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Abstract 

 
Spatial Variation in Brook Trout (Salvelinus fontinalis) Population Dynamics and Juvenile 

Recruitment Potential in an Appalachian Watershed 
 

 
Zachary W. Liller 

 
I examined the spatial variation in brook trout population dynamics and juvenile recruitment 

potential in the upper Shavers Fork watershed, West Virginia.  The objectives of my research 

were to (1) identify physico-chemical factors contributing to the spatial variation in the 

abundance of juvenile brook trout within small basin area stream reaches, (2) quantify patterns of 

brook trout distribution, movement, and post reproductive demographic parameters across 

multiple spatial scales, and (3) place the upper Shavers Fork watershed brook trout population 

along the continuum of watershed-scale metapopulation models.  I sampled brook trout 

population size structure, physical habitat, and water chemistry at the reach- and watershed-

scale.  The results of my research showed that (1) both water quality and physical habitat 

influenced the spatial variation in juvenile recruitment potential within small basin area stream 

reaches (2) small basin area tributary networks played an important role in structuring the upper 

Shavers Fork brook trout population, and (3) the brook trout population within the upper Shavers 

Fork watershed reflects a complex mosaic of elements found in metapopulation, source-sink and 

patchy population models.
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Chapter 1 

Physico-chemical Factors Influencing the Spatial Variation in Juvenile Brook Trout (Salvelinus 
fontinalis) Recruitment in an Appalachian Watershed 

Abstract 
Studies relating salmonid recruitment to physico-chemical stream characteristics are 

common, yet such studies are surprisingly rare in central Appalachian brook trout populations.  

Consequently our objectives were to quantify spatial variation in juvenile brook trout recruitment 

within the upper Shavers Fork watershed and relate this variability to local physico-chemical 

features.  We focused on relatively small streams near mainstem habitat.  The upper Shavers 

Fork is a 5th order, high elevation watershed located in the Allegheny Plateau region of eastern 

West Virginia.  Recent research within this watershed suggests that the brook trout population is 

currently limited at the watershed-scale by juvenile recruitment and access to high quality 

foraging habitat.  Given that brook trout within this region have been shown to concentrate 

reproductive efforts within stream reaches with a basin area < 3km2 our overriding objective was 

to identify physico-chemical factors contributing to the spatial variation in the abundance of 

juvenile brook trout within small basin area streams.  Specifically we wanted to (1) further 

quantify the details of the relationship between juvenile brook trout recruitment and basin area 

within small basin area streams and (2) identify specific physical and chemical characteristics of 

small basin area tributaries that are related to juvenile brook trout recruitment success.  Brook 

trout population size and age structure, water quality, and physical habitat where sampled within 

34 small basin area (<3 km2) tributaries that drained within 1 km of the Shavers Fork main stem.  

Spatial variation in juvenile abundance was influenced by both physical and chemical 

characteristics.  We determined that the most important streams to juvenile brook trout 

recruitment in this watershed were very small perennial systems (<0.5km2) with spring pH 
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exceeding 5.0, spring alkalinity exceeding 2.0 mg/L CaCO3, a relatively homogenous depth 

profile, and a high availability of stream margin.  Despite the importance of these local habitat 

factors to brook trout reproduction, a significant amount of variation in juvenile abundance could 

not be explained.  This finding suggests that juvenile brook trout distributions may be influenced 

by local physico-chemical conditions as well as broader, watershed-scale processes. 
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Introduction 
The study of fish population ecology is largely centered on the identification of factors 

influencing the spatial and temporal patterns of individuals across the landscape.  Populations are 

regulated by rates of additions (birth and immigration) and losses (death and emigration) that 

reflect the suite of biotic and abiotic factors that make up an organism’s habitat (Pulliam 1988).  

The specific mechanisms (e.g. changes in survival, recruitment, and emigration) responsible for 

population regulation are often difficult to identify (Grossman et al. 2006).  However, studies 

conducted over the last decade show that several processes influence the abundance of 

populations and these processes vary in complexity and context (Pulliam and Danielson 1991, 

Turchin and Hanski 2001, Hixon et at. 2002, Grossman et al. 2006).   

Processes considered capable of influencing fish population abundances can be classified 

as either density-dependent or density-independent (Grossman et al. 2006).  It is generally 

believed that density-dependent forces are required to generate regulated populations (Murdoch 

1994, Turchin 1995) and recent studies suggest that density-dependent mechanisms regulate 

many stream fish populations (Grant and Kramer 1990, Elliot 1994, Milner et al. 2003, 

Grossman et al. 2006).  Conversely, populations controlled by density-independent processes 

(e.g. acidic episodes, floods, droughts) statistically mirror random-walk populations (Murdoch 

1994).  It is generally believed that density-dependent mechanisms operate at all places and 

times (Sale and Tolimieri 2000).  Although, the strength of density-dependence is related to 

environmental factors operating in a density-independent way (Einum 2005), and the relative 

importance of each process to population dynamics may be context specific (Grossman et al. 

2006).   
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It is generally believed that density-dependent processes are strongest within stable 

environments, whereas density-independent processes dominate within highly stochastic 

systems.  Streams are longitudinal mosaics of patchy habitats that vary at functionally relevant 

spatial and temporal scales (Vannote 1980, Schlosser 1991, Schlosser and Angermier 1995, Lake 

2000, Fausch et al. 2002).  Populations inhabiting patchy environments experience different 

levels of fitness or reproductive success as a result of variation in resource abundance and 

predation (Lewin 1989).  Stream fishes exist within linear systems that are subject to spatially 

and temporally variable patterns of disturbance (Lake 2000).  Consequently, stream fish 

populations are likely influenced predominately by density-independent processes (Grossman et 

al. 1998, Lobón-Cerviá 2004, Lobón-Cerviá and Rincón 2004).  

Recruitment limitation is a unique case of density independence where population size is 

controlled by the abundance of young entering the population (Danilowicz 1997).  Populations 

influenced by factors limiting recruitment experience fluctuations similar to those of completely 

density-independent populations, except for the presence of strong serial correlations reflecting 

year-class strength (Danilowicz 1997).  Recruitment, in the broadest sense, is the addition of new 

individuals to a population or successive life-cycles within a population (Caley et al. 1996).  The 

process of recruitment provides a link between birth rates and the dynamics of juvenile and adult 

components of populations (Knapp et al. 1998).  Patterns of recruitment are commonly reflected 

in the age structure and distribution of adults (marine fishes: Doherty and Fowler 1994, Caley et 

al. 1996, Armsworth 2002, Sandin and Pacala 2005; freshwater fishes: Freeman et al. 1988, 

Beard and Carline 1991, Knapp et al. 1998, Lóbon-Cerviá and Rincón 2004), suggesting that 

recruitment dynamics can theoretically limit or regulate adult populations (Doherty 1981, Caley 

1996). 



