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Abstract 
 

Serotonergic Modulation of Inhibitory Input to Lateral Horn 
Affects Odor-Mediated Attraction in D. melanogaster 

 
 Ayad Auda 

 
 To survive, animals must eat, mate, and avoid danger by sensing external stimuli, 
processing sensory information into perception, and eliciting the appropriate behavioral 
responses in accordance with their physiological states. Unlike learned responses, innate 
responses are genetically inherited and do not require the animal to have a previous encounter 
with the stimulus to elicit an action. However, innate responses can be flexible based on the 
physiological state of the animal. This flexibility is achieved through constant alterations in 
network dynamics which ensures that the animal’s responses are most effective. This alteration 
occurs to some extent by modulatory neurons/nuclei at multiple processing stages of a neural 
network and mediated via several modulatory receptor subtypes in the network. In this study, I 
take advantage of the well-characterized olfactory system of Drosophila to explore connectivity 
between a single pair of modulatory serotonergic neurons, the CSD neurons, and a population of 
ventral projection neurons, vPNs. Both types of neurons span two different olfactory processing 
stages and vPNs are vital for eliciting attraction to odors that have innately important values. I 
further, investigate the degree to which innate responses can be modulated by dissecting the role 
of one serotonergic receptor, 5-HT1A, expressed by vPNs in innate attraction and the behavioral 
consequences of reducing its expression in vPNs. I found that CSD neurons synapse upon the 
dendrites and the axons of vPNs in the antennal lobe and lateral horn, respectively, to potentially 
modulate the activities of vPNs in both regions simultaneously. I also found that reducing the 
expression of the 5-HT1A receptor in vPNs selectively increases flies’ attraction to the innately 
attractive odor apple cider vinegar, but neither to other food odors with different biological 
values, nor to aversive odors such as benzaldehyde. This study contributes to our understanding 
of the simultaneous modulation of interconnected networks by a single pair of modulatory 
neurons as well as the consequences of neuron class-specific expression of a single modulatory 
receptor. The outcome knowledge is critical for better understanding of neural coding processes 
in sensory systems and the extent to which innate behaviors are modulated. 
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Chapter 1: Introduction 

I. Innate responses are plastic  

In a continuously-changing environment, it is crucial for animals to constantly adapt by 

generating the appropriate behavioral responses that ensure their survival. These responses are 

usually achieved when sensory information received by peripheral sensory organs are conveyed 

and integrated in specialized regions in the brain. Generally, behavioral responses can be 

categorized into two types, learned and innate responses. Unlike learned responses which require 

a prior experience, innate responses provide naive animals with the ability to survive by 

responding to important environmental stimuli. Though innate responses are crucial, they are not 

rigid and are vulnerable to modification so that the generated behavior would occur in the right 

context to best fit the physiological state of the animal and in perfect correspondence to external 

stimuli. This plasticity of innate responses, to a certain degree, is achieved via a process called 

neuromodulation that could potentially occur at any of the processing stages of neural 

information pathways. 

II. Types of inter-neural communications 

Neurotransmission is the process by which one neuron, fast and chemically, conveys 

information to another single neuron causing it to be either excited or inhibited (Katz, 1999). 

This form of “talk” between neurons is considered as the primary means of the neuronal 

communication (Katz, 1999).  Quite the contrary, neuromodulation is a slower type of 

communication that is achieved when a modulatory neuron releases signaling chemicals to 

provoke similar and/or diverse effects on targeted neurons without necessary eliciting an action 

potential in them (Kupfermann, 1979) or changing their spontaneous activity (Dacks et al., 

2008). Neuromodulation provides neural networks with flexibility by altering the biophysical 

properties and/or synaptic efficiency of neurons. Neuromodulators change the excitability of a 

neuron by binding to a G Protein Coupled Receptor (GPCR) to activate second messenger 

cascades, which alter the conductance of membrane channels. For instance, in moths, serotonin 

(5-HT) decreases two K+ conductance of antennal lobe (AL) neurons (Kloppenburg et al., 1999; 

Mercer et al., 1995) causing them to be more resistant. The increase in resistance leads to the 

neurons to be more sensitive, and thus, responsive to subthreshold stimuli (Kloppenburg et al., 
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1999; Dacks et al., 2008; Dacks et al., 2009). Synaptic efficiency, on the other hand, is modified 

when a neuromodulator facilitates/inhibits the release of neurotransmitter from the vesicles into 

the synaptic cleft. For instance, in the swim circuit of the marine mollusk Tritonia diomedea, a 

subset of serotonergic neurons, called the dorsal swim interneurons (DSIs), enhance the 

neurotransmitter release of the C2 interneuron, and subsequently the excitatory post synaptic 

potentials evoked by C2 in its targeted neuron, DFN (Katz and Frost, 1995). The overall 

consequence is changing the motor cell responses, and consequently, shaping the behavioral 

responses to different environmental stimuli.   

III. 5-HT receptors expressed in the brain of Drosophila 

Serotonin (5-hydroxytryptamine: 5-HT) regulates several behavioral and physiological 

processes in animals. It does so by functioning as a signaling chemical and eliciting its effects on 

distinctive types of receptors. For instance, serotonergic signaling plays an important role in 

controlling and regulating mood and sleep in mammals (Weiger, 1997; Blenau and Thamm, 

2011). In vertebrates, 5-HT receptors are classified into seven different classes. Each of these 

classes is further sub-categorized into subclasses based on their pharmacological properties 

(Nichols and Nichols, 2008). The diversity of 5-HT receptors makes the task of studying the 

functional contribution of each receptor to the overall effects of 5-HT extremely challenging. 

Thus, the use of a simpler system with fewer components such as the olfactory system of 

Drosophila is considered useful since it is easier to perform direct experiments in it. In adult 

Drosophila, two contralaterally projecting, serotonin-immunoreactive, deutocerebral (CSD) 

neurons project to several brain regions and are the sole source of endogenous 5-HT in the 

olfactory system of the fly (Kent et al., 1987; Dacks et al., 2006; Coates et al., in review). 

Serotonergic effects elicited by CSD neurons are mediated by five orthologs of the human 5-HT 

receptors, these are; 5-HT1A, -1B, -2A, -2B and -7 receptor types (Nichols and Nichols, 2008; 

Blenau and Thamm, 2011), which have been identified as GPCRs suggesting that 5-HT 

functions only as neuromodulator in Drosophila (Blenau and Thamm, 2011). For instance, 

exogenous 5-HT enhances the strength of the odor-evoked responses of ePNs (Dacks et al, 

2009). Furthermore, these receptor types are coupled to different G-protein alpha subunits; thus, 

they elicit different neuromodulatory effects on target neurons. For example, the 5-HT1A 

receptor type is coupled to Gi alpha subunit, which is responsible for inhibiting the synthesis of 
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cAMP in the cell, frequently eliciting an inhibitory response (Witz et al., 1990; Nichols and 

Nichols, 2008). 

IV. Olfactory system in Drosophila 

Flies detect odors with olfactory receptor neurons (ORNs) contained in the sensilla of the 

antennas and maxillary palps (Vosshall et al, 2000; Ng et al., 2002). The sensilla of an individual 

antenna collectively house ~1200 ORNs, while a single maxillary palp’s sensilla house ~120 

ORNs (Laissue and Vosshall, 2008).  ORNs send their axons to the antennal lobe (AL), the first 

olfactory processing center within the fly’s brain and the analog of the mammalian olfactory bulb 

(Vosshall et al, 2000; Ng et al., 2002; Stocker et al., 2009).  In general, neurons expressing the 

same olfactory receptors converge on 1 or few glomeruli of the 53 comprising the AL, (Vosshall 

et al., 2000; Laissue and Vosshall, 2008).  

Within the AL, ORNs synapse upon second-order neurons called the projection neurons 

(PNs) (Fig. 1A). There are roughly ~150 PNs extending dendrites to AL glomeruli (Okada et al., 

2009), and PNs convey olfactory information to downstream centers such as the mushroom body 

(MB) and the lateral horn (LH), two second-order olfactory centers known for their role in 

olfactory learning and memory (Heisenberg, 2003; Davis, 2005; Liang et al., 2013), and odor-

evoked innate behavior (Heimbeck et al., 2001), respectively.  The cell bodies of the PNs are 

distributed in three different clusters surrounding the AL, these are; the ventral, antero-dorsal, 

and lateral cell clusters. Both the antero-dorsal PNs (adPNs) and lateral PNs (lPNs) are 

cholinergic (Okada et al., 2009) (Fig. 1A). They are referred to as excitatory PNs (ePNs) and 

they project to both the MB and LH. In addition to ePNs, there are ~51 GABAergic cells in the 

ventral cluster named the ventral projection neurons (vPNs) and have been characterized using 

the two GAL4 lines, GH146 and Mz699 (Ito et al., 2007; Wilson and Laurent, 2005; Okada et 

al., 2009; Parnas et al., 2013). Mz699-GAL4 line labels ~45 neurons, while GH146-Gal4 labels 

the rest of the cells (~6/51) (Okada et al., 2009; Wilson and Laurent, 2005; Liang et al., 2013). 

Based on their transmitter content and morphology, it is evident that ePNs and vPNs serve 

different roles within the olfactory system. For instance, ePNs are uniglomerular (they 

individually innervate one glomerulus) (Liang et al., 2013) and send excitatory information to 

the MB and LH, whereas the vast majority of vPNs are multi-glomerular (send dendrites to ~5 

glomeruli each) and relay inhibitory input into the LH directly, bypassing the MB (Okada et al., 
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2009). Furthermore, the density of Mz699-labeled vPN innervations is not homogenous between 

glomeruli (e.g. DM2 and DM5 have dense innervation, while DL4& DL5 have light innervation) 

(Strutz et al., 2014). Together, this suggests that ePNs and vPNs differ in terms of the type of 

odor information they integrate, as well as the type of input they provide to higher brain regions 

(Wang et., 2003; Wilson et al., 2004; Silbering et al., 2008; Liang et al., 2013; Strutz et al., 2014) 

V. The integration of innate attractive odor information in the LH 

A growing body of work has demonstrated that LH directs odor-mediated innate 

responses of the fly. That is, a decision as to whether an odor is aversive or attractive is mainly 

made when odor signals are processed in the LH. The direct axonal projection of vPNs to the LH 

implies that they likely have a role in directing the odor-guided innate behavior of the flies. For 

instance, Parnas et al., 2013 argue that vPNs have a key role in improving the ability of the fly to 

distinguish closely related innately attractive food odors.  This improvement, they claim, is 

achieved via pre-synaptic inhibition applied by vPNs on the axon terminals of ePNs in the LH, 

which would enhance the ability to discriminate odors by suppressing weaker odor responses to 

produce a sharper neural representation. Another proposed role of vPNs is that they selectively 

suppress the activation of repulsion by inhibiting a group of third-order neurons named the 

ventro-lateral projection neurons (vlPrNs) (Liang et al., 2013) to elicit attraction to innately 

attractive odors (Strutz et al., 2014). Overall, previous observations imply that vPNs have a key 

role in shaping the flies’ innate responses to odors that have innately important values.  

