I C P M 

I 12 4 9 0  I 11 5 8 1 
C 4 2 9 3  C 3 6 8 1 
P 28 7 103 5  P 5 12 114 12 T

ru
e 

C
la

ss
 

M 5 2 62 99  

T
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e 
C
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ss

 

M 4 3 30 131 
Overall Performance 63.84%  Overall Performance 74.01% 
(a) Eigen Teeth Classification  (b) After Validation 

Table 9: Confusion matrix for teeth classification in periapical films 

Figure 43 shows examples of successful teeth numbering of bitewing and periapical films respectively.  

Figure 43 –a) shows an example of incorrectly numbered in periapical films. Figure 43 –b) shows an 

example of a rejected bitewing film due to a quadrant inversion situation that could not be resolved by the 

system. 

 



3. Preprocessing Techniques for ADIS 

������������ � 	
���������������78 

  

(a) Correct Bitewing Film (b) Correct Periapical Film with missing tooth 

Figure 42: Examples of films with correct teeth numbers 

 

 

(a) Incorrect Periapical Film (b) Tie Bitewing Film 

Figure 43: Examples of a) films with incorrect teeth numbers and b) unsolved tie 

We also conducted a second experiment on the same dataset used by Mahoor and Abdel-Mottaleb �[15], 

where the films are bitewing only (i.e. two class problem), and the background of segmented teeth are 

eliminated. The Pre-Classification performance of the proposed method is 91.67% for molars compared 

to the best performance 90.55% (average performance between mandible and maxilla for the posted 

results in �[15]). While our method performance was 92.86% for premolars compared to the best 

performance 90.95% as shown in Table 10. The average tooth classification time for their method �[15]is 

0.0212 sec/tooth (without adding the processing time needed for contour extraction). While to classify a 

tooth using our proposed method, it takes 0.0115 sec/tooth. This means that our proposed method cuts the 
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tooth classification time by half approximately. On the other hand if we add 0.16 sec/tooth for the fastest 

tooth contour extraction �[43], which means our proposed technique cuts the initial classification time to 

7%. 

 

Table 10: Pre-classification performance comparison. 

The approach that Mahoor and Abdel-Mottaleb used �[15] for validation of sequences, didn’t fully exploit 

neighborhood relations in bitewing films, particularly they didn’t use inter-quadrant sequences for 

sequence correction and hence the numbers assigned to the different teeth on the upper/lower quadrants 

may include inconsistencies (e.g. quadrant inversion). Their approach isn’t dealing with periapical films 

only, which represents 42% in the used CJIS ADIS project dental image database. They didn’t deal with 

films that have missed teeth, 21% of the database. 

The main advantage of the work presented by Jain and Chen �[36] is that by using a Hidden Markov 

Model for registration of teeth to a human dental atlas, they have implicitly embedded the capability of 

learning the proper misclassification costs. They claimed 88% performance accuracy for their technique. 

However: 1) their technique classifies (canines and premolars) as (Bi)cuspid, in other word, they are 

doing a three class problem. Given that classifying to a smaller number of classes means better 

performance; 2) they added panoramic radio-graphed films to their test set, and they didn’t specify the 

percentage of these films. Finally they didn’t indicate that they used any inter-quadrant validation, which 

we think is important particularly in bitewing views. 

We returned the lower performance for teeth labeling of periapical films to the following:  

• For periapical radio-graphed films, it is initially a four class problem, compared to two in 

bitewing radiographed films,  

• For bitewing films, we made use of the existence of upper and lower to detect and either correct 

or identify instances where the resulting sequences of the opposite quadrants are inconsistent with 

one another. 

We didn’t use panoramic films (According to Hajsaid et al �[20], the only existed dental segmentation 

technique for the panoramic films are semi-automated). It appears as an advantage to include the 

panoramic radio-graphed films, but complete panoramic views are solved cases for the stage of teeth 

labeling. In other word as the complete panoramic views contain the 32 teeth 

Method Molars 
Average 

Premolars 
Average 

Labeling Time 

Complex Signature 89.6% 90.95% 0.0213 sec 
Centroid Distance 90.55% 87.85% 0.0213 sec 

Eigen Teeth 91.67% 92.86% 0.0115 sec 
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(‘MMMPPCIIIICPPMMM’) in each jaw and no need for initial classification. Also the presence of 

panoramic views is rare (4%) in the used CJIS ADIS project dental image database �[48]. 

We observe that premolars and molars are more often used for identification purposes. A careful look at 

the confusion matrix presented in Table III (a) reveals that, overall premolars are initially highly correctly 

classified 93%; we also observe that misclassified molars are predominantly seen as premolars. The 

performance of the class validation scheme, and hence the overall performance of teeth numbering and 

classification, depends on how well we assign the cost (or risk) of misclassification. 

We notice that we can improve the overall teeth-numbering accuracy, by adjusting the misclassification 

risk, such that we take into consideration the observations we just made on the molars misclassification 

rate, and the accuracy of premolars classification. The adjustment, we made is such that it always costs 

less to reassign a premolar as a molar. Overall this led to approximately the same accuracy in the 

classification of premolars while enhance the accuracy in molars classification to 83%, overall this 

enhance the initial classification accuracy to 87%. 

 



4. ADIS Potential Match Search 

������������ � 	
���������������81 

4 ADIS Potential Match Search 

Recent disasters have brought the significance of automated dental identification systems (For example 

9/11 attack, and Tsunami). For these mass disasters most of the victims were identified based on manual 

dental information �[82]. As can be concluded that manual dental identification is very powerful 

postmortem identification but one of its main limitation is also the time factor. This is the main 

motivation for building the Automated Dental Identification System (ADIS), and for that system to have a 

very powerful searching engine (which we call it potential Match Search component). 

4.1 Introduction 

ADIS starts with dental record preprocessing component, followed by the Potential Matches Search 

component that manages archiving and retrieval of dental records from the database and produces a short 

candidate list. The final component of ADIS is Image Comparison which handles one to one comparison 

against the candidate list to produce a match list (as shown in Figure 1). 

In the context ADIS, the potential Match Search component is a fast search engine that reduce the 

database to be searched by a more time expensive image comparison. Given that the record to record 

comparison encounters an average of 10 tooth to tooth comparisons (as shown in Figure 44). The image 

comparison component takes about 20 minutes to make record to record comparison. To search a 

database of 50 records directly using the image comparison, the system will run for 17 hours. We 

measured the processing time for running the image comparison component using MATLAB 

implementation running on a 2.66 GHz 1.0 GB RAM Intel Pentium IV PC platform. To directly address 

the scalability of ADIS, we need the potential Match Search component to achieve very high percentage 

of having the target reference in a relatively very short candidate list. 

In my opinion, the problem of implementing a potential match search was not handled in a proper way in 

the context of ADIS �[14]�[18]�[16]�[17]�[35]�[44]as all the present trial are based on contour alignment and 

matching to find the distance between two dental images. All these techniques made a tooth to tooth 

comparison; in other word they are implementing the image comparison stage, and not a fast potential 

match search. 

 



4. ADIS Potential Match Search 

������������ � 	
���������������82 

a)  

b)  

Figure 44: Dental records for the same person; a) AM record, b) PM record 

Nomir and Abdelmottaleb �[44] used a technique that is based on matching teeth contours using 

Hierarchical Chamfer distance. They proposed to use 3-4 distance to approximate the Euclidian distance 

with fast calculating method. They used a hierarchical edge matching algorithm at different resolution, in 

other world they found an approximate solution at lower resolution (lower calculation cost) that guides 

the solution at finer resolution. Nomir and Abdelmottaleb �[44] was the first to consider the time factor, 

however their method would be more powerful, if they consider using the lower resolution matching for 

tiding their search domain while moving to finer resolution. 

In this chapter, we introduce two approaches for fast retrieval from the dental database (as shown in 

Figure 45): 

• The first approach relies on using color feature, namely Eigen images. These are low 

computational-cost, appearance-based features, as discussed in section 4.2. In section 4.2.1, we 

introduce the view normalization step; which we use to align all the segmented teeth vertically. In 

section 4.2.2, we introduce the theory behind the Principal Component Analysis (PCA), and then 

we elaborate on projecting each tooth in a lower dimensional space, where the tooth-to-tooth 

comparison will be with a very low computational cost. In section 4.2.3, we present the 
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experimental results on the performance of the proposed appearance-based method, followed by 

discussion on these results. 

• The second approach relies on teeth contours descriptors (shape-based approach), where we use 

the moment invariant and edge orientation histogram as features to describe the tooth contour, as 

discussed in sections 4.3.1 and 4.3.2 respectively. In section 4.3.3, we present the experimental 

results on the performance of the proposed methods, followed by discussion on these results. 

• In section 4.4, we present a comparison experiment between the performance of the proposed 

appearance-based method and feature-based method, followed by discussion on these results. 

 

Figure 45: ADIS potential match search component block diagram 

4.2 Eigen Image (Appearance-Based) 

The proposed approach for potential match search using eigen images is illustrated in Figure 46, where 

the subject tooth and the reference tooth images are view-normalized to compensate for the geometric and 

intensity different. For the single class approach, all the teeth are project to a single class which is based 

on projection of all the four teeth training samples. In other word, it is a single teeth space, which we call 
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it EigenTeeth. While for the four classes approach, according to the teeth class, we project it to a lower 

dimension PCA sub-space (EigenMolar, EigenPremolar, EigenCanine and EigenIncisor). In other words, 

we have four teeth spaces. This Euclidian distance between the weights of the principal components 

represents the match score on a tooth level. Finally we integrate the different matching scores of subject 

and reference teeth to have one matching score between the subject and reference records, and hence 

retrieve the candidate records. 