 5

Stream dwelling salmonids are ecologically and economically valuable fish common 

within coldwater systems throughout the world.  Stream-dwelling salmonids are highly 

susceptible to environmental change (Hicks et al. 1991).  Over the past century many watersheds 

that support salmonids have experienced considerable alterations due to land use practices (e.g. 

coal and timber extraction, grazing) and development resulting in the decline of wild trout 

populations (Hicks et al. 1991).  Consequently, considerable attention has been directed towards 

identifying factors that limit salmonid populations and the internal feedback mechanisms that 

operate on their population dynamics (Lóbon-Cerviá and Rincón 2004).    

A variety of processes have been shown to influence salmonid populations.  Salmonid 

populations are influenced by density-dependent processes, which typically affect survival in the 

early life stages due to predation, parasitism, disease, and intraspecific competition (Elliot 1994, 

Milner et al. 2003).  Although evidence of density-dependence in salmonid populations exists, it 

is generally believed that, due to the highly variable nature of stream systems, the strength of 

density-dependent processes is low and stream-dwelling salmonids are predominately influenced 

by density-independent forces.  In fact, several studies have indicated that stream-dwelling 

salmonids are recruitment limited and populations are strongly influenced by the availability of 

suitable reproductive habitat (Beard and Carline 1991, Bozek and Rahel 1991, Knapp et al. 1998, 

Petty et al. 2005).  These studies show that salmonid population persistence at the watershed-

scale may be dependent on critical spawning habitats as a source of juvenile recruitment (Petty et 

al. 2005).  The degree of dispersal from reproductive areas can vary considerably and seasonal 

dependency suggests that the distribution of stream dwelling salmonids is in part influenced by 

the distribution of their spawning habitat.  Consequently, a clear understanding of factors 
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influencing salmonid reproduction and survival of early life stages is necessary to understanding 

their distribution and dynamics at the watershed-scale (Fausch et al. 2002).   

Spawning habitat of stream-dwelling salmonids are non-substitutable areas, (Dunning et 

al. 1992) which vary spatially within stream networks and play a critical role in determining 

patterns of recruitment and ultimately juvenile and adult distribution and abundance (Beard and 

Carline 1991, Bozek and Rahel 1991, Knapp et al. 1998, Petty et al. 2005).  Salmonids reproduce 

by constructing nests or redds in gravel sized substrate within well oxygenated alkaline waters.  

Consequently, factors such as substrate size (Beard and Carline 1991, Magee and McMahon 

1996), groundwater inputs (Witzel and MacCrimmon 1983, Curry and Noakes 1995), water 

depth and velocity (Witzel and MacCrimmon 1983, Bernier-Bourgault and Magnan 2002), and 

water quality (Jordahl and Benson 1987, Mount et al. 1990, Fiss and Carline 1993) interact to 

determine patch-specific reproductive potential.  Episodic high flows occurring at the time of egg 

development and emergence can limit recruitment through direct mortality and displacement 

(Montomery et al. 1999, Lóbon-Cerviá 2003, Lóbon-Cerviá 2004).  Furthermore, proximity to 

low velocity margin habitat may influence the survival and recruitment of post-emergent young 

salmonids (Bozek and Rahel 1991).  The relative importance of specific physico-chemical 

conditions required for successful reproduction of stream salmonids is variable and their 

mechanisms and consequences toward population dynamics is not well understood (Lóbon-

Cerviá and Rincón 2004).   

The upper Shavers Fork watershed, located in the central Appalachian mountains of 

eastern West Virginia, provides a good example of the problems facing salmonid populations.  

Historically this watershed supported a rich native brook trout (Salvelinus fontinalis) fishery.  

Extensive timber harvesting and regionally high acid deposition combine to limit brook trout 
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reproductive efforts to a few small basin area stream segments (Clayton et al. 1998, Petty et al. 

2005).  Recent research within the upper Shavers Fork watershed suggests that the brook trout 

population is currently limited at the watershed-scale by juvenile recruitment and access to high 

quality foraging habitat (Petty et al. 2005).  Petty et al. (2005) found that nearly 80% of all 

spawning activity and juvenile recruitment within a 4th order tributary basin of the upper Shavers 

Fork was concentrated within headwater stream segments draining less than 3 km2 with 

relatively good water quality (i.e. stream alkalinity > 10 mg/L CaCO3) and ample instream cover.  

Furthermore, the spatial distribution of juvenile and small adult brook trout was temporally 

stable and significantly correlated with these high quality reproductive habitats.  In contrast, 

large adult distribution was highly variable, but seasonally related to the spatial arrangement of 

reproductive habitat (Petty et al. 2005).   

We know that reproductive success is an important determinant of brook trout 

distribution at the watershed-scale, and we know that brook trout reproduction within the upper 

Shavers Fork tends to be concentrated in small basin area tributaries.  Approximately 46% of the 

total upper Shavers Fork watershed is drained by small basin area stream networks located 

within 1km of the Shavers Fork main stem.  Previous work within this drainage recognized the 

likely influence of these small tributary systems to the brook trout population (Goujot 2001, 

Bopp 2002, Thorne 2004, Hansbarger 2005, Petty et al. 2005).  These small stream networks 

may provide critical reproductive habitat and a more immediate link between sources of juvenile 

recruitment and productive main stem habitat.  If these small systems are important to the 

population dynamics of brook trout at the watershed-scale, then they could have serious 

implications for how managers allocate reclamation efforts in order to promote the recovery and 

persistence of the population.  Unfortunately, we do not fully understand the range of recruitment 
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potential or the specific characteristics of stream reaches that influence the degree of 

reproductive success within these small basin area tributaries. 

Objectives 
 Given that brook trout have been shown to concentrate reproductive efforts in stream 

reaches with a basin area < 3km2 our overriding objective was to identify physico-chemical 

factors contributing to the spatial variation in the abundance of juvenile brook trout.  Specifically 

we wanted to (1) further quantify the details of the relationship between juvenile brook trout 

recruitment and basin area within small basin area streams and (2) identify specific physical and 

chemical characteristics of small basin area tributaries that are related to juvenile brook trout 

recruitment success. 