5-HT is widely distributed neuromodulator that provides flexibility to sensory networks 

both in mammals (Nichols and Nichols, 2008; Petzold et al., 2009; Huang et al., 2017) and 

insects (Dacks et al., 2008; Dacks et al., 2009; Zhang and Gaudry, 2016). For instance, in 

Drosophila, 5-HT has a key role in changing the odor-evoked response of AL glomeruli (Dacks 

et al., 2009; Zhang and Gaudry, 2016). But how does endogenous 5-HT release in the olfactory 

system contribute to the modulation of flies’ responses to odors that have innately important 

values? Is this modulation occurring at one or multiple processing stages? vPNs as a population 

express all 5-HT receptor types (Sizemore and Dacks, 2016) and send exclusive processes to the 

AL and LH where CSD neurons also have processes, suggesting a potential modulatory role for 

endogenous 5-HT released by CSD neurons on vPNs in either or both processing stages. 

Considering the role of vPNs in innate attraction, such modulation would also potentially affect 
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flies’ responses to innately attractive odors. While it is known that serotonin modulates odor 

responses in the AL (Dacks et al., 2009; Zhang and Gaudry, 2016), the contribution of each 

serotonergic receptor type to the overall modulatory effect of serotonin, and subsequently, to 

innate odor-guided behavior in Drosophila, has never been examined. In this study, I used two 

different behavioral assays in conjunction with anatomical methods and genetic techniques to 

investigated the synaptic connectivity of CSD neurons and vPNs as well as the contribution of 5-

HT1A-mediated serotonergic neuromodulation to the perception of odor valence in the olfactory 

system of Drosophila. I found that CSD neurons synapse upon vPNs in two different processing 

stages, AL and LH, suggesting that vPNs receive simultaneous axo-dendritic and axo-axonic 

serotonergic input from CSD neurons in in the AL and LH, respectively. Further, I found that 

reducing 5-HT1A-mediated inhibition of vPNs increases the flies’ attraction to the naturally 

important odors apple cider vinegar (ACV) as well as balsamic vinegar (BV), but doesn’t affect 

their response to the aversive odor benzaldehyde (BZE). This suggests a selective, 5-HT1A-

mediated modulatory role of endogenous 5-HT on flies’ attraction towards odor carrying specific 

biological values. The outcome knowledge of this study is critical for better understanding of the 

serotonergic modulation of neural coding processes in the olfactory system of Drosophila and 

the consequences of this modulation on odor-driven innate behavior. 
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Chapter 2: Determining the Synatic Interaction Between vPNs and 

CSD Neurons. 

I. Abstract 

An organism must constantly adjust its behavior based on the continuously changing 

environment in which it’s immersed to ensure its survival. One way this is achieved is by the 

release of neuromodulators by modulatory networks. A modulatory neuron or nucleus can 

simultaneously affect multiple processing stages of a neural network. Due to the complexity of 

modulatory networks, the consequences of such multi-layer modulation, even in relatively 

simple neural networks, are not well understood. For instance, in the olfactory circuit of 

Drosophila, synaptic 5-HT is released by CSDs neurons in the AL and LH suggesting 

modulatory effects in these centers. Furthermore, vPNs, which express all 5-HT receptor types 

encoded in the fly’s genome, also send processes to AL and LH. Collectively, this suggests that 

the CSD neurons are modulating the vPNs through the release of serotonin. Yet, it is unknown in 

which of the two olfactory centers, AL or LH, CSD neurons synapse upon vPNs, and if a 

modulatory effect is elicited directly or indirectly by CSD neurons on vPNs.  In this chapter, I 

determine that CSD neurons synapse on vPNs in the AL, and to a lesser extent, in the LH. My 

data implies that the CSD neurons modulate olfactory processing simultaneously in two 

processing stages, AL and LH, by targeting both the dendrites and axon terminals of vPNs in 

these areas. 

II. Introduction 

  Neuromodulatory systems play crucial roles in modifying fundamental behavior in 

response to their changing environment and internal physiological states. These systems typically 

send projections that span several processing stages and are known to be extremely complex due 

to the extensive dynamic interactions between them. For instance, in mammals, serotonergic 

neurons originated within the Raphe nuclei project to several cortical and subcortical brain areas 

to modulate their activities (Hurley et al., 2004; Jacobs and Azmitia, 1992). Among these regions 

are the frontal cortex, a brain region known for its role in memory, language and complex 

behaviors (Brower and Price, 2001), and the amygdala, a part of the limbic system responsible 

for the perception of emotions and the control of aggression (Bzdok et al., 2012). 
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Simultaneously, however, the frontal cortex and amygdala receive input from multiple other 

modulatory entities such as ventral tegmental area (Aransay et al., 2015) and the locus coeruleus 

(Strawn and Geracioti, 2008). Moreover, studies have shown neural connections between the 

amygdala and frontal cortex. The simultaneous targeting of frontal cortex and amygdala by 

several modulatory entities as well as the dynamic interconnections between all previous 

modulatory nuclei, therefore, make it harder for us to investigate the consequences of modulating 

each of two interconnected networks that simultaneously receive inputs from the same 

modulatory source.  

 To study the consequences of simultaneously modulating two interconnected networks, I 

used a simpler system, the well-characterized olfactory system of Drosophila melanogaster. 

Olfaction in the vinegar fly starts when ORNs detect odors and send information to the AL for a 

primary processing. In the AL, the ORNs synapse on the second order projection neurons (PNs) 

which convey olfactory signals to downstream olfactory networks, such as the later horn LH, a 

well-studied higher olfactory center known for its role in directing innate responses to odors 

(Fig. 1A).  vPNs were obvious, great candidates because they collectively express all 5-HT 

receptor types. Moreover, this population sends dendrites to the AL and exclusive projections to 

the LH, bypassing other olfactory centers. Thus, vPNs and CSD neurons both innervate two 

anatomically-separate levels of the olfactory network, which makes them an ideal model for 

studying the simultaneous modulation of  a population of neurons in multiple processing stages 

(Fig. 1A and 1B).  There are ~51 vPN cell bodies that are located ventral to the AL. Out of the 

51 vPNs, ~6 are labeled by the GH146-Gal4 line (Stocker et al., 1997) and found to be 

GABAergic (Wilson and Laurent, 2005; Jefferis et al., 2007; Liang et al., 2013). The other ~45 

cells are labeled by the Gal4 line Mz699 (Lai et al., 2008; Okada, et al., 2009). Out of the ~45 

neurons, ~39 show multi-glomerular innervation in the AL and reported to be GABAergic 

(Okada et al., 2009; Strutz et al., 2014). The other 6 were found to be uni-glomerular and express 

the neurotransmitter acetylcholine (Wilson and Laurent, 2005; Liang et al., 2013; Strutz et al., 

2014). Several studies have suggested a vital role for vPNs in coding and integrating odor 

features in the olfactory circuitry of fruit flies (Strutz et al., 2014). However, to my knowledge, 

no study has looked at the modulatory effects of endogenous 5-HT on vPNs’ role in odor-guided 

behavior.  CSD neurons are the sole source of synaptic 5-HT in the fly’s olfactory centers (Kent 

et al., 1987; Dacks et al., 2006; Coates et al., in revision). They have a broad innervation pattern 
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demonstrated by sending processes to both the primary olfactory center, AL, and the downstream 

center, LH, among other olfactory centers (Dacks et al., 2006) (Fig. 1B). They are also known 

for playing a crucial role in modulating olfactory processes in fly brain (Dacks et al, 2009; Zhang 

and Gaudry, 2016). Using a protein trap technique in which Gal4 is inserted to the coding intron 

of each of the 5 serotonin receptors (Gnerer, et al., 2015), Sizemore and Dacks, (2016) showed 

that vPNs as a population express all 5 types of 5-HT receptors subjecting them to a potential 

serotonergic modulation. Additionally, by driving synaptotagmin.eGFP (Zhang et al., 2002) in 

CSD neurons, (Coates et al, in revision) showed GFP puncta expressed by the CSD neurons in 

both the AL and LH, indicating that CSD neurons potentially have synaptic output in both 

olfactory centers. Based on these observations, a couple of questions could be asked; Do vPNs 

receive synaptic input from the CSD neurons? If so, at which of the two olfactory centers do the 

CSD neurons synapse onto vPNs? Do the CSD neurons modulate both the input and output 

domains of vPNs at different locations? We therefore used the GFP Reconstitution Across 

Synaptic Partners (GRASP) to demonstrate that vPNs receive input from the CSD neurons 

mainly in the AL and to a lesser degree in the LH.  

III. Materials &Methods 

Fly stocks: Flies were maintained on Nutri-Fly “German Food” Sick Fly Formulation at 50% 

humidity and 25°C, on a 12:12 dark-light cycle. The following fly stocks were used: UAS-RFP; 

LexAop-GFP (BDSC #32229), UAS-GFP (BDSC #32185), R60F02-Gal4 (BDSC #48228), 

LexAop–spGFP11::CD4;UAS–spGFP1-10::Nrx (provided by Dr. Nirao Shah), MB465C split-

Gal4 (Aso et al., 2014), LexAop-GFP (BDSC #32207), GMR76H03-LexA (BDSC #54954), 

GMR37E10-LexA (BDSC #54200), T(2;3)ap[Xa], ap[Xa]/CyO; TM3, Sb (BDSC #2475).  
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Table 1. Drosophila genotypes used in chapter 2 

Figure # Genotypes (Transgenes with Bloomington number) 

Figure 2A1-3 & 2B1-2 GMR76H03-LexA (BDSC #54954) 

Figure 2C1-3 & 2D1-2 GMR37E10-LexA (BDSC #54200) 

Figure 3A, 3B, & 3D R76H03-LexA/UAS-RFP;MB465c split-Gal4/LexAop-GFP 

Figure 3C, 3E R76H03-LexA/ LexAop–spGFP11::CD4; MB465c split-Gal4/ UAS–
spGFP1-10::Nrx 

Figure 3F, 3G, & 3I R37E10-LexA/UAS-RFP;MB465c split-Gal4/LexAop-GFP 

Figure 3H, 3J R37E10-LexA/ LexAop–spGFP11::CD4; MB465c split-Gal4/ UAS–
spGFP1-10::Nrx 

 

Antibodies: The following primary antibodies and dilutions were used for neuroanatomical 

characterization: 1:1,000 Chicken anti-GFP (Abcam, #ab13970), 1:5,000 Rabbit anti-5-HT 

(Immunostar, #20079), 1:250 Rabbit anti-DsRed (Clontech #632496), and 1:50 Mouse anti-

Bruchpilot (Developmental Studies Hybridoma bank: mAbnc82). Mouse anti-GFP (Sigma 

#G6539) was used in GRASP protocols as it only recognizes the reconstituted GFP (Gordon and 

Scott, 2008) Because this antibody is raised in mouse and so is the commonly used neuropil 

antibody, anti-Bruchpilot nc82, subsequent images of GRASP immunoreactivity are shown 

without a neuropil label (Wagh et al., 2006). The following secondary antibodies were used at a 

1:1000 dilution: Donkey anti-Mouse 488, Donkey anti-Rabbit 488, Donkey anti-Rabbit 546, 

Donkey anti Goat-546, Goat anti Mouse-633. 

Stable lines: The stable line GMR76H03-LexA;GMR-MB465CspGal4 was established by 

crossing female virgins from each of GMR76H03-LexA and MB465C split-Gal4 lines 

individually with the balancer line 2475 (T(2;3)ap[Xa], ap[Xa]/CyO; TM3, Sb). F1 progenies 

from both crosses with specific traits (to ensure that no recombination processes across the 

associated chromosomes flies had occurred) were then collected and self-crossed. Specifically, 

flies bearing the genotypes (vPN-LexA/CyO;III/TM3) & (II/CyO;MB465C/TM3) were self-

crossed. Finally, progenies bearing the genotypes (vPN-LexA/vPN-LexA;III/TM3) & 

(II/CyO;MB465C/MB465C) from both crosses were collected and crossed with each other to 
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generate the final stable line (vPN-LexA/CyO;MB465C/TM3). The second stable line, 

GMR37E10-LexA;GMR-MB465CspGal4 was made using the same method described above.  