Figure 46: Block diagram for the Eigen image retrieval approach 

4.2.1 View Normalization  

In practice, dental radiographic films show teeth that need not comply with the standardizing assumptions 

on view that we made. On one hand, crowns need not appear on the topside of the segmented regions, as 

in the case with upright films showing teeth of the upper jaw (or flipped films showing teeth of the lower 

jaw). While some of the teeth segmentation algorithms annotate teeth as either upper or lower, and thus 

partly solve the first type of deviations from standard view �[14]�[16]�[17], other teeth segmentation 

algorithms do not discriminate between upper and lower teeth �[20]. To accommodate the different teeth 
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segmentation algorithms, a simple test is conducted for bitewing films (For Periapical films; the film type 

classification stage differentiates between upper and lower periapical films). This test advises based on 

whether the center of the segmented tooth is closer to the top or the bottom part of the bitewing film. On 

the other hand, the lateral surfaces of radiographed teeth do not necessarily appear as predominantly 

vertical lines. In view normalization, there are two types of transformations that we usually need to 

address. First is the photometric (or intensity) transformation. 

The photometric transformation was addressed at earlier step of dental record preprocessing (film 

enhancement). Hajsaid et al. �[20], proposed a grayscale contrast stretching transformation using a 

parametric sigmoid transform. Thus they mapped an input grayscale g to TEnh (g, �, 	, gth) according to: 
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where �, and 	 designate compression and expansion factors, respectively, gth is a threshold grayscale 

between the compression and the expansion regions of TEnh, gTH is the image of gth under TEnh, gmin and 

gmax are the minimum and maximum grayscales of the input image, respectively. We choose gth such that 

its proportionality to the new grayscale range [0; 255] resembles that of gTH to the grayscale range of the 

input image. Thus gTH = 255.(gth-gmin)/(gmax-gmin). 

The next step towards normalizing the view of a segmented tooth is to ensure that its lateral surfaces 

appear predominantly vertical. Starting with a tooth with an upward oriented crown as an input image (as 

shown in Figure 47-a), the view normalization task proceeds in the following steps: 

• According the tooth class, the tooth is aligned to the corresponding models (as shown in Figure 

47-b), using the circular projection method (as shown in Figure 47-c). More details on this 

method are given in section 4.2.1.1. 

• For model alignment, as we didn’t build one model to represent each teeth type (molar, premolar, 

canine, and incisors), we are registering against more than one vertical model for each teeth type. 

We are using the mutual information �[105] as an indication to select the optimal alignment (as 

shown in Figure 47-b). 
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• The optimal vertical orientation is computed, and its negative is used as the rotation angle for the 

input image such that the lateral surfaces of the tooth appear predominantly vertical (as shown in 

Figure 47-d). 

• An edge image is calculated from the input image. By analyzing the vertical and horizontal span 

of the tooth, the tooth ROI is confined to a square area, whose edge is just above the 

predominantly horizontal line segment belonging to the crown and such that the lateral sides of 

the tooth are also contained in the square area (as shown in Figure 47-e).  

• The resulting square images are then resized to a fixed sized image of n.n pixels. Based on 

experimental study in section 3.3.7, we used n = 32. 
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Figure 47: illustration of the orientation adjustment and modified view normalization steps of a segmented tooth. 
 

4.2.1.1 Teeth Alignment 

In this section a novel projection based approach is proposed to estimate the rotation angle between two 

images. We use this technique to align the teeth images to enhance the performance of view 
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normalization stage. The technique is based on circular projection followed by 1-D correlation to estimate 

the rotational angle between the two images.  

Since information gained from two images (source and target acquired at different times, from different 

imaging modalities, or as consecutive volumetric slices) is usually of a complementary nature, proper 

integration of useful data obtained from these images is often desired. A first step in this integration 

process is registration �[74]. 

Automatic image registration is a fundamental component in medical imaging systems, where a target 

image is to be aligned to a source image. According to Brown �[75], registration in the context of medical 

imaging involves four key components:  

(1) the feature space, where features (such as points, surfaces, or intensity values) to be matched are 

selected in the image pair;  

(2) the search space, or range of transformations that best aligns the feature space;  

(3) the search strategy for finding the transformation parameters within the search space; and  

(4) the similarity metric to measure the optimality of a transformation for the selected features. 

To carry out the image registration process automatically, several algorithms have been proposed. Reddy 

and Chatterji �[79] grouped them into the following classes: (1) Algorithms that directly use image pixel 

values (2) Algorithms that operate in the frequency domain (3) Algorithms that use low-level features 

such as edges and corners and (4) Algorithms that use high-level features such as identified objects, or 

features.  

Junck et al. �[76] propose using correlation analysis to rotate functional brain images to a standard vertical 

orientation, and to align multiple brain images. Image rotation and centering are performed by 

determining the angle of rotation and centerline coordinate that results in maximal left-right correlation. 

Gonzalez, and Woods �[49] defined correlation between two real images I1(x; y) and I2(x; y) as: 
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Cain and Hayat �[77] propose a projection based method which depends on the image pixel values for 

registration of image translation. In this method, the projections along the horizontal and vertical axes of 

the image are computed. Horizontal and vertical components of the translation are then computed using 

one-dimensional (1-D) cross correlation based estimator. They show that the method is robust in the 
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presence of temporal and spatial noise and computationally efficient compared to the two-dimensional (2-

D) correlation based translation registration. 

Khamene et al. �[78] also proposed a projection method to reduce the 6 degrees of freedom (DOF) of the 

conventional volumetric rigid registration. They use successive registration of three (2-D) projection 

images to perform volumetric registration. In other words, they formulate the volumetric registration as 

iterative optimization with respect to parameters (�, tx and ty) which characterize the in-plane 

transformation matrix: 
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Reddy and Chatterji �[79] use a frequency domain approach. Moving to the frequency domain transfers the 

translation between two given images into a phase shift, which can be detected using phase correlation. 

Converting the magnitude of the Fourier transform of these images from rectangular coordinates to log-

polar coordinates and by calculating the similarity ratio, they represent rotation and scaling errors also as 

shifts. These three parameters are used to establish the mathematical model, and then the target image is 

geometrically rectified with respect to the source image. 

In the context of ADIS, Chen and Jain �[18]�[25], Zhou and Abdel-Mottaleb �[17] used teeth contour as a 

feature space. They assumed rigid body transformation and they used sequential quadratic programming 

as a search strategy. While Nomir and Abdel-Mottaleb �[16] assumed quasi-Affine transformation and 

minimize the distance equation between teeth curves as a search strategy. The two techniques depend on 

teeth contour features (shape based). Automatic extraction of teeth contour is computationally intensive, 

and to the best of our knowledge, none of the techniques exploited in teeth contour extraction, so far, 

achieves this task reliably �[43]. Nassar et al. �[41] used extracted edges from the teeth regions, assumed 

Affine transformation and used genetic algorithm as a search strategy. Their process is very time 

consuming, average tooth-to-tooth alignment of 1 minute. 
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Figure 48: Block diagram of the registration technique 

We use circular projection in order to recover the in-plane rotation, without having to do 2-D cross 

correlation. The first step in this algorithm is to align the two images for any in-plane translation tx and ty. 

A block diagram of the proposed algorithm is shown in Figure 48. We use a method that relies on the 

translation property of Fourier transform �[79], which is referred to as the Fourier shift theorem. Let f1; f2 

be the two images that differ only by a displacement (tx; ty) i.e. 

),(),( 12 yx tytxFyxF −−=     (4.2.4) 

Their corresponding Fourier transforms F1 and F2 are 

))(2exp(),(),( 12 yx ttjFF ηξπηξηξ +−=    (4.2.5) 

The cross-power spectrum of these two images is defined as: 
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By calculating the inverse Fourier transform we will have an impulse that is approximately zero 

everywhere except at the displacement location (tx, ty). There will be a discernable peak (the maximum 

value) at this location. 
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For teeth model registration, we replace the translation correction module as follows: we start by zero 

padding of the two images to size (N.N), then we align the center of gravity of each tooth image to the 

center of the image (N/2 , N/2). 

 

Figure 49: Registration using projection on circular perimeter: 
(a) circular projections; (b) radial resampling. 

The second step, after aligning any translation between the images, is to consider a hypothetical circular 

perimeter around the object. The diameter of this circle is equal to the maximum of the two image 

dimensions (in case of squared image (N . N), we use N). The projection of all diameters of this circle at 

uniform angular steps µ ranging from 0 to � are computed to make an array (as shown in Figure 49). 
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Each element in this 1-D array is an integral projection of the points on the corresponding diameter and 

represents the corresponding angle (what we call it radial re-sampling). Most of these points are not 

falling into the normal grid, so we calculate their corresponding value using bilinear interpolation. Our 

hypothesis is that the teeth regions are contained within the hypothetical circle and do not exhibit circular 

symmetry. The detection of the rotational angle between two images becomes a simple registration of two 

signals (1-D arrays). For these two resulting signals, the maximum correlation, or phase correlation, 

corresponds to the rotation angle between the two images. 

The correlation between two signals (cross correlation) is a standard approach to feature detection. 

Gonzalez and Woods �[49] describe the convolution theorem and the attendant possibility of efficiently 

computing correlation in the frequency domain (phase correlation) using the fast Fourier transform. 

However experimental we find the maximum correlation carried out in the spatial domain to have better 

performance compared to phase correlation especially with very small rotational angles. 
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4.2.2 The Eigen Image Methodology 

One approach to deal with the problem of excessive dimensionality is to reduce dimensionality, by 

combining features, or by other methods like finding lower-dimension representative appearance-based 

features. According to Duda et al. �[72], Linearly combining features are simple to compute, and can be 

tracked analytically. Principal component analysis (or Eigen Image) provides a roadmap for how to 

reduce a complex data set to a lower dimension to reveal the sometimes hidden, simplified structure that 

often underlie it. Principal component analysis (PCA), as a linear transformation method, seeks linear 

projection that best represent the data in a least-square error sense, as follows: 

The average (Mean) of each of the four samples is defined as:  
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where kN  is the number of exemplars of class k, and ikx is the vector representation of the ith k exemplar. 