Study Area 
 Our study area was located within a 30 km segment of the upper Shavers Fork watershed 

of the Cheat River, located in the Monongahela River basin.  The upper Shavers Fork is a 5th 

order (139 km2) high elevation (>1000m) watershed located in Pocahontas and Randolph 

counties of West Virginia, on the eastern edge of the Appalachian Plateau physiographic 

province (Figure 1).  The Shavers Fork main stem is a relatively low gradient (<1% slope) 

system with a trellised drainage geometry consisting of a single main channel collecting 

numerous, high gradient, first and second-order tributaries.  Additionally two third-order 

dendritic tributaries (First and Second Fork) comprising 26% of the watershed drain into the 

main stem and effectively separate the watershed into 3 regions (below First Fork, between First 

and Second Fork, and above Second Fork) (Figure 1).   

Our study was conducted within 34 first- and second-order tributaries draining into the 

upper Shavers Fork main stem (Figure 1).  Each study site was located within 1 km of the 
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Shavers Fork main stem and drained less than 3 km2.  Consequently, study sites were 

characterized as having a high potential for brook trout reproduction and interaction with the 

larger main stem habitat.  As a result of local variability in bedrock geology consisting of 

sandstone, shale, conglomerate, and coal (Waite et al. 2000) and regionally high acid 

precipitation (NADP 2000) studied reaches covered the full range of flow conditions, instream 

physical habitat, canopy cover, dissolved chemistry, slope, and basin area (Table 1).  Brook trout 

were generally the only species present in studied streams; although, low numbers of mottled 

sculpin (Cottus bairdi), western blacknose dace (Rhinichthys obtusus), longnose dace 

(Rhinichthys cataractae), rosyside dace (Clinostomus funduloides), fantail darter (Etheostoma 

flabellare), creek chub (Semotilus atromaculatus), brown trout (Salmo trutta), and rainbow trout 

(Oncorhynchus mykiss) were observed in larger study reaches near the main stem of Shavers 

Fork. 

Methods 

Site selection 
The locations of all potential study streams were determined using ArcGIS 9.1 spatial 

analysis software.  All streams with a basin area <3.0 km2 that drained within 1 km of main stem 

habitat (defined as any stream reach with a basin area > 15 km2) were identified from a flow 

accumulation grid, based on a West Virginia state 10 meter (re-sampled 30m) digital elevation 

model.  Each stream was ground verified and presence / absence of anthropogenic barriers was 

noted during base flow conditions of fall 2003.  Preliminary water quality (pH, alkalinity, and 

dissolved Ca+3) was determined from filtered water samples (filter size 0.45 µm; potentiometric 

titration to pH 4.5).  A calcium-hydrogen ion ratio was calculated to represent the water 

chemistry within each stream (Clayton et al. 1998).   
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Within each of the three regions (i.e. below First Fork, between First and Second Fork, 

and above Second Fork), all identified streams were stratified by basin area (<1 km2, 1-2 km2, 2-

3 km2), Ca:H ion ratio (<6, 6-25, >25), and presence / absence of man-made barriers.  All stream 

reaches with immediate downstream barriers to fish passage were not sampled.  A minimum of 

one stream representing each available basin area / water quality combination was randomly 

selected from each of the three regions.  Reach length was 40 times the mean wetted width; with 

a 150m minimum (Angermeier and Karr 1986, Yoder and Smith 1999).  In order to avoid 

potential bias associated with confluences, sample reaches were located at least 50m from the 

mouth of each study stream.   

Brook Trout Population Sampling 
 We sampled brook trout populations within the 34 study reaches during base flow 

conditions in June 2004.  Previous studies within the Upper Shavers Fork watershed indicate that 

June is the earliest time that juveniles can be effectively sampled (Petty et al. 2005).  By 

sampling as early as possible, we attempted to minimize the effect of dispersal on juvenile 

distributions. 

Two to three person teams, depending on stream size, sampled brook trout with backpack 

electrofishing units (Smith-Root, DC, 60 hz, 400-600V), following single-pass procedures, and a 

combination of dip and seine nets.  Brook trout capture probabilities within this watershed are 

equal among age-classes and seasons but not across a broad range of basin areas (Petty et al. 

2005).  In addition, a constant capture probability model was found to be the most appropriate 

model representing brook trout capture probabilities for 42 sites distributed throughout the Cheat 

River watershed (Petty et al. unpublished data).  Even though data suggests that brook trout 

capture probabilities should be similar among study sites and the effective range of streams sizes 
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considered in this study was small (0.08-3km2), we conducted three-pass removal estimates on a 

subset of study reaches to assess the efficiency of our single-pass protocol.  Capture probability 

was generally high (mean 0.717, stdev 0.102) and displayed little variability (coefficient of 

variation = 14 %).  More importantly, the number of brook trout captured from the first pass was 

strongly correlated with total population size estimated from three-pass depletion (N = 18, r = 

0.97).  These results indicate that the single-pass sampling procedure provided an unbiased 

measure of brook trout abundance in small basin area tributaries of this watershed.  All trout 

captured were identified to species, anesthetized in clove oil (concentration = 40 mg/L), and 

measured for standard length (SL) (± 1mm) and weight (± 0.1g).   

Juvenile brook trout were distinguished from other size-classes based on frequency 

distributions of brook trout lengths pooled across all sites sampled within the Upper Shavers 

Fork during June 2004 (Figure 2).  The juvenile cohort (<60mm SL) is a true representation of 

age and represents individuals known to have been spawned the previous fall.  The small and 

large adult classes likely do not represent a true distinction in age.  The term “adult” was simply 

used to represent individuals that were not in their first year of life and in the case of most small 

adults may not represent reproductive maturity.  A stock size of 115 mm (SL) (Anderson and 

Neumann 1996) was used to differentiate between small and large adults.   

Water Chemistry  
 Water chemistry data was collected at base flow conditions during April 2004.  It has 

been shown that most streams in the Cheat River basin exhibit their worst chemical conditions 

during late winter and early spring (Petty and Barker 2005), and it is at this time that the survival 

of juvenile brook trout are most affected by episodic reduction in water quality (Jordahl and 

Benson 1987; Fiss and Carline 1993).  Two whole water 250mL samples were collected from 
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each stream reach.  One sample was acidified with 2mL sulfuric acid to maintain the dissolution 

of metals.  All samples were filtered (filter size 0.45 µm) and processed at the West Virginia 

University Natural Resource Center for Coal and Energy.  Samples were analyzed for pH, 

alkalinity (mg/L CaCO3), and dissolved inorganic monomeric Al3+ (mg/L) (henceforth, Al).  

Instream Habitat 
 Habitat surveys were conducted at base flow conditions during the summers of 2004 and 

2005 and followed protocols similar to those described by Petty et al. (2005).  Efforts combined 

visual estimation and transect based sampling to quantify a variety of physical habitat variables.  

