
Graduate Theses, Dissertations, and Problem Reports

2005

Graph algorithms for the haplotyping problem Graph algorithms for the haplotyping problem

Yunkai Liu
West Virginia University

Follow this and additional works at: https://researchrepository.wvu.edu/etd

Recommended Citation Recommended Citation
Liu, Yunkai, "Graph algorithms for the haplotyping problem" (2005). Graduate Theses, Dissertations, and
Problem Reports. 4170.
https://researchrepository.wvu.edu/etd/4170

This Dissertation is protected by copyright and/or related rights. It has been brought to you by the The Research
Repository @ WVU with permission from the rights-holder(s). You are free to use this Dissertation in any way that is
permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license
in the record and/ or on the work itself. This Dissertation has been accepted for inclusion in WVU Graduate Theses,
Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU.
For more information, please contact researchrepository@mail.wvu.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The Research Repository @ WVU (West Virginia University)

https://core.ac.uk/display/230482018?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F4170&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd/4170?utm_source=researchrepository.wvu.edu%2Fetd%2F4170&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu

Graph Algorithms for the Haplotyping Problem

Yunkai Liu

Dissertation submitted to the
College of Engineering and Mineral Resources

at West Virginia University
in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy
in

Computer Science

Elaine M. Eschen, Ph.D., Chair1

Cun-Quan Zhang, Ph.D., Co-chair2

Donald A. Adjeroh, Ph.D.1

E. James Harner, Ph.D.3

Frances L. Van Scoy, Ph.D.1

Keqiang Wu, Ph.D.4

Morgantown, West Virginia,
2005

Keywords: Haplotype Inference Problem, Perfect Phylogeny Haplotyping
Problem, Single Nucleotide Polymorphism, Directed Graph, Poset.

Copyright 2005 Yunkai Liu

1Lane Department of Computer Science and Electrical Engineering, West Virginia University.
2Department of Mathematics, West Virginia University.
3Department of Statistics, West Virginia University.
4Department of Biology, West Virginia University.

Abstract
Graph Algorithms for the Haplotyping Problem

Yunkai Liu

Evidence from investigations of genetic differences among human beings shows that
genetic diseases are often the result of genetic mutations. The most common form
of these mutations is single nucleotide polymorphism (SNP). A complete map of all
SNPs in the human genome will be extremely valuable for studying the relationships
between specific haplotypes and specific genetic diseases. Some recent discoveries [31]
[12] [40] [17] show that the DNA sequence of human beings can be partitioned into
long blocks where genetic recombination has been rare. Then, inferring both haplo-
types from chromosome sequences is a biologically meaningful research topic, which
has compounded mathematical and computational problems.

We are interested in the algorithmic implications to infer haplotypes from long
blocks of DNA that have not undergone recombination in populations. The assump-
tion justifies a model of haplotype evolution - haplotypes in a population evolves
along a coalescent, based on the standard population-genetic assumption of infinite
sites, which as a rooted tree is a perfect phylogeny. The Perfect Phylogeny Haplotyp-
ing (PPH) Problem was introduced by Daniel Gusfield in 2002. A nearly linear-time
solution to the PPH problem (O(nmα(nm)), where α is the extremely slowly growing
inverse Ackerman function) is provided in [25]. However, it is very complex and diffi-
cult to implement. So far, even the best practical solution to the PPH problem [4] has
the worst-case running time of O(nm2). D. Gusfield conjectured that a linear-time
(O(nm)) solution to the PPH problem should be possible [25].

We solve the conjecture of Gusfield by introducing a linear-time algorithm for
the PPH problem [35] [36]. Different kinds of posets for haplotype matrices and
genotype matrices are designed and the relationships between them are studied. Since
redundant calculations can be avoided by the transitivity of partial ordering in posets,
we design a linear-time (O(nm)) algorithm for the PPH problem that provides all
the possible solutions from an input. The algorithm is fully implemented and the
simulation shows that it is much faster than previous methods.

Table of Contents

Table of Contents iii

1 Introduction 1

1.1 Biology Concepts . 1

1.2 Introduction to the Haplotype Inferring Problem 4

1.3 Introduction to the Perfect Phylogeny Haplotype Problem 6

1.4 Our Results . 10

2 Notation and Terminology 11

2.1 About Matrices . 11

2.2 Poset, Hasse Diagram and Antichain 12

3 Haplotype Posets 15

3.1 An Alternative Characterization of the PPH Problem 15

3.2 Definitions of Posets for Haplotype Matrices 16

3.3 Properties of Haplotype Posets . 17

4 Posets For Genotype Matrices 20

4.1 Orders Between Columns . 20

4.2 Definitions of Posets for Genotype Matrices 21

4.3 Properties of Genotype Posets . 23

4.4 Properties of Posets for Realizable Genotype Matrices 24

5 Our Linear Solution to the PPH Problem 27

5.1 Why Linear Solution to The PPH Problem 27

5.2 Brief Description of Main Algorithm 28

5.3 To Pre-scan the Input . 29

5.4 To Construct the Genotype Poset . 30

5.4.1 Brief Idea . 30

5.4.2 λ Function . 32

iii

iv

5.4.3 Bad-zeros and Bad-ones . 33

5.4.4 Parent Function and Descendant Function 38

5.4.5 New Vertices are Added . 41

5.4.6 Algorithm to Construct the Hasse Diagram of the Genotype

Poset . 43

5.5 To Simplify the Hasse Diagram of the Genotype Poset 44

5.6 To Construct the Hasse Diagram for the Ordered Genotype Poset . . 49

5.7 To Build a Legal Expansion . 52

5.8 Complexity . 53

5.9 Test Results . 53

5.10 All Solutions to the PPH Problem . 54

A Proofs 56

Bibliography 70

Chapter 1

Introduction

1.1 Biology Concepts

Genetics is an important research field in modern biology. Similar with other scientific

disciplines, genetics has concluded a large amount of important dogmas on various of

species in last two hundreds years. In 1860s, an Augustinian monk, Gregor Mendel,

performed a series of experiments and discover the basic inheritance units, which is

named as genes now. Since then, studies and researches in genetics have established

a set of principles and experimental or analytical procedures, which have greatly

contributed to different disciplines in modern biology.

A biology textbook, titled “Introduction to Genetic Analysis”, introduced basic

genetic concepts as follows. “A gene is a section of a threadlike double-helical molecule

called deoxyribonucleic acid, abbreviated DNA. Genes dictate the inherent prop-

erties of a species. The products of most genes are specific proteins. Any one gene

1The purpose of this chapter is to introduce basic biological concepts and models that the inspired
this research. In order to give readers a complete and accurate understanding of backgrounds of the
whole research, parts of content (such as definitions and commonly agreed opinions) in this chapter
were cited from classic textbooks and papers in case of any incorrect interpretations. Most of ideas
in Chapter 1.1, 1.2 and 1.3 are not the author’s original work. Readers can study further details in
those publications cited.

1

2

can exist in several forms that differ from one another, generally in small ways. These

forms of a gene are called alleles. Allelic variation causes hereditary variation within

a species.”[20]

If a gene is taken as an individual unit in genetics, the study of big picture of

all units is another essential research topic. “An organism’s basic complement of

DNA is called its genome. The somatic cells of most plants and animals contain

two copies of their genome; these organisms are diploid. The cells of most fungi,

algae, and bacteria contain just one copy of the genome; these organisms are haploid.

The genome itself is made up of one or more extremely long molecules of DNA that

are organized into chromosomes. Genes are simply the regions of chromosomal DNA

that are involved in the cell’s production of proteins. Each chromosome in the genome

carries a different array of genes. In diploid cells, each chromosome and its component

genes are present twice. For example, human somatic cells contains two sets of 23

chromosomes, for total of 46 chromosomes. Two chromosomes with the same gene

array are said to be homologous.”[20]

The main point of genetics is to understand the interactions of the biology sys-

tem at the gene level. “When cells divide, the chromosome must also make copies

of themselves (replicate) to maintain the appropriate chromosome number in the de-

scendant cells. In eukaryotes, the chromosomes replicate in two main types of nuclear

divisions, called mitosis and meiosis. Mitosis is the nuclear division that results

in two daughter nuclei whose genetic material is identical with that of the original

nucleus. Mitosis can take place in diploid or haploid cells during asexual cell division.

Meiosis is the general name given to two successive nuclear divisions called meiosis I

and meiosis II. Meiosis takes place in special diploid cells called meiocytes. Because

3

of the two successive divisions, each meiocyte cell gives rise to four cells: 1 cell →
2 cells → 4 cells. In animal and plants, the products of meiosis become the haploid

gametes.”[20]

Individuals in one specie may show different phenotypes. Discrete, discontinuous

difference for one character are because of the alleles of one gene. What we mean is an

allele maps to one phenotype and another one maps to the other phenotype. We can

observe that those discontinuous phenotypes are in standard patterns of inheritance

among generations. The “pattern” can be formulated by precise, specific ratios of

individuals with each phenotype. That is also the “pattern” inspire the research of

Gregor Mendel and cause the discovery of genes [20]. “Mendel’s hypothesis contained

not only the notion that genes account for discrete phenotypic difference, but also

a mechanism of inheritance of these discrete differences. The essence of Mendel’s

thesis was that genes come in pairs; these segregate equally into the gametes, which

come to contain one of each pair (Mendel’s first law); and gene pairs on different

chromosome pairs assort independently (a modern statement of Mendel’s second

law).”[20]

An American geneticist, Thomas Hunt Morgan, claimed that the two genes were

located on the same pair of homologous chromosomes after a dihybrid testcross in

Drosophila. That is called linkage. Based on Morgan’s hypothesis, it is easy to

understand that the reason for allele combinations from the parental generations re-

main together, is that they are physically attached by the segment of chromosome

between them [20]. Morgan also guessed that “ when homologous chromosomes pair

in meiosis, the chromosomes occasionally break and exchange parts in a process called

4

crossing-over. The production of new allele combinations is formally called recom-

bination. Crossovers are one mechanism for recombination, and so is independent

assortment. Recombination is observed in a variety of biological situations, but it is

related to meiosis in most of the cases. Some positions in DNA are occupied by a

different nucleotide in different homologous chromosomes. These difference are called

single nucleotide polymorphisms, or SNPs (pronounced “snips”). A SNP is a

ubiquitous form of genetic variation in the nucleotide at a single position and SNPs

are the most frequent forms of human genetic mutations.”[20]

1.2 Introduction to the Haplotype Inferring Prob-

lem

A draft and complete map of human DNA sequence was finished in 2001 [1] [43].

Because of that, one of research topic in genetics, genomic research, is greatly boosted.

One main objective of the fields is to a question“how similar among all mutations

in the human population”, because people have already assumed that some genetic

diseases are sometimes mapping with the results of genetic mutations.

In diploid organisms, such as human, there are two copies for each chromosome.

One copy of those two is called a haplotype. The general DNA sequence, which ac-

tually is the mixture of the two copies is named as a genotype. In medical study,

complex diseases are generally affected by more than a single gene. So the knowledge

of haplotype data is more important genotype data in drug discovery. The most im-

portant factor that decides the information of a haplotype is the SNPs in that region.

“A SNP is a single nucleotide site where exactly two (of four) different nucleotides

occur in a large percentage of the population ”[38] [20]. People have already realized

5

the importance of SNPs. National Institute of Health has already constructed a SNP

map for different species to show the density of SNPs per thousand nucleotides. How-

ever, with the current technology, directly extracting haplotype information is still

difficult or too expensive, though it is extremely valuable. Compare to haplotypes,

genotype sequences are much easier to get.

In order to study haplotype more efficiently, a set of DNA sequences were generally

considered as m sites (SNPs) in n individuals. Based on the property of SNP, each

site have one of two possible states (alleles), which can be took as 0 or 1. For every

two rows (one individual), the combinations of two states actually are the haplotypes.

More abstractly in mathematics, “input to the haplotyping problem consists of n

genotype vectors, each of length m, where each value in the vector is either 0, 1, or 2.

Each position in a vector is associated with a site of interest on the chromosome. The

position in the genotype vector has a value of 0 or 1 if the associated chromosome

site has that state on both copies (a homozygous site), and has a value of 2 otherwise

(a heterozygous site).”[23]

As we stated above, simple screening technology only can extract the genotype

(2m states) of the individual, but can not get the two haplotypes of that individual.

So it is important to uses computational methods to extract haplotype information

from the given genotype information [25] [27]. Previous methods [10] [11] [18] [24] [37]

[33] [34] are mostly statistical approaches. None of are presently fully satisfactory,

Although some of them are impressively accurate, none satisfactory models were given

to describe the process. Gusfield et. al [25] [4] [23] [9] [8] provides a deterministic

and combinatorial approach on this question.

6

First of all, the biological problem need to be changed into a mathematical prob-

lem. “Given an input set of n genotype vectors, a solution to the Haplotype Infer-

ence (HI) Problem is a set of n pairs of binary vectors, one pair for each genotype

vector. For any genotype vector g, the associated binary vectors v1; v2 must both

have value 0 (or 1) at any position where g has value 0 (or 1); but for any position

where g has value 2, exactly one of v1; v2 must have value 0, while the other has value

1. That is, v1, v2 must be a feasible “explanation” for the true (but unknown) hap-

lotype pair that gave rise to the observed genotype g. Hence, for an individual with

h heterozygous sites there are 2h−1 haplotype pairs that could appear in a solution

to the HI problem. For example, if the observed genotype g is 0212, then the pair of

vectors 0110, 0011 is one feasible explanation, out of two feasible explanations. Of

course, we want to find the explanation that actually gave rise to g, and a solution

for the HI problem for the genotype data of all the n individuals. However, without

additional biological insight, one cannot know which of the exponential number of

solutions is the “correct one”.”[25]

1.3 Introduction to the Perfect Phylogeny Haplo-

type Problem

Recently, some new discoveries on population genetics [31] [12] [40] [17] were made.

Gusfield conclude the rules [25] as follows.

• “a human chromosome can be partitioned into long blocks where no (or few)

recombination occurs”, and

• “the SNPs in each block induce a few common haplotypes in the majority of

the population, even though the theoretical number of different haplotypes for

7

a block is exponential.”

Based on the rules above, it is possible to transfer the biology problem, inferring

haplotypes from chromosome sequence, into mathematical and computational prob-

lems. Also the HI problem will be biological meaningful based on the mathematical

model.

A coalescent model, which is a rooted tree that matches with the tracks of a

set of haplotypes from sampled individuals during evolution, was proposed [32] [41].

Furthermore, a assumption was taken based on the fact that “ in the absence of

recombination, each sequence has a single ancestor in the previous generation.” [32].