We define the squared-error criterion function J0(x0) by  
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and we seek the value of x0 that minimize J0. Duda et al. �[73] showed that the solution to this problem is 

given by x0=�k, but as the sample mean is a zero-dimensional representation to the data set, they obtained 

a more interesting, one- dimensional representation by projecting the data onto a line running through the 

sample mean. Through the coming we followed the derived equations by Duda et al. Let e be a unit vector 

in the direction of the line. Then the equation of the line can be written as: 

}'','','',''{, MPCIkaex kk ∈+= µ    (4.2.10) 

where a represents the distance of any point x from the k class mean �k. We seek an optimal set of 

coefficients aik by minimizing the squared-error criterion function: 
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Recognizing that ||ek|| = 1, partially differentiating with respect to aik, and setting the derivatives to zero, 

we obtain: 

}'','','',''{),( MPCIkxea kik
t

kik ∈−= µ    (4.2.12) 

This brings us to finding the best direction ek for the line. Let the inter-class scatter be defined as 
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Substituting (4.6) and (4.5) in (4.4), we obtain: 
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clearly the vector ek that minimize J1 also maximize ek
tSek. We use the Lagrange multiplier. Letting � be 

the undetermined multiplier, we differentiate  
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with respect to ek to obtain 
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Setting this gradient vector equal to zero, we see that ek must be an eigenvector of the scatter matrix. In 

particular, it follows that to maximize ek
tSek, we select the eigenvector corresponding to the highest 

eigenvalue of the scatter matrix. In other word to find the best one-dimensional projection of the data, we 

project the data onto a line through the sample mean and in the direction of the eigenvector corresponding 

to the highest eigenvalue of the scatter matrix. This result can be readily extended from one-dimensional 

projection to d dimensional projection, where we will have e1k... edk in the direction of the d eigenvector 

corresponding to the highest eigenvalue of the scatter matrix. 

4.2.2.1 EigenTeeth Construction 

In the following paragraphs, we will proceed with the construction of the four sub-spaces (as the single 

class can be considered as a special case). To construct the reduced subspaces, we proceed as follows: 

• Compute the average of the four samples (equation 4.2.8) 
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• Let Ak = [(x1k - �k)…..(xNk - �k)] denote the matrix of the average-adjusted sample of class k, 

where Nk is the number of exemplars of class k, and xik is the vector representation of the ith k 

exemplar. Then the eigenvectors uik of the scatter matrices of the four samples using the efficient 

technique proposed in �[65], by first solving the eigenvalue problem: 

ikikikk
T
k AA νλν ... =      (4.2.17) 

where �ik is the ith eigenvalue, and �ik is the ith eigenvector of matrix (AT
k:Ak ). Finally, �ik is 

linearly mapped to uik, using 

ikkik Au ν.=      (4.2.18) 

• Select N eigenvectors for each set whose corresponding eigenvalues are the largest. The 

eigenvectors [ ]Nkkk uuu ...1=  are then arranged in a descending order according to their 

corresponding eigenvalues for each class. To maintain 99% of the image energy across the 

sample, we have to use the (N=104) most significant eigenvectors. With (N=51) we can maintain 

95% of the image energy across the sample. We tested the performance of these subspaces versus 

the reduced subspaces �[66]. A key benefit of reducing the number eigenvectors is to reduce the 

retrieval time. 

4.2.2.2 Using EigenTeeth to classify tooth image 

We use the EigenTeeth images calculated from the highest N eigenvectors to describe teeth images. We 

are investigating their usefulness as a tool for teeth identification and hence for dental image retrieval. 

Each tooth image (�) is transformed into its corresponding EigenTeeth components (projected into “teeth 

sub-space) by: 

Njuw kk
T
jkjk ...1),.( =−Γ= µ     (4.3.11) 

where �k is the mean, and ujk are the principal Eigen vectors of each of the four classes (or the general 

class in case of using the single class method). 

• The weights form a vector �k=[w1k, w2k,...wNk] that describes the contribution of each eigentooth 

in representing the normalized input tooth image, treating the EigenTeeth as a basis for teeth 

images. The resulted weights vector �k is then used in a standard pattern algorithm to represent 

the similarity between the subject tooth and the reference tooth (as shown in Figure 46).  
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• We use the weights of the highest N principal component as representative for each tooth. We use 

the Euclidian distance between these two teeth after projecting to these lower dimensional spaces, 

as a matching score. The Euclidean distance between points P = (p1,p2,…pn) and Q = ( 

q1,q2,…qn), in Euclidean n-space, is defined as: 
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This calculated distance represents the match score on a tooth level. In other words, it represents 

the distance between reference tooth image and subject tooth image. 

4.2.3 From Tooth to Record Matching 

To move from the tooth-to-tooth matching level to record-to-record matching level, we have to address 

two problems: 

• The same tooth may have multiple representations in either the reference record or the subject 

record or even both. 

• Integrating the different matching scores of subject and reference teeth to have one matching 

score between the subject and reference records. 

At the tooth-level fusion, we want to calculate the matching score between the different views of the same 

tooth tsi of a subject record (tS1, .., tS32) and the available views of reference tooth tRi of a reference record 

(tR1, .., tR32), such that we produce a single distance representing the matching score between the subject 

tooth tSi and reference tooth tRi, namely d
i
(tSi, tRi). We use min fusion rule for multiple teeth representation 

fusion (refer to section 2.5.2). 

With N teeth in common between the dental charts of a subject record and a reference record, we obtain N 

(N ≤ 32) fused tooth-to-tooth distances. At the record-level fusion, we are looking for a scheme for 

combining these N {d
i
(tSi, tRi), i = 1, .., N} into a single record-to-record matching score D(S, R), as shown 

in Figure 50. We study two alternative rules for fusing the match scores, namely the mean rule, and the 

min rule. 
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Figure 50: A hierarchical fusion scheme 

4.2.4 Experimental Results 

To test the different proposed approaches for Potential Match Search a test set was prepared using the 

CJIS ADIS project dental image database �[48]. The test data-set involves 104 records containing about 

500 bitewing and periapical films, involving more than 2000 teeth; 47 Antemortem (AM) records and 57 

Postmortem (PM) records. 

In a preliminary experiment, to test the proposed alignment technique, we used 80 segmented teeth 

images (representing molar, premolar, canines and incisors) where we introduced different angles 

between 1 and 40. We registered each segmented teeth image to the remaining aligned images of the same 

type. So for each molar image, we align it to the rest 19 molar models. We used the maximum mutual 

information as a performance evolution to select the best alignment angle. We found the error in the 

estimated angle to be as low as 2.82˚ on average. 

To setup the image subspaces for the four teeth classes a data set of exemplars was prepared using the 

dental image database provided by the Missing and Unidentified Person Unit of Washington State Patrol 

�[47] disjoint from the test set. 100 molars, 100 premolars, 30 canines, and 60 incisors from records were 

segmented and preprocessed. In selecting these teeth we tried the best we could avoiding biased data sets. 

So we evenly used teeth from upper and lower jaws, we used teeth from the right and left sides of the 

mouth, we used teeth images of different intensity contrast. 
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To setup the general the general teeth image space, we used the same mentioned data set of exemplars, 

but this time without labeling them. In other words, we are building a general (one) class, so all the teeth 

types are considers as exemplars for this one class. 
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Figure 51: The best four CMC curves for Eigen image retrieval 

We tested the performance using varied number of eigenvectors (15, 20, ... 55 or 100 eigenvectors) as 

basis for both method (the general class and the four classes), and using minimum and mean fusions 

criteria. We visually assessed the resulted 10 Cumulative Match Characteristic (CMC) curves for each 

method using one of the fusion criteria. Figure 51 shows the best 4 results as follows: (i) For the one-class 

method using minimum fusion (K=35), while for the four-classes (K=45). (ii) For the one class method 

using mean-fusion (K=50), while for the four classes (K=100). As can be induced from the curves in 

Figure 51:  

• the mean fusion criteria behaves better than the minimum one, we verified this conclusion using 

paired t-test for rank 10 candidate list (p= 0.0012).  
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• the four-classes method needs to maintain more significant eigenvectors to achieve the same 

performance as the one-class. However we see that with the future of unbiased training and 

testing database the four-classes will perform better. 

• 50% of the times the match record is within the top 3 ranks, and 75% is within top 6 ranks. On 

average, the record to record comparison takes less than 0.1 sec (using normalized teeth). To find 

a candidate list for a reference, it takes about 5.2 sec, which encountered about 52 record to 

record comparisons. 

To verify our visual assessment, we perform a paired t-test, and calculate the p-values: 

One-Class 

Min-Method 

K=15 K=20 K=25 K=30 K=40 K=45 K=50 K=55 K=100 

K=35 <0.01 <0.01 <0.01 <0.01 0.6232 0.5339 0.2099 0.1354 <0.01 

Note: The statically result didn’t yield significant results between K=35, K=40, and K=45. We picked to 

reserve the minimum number of principal components to achieve minimum retrieval time. 

One-Class 

Mean-Method 

K=15 K=20 K=25 K=30 K=35 K=40 K=45 K=55 K=100 

K=50 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 Nan 0.5703 

Note: The statically result didn’t yield significant results K=50, K=55, and K=100. We picked to reserve 

the minimum number of principal components to achieve minimum retrieval time. 

Four-Class 

Min-Method 

K=15 K=20 K=25 K=30 K=35 K=40 K=50 K=55 K=100 

K=45 <0.01 <0.01 <0.01 <0.01 <0.01 0.1684 <0.01 0.2099 <0.01 

Note: The statically result verify the visual assessment that K=45 is the best choice. 

Four-Class 

Mean-Method 

K=15 K=20 K=25 K=30 K=35 K=40 K=45 K=50 K=100 

K=100 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 

Note: The statically result verify the visual assessment that K=100 is significantly the best choice. 
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4.3 Contour Descriptors (Shape-Based Approach) 

There are several methods to represent shapes. Most of these shape descriptors are typically translational 

and rotation invariant and some are also scale invariant. In this section we are presenting a brief overview 

of two shape descriptors, namely moment invariants and edge direction histogram, and how we use for 

dental image retrieval. 

4.3.1 Method One: Moment Invariants 

Invariant geometric moments have been widely used in shape analysis and pattern recognition �[102]. 

Geometric moments of order p + q, defined as: 
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The two-dimensional moment for a (N . M) discretized image, I(x, y ), is: 
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Zeroth Order Moments: m0,0, when computed for a binary segmented object, represents the total object 

area. 