All visual estimation was conducted by the same person in order to reduce sampling error.  

Thirteen habitat parameters were assessed at each site: basin area (km2), channel slope (%), mean 

depth (cm), depth variability, mean velocity (cm/s), distance to cover (m), canopy cover (%), 

wetted channel width (m), stream margin (%), spawning substrate (%), pool area (%), median 

substrate size (mm), and large woody debris (LWD) (m2/m2).  This represents a list of previously 

suggested parameters important to salmonid redd site selection and juvenile habitat use (Witzel 

and MacCrimmon 1983, Bozek and Rahel 1991, Mclaughlin et al. 1994, Petty et al. 2005). 

Basin area was mapped at the downstream end of each reach using a flow accumulation 

grid in Arc GIS 9.1 spatial analysis software.  Mean channel slope was measured with a hand 

held clinometer (± 1 %) and survey rod.  Working in an upstream direction, a thalweg profile 

was developed by measuring depth (± 1 cm), average current velocity (± 1 m/s), and distance to 

cover (± 0.1m) at 30 points spaced 5m apart within the primary current seam.  Spacing of sample 

points along the thalweg was slightly modified from the recommendations of Simonson et al. 

(1994).  Depth variability was represented as the coefficient of variation ([standard 

deviation/mean]*100) of mean depth.  Average velocity was measured with a Marsh McBirney 
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digital flow meter at 60% of the water depth.  Distance to cover was measured as the distance 

from the thalweg point to the nearest structural element with potential to provide refuge for a 

200mm fish (Simonson et al. 1994).  Transects were located every 50m at which canopy cover 

(spherical densitometer: 4 directional readings) and wetted width (± 0.1 m) were measured.  The 

area (m2) of stream margin and suitable spawning substrate was visually estimated at 10m 

intervals and summed across the reach.  Percentage of the reach represented by stream margin 

and suitable spawning substrate was calculated as the total area of each divided by the total 

wetted area of the reach.  Stream margin was defined as any shallow (< 20cm) low velocity 

(<0.04 m/s) area suitable for juvenile brook trout (Moore and Gregory 1988).  Spawning 

substrate was defined as patches of small substrate (4-30mm) in shallow, low velocity water 

(Hakala and Hartman 2004).  Pool area (m2) was obtained by multiplying the visually estimated 

total length (m) and width (m) of each pool and summing throughout the reach.  Twenty percent 

of all pool dimensions were measured (± 0.1m) and used to derive a correction factor for visual 

estimations (Dolloff et al. 1997).  Percentage of the reach represented by pools was calculated as 

the total pool area divided by the total wetted area of the reach.  Median substrate size (D50) was 

determined by first classifying (Wentworth scale) 100 randomly selected pebbles along a zig-zag 

line that traversed the length of each reach (Bevenger and King 1995). Median substrate size was 

calculated as the antilogarithm of the summed proportion of bedrock, boulder, cobble, gravel, 

sand, and silt multiplied by their respective geometric mean size.  LWD was assessed by 

categorizing all stems located within the active stream channel (includes root wads, spanners, 

and standing dead) into 1 of 12 categories based on visually estimated lengths (1-2m, 2-5m, 5-

10m, >10m) and widths (0.1-0.2m, 0.2-0.3m, >0.3m).  LWD density (m2/m2) was calculated as 
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the sum of the total area represented by each category (# stems * median length * median width) 

divided by the wetted stream area.  

Statistical Analysis 
 Basin area – juvenile brook trout relationship – Our first objective was to quantify the 

relationship between stream size and juvenile brook trout abundance within small basin area 

stream reaches draining < 3km2.  A Kolmogorov-Smirnov goodness-of-fit test was used to 

compare the observed cumulative juvenile density to the expected cumulative frequency of 

stream segments available along a range of basin area (sensu Petty et al. 2005).  The analysis 

tested the null hypothesis that juvenile density was constant across the range of basin areas 

sampled.   

 Physico-chemical attributes and juvenile brook trout density – Our second objective was 

to quantify the local physical and chemical factors that influence the spatial variation in juvenile 

brook trout density among stream reaches draining < 3km2.  All study reaches that did not 

maintain surface flow during the study period (April 2004-June 2005) were not included in 

further statistical analysis procedures, regardless of their flow status in June 2004.   

 Stepwise multiple regression analysis was used to determine which physico-chemical 

variables were most important in explaining the spatial variation in juvenile brook trout density.  

Due to high correlations among local physical and chemical habitat parameters, principle 

component analysis (PCA) was used to reduce linear dependency and data redundancy, across all 

perennial sites, by generating new fully uncorrelated composite variates separately for both 

physical and chemical attributes (McGarigal et al. 2000).  Physical and chemical component 

scores, percent canopy cover, and adult brook trout (>60mm) density (# / hectare) were selected 

for regression analysis.  Variables were included in the regression model if P < 0.15.  The alpha-



 15

level used for acceptance of the overall model was 0.05.  All statistical tests were judged at this 

level unless otherwise noted.  Due to the likely importance of local water quality in regulating 

the spatial occurrence of juvenile brook trout, we also used simple linear regression to assess the 

relationship between juvenile density and each water quality parameter (i.e. pH, alkalinity, Al).   

 The Ward’s method of hierarchical cluster analysis was used to assign each study reach 

into one of three groups (high, low, absent) based on observed juvenile density.  We further 

separated the sites where juveniles were absent into absent with “good” water quality and absent 

with “poor” water quality based on observed water quality thresholds (pH < 5.0, alkalinity < 2 

mg/L CaCO3 – see Results), giving a total of 4 categories.  One-way analysis of variance 

(ANOVA) was used to test for significant differences among groups based on individual 

physical and chemical parameters as well as dominant instream physical and chemical gradients 

described by PCA.  Backward stepwise linear discriminant analysis was used to determine which 

physical and chemical parameters best discriminated among predefined groups.  Backward 

selection occurred until all modeled parameters were significant at P ≤ 0.15 level.   Correlation 

analysis was used to quantify the strength of the relationship between each modeled parameter 

and the site specific canonical scores associated with each discriminant axis.  Parameters with 

significant correlations were considered key variables that distinguished among groups along 

each axis.  We used the proportional chance criterion (Cpro) (Morrison 1969) to assess 

classification accuracy.  The premise of Cpro is that classification based on the discriminating 

variables should exceed that obtained by randomly assigning samples to groups in proportion to 

group sizes.  Cpro was computed by summing the squared proportional contribution of each group 

(Morrison 1969).  In order to more clearly assess the role of the physical habitat in determining 

the relative abundance of juveniles in good water sites we removed all sites with poor water 
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quality and conducted a similar discriminant analysis including only  physical habitat 

parameters. 

