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Abstract

Discrete Time Dynamic Traffic Assignment Models with Lane Reversals for Evacuation
Planning

by

Yeh-Ern Poh
Master of Science in Industrial Engineering

West Virginia University

Qipeng P. Zheng, Ph.D., Chair

In an event of a natural or man-made disaster, an evacuation is likely to be called
for to move residents away from potentially hazardous areas. Road congestion and traffic
stalling is a common occurrence as residents evacuate towns and cities for safe refuges.
Lane reversal, or contra-flow, is a remedy to increase outbound flow capacities from dis-
aster areas which in turn will reduce evacuation time of evacuees during emergency situ-
ations. This thesis presents a discrete-time traffic assignment system with lane reversals
which incorporates multiple sources and multiple destinations to predict optimal traffic
flow at various times throughout the entire planning horizon. With the realization of lane
reversals, naturally the threat of potential head-on collisions emerges. To avoid the occur-
rence of such situations, a collision prevention constraint is introduced to limit directional
flow on lanes based on departure time.

This model belongs to the class of dynamic traffic assignment (DTA) problems. Ini-
tially the model was formulated as a discrete-time system optimum dynamic traffic as-
signment (DTA-SO) problem, which is a mixed integer nonlinear programming problem.
Through various proven theorems, a linearized upper bound was derived that is able to
approximate the original problem with very high precision. The result is an upper bound
mixed integer linear programming problem (DTA-UB). The discrete-time DTA model
is suitable for evacuation planning because the model is able to take care of dynamic
demands, and temporal flow assignment. Also, simultaneous route and departure is as-
sumed and an appropriate travel time function is used to approximate the minimum and
maximum travel time on an arc.

This thesis discusses the different attributes that relates to Dynamic Traffic Assign-
ment. DTA model properties and formulation methodology are also expounded upon.
A model analysis that breaks down each output into individual entities is provided to
further understand the computational results of small networks. A no reversal DTA-UB
model (NRDTA-UB) is formulated and its computational results are compared to DTA-
UB. Through the extensive computational results, DTA-UB is proven to obtain much
better results than NRDTA-UB despite having longer solving time. This is a step toward
realizing the supremacy of having lane reversals in a real-life evacuation scenario.
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Chapter 1

Introduction

There are not many situations that call for a mass evacuation of residents in an area.

Probably the most valid reason of them all is when a disaster strikes and evacuation is

inevitable. However, evacuations are so rare that residents are unable to rely on experi-

ence alone to decide the time to take leave, the routes to select, and the destination to

head towards for optimum result of the entire evacuation process. Thus, it is impossible

for system equilibrium to emerge that distributes demand evenly across evacuation routes

[6] or system optimum to be achieved that optimizes the total evacuation process. This

chapter reviews examples of disaster that occurred in the past that called for an evacua-

tion of local residents, recent work on emergency evacuation planning, and explains the

importance of having a plan. The objective of this research also is stated together with

an organization outline of this thesis at the end of this chapter.

1.1 Man-made and Natural Disasters

The world has been struck by disasters again and again throughout history , regardless

of whether they are man-made or natural occurrences. It is an inevitable fact that disasters

result in tremendous rebuilding cost for the authorities due to the massive destruction

caused. In many cases, loss of lives is also an unfortunate consequence. Table 1.1 and 1.2

[7] are examples of past and recent man-made and natural disasters in the United States

and around the world. Extensive studies done by Hooke [8] and Newkirk [9] show that
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the intensity and number of natural disasters have been increasing over the past decades.

Dybas [10], in a survey also indicated that the duration and intensity of hurricanes have

increased in the past three decades. As such, emergency evacuation planning is an issue

of utmost importance in times of disaster in order to minimize the potential loss of lives.

Table 1.1: Man-Made Disasters

Incident Description

Chernobyl Nuclear Disaster

B Worst nuclear plant accident in history.

B 64 deaths and thousands of long-term effects
(deformities and cancer).

B Explosion released large quantities of radioactive
particles.

Fukushima Daiichi Nuclear Disaster

B Triggered by earthquake and tsunami.

B Overheating of reactors causing potential explosion.

B Radiation detected all the way in West Coast of
United States.

September 11 Terrorist Attacks

B 4 coordinated suicide attacks in New York
and Washington DC.

B Claimed lives of nearly 3000 people.

B Islamist militant group, al-Qaeda,
claimed responsibility.
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Table 1.2: Natural Disasters

Incident Description

Hurricane Katrina
B Deadliest U.S. hurricane since 1928.

B Claimed 1,833 lives at New Orleans, LA and surrounding area

Indian Ocean Tsunami
B Among the deadliest natural disaster in human history.

B Over 230,000 people killed in 14 countries in Asia.

Haiti Earthquake
B 316,000 people killed and 300,000 injured.

B Over 1 million people made homeless.

Hurricane Sandy

B Devastated portions of the Caribbean and Northeastern U.S..

B Over 250 people killed in 7 countries.

B Second costliest Atlantic hurricane ($65.6 Billion).

1.2 Emergency Evacuation Planning

Emergency evacuation planning is the process of evacuating residents from hazardous

zones to safe zones within the shortest time and using the most efficient way [11]. In the

event of a disaster, an evacuation plan should be able to be implemented immediately.

This will enable the authorities to make urgent decisions such as the allocation of evac-

uees, safe routes for evacuees to take, and locations safe from the immediate impact of

the disaster to head towards [3]. Chen et al. [12] and Chiu et al. [13] describe evacuation

planning in four critical operational decisions: (1) where to evacuate people (destina-

tion); (2) best routes to take (route); (3) flow rates regulation (traffic assignment); (4)

rate at which evacuees are allowed to enter network (departure schedule). Stepanov et

al. [1] dissected the process of evacuation planning into seven different phases as shown

in Figure 1.1. In practice, an emergency evacuation plan needs to integrate all phases

in order for it to provide efficient analytical results, optimal routing assignment, and to

manage the evacuation process in real-time. The misallocation of highway capacities,

inadequate communication with the public, and absence of logistic support during Hurri-
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cane Rita in September 2005 resulted in a chaotic evacuation of the residents of Houston

[2]. This prompted a call for a well-planned and highly dynamic evacuation strategy to

be implemented across United States, especially for large metropolitan areas.

Incident 

detection 

Evacuation 

Order 

Issued 

Deliver 

Order 

Preparation 

for 

Evacuation 

Movement 

through 

Network 

Arrival at 

Safety Zone 

Verification 

Phase 

Evacuation Time 

Phase I Phase II Phase III Phase IV Phase V Phase VI Phase VII 

Decision 

Time 

Notification 

Time 
Preparation 

Time 

Response Time (Clearing Time) 

Figure 1.1: Evacuation phases [1].

1.2.1 Related Work

Much research has been done to make evacuation planning more efficient and realistic

over the past thirty years or so. Early work primarily focused on nuclear power plant ac-

cidents and natural disasters. After September 11, 2001, more and more literature related

to evacuation planning began to incorporate the potential threat of terrorist attacks and

other man-made disasters when modeling evacuation scenarios mathematically. To date,

a wide variety of material is available involving different analytical approaches to solve

various mathematical models that strive to improve evacuation planning.

There are two broad aspects in evacuation planning: (1) moving people out of the

disaster zone, and (2) moving people and material into the same area (i.e safe shelters

and refuge areas) [14]. Kongsomsaksakul et al. [15] utilized a bi-level programming

problem to model assignment of shelters within disaster zones for evacuees to escape to

in times of disaster. Others proposed efficient algorithms to evacuate residents to safety

zones, out of the reach of immediate danger [13, 1, 2]. Several methods exist that strive

to optimize different aspects in evacuation planning, based on the kind of instructions

that is being optimized. Stepanov et al. [1] seeks to optimize route assignment while

Saadatseresht et al. [16] optimizes destination instructions. Liu [17] and Ben [18] on the

other hand incorporated both route and destination instructions to optimize. Shen et al.
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[19] models a transportation network which responds to potential lane disruptions as a

result of the disaster at hand to ensure safe, organized, and quick movement of people.

In his review on travel behavior during evacuation, Pel et al. [20] focuses predicting of

travelers’ decisions regarding their choice to evacuate, departure time, destination choice,

and route choice.

1.2.2 Importance of an Emergency Evacuation Plan

Ultimately, it has been proven that emergency evacuation planning that provides op-

timal instructions is essential in times of disaster. In a case study [21] done on Walcheron,

Netherlands, Huibregtse concluded that the effectiveness of evacuating residents using an

optimal evacuation plan more than doubled as opposed to residents using their own judge-

ment in choosing nearest destination via shortest route. Due to the lack of information

and experience in extreme situations, people act out of shear instinct to minimize his/her

own travel time [21]. This results in the evacuation process not being optimal. With an

optimized evacuation plan, people can act according to what is best for the system which

in turn produces system-optimal condition [21].

1.3 Research Objective

As stated above, it is clear that even North America isn’t spared from man-made or

natural disasters in past times. Hurricane Irene, Hurricane Katrina, and Hurricane Sandy

are recent examples of natural disasters. This research seeks to provide an effective tool

and realistic tool for the authorities to further improve the current standards of emergency

evacuation planning. To achieve this, a dynamic traffic assignment (DTA) technique is

utilized to mathematically model an emergency evacuation plan that has the ability to

tackle multiple sources and multiple destinations.

In situations where evacuation is needed, whether large or small scale, traffic comes

to a standstill due to high demand of road usage. This results in tremendous delay in

evacuating residents causing possible endangerment of lives. A solution is to have an

effective system of evacuating residents in times of emergency through managing lanes.
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This research addresses the overall delay during evacuation and reduces it through traffic

flow reversals of opposite lanes. In other words, whole segments of roads are to flip its

usual directional flow to head towards the opposite direction in order to increase outbound

capacity in an evacuation situation. In what usually is a two-way road, both lanes to be

of one direction leading out of dangerous zone is considered. This holds great potential

in the transportation sector, which when applied will result in tremendous cost savings

for the authorities and ultimately, minimizing the potential loss of lives. Despite the

tremendous advantage it brings to incorporate lane reversals, one must be cautious in

doing so. The potential threat of head-on collisions of vehicles heading in two directions

on the same road segment emerges as a result. To minimize the threat of such an outcome,

a “Collision Prevention” constraint is added which restricts vehicles entering a particular

segment and ensuring that it is cleared before its direction is reversed.

The original problem is formulated as a mixed integer nonlinear programming, system

optimum DTA (DTA-SO) problem. The nonlinearity attribute makes the problem com-

plex and tough to solve. Also, when applied to more general networks, the model becomes

tremendously large and makes computation difficult. Through various linearization tech-

niques and applied theorems, the problem becomes a mixed integer linear programming,

upper bound DTA (DTA-UB). When solved, it provides computational results with very

high precision. The steps to obtain a mixed integer linear programming DTA-UB and its

formulation is extensively explained in the subsequent chapters and experimental results

to prove the model’s effectiveness is provided. The objective of this research is to mini-

mize the objective function of travel time and late departure penalties and compare the

improvement of results to that of a model without lane reversal.

1.4 Thesis Organization

This report is organized to help readers understand the background of the topic at

hand and the motivation behind conducting this research. It is important to have these

in mind first, in order to fully comprehend the purpose of formulating the problem in the

way the author did. Chapter 2 breaks down emergency evacuation planning into different
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characteristics that relate to the model considered in this research. Recent literature

related to the topic at hand are also reviewed and the chapter concludes by stating

the significance of this project. Chapter 3 expounds on the model and gives the overall

framework of the problem formulation, with each constraint that contributes to the model

explicitly explained. An analysis of the model is conducted in Chapter 4 with the model

without lane reversals presented. It also presents detailed computational results of small

networks that can be understood with relative ease. Computational results of larger and

more realistic networks are given in Chapter 5 and they are presented in both tables and

graphical forms. Finally, Chapter 6 concludes this research with recommendations to be

implemented in the future.
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Chapter 2

Review of Emergency Evacuation

Characteristics

Two different classifications exist when considering emergency evacuation planning.

Microscopic planning, as the name dictates, assesses minute aspects such as evacuee’s

behavior, movement, and interaction. Macroscopic planning, on the other hand, focuses

on aspects involving the operation of evacuation as a whole such as the amount of people

to be evacuated, capacity of roads, and number of danger or safety zones. Through much

study on this topic, traffic assignment is shown to be the most popular and effective way

to model emergency evacuation planning [2, 22, 20, 13, 12, 23]. Although known to have

its own advantages, static traffic assignment does not provide a realistic representation of

a real-life evacuation because changing evacuation conditions with time is not considered.

Hence, a dynamic traffic assignment, although more complex, is used in this research to

model a more realistic evacuation situation. Many techniques exist when seeking to obtain

good computational results when solving dynamic traffic assignment for evacuation plan-

ning, but the two most commonly used are simulation approach and analytical approach.

Many tools and softwares are available with regards to both approaches. The sections

below further elaborates on microscopic and macroscopic planning, describes static and

dynamic traffic assignment together with its advantages and disadvantages, and explain

the differences between simulation based and analytical based approaches when solving

dynamic traffic assignment. Literature involving the implementation of contra-flow is al-
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so reviewed below. This chapter concludes by reiterating the significance of this specific

research.