First Order Moments (Center of Mass): The two first order moments, {m0,1, m1,0 }, are used to locate 

the center of mass (COM) of the object. If an object is positioned such that its COM is coincident with the 

origin of the field of view, then the moments computed for that object are referred to as central moments 

and are designated by �p,q. (Note that �1,0 = �0,1 = 0) 

Second Order Moments: {m0,2, m1,1, m2,0}, known as the moments of inertia, are used to determine 

several useful object features. 

Prokop and Reeves �[102] identified five principal moment-based invariant feature techniques. i) Moment 

invariants are based on non-linear combinations of low-order two-dimensional Cartesian moments that 

remain invariant under rotation. ii) Rotational moments, are based on polar image representations, are 

also proposed as a solution for their simple rotation properties. iii) Orthogonal Moments, is utilizing 

uncorrelated basis functions, were developed to reduce the information redundancy that existed with 

conventional moments. iv) Complex moments provide straightforward computation of invariant moments 

of an arbitrary order. v) Standard moments are unique in that they achieve invariance completely through 

image feature normalization in the moment domain rather than relying on algebraic invariants. 
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We selected to use moment invariants (2-D) as it was the first significant technique in this direction. If the 

object R is represented as a binary image, then the central moments of order p+q for the shape of object R 

are defined as �[103]: 

�
∈

−−=
Ryx

q
c

p
cqp yyxx

),(
, )()(µ    (4.3.2) 

Where (xc, yc) is the center of object. This central moment can be normalized to be scale invariant: 
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The first significant work considering moments for pattern recognition was performed by Hu �[90]. Based 

on these moments, Hu derived a set of seven moment invariants to translation, rotation, and scale. These 

moments are combinations of second and third order normalized central moments. In term of the central 

moments, the seven moment invariants are given by: 
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One skew invariant is defined to distinguish mirror images and is given by: 
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This technique, and its subsequent variations, proved to be basis for the majority of the moment research 

to date �[102]. Hu �[90] used the first two moment invariants through a simple pattern recognition 

experiment. An unknown pattern could be classified by computing its first two moment values and 

finding the minimum Euclidean distance between the unknown and the set of well-known pattern 
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representations in feature space. If the minimum distance was not within a specified threshold, the 

unknown pattern was considered to be of a new class, given an identity, and added to the known patterns. 

We use Hu �[90] seven moment invariants through our dental recognition experiments. The contour of the 

subject tooth could be matched to that of the reference tooth by computing their first seven moment 

values and finding the Euclidean distance between the subject and the subject in that feature space. To 

move from the tooth-to-tooth matching level to record-to-record matching level, we use min and mean 

fusion rules as described in section 4.2.3. 

4.3.2 Method Two: Edge direction histogram: 

Edge histogram captures the general shape information in the image. Because the feature is local, it is 

robust to partial occlusion and local disturbance in the image. A histogram of the edge directions is used 

to represent the shape attribute. The edge information contained in the database images is generated in the 

preprocessing stage using edge operator (as Canny �[64] edge, Sobel edge operators). A histogram 

intersection technique is used for dental shape-based retrieval. The histogram of the edge directions is 

invariant to translation in the image. Thus, the positions of the objects in the image have no effect on the 

edge directions.  

The use of edge directions is inherently not scale invariant. Two images identical in every respect except 

their size will yield different number of edge points and hence different histograms. In order to have 

invariance to scale, we normalize the histograms with respect to the number of edge points in the image. 

A drawback of normalized histograms is its inability to match parts of images. Let H(i) be a histogram of 

an image, where the index i represents a histogram bin. Then, the normalized histogram I is defined as 

follows: 
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The similarity and distance between the subject image edge histogram S and a stored reference image 

edge histogram I in the database, Se
HI(R, S), and De

HI(R, S) are given by the following equations �[104]: 
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A histogram of the edge directions is also not invariant to rotation. A shift of the histogram bins during 

matching partially takes into account rotation of the images. A rotation of the image shifts each of the 

edge directions by the amount of rotation. However, due to the effect of quantization of the edge 

directions into bins, the effect of rotation is more than a simple shift in the bins. Rotation also affects the 

membership in the bins. To reduce this effect of rotation, Jain and Vailaya �[104] smooth the histograms. 

Any histogram can be treated as a 1-D discrete signal. Smoothing can then be defined as: 
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where Is is the smoothed histogram, I is the original histogram and the parameter k determines the degree 

of smoothing. 

The matching results depend on the bin size. By choosing a larger bin size, the matching speed is 

increased. However, this also reduces the accuracy in case of an arbitrary rotation of the image. A rotation 

not only causes a shift in the histogram bins but also affects the bin membership. Use of a very small bin 

size reduces the matching speed (since the number of bins increases). Use of a small bin size also requires 

that the edge directions be found to a very high degree of accuracy �[104]. 

We use histogram of the tooth contour edges directions through our dental recognition experiments. The 

contour of the subject tooth could be matched to that of the reference tooth by computing their histogram 

of edges directions and finding the Euclidean distance between the subject and the subject in that feature 

space. To move from the tooth-to-tooth matching level to record-to-record matching level, we use min 

and mean fusion rules as described in section 4.2.3. 

4.3.3 Experimental Results 

To test the different proposed approaches for Potential Match Search a test set was prepared using the 

CJIS ADIS project dental image database �[48]. The test data-set involves 104 records containing about 

500 bitewing and periapical films, involving more than 2000 teeth; 47 Antemortem (AM) records and 57 

Postmortem (PM) records. 

To test the performance of the two proposed method for shape features image retrieval, we used the teeth 

contours �[43] to represent these features. Figure 52 shows the performance curve for the moment 

invariant features; while Figure 53 shows the performance curve for the edge direction histogram features 

(Norm and smoothed respectively). As can be induced from the curves: 
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• the min fusion criteria behaves better than the mean one for all the presented shape features. To 

verify this conclusion, we perform paired t-test, which yields (p<0.01, i.e. significant test) for the 

three shape features (moment invariant, edge direction histogram, and smooth edge direction 

histogram). 

• the performance of the moment invariant features is lower than the edge direction histogram. 

However to find a candidate list for a reference, it takes about 18 sec for the moment invariant 

compared to 6.5 sec for the edge direction histogram, which encountered about 52 record to 

record comparisons. 
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Figure 52 CMC curves for moment invariants method 
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Figure 53: CMC curves for edge direction histogram method 
a) normal histogram and b) smoothed histogram 
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Figure 54 shows the performance curve for the edge direction histogram features using min fusion 

method (Norm and smoothed respectively). As can be induced from the curves that the performances are 

almost the same (p=0.0511 for the paired t-test, i.e. not significant test), we returned this to the large 

number of bins that we are using. 

Most systems use a hybrid combination of features. Apparently the shape features used for matching are 

not the most effective ones, however we see dental image retrieval system that can utilize both color and 

shape feature will achieve better performance. 
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Figure 54: Best performance CMC curves for edge direction histogram image retrieval using min fusion 

4.4 Experimental Results 

To test the different proposed approaches for Potential Match Search a test set was prepared using the 

CJIS ADIS project dental image database �[48]. The test data-set involves 104 records containing about 

500 bitewing and periapical films, involving more than 2000 teeth; 47 Antemortem (AM) records and 57 

Postmortem (PM) records. 
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In this experiment, we are comparing the performance of appearance-based (one class and four classes) 

versus shape-based (edge direction histogram). We are using minimum fusion, as it proved to work better 

for shape-based. 

shows the performance curve for the edge direction histogram features (representing shape-based) and 

eigen images, one teeth class and four teeth classes respectively (representing appearance-based). As can 

be induced from the curves that the appearance-based performs better for short candidate list, however the 

edge direction histogram achieves the same performance for slightly longer candidate list. To verify our 

visual assessment, we perform paired t-test, which yield (p<0.01, i.e. significant test) for both methods of 

appearance-based versus the smooth edge direction histogram (shape based). 
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Figure 55: CMC curves for appearance-based versus shape-based image retrieval using min fusion 
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5 Automated Ear Identification System (AEIS) 

Ear biometrics refers to the automatic measurement of distinctive ear features with a view to identify or 

confirm the identity of the owner. It has received scant attention compared with the more popular face, 

iris, or fingerprint recognition techniques. However, the potential of the human ear for personal 

identification was recognized from 1890 by the French criminologist Alphonse Bertillon �[106]. 

5.1 Introduction 

The ear does not have a completely random structure; it is made up of standard features just like the face. 

As shown in Figure 56, the shape of the ear tends to be dominated by the helix rim, and the lobule shape. 

The anti-helix roughly runs parallel to the outer helix. Note also the crus of helix where the helix 

intersects with the anti-helix and the tarus. 

An individual’s ear structure is a unique characteristic that remains fairly stable over time. As with the 

fingerprint, it is impossible to prove that an individuals’ ear structure is unique, however studies have 

supported this hypothesis. One such study done in California compared thousands of ears �[116], in the 

preface to his book Iannarelli states: 

“Through 38 years of research and application in earology, the author has found that in literally 

thousands of ears that were examined by visual means, photographs, ear prints, and latent ear print 

impressions, no two ears were found to be identical – not even the ears of any one individual. This 

uniqueness held true in cases of identical and fraternal twins, triplets, and quadruplets” 

In response to the US appeals court ruling, a large-scale study involving 10,000 subjects has been 

proposed by Prof. Andre Moenssens to determine the variability of the ear across the population �[119]. 

This study proved that in all cases there were no two ears which were indistinguishable. Another study 

examined the difference in ear structures between fraternal and identical twins, who share similarities in 

many physiological features �[118]. It was proven that even though their ear structures were similar, they 

were still clearly distinguishable.  In 1906, Imhofer studied a set of 500 ears and noted that he could 

clearly distinguish between each ear based on only 4 features �[117]. The results of these studies support 

the hypothesis that the ear has a unique physiological structure. 

There is also evidence available to show that ear structure is both stable and permanent. The medical 

literature reports that ear growth after the first four months of birth is highly linear. It turns out that even 

though ear growth is proportional, gravity can cause the ear to undergo stretching in the vertical direction. 