“That is, if we follow backwards in time the history of a single haplotype H from a

given individual I, when there is no recombination, that haplotype H is a copy of

one of the haplotypes in one of the parents of individual I. It doesn’t matter that I

had two parents, or that each parent had two haplotypes. The backwards history of

a single haplotype in a single individual is a simple path, if there is no recombination.

That means that the history of a set of 2n individuals, if we look at one haplotype per

individual, forms a tree. The histories of two sampled haplotypes (looking backwards

in time) from two individuals merge at the most recent common ancestor of those

two individuals.” [25]

From the mathematics perspective, another important assumption in coalescent

model is the infinite sites. “That is, the m sites in the sequence (SNP sites in our case)

are so sparse relative to the mutation rate, that in the time frame of interest at most

one mutation (change of state) will have occurred at any site. Hence the coalescent

model of haplotype evolution says that without recombination, the true evolutionary

history of 2n haplotypes, one from each of 2n individuals, can be displayed as a tree

8

with 2n leaves, and where each site labels exactly one edge of the tree, i.e., at a point

in history where a mutation occurred at that site. This is the underlying genetic

model that we assume from here on.” [25] Generally, we assume that we already

know the ancestor and put that as a all zero array. It will make the question easier

and the problem without knowing the ancestor can be transferred from the simple

case. So the no-recombination and infinite sites model says that the 2n haplotype

(binary) sequences can be explained by a perfect phylogeny [23] [22] which is defined

as follows.

Definition: Let M be an (n×m) binary matrix. Without loss generality, we assume

that M contains no repeat rows. Let ~v = {v1, · · · , vm} be an m-length binary vector,

called the ancestor vector. A directed tree T with root ~v is a perfect phylogeny

for M with ~v as the ancestor if all the following properties are satisfied.

• Each leaf of T is labelled by one row of M and each of the n rows labels exactly

one leaf or one internal node of T

• Each of the m columns labels exactly one edge of T .

• Every interior edge (one not incident on a leaf) of T is labelled by at least one

column.

• For any row i, the value M [i][j] is unequal to vj if and only if j labels an edge

on the unique path from the root to the leaf labelled i. Hence, that path is a

compact representation of row i.

In this report, we only study the perfect phylogeny with the fixed ancestor vector

~v = ~0.

9

M = 0 0 0 1 0
0 1 0 1 0
0 1 0 1 1

1 0 1 0 0
1 0 0 0 0

t

tt

t t t

¢
¢

¢
¢®

A
A
A
AU
¢

¢
¢

¢®

A
A
A
AU

¢
¢

¢
¢®

~r1 ~r3

~r5 ~r4~r2

~0

1 4

3 5 2

Figure 1.1: Example: M fits a perfect phylogeny. Note, ~ri means the i-th row of M .

The biological interpretation is that an edge label j indicates the point in time

where a mutation at site j occurred, and so the state of site j changes from its

ancestral value to the opposite value.

Formally, the Perfect Phylogeny Haplotype (PPH) Problem is [25]:

Given a set of genotypes, infer a set of haplotypes that fits a perfect phylogeny, or

tell that it is not possible.

Clark et. al. [33] first introduced the PPH problem and provided a solution that

is based on the graph realization problem. The running time of the reduction part

in the approach is O(nmα(nm)). The α is inverse Ackerman function that increases

very slow and is usually taken as a constant. Hence, the worst case time for the

method is nearly linear. A simplified reduction was provided by Daniel Gusfield [25]

later. In Gusfield’s method, the time for the reduction is O(nm), and the graph

realization problem was solved by several published methods. One method in [6] runs

in O(nmα(nm)) time. but it was to be too complex to implement. Another method,

GPPH [9], used a different solution to the graph realization problem with running

time O(nm2). The other two solutions to the PPH problem, named DPPH [3]and

HPPH [15], were also published with worst-case running time of O(nm2). In [25], D.

10

Gusfield conjectured that a linear-time (O(nm)) solution to the PPH problem should

be possible.

1.4 Our Results

We solve the conjecture of D. Gusfield by introducing a linear-time algorithm for the

PPH problem. We define several different posets for haplotype matrices and genotype

matrices. After studying the relationship between them, we provide an alternative

characterization of the PPH problem. Since redundant calculations can be avoided

by the transitivity of partial ordering in posets, we design a linear-time (O(nm))

algorithm for the PPH problem that can provide all the possible solutions from an

input. The algorithm is easy to program and fully implemented. Compared to some

existing program, the test shows that our algorithm is much faster than previous

methods in practice as well as in theory.

Chapter 2

Notation and Terminology

2.1 About Matrices

Let M be an (n × m)-matrix. We use vector ~ri to denote the i-th row of M , and

vector ~cj to denote the j-th column of M .

Definition 2.1.1. Let ~v = {v1, v2, · · · , vn} be a vector. The support of ~v, denoted

as supp(~v), is the set {i : vi 6= 0}.

Let set X ⊆ {1, · · · , n} and set Y ⊆ {1, · · · ,m}. Then, the submatrix that

consists of elements of M [i][j], where i ∈ X and j ∈ Y is denoted as M [X][Y]. For

example,

~ri = M [i][∗] = M [i][{1, · · · ,m}]

and

~cj = M [∗][j] = M [{1, · · · , n}][j].

Definition 2.1.2. Let M be a {0, 1, 2}-matrix. We define




xi

yi


 as a 2-tuple in

11

12

which xi is the number of 1’s of ~ci and yi is the number of 2’s of ~ci.




xi

yi


 ≥




xj

yj




if xi > xj, or xi = xj and yi ≥ yj.

Definition 2.1.3. Let M be a {0, 1, 2}-matrix. M is in column-descending

structure if




xi

yi


 ≥




xj

yj


 whenever 1 ≤ i ≤ j ≤ m.

Note that, column-descending structure also can be applied into binary matrices,

in which y-values in those 2-tuples are 0.

2.2 Poset, Hasse Diagram and Antichain

Definition 2.2.1. Let V be a set of vertices. An ordering “≥” defined on V × V is

a partial ordering if and only if it satisfies the properties as follows.

• a ≥ a, for each a ∈ V (reflexivity).

• a ≥ b and b ≥ a if and only if a = b, for each a, b ∈ V (antisymmetry).

• if a ≥ b and b ≥ c then a ≥ c, for each a, b, c ∈ V (transitivity).

A set of vertices V associated with a partial ordering “≥” is called a poset, denoted

as P = (V,≥).

Definition 2.2.2. Let P = (V,≥) be a poset. Let a, b be two vertices in V . Then,

• a dominates b if a ≥ b;

• a > b if a ≥ b and a 6= b;

13

• and a covers b , if a > b and there is no vertex c ∈ V − {a, b} such that

a > c > b.

• If a ≥ b or b ≥ a, we say a and b are comparable.

• If a ≥ b, a is an ancestor of b and b is a descendant of a.

• And a is a parent of b and b is a child of a, if a covers b.

Definition 2.2.3. Let P1 = (V1,≥1) and P2 = (V2,≥2) be two posets. P1 ⊆ P2 if

V1 ⊆ V2 and for every pair of vertices a, b ∈ V1, a ≥2 b whenever a ≥1 b. It is also

called that, P1 is a subposet of P2 and P2 is a supposet of P1.

Definition 2.2.4. Let P = (V,≥) be a poset. The Hasse diagram of P is a directed

acyclic graph with vertex set V and arc set A such that a → b if and only if a covers

b.

Lemma 2.2.5. Given a poset P , the Hasse diagram of P is unique.

Definition 2.2.6. Let D = (V, A) be a directed graph. We call a and b as two ends

of arc if a → b in D. For every vertex v in V , we define N−
D (v) = {x : x → v}

as the set of in-neighbors of v, and N+
D (v) = {y : v → y} as the set of out-

neighbors of v. And d−D(v) = |N−
D (v)| is the indegree of v and d+

D(v) = |N+
D (v)| is

the outdegree of v.

By the transitivity property of partial ordering in posets, it is easy to prove the

theorem as follows.

14

Theorem 2.2.7. Let P = (V,≥) be a poset. Let D = (V, A) be its Hasse diagram.

Let v be a vertex in V such that d−D(v) > 1 (or d+
D(v) > 1). Then every pair of vertices

in N−
D (v) (or, N+

D (v) respectively) are not comparable.

Definition 2.2.8. Let P = (V,≥) be a poset. A subset U of V is called an antichain

of P if a and b are not comparable for each pair of vertices a, b ∈ U . We define the

width of P as the size of maximum antichain in P .

Theorem 2.2.9. Let P = (V,≥) be a poset and D = (V, A) be its Hasse diagram. If

the width of P is k, d−D(v) ≤ k and d+
D(v) ≤ k for every vertex v in V .

Definition 2.2.10. Let P = (V,≥) be a poset. Let U be a vertex set such that U ⊆ V .

The subposet of P induced by U is a poset (U,≥) such that, for any pair of vertices

in U , e.g., a and b, a ≥ b in (U,≥) if a ≥ b in P .

Definition 2.2.11. Let D = (V,E) be a directed graph. Let U be a vertex set such

that U ⊆ V . The subgraph of D induced by U is a directed graph (U,E ′) such that,

for any pair of vertices in U , e.g., a and b, a → b in E ′ if a → b in E.

Chapter 3

Haplotype Posets

3.1 An Alternative Characterization of the PPH

Problem

In this report, the input genotype sequences are generally represented by a {0, 1, 2}-
matrix (called a genotype matrix), in which each row is a genotype sequence. And

a binary matrix is a haplotype matrix if each row represents a haplotype sequence.

In the HI problem, an (n ×m)-genotype matrix MG is inferred into a (2n ×m)

haplotype matrix MH such that (2i − 1)-th row and 2i-th row of MH generate the

i-th row of MG for every i ∈ {1, · · · , n}. And we say, the haplotype matrix MH is

a feasible expansion of the genotype matrix MG. If MH is a feasible expansion of

MG and MH fits a perfect phylogeny, we say MG is realizable and MH is a legal

expansion of MG. Then, the PPH problem is changed as follows.

“Given a genotype matrix, find its legal expansion - a haplotype matrix that is a

feasible expansion of the input and fits a perfect phylogeny.”

15

16

The (3× 2)-binary matrix as follows is called the forbidden matrix [25].



1 1
0 1
1 0




The forbidden matrix is an important criteria that establish whether a haplotype

matrix fits a perfect phylogeny.

Theorem 3.1.1. [25] A haplotype matrix fits a perfect phylogeny if and only if it does

not have any submatrix that is the forbidden matrix.

3.2 Definitions of Posets for Haplotype Matrices

Definition 3.2.1. Let MH be an (n×m)-haplotype matrix without repeat rows. The

haplotype poset constructed by rows of MH , denoted by PH
row = (Vrow,≥row), is

defined as follows.

1. The vertex set Vrow is a subset of Zm
2 . That is, each vertex of PH

row is a {0, 1}-
vector of length m.

2. {~ri in MH : 1 ≤ i ≤ n} ⊆ Vrow, and ~0 (all zero vector with length m) is a

default member of Vrow.

3. For each pair of vertices (vectors) ~a,~b ∈ Vrow, ~a ≥row
~b if and only if supp(~a) ⊆

supp(~b).

4. For each pair of vertices ~a,~b ∈ Vrow, ~a covers ~b if and only if supp(~a) ⊆ supp(~b)

and |supp(~b)| − |supp(~a)| = 1.

For a haplotype matrix MH (without repeat rows), there are many different haplo-

type posets that can be constructed by the definition above. When MH fits a perfect

17

phylogeny T , all leaves and some internal nodes of T are labelled by rows of MH .

Other internal nodes also can be labelled by the definition of Perfect Phylogeny, so

the dominating and covering relation in Definition 3.2.1 can be satisfied. Then the

Hasse diagram of a haplotype poset constructed by rows of MH is isomorphic with

the perfect phylogeny T .

Definition 3.2.2. Let MH be an (n ×m)-haplotype matrix without repeat columns.

The haplotype poset constructed by columns of MH , denoted by PH
col = (Vcol,≥col

), is defined as follows.

1. The vertex set Vcol is a subset of Zn
2 . That is, each vertex of PH

col is a {0, 1}-
vector with length n.

2. {~ci in MH : 1 ≤ i ≤ m} ∪ {~1} = Vcol.

3. For each pair of vertices (vectors) ~a,~b ∈ Vcol, ~a ≥col
~b if and only if supp(~a) ⊇

supp(~b).

3.3 Properties of Haplotype Posets

Lemma 3.3.1. Given a haplotype matrix without repeat columns, the haplotype poset

constructed by columns is unique.

Let MH be a haplotype matrix without repeat rows and columns. Each column

of MH shows the mutation history of the site. If MH fits a perfect phylogeny T , the

number of columns in MH should equal to the number of nodes on T . But since only

leaves and some internal nodes are labelled by rows of MH , the number of rows should

be not more than the number of columns in MH . And for every node itself and its

18

descendants in T , those that are labelled by rows of MH consist of the support of a

column. So we can build an injection from a column in MH to a node on T if MH

fits the perfect phylogeny T .

Note, an all zero column means there is no SNP on the site, therefore it is not in

our consideration. And the ancestor sequence is always given as an all zero row in

this report.

Theorem 3.3.2. Let MH be a haplotype matrix without repeat rows or columns.

Assume there is no all zero column in MH . If MH fits a perfect phylogeny, then the

haplotype poset constructed by columns of MH is isomorphic with a haplotype poset

constructed by rows of MH .

M = 0 0 0 1 0
0 1 0 1 0
0 1 0 1 1

1 0 1 0 0
1 0 0 0 0

t

tt

t t t

¢
¢

¢
¢®

A
A
A
AU
¢

¢
¢

¢®

A
A
A
AU

¢
¢

¢
¢®

~c1 ~c2

~c4 ~c5~c3

~1

Figure 3.1: An example for Theorem 3.3.2 (which is isomorphic with the tree in
Figure 1.1).

By the uniqueness of the haplotype poset constructed by columns and the lemma

above, constructing the haplotype poset by columns is more convenient and efficient to

the PPH problem than constructing haplotype poset by rows. In the following of this

report, all the haplotype posets are constructed by columns of haplotype matrices.

Theorem 3.3.3. Let MH be a haplotype matrix and PH be the haplotype poset for

MH . Let DH [supp(~rµ)] be the Hasse diagram of the subposet of PH induced by the

19

support of µ-th row in MH . MH fits a perfect phylogeny if and only if DH [supp(~rµ)]

is a directed path for every µ ∈ {1, · · · , n}.

Corollary 3.3.4. Let MH be a haplotype matrix and DH be the Hasse diagram of

the haplotype poset for MH . If MH fits a perfect phylogeny, then the number of arcs

in DH is up to m.