2.1 Microscopic Evacuation Planning

Microscopic evacuation planning is mainly used for modeling individual entities’ (peo-

ple, vehicles, etc.) behaviors, movements, and interactions during the evacuation period

[2]. Parameters that are usually considered for microscopic planning are traveling speed,

reaction time, and interaction outcomes of each evacuee with other evacuees during evac-

uation. On top of having numerous factors to consider in microscopic planning, many

of these factors vary drastically with time. Stepanov et al. [1] when modeling a multi-

objective evacuation routing considered evacuees behavior in times of emergency. Evac-

uees behavior, as Stepanov described, is a complex phenomenon where there are those

who don’t leave the region after being warned, those who leave prior to evacuation notice

being issued, and those who respond when an evacuation notice is issued. As such, the

decision to evacuate depends on the following factors [24]:

1. Person’s perception of danger.

2. Family and social status.

3. Existence of family/friends at destination points.

4. Type of disaster at hand.

Techniques used for evacuees modeling include queuing models, transition matrix models,

and stochastic models. In all cases, pedestrian and evacuees dynamics obeys the equation

of motion [25]:

drα(t)

dt
= vα(t) (2.1)

where drα(t)
dt

is the temporal change of location of pedestrian α, and vα(t) is the pedestrian

velocity. Helbing et al. [25] further describes that if fα(t) denotes the sum of social forces
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influencing pedestrian α and ξα(t) are individual fluctuations reflecting unsystematic be-

havioral variations, the velocity changes are given by the acceleration equation:

dvα(t)

dt
= fα(t) + ξα (2.2)

When modeling relatively few evacuees during an evacuation, crowd dynamics are partially

compared with the behavior of gases [25]. However, when a massive amount of evacuees

takes on the characteristics of equations (2.1) and (2.2), crowd dynamics are strikingly

analogous to the motion of fluids:

1. Evacuees are similar to streamlines of fluids.

2. Emergence of stagnant crowds appears like the formation of river beds.

These concepts are utilized by Klupfel et al. [26] to simulate the evacuation processes on

passenger ships. To date, many researchers have made unrealistic assumptions regarding

evacuees’ behavior, specifically evacuees’ departure responds. Many assumed all who

are warned will evacuate, some assumed all registered vehicles will respond, while others

assumed only one evacuating vehicle per household [27]. Lindell et al. [6] emphasized

the importance of background data collection when determining evacuees’ behavior when

evacuating. Size and distribution of resident population is highlighted by Smith [28] in

his book and he depicts the population changes over time by the following demographic

balancing equations:

Pa − Pc = B −D + IM −OM (2.3)

where Pa = population size at some point in time after the census; Pc = population

size at time of census; B = number of births; D = number of deaths; IM = number

of immigrants; and OM = number of emigrants. Other variables affecting population

evacuation behavior include:

1. Number of persons per residential household [29].

2. Number of evacuating vehicles per residential household [30, 31, 32].
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3. Size and distribution of transient population [33, 27].

4. Percentage of residents’ warning compliance/spontaneous evacuation [33, 27, 34, 35].

5. Percentage of transients’ warning compliance/spontaneous evacuation [36, 29].

Yuan and Han [37] conducted a study in the event of a nuclear power plant accident,

where evacuees choose routes according to Most Desirable Destinations (MDD) in the

traffic network. Hareesh et al. [38] presented the concept of crowd behavior during an

emergency in a large building structure based on artificial life. Pel [20] in a review on travel

behavior modeling in dynamic traffic simulation models for evacuations focused on how

travelers’ decisions are predicted via simulation regarding choice to evacuate, departure

time choice, destination choice, and route choice.

Due to the vast amount of data, modeling details, and drastic variation of parameters,

simulation approaches are commonly used in microscopic planning [2]. Among the many

simulation models available for microscopic planning are NETVAC, MASSVAC, OREMS,

and CEMPS [20].

2.2 Macroscopic Evacuation Planning

Macroscopic evacuation planning is mainly used to design strategic evacuation plans

that do not account for individual behavior and interactions [2]. Macroscopic planning

produces tight lower bounds on expected evacuation time, and tight upper bounds for

number of people successfully evacuated. In turn, these bounds enable us to analyze

and modify the transportation network configuration to accommodate evacuation needs

[2]. Unlike microscopic planning, macroscopic planning focuses on large number of quan-

titative and qualitative variables that is involve in modeling the “big picture” of the

evacuation process. Depending upon the type of disaster, different variables are used for

modeling [3]. Table 2.1 [3] presents the different variables with respect to the type of

disaster.

Macroscopic evacuation planning is broken down by Lahmar et al. [2] into four stages

in his paper for hurricane evacuation. Each of these stages aims to minimize evacuation
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Table 2.1: Different variables with respect to type of disaster [3].

Disaster Type Variables

Flood Shelter, routes, traffic flow, demand between shelter and origin [15].

Earthquake District, suppliers, earthquake risk index, capacity of commodity,
durable commodity [39].

Nuclear Power Plant Path capacity, total number of evacuees, initial locations,
location of evacuation destination, network size, traveling time [11].

Homeland Security Logistics, route distance, travel time, evacuation time,
time window [2].

time and maximize number of evacuees that produces feasible routings and evacuation

schedules based on available time and road capacity. Table 2.2 [2] explains the functions

of each stage. Figure 2.1 [2] shows the process flow of the four-stage traffic management

function which produces feasible routings and evacuation schedules based on available

time and road capacity [2].

Although dependent on the type of evacuation and disaster at hand, in general, macro-

scopic evacuation consists of more quantitative variables as oppose to microscopic plan-

ning. When it comes to formulation of the model, macroscopic planning also steers toward

deterministic computations although there may be stochastic aspects such as demand/user

generation in the model. Hence, a wide variety of optimization approaches exist in lit-

erature when it comes to solving macroscopic planning problems. Yusoff [3] conducted a

survey on optimization approaches for macroscopic emergency evacuation planning. The

different approaches are summarized in Figure 2.2 [3] below.

Heuristic algorithms has been more commonly used compared to other approaches [3].

The main objectives of heuristics approaches usually involve minimizing evacuation egress

time and minimizing computational cost of producing evacuation plan. Time aggregated

graph has also been incorporated in heuristic algorithms to represent time varying at-

tribute in network [3]. Lu et al. [11], Shekhar et al. [40], and George et al. [41] are

among the many who did work using heuristics. Mathematical modeling usually involves

formulating the problem as a linear programming, or non-linear programming model.

Dijkstra algorithm, modified Bellaman-Ford, Branch and Bound, Greedy Flows, Bender-

s Decomposition, Column Generation, and Lagrangian are among the many algorithms
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Table 2.2: Four Stage Macroscopic Traffic Management Function [2].

Stages Description

I. Rough-Cut Capacity Plan (RCCP)

• Assesses general feasibility of plan within
available time window.

• Provides guidelines on network to accommodate
evacuation needs.

• Identifies maximum throughput of people.

• Provides upper bound for throughput and lower
bound on minimum evacuation time.

II. Detailed Capacity Plan (DCP)

• Solves more detailed model.

• Provide macroscopic evacuation plan with
detailed routes and schedules.

• Compromise plan needed if infeasible.

III. Restricted Evacuation Plan (REP)

• Explores viability of back-up plans when RCCP
is infeasible.

• Identifies most vulnerable zones and assigns
geographic priorities.

• Provide lower bound on time necessary to
evacuate a danger zone.

IV. Enforced Evacuation Plan (EEP)

• Explores back-up plans when DCP is infeasible.

• Evaluates alternative strategies when evacuees
can not be routed to their preferred destinations.

used to improve solving time and reduce computational cost of mathematical modeling.

Work done by Goldblatt et al. [42], Chiu et al. [13], and Andreas et al. [43] involves

mathematical modeling for evacuation planing. Problems focusing on traffic management

are usually more suited to use dynamic network flows [3]. Network flow breaks down

the entire process of evacuation planning into systematic and organized structures with

each section geared to optimize the different phases in the evacuation process. The four-

stage traffic management function introduced by Lahmar [2] belongs to a class of network

flow. Network flow structure also facilitates the evacuation planner in the preparation of
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Figure 2.1: Skeleton of four-stage traffic management function [2].

evacuation plan according to zone vulnerability. Andreas et al. [43] and Kamiyama et

al. [44] did work that utilizes network flow structure. Limited literature is available that

deals with population optimization and exact method. Genetic algorithm (GA) was used

by Liu et al. [17] to solve a two-level optimization model: 1. Minimize total clearance

time. 2. Maximize throughput in targeted zones. Miller et al. [45] used SEscape as an

exact method to support ERR for a fire disaster. SEscape functions to minimize total

evacuation time, and maximize throughput capacity [45].
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Figure 2.2: Optimization approaches in macroscopic evacuation planing [3].

2.3 Static Traffic Assignment

A traffic assignment model aims to estimate how traffic flows through a road system

and the associated effects on the system [46]. Demand for travel, characteristics of trans-

port system, and distribution of demand over the transport system are three kinds of

information needed when solving traffic assignment models [46]. The demand for trav-

el should be balanced across the entire transport system to achieve system equilibrium

condition. In static traffic assignment models, congestion properties of each road are rep-

resented by volume-delay function (VDF) that is the average travel time on the road as a

function of traffic volume [4]. Beckmann et al. [47] were the first to formulated the static

traffic assignment as a mathematical model:

Min z =
∑
a∈L

vaca(va)

s.t
∑
p∈Pod

ep = Eod, ∀od (2.4)

va =
∑
od

∑
p∈Pod

epδ
a
p , ∀a (2.5)∑

p∈Pod

ep = Eod, ∀od (2.6)

ep ≥ 0, ∀p ∈ Pod (2.7)
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Where va represents flow of traffic on link a, ca is the travel time along link a and is a

function of link flow va. Eod represents traffic flow between origin o to destination d. δap

is an indicator variable:

δap =

{
1, if link a is on route p;

0, 0 otherwise.

By solving the model above, the static user equilibrium assignment problem is solved at the

same time [47]. Karush-Kuhn-Tucker (KKT) necessary conditions [48] for minimum point

can be used to prove the conditions of user equilibrium [46]. Many advanced algorithms

written in books by Bazaraa [48] and Luenberger [49] can be used to solve the above

system-optimum static traffic assignment model. In static traffic assignment, travel time

correlates positively as throughput increases. Chiu et al. [4] highlights that because

of the less complicated nature of static traffic assignments, mathematical properties can

be obtained relatively easily. Additionally, a large advantage of static assignment is its

low computational cost. In a relatively short time, static models can be optimized and

approximate equilibrium solutions can be found.

2.3.1 Static Traffic Assignment Limitations

Despite the positive attributes of static traffic assignment, many limitations exist

which outweigh its advantages. In his book, Patriksson [50] commented on assumption

made on traffic assignment models:

“the fundamental principles underlying the assignment models were stated
some forty years ago. The traffic flows in the then relatively uncongested urban
networks were probably suitable for approximation by steady-state flows, as
Wardrop did. Since those days, the traffic networks have become much more
complex and the demand for transportation has become orders of magnitude
higher, and the approximation of present traffic flows by steady-state flows is
far less realistic.”

Static assignment does not consider the potential increase of travel time due to increase

in congestion and has no direct correlation with physical measures such as speed, density

,or queue, resulting in an unrealistic representation of real-life scenarios [4]. Without
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factoring in potential congestion, static assignment also does not consider flow-spill back.

This causes the volume of roads to increase indefinitely and eventually exceeding the

physical capacity of roads [4]. Figure 2.3 [4] shows the simulation structure of static

Figure 2.3: Static traffic assignment in simulation [4].

traffic assignment. In general, static approaches cannot reflect traffic variations over time

and fail to consider the many measures taken to address congestion [4]. Hence, they

are only effective in cases where mandatory evacuation with imposed route controls are

implemented.

2.4 Dynamic Traffic Assignment

While static traffic assignment implies that vehicles stay on a specific route and also

leave and arrive at a fix time period, dynamic traffic assignment (DTA) on the other hand

allows users to choose direction at every road crossing and also grants them flexibility to

depart accordingly. That being said, DTA is equivalent to expanding static assignment

with respect to time where a duplicate of static network is considered for each discrete time

period [2]. Although dynamic models have been around for a while, it is only during the

emergence of intelligent transport system (ITS) due to technological advances that DTA

started to be widely acknowledged [46]. Chiu [13] boils down the aim of DTA research

in to main objectives: 1. to support real-time route guidance and traffic management
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under ITS architecture; and 2. to improve operational planning practice that cannot be

addressed by static traffic assignment. Based on Wardrop’s principles [51], two approaches

exist when dealing with DTA [46]: dynamic user equilibrium and dynamic system optimal

assignments.

Formulations of dynamic user equilibrium can be grouped into five categories [46]:

1. Mathematical programming

2. Optimal control theory

3. Non-linear complementary problem

4. Fixed point problem

5. Variational inequality

The pioneer of dynamic user equilibrium was Friesz et al. [52] who formulated the problem

using variational inequalities. Patriksson [50] showed that variational inequalities can be

regarded as a generalization of mathematical programming, non-linear complementary

problem, and fixed point problem. Dynamic user equilibrium represents the distribution

of traffic based on users own interest, which results in inefficient use of the transport

system [46].

Dynamic system optimal assignments on the other hand aim to calculate optimum time

path for the decision variables such that the entire traffic flow achieves system optimal

condition [46]. Merchant and Nemhauser [53] were the very first to come up with dynamic

system optimal assignment model before others modified it to suit different scenarios.

DTA fuses multiple sources of information, estimate and predict evolution of network

wide traffic conditions, and generate route guidance based on its ability to integrate histor-

ical data and information from multiple sensor sources [54]. Detailed algorithms within a

DTA model further enable it to incorporate complex demand-supply interactions. DTA’s

ability to combine individual models into a complex system with many inputs and param-

eters makes it ideal for evacuation planning and management [54]. The computational

efficiency of DTA models represents a powerful trade-off between modeling accuracy and
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running time. Different from static assignment, the simulation structure of DTA shown

in Figure 2.4 [4] presents DTA’s ability to sense, update, and re-optimize according to

updated traffic conditions with respect to time. A variety of dynamic network flows has

Figure 2.4: Dynamic traffic assignment in simulation [4].

emerged which seeks to optimize different aspects of evacuation planning. Maximum dy-

namic flow seeks to maximize amount of flow from origin to destination within a given

time period [55]. Quickest dynamic flow seeks to minimize necessary time to send flow

from origin to destination [56]. The universal maximum dynamic flow seeks to maximize

amount of flow arriving at sink at all times before a specific deadline [57, 58, 59].

2.5 Dynamic Traffic Assignment for Emergency E-

vacuation Planning

A common behavioral assumption in DTA is that users will select routes that has

the shortest travel time. In reality, road users’ definition of best route choice varies for

each individual where lowest cost or minimum disutility are often considered as well [4].