The effect of this stretching is most pronounced in the lobe of the ear and measurements show that the 
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change is nonlinear only in that part. The rate of stretching is approximately five times greater than 

normal during the period from four months to the age of eight after which it is constant until around the 

age of seventy when it again increases �[118]. 

• Helix Rim: is the outer frame of the 

auricle, it is a rolled up edge. 

• Lobule: fleshy lower portion of the ear. 

• Anti-helix: folded "Y" shaped part of the 

ear. Elevated ridge of cartilage between 

the concha and the scapha.  

• Concha: the hollow bowl like portion of 

the outer ear next to the canal. An 

enlarged concha forces the outer ear away 

from the scalp. 

• Tragus: small projection just in front of 

the ear canal. 

• Anti-tragus: lower cartilaginous edge of 

the conchal bowl just above the fleshy 

lobule of the ear. 

• Crus of Helix 

• Triangular Fossa 

• Incisure Intertragica 

Figure 56: External anatomy of the ear �[116] 

 

Our objective is to develop components of a viable automated method for Ear-Recognition and to 

evaluate their performance based on statistical analysis. The proposed system is an automation of the 

Iannarelli System, which has been manually used for more than 40 years. Our selection to Iannarelli 

System specifically, because: 

1- This system has been used for years, where it works with an excellent accuracy. 



5. Automated Ear Identification System (AEIS) 

������������ � 	
���������������108 

2- To the best of our knowledge, this system is the only one that the human can evaluate each and every 

step of it. For the automated Iannarelli, the experts can easily verify the extracted distances (features) as 

evidence in the court. 

3- We found it to be a challenging problem, as Burge and Burger �[108] mentioned that: 

“This method is additionally not suited for machine vision because of the difficultly of localizing the 

anatomical point which serves as the origin of the measurement system” 

We developed the automated ear identification system as a series of modular components. This allowed 

us to evaluate the performance of each module independently and then improve the poorly performing 

modules, in order to improve the overall performance of the system. Each module was evaluated using 

various possible implementations to determine which one performed the best. Also, for future research 

one or more modules could be used in different applications. 

The proposed system has an input data, as a video 

image sequence of the subject. The first step is to 

pre-process this input data and produce 

segmented ear image with enhancement, 

followed by feature extraction and then according 

to the mode (enrollment or matching) the last step 

will be either achieving/retrieving images to/from 

the database (as shown in Figure 57). The first 

step starts by face and ear localization and 

tracking the different input frames, followed by 

an enhancement step of super resolution, which is 

used for the time being to help the forensic expert 

to visualize a magnified image; this enhancement 

step also includes contrast and brightness 

adjustment, size (or dimension) normalization, 

and background elimination. The third and main 

step is feature extraction which starts by the 

origin point detection followed by different feature point’s measurements. According to the operational 

mode either these measurements are stored as a feature representation of the case; or the distance between 

the subject features and each reference case is used to retrieve the top matched cases from the database. 

Figure 57: Process breakdown 

Process 1 
Detection and Localization Process 

Process 2: 
Enhancement Process 

Process 3: 
Feature Extraction  

Process 4: 
Matching/Scoring 

Start 

Stop 

Alt Process 4: 
Enrollment 
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This chapter is organized as follows; section 5.3 introduces literature review about different techniques 

used for face and ear detection. In section 5.4, we introduce different ear image enhancement steps. In 

section, we presented automated Iannarelli feature extraction process. In section 4.4, we present the 

experimental results on the performance of the proposed system and discussion on these results. 

5.2 Face and Ear Detection 

Videos are actually sequences of images, each of which called a frame, displayed in fast enough 

frequency so that human eyes can percept the continuity of its content. It is obvious that all image 

processing techniques can be applied to individual frames. Besides, the contents of two consecutive 

frames are usually closely related. 

Visual content can be modeled as a hierarchy of abstractions. At the first level are the raw pixels with 

color or brightness information. Further processing yields features such as edges, corners, lines, curves, 

and color regions. A higher abstraction layer may combine and interpret these features as objects and their 

attributes. At the highest level are the human level concepts involving one or more objects and 

relationships among them. 

Object detection in videos involves verifying the presence of an object in image sequences and possibly 

locating it precisely for recognition. In our case, we know that the face and ear are there in the frame. 

Even, we know that there is only one face image. Object tracking is to monitor an object’s spatial and 

temporal changes during a video sequence, including its presence, position, size, shape, etc. This is done 

by solving the temporal correspondence problem, the problem of matching the target region in successive 

frames of a sequence of images taken at closely-spaced time intervals. These two processes are closely 

related because tracking usually starts with detecting objects, while detecting an object repeatedly in 

subsequent image sequence is often necessary to help and verify tracking. In this work, we assume only 

face and ear detection across frames. 

Images containing faces are essential to intelligent vision-based human computer interaction and research 

efforts in face processing include face detection, face localization, face recognition, and face tracking. 

However, many reported methods assume that the faces in an image (or an image sequence) have been 

identified and localized. To build fully automated ear identification system that analyze the information 

contained in the ear segment of the face images, robust, efficient, and fast face detection algorithms are 

required �[121]. In order to localize human ear from side face range images, we need first to extract the 

face from the background. In our experimental setup (section), we have a controlled environment, where 
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we can define two main classes of objects in the input images; face that map to areas with variant 

grayscale, and background that maps area with smooth grayscale. 

Given a single image, the goal of face detection is to identify the image region which contains the face 

regardless of its three-dimensional position, orientation, and lighting conditions. Such a problem is 

challenging because faces are non-rigid and have a high degree of variability in size, shape, color, and 

texture. Numerous techniques have been developed to detect faces in a single image. 

The challenges associated with face detection can be attributed to the following �[120]: 

• Pose. The images of a face vary due to the relative camera-face pose (e.g. frontal, 45 degree, 

profile), and some facial features such as an eye or the nose may become partially or wholly 

occluded. 

• Presence or absence of structural components. Facial features such as beards, mustaches, and 

glasses may or may not be present and there is a great deal of variability among these components 

including shape, color, and size. 

• Facial expression. The appearance of faces is directly affected by a person’s facial expression. 

• Image orientation. Face images directly vary for different rotations about the camera’s optical 

axis. 

• Imaging conditions. When the image is formed, factors such as lighting (spectra, source 

distribution and intensity) and camera characteristics (sensor response, lenses) affect the 

appearance of a face. 

HajSaid �[122] tackled the problem of face and ear segmentation using a Mathematical Morphology (MM) 

approach. First, the technique starts by face detection, where two main classes of objects in the facial 

images are defined; face that map to areas with variant grayscale, and background that maps area with 

smooth grayscale. Figure 58 shows the main steps of face extraction from the background. HajSaid �[122] 

proposed to subtract the subject image from its erosion, and then to threshold the resulted image using 

basic thresholding. At the last stage, binary dilation and holes is applied filling to ensure that the whole 

face is comprised. 

For Ear detection, HajSaid �[122] started by applying opening top hat transformation, which is defined by 

subtracting morphological opening of the image from itself Figure 59-b, and then he applied basic 

thresholding on the transformed image Figure 59-c. The last stage is a refinement stage to analyze the 

connected components (Figure 59 –c), whether it corresponds to an ear or any other part of the face, based 
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on their geometric properties including (area, position and dimension), and then to eliminate the 

unqualified objects (Figure 59 –d). 

 

 
Figure 58: Main stages of face detection  

  

(a) Detected Face (b) Transformed image 

  

(c) Thresholded Images (d) Detected ear 

Figure 59: Stages of ear segmentation for different facial image �[121] 



5. Automated Ear Identification System (AEIS) 

������������ � 	
���������������112 

5.3 Ear Image Enhancement 

The second step of ear identification system is the ear image enhancement, which starts with a step to 

enhance the video image resolution, followed by normalization module which normalizes the segmented 

ear image with respect to intensity, size, contrast, and various other criteria. Further processing would 

locate and remove the hair from the image. 

5.3.1 Super Resolution 

For enhancing the visual assessment of the proposed ear identification system, we need ear-images with 

high resolution (HR) or super resolution (SR); while the video sequence that we are acquiring is having a 

limited resolution (LR) of 480 * 640 pixels per frame. SR means that pixel density within an image is 

high, and therefore a SR image can offer more details that may be vital for the accuracy of feature 

extraction stage, Building 3-D ear stage, and the identification stage. We are working toward inexpensive 

SR digital images close to that of an analog image that almost has no visible artifacts when magnified. 

One promising approach is to use image processing techniques to obtain a SR image from observed 

multiple (LR) images, as shown in Figure 60. Recently, such a resolution enhancement approach has been 

one of the most active research areas, and it is called super resolution (SR) or (HR) image reconstruction 

or simply resolution enhancement �[123]. 

 

Figure 60 Block diagram for the super resolution process 

In SR, typically, the LR images represent different “looks” at the same scene. That is, LR images are sub-

sampled as well as shifted with sub-pixel precision, which is the case of successive frames in the video 

sequence that we are acquiring. 

The first step toward a super resolution image is to make a precise Image Registration for the LR images 

(frames), as shown in Figure 61. This is a well-established area in image processing applications. 

Vandewalle et al. �[124] used a frequency domain technique to precisely register a set of aliased images, 

based on their low-frequency, aliasing-free part; while Lucchese et al. �[125] presented another method for 

estimating planar roto-translations that operates also in the frequency domain and, as such, is not based on 
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features. Since the proposed technique uses all the image information, it is very robust against noise, and 

it can be very accurate; estimation errors on the rotational angle range from a few hundredths to a few 

tenths of a degree, depending on the noise level. 

 
Figure 61 Sub-pixel sift between successive frames 

The second step is interpolation into the SR grid, to help executing this step; we set the ear segments 

across the frames to specific size (n.n). In other words, in the ear detection step we segment a window of 

size (n.n) around the ear. 