Chapter 4

Posets For Genotype Matrices

4.1 Orders Between Columns

Definition 4.1.1. Let MG be a genotype matrix and ~ci and ~cj be two columns in MG.

• If there is a row ~rµ1 such that both MG[µ1][i] and MG[µ1][j] are nonzero and at

least one of them is 1, we say ~rµ1 is a (1, 1)-row between columns ~ci and

~cj.

• If there is a row ~rµ2 such that MG[µ2][i] = MG[µ2][j] = 2, we say ~rµ2 is a

(2, 2)-row between columns ~ci and ~cj.

• If there is a row ~rµ3 such that exactly one of MG[µ3][i] and MG[µ3][j] is 0 and

the other is nonzero, we say ~rµ3 is a (0, 1)-row between columns ~ci and ~cj.

Of course, there may be some (0, 0)-rows between two columns. However, since an

all zero vector is always given as the ancestor vector, a (0, 0)-row exists in each pair

of columns. That means (0, 0)-rows do not affect the realizability of the genotype

matrix and we will not consider them in this report.

20

21

Definition 4.1.2. Let MG be a genotype matrix. Let ~rµ be a (2, 2)-row between

columns ~ci and ~cj. If MG[µ][i] and MG[µ][j] are inferred in different ways in a

feasible expansion of MG, e.g., one is inferred as




0

1


 and the other is inferred as




1

0


, we say that MG[µ][i] and MG[µ][j] are in different order. Else, they are

in the same order.

Definition 4.1.3. Let MG be a genotype matrix and ~ci and ~cj be two columns in

MG. Then,

• ~ci and ~cj are in different order, if MG[µ][i] and MG[µ][j] are in different

order for every (2, 2)-row ~ru between ~ci and ~cj. Note, if two columns are in

different order, then there is at least one (2, 2)-row between them.

• ~ci and ~cj are in the same order, if MG[µ][i] and MG[µ][j] are in the same

order for every (2, 2)-row ~ru between ~ci and ~cj. Note, two columns are in the

same order even if there is no (2, 2)-rows between them.

Theorem 4.1.4. Let MG be a genotype matrix. If MG is realizable, then ~ci and ~cj

are in the same order or different order for every pair of columns ~ci and ~cj in MG.

4.2 Definitions of Posets for Genotype Matrices

Let MG be a genotype matrix. For the elements in MG, we define ones with value

1 dominate ones with value 2, while ones with value 2 dominate ones with value 0.

That is, 1 > 2 > 0.

22

We will introduce three different genotype posets as follows.

Definition 4.2.1. Let MG be an (n × m)-genotype matrix. A genotype poset

PG = (V,≥) for MG is defined as follows.

• V = {~ck : k = 1, · · · , m}. That is, every vertex in V is a column of MG.

• Let ~ci and ~cj be two columns in MG. ~ci ≥ ~cj if MG[µ][i] ≥ MG[µ][j] for every

µ ∈ {1, · · · , n}.

Definition 4.2.2. Let MG be an (n×m)-genotype matrix. A left-prior genotype

poset PG
l = (V,≥l) for MG is defined as follows.

• V = {~ck : k = 1, · · · , m}.

• Let ~ci and ~cj be two columns in MG. ~ci ≥l ~cj if i ≤ j and MG[µ][i] ≥ MG[µ][j]

for every µ ∈ {1, · · · , n}.

Definition 4.2.3. Let MG be an (n×m)-genotype matrix that is inferred to a feasible

expansion. An ordered genotype poset PG
o = (V,≥o) for MG is defined as follows.

• V = {~ck : k = 1, · · · , m}.

• Let ~ci and ~cj be two columns in MG. ~ci ≥o ~cj if ~ci and ~cj are in the same order

and MG[µ][i] ≥ MG[µ][j] for every µ ∈ {1, · · · , n}.

For the three genotype posets, we use same terms (e.g., “dominate”, “comparable”

and “cover”) as we defined in poset in Section 2.2. Since vertices in all of those posets

are columns of the genotype matrix, we will use v instead of ~c in the following of this

paper and those vertices will have the same index with columns, e.g., vi means the

i-th column in MG.

23

4.3 Properties of Genotype Posets

For a genotype matrix MG, the genotype poset and the left-prior genotype poset are

both unique. However, there are many ordered genotype posets possible, since the

orders between columns are not unique. In this section, some properties of those

posets are introduced as follows.

Lemma 4.3.1. Let MG be a genotype matrix and PG be the genotype poset for MG.

Let vi and vj be two vertices in PG. If vi and vj are not comparable in PG, then there

are two rows ~rµ1 and ~rµ2 such that MG[µ1][i] > MG[µ1][j] and MG[µ2][i] < MG[µ2][j].

Theorem 4.3.2. Let MG be a genotype matrix and MH be a feasible expansion of

MG. If MH fits a perfect phylogeny, then the haplotype poset for MH is isomorphic

with an ordered genotype poset for MG.

Lemma 4.3.3. Let MG be a genotype matrix in column-descending structure without

repeat rows or columns. Let PG be the genotype poset for MG. If vi ≥ vj in PG, then

i ≤ j, for any i, j ∈ {1, · · · ,m}.

We denote the left-prior genotype poset for MG[{1, · · · , µ}][∗] as P µ
l . So P n

l = PG
l .

Let P 0
l be the “complete” left-prior genotype poset, in which each column dominates

all the columns on its right side. Then, we have an important theorem as follows.

Theorem 4.3.4. Let MG be an (n×m)-genotype matrix in column-descending struc-

ture without repeat rows or columns. Then for MG,

P 0
l ⊇ P 1

l ⊇ · · · ⊇ P n
l = PG

l = PG ⊇ PG
o

.

24

4.4 Properties of Posets for Realizable Genotype

Matrices

Lemma 4.4.1. Let MG be an (n×m)-genotype matrix. Let ~ci and ~cj be two columns

such that there is a row ~rµ such that MG[µ][i] = 1 and MG[µ][j] 6= 0. If MG is

realizable, then vi ≥o vj in any ordered genotype poset for MG.

Lemma 4.4.2. Let MG be an (n ×m)-genotype matrix. Let vi, vj and vk be three

vertices. Suppose there is a row ~rµ such that MG[µ][i] = MG[µ][j] = MG[µ][k] = 2. If

MG is realizable, then at least one pair of vi, vj and vk are comparable in an ordered

genotype poset for MG.

Theorem 4.4.3. Let MG be an (n × m)-genotype matrix. Let PG
o be an ordered

genotype poset for MG. Let PG
o [supp(~rµ)] be the subposet of PG

o induced by the support

of row ~rµ. If MG is realizable, then the width of PG
o [supp(~rµ)] is at most 2, for each

µ ∈ {1, · · · , n}.

Corollary 4.4.4. Let MG be a genotype matrix. Let PG be the genotype poset for

MG. Let PG[supp(~rµ)] be the subposet of PG induced by the support of row ~rµ. If MG

is realizable, then the width of PG[supp(~rµ)] is at most 2, for each µ ∈ {1, · · · , n}.

Theorem 4.4.5. Let MG be an (n×m)-genotype matrix in column-descending struc-

ture without all zero columns. Let DG
l be the Hasse diagram of the left-prior genotype

poset for MG. If MG is realizable, then no vertex has indegree greater than 2 in DG
l .

25

Note, if MG is realizable, then the vertex in the Hasse diagram of the left-prior

genotype poset may have outdegree greater than 2. That means, the width of the

left-prior genotype poset for MG may be greater than 2.

Lemma 4.4.6. Let MG be an (n×m)-genotype matrix. Let PG
o be an ordered genotype

poset for MG. Let DG
o [supp(~rµ)] be the Hasse diagram of the subposet of PG

o induced

by the support of row ~rµ. If MG is realizable, then d+(v) ≤ 2 and d−(v) ≤ 1 for any

vertex v in DG
o [supp(~rµ)].

Lemma 4.4.7. Let MG be an (n×m)-genotype matrix. Let PG
o be an ordered genotype

poset for MG. Let DG
o [supp(~rµ)] be the Hasse diagram of the subposet of PG

o induced

by the support of row ~rµ. Assume MG is realizable. Let vi be a vertex in DG
o [supp(~rµ)].

• If d+(vi) = 2 in DG
o [supp(~rµ)], then MG[µ][i] = 1, all descendants of vi in

DG
o [supp(~rµ)] are 2 in row ~rµ, and all ancestors of vi in DG

o [supp(~rµ)] are 1 in

row ~rµ.

• And if vertex vi is 2 in row ~rµ, both d+(vi) and d−(vi) are less than or equal to

1.

Theorem 4.4.8. Let MG be an (n × m)-genotype matrix. Let PG
o be an ordered

genotype poset for MG. Let DG
o [supp(~rµ)] be the Hasse diagram of the subposet of

PG
o induced by the support of row ~rµ. MG is realizable if and only if for every µ ∈
{1, · · · , n},

• DG
o [supp(~rµ)] is a rooted directed tree with two leaves, which satisfies that in row

~rµ,

26

– the only vertex v with outdegree 2 is 1 in row ~rµ;

– all ancestors of v are 1 in row ~rµ;

– and all descendants of v are 2 in row ~rµ;

• or, two vertex-disjointed directed paths, in which all the vertices are 2 in row

~rµ;

• or, one directed path, in which no vertex with value “2” is an ancestor of vertices

with value “1” in row ~rµ.

Chapter 5

Our Linear Solution to the PPH
Problem

5.1 Why Linear Solution to The PPH Problem

Since Gusfield introduced the the Perfect Phylogeny Haplotyping (PPH) Problem

[25], a lot of studies have been done to find efficient solutions. The problem was first

transferred in the graph realization problem, which has been proved a NP-complete

problem. However, with further study, researchers realized that the possibility of a

linear method [9], since what the Perfect Phylogeny Haplotyping model constructed

is a special tree. In this chapter, we solve the open problem, and give a practical,

deterministic linear-time algorithm based on graph theories about posets and Hasse

diagrams. The method has been fully implemented and simulations show it is much

faster in practice than prior methods.

Our solution to the open problem not only provided a smart data-structure in

graph algorithm, but also greatly affected the related biology study. Most of applica-

tions so far are only able to handle hundreds of SNPs. The genomic compositions of

haplotypes in the populations of human and other species are still unknown. Some

27

28

recent discovery shows that some genes with high linkage disequilibrium could extend

into even hundreds kilobases. So we believe our method make the genomic study on

haplotypes to be possible, because of the dramatic improvement on the computational

efficiency.

5.2 Brief Description of Main Algorithm

The old solutions to the PPH problem consider the relation between each pair of

columns in the input genotype matrix. That is the reason their time-complexities

are at least O(nm2). We notice that, redundant calculations can be avoided by the

transitivity property of partial ordering in posets. After permuting the input genotype

matrix into a column-descending structure, the genotype poset can be constructed by

building the left-prior posets for submatrices of the input (see Theorem 4.3.4). Then,

we remove all the arcs in the Hasse diagram of the genotype poset whose two ends

are in different order, and construct an ordered genotype poset that is isomorphic

with the haplotype poset for a legal expansion of the input. The algorithm is briefly

described as follows.

Algorithm 5.2.1.

Input: a genotype matrix MG
input.

Procedure:

Step 1: Repeat rows and columns are removed, and the input matrix is checked

and permuted into column-descending structure. The output is denoted as

MG
desc. For details, see Section 5.3.

29

Step 2: The Hasse diagram of the left-prior genotype poset for MG
desc[{1, · · · , µ}][∗]

(µ ∈ {1, · · · , n}) is built (updated) by induction. The output is the Hasse

diagram of the genotype poset for MG
desc. For details, see Section 5.4.

Step 3: Those arcs in the Hasse diagram of the genotype poset, whose ends are

in different order, are removed. For details, see Section 5.5

Step 4: An ordered genotype poset is constructed. For details, see Section 5.6.

Step 5: A haplotype matrix that fits a perfect phylogeny is inferred from MG
desc;

and columns are permuted back. For details, see Section 5.7.

Output: a haplotype matrix that is a legal expansion of MG
input, or that MG

input is

not realizable.

5.3 To Pre-scan the Input

As we explained before, repeat rows and columns do not affect the realizability of the

input. Neither does the all zero column. The all zero rows is default the ancestor

vector. So, we need to remove them in the first step of main algorithm to reduce

calculations. Column-descending structure does not affect the realizability of the

input also, but it will be very helpful for us to use the transitivity property of partial

ordering in posets.

Algorithm 5.3.1.

Input: a genotype matrix MG
input.

Procedure:

30

Step 1: All repeat rows and columns of MG
input are removed; and all zero row

and all zero column are removed;

Step 2: 2-tuples of columns are calculated and sorted, and columns are per-

muted. MG
input is changed into column-descending structure.

Step 3: Each row of the new matrix is checked. If there is a 2 left of a 1 in a

row, then MG
input is not realizable (see Lemma 5.3.1).

Output: a genotype matrix MG
desc, which has no repeat rows or columns, has no

all zero row or all zero column and is in column-descending structure, or that

MG
input is not realizable.

Lemma 5.3.1. Let MG be a genotype matrix in column-descending structure. If

there is a row ~rµ such that MG[µ][i] = 2, MG[µ][j] = 1 and i < j, then MG is not

realizable.

5.4 To Construct the Genotype Poset

Suppose we already have MG
desc after pre-scanning the input (see Algorithm 5.3.1).

For simplification, we denote MG
desc by MG in follows.

5.4.1 Brief Idea

We will briefly introduce how to construct the Hasse diagram of the genotype poset

for MG
desc in this section.

First, we initialize a “complete” left-prior genotype poset P 0
l (defined in Section

4.2). In D0
l , which is the Hasse diagram of P 0

l , vi → vi+1 for every i ∈ {1, · · · ,m−1}.

31

Suppose we already have the Hasse diagram of P µ−1
l (denoted as Dµ−1

l), µ ∈
{2, · · · , n}. Let vi and vj be two vertices. If MG[µ][i] = 0, MG[µ][j] 6= 0 and vi → vj

in Dµ−1
l , then

• we add arc(s) vi′ → vj, when MG[µ][i′] 6= 0, vi′ is an ancestor of vi, and vertices

on any path between vi′ and vj in Dµ−1
l are 0 in row ~rµ;

• we add arc(s) vi → vj′ , when MG[µ][j′] = 0, vj′ is a descendant of vj, and

vertices on any path between vi and vj′ in Dµ−1
l are non-zero in row ~rµ;

• we delete arc vi → vj.

The output is Dµ
l , which is the Hasse diagram of P µ

l . By induction, we can finally

get Dn
l that is also the Hasse diagram of the genotype poset for MG

desc. Note, if MG
desc

is realizable, then by Theorem 4.4.5, for every vi and vj, there are at most two vi′s

but many (up to m− 3) vj′s.

r rr r- - -? ?
vi′ vi vj vj′

delete

add add

Figure 5.1: Brief idea of updating the left-prior genotype posets. Note, the dash lines
mean dominating relation, and solid lines mean covering relation.