Immunocytochemistry: Brains were dissected in Drosophila external saline and fixed in 4% 

paraformaldehyde for 30-45 minutes on ice and then washed (4 times, 15 minutes each) in PBST 

(Phosphate Buffered Saline with 0.5% Triton-X100). To minimize tracheal artifacts, brain were 

then treated with an ascending-descending ethanol series (30%, 50%, 70%, 90%, 100% 3xs, 

90%, 70%, 50%, 30%), with each wash lasting 5 minutes. Brains were then blocked for 6o 

minutes in 2% BSA (Bovine Serum Albumin) (Jackson ImmunoResearch; #001-000-162) in 

PBST. Brains were then incubated in a blocking solution containing 5mM sodium azide and 

diluted primary antibodies at 4°C. After incubation, brains were washed, blocked (same as 

previous steps), and incubated in secondary antibodies diluted in block solution with 5mM 

sodium azide at 4°C for 24 hours. Brains were then washed in PBST (2 times, 15 minutes each) 

and PBS (2 times, 15 minutes each), run through an ascending glycerol series (40%, 60%, & 

80%), and mounted in VectaShield (Vector Labs Burlingame, CA #H-1000). Brains were 

scanned using a Olympus confocal microscope FV1000 (20x, 40x or 60x oil immersion lens). 

All Images were acquired using Olympus FluoView software, and processed using CorelDraw 

X4.  To test if the CSD neurons are anatomically presynaptic to vPNs, each stable line was 

crossed with LexAop–spGFP11::CD4;UAS–spGFP1-10::Nrx, and brains of F1 progeny were 

then dissected and run through standard immunocytochemistry protocols (see below) before 

being scanned for GRASP signals. 

IV. Results 

To investigate the anatomical overlap of CSD and vPNs projections in the primary (AL) 

and secondary (LH) olfactory processing regions, I first used the FlyLight Gal4 database 

(http://flIb.janelia.org/cgi-bin/flew.cgi), to identify LexA lines in which the vPNs are expressed. 

The two lines that I chose to use are R76H03-LexA and R37E10-LexA (Fig. 2). In R76H03-

LexA, vPNs are the only neurons expressed in either the AL or the LH (Fig. 2 A1-3). In R37E10-

LexA, the vPNs are the only neurons expressed in the AL, though, a cluster of LH-LNs was also 

observed within the LH in addition to the vPNs (Fig. 2C1-3). R76H03-LexA is expressed by 12-15 

neurons of the ~51 vPNs, while the other line, R37E10-LexA, labels 8-12 vPNs. Moreover, the 

two lines drive LexA expression in several glomeruli in the ALs. R76H03-LexA occupies 17 
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glomeruli (Fig. 2B1; DP1m, DP1l, VL2p, VI1, DL2v, DC1, DC3, VL2a, DA4m, DA4l, DC2, 

VM2, DM1, DL2d, VA1d, VA6, and DA2) and R37E10-LexA occupies 9 glomeruli (Fig. 2D1; 

VA4, DA1, VA1lm, VA2, DM1, DL2d, VA1d, VA6, and DA2). Thus, the two LexA lines only 

overlap in DM1, DL2d, VA1d, VA6, and DA2. In both lines, I observed that vPNs seem to differ 

in the width of their innervations. For instance, in some cases a glomerulus would receive a very 

sparse innervation, while in other cases, a glomerulus might receive a dense innervation (Fig. 

2B2 & 2D2).  

 Data from our lab using DsCam-GFP, a dendritic marker found in developing neurons 

(Wang et al., 2002), shows that vPNs receive synaptic input exclusively in the AL, which is 

consistent with previous studies on the vPNs (Ito et al., 1997: Parnas et al., 2013). To investigate 

the olfactory center at which vPNs receive synaptic input form CSD neurons, I used R76H03 and 

R37E10-LexAs which drive expression in the vPNs, and MB465c split-Gal4 which is expressed 

only in the CSDs to generate stable lines for testing GRASP (see methods). The two stable lines 

had the genotypes R76H03-LexA;MB465c split-Gal4 & R37E10-LexA;MB465c split-Gal4. This 

enabled us to use two binary systems (Gal4 & LexA) to simultaneously drive the expression of 

the two transgenes UAS and LexAop in the two populations of neurons. Next, I crossed each of 

the stable lines individually to a reporter line UAS-RFP;LexAop-GFP, so that the expression of 

RFP and GFP was driven in CSD neurons and vPNs, respectively. I observed clear physical 

overlap of the vPNs and CSD neurons in both the AL (Fig. 3D & 3I) and the LH (Fig. 3B & 3G), 

suggesting potential connectivity between the two populations. 
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Next, I used GFP Reconstitution Across Synaptic Partners (GRASP) (Feinberg et al., 

2008) to investigate the synaptic connectivity between vPNs and CSD neurons. In this technique, 

the expression of a membrane bound GFP fragment is driven by Gal4 expressing neurons, while 

the other membrane bound GFP fragment is expressed in different, LexA-expressing neurons. If 

two neurons are in close physical proximity to each other, the two fragments reconstitute and a 

functional GFP is formed. The formation of a complete and functional GFP indicates that the two 

neurons are likely contacting each other. To investigate whether CSD neurons and vPNs are 

actually synapsing upon each other and the directional flow of the neural signal (i.e. whether the 

CSD neurons are synapsing onto vPNs), I used Neurexin GRASP (LexAop–

spGFP11::CD4;UAS–spGFP1-10::Nrx) (Fan et al., 2013). Neurexin is a presynaptic, 

transmembrane protein important for the appropriate development and formation of synapses. 

Specifically, neurexin binds to a postsynaptic protein named neuroligin to physically connect 

neurons to each other (Knight et al., 2011).  In this UAS-line, a fragment of GFP is inserted into 

the gene coding region for the presynaptic protein neurexin, which allows the GFP to be 

constrained to the presynaptic regions of the Gal4-expressing neurons but not LexA expressing 

neurons (i.e. to CSD neurons but not vPNs), which avoids any potential artifact due to the 

neurons being in close physical proximity, and thus touching, but not synapsing onto each other. 

By crossing this line to R76H03-LexA;MB465c split-Gal4 line, I observed strong GRASP signal 

distributed throughout the AL (Fig. 3E). I also observed sparse GRASP signal in the LH (Fig. 

3C). Likewise, using the second stable line R37E10-LexA;MB465c split-Gal4 I also observed 

strong GRASP signal throughout the AL (Fig. 3J) and sparse GRASP signal in the LH (Fig. 3H).  

Using an activity-dependent form of GRASP (synaptobrevin GRASP), our lab also demonstrated 

that the CSDs synapse onto R76H03 vPNs (Coates personal communication) which validates 

both the GRASP technique and my results. Together, based on the data I provide above, I 

demonstrate that CSD neurons synapse onto the dendrites and axons of vPNs in two processing 

stages, AL and LH, respectively. 

 

 

 

 



	

	

15	
 

 

 

 

 

 

 



	

	

16	
V. Discussion 

Neuromodulation is crucial for adjusting an organism’s behavior based on its 

physiological state, including hunger (Farhan et al., 2013), time of the day (Linn and Roeloffs, et 

al., 1986), aggression state (Alekseynko et al., 2010, as well as external cues. Neuromodulatory 

neurons/nuclei usually project widely throughout the nervous system and can potentially affect 

multiple circuits simultaneously to adjust their dynamics and activities. For example, in 

mammals, serotonergic neurons originating in the raphe nuclei extend projections to two 

synaptic layers in the olfactory system, the olfactory bulb (OB) (Mclean and Shipley, 1987) and 

the olfactory cortex (Lottem et al., 2016). The neural interconnections between the OB and 

olfactory cortex are complex, as raphe neurons simultaneously synapse onto different 

populations of neurons within both regions and can affect them in distinct ways (Brunert et al., 

2016; Lottem et al., 2016). Further, both regions receive modulation from other neural circuits 

(Mclean and Shipley, 1987; Lottem et al., 2016; Brunert et al., 2016). Indeed, despite extensive 

research, the consequences of neuromodulatory processes across multiple synaptic layers and the 

nature of their dynamic integration remains largely unexplored. The modulation of vPNs by the 

CSD neurons is a great model to investigate neuromodulation across synaptic layers for two 

reasons. First, compared to the Raphe nuclei which are comprised of tens of thousands of 

neurons, the CSD neurons consist of one pair of identified neurons that are the sole source of 

synaptic 5-HT in the two olfactory centers, AL and LH (Coates et al., in revision; Zhang & 

Gaudry 2016). Secondly, vPNs form exclusive connections between these two centers, and they 

express all 5-HT receptor types. Thus, due to the relative simplicity and well-characterization of 

the components of the vPNs/CSD neurons model, in this chapter I use this model to investigate 

whether it is possible for neurons that span two processing stages to receive synaptic input from 

a single modulatory neuron. I could determine the olfactory centers in which the CSD neurons 

provide synaptic input to the vPNs using Neurexin GRASP, which further allowed me to test if 

the CSDs are presynaptic to the vPNs.  My data shows GRASP signal in the AL and LH, 

suggesting that the CSD neurons synapse on vPNs in both these regions. Collectively, this 

suggests that vPNs receive dendritic serotonergic modulation in the AL and a weaker axonal 

serotonergic modulation in the LH.  
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The vPN cluster is located ventral to the AL and consists of ~51 GABAergic neurons 

(Wilson and Laurent, 2005; Lai et al., 2008; Strutz et al., 2014). They selectively respond to 

olfactory information of innately-attractive odors (Strutz et al., 2014; Liang et al., 2013) and 

silencing vPNs eliminated behavioral attraction in the flies (Strutz, et al., 2014). Studies have 

shown that vPNs transfer olfactory signals processed in the AL to the LH by extending dendrites 

to the AL and axons to the LH. (Lai et al., 2008; Tanaka et al., 2012: Parnas et al., 2013). 

Additionally, Strutz, et al. (2014) reported that most GABAergic vPNs are oligo-glomerular 

(innervating ~5 glomeruli each) and send heterogeneous dendritic innervation to AL glomeruli, 

which is consistent with the projection patterns of the LexA lines I used in this study (Fig. 2 B1 

& D1).  

The presence of GRASP signal of CSD neurons synapsing onto the dendrites of the vPNs 

in the AL suggests that the CSD neurons alter the excitability of vPNs via an axo-dendritic 

mechanism. The question here is, how does endogenous 5-HT released by CSD neurons affect 

the synaptic integration of ORNs onto vPNs? Endogenous 5-HT has been shown to elicit 

inhibitory effects on the first olfactory centers in insects and mammals via direct and indirect 

mechanisms. For instance, a recent study in mice by Huang et al, (2017) showed that 5-HT 

signaling via the receptor type 5-HT1 elicits direct inhibitory effects on the mitral cells in the OB 

of mice. Further, endogenous 5-HT released in the olfactory bulb by raphe nuclei neurons was 

found to inhibit the activities of ORNs indirectly when 5-HT binds to its 5HT-2C receptor type 

expressed in GABAergic periglomerular cells and causes the release of GABA from them 

(Petzold, 2009). In Drosophila, optogenetic activation of CSD neurons caused a predominant 

inhibition in the AL glomeruli (Zhang and Gaudry, 2016). This inhibition is thought to be 

applied directly to LNs which express the 5-HT receptor types 1A (Sizemore and Dacks, 2016). 