 

Figure 62: Ears segments from four (eight) successive frames, and their corresponding super-resolution image. 
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The third (and last) step for super resolution is image restoration, where the main objective is blur and 

noise removal. This is the main concern, which makes us to use this step as an optional step that can help 

visual (or manual) assessment. Figure 62 shows an example of super resolution ear segment, using 4 and 

8 successive ear segments. Notice that the blurring problem starts to appear with the second one. This is 

the main reason that this stage is not useful for the proposed automated ear identification. However, we 

see that further improvement on the suggested technique may help in the future. 

5.3.2 Ear Image Normalization and Background Elimination 

The edging process operates on the brightness and contrast levels within the image. For this reason we 

implemented a function to normalize the brightness and contrast in an attempt to ensure consistent 

performance of the system. For manual comparison, Iannarelli used to magnify the ear image to fixed 

dimensions. In the automated Iannarelli system, we can achieve this by either normalizing the segmented 

ear image or normalizing all the extracted distances. For the implementation of super resolution, we 

adjust the segmented ear image during the localization process (as shown in Figure 62). 

Initially we used to subtract the hair from the image. As the hair usually has uniform color in the image, it 

manifests itself in the histogram. Our hair removal function adjusted the intensity of pixels in the vicinity 

of this detected peak to a level closer to that of the skin intensity. The preliminary results show that 

implementing the module in this way decreases the performance of the edging module. This is because 

the locally adjustment of the grayscale again means, we are diminishing the performance of edge 

detection, which is a mandatory step for our feature extraction stage. Later, we moved to another method 

that depends on closing the external curve of the ear (as shown in Figure 63). We developed a better 

method to separate the ear from the background using a mask. This mask applies a convex hull around the 

detected ear edges. The convex hull of a set of points is the smallest convex set that contains the points 

�[126], as shown in Figure 63. We use this mask to eliminate the background. 

  

Figure 63: a) ear extracted curves; b) convex hull separating the segmented ear from background 

Ear Curves 
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5.4 Feature Extraction Process 

The third process in our proposed system (Process 3) is the Feature Extraction process. We are 

developing a modified automation of the Iannarelli System. In general, this method requires that the 

system detect specific edges in the ear image (at horizontal, vertical and diagonal lines) and calculate their 

distance to a specific reference point (Crus of Helix). So we have two main goals in this stage, the first is 

to determine a reference point. The second is to extract the internal and external structure of the ear.  

5.4.1 Calculating the Reference Point 

Iannarelli calculates 12 measurements with respect to the tip of the Crus of Helix. This reference point 

suits his manual method as it is an anatomical feature of the ear. This insured consistence and 

repeatability in his system. For our automated system we have investigated other criteria for specifying 

that reference point.  

Our first implementation relies on calculating the center of gravity (centroide) of the masked ear image. 

The center of gravity (centroide) is defined as: 

As a refinement of finding this reference point, we come to define this reference point as the centroide of 

the external part of the ear. We define the external part of the ear as the difference between the segmented 

ear curves, and the convex hull surrounding the ear (as shown in Figure 64). 

 

 

 

Figure 64: a) segmented ear image; b) mask of the external ear part; c) reference point. 
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5.4.2 Finding Ear Curves 

In the literature, there exist many edges detection methods. We evaluated the performance of five of the 

most commonly used methods. By visually assessment of the results of this comparison study, we 

selected Canny edge detection method �[64]. Figure 65 shows an example of how canny edge method 

performs compared to the other methods.  

The performance of the edging operator is dependent on selecting the optimal edging threshold. The 

effect of using the canny edging operator at 2 different (non optimal) edging thresholds on a grayscale 

image is shown in Figure 66. 

A B C 

D E F 

Figure 65: edge methods performance comparison;  
a) original image, b) Canny method, c) Sobel method,  

d) Prewitt method, e) Roberts method, f) Laplacian of Gaussian 

Figure 66: Original and edged images 
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The optimal edging threshold is different for each gray-scale ear image, and therefore must be 

recalculated for each image processed. In order to automate this process, we developed a function to 

determine the optimal threshold automatically. The function operates by implementing the edging 

operator at a very low threshold and then analyzing the resulting edged image. 

Connected pixels (edges) are identified as long or short components and counted.  This edged image 

resulting from edging with a low threshold will contain the maximum number of long components. The 

edging threshold is increased and the edging operator is reapplied to the gray-scale image so that the 

components can be recounted.  The process is repeated so as to maximize the count for long and minimize 

the count for short segments (edges). Finally, the function returns the optimal threshold. 

5.4.3 Measuring Feature Points 

The masked image is used to calculate the distance from the centroide to the outermost curve of the ear.  

The distances between the centroide and the first black pixel of the mask image are calculated for every 

multiple of a specified angle from the horizontal. Our implementation uses 22.5° (shown in Figure 67-A) 

increments to gain more information as compared to Iannerelli’s method which makes use of 45°. 

For simplicity in explaining the directions we will refer to the angle directions using a geographical 

description with north being the top of the image. The distances that we calculated from these 

measurements were based on the external edge of the ear.  After superimposing these measurements onto 

the edged image, the distances between the centroide and the internal edge components were calculated as 

shown in Figure 67-b).  

  

Figure 67: a) ear mask showing 22.5° angles centered at reference point; 
b) edged image with measurements superimposed 
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5.5 Experimental Results 

The training data set contains images of 110 different cases. It is part of the ear data set collected at West 

Virginia University, where the users’ right, frontal and left profiles were captured by a video camera. The 

raw data is a video sequence 180˚ for the case face in about 100 secs. We converted the video sequence to 

image sequence of rate 3 frames per seconds. According to our assessment to this input data, this law 

frame rate helps eliminate any motion artifacts. The resulted image sequence has the case represented by 

about 300 frames; each of these frames is about 0.6˚ apart. The size of each frame is 640*480, 24-bit 

RGB. In this experimental setup, we used 10 images 3˚ apart from each others to represent each case. 

These ten images cover the left profile of each case. Figure 68 shows two images from a case, the starting 

frame and the ending frame 27˚ apart. 

  

Figure 68: Sample image of a case from the database 

We use the Euclidian distance between the extracted features as a matching score. The Euclidean distance 

between points P = (p1,p2,…pn) and Q = ( q1,q2,…qn), in Euclidean n-space, is defined as: 
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5.5.1 Verification Experiment  

In this experiment, we used all the training set for both training and testing. In testing we depends on 

eliminate one technique; so to test an image x of case y, we eliminate this image from the database. In 

other words we do not count the distance between the image and itself.  

Figure 69 shows the ROC curve between the false accept rate (FAR) and false reject rate (FRR) based on 

the above experimental setup. Where the equal error rate (ERR=22.9239, when FAR = FRR). 
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Figure 69: ROC curve 

5.5.2 Identification Experiments  

For the first identification experiment, we used the same training samples, and 23 different videos 

representing 23 subjects from the training dataset. This is a repeated (second) video sequence; we used to 

have for some subjects in the original dataset. Each case is represented by 10 images as previously 

described. 

Figure 70 shows the results for the above mentioned identification experiment where we have 90% rank 

1, in other words, 90% of the times the correct identity is represented by the first retrieved image. Further 

analysis for the curves implies that by retrieving the first ten images, we can achieve 94% retrieval 

accuracy. 
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Figure 70: The blue curve for the first retrieved k cases; and the red for k images 

For the first identification experiment, we used the same training samples, and 23 different videos 

representing 23 subjects from the training dataset (representing true matched cases). We also used a third 

set of 243 subjects different from the training dataset (representing unmatched cases). To plot True Hit 

Rate versus False Hit Rate:  

• Let the training dataset gallery consist of images G = {G1, G2, ..., Gm}, m=1100 for this 

experiment. 

• Let the probe consist of two sets of images:  

P = {P1, P2, ...,Pn}: these are images which do not have any matching entry in G, 

Q = {Q1, Q2, ...,Ql}: these are images which have at least one matching entry in G, 

for this experiment, n=2430, l=230. 

• Let D (A, B) represent the Euclidian distance (matching score) generated when comparing A 

against B, and let t be an arbitrary matching threshold. 

• For each Pi in P, i=1,2,...n, we compute s= min_j {S(Pi, Gj)}, j=1,2,...m. If d< t then this is a false 

hit. Thus, the false hit rate F(t) can be estimated as the number of false hits divided by n. 
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• For each Qi in Q, i=1,2,...m, we compute s = min_j{S(Qi, Gj)}, and r = arg min_j{S(Qi, Gj)}, 

j=1,2,...m (rank one images). If (d < t && identity of Gr is the same as identity of Qi), then this is 

a true hit. Thus, the true hit rate H(t) can be estimated as the number of true hits divided by m. 

• We plot H(t) against F(t) for varying values of t, as shown in Figure 71. 

From Figure 71, as can be induced from the curves, by fixing the False Hit Rate to 5%, and use the 

corresponding threshold, we find the True Hit Rate to be 87.5%.  
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Figure 71: True hit rate versus false hit rate 

5.5.3 Distance Measurements Accuracy 

One of the limitations of our edging module is that while 

it can capture the external edges of the ear reliably 

(detection rate ranging from 97% to 99%), it is less 

consistent in capturing the edges within the internal 

structure of the ear as shown in Figure 72. 

 

Figure 72: Detection rate 



6. Conclusion and Future Work 

������������ � 	
���������������122 

6 Conclusion and Future Work 

We presented different problems regarding building a prototype for an Automated Dental Identification 

System (ADIS), as well as an Automated Ear Identification System (AEIS). 

Automated Dental Identification System (ADIS) 

ADIS can be used by law enforcement agencies for resolving cases of Missing and Unidentified Person 

(MUP). The main contribution is the proposed ADIS architecture that can handle a large database of 

images. Our proposed architecture is split in two main stages, where the first stage search the database for 

the candidate images, and the other stage reduces the number of candidate images to a match list of a few 

cases to be given to the forensic expert for a final decision. Samples of the performance results of this 

architecture were presented along with the description of the methodologies proposed. More extensive 

results of each component can be found in the list of ADIS publications. This is the first attempt to 

present a comprehensive ADIS in the computer vision/ image processing and pattern recognition areas. 