By the description above, vi 6>l vj in P µ
l , since MG

desc[µ][i] < MG
desc[µ][j]. But

MG
desc[µ][i′] ≥ MG

desc[µ][j], because MG
desc[µ][i′] and MG

desc[mu][j] are non-zero and there

is no 2 left of 1 in any row of MG
desc. Then vi′ >l vj in P µ

l . And vi >l vj′ in P µ
l .

Since all internal vertices on paths between vi′ and vj in Dµ−1
l are 0 in row ~rµ,

they do not dominate vj in P µ
l . Then, there is no vertex v between vi′ and vj such

that vi′ > v > vj in P µ
l . So vi′ covers vj in P µ

l . And vi′ → vj in Dµ
l . With the same

32

reason, vi does not dominate any vertex on paths between vi and vj′ in Dµ−1
l . Then

vi covers vj′ in P µ
l and vi → vj′ in Dµ

l .

However, finding out all the vi′ and vj′ for every vi → vj can be very complicated.

So, more detailed analysis is to be presented as follows.

5.4.2 λ Function

Definition 5.4.1. Let MG be an (n × m)-genotype matrix. For each column ~ci

(i ∈ {1, · · · ,m}) in MG, we define λ(~ci) recursively as follows.

• λ(~ci) = 1 if there is at least one µ1 ∈ {1, · · · , n} such that MG[µ1][i] = 1.

• λ(~ci) = 2 if λ(~ci) 6= 1 and there is at least one µ2 ∈ {1, · · · , n} such that

MG[µ2][i] = 2.

• Otherwise λ(~ci) = 0. That means i-th column of MG is an all zero column.

Since vertex vi in any genotype poset is the i-th column of the genotype matrix,

λ(vi) = λ(~ci) and it is called as λ-value of vertex vi. Note, MG
desc has no all zero

column (see Algorithm 5.3.1). But all zero columns may exist in MG
desc[1, · · · , µ][∗]

when µ < n.

By the definition of λ-function, it is easy to prove the following lemma.

Lemma 5.4.2. Let MG be an (n×m)-genotype matrix and DG
l be the Hasse diagram

of the left-prior genotype poset for MG. If vi is a vertex such that λ(vi) 6= 0, then

every ancestor of vi in DG
l has non-zero λ-value in MG.

33

Theorem 5.4.3. Let MG be an (n×m)-genotype matrix in column-descending struc-

ture and DG
l be the Hasse diagram of the left-prior genotype poset for MG. Assume

MG is realizable.

• d−(vi) ≤ 1 for every vertex vi in DG
l such that λ(vi) = 1 in MG.

• d−(vi) ≤ 2 for every vertex vi in DG
l such that λ(vi) = 2 in MG.

• If vi is a vertex such that λ(vi) = 2 in MG and d−(vi) = 2 in DG
l (suppose

N−(vi) = {vj, vk}), then MG[µ][j] = MG[µ][k] = 2 for each row ~rµ such that

MG[µ][i] = 2.

Corollary 5.4.4. Let MG be an (n×m)-genotype matrix in column-descending struc-

ture. Let Dµ
l be the Hasse diagram of the left-prior genotype poset for MG[{1, · · · , µ}][∗],

µ ∈ {1, · · · , n}. Let vi be a vertex in Dµ
l . If MG is realizable, and

• λ(vi) = 1 in MG[{1, · · · , µ}][∗], then d−(vi) ≤ 1 in Dµ
l , for every µ ∈ {1, · · · , n};

• λ(vi) = 2 in MG[{1, · · · , µ}][∗], then d−(vi) ≤ 2 in Dµ
l , for every µ ∈ {1, · · · , n};

5.4.3 Bad-zeros and Bad-ones

Definition 5.4.5. Let MG be an (n × m)-genotype matrix and Dµ−1
l be the Hasse

diagram of the left-prior genotype poset for MG[{1, · · · , µ − 1}][∗], µ ∈ {2, · · · , n}.
We define vertex vi as a bad-zero in row ~rµ if λ(vi) 6= 0 in MG[{1, · · · , µ − 1}][∗],
MG[µ][i] = 0 and at least one descendant of vi in Dµ−1

l is non-zero in row ~µ. And

a vertex vj is called a bad-one in row ~rµ if λ(vj) 6= 0 in MG[{1, · · · , µ − 1}][∗],
MG[µ][j] 6= 0 and at least one ancestor of vj in Dµ−1

l is 0 in row ~rµ.

34

Definition 5.4.6. We define those vertices that are 0 but not bad-zeros in row ~rµ

as good zeros in row ~rµ, and those that are non-zero but not bad-ones in row ~rµ as

good ones in row ~rµ.

Note, since there is no 2 left of 1 in any row of MG
desc, if MG[µ][i] < MG[µ][j] then

MG[µ][i] = 0 and MG[µ][j] 6= 0.

Lemma 5.4.7. Let MG be an (n×m)-genotype matrix in column-descending struc-

ture. Let P µ
l be the left-prior genotype poset for MG[{1, · · · , µ−1}][∗] (µ ∈ {1, · · · , n}),

and PG be the genotype poset for MG. If there is a µ ∈ {1, · · · , n} such that vi and

vj are not comparable in P µ
l , then vi and vj are not comparable in PG.

Lemma 5.4.8. Let MG be an (n×m)-genotype matrix in column-descending structure

and Dµ−1
l be the Hasse diagram of the left-prior genotype poset for MG[{1, · · · , µ −

1}][∗], µ ∈ {2, · · · , n}. Let vi, vj and vk be three vertices, such that vj → vi and

vk → vi in Dµ−1
l and λ(vi) 6= 0 in MG[{1, · · · , µ−1}][∗]. If MG[µ][j] = MG[µ][k] = 0

and MG[µ][i] 6= 0, then MG is not realizable.

Theorem 5.4.9. Let MG be an (n×m)-genotype matrix in column-descending struc-

ture and Dµ−1
l be the Hasse diagram of the left-prior genotype poset for MG[{1, · · · , µ−

1}][∗], µ ∈ {2, · · · , n}. Let vi be a bad-one in row ~rµ. If vi has two ancestors in Dµ−1
l

such that they are bad-zeros in row ~rµ and are not comparable, then MG is not real-

izable.

The proof for Theorem 5.4.9 is similar to that for Lemma 5.4.8. Thus we can

easily get the following corollary.

35

Corollary 5.4.10. Let MG be an (n × m)-genotype matrix in column-descending

structure and Dµ−1
l be the Hasse diagram of the left-prior genotype poset for MG[{1, · · · ,

µ − 1}][∗], µ ∈ {2, · · · , n}. Let vi be a bad-one in row ~rµ. If MG is realizable, then

all the ancestors of vi that are bad-zeros in row ~rµ is on a direct path.

Lemma 5.4.11. Let MG be an (n×m)-genotype matrix in column-descending struc-

ture and Dµ−1
l be the Hasse diagram of the left-prior genotype poset for MG[{1, · · · , µ−

1}][∗], µ ∈ {2, · · · , n}. Let vh be a vertex such that λ(vh) 6= 0 in MG[{1, · · · , µ−1}][∗].
Let vi, vj and vk be three vertices such that vi → vj, vi → vk, vj → vh and vk → vh in

Dµ−1
l and λ(vi) 6= 0. If MG[µ][j] and MG[µ][k] are non-zero and MG[µ][i] = 0, then

MG is not realizable.

Theorem 5.4.12. Let MG be an (n×m)-genotype matrix in column-descending struc-

ture and Dµ−1
l be the Hasse diagram of the left-prior genotype poset for MG[{1, · · · , µ−

1}][∗], µ ∈ {2, · · · , n}. Let vh be a vertex whose λ-value in MG[{1, · · · , µ − 1}][∗] is

non-zero. Suppose vh has two ancestors (e.g., vj and vk) in Dµ−1
l that are both bad-

ones in row ~rµ and not comparable with each other. If vj and vk have a common

ancestor that is a bad-zero in ~rµ, then MG is not realizable.

r r
r

-p p p p p p p p p p p p p p pR

p p p p p p p p p pB0 B1

B0
r r

r
r

1p p p p p p p p p
p

q
p p p p p p p p p p

q
p p p p p p p p p p1p p p p p p p p p

pB0

B1

B1

vh

Figure 5.2: MG is not realizable in both cases above. Note, dash-lines mean domi-
nating relation; “B1” means a vertex that is bad-one in row ~rµ; and “B0” means a
vertex that is bad-zero in row ~rµ. λ(vh) 6= 0 in MG[{1, · · · , µ−1}][∗], µ ∈ {2, · · · , n}.
For detail, see Theorems 5.4.9 and 5.4.12.

36

Corollary 5.4.13. Let MG be an (n × m)-genotype matrix in column-descending

structure and Dµ−1
l be the Hasse diagram of the left-prior genotype poset for MG[{1, · · · ,

µ − 1}][∗], µ ∈ {2, · · · , n}. Let vi be a bad-one in row ~rµ. If MG is realizable, then

all ancestors of vi in Dµ−1
l that are bad-ones are on one directed path.

Theorem 5.4.14. Let MG be an (n×m)-genotype matrix in column-descending struc-

ture and Dµ−1
l be the Hasse diagram of the left-prior genotype poset for MG[{1, · · · , µ−

1}][∗], µ ∈ {2, · · · , n}. Let Dµ−1
l (B0(~rµ)) be the Hasse diagram of the subposet

of P µ−1
l induced by bad-zeros in row ~rµ. Let Dµ−1

l (B1(~rµ)) be the Hasse diagram

of the subposet of P µ−1
l induced by bad-ones in row ~rµ. Then Dµ−1

l (B0(~rµ)) and

Dµ−1
l (B1(~rµ)) are in one of the structures as follows.

• A rooted tree with only two leaves, on which only one vertex has outdegree 2 and

indegree at most 1, and other vertices have indegree and outdegree less or equal

to 1;

• two vertex-disjoined paths;

• or one path.

Definition 5.4.15. Let MG be an (n × m)-genotype matrix in column-descending

structure and Dµ−1
l be the Hasse diagram of the left-prior genotype poset for MG[{1, · · · ,

µ−1}][∗], µ ∈ {2, · · · , n}. For every vertex vi, we define its branch index as follows.

• When j ∈ index0(vi), vi has a descendant vj in Dµ−1
l that is a bad-zero in row

~rµ.

37

• When k ∈ index1(vi), vi has a descendant vk in Dµ−1
l that is a bad-one in row

~rµ.

For any vertex v in Dµ−1
l , index0(v) =

⋃
vi∈N+(v)(index0(vi)) and index1(v) =

⋃
vi∈N+(v)

(index1(vi)).

For any two vertices vi and vj, we say they are on the same branch if index0(vi) ⊇
index0(vj) or index0(vi) ⊆ index0(vj) or index1(vi) ⊇ index1(vj) or index1(vi) ⊆
index1(vj).

Note, for a vertex v, we generally use the location of its rightmost descendant in

Dµ−1
l that is also a bad-zero (or bad-one) as its branch index. If there is a vertex

v such that |index0(v)| > 2 or |index1(v)| > 2, then by Theorem 5.4.14, MG is not

realizable.

Corollary 5.4.16. Let MG be an (n × m)-genotype matrix in column-descending

structure and Dµ−1
l be the Hasse diagram of the left-prior genotype poset for MG[{1, · · · ,

µ− 1}][∗], µ ∈ {2, · · · , n}. Let vi be a vertex. Suppose every bad-zeros (or bad-ones)

in row ~rµ satisfies Theorem 5.4.14. If vi is a bad-zero (or a bad-one) in row ~rµ and

vj is the closest ancestor of vi that is also a bad-zero (respectively a bad-one), then

there is an arc vj → vi in Dµ
l .

Algorithm 5.4.1.

Step 1: All the bad zeros and bad-ones in row ~rµ are found by searching Dµ−1
l from

right to left.

Step 2: The branch index of each vertex is marked by searching ~rµ from right to left

(see Definition 5.4.15). Note, generally we use the location of the rightmost

bad-zero (or bad-one) that has not been marked during searching as the marker.

38

Step 3: The index0 and index1 of each site are checked to make sure that their size

is less than or equal to 2.

Step 3: Searching Dµ−1
l to check if all the bad-zeros and bad-ones in row ~rµ satisfy

Theorem 5.4.14 and add new arcs (see Corollary 5.4.16 and Section 5.4.1).

1. Bad-zeros (bad-ones) that are in one path are picked out by comparing their

indices (values of index0 function or index1 function) and searching from

left to right.

2. Among those vertices that are picked out, we check if they are in one path.

For example, let vi and vj (i < j) be two bad-zeros that are picked out by

last step. If there is no vk that is also picked out and i < k < j, we will

check if vi connects to vj.

3. Arcs are added between those vertices that are picked out. For example, if

vi and vj (i < j) are picked out and there is no k such that i < k < j and

vk is also picked out, then add arc vi → vj.

5.4.4 Parent Function and Descendant Function

Definition 5.4.17. Let MG be a genotype matrix and Dµ−1
l be the Hasse diagram of

the left-prior genotype poset for MG[{1, · · · , µ− 1}][∗], µ ∈ {2, · · · , n}. For a vertex

vi such that λ(vi) 6= 0 in MG[{1, · · · , µ − 1}][∗], we define the parent function of

vi in row ~rµ as parent(vi) = {vj : vj is a bad-zero in row ~rµ, vj is an ancestor of vi

in Dµ−1
l and all vertices on the paths between vj and vi are non-zero in row ~rµ.}.

Definition 5.4.18. Let MG be a genotype matrix and Dµ−1
l be the Hasse diagram of

the left-prior genotype poset for MG[{1, · · · , µ− 1}][∗], µ ∈ {2, · · · , n}. For a vertex

39

vi such that λ(vi) 6= 0 in MG[{1, · · · , µ−1}][∗], we define the descendant function

of vi in row ~rµ as desc(vi) = {vj : vj is a bad-one in row ~rµ , vj is a descendant of vi

in Dµ−1
l and all vertices on paths between vi and vj are 0 in row ~rµ.}.

By Definitions 5.4.17 and 5.4.18, it is easy to get the lemma as follows.

Lemma 5.4.19. Let MG be a genotype matrix and Dµ−1
l be the Hasse diagram of the

left-prior genotype poset for MG[{1, · · · , µ−1}][∗], µ ∈ {2, · · · , n}. Let v be a vertex.

If {vi, vj} ∈ parent(v) (or {vi, vj} ∈ desc(v)), then vi and vj are not comparable in

P µ−1
l .