As evacuating in the shortest time possible is the logical approach when it comes to

evacuation planning, within limits, shortest travel time is always taken as the objective of

the model and takes precedence over other factors. When an evacuee has been assigned
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such a route, every used origin and destination (O-D) pair has its own minimum travel

time. This condition is known as user equilibrium [4]. The minimum travel time of

each O-D pair is usually at the very least equal to the specific link’s free flow travel

time. Evacuees will not be able to find another O-D route that will further reduce travel

time at user equilibrium condition as long as parameters such as network size or travel

demand does not change. The notion of user equilibrium is extended in two ways when

modeling DTA in a general sense [4]. The first extension assumes that road users have

information regarding future road conditions and in choosing and O-D route, they are

minimizing travel time they will experience. The second extension assumes that user

equilibrium condition of equal travel times applies only to users that departs at the same

time on the same O-D pair. DTA approach also typically uses experienced travel time

as measurement as oppose to instantaneous travel time. The main differences between

the two measurements are listed in Table 2.3 [4]. Since equilibrium assumes that users

are well informed and make rational choices [4], when applied to emergency evacuation

planning, it is natural that equilibrium condition is often not realized. Hence, evacuation

planning research often focuses on disequilibrium models where evacuees do not have

perfect information about network travel conditions. This is because of drastic changes

of road conditions when disaster strikes resulting in minimum travel time routes differing

from that of evacuees prior knowledge or experience.

Table 2.3: Instantaneous and Experience Travel Time Differences [4].

Instantaneous Travel Time Experience Travel Time

• Minimum travel time is based on snapshot
of the link travel times prevailing
at departure.

• Assumes that users know what the
shortest route is at departure.

• Does not necessarily result in minimal
experienced travel time due to
dynamically changing link travel times.

• No provision to reflect anticipated
congestion that is to occur at later time.

• Yield time-dependent shortest route with
minimal experience travel time.

• Assumes users are willing to seek routes
that minimizes their experienced travel
time, instead of route that appears
best only at departure.

• Accounts for time needed for traveling
through an O-D link based on time of
entering.
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A tremendous amount of factors come into play when selecting the right model to

solve traffic problems. Among them are geographical location, situational condition, pop-

ulation size, and many more. For emergency evacuation planning, disaster type, road

capacities, and travel mode are common factors to be taken into consideration. Often,

selecting the right model not only depends upon information and facts available, equally

importantly, experience is a factor that has a strong hold to enhance and improve mod-

eling experience for the user. Technical report written by Jeannotte et al. [60] contains

detailed methodology to select traffic decision support models. Chiu et al. compressed

the steps for selecting traffic analysis tools into seven decision-making guidelines shown

in Figure 2.5 [4]. The yellow shaded areas indicate attributes or capabilities general-

ly supported by DTA models. The blue shaded areas are those generally considered in

emergency evacuation planning.

Figure 2.5: Decision making process for selecting traffic models [4].

Before results are able to be generated, inputs and parameters need to be specified.

Often, these inputs and parameters will require calibration to depict a realistic and ac-

ceptable model depending upon the individual components that make up the DTA model.

In general, they can be grouped into demand-side and network-side quantities [4].
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Demand-side quantities:

• Trip tables

• Evacuees’ behavior model inputs

• Demand at each specific node

Network-side quantities:

• Link capacities

• Link performance functions

• Planning time horizon

• Shortest time interval

• Number of safe and danger zones

Verifying results generated are crucial when validating one’s model. Many different

qualitative and quantitative analysis are used in this process. Some model users that

are more vigorous will resort to using statistical tests, such as linear regression analysis

to quantify the validity of the results. A rule of thumb for DTAs is that data used for

validation must be dynamic in which the finer the time resolution of the date, the better

the model represents real-world problem. In general, users should start by generating

results for small networks. This enables them to detect discrepancies or inconsistencies

before moving on to much larger and more realistic network sizes. Chiu et al. [4] list the

characteristics of a DTA solution as follows:

• Vehicle departing at different times are assigned with different routes.

• Vehicles departing at the same departure time between the same O-D pair but

taking different routes should have the same experienced travel time.

• Experienced travel time cannot be realized at departure, but only at the end of trip.
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DTA models offer the ability to make operational planning decisions such as making

demand management actions or making planning decisions [4]. As such, DTA is the most

ideal approach when dealing with emergency evacuation planning. Moreover, DTA is

able to accommodate to temporal or spatial pattern shift of traffic which is a common

phenomenon in evacuation planning due to sudden congestions of roadways. DTA for e-

vacuation planning is generally classified into 2 different approaches: 1. Simulation based

and 2. Analytical approach. The sub-sections below elaborate on the main differences,

advantages, disadvantages, and recent work done utilizing these two approaches. Exten-

sive information regarding the usage of DTA such as selecting specific models, planning for

DTA activities, data set preparation, and model calibration can be found in the primer,

“Dynamic Traffic Assignment”, by Chiu et al. [4].

2.5.1 Simulation Approach

Chiu et al. [13] describes simulation-based DTA as a mathematical programming

based model in which vehicular traffic dynamics and the link/path travel time are estimat-

ed through a trial and error method. Simulation-based approaches are able to incorporate

large amount of parameters and also accommodate to drastic changes of these parameters

over time. Its ability to capture a tremendous amount of modeling details such as traffic

flow dynamics, behaviorial characteristics of individual evacuees, and entities’ interaction,

makes simulation the ideal approach when dealing with microscopic evacuation planning

[22], although at times it is also used in macroscopic and mesoscopic planning. Mi-

croscopic model simulations are able to analyze various geometric design configurations,

evaluate localized individual intersections, and analyze interactions of multiple modes of

transportation [4]. Simulation in macroscopic and mesoscopic scale, on the other hand,

usually takes place on a section-by-section basis rather than tracking individual entities

and their characteristics. They also operate on the basis of aggregate speed/volume and

demand/capacity relationships [60]. Especially with small networks, simulation is able to

provide relatively good and improved results in a short time, although optimality is not

always guaranteed. Simulation is able to discover the path of vehicles on a mesoscopic
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scale for every O-D pair at every departure time interval. In turn, information on changes

in traffic flow, temporal and spatial dynamics of travel times and other congestion indices

can be extracted [4]. The attribute of dividing analytical period into time intervals enables

simulation to evaluate buildup, dissipation, and duration of traffic congestion [60].

Despite its various advantages, the simulation-based approach has its own limitations.

Its applicability, in most cases, is typically limited to function as a “what if” method

to evaluate small sets of pre-specified candidate plans [22]. Due to it’s time-consuming

process when simulating large-scale networks even with the utilization of an advance

computing system, simulation limits the ability to extensively search for optimality for

realistic sized networks. As such, Xie et al. [22] describes simulation as only being able to

be used for evaluating and assessing, but not for generating evacuation planning scenarios.

Moreover, simulation approaches are unable to predict changes in design or changes in

road environment which might affect potential collisions and driver behaviors [60].

NETVAC, IDYNEV, MASSVAC, SNEM, TEVACS, VISSIM, OREMS, CEMPS, and

DynaMIT are among the few simulation softwares that are used for evacuation planning

purposes [22].

Applications of Simulation Approach

Most literature available involving DTA commonly utilizes simulation when solving.

Balakrishna et al. [54] used DynaMIT, a simulation system design, to combine real-time

data from surveillance system with historical data to estimate current network state, pre-

dict future traffic conditions, and provide travel information through ATISs. DynaMIT

was used in a case-study to ascertained network management strategies’ benefit. Stepanov

et al. [1] embeded M/G/c/c queuing model in an integer programming model to capture

time delay functions on road links for stochastic evacuation planning optimal route as-

signment. MGCCSimul simulation software was used to evaluate clearance time, travel

distance, and congestion level. The model considers a Poisson arrival rate of vehicles λ,

general service rate G, with a limited capacity c. Shen et al. [19] developed a bilevel

model with upper level design to locate safety shelters and lower level to calculate user

equilibrium travel times. A simulation algorithm, the Franke-Wolfe algorithm, was used
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to solve the lower level model. Han and Yuan [61] coded a most desirable destination

(MDD) evacuation road network in VISSIM to simulate traffic evacuation operations. A

case study on Tennessee’s Sequoyah nuclear plant using this method showed results that

has a 58% reduction of evacuation time as oppose to static destination selection and traf-

fic assignment. A vast array of papers are available addressing different issues utilizing

various simulation tools for various models. On the microscopic level, an extensive review

on different dynamic simulation models for evacuation can be found in the article by Pel

et al. [62].

2.5.2 Analytical Approach

Different from simulation-based approach, Chen et al. [12] describes analytical-based

models consisting of mathematical programming or variational inequality problems in

which the link travel times are estimated through closed-form path performance function

and deterministic procedures. Often times, analytical approaches for evacuation planning

can be directly used to search for optimal evacuation solutions. The model user defines

and inputs data and parameters through a vigorous calibration process to depict an as

close to real-life as possible situation and produce a single optimal solution. Typically,

the analytical approach leads to an evacuation planning model written in a mathematical

programming or other optimization-based functional forms, whose objective is set as min-

imizing the total evacuation time, minimizing the network clearance time, or maximizing

the network traffic throughput [22]. Unless there exist stochastic attributes within the

model, analytical approaches will consistently yield the same optimal solution given the

same set of inputs and parameters. As such, analytical tools are able to quickly predict

capacity, density, speed, delay, and queuing on a variety of transportation networks [60].

As oppose to simulation-based approaches, analytical approaches are able to tell the user

“what to do” on making an evacuation plan [22]. They are also quick, reliable, and tested

through significant field-validation efforts [60].

A limitation of analytical approaches is that they assumes conditions of one road seg-

ment not affecting conditions of adjacent roadways [60]. In reality, heavy congestion and



Yeh-Ern Poh Chapter 2. Review of Emergency Evacuation Characteristics 26

long queues on one segment usually interferes with other locations. Even though most rea-

sonably sized networks are capable of being solved using analytical approaches, at times

large sized data will result in situations where the model is unsolvable. Depending on the

formulation of the mathematical model, computational results may come back infeasible if

insufficient planning time horizons are assigned, or the operating system used to solve the

model may run out of memory as a result. To overcome this limitation, many algorithms

have been developed over the years to simplify/decompose models, reduce computational

time, and obtain optimal solution for tremendously large networks. Some of these algo-

rithms include Modified Dijkstra algorithm, Benders Decomposition, Branch and Bound

method, and Column Generation algorithm [3]. Detailed description of advantages and

limitations of analytical approaches are found in a traffic analysis toolbox by Jeannotte

et al. [60].

Applications of Analytical Approach

Xie et al. [22] developed a bi-level optimization model where the upper level op-

timizes network evacuation performance and lower level simulates dynamic evacuation

flows. Lagrangian-relaxed algorithm was used to reduce structure complexity and pro-

vided a algorithmic framework to seek optimal solutions. In another paper [63], Xie et

al. developed a method to reconfigure existing networks to identify specific route to be

reserved for emergency vehicles to access evacuation areas. Another bi-level optimiza-

tion system was presented by Liu et al. [64] where upper level maximizes throughput

during evacuation and lower level minimizes total travel time. For large-scale network

applications, a revised cell-transmission formulation was imposed to efficiently model flow

propagation and yield reliable performance. Yao et al. [65] developed a robust linear pro-

gramming model based on robust optimization approach. Significantly less literature can

be found that implements different analytical techniques for evacuation planning com-

pared to that of simulation approaches. Nevertheless, all the above mentioned papers

concluded that sound improvements and advantages were found with the implementation

of analytical techniques.
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2.6 Contra-Flow / Lane Reversals

The majority of freeways, highways, arterial road, or collector roads here in United

States are two-directional, where a road user heading in a certain direction will often

encounter traffic flow heading in the opposite direction on the other side of the roadway.

Contra-flow or lane reversal is realized when a road segment is reversed to head toward

the opposite direction from it’s regular flow direction. Figure 2.6 shows a road segment

where a lane is reversed.

Figure 2.6: Contra flow realized.

Although lane reversals have been implemented in different events such as capacity

control during off-work peak hours and football games [40], it’s application is most cru-

cial in the event of a disaster that calls for evacuation of residents. Heavy congestion and

stand-still traffic is a common phenomenon in times of emergency as residents eagerly seek

to evacuate for safe refuge. Hence, lane reversal is a remedy to tremendously increased

outbound capacity and help ease road congestion. Having an increase of outbound ca-

pacity naturally also leads to an increase in residents evacuated and shorter evacuation

time. Often times, a road segment need not be two-directional for lane reversal to occur.
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A one-directional road segment can also be reversed to flow in the opposite direction as

the the main objective is to increase outbound capacity. Contra-flow/lane reversals is not

a new concept by any means. Eleven coastal states facing constant potential threats by

hurricane disasters have considered implementing lane reversals in their evacuation strat-

egy [66]. Actual usage of lane reversals are also seen during Hurricane Floyd in North

and South Carolina, and also during Hurricane Georges in Louisiana and Mississippi [66].

Despite definite plans and occasional implementation of lane reversals, a survey done by

Wolshon, Urbina, and Levitan [67] reveals that the authorities and planners have no rec-

ognized standards or guidelines for the design, operation, and location of lane reversal

segments.

Literature involving contraflow/lane reversal include a work done by Shekhar and Kim

[40] where heuristics is used to tackle multiple sources and multiple destinations network

for evacuation planning. Flip High Flow Edge (FHFE) heuristic was used to prioritize

edges in order to reverse them. Simulated Annealing (SA) was also used to to escape

local minima situations in an iterative way. Xie et al. [22] incorporated lane reversals

and crossing elimination strategies to increase capacity in specific directions through the

evacuation network. Hamza et al. [68] introduced multicast routing problem and breadth-

first graph traversal, two contra flow algorithms, to handle single-coordinated incident.

Other papers on contraflow and lane reversal [66, 67, 69, 70] mainly tackle managerial

and operational aspects of contraflow. Planners and decision makers often rely on past

experiences and guesses to design lane reversals for evacuation planning which is not ideal

when dealing with constantly changing demographic data and road layouts [40].