Based on these observations and on my GRASP data, I suggest an additional direct serotonergic 

inhibitory mechanism implicated by CSD neurons on vPNs in the AL.  

vPNs express all the 5 types of 5-HT receptors (Sizemore and Dacks, 2016) that affect 

different second messenger pathways. Two receptor types, 5-HT1A and 5-HT1B are GPCRs that 

are negatively coupled to the second messenger adenylate cyclase (Witz et al., 1990; Saudou et 

al., 1992; Nichols and Nichols, 2008). Therefore, the suggested inhibition elicited by CSD 

neurons on vPNs is potentially mediated by one or both these receptors and achieved by reducing 
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cAMP concentrations in dendritic terminals of vPNs. However, it should be noted that many 

vPN neurons also express the other types of 5-HT receptors, 5-HT2A, 2B and 5-HT7 (Sizemore 

and Dacks, 2016), which are GPCRs coupled with excitatory G subunits (Witz et al., 1990; 

Saudou et al., 1992; Nichols and Nichols, 2008). Therefore, it is possible that the inhibitory 

effects elicited by CSD neurons on vPNs are concomitant with excitatory effects. Moreover, the 

protein trap technique that was used for visualizing the expression of 5-HT receptors in vPNs 

(Sizemore & Dacks, 2016) does not provide the specific location at which these receptors are 

being expressed (AL vs LH) nor it does tell us which vPNs co-express which receptors. Taken 

together, CSD neurons might be providing compartment specific modulation via differential 

localization of each 5-HTR expressed by a given vPN.  

The LH plays a crucial role in processing innate-odor olfactory information. Olfactory 

signals about attractive odors are conveyed to the LH by ePNs and vPNs through spatially 

distinctive pathways (Ito et al., 1997; Stocker et al., 1997; Wang et al., 2014). Specifically, ePNs 

transfer olfactory information to both MB and LH via mALT and IALT, while vPNs send 

olfactory information to LH directly via mlALT, bypassing the MB (Lai et al., 2008). Therefore, 

while MB receive only excitatory input from the ePNs, LH receive parallel excitatory and 

inhibitory input via ePNs and vPNs, respectively (Jefferis et al., 2001; Lai et al., 2008; Okada et 

al., 2009: Tanaka et al., 2012; Liang et al.,2013; Wang et al., 2014). In addition, ePN and vPNs, 

the LH circuitry includes several types of third-order neuron populations. One in particular, the 

ventrolateral projection neurons (vlPrNs), have been well studied as targets of the vPNs. The 

Mz699 line labels ~86 vlPrNs (Parnas et al., 2013), which send dendrites to the LH and axonal 

projections to a third order olfactory center called the ventrolateral protocerebrum. vlPrNs play a 

key role in fly responses to food and pheromone odors (Parnas et al., 2013; Liang et al., 2013). In 

response to food and pheromone odors, vlPrNs receive excitatory and/or inhibitory inputs from 

ePNs and vPNs, respectively. The significance of receiving parallel inputs by vlPrNs in the LH 

and the consequences of changing the balance of inhibition/excitation input received by vlPrNs 

on odor coding has been explained by two contradicting models that suggest different circuitries 

(Fig. 4). In the LH, my data shows GRASP signals on the axon terminals of vPNs suggesting a 

presynaptic axon-axonal modulation by the CSD neurons onto vPNs in this region. The 

consequences of this modulation on odor integration in the LH, therefore, could be interpreted 

differently based on each of the two models.  
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The first model, presented by Parnas et al, (2013), suggested that vPNs synapse upon the 

axon terminals of ePNs in the LH (Fig. 4A). They also suggested that the release of GABA from 

the axon terminals of vPNs causes a decrease in the synaptic strength of ePNs in the LH. The 

presynaptic inhibition of ePNs by vPNs would serves as a "high-pass" filter mechanism which 

would enhance the flies’ ability to distinguish between closely related odors by suppressing 

weaker responses to produce a sparser representation. They proposed that this increase would 

decrease the fly’s ability to sense weak olfactory stimuli. Therefore, this inhibition would only be 

engaged when the fly encounters a strong olfactory stimulus. The GRASP signal I observed in 

the LH indicates that vPNs receive serotonergic input from CSD neurons. This input could be 

excitatory or inhibitory based on the receptors expression of vPNs in this compartment. 

Therefore, CSD neurons could either increase or decrease the quantal content and/or excitability 

of vPNs, and consequently, increase or decrease the ability of the flies to sense or differentiate 

between odors. Thus, the CSD neurons could potentially be playing a role in equalizing the 

balance between two features of the olfactory system, sensitivity and contrast, in the fly. This 

suggestion could be supported by studies in moths showed that the 5-HT levels fluctuate through 

the day and are at their highest during the time of day when moths are engaged in odor-guided 

behavior (Gatellier et al., 2004; Kloppenburg et al., 1999), which suggests a potential role for 5-

HT in increasing the moths’ sensitivity to odors, potentially by shifting the balance off the 

contrast.  

In a second model, Liang et al, (2013) suggested that ePNs provide excitatory synaptic 

input to vlPrNs in the LH and that vPNs only respond to attractive food odors. They also 

suggested the presence of a parallel inhibitory mechanism in which vPNs synapse onto vlPrNs, 

but not the ePNs as is proposed in the Parnas model (Fig. 4B). Since only attractive food odors 

would elicit activities in vPNs, this inhibition is specific to attractive food odors, but not 

pheromones. Therefore, the inhibition is absent when the fly encounters a repulsive odor or a 

pheromone. This selective, parallel inhibitory mechanism, they argued, provides the fly with the 

ability to segregate biologically important information, such as food and pheromone signals, into 

different processing channels in the higher olfactory centers. Moreover, it shows a crucial role 

for vPNs in mediating fly responses to innately attractive odors in the LH, a role that was further 

supported by Strutz et al, (2014). Based on this model, my data would suggest that 5-HT released 

by the CSD neurons indirectly modulates the synaptic integration of vlPrNs. That is, the CSDs 
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would synapse onto the vPNs, axo-axonically, to alter vPN inhibition of vlPrNs. This could 

potentially cause two consequences: first, 5-HT can enhance the process of segregating olfactory 

signals carrying different biological values, i.e. food vs. pheromones, to elicit distinctive 

behavioral responses depending on the physiological state. Secondly, by altering the synaptic 

strength of the vPNs, vlPrNs will receive stronger or weaker inhibitory input when the fly 

encounters attractive odors, which would eventually affect the strength of the fly attraction them 

(see chapter 3) 

 

 

 

Neuromodulation alters the synaptic or intrinsic properties of a neuron and 

neuromodulators such as 5-HT could have either an excitatory or inhibitory modulatory effect on 

the vPNs depending on the receptor type being activated. The 5-HT receptors types encoded the 

genome of the fly can be categorized as excitatory (5-HT2A, 5-HT2B & 5-HT7) and inhibitory 

(5-HT1A & 5-HT1B) receptor types. 5-HT signaling via these receptors mediates several cellular 

mechanisms that cause changes in the intrinsic and synaptic properties of target neurons which 

occur over different time scales. For instance, in Aplysia, tail withdrawal reflexes can be 

modulated via a serotonergic interneuron that enhances the strength of the synapse between the 

siphon sensory neuron and the motor neuron responsible for retraction of the gill (Byrne and 

Kandel, 1996; Klein et al., 1982). The axo-axonic modulation is achieved when 5-HT activates 

the cAMP second messenger cascade in the siphon sensory neuron (Klein et al., 1982; Byrne and 
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Kandel, 1996). cAMP activates PKA, which decreases K+ conductance and makes the membrane 

of the sensory neurons more resistant. The increase in membrane resistance causes an increase in 

the numbers of action potentials elicited and action potential width, thus, increases Ca+2 influx 

into the sensory neuron. The increase in Ca+2 influx, in turn, increases the probability of vesicle 

fusion by mobilizing more vesicles from the reserve pool, thus, enhances the quantal content of 

the sensory neuron and creates longer and wider EPSPs in the motor neurons (Klein et al., 1982 

Byrne and Kandel, 1996). In moths, a 5-HT mediated change in K+ conductance was observed in 

AL neurons in M. sexta (Mercer et al., 1995; Kloppenburg and Hildebrand, 1995). This change, 

similarly, prolongs the action potential and causes an increase in the influx of Ca++ via voltage-

gated Ca++ channels (Mercer et al., 1995), suggesting this serotonergic modulation is likely 

mediated by the similar cAMP pathway explained in Aplysia.  

Another second messenger system that can potentially mediate the 5-HT enhancement of 

gill withdraw reflex in Aplysia is the membrane associated enzyme PLC. PLC initiates the 

cleaving of PIP2 to DAG and IP3. DAG activates PKC, which phosphorylates, and thus activates, 

presynaptic proteins responsible for mobilizing more glutamate-filled vesicles from their reserve 

pools to become ready to be fused to synaptic membrane. On the other hand, IP3 can also bind to 

its receptors on the endoplasmic reticulum and cause higher concentrations of Ca++ to be 

released.  All previous pathways lead to an increase in the quantal content of the siphon sensory 

neuron in Aplysia, and potentially in this case, to vPNs. Contrary to 5-HT2 and 5-HT7 receptor 

types, 5-HT1 type is negatively couple to adenylate cyclase. It reduces the rate at which ATP is 

converted to cAMP, and thus, elicits inhibitory effects the cell.  Based on the type of receptors 

and the circuitry of the neural networks in which they are expressed, changes in intrinsic and 

synaptic properties can lead to different behavioral outputs that provide the organism with the 

ability to adjust its behavior according to its physiological state and environmental stimuli.   

Taken together, I demonstrated that CSD neurons synapse onto vPNs in two different 

synaptic levels, AL and LH, and that CSD neurons provide vPNs with a simultaneous dendritic 

synaptic modulation in the primary olfactory center, AL, and an axonic synaptic input in the LH. 

This is an evidence that a one population of neurons spanning two different synaptic layers could 

simultaneously receive neuromodulatory input from the same source in the two layers. The 

consequences of the serotonergic modulation of vPNs by the CSD neurons could be interpreted 
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differently based on the pattern of connectivity between vPNs, ePNs, and the vlPrNs in the LH. 

In the model circuitry that was suggested by Parnas and his colleagues (Fig. 4A), the modulation 

of vPNs by CSD neurons would causes a direct alteration in the neural activity in ePNs, and 

consequently, in vlPrNs, which affects how the olfactory system process signals related to 

olfactory system features such as contrast and sensitivity. Converse to this, Liang and Colleagues 

suggested a different LH circuitry in which vlPrNs receive direct dendritic inhibition from vPNs 

(Fig. 4B), thus, different consequences of the serotonergic modulation might be resulted. In the 

next chapter, I will provide a detailed discussion of the behavioral consequences of serotonergic 

modulation of vPNs output in the LH based on the two previous models. 
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Chapter 3: Determine the Contribution of 5-HT1A Receptor 

Expression by vPNs on Olfaction-mediated Behavior. 