By Lemma 5.4.19, we can easily get two corollaries as follows.

Corollary 5.4.20. Let MG be a genotype matrix and Dµ−1
l be the Hasse diagram

of the left-prior genotype poset for MG[{1, · · · , µ − 1}][∗], µ ∈ {2, · · · , n}. If MG is

realizable, then

• |parent(v)| ≤ 1 for every vertex v in Dµ−1
l ;

• |desc(v)| ≤ 2 for every vertex v in Dµ−1
l .

Corollary 5.4.21. Let MG be a genotype matrix and Dµ−1
l be the Hasse diagram of

the left-prior genotype poset for MG[{1, · · · , µ − 1}][∗], µ ∈ {2, · · · , n}. Let v be a

vertex.

• If parent(v) = {vi, vj} (i < j) and index0(vi) = index0(vj), then vi 6→ v in Dµ
l .

• If desc(v) = {vi, vj} (i < j) and index1(vi) = index1(vj), then v 6→ vj in Dµ
l .

We can prove Corollary 5.4.21 by the transitivity property of partial ordering in

posets.

40

Definition 5.4.22. For two sets A and B,

• A
⋃

B is the set including all different elements from sets A and B. |A| is the

size of A.

• We define A
⋃∗

0 B as the subsets of A
⋃

B. For any pair of vertices vi and vj

in A
⋃

B, if i ≤ j and index0(vi) ⊇ index0(vj), then vi 6∈ A
⋃∗

0 B.

• We define A
⋃∗

1 B as the subsets of A
⋃

B. For any pair of vertices vi and vj

in A
⋃

B, if i ≤ j and index1(vi) ⊇ index1(vj), then vj 6∈ A
⋃∗

1 B.

Note, if i = j, then vi (or vj) are not in A
⋃∗

0 B or A
⋃∗

1 B.

Theorem 5.4.23. Let MG be a genotype matrix and Dµ−1
l be the Hasse diagram of

the left-prior genotype poset for MG[{1, · · · , µ − 1}][∗], µ ∈ {2, · · · , n}. For every

vertex vi that is not a bad-zero in row ~rµ,

1. if vi has only one parent vj, then parent(vi) = parent(vj);

2. if N−(vi) = {vj, vk} in Dµ−1
l , then parent(vi) = parent(vj)

⋃∗
0 parent(vk);

3. if N−(vi) = {vj, vk} in Dµ−1
l such that MG[µ][j] and MG[µ][k] are both non-zero

and parent(vj)
⋂

parent(vk) 6= ∅, then MG is not realizable;

Theorem 5.4.24. Let MG be a genotype matrix and Dµ−1
l be the Hasse diagram of

the left-prior genotype poset for MG[{1, · · · , µ − 1}][∗], µ ∈ {2, · · · , n}. For every

vertex vi that is not a bad-one in row ~rµ,

1. if vi has only one descendant vj in Dµ−1
l , then desc(vi) = desc(vj);

2. if N+(vi) ⊆ {vj, vk} in Dµ−1
l , then desc(vi) = desc(vj)

⋃∗
1 desc(vk).

41

3. if N+(vi) ⊆ {vj, vk} in Dµ−1
l such that MG[µ][j] and MG[µ][k] are both zero

and descvj

⋂
desc(vk) 6= ∅, then MG is not realizable.

The proof is similar with the proof of Theorem 5.4.23. Case 3 can be proved by

Theorem 5.4.9.

Algorithm 5.4.2.

Step 1: for all bad-zeros vi in row ~rµ, set parent(vi) = {i} and desc(vi) = ∅; for all

bad-ones vj in row ~rµ, set parent(vj) = ∅ and desc(vj) = {j}; for all the other

vertex vk (good-zeros or good-ones in row ~rµ), set parent(vk) = desc(vk) = ∅.

Step 2: for all the good-zeros in ~rµ, update their parent function from right to left by

Theorem 5.4.23.

Step 3: for all the good-ones in ~rµ, update their descendant function from left to

right by Theorem 5.4.24.

Step 4: check the size of parent (descendant) functions for each vertex (see Corollary

5.4.20).

Step 5: for each good-zero vi such that at least one in-neighbor of vi is non-zero in

row ~rµ, add arc vk → vi for each vk ∈ parent(vi).

Step 6: for each good-one vj such that at least one out-neighbor of vi is zero in row

~rµ, add arc vj → vk for each vk ∈ desc(vj).

5.4.5 New Vertices are Added

So far, we only study vertices whose λ-value in MG
desc[{1, · · · , µ− 1}][∗] are non-zero

for µ ∈ {2, · · · , n}. Since there is no all zero column in MG
desc, every vertex will

42

have λ-value non-zero in MG
desc. But a special kind of vertices will also be important

during updating. Those vertices are non-zero in row ~rµ, but have zero λ-value in

MG
desc[{1, · · · , µ− 1}][∗]. It is easy to prove the theorems as follows.

Theorem 5.4.25. Let MG be a genotype matrix in column-descending structure. Let

vi and vj be two vertices that have zero λ-value in MG
desc[{1, · · · , µ − 1}][∗] (µ ∈

{2, · · · , n}) and MG[µ][i] and MG[µ][j] are non-zero. Suppose i < j. Then vi → vj

in Dµ
l .

Theorem 5.4.26. Let MG be a genotype matrix in column-descending structure. Let

vi → vj be an arc in Dµ−1
l such that λ(vi) and λ(vj) are non-zero in MG[{1, · · · , µ−

1}][∗] (µ ∈ {2, · · · , n}). Let vk be a vertex such that λ(vk) = 0 in MG
desc[{1, · · · , µ −

1}][∗] and MG[µ][k] 6= 0. If i < k < j, then vi → vk in Dµ
l and vk and vj are not

comparable in MG[{1, · · · , µ− 1}][∗].

Algorithm 5.4.3.

Step 1: find those vertices that have zero λ-value in MG
desc[{1, · · · , µ− 1}][∗] but are

non-zero in row ~rµ of MG
desc. We call them “new vertices” here.

Step 2: Search from left to right by the output of Algorithm 5.4.2. Let vi has non-

zero lambda-value in MG
desc[{1, · · · , µ− 1}] and vk be a “new vertex” such that

there is no other “new vertex” between vi and vk. If vj ∈ N+(vi) and j > k,

then add arc vi → vk.

Step 3: Connect those “new vertices”. Let vh1 and vh2 (h1 < h2) be two “new ver-

tices”. If there is no other “new vertex” between vh1 and vh2, then add arc

vh1 → vh2.

43

5.4.6 Algorithm to Construct the Hasse Diagram of the Geno-

type Poset

To construct the Hasse diagram of the genotype poset for MG
desc, we build the Hasse

diagram of the subposet of the left-prior genotype poset induced by vertices whose λ-

value are non-zero in MG
desc[{1, · · · , µ}][∗] for every µ ∈ {1, · · · , n}. During induction,

we use parent functions to transfer information and find new arcs. Details of the

algorithm is as follows.

Algorithm 5.4.4.

Input: the Hasse diagram Dµ−1
λ of the subposet of the left-prior genotype poset for

MG
desc[{1, · · · , µ− 1}][∗] that is induced by vertices whose λ-values are non-zero

in MG
desc[{1, · · · , µ− 1}][∗], and µ-th row of MG

desc.

Procedure:

Step 1: All the bad-zeros and bad-ones in row ~rµ are found, checked and con-

nected. For details, see Algorithm 5.4.1.

Step 2: Parent and descendant functions for every vertex in Dµ−1
λ are updated.

And good-zeros (good-ones) are connected to bad-zeros (bad-ones). For

detail, see Algorithm 5.4.2.

Step 3: Vertices that have zero λ-value in MG
desc[{1, · · · , µ−1}][∗] but are non-

zero in row ~rµ are added into Dµ−1
l . And related arcs are added by theorems

5.4.25 and 5.4.26.

Step 4: The indegree and outdegree of every vertex in Dµ
l are checked. If any

of them are greater than 2, then MG
desc is not realizable.

44

Step 5: The λ function for MG
desc[{1, · · · , µ}][∗] is updated.

Output: Dµ
λ, which is the Hasse diagram of subposet of the left-prior genotype poset

for MG
desc[{1, · · · , µ}][∗] that is induced by vertices whose λ-values are non-zero

in MG
desc[{1, · · · , µ}][∗], or that MG

desc is not realizable.

5.5 To Simplify the Hasse Diagram of the Geno-

type Poset

After constructing the Hasse diagram DG of the genotype poset for MG
desc, we need

to simply DG into the Hasse diagram of the ordered genotype poset for MG
desc.

Lemma 5.5.1. Let MG be a genotype matrix in column-descending structure without

repeat rows or columns or all zero column. Let PG be the genotype poset for MG. Let

DG[supp(~rµ)] be the Hasse diagram of the subposet of PG induced by the support of row

~rµ. Let vi, vj and vk be three vertices in such that N+(vi) = {vj, vk} in DG[supp(~rµ)].

If |N+(vj)
⋃

N+(vk)| > 2, then MG is not realizable.

Theorem 5.5.2. Let MG be a genotype matrix in column-descending structure with-

out repeat rows or columns or all zero column. Let PG be the Hasse diagram of the

genotype poset for MG. Let DG[supp(~rµ)] be the Hasse diagram of the subposet of

PG induced by the support of row ~rµ. Let vi, vj and vk be three vertices such that

N+(vi) = {vj, vk} in DG[supp(~rµ)]. If MG is realizable and d−(vj) = d−(vk) = 2 in

DG[supp(~rµ)], then vj and vk have the same set of in-neighbors in DG[supp(~rµ)].

45

Theorem 5.5.2 shows that K2,2, which is a complete bipartite graph with two

vertices on each sides , will not be changed (simplified) in the Hasse diagram of the

genotype poset.

r

r r

rr

-©©©©©©©©*
-XXXXXXXXXXXXXXXXz

p p

vi vk

vj′ vjvk′

Figure 5.3: Description of Theorem 5.5.2. Note, dot line means dominating relation
and solid lines mean covering relation.

Lemma 5.5.3. Let MG be a genotype matrix in column-descending structure without

repeat rows or columns or all zero column. Let PG be the Hasse diagram of the

genotype poset for MG. Let DG[supp(~rµ)] be the Hasse diagram of the subposet of PG

induced by the support of row ~rµ. Let vi, vj and vk be three vertices such that vi → vj,

d−(vj) = 1 in DG[supp(~rµ)] and vi and vk are not comparable. If MG is realizable,

then vj and vk are not comparable too.

Theorem 5.5.4. Let MG be a genotype matrix in column-descending structure with-

out repeat rows or columns or all zero column. Let PG be the Hasse diagram of the

genotype poset for MG. Let DG[supp(~rµ)] be the Hasse diagram of the subposet of PG

induced by the support of row ~rµ. Let vi, vj and vk be three vertices such that vi → vj,

vi → vk, d−(vj) = 2 and d−(vk) = 1 in DG[supp(~rµ)]. If MG is realizable, then vi and

vj are in different order.

Corollary 5.5.5. Let MG be a genotype matrix in column-descending structure with-

out repeat rows or columns or all zero column. Let PG be the Hasse diagram of the

genotype poset for MG. Let DG[supp(~rµ)] be the Hasse diagram of the subposet of

46

PG induced by the support of row ~rµ. Let vi, vj and vk be three vertices such that vi

dominates vj, vi dominates vk, d−(vj) = 2 and d−(vk) = 1 in DG[supp(~rµ)]. If MG

is realizable, then vi and vj are in different order.

Corollary 5.5.6. Let MG be a genotype matrix in column-descending structure with-

out repeat rows or columns or all zero column. Let PG be the Hasse diagram of the

genotype poset for MG. Let DG[supp(~rµ)] be the Hasse diagram of the subposet of

PG induced by the support of row ~rµ. Let vi, vj and vk be three vertices such that vj

dominates vi, vk dominates vi, d+(vj) = 2 and d−(vk) = 1 in DG[supp(~rµ)]. If MG

is realizable, then vi and vj are in different order.

The proofs of Corollaries 5.5.5 and 5.5.6 are similar with the proof of Theorem

5.5.4.
r

r r

r

-©©©©©©©©*
-

delete

vi vk

vj′ vj

Figure 5.4: Description of Theorem 5.5.4

To construct the Hasse diagram DG
o of an ordered genotype poset PH

o for MG
desc,

we need to delete those arcs in the Hasse diagram DG of the genotype poset for MG
desc

whose both ends are in different order. By Theorem 5.5.4 and Corollary 5.5.5, we

should delete arc vi → vj. After this operation, we will get a simplified direct graph

DG
sim.

Lemma 5.5.7. Let MG be a genotype matrix in column-descending structure without

repeat rows or columns or all zero column. Let DP be the Hasse diagram of the geno-

type poset PG for MG. Let DP [supp(~(r)µ)] be the Hasse diagram of the subposet of PG

47

induced by the support of row ~rµ, µ ∈ {1, · · · , n}. Then every arc in DP [supp(~(r)µ)]

is also in DG, for every µ ∈ {1, · · · , n}. And for every arc in DP , there exists a µ

such that the arc is also in DP [supp(~(r)µ)].

By Lemma 5.5.7, we can easily get another lemma as follows.

Lemma 5.5.8. Let MG be a genotype matrix in column-descending structure without

repeat rows or columns or all zero column. Let PG be the genotype poset for MG

and DG be the Hasse diagram of PG. Then the Hasse diagram of the subposet of PG

induced by the support of row ~rµ is same with the subgraph of DG induced by by the

support of row ~rµ, for every µ ∈ {1, · · · , n}.

Theorem 5.5.9. Let DG
sim[supp(~rµ)] be the subgraph of DG

sim induced by the support

of row ~rµ. Let v be a vertex in DG
sim[supp(~rµ)]. Let vi and vj be two descendants of

v in DG
sim[supp(~rµ)] that are not comparable. If MG is realizable, then both indegree

and outdegree (if exist out-neighbor) of vi and vj in DG
sim[supp(~rµ)] are 1, except K2,2

situation.

Corollary 5.5.10. Let DG
sim[supp(~rµ)] be the subgraph of DG

sim induced by the support

of row ~rµ. Let v be a vertex in DG
sim[supp(~rµ)]. Let vi and vj be two ancestors of v

in DG
sim[supp(~rµ)] that are not comparable. If MG is realizable, then both indegree

and outdegree (if exist out-neighbor) of vi and vj in DG
sim[supp(~rµ)] are 1, except K2,2

situation.