ADIS system is important to law enforcement and digital government officers managing mass disasters 

(e.g. Tsunami). To directly address the scalability of ADIS, we need the potential Match Search 

component (a very fast searching engine) to achieve very high percentage of having the target reference in 

a relatively very short candidate list. 

• For the record cropping problem, we presented a global segmentation technique of cropping the 

dental films from the dental X-ray records. We started by using the rectangular film property and 

separating the background that have various colors and textures. Then we classify the connected 

components according to the corners being right or round. Cutting the round corner components 

depending on whether they are 90o or 180o V-corners; and cutting the right corner ones by 

viewing the boundary films under a graph theoretic framework, where it is always possible to 

reduce the graph by successively removing unit vertexes without affecting its connectivity. This 

technique performance can be summarized as follows: 73.7% of the films were perfectly cropped, 

23.8% were under segmented, and only 2.5% films developed into erroneous segments. We 

measured the record cropping time of our algorithm using an uncompiled MATLAB 

implementation running on a 2.0 GHz 512 MB RAM Intel Pentium IV PC platform. The 

average cropping time is 30 kpix/sec and it varies depending on the number of films in the record 

and the amount of separation between films. 
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• For the tooth contour extraction problem, an active contour without edges algorithm is used to 

extract the contour of teeth from dental images. This is an important component of ADIS. As 

digital X-ray images of the teeth usually do not exhibit sharp edges, the proposed algorithm is 

used to extract the tooth contour, after segmenting the tooth region, using a technique that 

depends on the intensity of the whole tooth region and not only on their edges. Experimental 

results suggest the efficacy of the contour extraction using the proposed technique over others 

described in the literature. The proposed contour extraction technique extracted a smooth and 

accurate teeth crown for 87% of the examined 340 teeth. We measured the tooth contour 

extraction time using our algorithm using an uncompiled MATLAB implementation running on 

a 2.0 GHz 512 MB RAM Intel Pentium IV PC platform. The average tooth contour extraction is 

0.16 seconds. 

• For the teeth labeling problem, we presented a dual-stage approach for automatic construction of 

dental charts based on appearance-based features and string matching with don’t care possibility. 

Initially, each segmented tooth (of a bitewing/periapical film) is independently classified based 

on teeth reconstruction (and Fisher teeth) in two/four image subspaces. Including this previous 

knowledge about film type class enhances the overall initial classification by 10%. Using teeth-

neighborhood rules the initial teeth class assignments is validated and possibly corrected even in 

the presence of missed tooth. Finally, if the resulting teeth class sequence is unique, a number for 

each tooth is assigned corresponding to its position in the dental quadrant it belongs to. 

Otherwise, if the resulting teeth class sequence is non-unique we call a reject option. 

Experimental results based on a sizable dataset suggest that appearance-based features achieve 

fast classification with an average film classification time of 0:4 seconds with competitive 

accuracy compared to methods proposed in the literature. Overall around 75% of the teeth are 

initially assigned to their proper classes, 86% of the teeth are assigned proper class labels after 

validation, and around 70% of the teeth assigned proper intra-quadrant numbers. 

• For the potential match problem, we presented fast searching engine techniques based on color 

features (Eigen Images) as well as shape features (moment invariant and edges orientation 

histogram). By fusing multiple teeth matching scores, we calculate the Euclidean distance 

between the subject record and all the reference records of the database. Then we retrieve records 

based on minimum distance. Testing results based on a sizable data-set suggest that appearance-

based features achieve fast (average record retrieving time of 5 seconds) and accuracy of 

retrieving 75% for rank 6. 
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Challenges with building ADIS: 

The main challenge to the current ADIS system is the poor quality of several dental images. This poor 

image quality can be defined as law resolution and law gray scale contrast of many dental radiographic 

films. Other challenges occur when the subjects have dental work, fillings, etc, which limits the 

effectiveness of the different proposed preprocessing methodologies. 

The research on achieving higher levels of automation in the dental identification process, beyond manual 

feature extraction and coding, is fairly recent and there are many interesting problems that have to be 

addressed in order to achieve higher level of automation, and to enhance the overall performance 

regarding both accuracy and time. In the following we list some of these problems: 

• Automatic construction of dental charts: for some cases, films are organized in a manner that does 

not immediately reflect the location teeth in the dental human atlas, for example, films may be 

flipped horizontally. In practice, dentists rely on a physical impulse on films to determine the 

front face of the film and accordingly determine whether teeth are right side of left side teeth. 

Detection of this impulse may be a feasible problem from an image processing point of view. The 

remaining problem would be to determine whether the impulse surface touching the scanner was 

convex or concave. 

• Fillings and partial teeth: the relatively high likelihood of physical transformation is a 

characteristic of dental features. Restorative fillings and partial fracture of teeth, present two 

possibilities of physical transformations that manifest as change in the shape and content of teeth 

projections. Image painting is a candidate approach to work with teeth that were transformed by 

either one of the mentioned transformations. 

• High-level features for efficient potential match search: so far all the studied features, in the 

context of the ADIS research prototype, do not possess invariance properties that that are needed 

for efficient retrieval. Also detection of fillings is essential for ruling out potential mismatches 

due to impossibility of evolution from an AM to a PM situation (e.g. a filled AM molar may not 

evolve to a virgin PM molar). Moreover, detection of fillings and description of the restored 

surfaces, and hence automatic annotation of teeth with dental codes, present a significant 

improvement opportunity that uplifts the automation level in existing systems like CAPMI and 

WinID. 

• Matching strategies: as we mentioned above, films might be flipped horizontally, and unless these 

transformations are detected we cannot be very certain about the proper orientation of the dental 
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chart. One way around surviving with this situation is form four hypothesis regarding the proper 

orientation of a subject dental chart, perform matching (not necessarily exhaustive matching) 

under each of these hypotheses. Then select the strongest hypothesis for a more comprehensive 

case-to-case matching. We also recall that in some cases the number of tooth-pair views that we 

compared was unreasonable high, and in order not compromise on timeliness we may limit the 

number of views to be compared per tooth-pair. 

• Error detection capabilities: each of the steps involved in processing of dental records is prone to 

errors that are likely to affect the overall performance of the system. The aspect ratio and relative 

areas were used to exclude cropped regions that have apparent violations to expected values of 

these properties. We think that many segmentation errors may as well be detected by identifying a 

set of geometric and textural features possessed by true teeth. Also in alignment, we may use the 

resulting overlap area as basis to accept or reject registration. 

• Performance limits based on matching multiple teeth: the intra-subject variability observed and 

encountered in teeth appearance features reflects typical characteristics of a biometric. However, 

teeth multiplicity is also a distinctive characteristic of dental records, which we hypothesize, can 

raise the upper limits on performance of dental identification based on appearance features. It 

would be interesting to conduct an empirical study to validate our hypothesis. Such a study 

requires a large database of genuine matched teeth. 

• In addition to the listed problems, we think that advocating imaging and digitizing standards in 

dental imaging will certainly aid automation the dental identification process. 

Automated Ear Identification System (AEIS) 

We developed an automated ear identification system, based on automating the manual Iannerelli’s 

System. We presented different challenging problems starting with face and ear segmentation, ear image 

enhancement and ending with different point detection, and matching. Testing the performance of the 

proposed automated Iannarelli system shows good identification rate 90% for rank one image and works 

extremely fast. We returned the reason that the automated system showed lower performance compared to 

the manual Iannerelli’s System to the difficulty of extracting internal features. 
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Our plan for future work for ADIS includes: 

• For record cropping: exploiting more geometric properties of films to develop additional post-

processing rules. This will identify segments that require further processing by a complementary, 

more computationally expensive cropping. 

• For tooth contour extraction: exploiting more teeth boundaries properties based on the human 

experts domain of knowledge, so as to be able to correct many of the encountered neighboring 

errors. 

• For teeth labeling: (i) Investigating whether filling detection and substitution using image-in-

painting techniques will help; (ii) Taking into consideration the relative pulp size, which is 

smaller in premolars as compared to molars, to improve the classification accuracy of premolars 

and molars; (iii) Learning the misclassification risks, to improve teeth-numbering accuracy; (iv) 

Fusion between the appearance based and the feature based techniques for better labeling. 

• For potential match problem: (i) Adding weights to teeth matching score fusion, for example 

based on teeth type like more or less weights to the molars; (ii) Fusion between shape features 

based approach and color features based approach. 

 

Our plan for future work for AEIS includes: 

(i) Develop better edge detection method for internal edges to improve internal feature extraction; (ii) 

Automatically align images before calculating distances; (iii) Automatically detect and repair broken 

edges, to decrease Failure Edge Acquiring Rates; (iv) Adjust weights to different features, according to 

variation (distinguishability) and detection rate; (v) Fusion between this 2-D technique and other 3-D 

techniques. 
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I. Dental Glossary 
Bitewing: A kind of dental x-ray which is taken with the teeth bite together. The main function of this 

kind of x-ray is to detect cavity in between teeth and height of bone support. 

Canine: The third tooth from the middle of the jaw. There are totally 4 of them. They are the longest 

teeth in human. 

Crown: A crown is almost like a "cap" on a tooth. It covers the tooth partially or totally above the gum to 

restore its function and outlook. 

Dentistry: A branch of medicine that involves diagnosis, prevention, and treatment of any disease 

concern about teeth, oral cavity, and associated structures. 

Filling: A restoration places on a tooth to restore its function and appearance. 

Implant: A device (usually "screw-like") put in the jaw bone to support a false tooth, a denture or a 

bridge. 

Incisor: The four upper and lower front teeth. 

Molar: The last 3 upper and lower teeth on both side of the mouth. 

Occlusal: The biting surface of the back teeth. 

Panoramic Radiograph: An x-ray film to obtain the wide view of upper and lower jaw and their 

associated structures. 

Periapical: The surrounding of the bottom of the root of a tooth. 

Permanent teeth: Adult's teeth. The first permanent tooth usually comes in around 6 years old.  

Premolar: The two teeth located in front of the molar. 

Primary teeth: Baby teeth. 

Radiograph: An x-ray picture. 

Restoration: An item a dentist uses to restore the normal function of a tooth or an area in the mouth. It 

can be a filling, an artificial crown, etc. 