I. Abstract: 

In an ever-changing environment, an organism must constantly adjust its behavior based 

on external cues and its internal physiological states. This adaptation is mediated in sensory 

networks, including the olfactory system, by several neuromodulators such as the monoamine 

serotonin (5-HT). While the role of serotonergic modulation in insect behavior has been well 

studied, little is still known about the role of each individual receptor type in modulating innately 

olfactory responses. Furthermore, the degree to which 5-HT can modulate responses to innately 

important odors is also not well understood. In Drosophila, one population of olfactory neurons, 

vPNs, are crucially involved in innate attraction to food odors, and express all 5 types of 5-HT 

receptors. In this chapter, I use RNA interference to demonstrate the effects of reducing the 

expression of the 5-HT1A receptor type, in vPNs on flies’ responses to innate attractive and 

repulsive odors. Using two behavioral assays, box trap and T-maze assays, I demonstrate that 

reducing the expression of 5-HT1A receptors in vPNs increases the flies’ attraction to the innate 

attractive odors apple cider vinegar (ACV) and balsamic vinegar (BV). Further, I show that this 

reductions in the expression of 5-HT1A does not affect flies’ response to aversive odors. 

Therefore, my data suggests an important modulatory role for endogenous 5-HT elicited by CSD 

neurons on innate olfactory responses of flies towards attractive food odors mediated via 5-

HT1A receptor in vPNs.    

II. Introduction:  

Animals’ innate responses to environmental stimuli are critical for their survival. Unlike 

learned responses, innate behavioral responses do not require prior experience. For instance, 

naive hawkmoths are innately attractive to female pheromones immediately after eclosion. Innate 

response, however, are subjected to modulation and it is important for these responses to occur in 

the right context to be most beneficial. For instance, serotonin increases the sensitivity of male 

moths to female pheromones at certain time of the day which they are searching for mates 

(Gatellier et al., 2004; Kloppenburg et al., 1999: Linn and Roelofs, 1986). To ensure the 

efficiency of behavioral responses to innately important stimuli, therefore, animals’ sensory 
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systems have evolved complicated mechanisms that are regulated by neuromodulators such as 5-

HT. 

5-HT has been found in the primary olfactory centers of both mammals and insects. In 

mammals, the olfactory bulb (OB) receives dense innervation from the raphe nuclei neurons. 

These innervations target olfactory glomeruli where they release synaptic 5-HT to modulate their 

odor-evoked activities. For instance, 5-HT released by the serotonergic axonal varicosities in the 

OB alters the sensory gain in the olfactory sensory neurons (ORNs) based on the vigilance state 

of the animal (Petzold et al., 2009). Similarly, in Drosophila, 5-HT released by CSD neurons in 

the AL modulates olfactory information processing (Dacks et al., 2008; Dacks et al., 2009; 

Zhang and Gaudry, 2016). The effects of 5-HT on its neuronal targets are determined by 

distinctive types of receptors. However, the diversity of the individual raphe neurons in their 

morphology and physiology as well as the diversity of 5-HT receptors in mammals makes the 

task of studying the functional contribution of each receptor individually to the overall effects of 

5-HT on innate behavior extremely challenging. Thus, the use of a simpler system, such as the 

olfactory system of Drosophila, is ideal. In Drosophila, five 5-HT receptor types are expressed 

as opposed to 14 subtypes in mammals (Nichols and Nichols, 2008). 5-HTR subtypes are 

expressed by different classes of AL neurons, these are; 5-HT1A, -1B, -2A, -2B and -7 (Nichols 

and Nichols, 2008; Blenau and Thamm, 2011). These receptors are coupled to different G-

protein alpha subunits, and thus, they elicit different neuromodulatory effects on target neurons.  

In Drosophila, odors are detected by ORNs, which convey olfactory signals to the AL 

where they are initially processed. Two types of PNs, cholinergic ePNs and inhibitory vPNs, 

then transfer these signals to higher olfactory centers in the brain, including the mushroom body 

(MB) and lateral horn (LH). vPNs are exclusively activated by innately attractive odors (Liang, 

et al., 2013), and are necessary for olfactory attraction (Strutz et al., 2014). Although 

contradicted to some degree in the precise mechanism, two studies have shared the conclusion 

that vPNs inhibit third-order LH neurons, the vlPrNs (“ventrolateral Protocerebral neurons”), 

either directly (Liang et al., 2013) or indirectly (Parnas et al., 2013) to alter the flies’ response to 

innate attractive food odors . The inhibitory input of vPNs to vlPrNs is mediated by release of 

GABA in the LH (Parnas et al., 2013; Liang et al., 2013), and eliminating the synthesis of 

GABA in vPNs causes a decrease in flies’ attraction to food odors (Strutz et al., 2014). vPNs 
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exclusively connect the AL and LH, and collectively express all 5-HT receptor types encoded in 

the fly genome (Sizemore and Dacks, 2016). In chapter 2, I demonstrated that CSD neurons 

synapse upon vPNs in both the first- and second-order olfactory centers AL and LH, 

respectively. This data suggests that vPNs receive serotonergic modulatory input from the CSD 

neurons in both centers which likely shapes the flies’ response to innately important stimuli. 

However, it is not known how each of 5-HT receptor types expressed in vPNs individually 

participates in modulating the innate behavior.  In this chapter, my goal was to determine the role 

of the 5-HT1A receptor expression in vPNs in modulating behavioral responses to innate 

attractive and aversive odors. I hypothesized that by reducing the inhibitory effect that vPNs 

receive from CSD neurons, vPNs would potentially elicit more inhibition on vlPrNs, and thus, 

attraction in flies would be stronger. My data supports my hypothesis and shows that reducing 

the expression of the inhibitory receptor type 5-HT1A in vPNs increases flies’ responses to the 

naturally attractive odors ACV and BV, and that rescuing the expression of 5-HT1A in vPNs is 

sufficient for returning the response to baseline. Further, consistent with recent study showed 

that vPNs do not respond to aversive odors (Liang et al., 2013; Strutz et al., 2014), my data 

shows that reducing the 5-HTA1 receptor type did not alter responses to an innately aversive 

odor, suggesting the absence of a serotonergic modulatory mechanism on aversion in flies. 

III. Materials & Methods 

Fly stocks: Flies were maintained on a Nutri-Fly “German Food” Sick Fly Formulation 

at 50% humidity and a 25°C on a 12:12 dark-light cycle.  The following fly lines were used: 

Mz699-Gal4 (provided by Dr. Tzumin Lee), UAS-5HT1a-RNAi (BDSC #33885), and UAS-

5HT1a (BDSC #27630). Mz699-Gal4 and UAS-5HT1a-RNAi or were used as parental lines in all 

behavioral experiments.  

Rescue Stable line: The stable line UAS-5HT1a-RNAi;UAS-5HT1a was established by crossing 

female virgins from each of UAS-5HT1a-RNAi and UAS-5HT1a lines individually with the 

balancer line 2475. F1 progenies from both crosses with specific traits (to ensure that no 

recombination processes across the genome of the flies had occurred) were then collected and 

self-crossed as described in Chapter 2. Finally, F2 progenies from both crosses were collected 

and crossed with each other to generate the final stable line. The rescue line was maintained on 

the same fly food and conditions mentioned above. 
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Table 2. Drosophila genotypes used in chapter 3. 

Figure # Genotypes (Transgenes with Bloomington number) 

Figure 5B & 5E W1118 wild type (BDSC #6326) 

Figure 5C, 5F, 5H-I Parental lines: 

• Mz699-Gal4 (provided by Dr. Tzumin Lee) 

• UAS-5HT1A-RNAi (BDSC #33885) 

F1 flies: 

• UAS-5HT1A-RNAi;Mz699-Gal4 

Figure 5G Parental lines: 

• Mz699-Gal4 (provided by Dr. Tzumin Lee) 

• UAS-5HT1A-RNAi (BDSC #33885);UAS-5HT1A (BDSC #27630)  

F1 flies: 

• UAS-5HT1A-RNAi;UAS-5HT1A/Mz699-Gal4 

 

Box Trap Assay: A 1000 microliters pipette tips box was used to construct the trap. The box has 

a tray that was completely taped closed except of two holes in it. The two holes were (30) mm 

and (50) mm away from the edges and from each other, respectively.  Two cones were 

constructed by cutting 25 mL 15 mL tubes (Thermo Scientific, Cat. #362695) at the mark of 2 

mL and cutting their closed ends at the tip. The wide end of the cones was ~15 mm while the 

small end was ~4mm. The wide ends of the cones were then secured to the holes from the inner 

side of the tray using dental wax (Darby Dental Supply, LLC, Cat. #952-2422). The same wax 

was also used to secure two scintillation vials to the cones so that the small ends point towards 

inside of the vials. The boxes were labeled with small pieces of tapes indicating the contents of 

the vials (i.e. water vs. ACV) as well as the concentrations of the odor solutions. A 200 

microliter of water (control) or odor was pipetted into the vials. A range of six different 

concentrations were tested; 1 in 1000, 1 in 200, 1 in 100, 1 in 10,1 in 20 and pure.  

All the experiments were conducted during the active morning period (9-11am). The flies 

were starved in tubes containing wet Kim wipes for 24 hours before testing them. Tubes 

containing starved flies were set in ice for 3-7 minutes to reduce flies motor activities before 

moving the files out to the white trays of the boxes. The boxes were then closed and put in an 
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incubator in a 32C temperature, 50-60% humidity, and in dark. Flies were given 120 minutes to 

choose between walking into one of the scintillation vials before they were removed to the 

freezer. The number of the flies on the white top, in both vials were counted and the performance 

indices calculated according to the following equation:  

(# of flies in odor vial - # of flies in control vial)/(# of flies participate in the experiment) 

All statistical calculations were done using Graph Pad Prism v.6.01 (Graphpad Software 

Inc.). To determine the normality of the data collected, A D’Agostino-Pearson omnibus 

normality test was done. All data in this study were found to be non-normally distributed and 

thus a Kruskal-Wallis (one-way ANOVAs) test was used to determine the presence of significant 

responses between lines at each odor concentration. 

Box Trap Cleaning:  After counting the flies, traps were disassembled and the scintillation vials 

were soaked in hot water with soap for 10-15 minutes. A small brush was then used to scrub 

vials thoroughly, before rinsing the vials extensively. The vials, boxes, cones, and taped trays 

were then sprayed with 70% Ethanol. The boxes and the taped trays were also wiped with Kim 

wipes to ensure a complete distribution of alcohol on all surfaces, and all components were 

placed in the oven at 48C overnight to dry.  

T-maze assay: The T-maze was constructed by drilling holes (~4mm in diameter) in the caps of 

two bacteria culture tubes (12x75mm Polystyrene Tubes with Dual Positions Polyethylene Caps, 

USA Scientific, Cat. #8576) tubes. The two caps were then secured to the horizontal arms of a T-

junction. The T junction contained a small funnel was constructed by cutting a fine transfer 

pipette (Samco Scientific, Cat. #232-11) and used to secure the vertical introductory tube to the 

T-junction. Two 5 x 5 mm pieces of filter papers were cut. Each piece was put in one of the 

horizontal arms and 30 micro liters of either tested odor or solvent were pipetted on them. A 

range of odor concentrations spanning the spectrum of odor-attracted responses, with the lowest 

concertation elicits no attractive responses and the highest concentration evokes a maximum 

response, was first established in wild type (W1118) flies (Fig. 5E). Same dilutions series was 

then tested on experimental flies. Every 10 days, 90-120 female virgins from the UAS-5HT1a-

RNAi were collected and crossed to 60-90 male flies from the Mz699-Gal4 line in three 150ml 

plastic bottles (~35 female virgins & ~20 males in each bottle) containing same standard fly food 

formula. The flies were then pushed to three new bottles every 3 day for a maximum of three 
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times before being tossed and a new cross between the parental lines was done. F1 flies were 

maintained at the at 50% humidity and a 25°C on a 12:12 dark-light cycle. 