Corollary 5.5.11. Let DG
sim[supp(~rµ)] be the subgraph of DG

sim induced by the support

of row ~rµ. Let v be a vertex and v′ be a descendant of v in DG
sim[supp(~rµ)]. Let

48

N−(v′) = {vi, vj}. If MG is realizable, then both indegree and outdegree (if exist

out-neighbor) of vi and vj in DG
sim[supp(~rµ)] are 1, except K2,2 situation.

r

r

r

r
r rr r- -©©©©*

HHHHj

-

-

@
@

@
@R¡

¡
¡

¡µ
HHHHj

©©©©*

Figure 5.5: One possible output after simplifying.

By Theorems 5.5.2, 5.5.9 and Corollaries 5.5.10, 5.5.11, we can see that in DG
sim[supp(~rµ)],

for a vertex v, there are only several graph structure as follows. (Note, we do not

consider the case that v has no in-neighbor or out-neighbor.)

• v has both indegree and outdegree 1.

• v has indegree 1 and outdegree 2 and both its out-neighbors have indegree 1.

Its out-neighbors have outdegree 1 or are inside a K2,2.

• v has indegree 2 and outdegree 1 and both its in-neighbors have outdegree 1.

Its in-neighbors have indegree 1 or are inside a K2,2.

• All neighbors of v are inside K2,2s.

Algorithm 5.5.1.

Input: the Hasse diagram DG of the genotype poset for MG
desc.

Procedure: For each DG[supp(~rµ)], µ ∈ {1, · · · , n},

Step 1: indegree and outdegree of every vertex in DG[supp(~rµ)] are checked.

If any one is greater than 2, then MG
desc is not realizable.

49

Step 2: every vertex that has outdegree 2 and both out-neighbors have indegree

2 is checked by Theorem 5.5.2.

Step 3: the arcs whose ends are in different order are removed by Theorem

5.5.4.

Output: DG
sim which is the simplified Hasse diagram of the genotype poset for MG

desc,

or that MG
desc is not realizable.

5.6 To Construct the Hasse Diagram for the Or-

dered Genotype Poset

In this section, we build the Hasse diagram for the ordered genotype poset by coloring

arcs. We define that, the red color means both ends (columns) must be in the same

order and blue color means its ends must be in different order. Suppose we already

got the output from the last section DG
sim, the Hasse diagram of the genotype poset

whose “bad chords” have been deleted.

Lemma 5.6.1. Let MG be a genotype matrix and PG be its genotype poset. Let

vi → vj be an arc in the Hasse diagram (denoted as DG) of PG. If MG is realizable

and there is a row ~rµ such that MG[µ][i] = 1, then vi and vj are in the same order.

Lemma 5.6.2. Let MG be a realizable genotype matrix and PG be the genotype

poset for MG. In DG
sim, let vi → vj be an arc. If there is a row ~rµ, such that in

DG
sim[supp(~rµ)] there is a vertex vk with outdegree 2, every vertex on the path between

vk and vj has both indegree and outdegree 1 and the indegree of vj is 1, then vi and

vj have the same order.

50

Definition 5.6.3. Let MG be a genotype matrix and PG be its genotype poset. Let

v be a vertex in the Hasse diagram (denoted as DG) of PG. We define Lmax(v) =

maxµ∈{1,··· ,n}{i : i is the rightmost site in row ~rµ such that MG[µ][i] = 1}, and

Lmin(v) = minµ∈{1,··· ,n}{i : i is the rightmost site in row ~rµ such that MG[µ][i] = 1}.

Lemma 5.6.4. Let MG be a realizable genotype matrix. In DG
sim, if there is a vertex

vj such that Lmax(vj) 6= Lmin(vj), then every pair of vertices on the path(s) between

vLmax(vj) and vj has the same order.

Algorithm 5.6.1.

Input: DG
sim, which is the simplified Hasse diagram for the genotype poset for MG

desc.

Procedure:

Step 1: Arc vi → vj in DG
sim is colored red,

• if there exists µ ∈ {1, · · · , n} such that M [µ][i] = 1 and M [µ][j] 6= 0;

(See Lemma 5.6.1).

• if there exists µ ∈ {1, · · · , n} and k (k ≤ i < j), such that in

DG
sim[supp(~rµ)], vk has outdegree 2, all the other vertices between vk

and vj are of indegree and outdegree 1 and the indegree of vj is also 1.

(See Lemma 5.6.2)

• calculate the Lmax and Lmin for every vertex. Color arc red by Lemma

5.6.4.

Step 2: Arc vi → vj in DG
sim is colored blue,

• if there exists µ ∈ {1, · · · , n} such that vk → vj is already colored red,

k 6= i;

51

• if there exists µ ∈ {1, · · · , n} such that vi → vk is already colored red,

k 6= j.

Step 3: Each arc in DG
sim[supp(~rµ)] (µ ∈ {1, · · · , n}), e.g., vi → vj, that has

not been colored, is colored as follows (see Theorem 5.6.5).

1. each arc that has not been colored in step 1 and step 2 of Algorithm

5.6.1 is assigned an index.

2. each arc is assigned some neighbor by searching DG
sim[supp(~rµ)], µ ∈

{1, · · · , n}. An example is given as follows.

Suppose the index of arc vi → vj is k1, the index of arc vi′ → vj is k2

and the index of arc vi → vj′ is k3.

• If there is a µ1 such that vi → vj and vi′ → vj in DG
sim[supp(~rµ1)],

then arc k2 is a neighbor of arc k1.

• If there is a µ2 such that vi → vj and vi → vj′ in DG
sim[supp(~rµ2)],

then arc k3 is a neighbor of arc k1.

3. Randomly pick one arc and color it red (or blue). Its neighbors are

colored by different order. Doing depth first search. If there are still

arcs not colored, then repeatedly do step 3.

Step 4: if there is any confliction in DG
sim during the coloring, then the input

matrix is not realizable.

Output: the Hasse diagram of an ordered genotype poset for MG
desc, or that MG

desc

is not realizable.

Theorem 5.6.5. After step 1 and step 2 of Algorithm 5.6.1, for those arcs that have

not been colored,

52

• if there is a row ~rµ such that the outdegree of vi is 2 in DG
sim[supp(~rµ)], and the

two arcs from vi are colored same, then MG
desc is not realizable;

• If there is a row ~rµ such that the indegree of vi is 2 in DG
sim[supp(~rµ)], and the

two arcs to vj are colored same, then MG
desc is not realizable.

• If vi → vj and the outdegree of vi and the indegree of vj are both 1 in any

DG
sim[supp(~rµ)], µ ∈ {1, · · · , n}, then the arc could be colored randomly.

Let vi → vj be an arc in DG
sim. If vi → vj is colored red and blue in Algorithm

5.6.1, then there are two rows ~rµ1 and ~rµ2 such that MG
desc[µ1][i] and MG

desc[µ1][j]

are in the same order and MG
desc[µ2][i] and MG

desc[µ2][j] are in different order. Since

MG
desc[µ1][i] and MG

desc[µ1][j] are non-zero, MG[{µ1, µ2}][{i, j}] is not realizable. That

is the reason we have step 4 of Algorithm 5.6.1.

5.7 To Build a Legal Expansion

Algorithm 5.7.1.

Input: the Hasse diagram of an ordered genotype poset for MG
desc.

Procedure:

Step 1: a haplotype matrix is built row by row. If M [µ, i] = M [µ, j] = 2 and

there is an arc vi → vj colored red, then these 2’s should be in the same

order in the haplotype matrix; else if 2’s are in different order;

Step 2: the original order for columns is recovered.

Output: a haplotype matrix that is a legal expansion of MG
input.

53

5.8 Complexity

Theorem 5.8.1. Let MH be an (n × m)-haplotype matrix without repeat rows or

columns. Assume there is no all zero columns in MH . If MH fits a perfect phylogeny,

then d2
3
me ≤ n ≤ m.

Theorem 5.8.2. Let MG be an (n × m)-genotype matrix without repeat rows or

columns. If MG is realizable, then n ≥ 1
9
m2.

In step 1 of Algorithm 5.2.1, we can use linear time (O(nm)-time)to remove repeat

rows and columns and do the checking. Only the sorting need O(m lg(m))-time. By

Theorem 5.8.2, it is obviously that O(m lg(m)) is less than O(nm).

In step 2 of Algorithm 5.2.1, since there is no all zero column in MG
desc, by Theorem

4.4.5, it is easy to see that the upper limit for the number of arcs in the Hasse diagram

of the left-prior genotype poset for MG
desc is 2m. And the sizes of parent0 and parent1

for each vertex are not more than 2. Then the Hasse diagram of the genotype poset

can be build in O(nm)-time. With the same reason, all the other steps in Algorithm

5.2.1 can be done in O(nm)-time.

5.9 Test Results

We implemented our algorithm by Matlab, and compared it with existing programs

for the PPH problem. During three solutions given by D. Gusfield, program DPPH

[4] is the fastest [8]. It is about two times faster than HPPH [15] and three times

faster than GPPH [9]. Some representative examples are shown in the table below.

54

Ave Running Time (sec)
Sites (m) Individuals (n) # of Test Cases DPPH Our Algorithm

50 1000 20 0.20 0.08
100 1000 20 1.06 0.15
300 150 30 1.07 0.06
500 250 30 5.72 0.18
1000 500 30 45.85 0.65
1000 1000 10 92.20 1.24
2000 1000 10 467.18 2.43

Table 5.1: Test results

In the case of m = 2000, n = 1000, our program is about 200 times faster than

DPPH, and linear behavior of its running time is clear. The result is an average

of 10 test cases. Out test data is generated by the program in [32]. That pro-

gram is the widely-used standard for generating sequences the reflect the coalescent

model of SNP sequence evolution. The cases of 50 and 100 sites and 1000 individ-

ual are included because they reflect the sizes of the subproblems that of current

interest in larger genomic scans. In those applications, there may be a huge num-

ber of such subproblems that will be examined. Our program can be downloaded at

http://www.csee.wvu.edu/∼yliu/lpph.

5.10 All Solutions to the PPH Problem

To find all the legal expansions from an input is also an important question. Our

algorithm can provide a solution to the problem.

After simplifying the Hasse diagram of the genotype matrix for MG
desc (step 4 of

Algorithm 5.2.1) we will color the arcs of DG
sim to show the orders between vertices.

In Algorithm 5.6.1, sometime an arc can be colored “randomly”. After coloring those

55

arc whose both ends are in the same order, we can pick a not-colored arc and find

the “component” contains the arc. Those “components” are defined as follow.

Definition 5.10.1. Let vi → vj be an arc in DG
sim that has not been colored after step

1 of Algorithm 5.6.1. If there is a µ such that

• vi → vj and vk1 → vj in DG
sim[supp(~rµ)], then we say arc vk1 → vj is in same

component with arc vi → vj.

• Or vi → vj and vi → vk2 in DG
sim[supp(~rµ)], then we say arc vj → vk2 is in same

component with arc vi → vj.

Those components are also “connected components” in the graph, which takes

not colored arcs of DG
sim as vertices in step 3 of Algorithm 5.6.1.

Lemma 5.10.2. If a component has a subgraph which is a cycle with odd length, then

MG is not realizable.

Theorem 5.10.3. Let the number of components be k. The number of all solutions

from MG
desc is 2k.

Those components are already found out by step 3 of Algorithm 5.6.1. And if we

change the colors in those component, then all the solutions are easily to be found.

Appendix A

Proofs

Proof of Theorem 2.2.9 is as follows.

Proof. If d−D(v) > k, then by Theorem 2.2.7, it is easy to see that there is an antichain

in P whose size is greater than k. It is symmetric for d+
D(v) > k.

Proof of Theorem 3.3.2 is as follows.

Proof. Let MH be an (n ×m)-haplotype matrix. If MH fits a perfect phylogeny T ,

every node on T is labelled by a vertex in Vrow. Then |Vrow| = |Vcol|. For every two

vertices vc1 and vc2 in PH
col, if vc1 ≥col vc2 , then there are two nodes on T such that

one is the ancestor of the other, and their row labels are comparable in PH
row. If two

vertices are comparable in PH
row, then they are on the same path from the ancestor

sequence. The related vertices in PH
col are comparable too.

Proof of Theorem 3.3.3 is as follows.

Proof. If there is a row ~rµ such that DH [supp(~rµ)] is not a directed path, then there

are two vertices (columns) vi and vj such that they are not comparable in PH and

56

57

MH [µ][i] = MH [µ][j] = 1. Then MH [∗][{i, j}] does not fit a perfect phylogeny.

Neither does MH .

If DH [supp(~rµ)] is a directed path for every µ ∈ {1, · · · , n}, then for every µ′ ∈
{1, · · · , n} and i, j ∈ {1, · · · ,m} such that MH [µ′][i] = MH [µ′][j] = 1, ~ci and ~cj

are comparable. Then there is no forbidden matrix in MH and MH fits a perfect

phylogeny.

Proof of Corollary 3.3.4 is as follows.

Proof. Every arc in DH [supp(~rµ)] (µ ∈ {1, · · · , n}) is also in DH . By Theorem 3.3.3,

the number of arcs in DH is up to m, since every vertex has indegree 1 at most in

each DH [supp(~rµ)].

Proof of Theorem 4.1.4 is as follows.

Proof. Let ~ci and ~cj be two columns in MG. If ~ci and ~cj are neither in the same order

nor in different order, then there are two (2, 2)-rows ~rµ1 and ~rµ2 between columns

~ci and ~cj, such that MG[µ1][i] and MG[µ1][j] are in the same order and MG[µ2][i]

and MG[µ2][j] are in different order. Then MG[{µ1, µ2}][{i, j}] is not realizable by

Theorem 3.1.1. It conflicts with the assumption that MG is realizable.

Proof of Lemma 4.3.1 is as follows.

Proof. Without loss generality, suppose there is no row ~rµ2 such that MG[µ2][i] <

MG[µ2][j]. Then, by Definition 4.2.1, vi ≥ vj. It conflicts with the assumption that

vi and vj are not comparable.

Proof of Theorem 4.3.2 is as follows.

58

Proof. If two columns are different in MG then the related columns in MH are differ-

ent too. Since we assume there is no repeat columns in MG, the haplotype poset PH
col

for MH has the same vertex set with any ordered genotype posets PG
o for MG. Since

MG is realizable, by Theorem 4.1.4, every pair of columns in MG are in the same

order or in different order. By Definitions 3.2.2 and 4.2.3, we can set up the order

between each pair of columns in MG by the dominating relation in PH
col and build an

ordered genotype poset. It is obvious that they are isomorphic with each other.

Proof of Lemma 4.3.3 is as follows.

Proof. Let vi and vj be two vertices in PG. If i > j, then by Definition 2.1.3,


xi

yi


 ≤




xj

yj


. Since MG has no repeat column, there is at least one row ~rµ

such that MG[µ][i] < MG[µ][j]. It conflicts with the assumption that vi ≥ vj in

PG.