Results 
 A total of 733 brook trout were captured, from single-pass electrofishing, across the 34 

study reaches, and considerable reach-to-reach variability in the number of brook trout was 

observed (range: 0 – 64).  Small adult brook trout (60 – 115mm standard length) were 

numerically dominant making up 60% of the total catch, whereas juveniles (<60mm SL) and 

large adults (>115mm SL) made up 22 and 18% respectively.   

Basin area – juvenile brook trout relationship- Juvenile brook trout were observed across 

the entire sampled range of basin area (0.08 – 3km2) and were found to occur most often within 

the smallest study reaches (Figure 3).  Juvenile brook trout density was significantly higher in 

small basin area stream reaches than expected by chance alone (Kolmogrov-Smirnov; Dmax = 

0.30, N = 34, P = 0.004).  In fact, nearly 90% of the cumulative density occurred in stream 

reaches draining less than 0.5 km2, 30% more than would be expected by chance (Figure 3).  

These results suggest that brook trout reproduction is concentrated within the smallest perennial 

streams available.   

Of the 34 stream reaches sampled, 5 (15%) did not maintain surface water flow for the 

duration of study (Table 1).  Reach drying was not restricted to the smallest basin area streams 

segments (range 0.08-0.36 km2), suggesting that stream size alone was not a sufficient measure 

of critical habitat for brook trout reproduction.  In general juvenile brook trout were not observed 

in any stream reach that went dry, with the exception of site 20.  Site 20 began at the confluence 

of the stream network and the Shavers Fork main stem and supported a single juvenile, however; 

the individual was found less than 5 meters from the Shavers Fork main stem.   
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Physico-chemical attributes and juvenile brook trout density- We identified three 

ecological gradients from correlated physical habitat variables (henceforth, PPC) within 

perennial study sites (Table 2, Figure 4).  The analyses suggest a substrate size - stream margin 

gradient (PPC 1), a stream size gradient (PPC 2), and a complexity gradient (PPC 3).  Two 

ecological gradients were identified from the correlated water quality variables (henceforth 

CPC): an acidity gradient (CPC 1) and an Al gradient (CPC 2) (Table 2, Figure 5). 

Using stepwise multiple regression, we produced a highly significant model relating 

physico-chemical parameters to juvenile brook trout density across all perennial sites (Full 

model: F = 18.08, df = 28, P = <0.0001, R2 = 0.58).  PPC 1 and CPC 1 were found to be the 

most important predictor variables (Table 3).  This model was strongly influenced by five 

chronically acidic sites; consequently, CPC 1 alone explained 51% of the variation in juvenile 

density among sites.  Simple linear regression of each water quality parameter and juvenile 

density illustrated that no juveniles were observed in stream reaches with a spring pH < 5.0 and a 

spring alkalinity < 2.0 mg/L CaCO3 (Figure 6).  The lack of juvenile brook trout below these 

values suggests critical water quality thresholds exist below which stream reaches were 

incapable of supporting juvenile brook trout.  No critical threshold was identified for Al; 

however, high juvenile density was only observed in streams with no Al present in spring (Figure 

4).  No significant relationship was observed between pH (R2 0.06, P = 0.25) or alkalinity (R2 

0.06, P = 0.27) and juvenile brook trout density once water quality exceeded the observed critical 

threshold (Figure 6).  Within sites that maintained a spring pH > 5.0 and a spring alkalinity > 2.0 

mg/L CaCO3, we produced a significant model relating physico-chemical parameters to juvenile 

brook trout density (Full model: F = 8.41, df = 23, P = 0.008, R2 = 0.28), where  PPC 1 was the 

only selected predictor variable (Table 4).  
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When similarity among perennial sites was defined in terms of juvenile density, three 

groups (high N =11, low N =10, and absent N =8) were identified by hierarchical classification.  

The absent group was further separated into sites with good water quality (henceforth Absent-1; 

N = 3, pH > 5.0 and alkalinity > 2.0 mg/L CaCO3) and sites with poor water quality (henceforth 

Absent-2; N = 5, pH < 5.0 and alkalinity < 2.0 mg/L CaCO3) (Table 5 and 6).  Significant 

differences between groups were identified in relation to basin area, wetted stream width, percent 

stream margin, median substrate size, spring pH, spring alkalinity, PPC 1, and CPC 1 (Table 5).  

In general, the high density group had a smaller mean basin area, wetted width, and substrate 

size and a higher mean percent stream margin compared to low density or absent groups (Table 

5).  Streams with good water quality but no juveniles (i.e. Absent-1), possessed less stream 

margin and slightly larger substrate than high density streams (Table 5).    

Using two canonical functions identified using discriminant analysis, we were able to 

distinguish between the four groups (High, Low, Absent-1, and Absent-2) based on the physico-

chemical parameters.  The stepwise selection process indicated that the linear combination of 

basin area, depth CV, % stream margin, LWD density, and spring pH was the best model with 

respect to simultaneously maximizing among group separation and within group cohesiveness.  

Both canonical functions were significantly different from zero (Wilks-Lambda < 0.0001; Canon 

1: Rc
2 = 0.86; Canon 2:  Rc

2 = 0.58), indicating that the five physico-chemical variables 

successfully discriminated between groups (Table 7).  This model correctly classified 86% of 

sites (Table 8), 56% more than would be expected by chance alone (Cpro = 0.30).  

 In general, sites supporting juvenile brook trout had a higher spring pH than those that 

did not, whereas sites with a high relative density occurred in smaller basin area stream reaches 

with higher % stream margin than sites with a low relative density.  Spring pH and % stream 
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margin were key discriminating variables along canonical axis 1 and significantly separated 

stream reaches with the ability to support juvenile brook trout from those that did not.  As 

indicated by a high correlation coefficient (r = 0.98), spring pH was the dominant attribute 

responsible for group separation along canonical axis 1.  Basin area and percent stream margin 

were key discriminating variables along canonical axis 2 and significantly separated high density 

sites from low density sites.  This linear combination of variables was not able to significantly 

separate study reaches with no juvenile brook trout but good water quality from other reaches 

that did support juveniles (Figure 7). 

When only good water sites were considered, we used two canonical functions identified 

by discriminant analysis to distinguish between the three groups (High, Low, and Absent-1) with 

good water quality (i.e. pH > 5.0 and alkalinity > 2.0 mg/L CaCO3) based solely on physical 

attributes.  The linear combination of basin area, depth CV, % pool area, % stream margin, and 

LWD, was found to be the most effective model at distinguishing among groups.  Both canonical 

functions were significantly different from zero (Wilks-Lambda = 0.0001; Canon 1: Rc
2 = 0.66; 

Canon 2:  Rc
2 = 0.56), indicating that the five physical variables successfully discriminated 

between groups (Table 9).  This model correctly classified 92% of sites (Table 10), 52% more 

than would be expected by chance alone (Cpro = 0.40).  