The two parental lines and their F1 progeny were all collected (Table 3) and tested 

simultaneously, but in different assays. The behavioral assay was done by starving mated female 

flies first for 18-20 hours in groups of 25 in fly tubes (VWR-Drosophila Vial, Cat. #3815) 

containing wet Kim wipes (Distilled water was used). All preparation for the T-maze assays 

were done under red-light conditions to prevent light from influencing the flies’ choices. At the 

beginning of the assay, the files were cold-anaesthetized by putting starvation tubes on ice for 3-

7 minutes. Flies were then placed in the bottom of the introductory tube of the T-maze using a 

small funnel. The T-mazes were then assembled and placed vertically in microcentrifuge tube 

racks and put in an incubator in dark at 32oC and 60-70% humidity. The orientation of the T-

maze arms containing the odor versus solvent were alternated spatially to eliminate any 

directional bias. The flies were giving 45 minutes to walk up and choose between the two arms. 

The number of flies participated in the experiment, determined by counting the number of flies 

entered both arms, were noted to ensure the absence of any motor deficits. Once an arm was 

chosen, the flies were trapped and not able to walk back into the T-junction because of a taper in 

the T-junction arms. Upon completion of the assay, the T-mazes were taken out of the incubator 

and placed in the freezer for approximately 90 minutes. the number of flies in each arm were 

then counted. Performance indices were finally calculated by following the equation:  

(# of flies in odor arm - # of flies in control arm)/(# of flies participating).  

Microsoft® Excel was used for initial entry of data. However, all statistical analyses were 

done using Graph Pad Prism v.6.01 (GraphPad Software Inc.). To determine the normality of the 

data collected, A D’Agostino-Pearson omnibus normality test was done. All data in this study 

were found to be non-normally distributed and thus a Kruskal-Wallis (one-way ANOVAs) test 

was used to determine the presence of significant responses between lines at each odor 

concentration. 
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Table 3. T-maze working schedule 

Day 1 Day 2 Day 
3 

Day 
4 Day 5 Day 6 

-Collect 1 day 
old female 
flies (A) 

-Collect 1 day 
old female 
flies (B)   

-Starve flies at 2 pm (if 
assay is at 10 am) 
-A= 5 days old - B= 4 days 
old 
-Make sure all T-maze 
components are clean, dry, 
and ready to go 

-T-maze assay 
@ 10 am 
-(preparations 
start @ ~9:00 
am) 
-A= 6 days old, 
-B = 5 days old 

 

T-maze Cleaning with Alconox: On day 1: 15g (pre-measured) Alconox were dissolved into 

1500-1800 mL of hot tap water in the clean plastic pitcher. T-maze components were then added 

and vigorously swish around for at least 30s, ensuring all tubes have soapy water in them and 

then let soaked for overnight. On day 2, a small brush was used to scrub the tubes very well. The 

soapy water was then drained using white strainer and components were rinsed under warm-hot 

tap water. The rinsing step were done several times (at least three times). After that, tap water 

was added to pitcher and components were soaked for 10-15 minutes before water was then 

drained and components were rinsed again thoroughly. Finally, all components were sprayed 

with 70% EtOH before being rinsed thoroughly with distilled, de-ionized water, drained, and 

placed in oven at 48.5oC overnight 

IV. Results 

I previously demonstrated that the CSD neurons synapse onto the vPNs (Chapter 2) and a 

study from our lab demonstrated that the vPNs express several 5-HT receptors (Sizemore and 

Dacks, 2016). However, the contributions of these individual receptors expressed in vPNs to 

olfactory guided behavior is unknown. Therefore, I sought to determine the contribution of 5-

HT1A receptor expression by vPNs on flies’ behavior towards innately attractive and repulsive 

odors. A pilot behavioral study from our lab showed that reducing the expression of 5-HT1A 

receptor in vPNs increases flies’ attraction to high concentrations of the innately attractive odor, 
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apple cider vinegar (ACV) in the box trap assay. This suggests that 5-HT from the CSDs may 

modulate innate olfactory guided behavior via the vPNs. Therefore, I sought to expand on this 

initial pilot study to determine the behavioral consequences of 5-HT1A knockdown in the vPNs.  

Mz699-Gal4 has been used in several studies to determine the contribution of the vPNs to 

olfactory coding in the LH and innate behavior (Parnas et al., 2013; Strutz, et al., 2014). Mz699 

line drives Gal4 expression in both vPNs and vlPrNs. However, unlike vPNs, vlPrNs do not 

generate the neurotransmitter GABA (Parnas, et al., 2013) neither do they express any of the 5-

HT receptor types (Sizemore, unpublished). Therefore, I could safely use the Mz699-Gal4 line to 

drive the expression of the UAS-5-HT1A-RNA interference specifically in vPNs to investigate 

the consequences of reducing the expression of the 5-HT1A receptor type on the behavioral 

responses of the flies. Several studies have shown this technique is effective to knock down the 

5HT-type receptors in flies (Shimada-Niwa and Niwa, 2014). Furthermore, data from our lab has 

shown using qPCR that the UAS-5-HT1A-RNAi caused a 65% knockdown of 5-HT1A mRNA 

copy number when expressed in a pan-neuronal driver line (ELAV-Gal4) (unpublished data).  

To test the innate behavioral response of flies to odors, I used two behavioral assays; box-

trap (Knaden, et al., 2013) (Fig. 5A) and T-maze assays (Stensmyr et al., 2012) (Fig. 5D). Both 

are standard assays that I used in parallel to control for any assay-specific effects. I began by 

optimizing box-trap assay protocol developed previously in our lab, using wildtype flies 

(W1118). I tested their responses to several odor concentrations of the innate attractive odor 

ACV over a range which elicited little to no response (vehicle) to a maximal response. I found a 

constant, gradual increase in wild type flies’ responses concomitant with the increase in ACV 

concentrations using a range from (water), 1:1000, 1:200, 1:100, 1:20, and pure (Fig. 5B). This 

data was used as a baseline to compare the behavioral responses of experimental lines. Next I 

tested the behavioral responses of the experimental lines, Mz699-Gal4 and UAS-5-HT1A-RNAi, 

as well as their F1 (Mz699-Gal4>UAS-5-HT1A-RNAi) progeny to the same concentrations of 

ACV in the box-trap assay.  I found that responses of F1 flies were not significantly different 

from control flies at any of the tested concentrations (1:1000, 1:200, 1:100, 1:20 and pure) of 

ACV (Fig. 2C).  
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Next, I used the T-maze assay to investigate flies’ response to ACV. In T-maze assay, the 

air space in which the odor can diffuses in is much smaller than in box-trap assay, which makes 

the T-maze assay a more sensitive assay to study flies' responses to odors. As with the box trap 

assay, I first tested the responses of wild type flies (W1118) to ACV, choosing 7 concentrations, 

ranging from maximal behavioral response to no preference over vehicle. The concentrations 

were: (1:200, 1:100, 1:75, 1:50, 1:25 and 1:10 and pure). The pure concentration was discarded, 

because it elicited a lower behavioral response than the concentration 1:50, 1:25 and 1:10 which 

suggests that ACV became aversive potentially due to the activation of additional glomeruli 

including DM5 (Semmelhack and Wang, 2009) (Fig. 5E). Next, I tested the two parental lines 

Mz699-Gal4 and UAS-5-HT1A-RNAi as well as their F1 (Mz699-Gal4>UAS-5-HT1A-RNAi) 

progeny and found that, at the three lowest concentrations, 1:200, 1:100, and 1:75 there was no 

significant difference between responses of F1 flies and the parental lines. However, F1 flies 

showed significantly more attractive responses to higher ACV concentrations than both parental 

lines at the concentrations 1:50 and 1:25, and only higher than the Mz699 at the concentration 

1:10 (Fig. 5F).  

Next, to establish the sufficiency of the 5-HT1A receptor to elicit the observed changes in 

attractive behavior, I did a rescue experiment. Here, I tested flies bearing the genotype UAS-

5HT1A-RNAi;UAS-5HT1A, as well as Mz699-Gal4 and their F1 progeny in T-maze assay. I 

found no significant difference in responses between the two parental lines and the F1 progeny at 

any of the ACV concentrations tested (Fig. 5G). Thus, by conducting the rescue experiment, 

olfactory performance of flies went back to that similar to control (wild type) flies, which 

demonstrate that the expression of the 5-HT1A receptor in vPNs is sufficient for maintaining 

normal attractive behavior to the innate attractive odor ACV. Finally, I tested flies’ responses to 

BV, an odor that has the same biological value of ACV, at one concentration only ( 1 in 100). 

Similar to ACV, I found a significant different between  F1 flies attractive responses to the BV 

compared to their parental lines (Fig. 5H) 

 Liang et al, (2013) and Strutz et al, (2014) both showed that vPNs respond to innately 

attractive, but not aversive, odors. Therefore, serotonergic modulation of vPNs by CSD neurons 

should not have any impact on flies’ behavioral responses to innately aversive odors. To test this, 
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I wanted to investigate the behavioral consequences of reducing the expression of 5-HT1A 

receptor in vPNs on flies’ responses to the well-known, innate fly repellent benzaldehyde (BEZ) 

(Stensmyr et al., 2012). BEZ has been successfully used to test flies’ responses to aversive odors 

in T-maze assays (Strutz et al., 2014) and box-trap assay (Knaden et al., 2012). Therefore, I used 

the T-maze assay to test the behavioral responses of the parental lines, UAS-5-HT1A-RNAi and 

Mz699-Gal4, as well as their F1 progeny and found no significant differences in the behavioral 

responses of the two parental lines and the F1 progeny at any of the BEZ concentrations tested 

(Fig. 5I). This data is consistent with previous studies in which repulsive odors did not elicit 

neural activities in vPNs, and that vPNs response primarily to attractive odors (Liang et al., 2013; 

Strutz et al., 2014).  

Next, I sought to determine whether reducing the expression of 5-HT1A in vPNs would 

alter flies’ responses to other attractive odors. Therefore, I tested the responses of wild type flies 

(W1118) to an increase concentration of banana extract dilutions. Unlike ACV, when I tested the 

behavioral responses of the two parental lines and their F1 progeny there was no significant 

differences between any of them at any of the tested concentrations (Fig. 5J).  

Thus, based on the data I provide above I demonstrate that, reducing the expression of the 

5-HT1A receptor type increases attraction but has no effect on the flies responses to repulsive 

odor. Additionally, I show that the increase in flies’ attraction was only to ACV, but not banana 

odor, which suggests a modulatory role for 5-HT1A expressed in vPNs to odor with specific 

ecological meaning rather than a generalized modulation. 