Proof of Theorem 4.3.4 is as follows.

Proof. All of P 0
l , P 1

l , · · · , P n
l , PG

l , PG and PG
o take columns of the genotype matrix

as vertices, so they have the same vertex set. By Definitions 4.2.1, 4.2.2 and 4.2.3,

it is easy to prove that for any two vertices vi and vj, if vi ≥o vj then vi ≥ vj.

And if vi ≥l vj in MG[{1, · · · , µ2}][∗] then vi ≥l vj in MG[{1, · · · , µ1}][∗] when

0 ≤ µ1 ≤ µ2 ≤ n. Then PG ⊇ PG
o , and P µ1

l ⊇ P µ2

l when 1 ≤ µ1 ≤ µ2 ≤ n. Since MG

is in column-descending structure, if vi ≥ vj, then by Lemma 4.3.3, i < j. That is, if

vi ≥ vj, then vi ≥l vj. Then P n
l = PG

l = PG.

Proof of Lemma 4.4.1 is as follows.

59

Proof. If vi and vj are not comparable in any ordered genotype poset, then vi and

vj are in different order, or (by Lemma 4.3.1) there are two rows ~rµ1 and ~rµ2 such

that MG[µ1][i] > MG[µ1][j] and MG[µ2][i] < MG[µ2][j]. In the first case, there

is a (2, 2)-row ~rµ′ such that MG[µ′][i] and MG[µ′][j] are in different order. Then,

MG[{µ, µ′}][{i, j}] is not realizable. In the second case, MG[{µ, µ1, µ2}][{i, j}] is not

realizable. Both cases conflict with the assumption that MG is realizable.

Proof of Lemma 4.4.2 is as follows.

Proof. By Theorem 4.1.4, vi, vj and vk are in the same order or different order with

each other; else MG is not realizable. Since MG[µ][i] = MG[µ][j] = MG[µ][k] = 2, at

least one pair of vi, vj and vk are in the same order. Without loss generality, suppose

vi and vj are in the same order but not comparable in PG, then by Lemma 4.3.1, there

are two rows ~rµ1 and ~rµ2 such that MG[µ1][i] > MG[µ1][j] and MG[µ2][i] < MG[µ2][j].

Then, MG[{µ, µ1, µ2}][{i, j}] is not realizable. Neither is MG.

Proof of Theorem 4.4.3 is as follows.

Proof. Let DG
o [supp(~rµ)] be the Hasse diagram of PG

o [supp(~rµ)]. Suppose there is

a row ~rµ such that DG
o [supp(~rµ)] = 3. Let vi, vj and vk be the three vertices in

DG
o [supp(~rµ)] that are not comparable with each other. By the definition of the

support of a vector, MG[µ][i], MG[µ][j] and MG[µ][k] are all non-zero. By Lemmas

4.4.1 and 4.4.2, MG is not realizable. It conflicts with the assumption that MG is

realizable.

Proof of Corollary 4.4.4 is as follows.

60

Proof. Let DG[supp(~rµ)] be the Hasse diagram of PG[supp(~rµ)]. Let vi, vj and vk be

three vertices in DG[supp(~rµ)] that are not comparable with each other. They are

also not comparable in any ordered genotype posets. Then, MG is not realizable. It

causes the contradiction.

Proof of Theorem 4.4.5 is as follows.

Proof. Let vi be a vertex in DG
l . Suppose N−(vi) = {vh, vk, vj}, 1 ≤ h < j < k < i ≤

m . Then vh, vk, vj are not comparable with each other (by Lemma 2.2.7). Since MG

has no all zero column, by the definition of the left-prior genotype poset, there is one

row ~rµ such that MG[µ][h],MG[µ][j], MG[µ][k],MG[µ][i] 6= 0. However, the left-prior

Hasse diagram for a genotype matrix in column-descending structure is same the

genotype poset for the genotype poset. Then, the width of PG[supp(~rµ)] is greater

than 2. By Corollary 4.4.4, MG is not realizable. It causes the contradiction.

Proof of Lemma 4.4.6 is as follows.

Proof. By Theorems 2.2.9 and 4.4.3, it is easy to prove that d+(v) ≤ 2 and d−(v) ≤
2 for any vertex v in DG

o [supp(~rµ)]. Let v be a vertex in DG
o [supp(~rµ)] such that

N−(v) = {vi, vj}. By Theorem 2.2.7, vi and vj are not comparable. Since both vi

and vj are in the same order with v, vi and vj are in the same order. Then, there are

two rows ~rµ1 and ~rµ2 such that MG[µ1][i] > MG[µ1][j] and MG[µ2][i] < MG[µ2][j].

MG[{µ, µ1, µ2}][{i, j}] is not realizable. It conflicts with the assumption that MG is

realizable.

Proof of Lemma 4.4.7 is as follows.

61

Proof. If d+(vi) = 2 in DG
o [supp(~rµ)], suppose N+(v) = {vj, vk}, then vj and vk are

not comparable. If MG[µ][i] = 2, then vi, vj and vi, vk are in the same order. Then

vj and vk are in the same order too. By Lemma 4.3.1, there are rows ~rµ1 and ~rµ2

such that MG[µ1][j] > MG[µ1][k] and MG[µ2][j] < MG[µ2][k]. MG[{µ, µ1, µ2}][{j, k}]
is not realizable. It causes the contradiction with the assumption. If any descendant

of vi, e.g., vj′ , is 1 in row ~rµ, then vj′ is also a descendant of vj or vk. Without loss

generality, if vj′ is a descendant of vj, then vj′ and vk are not comparable, by Lemma

4.4.6. By Lemma 4.4.1, MG is not realizable. It causes the contradiction. If any

ancestor of vi, e.g., vk′ , is 2 in row ~rµ, then MG[µ][k′] does not dominate MG[µ][i].

It conflicts with the Definitions 4.2.3. By the proof above and Lemma 4.4.6, we can

easily prove the second part of this lemma.

Proof of Theorem 4.4.8 is as follows.

Proof. If MG is realizable, then by Theorem 4.4.3, the width of PG
o [supp(~rµ)] is less

than 3 for every µ ∈ {1, · · · , n}. By Lemma 4.4.6, d+(v) ≤ 2 and d−(v) ≤ 1 for every

vertex v in DG
o [supp(~rµ)]. If there are two vertices have outdegree 2, then the union of

their out-neighbors has size of 3 and every pair of vertices inside are not comparable

with each other. Then only one vertex in DG
o [supp(~rµ)] may have outdegree 2. By

Lemma 4.4.7, it is easy to get the first case of this theorem. Suppose the width of

PG
o [supp(~rµ)] is 2 and every vertex has both indegree and outdegree of 1. If there is

at least one vertex with value 1 in row ~rµ, then the vertex is not comparable with

another vertex in DG
o [supp(~rµ)], by Lemma 4.4.1, MG is not realizable. Then there

is no 1 in row ~rµ. That is same with the second case of this theorem. If the width

of PG
o [supp(~rµ)] is 1, then every vertex has indegree and outdegree 1 and every pair

62

of vertices are comparable with each other. By the definition of ordered genotype

posets, no 2 is an ancestor of 1 in row ~rµ. This matches our third case.

Let MH be a haplotype matrix inferred from MG following the orders between

columns. Then PG
o = PH

col and DG
o = DH

col. For any pair of vertices vi, vj in

DG
o [supp(~rµ)] (µ ∈ {1, · · · , n}), if vi → vj, then vi → vj in DH

col[supp(~r2µ−1)] or

DH
col[supp(~r2µ)] or both. If vi 6→ vj, then vi and vj are not on both DH

col[supp(~r2µ−1)]

and DH
col[supp(~r2µ)]. Then the subgraph of DH

col induced by the support of each row

is a directed path. By Theorem 3.3.3, MH fits a perfect phylogeny. Then MG is

realizable.

Proof of Lemma 5.3.1 is as follows.

Proof. By Lemma 4.3.3, if i < j, then vi 6≤ vj in any genotype poset for MG. Then,

there is a row ~rµ‘ such that MG[µ′][i] > MG[µ′][j]. And MG[{µ, µ′}][{i, j}] is not

realizable. So MG is not realizable.

Proof of Theorem 5.4.3 is as follows.

Proof. By Theorem 4.4.5, d−(vi) ≤ 2 in DG
l for every vertex vi such that λ(vi) 6= 0.

If d−(vi) = 2, suppose N−(vi) = {vj, vk}, then vj and vk are not comparable (by

Lemma 2.2.7). If λ(vi) = 1, then there is a row ~rµ such that MG[µ][i] = MG[µ][j] =

MG[µ][k] = 1. Since MG is in column-descending structure, there are two rows

~rµ1 and ~rµ2 such that MG[µ1][j] > MG[µ1][k] and MG[µ2][j] < MG[µ2][k]. Then

MG[{µ, µ1, µ2}][{j, k}] is not realizable. And MG is not realizable. If λ(vi) = 2, then

MG[µ][j] and MG[µ][k] are non-zero, for each row ~rµ such that MG[µ][i] 6= 0. If one

of them or both of them are 1, then the submatrix of MG induced from ~cj and ~ck is

not realizable. So MG is not realizable.

63

Proof of Corollary 5.4.4 is as follows.

Proof. If d−(vi) = 3 in Dµ
l , suppose N−(vi) = {vi1 , vi2 , vi3}, then vi1 , vi2 and vi3

are not comparable with each other in Dµ
l . They are also not comparable with each

other in DG
l . If λ(vi) = 2 in MG[{1, · · · , µ}][∗], then there is a row ~rµ1 such that

MG[µ1][i1], MG[µ1][i2], MG[µ1][i3] and MG[µ1][i] are all non-zero. Let DG be the

Hasse diagram of the genotype poset for MG. DG = Dn
l , since MG is in column-

descending structure. Then the width of PG[supp(~rµ1)] is 3. By Corollary 4.4.4, MG

is not realizable. Similar proof for the case that λ(vi) = 1 and d−(vi) ≤ 1 in Dµ
l .

Proof of Lemma 5.4.7 is as follows.

Proof. Without loss generality, suppose i < j. If vi and vj are not comparable

in P µ
l , then there is a row ~rµ1 such that MG[µ1][i] < MG[µ1][j] (1 ≤ µ1 ≤ µ).

Since i < j and MG is in column-descending structure, there is a row ~rµ2 such that

MG[µ2][i] > MG[µ2][j]. Then vi and vj are not comparable in PG.

Proof of Lemma 5.4.8 is as follows.

Proof. vj and vk are not comparable in MG, since vj → vi and vk → vi in Dµ−1
l .

Because MG[µ][j] = MG[µ][k] = 0 and MG[µ][i] 6= 0, vj 6>l vi and vk 6>l vi in P µ
l .

Since λ(~ci) 6= 0, both λ(~cj) andλ(~ck) are non-zero. So there is a row ~rµ1 such that

MG[µ1][i], MG[µ1][j] and MG[µ1][k] are non-zero. By Corollary 4.4.4, MG is not

realizable.

Proof of Lemma 5.4.11 is as follows.

Proof. It is easy to see that vi 6>l vj and vi 6>l vk in P µ
l . And vj and vk are not

comparable. Since λ(vh) 6= 0 in MG[{1, · · · , µ − 1}][∗], there is a row ~rµ1 such that

64

MG[µ1][i], MG[µ1][j], MG[µ1][k] and MG[µ1][h] are all non-zero. Then Mdesc is not

realizable, by Corollary 4.4.4.

Proof of Corollary 5.4.13 is as follows.

Proof. Let vj and vk be two ancestors of vi in Dµ−1
l such that they are bad-ones in

~rµ and are not comparable. Then there are two bad-zeros vj′ and vk′ such that vj′ is

an ancestor of vj and vk′ is an ancestor of vk in Dµ−1
l . Without loss generality, if vj′

is also an ancestor of vk, then by Theorem 5.4.12, MG is not realizable. Then vj′ and

vk′ are not comparable. By Theorem 5.4.9, MG is not realizable.

Proof of Theorem 5.4.14 is as follows.

Proof. Let vi be a vertex in Dµ−1
l (B0(~rµ)). Suppose vi has three descendants vi1 ,

vi2 and vi3 in Dµ−1
l (B0(~rµ)) that are not comparable with each other. Then they

have three descendants vi′1 , vi′2 and vi′3 in Dµ−1
l such that MG[µ][i′1], MG[µ][i′2] and

MG[µ][i′3] are non-zero. Without loss generality, if vi′1 is also a descendant of vi2 in

Dµ−1
l , then by Theorem 5.4.9, MG is not realizable. Then vi′1 , vi′2 and vi′3 are not

comparable with each other. By Corollary 4.4.4, MG is not realizable. So there is

at most one vertex in Dµ−1
l (B0(~rµ)) that has outdegree 2. With the similar prove,

we can get the width of P µ−1
l (B0(~rµ)) is at most 2. By Corollary 5.4.10, we can get

every vertex in Dµ−1
l (B0(~rµ)) has indegree at most 1.

Let vj be a vertex in Dµ−1
l (B1(~rµ)). By Corollary 4.4.4, the width of P µ−1

l (B1(~rµ))

is at most 2. And at most one vertex in Dµ−1
l (B1(~rµ)) has outdegree 2. By Corollary

5.4.13, every vertex in Dµ−1
l (B1(~rµ)) has indegree at most 1.

Proof of Corollary 5.4.16 is as follows.

65

Proof. If vi is a bad-zero, then by Theorem 5.4.14, every vertices on the path between

vi and vj are non-zero. Then vj covers vi in P µ
l . Same when vi is a bad-one.

Proof of Corollary 5.4.20 is as follows.

Proof. If there is a vertex v such that |parent(v)| = 2, then by Lemma 5.4.19, two

vertices in parent(v) are not comparable with each other. By Theorem 5.4.9, MG is

not realizable. If there is a vertex v such that |desc(v)| = 3, then by Lemma 5.4.19

and Theorem 5.4.14, MG is not realizable.

Proof of Theorem 5.4.23 is as follows.

Proof. By Definition 5.4.17, it is easy to prove case 1 above. For case 2, it is already

proved in Corollary 5.4.21. If MG[µ][j] and MG[µ][k] are non-zero and parent(vi)
⋂

parent(vj) 6= ∅, then by Theorem 5.4.12, MG is not realizable.

Proof of Lemma 5.5.1 is as follows.

Proof. Suppose N+(vj)
⋃

N+(vk) = {vh1 , vh2 , vh3}. Then they are not comparable

with each other. By Corollary 4.4.4, MG is not realizable.

Proof of Theorem 5.5.2 is as follows.

Proof. Suppose N−(vj) = {vi, vj′} and N−(vk) = {vi, vk′}. If vj′ and vk′ are not

comparable with each other, then vi, vj′ and vk′ are not comparable with each other.