2.7 Project Significance

The goal of this project is to provide a model that is computationally efficient and able

to depict a realistic representation of an emergency evacuation situation. As oppose to

having to consider users behavioral characteristics, this thesis focuses on optimizing the

process of evacuation planning as a whole where users’ are assumed to choose routes and

departure time to achieve optimality. Hence, a macroscopic approach is used to calculate
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the best mobility of evacuees during an evacuation situation. Although many quantitative

and qualitative factors determine the definition of best mobility, it is safe to conclude

that often times, the primary concern during an emergency evacuation is to minimize

total delay/travel time of evacuees. Hence, best mobility is defined as dynamic traffic

system optimum (SO), which denotes minimum total delay. In reality, travel demand

between O-D pairs, users’ choice of departure time, and total duration of entire evacuation

planning process are time dependent. As such, dynamic traffic assignment (DTA) is the

best technique to model evacuation planning as it offers the ability to make operational

planning decisions with respect to time.

The mathematical model in this project is formulated as a mixed integer programming

with discretized time horizon and utilizes link performance function to capture relationship

of user travel time and travel volume on links in the network. A fair assumption is made

where link travel time is directly affected by all vehicles present on the link. Intuitively,

closer vehicles will affect traveling speed of a specific user more that those further away.

Merchant and Nemhauser (1978) [53] utilized discrete time horizons when modeling DTA

problem. Zheng and Arulselvan (2011) [5] incorporated link performance function for

dynamic assignment for managed land system. Simultaneous route and departure (SRD)

assumption was also kept in their model formulation where users can choose the route as

well as departure time. Attributes of the models in these two papers are also contained

within the model presented in this thesis.

The main contribution of this thesis is the ability to have potential contraflow/lane

reversal when necessary to increase outbound capacity. Increase of outbound capacity

will in turn result in increase of evacuees successfully evacuated and also decrease of total

travel time. With the realization of lane reversals, the threat of potential head on collisions

with oncoming traffic naturally emerges. To prevent such an occurrence, directional flow

needs to be strictly restricted where all vehicles on a link cleared is ensured before it’s

flow direction are reversed and vehicles heading towards the opposite direction is allowed

through. In order to validate the effectiveness of the proposed model, computational

results are recorded and compared with a model without reversals. To our knowledge,

there hasn’t been work done on DTA for evacuation planning that incorporates lane
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reversals for the entire network that tackles multiple sources and multiple destinations,

and incorporates collision avoidance on links and solving it as a system optimal model.

As such, it is desired to be able to contribute an advance, efficient, and practical way for

the authorities to further improve current standards of evacuation planning through this

research. Detailed description of the formulation of this model is presented in the next

chapter.
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Chapter 3

Problem Formulation

The problem formulation in this chapter is an expansion of the model concept used

by Zheng and Arulselvan [5]. In their paper, a discrete time DTA model was used for

traffic system with managed lanes. Their objective is to predict traffic flows on managed

lanes at various times in the entire planning horizon and strive to minimize overall delay.

Zheng and Arulselvan’s model formulation concept is found to be directly applicable in

the context of evacuation planning with appropriate modifications. Instead of modeling

the problem as having restricted and unrestricted lanes in a managed lane traffic system,

in an evacuation system, all lanes are treated as regular (general-purpose) lanes able to

be used by everyone and able to be reversed when needed. Figure 3.1 shows a static

network structure of a two-directional traffic system where there are three points users

are able to either enter or leave the road. Each of these points are represented by a

node and the road segment between two adjacent points is represented by arcs. In this

case, there are two arcs connecting every pair of adjacent nodes as there are two lanes in

this entire road segment. The two parallel arcs usually have different capacities and link

performance functions. Figure 3.2 shows the situation where a lane is reversed to increased

the outbound capacity away from the disaster zone. Time expanded network structure

is introduced in the next section. After that, the formulation of every constraint and its

purpose is explained. The full model is presented subsequently with detailed descriptions

of all indices, variables and parameters. We end this chapter by stating the various

assumptions made in the model and its limitations.
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Figure 3.1: Static network structure before lane reversal.

Figure 3.2: Static network structure after lane reversal.

Note: Sections 3.1 and 3.3 are based on the paper “Discrete time dynamic traffic as-

signment models and solution algorithm for managed lanes” by Zheng and Arulselvan

[5]. Some modifications, however, have been made for it to be applied in the context of

evacuation planning.

3.1 Time Expanded Network

Zheng and Arulselvan [5] makes use of the time expanded network and a DTA formu-

lation based on the discretization technique employed in the paper by Nahapetyan and

Lawphongpanich [71]. The continuous planning time horizon is [0, T ] is discretized into

a set of discrete time points Γ = {0, δ, 2δ, 3δ, . . . , Cδ}, where T = Cδ is assumed. Figure
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3.3 illustrates this concept. Here, δ represents the subdivision of the planning horizon,

which is also the smallest time period in the formulation. For example, let T = 10 and

take δ to be 2, and then C = 5.

0 δ 2δ 3δ 4δ T 

T = 5δ 

Figure 3.3: Discrete vs. continuous time horizon [5].

The time expanded network is obtained by first replicating each static node C+1 times.

For example, a static node p is replaced by the time expanded nodes p0, pδ, p2δ, p3δ, . . . , pCδ,

where the subscripts denote the discrete time points. Next, time expanded arcs will take

the place of the original set of static arcs, A. Travel time of each arc is also discretized

by δ. ∆p,q is used to denote the set of all possible discrete travel times for arc (p, q).

A time expanded arc is denoted by both head and tail nodes (time expanded nodes) in

time expanded network. The time expanded arc (p, q; t, t + τ), where τ belongs to ∆p,q,

connects time expanded nodes, pt and qt+τ . Each time expanded arc denotes a realization

of travel time for the corresponding static arc. In this example, a time expanded arc

(p, q; 1, 3) would indicate the realization of the static arc (p, q) with travel time τ = 2

(travel time is also being discretized), that connects node p at time instance 1 and node

q at time instance 3 of our planning horizon [0, 10]. In other words, the departure time

is t = 1 and arrival time t + τ = 3. An example of the time expanded network for the

aforementioned static network is presented in Figure 3.4. In reality, a user departing at

a certain time point will only be able to arrive at a later time point, which is why the

dotted red lines in Figure 3.4 represents prohibited travel for road users. In this example,

users departing at time period δ will only be able to arrive at time periods > δ. The

assignment of minimum and maximum travel time of each and every arc is dictated by

the travel time function explained in Section 3.2.



Yeh-Ern Poh Chapter 3. Problem Formulation 34

a

a

a

a

a

b

b

b

b

b

c

c

c

c

c

0 

δ 

2δ 

3δ 

4δ 

a b c5δ 

Figure 3.4: Time expanded network.

3.2 Travel Time Function

Since travel time on any static arc (p, q) is time dependent, φp,qt is used to denote

travel time on arc (p, q) when a user enters this arc at time t. Any nonlinear travel time

function can be incorporated in this model as linear constraints. Hence, a linear travel

time function is used as follows,

φ(flow) = a ∗
[
1 + b ∗

(
flow

c

)p]
, (3.1)

where a is the free flow travel time, b is a coefficient, c is the capacity of the link, p is the

power, and they are all equated as a function of flow on each respective arc. Regardless

of departure time, there should be a limit/bound on users minimum and maximum travel

time on an arc. It is a fair assumption that free flow travel time a is regarded as users’
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minimum possible travel time on an arc for this model. On the other hand, maximum

flow is used to decide maximum travel time of an arc through the following equation:

φp,qt (flowmax) = a ∗
[
1 + b ∗

(
flowmax

c

)p]
(3.2)

The maximum flow on an arc is closely related to the capacity. Hence, it it important

to first understand how road capacities are assessed in order to derive a sensible estimate

of maximum flow. Road capacity is essentially the maximum number of vehicles can

expect to traverse a point of a roadway during a given period under prevailing roadway

traffic conditions [72]. Road capacities are stochastic in nature and there exist different

meanings to capacity value notions [73]: 1. Design Capacity, 2. Strategic Capacity,

and 3. Operational Capacity. Although several capacity-estimation methods exist (some

more promising than others), a reliable and meaningful estimate of road capacity does

not appear to be available [73]. However, some conditions and rules stay constant when

traffic engineers conduct road capacity estimations [73]. Firstly, uninterrupted roadway

conditions are used when estimating capacity. Secondly, traffic data with which capacity

of a road is estimated should be collected at one or more cross sections of the road.

Congestion typically begins upstream of the bottleneck. Hence, observation points will

need to take place at upstream, bottleneck, and downstream areas of a road segment.

Figure 3.5 illustrates the various measuring points on an arc. In this research, capacity is

assumed to be the maximum number of vehicles that is on a road segment at any given

time under the two constant conditions stated earlier. As such, longer road segments will

be able to contain more vehicles on it, in turn it also takes more vehicles to be on it

to achieve congestion state. In other words, longer road segments respectively will have

higher capacity.

Since roadway capacities are estimated under uninterrupted conditions, it is assumed

that the maximum flow during an emergency evacuation will be comparatively near to

the capacity limit and in many situations, even surpassing the capacity limit significantly.

Also, since longer road segments will have higher capacities, it is assumed that maximum
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Upstream Bottleneck Downstream 

Figure 3.5: Capacity measuring point.

flow during an emergency evacuation will consist of a higher percentage of the capacity

limit. As such, the percentage of capacity for maximum flow is taken to be linearly

correlated to the length of the road segment. Figure 3.6 shows that maximum flow is 90%

of capacity for the shortest road segment in the network and 200% for the longest.

Length of road segment 

Maximum flow as a percentage of capacity 

200% 

90% 

Shortest 

segment in 

network 

Longest 

segment in 

network 

Figure 3.6: Relationship between maximum flow and length of road segment.
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3.3 Travel Time

Usually the set of possible discrete travel times of segment (p, q), ∆p,q, contains more

than one element. Exactly one time expanded arc will be realized among the set of arcs

emanating from any time expanded node, since it is assumed that all users entering an

arc in the same time interval will experience the same travel time on this arc. Hence,

the set of binary variables zp,q;t,t+τ are introduced to help model the realization of time

expanded arc (p, q; t, t+ τ) where

zp,q;t,t+τ =

{
1, Travel time τ on (p, q) when enter arc from node p at time t;

0, Otherwise.

The same applies for reversed flow:

z′p,q;t,t+τ =

{
1, Travel time τ on (p, q) when enter arc from node q at time t;

0, Otherwise.

Let yp,q;t,t+τ be the flow variable and y′p,q;t,t+τ be the contra-flow variable on time

expanded arc (p, q; t, t+ τ). In order to enforce the unique realization of travel time, the

following constraints for regular and reversed flow need to be included in the formulation,

yp,q;t,t+τ ≤ Mp,qzp,q;t,t+τ , ∀τ ∈ ∆p,q,

y′p,q;t,t+τ ≤ Mp,qz
′
p,q;t,t+τ , ∀τ ∈ ∆p,q,

where Mp,q is the upper bound on the number of vehicles that can enter arc (p, q) during

a time period.

Here, it is assumed that the travel time on any static arc (p, q) is time dependent.

φp,qt is denoted to be the travel time on arc (p, q) when a user enters this arc at time t.

In reality, φp,qt is determined by all vehicles which are currently on or are entering the

road. Then the assumption is made that any users traveling speed is only affected by

the vehicles ahead of and around the user but not those behind the user. Hence, φp,qt
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should be a multivariate function of all positive flows on time expanded arcs at time t,

which means the vehicles that are still on the road at this time point. The function can

be expressed as follows,

φp,qt = φp,qt (yp,q;α,β, {(α, β) : α ≤ t, β ≥ t}). (3.3)

Intuitively, closer vehicles have bigger effects on traveling speed, as shown Figure 3.7,

where the darker is the dot, the larger is the effect.J Glob Optim (2011) 51:47–68 51

Fig. 4 Effectiveness of vehicle
positions on travel time

the vehicles that are still on the road at this time point. The function can be expressed as
follows,

φ
p,q
t = φ

p,q
t

(
ypα,qβ , {(α, β) : α ≤ t, β ≥ t}).

Intuitively, closer vehicles have bigger effects on traveling speed, as shown Fig. 4, where the
darker, the more effective. For convenience, we use a single variable function to calculate
the travel time. The single variable is weighted flow, x p,q

t , and then the travel time for the
vehicles which enter (p, q) at time t is as follows,

φ
p,q
t = φ

p,q
t

⎛
⎝∑
α≤t

∑
β≥t

β − t

β − α
ypα,qβ

⎞
⎠ = φ

p,q
t

(
x p,q

t
)
.

The travel time on a static arc determines the realization of the time expanded arcs. On the
other hand, the realization of the time expanded arcs decides the weighted flows at discrete
time points. In order to capture this feature, the following constraints are included in the
model, ∑

τ∈�p,q

(τ − δ)z pt ,qt+τ < φp,q
(
x p,q

t
) ≤

∑
τ∈�p,q

τ z pt ,qt+τ , ∀t ∈ Γ, (p, q) ∈ A,

which means that the time expanded arc (pt , qt+τ ) if the travel time on arc (p, q), when enter
at time t , is greater than τ − δ and less than or equal to τ . We assume that the travel time
function is a continuous and non-decreasing function as shown in Fig. 5, and then its inverse
function is also continuous and non-decreasing. Hence, since z pt ,qt+τ is a binary variable, we
can transform the above nonlinear constraints to the equivalent linear constraints as follows,

∑
τ∈�p,q

φ−1(τ − δ)z pt ,qt+τ < x p,q
t ≤

∑
τ∈�p,q

φ−1(τ )z pt ,qt+τ , ∀t ∈ Γ, (p, q) ∈ A.

This also implies that if values of z pt ,qt+τ s are given, the upper and lower bounds on the
weighted flow x p,q

t s are also given.

2.3 The formulation

Before we get into the formulation, we need to discuss the travel demands. We denote users
by user groups. In each user group, all users are assumed to share the same OD pair (a, b),
desired departure time r , and desired arrival time d , which is usually equal to r plus the free
flow travel time of the shortest path for OD pair (a, b). Then a user group is denoted by
(a, b, r, d). As we have the simultaneous route and departure (SRD) assumption in our for-
mulation, the actual departure/arrival times can be different from the desired ones. However,
appropriate penalties have to be added if there are differences between the desired times and

123

Figure 3.7: Effectiveness of vehicle positions on travel time [5].