In general, sites supporting juvenile brook trout had a more homogenous depth / flow 

regime than those that did not, whereas sites with a high relative density occurred in smaller 

basin area stream reaches with a higher percent stream margin than sites with a low relative 

density.  Basin area and percent stream margin were the key discriminating variables along 

canonical axis 1 and significantly separated high density sites from low density sites.  Depth CV 
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was the key discriminating variable along canonical axis 2 and significantly separated sites that 

supported juvenile brook trout from those that did not (Figure 8). 

Discussion 
Results of this study suggest that within the upper Shavers Fork watershed small basin 

area streams located near the main stem do provide critical reproductive habitats for brook trout.  

Juvenile brook trout were observed throughout the range of stream sizes between 0.08 and 3.0 

km2.  However, sites displayed considerable variation in local physical and chemical conditions 

resulting in variable recruitment of juvenile brook trout.  Juvenile brook trout were only 

observed within study reaches with perennial flow, spring pH above 5.0, and spring alkalinity 

levels above 2.0 mg/L CaCO3.  Within these “suitable” systems juvenile density was influenced 

by the local physical habitat; although, a considerable amount of variation was unexplained.  In 

general, juvenile density was highest within the smallest stream reaches, providing no evidence 

that a critical basin area exists below which brook trout reproduction does not occur.  

Furthermore, high juvenile density was at least in part a function of the availability of shallow, 

low velocity, marginal habitat.    

This study suggests that droughts may be an important mechanism in structuring brook 

trout populations within the upper Shavers Fork.  This conclusion is based on the absence of 

juvenile brook trout within stream reaches that went dry during the study period.  Reach drying 

is common in many small headwater systems due to drainage basin geometry (Lake 2000, 2003), 

and hydrologic variability is an important factor in structuring fish assemblages (Grossman et al. 

1982, Schlosser 1985, Poff and Allen 1995, Dodds et al. 2004).  Droughts affect population 

abundance by reducing the quality and availability of local pool and riffle habitat (Lake 2000, 

Lake 2003, Hakala and Hartman 2004).  Hakala and Hartman (2004) observed a 67% decrease in 
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juvenile brook trout abundance across several Appalachian streams following a severe drought.  

The literature is full of examples relating flow dynamics (especially floods) to juvenile 

recruitment and population dynamics of stream-dwelling salmonids (Spina 2001, Cattanéo et al. 

2002, Lóbon-Cerviá 2003, Lóbon-Cerviá 2004, Hakala and Hartman 2004).  Unfortunately, there 

is a lack of literature addressing minimum stream size and flow requirements for brook trout 

reproduction and juvenile recruitment.   

Spring water quality was the limiting factor defining a reach’s ability to support juvenile 

brook trout within perennial stream reaches.  This conclusion is based on (1) the importance of 

the acidity gradient as a predictor of juvenile density (2) the observed critical water quality 

threshold for spring pH (> 5.0) and alkalinity (>2.0 mg/L CaCO3).  Our findings are consistent 

with the results of several other studies within the northeastern United States (Johnson and 

Webster 1977, Baker et al. 1996; Van Sickle et al. 1996; Wigington et al. 1996; Welsh and Perry 

1997, Petty et al. 2005).  Johnson and Webster (1977) found that brook trout avoided 

reproducing in areas with pH levels below 5.0, but above this level they did not discriminate 

based on water quality.  Welsh and Perry (1997) showed that systems like Shavers Fork 

dominated by poorly buffered geologic groups (e.g. Pottsville sandstone and Mauch Chunk 

shale) are prone to acidic episodes that exceed critical thresholds for many fishes.  Petty et al. 

(2005) showed complete recruitment failure within stream reaches with alkalinity below 7mg/L 

CaCO3.  Numerous physiological mechanisms can cause mortality in acidified streams and affect 

reproductive success through increased larval mortality (Jordahl and Benson 1987; Fiss and 

Carline 1993) or failure of females to produce mature eggs (Frenette and Dodson 1984).   

Although pH and alkalinity are important determinants of water quality, the critical factor 

is believed to be increased mobilization of monomeric aluminum during acidic episodes (Mount 
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et al. 1990; Ingersoll et al. 1990, Parkhurst et al. 1990).  Baker et al. (1996) indicated that 

inorganic monomeric aluminum levels above 0.06 mg/L were unsuitable for the survival and 

reproduction of many stream fishes.  We observed juvenile brook trout across a wide range of 

spring Al levels (0-0.4 mg/L).  Within sites that had elevated Al levels in spring, juvenile brook 

trout density was always low but not always absent.  Juvenile brook trout response to Al toxicity 

is reduced in early developmental stages (Ingersoll et al. 1990) and it is possible that this 

increased resistance was sufficient to prevent complete recruitment failure in stream reaches with 

high spring Al concentrations.  More likely, however, is that moderate levels of pH and Ca+2 

resulted in a calcium-hydrogen ion ratio >10, which has been shown to be sufficient to allow for 

successful brook trout reproduction in acid impaired streams (Clayton et al. 1998). 

Our observation that juvenile brook trout occurred within stream reaches with low 

buffering capacity suggests that successful juvenile recruitment may be prone to temporal 

fluctuations due to acidic episodes.  During extended low-flow periods many small streams 

appear as attractive reproductive habitat due to relatively high pH levels (Lamothe 2002, Petty et 

al. 2005).  However, during acidic episodes, pH levels in low-alkalinity streams may drop to 

below 4.0 (Wigington et al. 1996, Lamothe 2002) resulting in complete recruitment failure.  

Acidic episodes throughout Appalachia typically occur during spring snowmelt or fall 

thunderstorms coinciding with various reproductive activities (e.g. redd site selection, 

emergence).  The importance of duration of acidic episodes is likely contingent on preexisting 

conditions; however, both long-term acidic episodes (>24h) (Van Sickle et al. 1996) and short-

term pulses (Mount et al. 1990) have been shown to reduce survival of early brook trout life 

stages.  Clearly, the timing, duration, frequency, and magnitude of acidic episodes must be 
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considered to determine the susceptibility of brook trout populations to acidification (Ingersoll et 

al. 1990).   