By Corollary 4.4.4, MG is not realizable. Suppose vj′ dominates vk′ . Then vi are not

comparable with vj′ and vk′ . Also MG[µ][i] = MG[µ][j′] = MG[µ][k′] = MG[µ][j] =

MG[µ][k] = 2. If vi and vj are in the same order, then vj and vj′ are in different

order, vk and vk′ are in different order and vj′ and vk′ are in different order too. By

66

Theorem 4.4.3, MG is not realizable. Same when vi and vk are in the same order. So

vj′ = vk′ .

Proof of Lemma 5.5.3 is as follows.

Proof. Suppose vj and vk are comparable. If vj dominates vk, then vi dominates

vk too. It causes a contradiction with the assumption. If vk dominates vj, then vk

dominates vi, since vi covers vj and d−(vj) = 1. It causes the contradiction too.

Proof of Theorem 5.5.4 is as follows.

Proof. Suppose N−(vj) = {vi, vj′}. Then vi and vj′ are not comparable. And

MG[µ][i] = MG[µ][j′] = MG[µ][j] = MG[µ][k] = 2. If vi and vj are in the same

order, then vi and vk are in different order and vj and vj′ are in different order. By

Lemma 5.5.3, vj′ and vk are not comparable. Then by Theorem 4.4.3, MG is not

realizable.

Proof of Lemma 5.5.7 is as follows.

Proof. If vi → vj in DP [supp(~(r)µ)], then vi dominates vj in PG. And i < j because

MG is in column-descending structure. If vi does not covers vj in MG, then by

the definition of covering relation in posets, there is at least a vertex vk such that

vi > vk > vj and i < k < j. But obviously MG[µ][k] = 0. Since MG[µ][j] 6= 0,

vk 6≥ vj.

For an arc vi → vj in DG, since MG has no all zero column, there is a µ such that

MG[µ][j] 6= 0. Then DP [supp(~(r)µ)] has arc vi → vj too.

Proof of Theorem 5.5.9 is as follows.

67

Proof. Let DG[supp(~rµ)] be the subgraph of the Hasse diagram of the genotype poset

for MG. By Corollary 5.5.5, if only one of vi and vj has indegree 2 in DG[supp(~rµ)],

then one arc is deleted and vi and vj have indegree 1 in DG
sim[supp(~rµ)]. If both of

them have indegree 2, then only K2,2 is allowed.

Suppose vi has outdegree 2 in DG
sim[supp(~rµ)]. Assume N+(vi) = {vi1 , vi2}. If both

vi1 and vi2 are not comparable with vj, then by Corollary 4.4.4, MG is not realizable.

If one of vi1 and vi2 is comparable with vj, then by Corollary 5.5.5, one arc should be

removed and both of them should have outdegree 1 in DG
sim[supp(~rµ)].

1
1

0
1

1
0

rr

r

r

?
¡

¡¡ª
@

@@R

R

R R

U

Figure A.1: “R” means the node is labelled by a row in MH , and “U” means that
the node is not labelled by any row of MH . Note, in this example the first “R” is the
ancestor vector.

Proof of Lemma 5.6.2 is as follows.

Proof. Since in DG
sim[supp(~rµ)] vk has outdegree 2 and every vertex on the path be-

tween vk and vj has both indegree and outdegree 1, there is at least one vertex vh such

that vh is not comparable with both vi and vj in PG. Then vh is also not comparable

with vi and vj in any ordered genotype poset for MG. If vi and vj have different order,

then vi and vj are not comparable in any ordered genotype poset too. So the width

of antichain in PG
sim[supp(~rµ)] is at least 3. By Theorem 4.4.3, MG is not realizable.

It conflicts with the assumption.

Proof of Lemma 5.6.4 is as follows.

68

Proof. Since Lmax(vj) 6= Lmin(vj), there is a row ~rµ1 such that MG[µ1][Lmax(vj)] = 2

and MG[µ1][j] = 2, and a row ~rµ2 such that MG[µ2][Lmax(vj)] = 1 and MG[µ2][j] = 2.

Because MG[µ1][j] = MG[µ2][j] = 2, vertices on the path(s) between vLmax(vj) and vj

are 2 in both ~rµ1 and ~rµ2 . If any one of those vertices, e.g., vk, has different order

with vLmax(vj), then MG[{µ1, µ2}][{Lmax(vj), k}] is not realizable. So MG is also not

realizable. Then every pair of vertices on the path(s) between vLmax(vj) and vj has

the same order.

Proof of Theorem 5.8.1 is as follows.

Proof. Suppose MH fits a perfect phylogeny T . On T , we call those nodes that are

labelled by rows of MH as labelled nodes, and those nodes that are not labelled by

rows of MH as unlabelled nodes.

As we explained in Section 3.3, a node (if it is labelled) and its descendants that

are labelled consist of the support of a column. For those labelled nodes, they are

related with distinct columns of MH . But there may exist some other unlabelled

nodes related with different columns too. See Figure A.1. Then n ≤ m.

Let v be an unlabelled node on T . Then v is an internal node on T . If there is

only one child of v that is labelled, denoted as vc, then the columns related with v and

vc are same. Of course, if v has a child labelled, the columns related with v and the

child are also same. So in MH , the number of distinct columns that are related with

those unlabelled nodes is less than half of the number of columns that are related with

labelled nodes. See Figure A.1. It also means that, the number of distinct columns

related with unlabelled nodes is less than half of the number of distinct rows in MH .

So d2
3
em ≤ n.

Proof of Theorem 5.8.2 is as follows.

69

Proof. Let MH be a feasible expansion of MG. By Theorem 5.8.1, the number of

different rows is less or equal to 2/3 of the number of different columns in MH . MH

and MG have the same number of different columns. By the HI problem, the number

of rows in MG is at least 1
9
m2.

Proof of Lemma 5.10.2 is as follows.

Proof. In that case, there should have coloring conflict (one arc must be colored in

two different colors) anyway.

Proof of Theorem 5.10.3 is as follows.

Proof. For each component, we have two choice to color. That is the reason the

number of solutions is 2k.

Bibliography

[1] International Human Genome Sequence Consortium. Initial sequencing and analysis

of the human genome. Nature, 409(6822):860-921, February 2001.

[2] Ian Anderson. Combinatorics of Finite Sets. Oxford, England: Oxford University

Press, p. 38, 1987.

[3] V. Bafna, D. Gusfield, G. Lancia, and S. Yooseph. Haplotyping as perfect phylogeny:

A direct approach. Technical report, UC Davis, Department of Computer Science,

2002.

[4] V. Bafna and D. Gusfield and G. Lancia and S. Yooseph. Haplotyping as Perfect

Phylogeny: A Direct Approach. Journal of Computational Biology, Vol. 10, No. 3

(2003), pp. 323-340.

[5] Garrett Birkhoff. Lattice Theory, 3rd ed. Providence, RI: Amer. Math. Soc., 1967.

[6] R. E. Bixby and D. K. Wagner. An almost linear-time algorithm for graph realization.

Mathematics of Operations Research, 13:99-123, 1988.

[7] Gary Chartrand. Directed Graphs as Mathematical Models. New York: Dover, 1985.

70

71

[8] R.H. Chung and D. Gusfield. Empirical Evaluation of Perfect Phylogeny Haplotypers

and Haplotyping. Proceedings of the 2003 Cocoon Conference, published by Springer

in the LNCS series.

[9] R.H. Chung and D. Gusfield. Perfect phylogeny haplotyper: Haplotype inferral using

a tree model. Bioinformatics, 19(6):780-781, 2003.

[10] A. Clark. Inference of haplotypes from PCR-amplified samples of diploid populations.

Mol. Biol. Evol, 7:111-122, 1990.

[11] A. Clark, K. Weiss, and D. Nickerson et. al. Haplotype structure and population

genetic inferences from nucleotide-sequence variation in human lipoprotein lipase.

Am. J. Human Genetics, 63:595-612, 1998.

[12] M. Daly, J. Rioux, S. Schaffner, T. Hudson, and E. Lander. High-resolution haplotype

structure in the human genome. Nature Genetics, 29:229-232, 2001.

[13] P. Damaschke. Fast Perfect Phylogeny Haplotype Inference. 14th Symp. on Funda-

mentals of Comp. Theory FCT’2003, LNCS 2751, 183-194, 2003.

[14] P. Damaschke. Incremental haplotype inference, phylogeny and almost bipartite

graphs. 2nd RECOMB Satellite Workshop on Computational Methods for SNPs and

Haplotypes, pre-proceedings, 1-11, 2004.

[15] E. Eskin, E. Halperin, and R. Karp. Efficient reconstruction of haplotype structure

via perfect phylogeny. Technical report, UC Berkeley, Computer Science Division

(EECS), 2002.

[16] Peter C. Fishburn. Interval Orders and Interval Sets: A Study of Partially Ordered

Sets. New York: Wiley, 1985.

72

[17] L. Friss, R. Hudson, A. Bartoszewics, J. Wall, T. Donfalk, and A. Di Rienzo. Gene

conversion and differential population histories may explain the contrast between

polymorphism and linkage disequilibrium levels. Am.J.of Human Genetics, 69:831-

843, 2001.

[18] M. Fullerton, A. Clark, Charles Sing, and et. al. Apolipoprotein E variation at the

sequence haplotype level: implications for the origin and maintenance of a major

human polymorphism. Am. J. of Human Genetics, pages 881-900, 2000.

[19] F. Gavril and R. Tamari. An algorithm for constructing edge-trees from hypergraphs.

Networks, 13:377-388, 1983.

[20] Anthony J.F. Griffiths, and et. al. Introduction to Genetic Analysis, Eight Edition,

W.H. Freeman And Company. New York., 2005.

[21] D. Gusfield. Efficient algorithms for inferring evolutionary history. Networks, 21:19-

28, 1991.

[22] D. Gusfield. Algorithms on Strings, Trees and Sequences: Computer Science and

Computational Biology. Cambridge University Press, 1997.

[23] D. Gusfield. A practical algorithm for deducing haplotypes in diploid populations.

In Proceedings of 8’th International Confernece on Intelligent Systems in Molecular

Biology, pages 183-189. AAAI Press, 2000.

[24] D. Gusfield. Inference of haplotypes from samples of diploid populations: complexity

and algorithms. Journal of computational biology, 8(3), 2001.

[25] D. Gusfield. Haplotyping as Perfect Phylogeny: Conceptual Framework and Efficient

Solutions (Extended Abstract). In Proceedings of RECOMB 2002: The Sixth Annual

International Conference on Computational Biology, pages 166-175, 2002.

73

[26] D. Gusfield, S. Eddhu, C. Langley. Optimal, Efficient Reconstruction of Phylogenetic

Networks with Constrained Recombination Journal of Bioinformatics and Computa-

tional Biology, Vol. 2 no. 1 (2004) p. 173-213

[27] D. Gusfield. An Overview of Combinatoric Methods for Haplotype Inference. Lecture

Notes in Computer Science, vol. 2983, Spirnger, p. 9-25, 2004.

[28] B. V. Halldorsson et al. Combinatorial problems arising in SNP and haplotype anal-

ysis. In C. Calude, M. Dinneen, and V. Vajnovski, editors, Discrete Mathematics and

Theoritical Computer Science. Proceedings of DMTCS ’03 Conference, volumn 2731

of Springer Lecture Notes in Computer Science.

[29] E. Halperin and E. Eskin. Haplotye reconstruction from genotype data using Imper-

fect Phylogeny. Bioinformatics, 20:1842-1849, 2004.

[30] E. Halperin and R. M. Karp. Perfect Phylogeny and Haplotype Assignment. In pro-

ceedings of RECOMB 2004: The Eighth Annual International Conference on Re-

search in Computational Molecular Biology, page 10-19, 2004.

[31] L. Helmuth. Genome research: Map of the human genome 3.0. Science, 293(5530):

583-585, 2001.

[32] R. Hudson. Gene genealogies and the coalescent process. Oxford Survey of Evolution-

ary Biology, 7:1-44, 1990.

[33] S. Lin, D. Cutler, M. Zwick, and A. Cahkravarti. Haplotype inference in random

population samples. Am. J. of Hum. Genet., 71:1129-1137, 2003.

[34] T. Niu, Z. Qin, X. Xu, and J.S. Liu. Bayesian haplotype inference for multiple linked

single-nucleotide polymorphisms. Am. J. Hum. Genet, 70:157-169, 2002.

74

[35] Yunkai Liu and Cun-Quan Zhang. A linear solution for haplotype perfect phylogeny

problem (Poster). Proceeding of 7th Annual Conference on Computational Genomics,

October, 2004.

[36] Yunkai Liu and Cun-Quan Zhang. A linear solution for haplotype perfect phy-

logeny problem (Extended Abstract). Advances in Bioinformatics and its Applica-

tions, spring 2005.

[37] S. Orzack, D. Gusfield, and V. Stanton. The absolute and relative accuracy of hap-

lotype inferral methods and a consensus approach to haplotype inferral. Abstract Nr

115 in Am. Society of Human Genetics, Supplement 2001.

[38] N. Patil, A. J. Berno, and et. al. Blocks of limited haplotype diversity revealed by

high-resolution scanning of human chromosome 21. Science, 294(5547):1669-1670,

2001.

[39] Steven Skiena. Implementing Discrete Mathematics: Combinatorics and Graph The-

ory with Mathematica. Reading, MA: Addison-Wesley, p. 241, 1990.

[40] J. C. Stephens and et al. Haplotype variation and linkage disequilibrium in 313 human

genes. Science, 293:489-493, 2001.

[41] S. Tavare. Calibrating the clock: Using stochastic processes to measure the rate of

evolution. In E. Lander and M. Waterman, editors, Calculating the Secretes of Life.

National Academy Press, 1995.

[42] William T. Trotter. Combinatorics and Partially Ordered Sets: Dimension Theory.

Baltimore, MD: Johns Hopkins University Press, 1992.

[43] J. C. Venter, M. D. Adams, E. W. Mayers and et al. The sequence of the human

genome. Science, 291(5507):1304-1351, 2001.

75

[44] L. Wang, K. Zhang, and L. Zhang. Perfect phylogenetic networks with recom-

bination. Journal of Computational Biology, 8:6978, 2001.

[45] C. Wiuf. Inference on Recombination and Block Structure Using Unphased

Data. Genetics, 166(1):537-545, January 2004.

[46] Cun-Quan Zhang. Integer Flows and Cycle Covers of Graphs, Marcel Dekker

Inc. New York., 1997.

	Graph algorithms for the haplotyping problem
	Recommended Citation

	Graph Algorithms for Haplotyping Problem

		2008-06-25T13:13:27-0400
	John H. Hagen
	File replacement; I am approving this document; originally approved 8/9/05.