For convenience, a single variable function is used to calculate the travel time. The single

variable is weighted flow, xp,qt , and the travel time for the vehicles which enter (p, q) at

time t is as follows,

φp,qt = φp,qt

(∑
α≤t

∑
β≥t

yp,q;α,β

)
= φp,qt (xp,qt ). (3.4)

The travel time on a static arc determines the realization of the time expanded arcs.

On the other hand, the realization of the time expanded arcs decides the weighted flows at

discrete time points. In order to capture this feature, the following constraints for regular

flow are included in the model,
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∑
τ∈∆p,q

(τ − δ)zp,q;t,t+τ < φp,qt (xp,qt ) ≤
∑
τ∈∆p,q

τzp,q;t,t+τ , ∀t ∈ Γ; (p, q) ∈ A, (3.5)

which means that the travel time on time expanded arc (p, q; t, t + τ), when entering at

time t, is greater than τ − δ and less than or equal to τ . The travel time function is

assumed to be a continuous and non-decreasing function as shown in Figure 3.8, and

then its inverse function is also continuous and non-decreasing. Hence, since zp,q;t,t+τ is

a binary variable, the above nonlinear constraints can be transformed to the equivalent

linear constraints as follows,

∑
τ∈∆p,q

φ−1
p,q(τ − δ)zp,q;t,t+τ < xp,qt ≤

∑
τ∈∆p,q

φ−1
p,q(τ)zp,q;t,t+τ , ∀t ∈ Γ; (p, q) ∈ A. (3.6)

The same concept applies for reversed flows, where the bounds of its inverse travel time

function is shown as

∑
τ∈∆p,q

φ−1
p,q(τ − δ)z′p,q;t,t+τ < x

′p,q
t ≤

∑
τ∈∆p,q

φ−1
p,q(τ)z′p,q;t,t+τ , ∀t ∈ Γ; (p, q) ∈ A. (3.7)

As an example, the inverse travel time (inverse of Equation 3.1) upper bound is a function

of travel time τ ,

∑
τ∈∆p,q

φ−1
p,q(τ) =

∑
τ∈∆p,q

p

√
τ

a ∗ b
− 1

b
∗ c (3.8)

This implies that if values of zp,q;t,t+τ s and z′p,q;t,t+τ s are given, the upper and lower bounds

on the weighted flow, xp,qt , and reversed weighted flow, x
′p,q
t , are also given.
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Fig. 5 Travel time function

actual ones. We have four types of penalties, late/early departure/arrival, which also can be
set as zero.

In addition to the aforementioned notations and decision variables, some others are shown
in Table 1. Based upon all the previously defined variables, sets, parameters, indices and
parameters, the original system optimum problem for managed lanes traffic system is for-
mulated as follows,
[DTA-SO]:

Min
∑

(a,b,r,d)∈G

⎧⎨
⎩

∑
s

ϕ(s − r)w(a,b,r,d)s (1)

+
∑

s

ψ(s − r)v(a,b,r,d)s (2)

+
∑

(p,q)∈A

∑
t∈Γp,q

φp,q
(
x p,q

t
) ∑
τ∈�p,q

y(a,b,r,d)pt ,qt+τ

⎫⎬
⎭ (3)

s.t.
∑

t

w
(a,b,r,d)
t = h(a,b,r,d), ∀(a, b, r, d) ∈ G , (4)

∑
t

v
(a,b,r,d)
t = h(a,b,r,d), ∀(a, b, r, d) ∈ G , (5)

D1w + D2 y + D3v = 0, (6)

x p,q
t =

∑
(a,b,r,d)∈G

∑
α≤t,β≥t

β − t

β − α
y(a,b,r,d)pα,qβ , ∀t ∈ Γp,q , (p, q) ∈ A, (7)

x p,q
t ≥

∑
τ∈�p,q

φ−1
p,q(τ − δ)z pt ,qt+τ , ∀t ∈ Γp,q , (p, q) ∈ A, (8)

x p,q
t ≤

∑
τ∈�p,q

φ−1
p,q(τ )z pt ,qt+τ , ∀t ∈ Γp,q , (p, q) ∈ A, (9)
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Figure 3.8: Travel time function [5].

3.4 Demand Generation

Demand from every node i, hi, is a parameter that will be input in the model. Demand

will then be converted as starting/beginning flow at every node. The variable wi,t is

denoted as starting flow from node i departing at time t. The total demand at every node

is equal to the total starting flow departing at every time period shown as follows,

∑
t

wi,t = hi, ∀t ∈ A. (3.9)

In an evacuation scenario, there are safety areas designated for evacuees to head towards

for refuge. These designated safe areas are denoted as safe nodes s. The variable vp,s;t

denotes sink flow that departs from node p at time t heading for safe node s. Safe nodes

are assumed to be sink nodes where they absorb all sink flows that lead to them. The
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following constraint captures this feature,

∑
(p,s)∈A

∑
t

vp,s;t = hs. (3.10)

As demand for every node hi is set as a parameter, naturally, total demand
∑

i hi will be

equal to the total sink demand, denoted as hs.

3.5 Flow Balance

Flow balance condition for any kind of network is crucial in ensuring correctness and

feasibility when computing results. Great care must be taken especially when formulating

flow balance of a time expanded network, the possibility of lane reversals also adds on to

its complication. The general rule of thumb when formulating is that for every node, at

every time point, all flows coming in must equal all flows going out,

∑
q

(∑
τ

yp,q;t,t+τ −
∑
α

y′p,q;α,β

)
+
∑
o

(∑
τ

y′o,p;t,t+τ −
∑
α

yo,p;α,β

)
= 0,

β = t; ∀t, β ∈ Γ;∀i, p ∈ A. (3.11)

Possible outgoing flows from node p at time t are represented by variable yp,q;t,t+τ , which

shows flow heading for nodes ahead q. Also, reversed flow-out heading for previous nodes

o, represented by variable y′o,p;t,t+τ , needs to be included in as part of flow-out values.

Similarly for incoming flows, variable yo,q;α,β is used to represent flow-in from previous

nodes and variable y′p,q;α,β used to represent reversed flow-in from nodes ahead. In this

case, all departure time α needs to be less than t and arrival time β equal to t. Figure 3.9

illustrates a flow balance condition example for node p at time point 2δ, where the solid

lines represent regular flow and dotted lines represent reversed flow.

Demand at each node is converted to start flow at different time points wi,t according

to Equation 3.9. As such, wi,t is also taken as flow-in in the flow balance constraint. It
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Figure 3.9: Flow balance condition.

is assumed that reversed flow is prohibited when it comes to flow heading for safe nodes

s. Hence for ending flow equation, only end-flow vp,s;t, reverse flow-out to previous nodes

y′o,p;t,t+τ , and flow in from previous nodes yo,p;α,β are considered,

∑
(p,s)∈A

∑
t

vp,s;t +
∑
o

∑
τ

y′o,p;t,t+τ −
∑
o

∑
α

yo,p;α,β = 0,

β = t;∀t, β ∈ Γ;∀p ∈ A. (3.12)
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3.6 Collision Prevention

With the possibility of lane reversals/contraflow being realized, the threat of potential

head on collision with oncoming traffic naturally emerges. To prevent the occurrence

of such an event, total clearance of regular-directional flow on an arc (p, q) needs to be

ensured before the arc is reversed. To help prevent collisions of vehicles, the following

constraint is needed,

∑
τ

zp,q;t,t+τ +
∑
β

z′p,q;α,β ≤ 1, ∀α < t+ ξ; ξ ∈ τ ;∀β > t;∀t ∈ Γp,q, (3.13)

where zp,q;t,t+τ represents realization of regular flow for time expanded arc (p, q; t, t + τ)

and z′p,q;α,β represents realization of reversed flow for time expanded arc (p, q;α, β). As

such, equation 3.13 shows that the sum of all regular flows (regardless of travel time τ)

on arc (p, q) departing at time t, and the sum of all reversed flow on the same arc which

has departure time α less than earliest arrival time of regular flow t + ξ (ξ is quickest

travel time in this case) and arrival time β greater than departure time of regular flow t,

are less than or equal to 1. Figure 3.10 illustrates Equation 3.13 graphically.
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Figure 3.10: Collision prevention constraint graphically.
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Since α < t+ ξ, in situations where earliest arrival time for regular flow t+ ξ does not

equal to next immediate period of its departure time t+δ, there will be in turn more than

one reversed flow departure time α that will potentially violate the collision prevention

condition. To tackle this problem, travel time for regular flow is placed within the set

∆p,q(ξ), where

∆p,q(ξ) = ∆p,q \ {δm, δm + δ, . . . , ξ − δ} = {ξ, ξ + δ, . . . , δmax} (3.14)

δm in this case is denoted as the minimum travel time. Combined with Equation 3.13,

the collision prevention constraint will take the following form,

∑
τ∈∆p,q(ξ)

zp,q;t,t+τ +
∑

β∈TC(t)

z′p,q;α,β ≤ 1, ∀α < t+ ξ;∀t ∈ Γp,q;∀ξ ∈ ∆p,q (3.15)

∆p,q(ξ) = ∆p,q \ {δm, δm + δ, . . . , ξ − δ} = {ξ, ξ + δ, . . . , δmax}

TC(t) = {β | β > t}

To further understand collision prevention constraint, Figure 3.11 shows an example

when quickest regular flow travel time is 2δ, there exist two sets of collision prevention

constraints, one with reversed flow departure time 0, and the other with reversed flow

departure time δ. When earliest regular flow arrival time shifts to 3δ, an additional set of

constraint emerges, namely reversed flow with departure time 2δ, as can be seen in Figure

3.12.

The number of collision prevention constraints that emerges will increase according

to the number of time periods assigned to the model. The earliest arrival time and

quickest travel time as shown, are related to each other. Both are also dependent upon

the minimum travel time on each arc as explained in Section 3.2. On top of restricting

directional flow, the collision prevention constraint also ensures only one time expanded

arc is realized for every static arc (p, q), for both regular and reversed flow. This is also

referred to as unique realization condition.
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Figure 3.11: Collision prevention with quickest regular flow travel time equal 2δ.
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Figure 3.12: Collision prevention with quickest regular flow travel time equal 3δ.

3.7 Mathematical Formulation

Before getting into the formulation, users departure time need to be discussed. As

simultaneous route and departure (SRD) assumption is incorporated in this model, the

actual departure times can be different from desired ones. Hence, appropriate penalties
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have to be added if there exist any differences between desired departure times and actual

ones. In addition to the aforementioned notations and variables, a detailed list of all

indices, variables, and parameters are given in Tables 3.1, 3.2, and 3.3. Based on all

previously defined constraints and sets together with their variables, the system optimum

problem for emergency evacuation planning is formulated as follows,

Min
∑

(p,q)∈A

∑
t∈Γ

φp,q(x
p,q
t )

∑
τ∈∆p,q

yp,q;t,t+τ +
∑

(p,q)∈A

∑
t∈Γ

φp,q(x
′p,q
t )

∑
τ∈∆p,q

y′p,q;t,t+τ

+
∑
i

∑
t

t · wi,t (3.16)

s.t.
∑
t

wi,t = hi, ∀i ∈ A (3.17a)∑
(p,s)∈A

∑
t

vp,s;t = hs (3.17b)

∑
q

(∑
τ

yp,q;t,t+τ −
∑
α

y′p,q;α,β

)
+
∑
o

(∑
τ

y′o,p;t,t+τ −
∑
α

yo,p;α,β

)
−wi,t = 0, β = t;∀t, β ∈ Γ;∀i, p ∈ A (3.17c)∑
q

(∑
τ

yp,q;t,t+τ −
∑
α

y′p,q;α,β

)
+
∑
o

(∑
τ

y′o,p;t,t+τ −
∑
α

yo,p;α,β

)
= 0,

β = t;∀t, β ∈ Γ; ∀i, p ∈ A (3.17d)∑
(p,s)∈A

∑
t

vp,s;t +
∑
o

∑
τ

y′o,p;t,t+τ −
∑
o

∑
α

yo,p;α,β = 0,

β = t;∀t, β ∈ Γ;∀p ∈ A (3.17e)

xp,qt =
∑
α

∑
β

yp,q;α,β, ∀t ∈ Γ; (p, q) ∈ A;α ≤ t, β ≥ t (3.17f)

x′
p,q
t =

∑
α

∑
β

y′p,q;α,β, ∀t ∈ Γ; (p, q) ∈ A;α ≤ t, β ≥ t (3.17g)

xp,qt ≥
∑
τ∈∆p,q

φ−1
p,q(τ − δ)zp,q;t,t+τ , ∀t ∈ Γp,q; (p, q) ∈ A (3.17h)

x′
p,q
t ≥

∑
τ∈∆p,q

φ−1
p,q(τ − δ)z′p,q;t,t+τ , ∀t ∈ Γp,q; (p, q) ∈ A (3.17i)

xp,qt ≤
∑
τ∈∆p,q

φ−1
p,q(τ)zp,q;t,t+τ , ∀t ∈ Γp,q; (p, q) ∈ A (3.17j)
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x′
p,q
t ≤

∑
τ∈∆p,q

φ−1
p,q(τ)z′p,q;t,t+τ , ∀t ∈ Γp,q; (p, q) ∈ A (3.17k)

yp,q;t,t+τ ≤Mp,qzp,q;t,t+τ , ∀t ∈ Γp,q; τ ∈ ∆p,q; (p, q) ∈ A (3.17l)

y′p,q;t,t+τ ≤Mp,qz
′
p,q;t,t+τ , ∀t ∈ Γp,q; τ ∈ ∆p,q; (p, q) ∈ A (3.17m)∑

τ∈∆p,q(ξ)

zp,q;t,t+τ +
∑

β∈TC(t)

z′p,q;α,β ≤ 1, ∀α < t+ ξ; ∀t ∈ Γp,q; ∀ξ ∈ ∆p,q

∆p,q(ξ) = ∆p,q \ {δm, δm + δ, . . . , ξ − δ} = {ξ, ξ + δ, . . . , δmax}

TC(t) = {β | β > t} (3.17n)

v, w, x, y, x′, y′ ≥ 0 (3.17o)

zp,q;t,t+τ ∈ {0, 1}, ∀t ∈ Γp,q; τ ∈ ∆p,q; (p, q) ∈ A (3.17p)

z′p,q;t,t+τ ∈ {0, 1}, ∀t ∈ Γp,q; τ ∈ ∆p,q; (p, q) ∈ A (3.17q)

Table 3.1: Indices and definitions.