Root: The bottom part of tooth. It anchors the tooth to its supporting units. 

Wisdom tooth: The eighth (also the last tooth) tooth from the middle of the jaw. 
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II. Ear Database Collection 
The ear data set is collected at West Virginia University. A video sequence is captured for each case right, 

frontal and left face profiles. The raw data is a video sequence 180˚ for the case face and ear taking about 

100 seconds. To collect this data, we are following Institutional Review Boards (IRB) protocol. This 

appendix is organized as follows: II-A IRB protocol and instructions, II-B IRB Consent Form, II-C 

system description, and II-D Database distribution. 

6.1 A. IRB protocol and instructions 

The principles of protection of human participants in research were established in the Belmont Report in 

1979. The Belmont Report was prepared by the National Commission for the Protection of Human 

Subjects of Biomedical and Behavioral Research at the request of the Secretary of the Department of 

Health and Human Services (DHHS). The report identified three principles essential to the ethical 

conduct of research with humans: respect for persons, beneficence, and justice. These three principles 

formed the foundation for the conduct of research, including guidelines for obtaining informed consent, 

respect for privacy and confidentiality, and risk/benefit assessment. 

Research participants are essential to the conduct of research, enabling researchers to make progress and 

discoveries in the fields of medicine and health. As such, the relationship between researchers and 

participants is critical and should be based on accurate information, trust, and respect. 

History carries many examples of awful research involving unwilling human participants; the experiments 

conducted by Nazi physicians during World War II were unprecedented in their scope and the degree of 

harm and suffering to which human beings were subjected. The most notorious example in the United 

States of prolonged and knowing violations of the rights of a vulnerable group of research participants 

was the long-term study of black males conducted at Tuskegee by the United States Public Health 

Service. This study was initiated in the 1930s as an examination of the natural history of untreated 

syphilis; it continued until 1972. These examples as well as others were the motivation behind the 

development of codes of research ethics. Followed by the Declaration of Helsinki, CIOMS Guidelines, 

and then Belmont Report (1979). The Belmont Report can be found at the following site: 

http://ohsr.od.nih.gov/guidelines/belmont.html.  

The three fundamental ethical principles that guide the ethical conduct of research involving human 

participants are:  
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1- Respect for Persons (autonomy)  

2- Beneficence  

3- Justice  

In addition to ethical considerations, the Federal Government mandates certain legal standards for 

protection of humans in research. These standards are set forth in the Code of Federal Regulations, Title 

45 CFR Part 46 (see http://www.hhs.gov/ohrp/humansubjects/guidance/45cfr46.htm). Subpart A, the 

basic policy for protection of human research subjects, is referred to as the "Common Rule." The 

regulations were enacted in 1991 and apply to all federally funded human research. Once a research 

activity is deemed human subject research, the Department of Health and Human Services requires 

review by Institutional Review Boards (IRB) and imposition of certain standards for informed consent. 

Research is a systematic investigation (including development, testing, and evaluation) designed 

to discover or contribute to a body of generalizable knowledge. Not all research involves human 

participants, but when they are involved, researchers and their teams are legally and ethically 

obligated to protect them. 

As data collection involves the participation of human subject, we need to be familiar with the regulations 

governing the rights and safety of research participants. In other words, we have to ensure that:  

• The study is properly designed, scientifically sound, and yields valid results.  

• Participants meet selection and eligibility requirements.  

• The study is approved by the IRB and conducted according to the protocol.  

• Informed consent is appropriately obtained. 

• Protocol changes and adverse events are reported to the appropriate boards and authorities.  

• The rights and welfare of participants are monitored throughout the trial.  

• All members of the research team are qualified and trained in research methods and human 

participant protections. 

Research team members (key personnel) whose responsibilities are delegated by the researcher 

also have a role in ensuring integrity of the study by consistently applying procedures and 

ensuring that the rights of participants are safeguarded. 

Research team members are typically responsible for:  
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• Day-to-day protocol decision making related to study conduct.  

• Participant recruitment, selection, and eligibility.  

• Clarification of the complexities of the protocol to the participant and others.  

• Collection of participant information and entry of data using procedures to maintain privacy and 

confidentiality.  

• Ensuring that the rights and welfare of participants are monitored throughout the study. 

To address the above requirement, and to protect the collected data, we had the following plan:  

1- Physical access to the lab (G75D) of the Engineering Science building is controlled through hand 

geometry. 

2- We lock the door after entering, and unauthorized persons are not allowed to enter with you 

without giving his hand geometry. 

3- Collected data is to be protected by appropriate firewall and password security limited access to 

the machine located in (G75D) of the Engineering Science building. 

4- We never distribute this data, or copy it to any other machine. 

5- Control of access to the collected data and results that come out of this project, as well as 

descriptions of the developed software that are discussed at meetings held at WVU will be 

achieved through limiting those in attendance to the pre-approved members. 

6- Data and results stored on PC hard drives are to be deleted from the storage media when they are 

no longer needed. Hard drives that might be replaced will first have all data and results files 

deleted, and then the hard drive will be reformatted, and finally, the physical hard drive will be 

destroyed. 
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6.2 B. IRB Consent Form 

CONTACT PERSONS 

In the event you experience any side effects or injury related to this research, you should contact Dr. Arun 

Ross at 304/293-0405 ext 2556. For more information about this research and about research-related risks 

or injury, you can contact Dr. Hany Ammar at 304/293-0405 ext 2514. 

INTRODUCTION 

You,_________________,  have been asked to participate in this research study, which has been 

explained to you by Dr. Arun Ross, Ph.D. This study is being conducted by [Dr. Hany Ammar, Ph.D., and 

Dr. Arun Ross, Ph.D.] in the Lane Department of computer Science and Electrical Engineering at West 

Virginia University with funding provided by the Technical Support Working Group.  

PURPOSE OF THE STUDY 

The purpose of this study is to improve biometric research techniques for ear and face recognition. WVU 

expects to enroll approximately 500 subjects in this study. 

DESCRIPTION OF PROCEDURES 

This study involves capturing your ear and facial images, using commercial digital video cameras and 

will take approximately five – ten minutes to complete. You have a period of thirty days during which 

you can withdraw your data from the study with no consequences. 

RISKS AND DISCOMFORTS 

You should not experience any inconvenience or discomfort beyond that typically associated with your 

face and ear pictures being taken. The only potential risk from participating in this study is the 

distribution of your images to other agencies and other researchers, due to its inclusion in the dataset. 

However, no identifying information (such as name or social security number) will be associated with 

your data image. The different biometric data will be saved on secure personal computers in the following 

location: Engineering Science Building, room G75D, Evansdale Campus, and is coded with specific 

number so that there will be no means of associating name with the corresponding biometric data. 

ALTERNATIVES 

BENEFITS 

You may not receive any direct benefit from this study. The knowledge gained from this study may 

eventually benefit others. 
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FINANCIAL CONSIDERATIONS 

You will incur no costs for participating in this study. If you participate in this study, you will be given $5 

gift card for the session. If you withdraw from the study before the session is completed, there will be no 

payment for this session. 

CONFIDENTIALITY 

Any information about you that is obtained as a result of your participation in this research will be kept as 

confidential as legally possible. Your research records and test results, just like hospital records, may be 

subpoenaed by court order or may be inspected by federal regulatory authorities without your additional 

consent. In addition, there are certain instances where the researcher is legally required to give 

information to the appropriate authorities. These would include mandatory reporting of infectious 

diseases, mandatory reporting of information about behavior that is imminently dangerous to you or to 

others, such as suicide, child abuse, etc. Data collected from participants is stored with an identification 

number generated for the purpose of this data collection. No identifying information such as name or 

social security number will be stored with the data in the dataset. In any publications that result from this 

research, neither your name nor any information from which you might be identified will be published 

without your consent. 

VOLUNTARY PARTICIPATION 

Participation in this study is voluntary. You are free to withdraw your consent to participate in this study 

at any time. Refusal to participate or withdrawal will involve no penalty or loss of benefits and will not 

affect your grades or class standing. You have been given the opportunity to ask questions about the 

research, and you have received answers concerning areas you did not understand. In the event new 

information becomes available that may affect your willingness to participate in this study, this 

information will be given to you so that you can make an informed decision whether or not to continue 

your participation. Upon signing this form, you will receive a copy. 
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6.3 C. System Description 

 

Figure 73: Structure and mechanical components for the lab 

Figure 73 describes the system used in ear data set collection. This system was developed by Dr. Gamal 

Fahmy and Dr. Ahmed El-Sheerbiny from West Virginia University. This system had undergone various 

design, assembly, and implementation. The main hard ware components for this system include: 

• PC: serves to provide complete control of the motion and image capturing. 

• Camera: allowing capturing of video, it is attached to the camera arm, and the latter is controlled 

by a stepper motor. 

• Linear Actuator: This is a unique custom made device (by Netmotion, Inc.) has 4-ft span and 

allows smooth, vertical (up or downward) translation. We use this to adjust the height of the 

camera according to the subject height. 
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• Light: For our experiment, we fixed the light to same arm of the camera. In other words, we 

didn’t use the light arm. 

• Structural Framework: consisting of tinted wall, rotating arms, and other structural supports. We 

added uniform black board behind the chair, to serve as a uniform background during video 

capturing. 

There are various software packages that we use: 

• Posteus IPE: stepper system control. We used it to adjust the camera height, and then to move the 

camera around the object. 

• EVI Series Demonstration Software: Camera control, to adjust zoom, tilt, and focus of the used 

camera. 

• IC Capture: Video capturing, to record the subject different poses during the camera rotation. 
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6.4 D. Database Distribution 

We collected video sequences for 402 different cases over a period of 2 years. We collected multi-

sequence for 54 cases out of those 402. The database has the ethnicity and gender diversities shown in 

Figure 74. 

 

Figure 74: Ethnicity and Gender distribution 

Additional Statistics include: 

• 55 subjects with eyeglasses 

• 42 subjects with earrings 

• 38 subjects with partially occluded ears  

• 2 fully occluded ears, in other words, not useful for the current study.
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