Within perennial sites chemically capable of supporting juveniles, basin area, was a 

critical factor influencing the relative abundance of juvenile brook trout.  This conclusion is 

supported by (1) the disproportionate distribution of juvenile brook trout within stream reaches 

draining <0.5 km2 and (2) the role of basin area as a key factor discriminating between stream 

reaches with high and low relative abundance of juveniles.  Our findings are consistent with the 

work of Petty et al. (2005) who provided overwhelming support for the role of small basin area 

stream reaches in structuring the reproductive effort and spatial distribution of brook trout within 

a 4th order tributary basin of the upper Shavers Fork.  

 The importance of small basin area stream reaches to brook trout spawning and rearing 

may be related to a variety of factors such as groundwater inputs, flow regime, and predation.  

Groundwater influences the distribution, reproductive success, biomass, productivity, behavior, 

and movement of fishes (Power et al. 1999), by influencing temperature, flow, and chemical 

regimes (Witzel and MacCrimmon 1983).  Consequently, many studies of stream-dwelling brook 

trout reproductive strategies suggest groundwater influxes within low-order stream reaches 

partially regulate the spatial variation in reproductive effort (Witzel and MacCrimmon 1983, 

Curry and Noakes 1995, Sorenson et al. 1995, Essington et al. 1998).  Sorenson et al. (1995) 

showed that brook trout in Minnesota streams selected spawning sites with groundwater 

upwellings and low current velocities.  Curry and Noakes (1995) indicate that increases in the 

contribution of groundwater to base flow draws brook trout to centralized spawning areas but 

does not influence redd site selection within these areas.  Although they observed this pattern 

throughout the northeastern range of brook trout, there was a relative lack of support in central 
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Appalachia where substrate size and water quality dominated redd site selection.  In addition to 

the likely influence of groundwater, bed-scouring flows that damage eggs, increase mortality of 

emerging fry, and displace developing juveniles are rare in small streams (Harvey 1987, Sun et 

al. 2002).  However, the small size of these watersheds makes them highly susceptible to 

droughts and drying (Lake 2000, Lake 2003).  Fortunately, the low flows characterizing these 

small systems may actually protect larvae and juveniles from predators and potential competitors 

(Petty et al. 2005).  The majority of the study reaches were too shallow to support large 

predatory fishes throughout most of the year. 

 The distribution of juvenile brook trout was also related to the availability of shallow, 

low velocity habitat.  This conclusion is supported by the role of stream margin and depth CV as 

critical habitat features influencing the relative abundance of juveniles.  Margin habitat is 

characterized by low water velocity, heterogeneous substrate, abundant detritus, and structural 

protection from high flows (Moore and Gregory 1988).  Stream margin is typically abundant 

within low gradient stream reaches and / or those with structural elements (i.e. boulders and 

LWD) that slow current and increase bed roughness (Moore and Gregory 1988).  When stream 

margin is defined by flow characteristics and not position within the channel, many small basin 

area systems are dominated by margin habitat.  Margin habitat provides profitable conditions for 

newly emerged and developing salmonids by reducing energy expenditure, increasing 

consumption rates, reducing predation risks, and reducing risk of downstream displacement 

(Grant and Noakes 1987; Moore and Gregory 1988; McLaughlin et al 1994; McLaughlin and 

Noakes 1998; Hubert and Joyce 2005).  McLaughlin and Noakes (1998) suggest that low 

velocity habitats significantly reduce energetic costs of young brook trout while not affecting 

consumption rates of food types.  Hubert and Joyce (2005) showed that stream margin provided 
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critical refuge from larger predatory fishes for juvenile cutthroat trout (Oncorhynchus clarki).  In 

addition, the shallow low flows characteristic of margin dominated small basin systems rarely 

experience flow conditions required to displace young fishes (Harvey 1987).   Finally, reduced 

flows within margin habitat allows for the accumulation of detritus which may increase 

invertebrate biomass and provide an increased food base for developing brook trout. 

This study was successful in identifying local physical and chemical attributes that 

influence the spatial distribution and abundance of juvenile brook trout.  Unfortunately, there 

was a considerable amount of unexplained variance within the small basin area reaches with 

good water quality.  Some of this observed variation is likely explained as error in sampling the 

brook trout populations and physico-chemical conditions within each site.  However, the brook 

trout capture probabilities reported for this study were very similar to those previously assessed 

for this region (Petty et al. unpublished data).  Akaike’s Information Criterion was used to show 

that brook trout throughout the Cheat River watershed are best represented by a constant capture 

probability model (Petty et al. unpublished data).  Additionally, standardized habitat and water 

quality sampling methods were used to reduce sampling error.  Consequently, we feel that 

sampling did not influence the conclusions presented in this study.  There are numerous factors 

that likely influenced reproductive success and juvenile density outside the scope of this study 

including: condition of spawning adults and viability of gametes, physical and chemical 

conditions affecting survival of all immature life stages from fertilization through emergence, 

food availability, predation, geographic position, and localized stochasticity.  In addition, it is 

possible that broad-scale habitat factors rather than local features are more influential in 

determining the spatial allocation of reproductive effort and consequently juvenile brook trout 

distribution within the upper Shavers Fork watershed.  Consequently, a major source of error 
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may be that habitat measurements were not assessed at the appropriate spatial scale (Feist et al. 

2003). 

This study combined with the work of Petty et al. (2005) provides valuable insight into 

factors influencing brook trout reproduction and patterns of brook trout population dynamics 

within the upper Shavers Fork watershed.  We know that brook trout reproductive effort is 

concentrated within stream reaches draining < 3 km2.  Within this critical range no basin area 

exists below which juvenile recruitment does not occur.  In fact, stream segments draining < 0.5 

km2 were found to be most important to brook trout reproduction.  We recognize that water 

quality is the critical attribute that determines successful brook trout reproduction within this 

watershed.  Much of the reproductive effort is concentrated within stream segments that are 

prone to acidic episodes and are likely temporally unstable.  We further recognize that local 

physical features such as availability of nursery habitat, in the form of stream margin, likely 

influence the recruitment of juvenile brook trout.  Finally, we know that all brook trout are at 

least seasonally dependent on access to high quality reproductive habitat.  We understand that 

reproductive habitat is critical to the persistence of the Shavers Fork brook trout population at the 

watershed-scale.  However, the productivity of the population is likely dependent on access to 

high quality foraging habitat within the main stem of Shavers Fork (Thorne 2004, Petty et al. 