Notation Definition

Γ Set of discrete time points within planning time horizon
t Departure time of users where t ∈ Γ
A Set of static arcs
∆p,q All possible discrete travel times for arc (p, q) ∈ A
τ Traveling time of users where τ belongs to ∆p,q

(p, q; t, t+ τ) Realization of static arc (p, q) departing at time t with travel time τ
α Departure time of incoming flow
β Arrival time of incoming flow
δmin Minimum travel time
δmax Maximum travel time

Demand generation and flow absorbtion is shown in constraints 3.17a and 3.17b. The

flow balance of time expanded network is represented by constraints 3.17c, 3.17d and

3.17e. Constraints 3.17f and 3.17g calculates the weighted flows. Constraints 3.17h and

3.17i model the lower bound of regular and reversed flow travel time. Constraints 3.17j and

3.17k model the upper bound of regular and reversed flow travel time. Constraint 3.17l

and 3.17m ensures the unique travel time for each static arc at any time point. Collision

prevention between regular flow and reversed flow is realized by constraint 3.17n. For

convenience, x denotes the decision vector composed of xp,qt . So does decision vectors x′,

w, v, y, and y′.
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Table 3.2: Decision variables and definitions.

Notation Definition

yp,q;t,t+τ Flow on time expanded arc (p, q; t, t+ τ)
y′p,q;t,t+τ Reverse flow on time expanded arc (p, q; t, t+ τ)
wi,t Start flow at time t from node i
vt Ending flow at time t that leads to sink node

zp,q;t+τ
Set of binary variables that model realization of flow on time expanded arc
(p, q; t, t+ τ)

z′p,q;t+τ
Set of binary variables that model realization of reverse flow on time ex-
panded arc (p, q; t, t+ τ)

xp,qt Weighted flow at discrete time points
x′p,qt Reverse weighted flow at discrete time points

Table 3.3: Parameters and definitions.

Notation Definition

Mp,q Upper bound on number of flow that can enter arc (p, q) during a time period

φp,q
Multivariate, continuous, and non-decreasing travel time function on arc
(p, q) at time t

φ−1
p,q Inverse of travel time function

The system optimum DTA (DTA-SO) is a mixed integer nonlinear program, where

nonlinearity only exists in the objective function. The objective function of the model

is split into two parts: the linear and nonlinear part. The penalties for late departures

form the linear part since penalty for any specific discrepancy between actual and desired

times are predetermined. The remaining part is nonlinear since travel time on arc (p, q),

when departing at time t, is generally a nonlinear function of weighted flow, xp,qt and x
′p,q
t .

Based on constraint 3.17j and 3.17k, the following is obtained,

φp,q(x
p,q
t ) ≤

∑
τ∈∆p,q

τ · zp,q;t,t+τ , ∀(p, q) ∈ A, t ∈ Γ and

φp,q(x
′p,q
t ) ≤

∑
τ∈∆p,q

τ · z′p,q;t,t+τ , ∀(p, q) ∈ A, t ∈ Γ.

Together with constraints 3.17l and 3.17m, the following inequalities are obtained,
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φp,q(x
p,q
t )

∑
τ∈∆p,q

yp,q;t,t+τ ≤
∑
τ∈∆p,q

τ · yp,q;t,t+τ , ∀(p, q) ∈ A, t ∈ Γ and

φp,q(x
′p,q
t )

∑
τ∈∆p,q

y′p,q;t,t+τ ≤
∑
τ∈∆p,q

τ · y′p,q;t,t+τ , ∀(p, q) ∈ A, t ∈ Γ.

This gives the upper bound on the nonlinear part of the original objective function of the

DTA-SO. Hence, we can define the upper bound of the objective function as follows,

∑
(p,q)∈A

∑
t∈Γ

∑
τ∈∆p,q

[
τ · yp,q;t,t+τ + τ · y′p,q;t,t+τ

]
+
∑
i

∑
t

t · wi,t

The above function together with all the constraints in the original DTA-SO problem,

form the upper bound problem, DTA-UB. For convenience, hereafter, the vector format

cT1w+ cT2 y is used as the upper bound objective function, since all costs are prefixed. UB

and SO are the optimal objective values of the DTA-UB and DTA-SO, respectively. Na-

hapetyan and Lawphongpanich [71] proposed a theorem regarding relationship between

UB and SO.

Theorem 1 Given any ε > 0, there exist a δ > 0 such that UB − SO < ε.

The proof can be found in their paper [71]. Even though their objective functions do

not include any penalties, Theorem 1 still applies in this situation because the penalty

parts in both DTA-UB and DTA-SO are the same. Hence, instead of having to solve

the original nonlinear problem, the linearized upper bound problem can instead be solved

which gives a very good approximation. The final model will then be a mixed integer

linear programming problem.

3.8 Model Assumptions and Limitations

In the process of modeling, like most formulation of mathematical models, some as-

sumptions need to be made for it fit the situation to achieve the purposed that is set. With

that said, no assumption can be made wildly without a firm basis that causes the model

to lose its validity. However, some extent of compromise is unavoidable when making
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assumptions, although these must logically conform to possible real-life cases.

This model implements link FIFO (first-in, first-out) rule. This means that all vehicles

entering the same arc/link at the same time point, will experience the same travel time.

This implies that there is no overtaking between vehicles, even when vehicles exit link by

different turning movements. This is especially likely to occur during massive congestions

such as during an emergency evacuation. O-D flows and roadway characteristics are

assumed to be fixed and known. Some examples such as information regarding free

flow time a, road capacity c, and roadway availability are obtained and fixed as inputs

and do not change throughout the evacuation period. Also, in computing optimal route

choice and departure time, road users/evacuees at every node are assumed to be fixed

and unchanging. As mentioned in Section 3.2, maximum flow for every link is dependent

upon capacity, which in turn is assumed to be linearly dependent upon the length of its

respective link. Reasoning behind such an assumption is stated within the same section

above. Modeling time horizon is assigned to be sufficient for all evacuees to discover

shortest travel time to evacuate. Otherwise, there will be a possibility of an infeasible

output when computing. In other words, this model strives to achieve a 100% of evacuees

evacuated to safe zones and does not take into account partial evacuation or available

shelter areas within danger zones for evacuees that is unable to make it to safe zones in

time. Finally, all safe nodes are assumed to be limitless in their capacity. In other words,

they are able to absorb however much flow that are assigned to them. In reality, this might

be possible if total evacuees are relatively small in number, but will be infeasible if they are

extravagantly large in amount. This research additionally solves the mathematical model

using a deterministic approach that utilizes CPLEX solver to obtain absolute optimal

solution. Additionally, other available techniques such as simulation or metaheuristics,

were not tested. Although some of these techniques might not provide absolute optimal

solutions, they might generate relatively close to optimal solutions with significantly less

computational time.

There definitely exist room for future research to tighten these assumption or incor-

porate certain aspects in the model that tackles these areas. Nevertheless, there is an

expression about modeling that is good to keep in mind: “All models are wrong and im-

perfect, but some are useful” [74]. It is the authors’ challenge to formulate a good model

that is useful and make good predictions to improve emergency evacuation planning.
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Chapter 4

Model Analysis

The purpose of this chapter is to analyze the DTA model that was formulated in the

previous chapter to ensure correct computation results. The first step was to code the

DTA-UB formulation in Visual Studio C++ and making sure that all bugs are removed

and the model outputs are correct. Computational results are validated by running small

networks. Small networks are used here to serve two purposes. Firstly, analyzing small

networks helps to make sure that optimal solution is consistently obtained with change

of parameter values and network mapping. To verify whether solution is optimal, com-

putational results are compared with those obtained through manual solving using basic

tools from Operations Research. Secondly, computational results are able to be listed

individually and will provide readers an understanding of how they contribute to the final

optimal solution, which will be humanly impossible to do for extremely large networks.

The main analysis is to compare results from this model with that without lane reversals.

As such, the next section presents a DTA-UB model without reversals and how it differs

from DTA-UB with reversals. Subsequently, a brief summary regarding specifications of

the operating system used to compute the model is given. Finally, examples of small

networks are shown with detailed computational results and analysis.

4.1 No Reversal Model

No lane reversal DTA-UB (NRDTA-UB) shares the same core characteristics with the

DTA-UB with reversals described in Chapter 3, with minimal differences. Just like DTA-

UB, the time expanded network for NRDTA-UB is discretized into sets of discrete time
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points with δ representing the smallest time period in the formulation. The same travel

time function is also used with free flow time a, taken as the minimum travel time on an

arc and the maximum travel time is a function of the maximum flow possible. Weighted

flow xp,qt is taken as the variable used to calculate actual travel time of flow. The inverse

nonlinear travel time constraint is used to find the equivalent linear constraints, which

results in the formulation of the upper and lower bound of weighted flow. NRDTA-UB also

shares the same flow balance constraint, just with absence of reversed flow y′p,q;t,t+τ . As

there isn’t any contraflow/lane reversals, so also there will not be any head-on collision of

vehicles as a result of directional change of arcs in NRDTA-UB. As such, there is no need

for collision prevention constraint (Constraint 3.17n) to be included here. Nevertheless,

the result of not having collision prevention constraint is that the unique realization

condition will not be achieved. Hence, the following constraints need to be included to

ensure only one time expanded arc is realized for every static arc (p, q),

∑
τ∈∆p,q

zp,q;t,t+τ = 1, ∀t ∈ Γ, (p, q) ∈ A.

Simultaneous route and departure (SRD) assumption is also incorporated in NRDTA-

UB, together with late departure penalties. The NRDTA-UB for emergency evacuation

planning is formulated as follows,

Min
∑

(p,q)∈A

∑
t∈Γ

∑
τ∈∆p,q

τ · yp,q;t,t+τ +
∑
i

∑
t

t · wi,t (4.1)

s.t.
∑
t

wi,t = hi, ∀i ∈ A (4.2a)∑
(p,s)∈A

∑
t

vp,s;t = hs (4.2b)

∑
q

∑
τ

yp,q;t,t+τ −
∑
o

∑
α

yo,p;α,β − wi,t = 0, (4.2c)

β = t;∀t, β ∈ Γ;∀i, p ∈ A∑
q

∑
τ

yp,q;t,t+τ −
∑
o

∑
α

yo,p;α,β = 0, (4.2d)
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β = t;∀t, β ∈ Γ;∀i, p ∈ A∑
(p,s)∈A

∑
t

vp,s;t −
∑
o

∑
α

yo,p;α,β = 0, β = t;∀t, β ∈ Γ;∀p ∈ A (4.2e)

xp,qt =
∑
α

∑
β

yp,q;α,β, ∀t ∈ Γ; (p, q) ∈ A;α ≤ t, β ≥ t (4.2f)

xp,qt ≥
∑
τ∈∆p,q

φ−1
p,q(τ − δ)zp,q;t,t+τ , ∀t ∈ Γp,q; (p, q) ∈ A (4.2g)

xp,qt ≤
∑
τ∈∆p,q

φ−1
p,q(τ)zp,q;t,t+τ , ∀t ∈ Γp,q; (p, q) ∈ A (4.2h)

yp,q;t,t+τ ≤Mp,qzp,q;t,t+τ , ∀t ∈ Γp,q; τ ∈ ∆p,q; (p, q) ∈ A (4.2i)∑
τ∈∆p,q

zp,q;t,t+τ = 1, ∀t ∈ Γ, (p, q) ∈ A. (4.2j)

v, w, x, y ≥ 0 (4.2k)

zp,q;t,t+τ ∈ {0, 1}, ∀t ∈ Γp,q; τ ∈ ∆p,q; (p, q) ∈ A (4.2l)

The objective function is again split into two parts. The first part seeks to minimize

travel time of flow, whereas the second part is the late departure penalty. Demand

generation and flow absorbtion is shown in constraints 4.2a and 4.2b. The flow balance of

time expanded network is represented by constraints 4.2c, 4.2d and 4.2e. Constraints 4.2f

calculates the weighted flows. Constraints 4.2g models the lower bound of regular flow

travel time. Constraints 4.2h models the upper bound of flow travel time. Constraint 4.2i

and 4.2j ensures the unique travel time for each static arc at any time point. Also for

convenience, x denotes the decision vector composed of xp,qt . So do decision vectors w, v,

and y. Definitions of indices, variables, and parameters can be found in Tables 3.1, 3.2,

and 3.3 in Chapter 3.

4.2 Computer Specifications and Software

A Windows 7 Professional 64-bit operating system was used for testing the model with

3.10 GHz of processing speed. Total usable random access memory (RAM) was 3.88 GB.

Visual Studio C++ (2008) was used to code the formulation. IBM CPLEX was used to

solve the formulation and obtain optimal solution.
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4.3 Small Network: 2 Nodes

As was mentioned earlier, in small scale networks, understanding of each flow’s charac-

teristics is simpler and model validation work more straight forward. Furthermore, when

model is known to be correct, the same analysis can be applied to larger networks to prove

the model’s effectiveness. Figure 4.1 shows a simple two-node, two-lane network where

node p is the danger node and node q is the safe node. Mapping details of this network

is as follows:

• Number of nodes: 2

• Number of danger nodes: 1 (node: p)

• Number of safe nodes: 1 (node: q)

• Number of arcs: 2

• Number of time periods: 10

• Smallest time interval: 15 minutes

• Planning time horizon: 2.5 hours

• Demand: 30, 000

p q 

Figure 4.1: 2 node network.