V. Discussion 

Innate behavioral responses provide the animal at early stages of its life with the ability to 

survive by responding to vital stimuli without needing previous exposure to them. For instance, 

naive male moths are attracted to sex pheromones released by females immediately after they 

hatch (Saveer et al., 2012). These responses are so critical to the animals’ survival, that they have 

evolved overtime and gained several fine-tuning mechanisms to be more effective. Mainly, these 

responses became plastic and vulnerable to modulation to best fit the organism’s ecological and 

physiological needs. For instance, in the moth, Agrotis ipsilon, a blend of female sex pheromone 

and host plants’ volatiles strongly attracts males for mating. However, after copulation, the 

sensitivity of the newly mated male moths to the female pheromones decreases (Barrozo et al., 
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2010). Furthermore, these pheromones, although still attractive to males, produce a transient 

inhibition in the attraction to plants’ volatiles which delay re-mating and allow reproductive 

glands to be refilled again for a later copulation (Barrozo et al., 2010). It has been demonstrated 

that neuromodulators can provide sensory systems with plasticity to adjust the animals’ 

responses to innately important stimuli. For instance, 5-HT is widely distributed across 

mammals’ nervous systems and plays an important role in regulating the dynamics of sensory 

networks such as the olfactory system (Lottem et al., 2016; Huang, et al., 2017). While the 

modulatory effects of 5-HT in mammals are mediated by 14 distinctive receptor subtypes 

(Nichols and Nichols, 2008), in the olfactory system of Drosophila, only five homologous 5-HT 

receptor types have been found. These receptors receive their endogenous serotonergic input 

from two serotonergic neurons, the CSD neurons, which contralaterally project throughout the 

brain and are the sole sources of 5-HT to several olfactory regions, including the AL and LH 

(Dacks et al., 2006; Coates et al., in revision). The overall modulatory influence of 5-HT on 

innate behavioral responses in insects has long been investigated. For instance, exogenous 5-HT 

has been shown to increase the sensitivity of male Bombyx mori (Gatellier et al., 2004), and 

Manduca sexta (Kloppenburg and Mercer, 2007) moths to the female sex pheromones. However, 

there are several questions remain to be explored; First, what is the importance of possessing 

broad serotonin receptor diversity in a sensory network? Second, what is the contribution of each 

receptor expressed by each neuron type to the overall effect elicited on innate behavior? Finally, 

to what degree 5-HT can change an innate behavioral response? In this chapter, I use the 

olfactory system of Drosophila to explore these questions by investigating the extent to which a 

single 5-HT receptor expressed by a population of neurons that respond to innately important 

stimulus can affect the behavioral responses to these stimuli. Specifically, I determine how the 5-

HT1A receptor, modulates a specific group of inhibitory neurons, vPNs, in the olfactory system 

to alter behavioral responses to odors that have innate attractive or aversive importance. My data 

shows that reducing the expression of 5-HT1A receptor increases the attraction of flies to the 

innately attractive odors, ACV and BV. I also show that flies’ responses to innate aversive odors, 

which don’t activate vPNs, are not affected by reducing the expression of 5-HT1A receptor in 

vPNs. This also suggests that a single 5-HT receptor type can selectively modulate olfactory 

responses with different innate biological meanings (attraction vs. aversion). 
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There are two second-order centers, MB and LH, in the olfactory system of Drosophila. 

The MB receives only excitatory signals from two different clusters of ePNs located 

anterodorsally and laterally to the AL (Jefferis et al., 2001, 2007). Chemical ablation of the MB 

by feeding hydroxyurea to newly hatched larvae caused the loss of adult flies’ ability to perform 

in classic conditioning paradigms (de Belle and Heisenberg, 1994), which established its role in 

associative learning and memory. On the other hand, LH receive parallel excitatory and 

inhibitory signals via ePNs and vPNs, respectively (Stocker et al., 2007; Liang et al., 2013), and 

is known for its role in directing odor-driven innate behavior (de Belle and Heisenberg, 1994; 

Jefferis et al., 2007; Strutz et al., 2014). In addition to the axon terminals of ePNs and vPNs, the 

LH circuitry includes several other local and third-order neurons. One LH neuron population, 

vlPrNs, has been well-studied (Parnas et al., 2013; Liang et al., 2013; Strutz et al., 2014). In the 

vlPrNs cluster, there are ~ 86 Mz699-positives, non-GABAergic neurons (Parnas et al., 2013) 

that send postsynaptic terminals to the LH and axon terminals to the ventrolateral protocerebrum. 

While vlPrNs integrate cholinergic excitatory input from ePNs about attractive, aversive, and 

pheromone odors, they selectively integrate inhibitory input from GABAergic vPNs about 

attractive odors (Liang et al., 2013; Strutz et al., 2014). Thus, when the fly encounters attractive 

food odors, vPNs suppress vlPrNs responses (Liang et al., 2013), to elicit attraction (Strutz et al., 

2014). 

In chapter 2, I demonstrated that vPNs potentially receive synaptic input from the CSD 

neurons at two processing stages in the olfactory system (see chapter 2). Further, my behavioral 

data suggests that 5-HT signaling via the 5-HT1A receptor type affects processing of innately 

attractive stimuli. However, since the exact cellular compartment (axons vs. dendrites) in which 

vPNs receive the 5-HT1A-mediated input from CSD neurons is not known, there are three 

possibilities; First it is possible that vPNs express 5-HT1A only in the AL. A second possibility 

is that vPNs express 5-HT1A only in the LH. Third, it is possible that vPNs express 5-HT1A 

receptors in both the AL and LH (see chapter 2). My GRASP data shows a stronger signal in the 

AL than in the LH (see chapter 2). Therefore, of these 3 possibilities, it is likely that CSD 

neurons elicit a direct, axo-dendritic 5-HT-mediated inhibitory input on vPNs in the first 

olfactory center, AL, where 5-HT1A receptors are potentially expressed. This suggestion is 

consistent with a recent study in mice showed that 5-HT signaling via the receptor type 5-HT1 

elicits direct inhibitory effects on the mitral cells in the OB (Huang et al., 2017). 
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Regardless of the location in which vPNs receive the 5-HT-mediated inhibitory input, 

decreasing the expression of 5-HT1A in vPNs would potentially decrease the inhibition elicited 

by CSD neurons on them. Consequently, vPNs odor-evoked activity, and their GABAergic 

output in the LH, would increase. The behavioral consequences of serotonergic modulation of 

the inhibitory output of vPNs in the LH (i.e. the increase in flies’ attraction to ACV that my data 

shows) as well as the circuitry underlying this increase can be discussed based on two 

contradicting models set by recent studies. 

The first model was set by Parnas et al., (2013) (Fig. 4A), and suggested a presynaptic 

gain control mechanism in which release of GABA from vPNs decreases the synaptic output of 

ePNs onto vlPrNs in the manner of a “high-pass filter”, so that GABA release from vPNs will 

only change ePNs synaptic output when ePNs are activated at high levels. This gain control 

mechanism causes the flies to be more capable of discriminating between odors, especially those 

of close biological relevance. This increase in contrast however, comes at a cost, which is 

reducing flies’ sensitivity to odors. In this model, serotonergic modulation of vPNs by CSD 

neurons could potentially be playing a role in balancing the two olfactory system features, 

contrast and sensitivity.  Specifically, one would expect that by increasing the vPNs’ odor-

evoked activities through knocking down their 5-HT1A receptors, the contrast would be 

increased and the flies would become less sensitive to an innate odor, such as ACV. That is, in 

behavioral assays data, such decrease in sensitivity, if existed, would be displayed as a decrease 

in flies’ attraction to ACV at low concentrations. My data obtained using T-maze assay does not 

support this model since it did not show such decrease in flies’ responses. Quite the opposite, my 

data showed a trend in which F1 flies’ responses were generally higher than the two parental 

lines at concentrations below 1 in 50 (significantly higher than the response of one of the 

parental lines, Mz699-Gal4, at the concentration 1 in 100) (Fig. 5F). However, since my 

behavioral assays do not test for discrimination, whether my data perfectly fits or refutes this 

model is not determined and further research should be done (see chapter 4).  

Gain control modulation could be playing different roles other than the one suggested in 

Parnas’ model. For instance, in the AL of Drosophila, Root et al., (2008) explained a gain 

control mechanism on ORNs’ terminals mediated by the release of GABA from local 

interneurons. This mechanism modulates the synaptic transmission of ORNs to PNs and was 
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found necessary for the flies’ ability to locate odor objects. Further, they explained that ORN-to-

ePN gain modulation in the AL is selectively applied to pheromone-sensing ORNs, as well as 

ORNs that are potentially important for the localization of attractive odor sources. Therefore, the 

suggested presynaptic gain modulation of ePNs in the LH could be functioning as a second 

safety mechanism to insure the “sharpness” of the internal neural image of the innately attractive 

stimuli to further enhance the fly’s ability to locate their sources. Interestingly, ePNs responding 

to attractive odors and vPNs both extend innervations to the same glomeruli in the AL, and send 

axons that terminate in the same regions in the LH (Strutz et al., 2014). Therefore, another 

potential role of the presynaptic gain modulation of ePNs in LH could be working as a second 

safety mechanism, in addition to the one in the AL, to ensure that ePN responses to attractive 

odors won’t reach saturation, which would happen and erroneously elicit aversion in flies, when 

additional glomeruli in the AL are activated by high concentrations of same odor (Semmelhack 

and Wang, 2009). These suggestions fit well with my data in which I show that reducing 5-

HT1A expression in vPNs, which potentially causes an increase in gain control effects of vPNs 

on ePNs, increases flies’ attraction to ACV.  In other words, the serotonergic modulation of 

vPNs by CSD neurons could be important for modulating the gain control in the innate odor 

processing center, LH, to sharpen innate odors internal images in it and/or prevent the saturation 

of innate attractive odors olfactory channels, and thus, fine-tuning the appropriate behavioral 

response. 

The second model was set by Liang et al, (2013) (Fig. 4B), and further supported by 

(Strutz et al., 2014). In this model, it was suggested that vlPrNs receive direct inhibitory input 

from vPNs in the LH. Further, they suggested that this inhibition is selective to attractive food 

odor only. Therefore, pheromone and/or repulsive food would not evoke the activation of vPNs. 

The inhibition elicited by vPNs onto vlPrNs provides a mechanism for controlling the strength of 

flies’ attraction to innately attractive odors (Liang et al., 2013; Strutz et al., 2014). This model 

fits well with my data which shows an increase in flies’ attractive responses to ACV and BV 

after reducing vPNs expression of 5-HT1A. Reducing 5-HT1A expression in vPNs potentially 

removes the inhibitory action of the CSD neurons, thus, increasing their GABA release in the 

LH, which in turn, causes a greater inhibition of vlPrNs. My data is also consistent with a study 

was done by Strutz et al., in which they used the same model set by Liang et al., 2013 and 

showed that disrupting GABA synthesis in vPNs, and thus removing inhibitory effects elicited 
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by vPNs on vlPrNs in the LH, eliminated attraction to innate attractive odors. Behavioral studies 

in the silk moths, Bombyx mori, have shown that 5-HT modulates the olfactory sensitivity of 

males so that they become more sensitive to females’ sex-pheromones (Gatellier et al., 2004). 

Furthermore, several studies showed that the level of the 5-HT in the AL of Lepidoptera 

fluctuates throughout the day, and reaches its highest at the time when the moths are actively 

searching for a host flower or a mate (Gatellier et al., 2004; Kloppenburg et al., 1999). 

Consistent with these studies, therefore, my data suggests a modulatory role of 5-HT potentially 

used for modulating the flies’ attraction to innate attractive odors at a certain time when a critical 

odor-guided behavior, such as foraging, is required.  