The C++ computer program for the models with reversals (DTA-UB) and without re-

versals (NRDTA-UB) are solved using CPLEX. Results for both models are shown in the

sub-sections below when demand is fixed at 30, 000.
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4.3.1 Results for Model with Lane Reversal

Starting Flow Output

• Start-flow at node p departing at time 0 (wp,0): 20, 000

• Start-flow at node p departing at time 1 (wp,1): 10, 000

Sink-Flow Output

• Sink-flow absorbed at time 1 (vp,q;1): 20, 000

• Sink-flow absorbed at time 2 (vp,q;2): 10, 000

Intermediate Regular Flow Output

• Flow departing at time 0 and arriving at time 1 (yp,q;0,1): 10, 000

Intermediate Reversed Flow Output

• Reversed flow departing at time 0 and arriving at time 1 (y′q,p;0,1): 10, 000

• Reversed flow departing at time 1 and arriving at time 2 (y′q,p;1,2): 10, 000

Optimal Solution: 70,000

Computation Time: 0.078 seconds

CPLEX obtained the optimal solution based on the objective function (Equation 3.18)

formulated in the model as follows,

τ · yp,q;0,1 + τ · y′q,p;0,1 + τ · y′q,p;1,2 + t · w0,0 + t · w0,1

After plugging in the values, the following is obtained,

10, 000 + 10, 000 + 10, 000 + 20, 000 + 2× 10, 000 = 70, 000

Figure 4.2 shows the time expanded network with all flows that were realized where

the solid lines represent regular flow, and the dotted lines represent reversed flow. As we

can see, when the arc (q, p; 0, 1) is reversed, the capacity of flow heading from node p to

node q increases.
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Figure 4.2: Solution for time expanded network with lane reversals.

4.3.2 Results for Model without Lane Reversal

Starting Flow Output

• Start-flow at node p departing at time 0 (wp,0): 10, 000

• Start-flow at node p departing at time 1 (wp,1): 10, 000

• Start-flow at node p departing at time 2 (wp,2): 10, 000

Sink-Flow Output

• Sink-flow absorbed at time 1 (vp,q;1): 10, 000

• Sink-flow absorbed at time 2 (vp,q;2): 10, 000

• Sink-flow absorbed at time 3 (vp,q;3): 10, 000

Intermediate Regular Flow Output
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• Flow departing at time 0 and arriving at time 1 (yp,q;0,1): 10, 000

• Flow departing at time 1 and arriving at time 2 (yp,q;1,2): 10, 000

• Flow departing at time 2 and arriving at time 3 (yp,q;2,3): 10, 000

Optimal Solution: 90,000

Computation Time: 0.031 seconds

Just like the model with lane reversals, the objective function value obtained by CPLEX

is as follows,

τ · yp,q;0,1 + τ · yp,q;1,2 + τ · yp,q;2,3 + t · w0,0 + t · w0,1 + t · w0,2

After plugging in the values, the following is obtained,

10, 000 + 10, 000 + 10, 000 + 10, 000 + 2× 10, 000 + 3× 10, 000 = 90, 000

Figure 4.3 shows the time expanded network for no lane reversal model where the solid

lines represent regular flow that is realized. In this case, since there isn’t lane reversals to

increase outbound capacities of arcs, all flows need to be distributed to depart at different

times.

Table 4.1 summarizes the computational results of the 2-node model that is with lane

reversals, and without lane reversals. With all inputs and parameters staying the same

for both models, DTA-UB managed to produced better objective value by reversing lanes.

This is due to the advantage of the capacity increasing of DTA-UB model. However, the

computational time for NRDTA-UB is able to obtain optimal solution with quicker time.

The simplicity of the model together with the absence of collision prevention restriction,

as oppose to DTA-UB, are factors that contributes to the quicker solving time of NRDTA-

UB.
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Figure 4.3: Solution for time expanded network without lane reversals.

4.4 Small Network: 6 Nodes

As can be seen from the above analysis, DTA-UB trumps NRDTA-UB for optimal

results, but lack behind in computational time. To observe whether the same trend of

results are consistent, a six-node network is analyzed here. Figure 4.4 shows the six-node

network where there are two lanes/arcs in opposite directions connecting every O-D pairs,

except for arcs linking to sink/safe node u. As such, all flows heading for safe node u are

also restricted so that no reversals are allowed. In this case, there are two nodes - node

p and q, that generate start-flow through assigning demand to each node respectively.

Mapping details of this network is as follows:

• Number of nodes: 6

• Number of danger nodes: 5 (node: p, q, r, s, t)

• Number of safe nodes: 1 (node: u)
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Table 4.1: 2-Node Model, DTA-UB vs. NRDTA-UB.

Demand Time
Periods

Arcs Flow
Real-
ized

Compu-
tation
Time

Objec-
tive
Value

Model With Lane Reversal 30,000 5 2

yp,q;0,1
y′q,p;0,1
y′q,p;1,2

0.078 70,000

Model Without Lane Reversal 30,000 5 2
yp,q;0,1
yp,q;1,2
yp,q;2,3

0.031 90,000

• Number of arcs: 14

• Number of time periods: 10

• Smallest time interval: 15 minutes

• Planning time horizon: 2.5 hours

p 

q 

r 

s 

t 

u 

Figure 4.4: 6 node network.

Just like the two-node network, the C++ computer program for the models with reversal-

s (DTA-UB) and without reversals (NRDTA-UB) for six-node network are solved using

CPLEX. Results for both models are shown in the sub-sections below when demand at

node p is fixed at 50, 000 and demand at node q is also fixed at 50, 000.
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4.4.1 Results for Model with Lane Reversal

Starting Flow Output

• Start-flow at node p departing at time 0 (wp,0): 40, 000

• Start-flow at node p departing at time 1 (wp,1): 10, 000

• Start-flow at node q departing at time 0 (wq,0): 20, 000

• Start-flow at node q departing at time 1 (wq,1): 10, 000

• Start-flow at node q departing at time 2 (wq,2): 10, 000

• Start-flow at node q departing at time 3 (wq,3): 10, 000

Sink-Flow Output

• Sink-flow absorbed for arc (s, u) at time 1 (vs,u;1): 10, 000

• Sink-flow absorbed for arc (s, u) at time 2 (vs,u;2): 20, 000

• Sink-flow absorbed for arc (s, u) at time 3 (vs,u;3): 20, 000

• Sink-flow absorbed for arc (s, u) at time 4 (vs,u;4): 10, 000

• Sink-flow absorbed for arc (t, u) at time 2 (vt,u;2): 20, 000

• Sink-flow absorbed for arc (t, u) at time 3 (vt,u;3): 20, 000

Intermediate Regular Flow Output

• Flow from (p, q) departing at time 0 and arriving at time 1 (yp,q;0,1): 10, 000

• Flow from (p, r) departing at time 0 and arriving at time 1 (yp,r;0,1): 10, 000

• Flow from (q, r) departing at time 1 and arriving at time 2 (yq,r;1,2): 10, 000

• Flow from (q, s) departing at time 0 and arriving at time 1 (yq,s;0,1): 10, 000

• Flow from (q, s) departing at time 1 and arriving at time 2 (yq,s;1,2): 10, 000

• Flow from (q, s) departing at time 2 and arriving at time 3 (yq,s;2,3): 10, 000
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• Flow from (q, s) departing at time 3 and arriving at time 4 (yq,s;3,4): 10, 000

• Flow from (r, t) departing at time 1 and arriving at time 2 (yr,t;1,2): 10, 000

• Flow from (r, t) departing at time 2 and arriving at time 3 (yr,t;2,3): 10, 000

Intermediate Reversed Flow Output

• Reversed flow from (q, p) departing at time 0 and arriving at time 1 (y′q,p;0,1): 10, 000

• Reversed flow from (r, p) departing at time 0 and arriving at time 1 (y′r,p;0,1): 10, 000

• Reversed flow from (r, p) departing at time 1 and arriving at time 2 (y′r,p;1,2): 10, 000

• Reversed flow from (r, q) departing at time 0 and arriving at time 1 (y′r,q;0,1): 10, 000

• Reversed flow from (r, q) departing at time 1 and arriving at time 2 (y′r,q;1,2): 10, 000

• Reversed flow from (s, r) departing at time 1 and arriving at time 2 (y′s,r;1,2): 10, 000

• Reversed flow from (s, r) departing at time 2 and arriving at time 3 (y′s,r;2,3): 10, 000

• Reversed flow from (t, r) departing at time 1 and arriving at time 2 (y′t,r;1,2): 10, 000

• Reversed flow from (t, r) departing at time 1 and arriving at time 2 (y′t,r;2,3): 10, 000

Optimal Solution: 350,000

Computation Time: 0.114 seconds

Optimal solution based on the objective function (Equation 3.18) is formulated as

follows,

τ · yp,q;0,1 + τ · yp,r;0,1 + τ · yq,r;1,2 + τ · yq,s;0,1 + τ · yq,s;1,2 + τ · yq,s;2,3 + τ · yq,s;3,4

+τ · yr,t;1,2 + τ · yr,t;2,3 + τ · y′q,p;0,1 + τ · y′r,p;0,1 + τ · y′r,p;1,2 + τ · y′r,q;0,1 + τ · y′r,q;1,2
+τ · y′s,r;1,2 + τ · y′s,r;2,3 + τ · y′t,r;1,2 + τ · y′s,r;2,3
+t · wp,0 + t · wp,1 + t · wq,0 + t · wq,1 + t · wq,2 + t · wq,3

After plugging in the values, the following is obtained,
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9× 10, 000 + 9× 10, 000 + 40, 000 + 2× 10, 000

+20, 000 + 2× 10, 000 + 3× 10, 000 + 4× 10, 000 = 150, 000

4.4.2 Results for Model without Lane Reversal

Starting Flow Output

• Start-flow at node p departing at time 0 (wp,0): 10, 000

• Start-flow at node p departing at time 1 (wp,1): 20, 000

• Start-flow at node p departing at time 0 (wq,0): 20, 000

• Start-flow at node q departing at time 0 (wq,0): 20, 000

• Start-flow at node q departing at time 1 (wq,1): 10, 000

• Start-flow at node q departing at time 3 (wq,3): 10, 000

• Start-flow at node q departing at time 4 (wq,4): 10, 000

Sink-Flow Output

• Sink-flow absorbed for arc (s, u) at time 1 (vs,u;1): 10, 000

• Sink-flow absorbed for arc (s, u) at time 2 (vs,u;2): 10, 000

• Sink-flow absorbed for arc (s, u) at time 3 (vs,u;3): 10, 000

• Sink-flow absorbed for arc (s, u) at time 4 (vs,u;4): 10, 000

• Sink-flow absorbed for arc (s, u) at time 5 (vs,u;5): 10, 000

• Sink-flow absorbed for arc (t, u) at time 2 (vt,u;2): 10, 000

• Sink-flow absorbed for arc (t, u) at time 3 (vt,u;3): 10, 000

• Sink-flow absorbed for arc (t, u) at time 4 (vt,u;4): 10, 000

• Sink-flow absorbed for arc (t, u) at time 5 (vt,u;5): 10, 000
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• Sink-flow absorbed for arc (t, u) at time 6 (vt,u;6): 10, 000

Intermediate Regular Flow Output

• Flow from (p, q) departing at time 1 and arriving at time 2 (yp,q;1,2): 10, 000

• Flow from (p, q) departing at time 2 and arriving at time 3 (yp,q;2,3): 10, 000

• Flow from (p, r) departing at time 0 and arriving at time 1 (yp,r;0,1): 10, 000

• Flow from (p, r) departing at time 1 and arriving at time 2 (yp,r;1,2): 10, 000

• Flow from (p, r) departing at time 2 and arriving at time 3 (yp,r;2,3): 10, 000

• Flow from (p, r) departing at time 4 and arriving at time 5 (yp,r;4,5): 10, 000

• Flow from (q, r) departing at time 0 and arriving at time 1 (yq,r;0,1): 10, 000

• Flow from (q, r) departing at time 2 and arriving at time 3 (yq,r;2,3): 10, 000

• Flow from (q, r) departing at time 3 and arriving at time 4 (yq,r;3,4): 10, 000

• Flow from (q, s) departing at time 0 and arriving at time 1 (yq,s;0,1): 10, 000

• Flow from (q, s) departing at time 1 and arriving at time 2 (yq,s;1,2): 10, 000

• Flow from (q, s) departing at time 2 and arriving at time 3 (yq,s;2,3): 10, 000

• Flow from (q, s) departing at time 3 and arriving at time 4 (yq,s;3,4): 10, 000

• Flow from (q, s) departing at time 4 and arriving at time 5 (yq,s;4,5): 10, 000

• Flow from (r, p) departing at time 3 and arriving at time 4 (yr,p;3,4): 10, 000

• Flow from (r, q) departing at time 1 and arriving at time 2 (yr,q;1,2): 10, 000

• Flow from (r, t) departing at time 1 and arriving at time 2 (yr,t;1,2): 10, 000

• Flow from (r, t) departing at time 2 and arriving at time 3 (yr,t;2,3): 10, 000

• Flow from (r, t) departing at time 3 and arriving at time 4 (yr,t;3,4): 10, 000

• Flow from (r, t) departing at time 4 and arriving at time 5 (yr,t;4,5): 10, 000
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• Flow from (r, t) departing at time 5 and arriving at time 6 (yr,t;5,6): 10, 000

Optimal Solution: 410,000

Computation Time: 0.068 seconds

Just like the model with lane reversals, the objective function value obtained by CPLEX

is as follows,

τ · yp,q;1,2 + τ · yp,q;2,3 + τ · yp,r;0,1 + τ · yp,r;1,2 + τ · yp,r;2,3 + τ · yp,r;4,5 + τ · yq,r;0,1 + τ · yq,r;2,3

+τ · yq,r;3,4 + τ · yq,s;0,1 + τ · yq,s;1,2 + τ · yq,s;2,3 + τ · yq,s;3,4 + τ · yq,s;4,5 + τ · yr,p;3,4 + τ · yr,q;1,2

+τ · yr,t;1,2 + τ · yr,t;2,3 + τ · yr,t;3,4 + τ · yr,t;4,5 + τ · yr,t;5,6

+t · wp,0 + t · wp,1 + t · wq,0 + t · wq,1 + t · wq,3 + t · wq,4

After plugging in the values, the following is obtained,

21× 10, 000 + 10, 000 + 2× 20, 000 + 20, 000 + 20, 000 + 2× 10, 000

+4× 10, 000 + 5× 10, 000 = 410, 000

Table 4.2 summarizes the computational results of the 6-node model that is with lane

reversals, and without lane reversals.