My data also shows that reducing vPNs expression of 5-HT1A does not affect flies’ 

responses to BEZ (Fig. 5I). Why is 5-HT1A modulation of aversion absent in the flies? vPNs do 

not respond to aversive food odors (Liang et al., 2013). Therefore, it is conceivable that 

modulating the vPNs activities would not affect flies’ responses to aversive odors. One potential 

explanation for the absence of the modulation of behavioral aversion is that repulsive odors 

typically imply that there is “danger” and if the insects don’t respond promptly, the 

consequences could be harmful. That is, detrimental consequences (death, inability to mate) 

could accompany a lack or latency in a quick behavioral response, and thus, innate responses to 

repulsive odors should be more rigid (i.e. lack plasticity). On the other side of the spectrum, 

innately attractive odors likely are experienced under different contexts and require greater 

flexibility or sensitivity to different odors.  For instance, unmated cotton leafworm moths 

innately prefer lilac flowers. However, this innate attraction is shifted to green leaf odors of 

cotton after the females are mated (Saveer et al., 2012). Using calcium imaging, the group 

demonstrated that this behavioral switch was due to downregulation of neuronal activity within 

specific glomeruli that are distinctly responsive to the odors of the lilac flower. This 

downregulation, they argued, could be attributed to gain control mechanism elicited by LNs on 

PNs in the AL and mediated by biogenic amines such as 5-HT (Saveer et al., 2012). 

 Taken together, in this chapter I demonstrated that reducing the expression of the receptor 

type 5-HT1A in vPNs increases flies’ responses to ACV and BV but not to BEZ. Thus, my data 

suggests a 5-HT1A-mediated modulatory role for endogenous 5-HT on attractive responses to 

odors with specific biological values to potentially create state-dependent behavioral responses. 
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This study, therefore, provide a step forward towards a better understanding of the molecular 

basis of serotonergic neuromodulation and its contribution to the perception of innate odors in 

the olfactory system of Drosophila. 
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Chapter 4: Future directions 
 

In this study, I used two different behavioral assays in conjunction with anatomical 

methods and genetic techniques to investigate brain centers in which a population of neurons 

critical for flies’ responses to innately attractive odors receive serotonergic modulation. Further, I 

determined the degree to which the synaptic 5-HT modulation can alter these innate responses as 

well as the behavioral consequences of knocking down one 5-HT receptor type 5-HT1A.  

In chapter 2, I demonstrated that, in Drosophila, the CSD neurons synapse upon a 

population of GABAergic neurons, vPNs, in two olfactory centers, AL and LH (Fig. 3). This 

suggests that vPNs receive a direct synaptic 5-HT modulation from CSD neurons in both sites 

simultaneously. However, since vPNs express all 5-HT receptor types (Sizemore and Dacks, 

2016) and the location at which these receptors are expressed (AL or LH) was not determined in 

this thesis, it is unknown which 5-HT receptor types are being expressed at these synapses. 

Therefore, we do not know the sum effect of 5-HT signaling via its receptor types on vPNs 

elicited in the AL and/or LH. So far, I am not aware of any genetic tools or antibodies that could 

be used to label any of the 5-HT receptor types. However, using antibodies that specifically label 

each receptor types in addition to GRASP technique to determine the type of neurons synapsing 

on each other in the future not only would be beneficial to further dissect the molecular 

mechanism of serotonergic modulation of vPNs and the type of modulation (excitatory vs. 

inhibitory) that occurs at each of the two processing stages in the brain, but also for providing a 

better understanding of the circuitry of ePNs, vPNs, and vlPrNs in the LH. For instance, Strutz et 

al, (2014) used Ca2+ imaging to show that the LH comprises of 3 different compartments, LH-

AM, LH-PM, and LH-AL, that integrate olfactory information related to odor attraction, odor 

intensity, and negative valence & odor intensity, respectively. The ability of using targeted 

antibodies to label each of the 5-HT receptor types individually would allow us to reveal the LH 

region at which CDS neurons synapse on vPNs and thus could be useful for better understanding 

the integration of innate odor information in the LH. For instance, although not quantified, the 

GRASP signals I observed in the LH are localized in LH-PM and LH-AM compartments, 

suggesting that CSD neurons synapse upon vPNs in these two regions. This observation supports 

a potential role for endogenous 5-HT via its receptors types in regulating the feature of attraction 
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and sensitivity, in the LH. However, the type of receptors expressed at the synapses in both 

regions is unkonwn. Using a 5-HT1A-specific antibody, it could be revealed whether 5-HT1A is 

expressed at the synapses in the LH-PM region, which would support my data which showed the 

implication of a 5-HT1A-mediate inhibitory role elicited by endogenous 5-HT on vPNs to 

mediate attraction. 

In Drosophila, it has been demonstrated that exogenous 5-HT increases activities of AL 

ePNs in an odor-dependent manner and elicits generalized inhibitory effects on ORNs in the AL 

glomeruli (Dacks, et al., 2009). However, to my knowledge, no study has investigated the 

modulatory effects of endogenous 5-HT on vPNs, neither the contribution of each receptor types 

to this modulation. It would be interesting to determine the physiological contribution of 

serotonergic modulation of vPNs, as well as the contribution of each receptor type to the overall 

5-HT-mediated modulation. For instance, one could knock down the 5-HT1A receptor using 

RNA interference, stimulate the CSD neurons and record from vPNs to observe the change in 

their activities compared to control flies with full expression of 5-HT1A receptor. Though, it 

should be noted here that not all vPNs show heterogeneity in terms of their express of the 5-HT 

receptor types. For instance, only ~21 vPNs express the receptor 5-HT1A (Sizemore and Dacks, 

2014). Therefore, the ability of finding and recordings from the same vPN more than one time 

could be challenging. 

In chapter 3, I demonstrated that reducing the expression of the receptor type 5-HT1A 

causes an alteration in flies’ response to ACV & BV (Fig. 5F & 5H). However, when tested for a 

different innately attractive odor, banana extract, I found no significant difference between the 

flies that have reduced expression of the receptor type 5-HT1A in their vPNs and control flies 

with full 5-HT1A vPNs expression (Fig. 5J). This suggests that the 5-HT1A-mediated 

serotonergic modulation of vPNs is selective to ACV and BV (i.e.  to odors with specific 

biological value to the flies). This selectivity could be potentially explained by the heterogeneous 

nature of the vPNs’ and CSD neurons’ innervation pattern throughout AL glomeruli, as well as 

the heterogeneity of vPNs expression of 5-HT receptor types. The ventral cell cluster includes of 

~51 GABAergic vPNs (Lai et., 2008; Strutz et al., 2014), of which ~6 are labeled by GH146-

Gal4 line (Jefferis et al., 2001; Wilson and Laurent, 2005; Jefferis et al., 2007) and ~45 are 

labeled by Mz699-Gla4 (Lai et al., 2008; Strutz et al., 2014). The majority of vPNs labeled by 
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Mz699 are multiglomerular innervating ~5 glomeruli each, and collectively vPNs innervate two-

third of AL glomeruli (Strutz et al., 2014). Specifically, vPNs innervate distinct subsets of 

glomeruli that only respond to attractive odors and are also innervated by ePNs (Strutz et al., 

2014). Additionally, the density of Mz699-labeled vPNs dendrites differs between glomeruli 

(e.g. DM2 and DM5 have dense innervation, while DL4 and DL5 have light innervation) (Strutz 

et al., 2014). vPNs also show a great diversity in their 5-HT receptor type expression. For 

instance, vPNs collectively express all 5-HT receptor types, yet, only ~21 vPNs express the 

receptor type 5-HT1A (Sizemore and Dacks, 2016). Furthermore, the innervation of the CSD 

neurons is heterogeneous across glomeruli. Specifically, the number of CSD synapses differs 

across glomeruli, such that some glomeruli receive more serotonergic input from CSD neurons 

than others (Coates et al., in review). The diversity of vPN and CSD neuron innervation of AL 

glomeruli, as well as the fact that AL glomeruli respond differently to distinctive odors suggest 

that 5-HT signaling via the 5-HT1A receptor selectively modulates vPNs output in the LH in an 

odor-dependent manner to change the neural integration of innate attractive odors with different 

biological values. To further investigate this selectivity, it would be interesting to test odors that 

elicit responses in different groups of glomeruli which receive different innervation from CSD 

neurons and vPNs after reducing the expression of 5-HT1 receptors in vPNs. 

A second explanation for the absence of 5-HT1A modulation of the banana extract can be 

suggested based on the data from recent study done by Fisek and Wilson, (2014) in which they 

discussed a population of LH neurons that are broadly tuned to fruity smelling acetate (such as 

Isopentyl acetate which is a major component of the banana smell) named Type 1 neurons. Type 

1 neurons receive excitatory input from ePNs innervating AL glomeruli that respond to fruity-

smelling organic acetate (DM1, DM2, and DM4) and transfer these signals to higher order 

regions in the brain for the appropriate behavioral responses to be elicited. Unlike vlPrNs, which 

receive inhibitory input from vPNs, Type 1 LH neurons have been found to receive their major 

inhibition from a population of GABAergic LH interneurons located adjacent to the LH and are 

narrowly tuned to acetate odors (Fisek and Wilson, 2014). This suggests that olfactory 

information encoding fruity smelling acetate such as IPA and acetoin acetate are potentially 

selectively processed via a different pathway in the LH that does not rely on inhibition from 

vPNs. This suggestion could explain why increasing vPN output in the LH by reducing their 5-

HT1A expression did not show any effects on flies’ responses to banana extract in my behavioral 
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data. Here, it would be interesting to use the Gal4 line Fisek and Wilson used to identify the LH 

GABAergic neurons to drive UAS-GAD1-RNAi interference in them to disrupt their GABA 

synthesis and study the behavioral consequences on flies’ attraction to previous odors. 

Like aversive odors, vPNs do not respond to pheromone odors (Liang et al., 2013), and 

thus, serotonergic modulation of vPNs output in the LH is likely not to have any effects on flies’ 

behavioral attraction to pheromone odors. This is suggestion is supported by Zhang and Gaudry, 

(2016), which showed that endogenous 5-HT release via CSD neuron does not modulate DA1 

glomerulus responses to the male pheromone cis-vaccenyl acetate (cVA). However, it would be 

interesting to further support this hypothesis of the absence of serotonergic modulation of 

pheromone attraction by doing behavior experiments testing flies responses to cVA after 

reducing the expression of 5-HT1A in vPNs.  

As a conclusion, in this study, I have investigated how a population of neurons that span 

two processing stages are simultaneously modulated by the same modulatory source in these 

stages. I showed that vPNs potentially receive a direct axo-dendritic and axo-axonic serotonergic 

input from CSD neuron in the AL and LH, respectively, which selectively modulate the role of 

vPNs in flies’ responses to odors that have innate importance. Further, I have investigated the 

degree to which these innate responses are modulated by studying one of the 5 types of 5-HT 

receptors expressed in vPNs, and via which 5-HT signals to elicit its effects. I have showed that 

reducing 5-HT1A-mediated inhibition in vPNs increases flies’ responses to ACV, but neither to 

aversive odors nor to fruity-smelling acetate (i.e. banana extract). Collectively, this study 

provides a better understanding to the mechanistic bases underlying serotonergic modulation of 

sensory systems and behavior in mammals and insects.  
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