Table 4.2: 6-Node Model, DTA-UB vs. NRDTA-UB.

Demand Time Pe-
riods

Arcs Compu-
tation
Time

Objec-
tive Value

Model With Lane Reversal 100,000 5 14 0.114 350,000

Model Without Lane Reversal 100,000 5 14 0.068 410,000

Analysis of the six-node network again shows the same characteristics as the two-node

network: DTA-UB produces better objective value by reversing lanes. Computational

time for NRDTA-UB to obtain optimal solution again was quicker.



65

Chapter 5

Numerical Results

Detailed comparison of computational results and optimal routing between the net-

works with lane reversals and without lane reversals were given in Chapter 4. However,

for networks that are much larger, it is near impossible to observe flow on every arc,

departure time of every user, and other minute factors. This is due to the fact that

complexity of the mathematical model increases exponentially for larger networks as con-

straints, model size, and number of variables increase in turn. Hence, instead of focusing

on the minute details, the trend of optimal values and computational time as demand

increases for DTA-UB and NRDTA-UB are the main focus in this chapter. The follow-

ing sections present Sioux Falls and Anaheim Network and their numerical results. A

graphical representation of the results output are also provided. Both networks including

their trip tables and other relevant information were taken from the webpage managed by

Hillel Bar-Gera [75]. It is a webpage that compiles transportation network test problems

contributed by various people in academia for academic research purposes.

5.1 Sioux Falls Network

Like all transportation network modeling, the amount nodes and lanes/arcs used in the

model determine the level of detail and complexity of the problem. The more nodes and

arcs are represented, the more detailed and complex the problem. Figure 5.1 produced by

Hai Yang and Meng Qiang from Hong Kong University of Science and Technology, shows

a simple 25 nodes and 80 arcs layout of the Sioux Falls Network. The safe zones were

assumed to be at the bottom. As such, users are intended to head towards the safe nodes,
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which are assigned as nodes 13, 24, 21, and 20. Additional information of the network

model are as follows:

• Number of nodes: 25

• Number of danger nodes: 20

• Number of safe nodes: 4

• Number of arcs: 80

• Planning time horizon: 10 hours

5.1.1 Smallest Time Interval: 15 Minutes

This section considers networks with the smallest time interval assigned as 15 minutes.

With the planning time horizon fixed at 10 hours, the number of time periods depend

upon the smallest time interval. The values of both attributes are listed as follows:

• Number of time periods: 40

• Smallest time interval: 15 minutes

Table 5.1 records the computational results of the Sioux Falls Network that has a

smallest time interval of 15 minutes. The first two columns are the lower and upper

bound of start-flow of each individual nodes. The third column is the sum of the entire

demand within the network. The solving time and objective value for both DTA-UB and

NRDTA-UB are recorded and the percentage difference of results between both networks

are calculated in the last two columns. Figures 5.2 and 5.3 present the graphical view of

objective value and solving time of both DTA-UB and NRDTA-UB models as demand

increases.

From table 5.1, it can be seen that the difference of objective value started off almost

equal between DTA-UB and NRDTA-UB. As demand increases, the DTA-UB model

managed to maintain a lower objective value than NRDTA-UB. The difference of objective

value between the two models also rapidly increases as demand increases. NRDTA-UB

generated infeasible solution at 1, 500, 000 demand, as oppose to DTA-UB which only

obtain infeasibility at 2, 900, 000 demand. Hence, the amount of demand DTA-UB was
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Figure 5.1: Sioux Falls Network [Yang and Meng ].

able to optimize far exceeded that of NRDTA-UB. From figure 5.2, it can be seen that

although objective value generated from both models increases exponentially as demand

increases, DTA-UB maintained a better optimal solution at every demand point. It can

also be seen that NRDTA-UB obtained infeasibility at approximately half the demand

that of DTA-UB. Furthermore, the solving time of both DTA-UB and NRDTA-UB follows

a linearly increasing trend as can be seen in Figure 5.3. Although the network with lane

reversals has longer solving time at all demand points, it appears that both models’ solving
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time increases in an almost equal ratio in this case.
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Figure 5.2: Sioux Falls Network Objective Value vs. Demand, Smallest Time Interval: 15
Minutes.

5.1.2 Smallest Time Interval: 30 Minutes

This section considers networks with the smallest time interval assigned as 30 minutes.

With the planning time horizon fixed at 10 hours, the values of both attributes are listed

as follows:

• Number of time periods: 20

• Smallest time interval: 30 minutes

Table 5.2 records the computational results of Sioux Falls Network that has a smallest

time interval of 30 minutes. The format of the results presented is identical to Table 5.1.

Figure 5.4 and 5.5 presents the graphical view of the objective value and solving time of

both DTA-UB and NRDTA-UB models as demand increases.
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Figure 5.3: Sioux Falls Network Solving Time vs. Demand, Smallest Time Interval: 15
Minutes.

The results from the networks with smallest time interval of 30 minutes carry the

same trend as that with smallest time interval of 15 minutes. Table 5.2 shows that

the difference in objective value of DTA-UB and NRDTA-UB again started off almost

equal, and rapidly increased as demand increased with DTA-UB maintaining a lower

objective value throughout the process. Also, NRDTA-UB obtained infeasibility at 80, 000

demand whereas DTA-UB managed to continue to 1, 500, 000 demand before obtaining

infeasibility. Figure 5.4 further illustrate DTA-UB being able to obtain better optimal

solution at every demand point. Solving time of both networks also follows a linearly

increasing trend with NRDTA-UB being able to solve for optimal solution quicker, as

shown in Figure 5.5.

5.2 Anaheim Network

Anaheim network, first provided by Jeff Ban and Ray Jayakrishnan, is a much larger

and complex network compared to the Sioux Falls network due to the amount of nodes
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Figure 5.4: Sioux Falls Network Objective Value vs. Demand, Smallest Time Interval: 15
Minutes.

and arcs it has. It is difficult to provide a graphical representation of the Anaheim network

that shows in detail all nodes and connecting arcs. Figure 5.6 [MapQuest.com] however

shows the map of the layout of Anaheim. Additional details when formulating Anaheim

network are as follows:

• Number of nodes: 417

• Number of danger nodes: 400

• Number of safe nodes: 16

• Number of arcs: 930

• Single-directional OD pair: 346

• 2-directional OD pair: 284

• Number of time periods: 48



Yeh-Ern Poh Chapter 5. Empirical Results 71

1 2 3 4 5 6 7

x 10
5

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Demand

S
o

lv
in

g
 T

im
e 

(s
ec

o
n

d
s)

 

 

With Lane Reversals
Without Lane Reversals

Figure 5.5: Sioux Falls Network Solving Time vs. Demand, Smallest Time Interval: 15
Minutes.

• Smallest time interval: 15 minutes

• Planning time horizon: 12 hours

Table 5.3 records the computational results and Figure 5.7 presents the graphical view

of the objective value of both DTA-UB and NRDTA-UB. Like the Sioux Falls network,

DTA-UB obtained better optimal solution throughout the entire process. Also, NRDTA-

UB obtained infeasibility at 12, 500, 000 demand whereas DTA-UB managed to continue to

25, 500, 000 before obtaining infeasibility. Solving time for the network with lane reversals

started off with a linearly increasing trend, however after a certain demand point, it

suddenly jumps to a much greater value, and retains that range for the next few demand

points. Figure 5.8 illustrates this example.

Notice that when modeling the Anaheim network above, there exist 284 2-directional

OD pairs and 346 single-directional OD pairs. In other words, only 284 OD pairs have 2

arcs connecting the two nodes and 346 OD pairs have 1 arc connecting the nodes. This

is a realistic representation as not all roads connecting 2 separate towns/cities/nodes are
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Figure 5.6: Map of Anaheim.

2-directional, there may exist only one-way roads leading from one node to the other.

However, in this research, a network with 2-directional arcs on every OD pair needs to

be modeled to compare its computational results with the original network layout. To do

this, a Macro-enabled Microsoft Excel code was written so that for every arc connecting

2-nodes, there exist another identical arc in the reversed direction. With this, details of

the new network are changed to as follows:

• Number of arcs: 1260

• Single-directional OD pair: 0

• 2-directional OD pair: 630

The number of danger nodes, safe nodes, time periods, smallest time interval, and planning

time horizon remains the same as before. Table 5.4 records the computational results of

the new Anaheim network. Figure 5.10 compares the objective value of the complete

2-directional OD pairs and partial 2-directional OD pairs of Anaheim network. It can

be seen that although the objective value of both networks started off almost equal, the

complete 2-directional OD pairs network eventually achieved better optimal value than
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Figure 5.7: Anaheim Network Objective Value vs. Demand.

the partial network. Also, complete 2-directional OD pairs network was able to optimize

up to 32, 500, 000 demand before obtaining infeasibility. This is 7, 000, 000 more than

partial 2-directional OD pairs network. Figure 5.10 presents the solving time of partial

and complete 2-directional OD pairs networks. Both networks had similar solving time

at the beginning, but eventually complete 2-directional OD pairs networks surpassed

the partial network and their solving time differences continued to increase as demand

increased.

5.3 Chapter Summary

Based on the empirical results shown from the sections above, the following conclusions

can be made:

• Network with lane reversals is able to obtain better objective value than network

without lane reversals.
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Figure 5.8: Anaheim Network Solving Time vs. Demand.

• Network with lane reversals is able to optimize almost double the demand of network

without reversals.

• Solving time of both networks with and without reversals linearly increases at the

beginning with demand.

• Solving time of network with lane reversals is consistently greater than that without

lane reversals. At a certain demand point, solving time breaks from its linear path

and jumps to a much higher value.

• Complete 2-directional OD pairs network obtains better objective value and is also

able to optimize greater demand than partial 2-directional OD pairs network.
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Figure 5.9: Partial and Complete 2-Directional O-D Pairs Objective Value vs. Demand.
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Table 5.4: Anaheim Network Results with Complete 2-Directional O-D Pairs.

Demand With Reversal
LB UB Total Solving Time (sec) Obj. Value
962 2680 500000 20.764 1846250
3365 5083 1500000 31.085 6292390
5769 7487 2500000 37.719 11262300
8173 9891 3500000 70.289 17059900
10577 12295 4500000 99.151 23926500
12981 14699 5500000 88.342 32028700
15385 17103 6500000 131.939 41433900
17788 19506 7500000 169.296 52293000
20192 21910 8500000 226.435 64537500
22596 24314 9500000 310.981 78579300
25000 26718 10500000 1224.194 94029000
27404 29122 11500000 1291.914 110948000
29808 31526 12500000 1756.824 129317000
32212 33930 13500000 2086.854 149136000
34615 36333 14500000 1894.512 170411000
37019 38737 15500000 2244.834 193057000
39423 41141 16500000 3115.414 217127000
41827 43545 17500000 3596.123 242663000
44231 45949 18500000 5032.336 269626000
46635 48353 19500000 5236.214 298009000
49038 50756 20500000 7036.471 327868000
51442 53160 21500000 7456.214 359157000
53846 55564 22500000 8524.336 391796000
56250 57968 23500000 10142.214 420918000
58654 60372 24500000 11253.144 451643686
61058 62776 25500000 13755.354 480729607
63462 65180 26500000 13854.789 509495529
65866 67584 27500000 15963.324 537941450
68270 69988 28500000 15632.254 566067371
70674 72392 29500000 16987.567 593873293
73078 74796 30500000 16874.364 621359214
75482 77200 31500000 16963.125 648824836
77886 79604 32500000 INFEASIBLE INFEASIBLE



80

Chapter 6

Conclusions and Future Work

Evacuation planning is of utmost importance for disaster prone areas. It provides au-

thorities a solution to minimize the loss of lives. We formulated the emergency evacuation

problem as a discrete-time system optimum DTA (DTA-SO) problem, which is a mixed

integer nonlinear programming problem, and then linearized it to obtained a mixed integer

linear programming problem, DTA-UB, which can approximate the original problem with

very high precision. The discrete-time DTA model is suitable for evacuation planning for

the reason that the model takes care of dynamic demands, and temporal flow assignment.

Also, the model has simultaneous route and departure assumption, and uses appropri-

ate travel time function. The main contribution of this research is the incorporation of

lane reversals in to the DTA-UB model for tackling networks with multiple sources and

multiple destinations. Lane reversals is the reversing of flow of a road segment from its

regular direction. In other words, whole segments of roads are to flip its usual directional

flow to head towards the opposite direction in order to increase outbound capacity in an

evacuation. With the realization of lane reversals, naturally the threat of potential head-

on collisions emerges. To tackle this problem, we also incorporated a collision prevention

constraint to limit the directional flow on lanes based on departure time.

To prove the effectiveness of our model, we formulated a no lane reversals DTA-UB

model (NRDTA-UB) and compared its computational results with DTA-UB. DTA-UB

proved to be able to generate better optimal solutions consistently across all demands.

Furthermore, DTA-UB was able to optimize approximately double the amount of demand

than that of NRDTA-UB.

Despite the advantage of better optimal solution, DTA-UB had significantly longer
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computational time than NRDTA-UB. Also, after a certain demand point, solving time

of DTA-UB breaks its linear trend and jumps to a much higher value. Future research

will need to be done to minimize this issue among others. Potential advance algorithms

that can be implemented in the model to minimize the solving time of DTA-UB include

Bender’s Decomposition, Column Generation, Lagrangian Relaxation, and problem re-

formulation. Additional research can also consider partial evacuation of residents with

restricted planning time horizon. Instead of eventually reaching infeasibility, the model

focuses on evacuating as many residents as possible within the specified time horizon, and

does not guarantee a 100% evacuation of residents. Lastly, a capacity limit can be placed

on all safe zones to model a more realistic scenario. In other words, there will be a limit

to the number of evacuees entering a safe node and evacuees will be channeled to head

towards other safe nodes once its capacity has reached its limit.
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