2005).  Unfortunately, we do not fully understand to what degree reproductive habitats and 

foraging habitats are connected and how this level of connection influences brook trout 

populations at the watershed-scale.  Consequently, watershed-scale approaches are needed to 

assess the linkages between large water bodies used as supplementary feeding habitats and small, 

alkaline streams that act as sources of juvenile brook trout recruitment. 
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Table 1. Summary characteristics of 34 sample sites draining within 1 km of the Upper Shavers Fork main stem.  Sites represent a 
broad range of stream size (0.08-3 km2), instream physical characteristics, canopy cover, and water quality.  Site numbers increase 
with increasing spatial position in the watershed (see Figure 1).  
 

Site 
# 

Basin 
Area 
(km2) 

Wetted 
Width 
(m) 

 
Slope 
(%) 

Mean 
Depth 
(cm) 

Mean 
Velocity 
(m/sec) 

Mean 
Distance to 
Cover (m) 

Pool 
Area 
(%) 

Stream 
Margin 

(%) 

Spawning 
Substrate 

(%) 

Canopy 
Cover 
(%) 

LWD  
(m2) 

Median 
Substrate 

Size  
(mm) 

Spring 
pH 

 Spring 
Alkalinity 

(mg/L 
CaCO3) 

Spring 
Monomeric 

Al+3 
(mg/L) 

                
1 2.43 3.2 7.2 19 0.29 0.6 30 24 7 82 72 71 6.2 8.6 0.00 
2 1.53 2.2 14.1 21 0.30 0.4 48 30 6 75 117 84 6.3 8.5 0.24 
3 2.17 4.2 7.2 19 0.34 0.5 13 17 6 87 67 102 5.0 1.6 0.34 
4 2.64 3.7 5.0 17 0.24 0.5 17 14 4 81 62 55 5.8 2.5 0.19 
5 1.49 3.3 9.1 14 0.19 0.7 15 17 6 87 65 73 4.6 0.4 0.23 
6 0.88 3.2 12.1 21 0.36 0.5 44 16 8 87 85 70 4.7 1.3 0.39 
7 0.62 2.5 13.5 18 0.19 0.5 23 14 6 84 92 63 4.7 0.9 0.22 
8 2.79 2.9 6.6 19 0.29 0.6 28 25 6 78 71 82 5.4 2.0 0.23 
9 3.00 2.6 2.6 15 0.22 0.8 71 46 18 75 91 32 6.2 6.6 0.40 

10 0.21 1.4 6.3 8 0.13 0.7 39 44 19 88 102 20 6.0 4.3 0.00 
11 0.35 3.3 8.8 16 0.14 0.3 17 18 8 82 118 63 5.4 2.5 0.00 
12 0.24 1.6 17.2 11 0.07 0.4 23 26 12 91 163 30 5.9 2.7 0.00 
13 1.12 3.1 9.8 19 0.12 0.3 33 24 9 79 118 71 6.2 4.6 0.00 
14 1.34 2.9 9.6 23 0.11 0.5 47 34 7 82 91 107 6.1 3.0 0.00 
15 0.08 0.8 4.8 7 0.04 0.4 53 67 8 84 144 3 6.0 2.7 0.00 
16 0.49 1.5 8.5 10 0.06 0.5 24 28 6 78 86 18 6.3 7.7 0.00 
17 0.13 0.9 7.2 8 0.08 0.6 27 34 16 78 60 8 6.2 8.9 0.00 
18 0.35 2.0 7.6 13 0.09 0.8 23 41 5 79 95 28 5.8 2.3 0.00 
19 0.20 Dry Dry Dry Dry Dry Dry Dry Dry Dry Dry Dry Dry Dry Dry 
20 0.21 Dry Dry Dry Dry Dry Dry Dry Dry Dry Dry Dry Dry Dry Dry 
21 0.08 Dry Dry Dry Dry Dry Dry Dry Dry Dry Dry Dry Dry Dry Dry 
22 0.39 1.0 2.2 13 0.16 0.2 49 67 25 52 22.53 7 6.2 4.8 0.00 
23 0.08 Dry Dry Dry Dry Dry Dry Dry Dry Dry Dry Dry Dry Dry Dry 
24 0.36 Dry Dry Dry Dry Dry Dry Dry Dry Dry Dry Dry Dry Dry Dry 
25 0.27 2.2 4.7 9 0.14 0.5 9 28 4 82 46 25 6.3 6.5 0.34 
26 0.08 1.2 7.4 8 0.19 0.8 32 51 15 89 76 4 6.3 7.4 0.00 
27 0.30 1.4 4.6 11 0.22 0.5 24 48 22 78 45 28 6.3 11.6 0.00 
28 0.14 0.7 1.5 18 0.13 0.7 78 86 23 42 30 1 6.4 9.4 0.00 
29 0.13 2.0 22.9 10 0.29 0.5 14 22 6 87 110 33 6.5 18.2 0.25 
30 2.26 3.8 3.0 19 0.22 0.4 25 24 3 75 64 68 6.6 12.7 0.00 
31 1.42 3.3 6.6 30 0.25 0.4 28 19 4 79 58 63 6.1 0.0 0.00 
32 0.48 2.4 10.5 17 0.12 0.5 21 22 4 84 89 65 6.3 2.9 0.00 
33 0.33 1.6 10.6 11 0.03 0.5 33 37 5 91 128 66 4.4 0.0 0.00 
34 0.08 1.3 11.1 7 0.06 0.5 24 48 7 89 41 16 6.7 39.9 0.00 
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Table 2.  Factor loading scores for the dominant instream physical and chemical habitat 
gradients derived from 29 perennial study reaches within the upper Shavers Fork watershed.  
Only factor loading > |0.4| are presented.        
 
      Physical          Chemical  
 PC 1 PC 2 PC 3 PC 1 PC 2 
Eigenvalue 4.00 2.41 1.30 1.94 0.89 
% Contribution 36.35 21.89 11.81 64.59 29.59 
Basin Area (km2) ---- 0.41 ---- . . 
Slope (%) ---- -0.45 ---- . . 
Mean Depth (cm) ---- ---- ---- . . 
Depth CV ---- ---- 0.58 . . 
Mean Velocity (m/s) ---- ---- ---- . . 
Mean Distance to Cover ---- ---- ---- . . 
Pool Area (%) ---- ---- 0.52 . . 
Stream Margin (%) -0.46 ---- ---- . . 
Spawning Substrate (%) ---- ---- ---- . . 
LWD (m2) ---- -0.40 0.45 . . 
Median Substrate Size  (mm) 0.46 ---- ---- . . 
Spring pH . . . 0.68 ---- 
Spring Alkalinity (mg/L CaCO3) . . . 0.62 0.42 
Spring Monomeric Al+ 3 . . . ---- 0.90 
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Table 3.  Summary results of the multiple regression analysis relating juvenile brook trout 
density (#/hectare) to principle component scores along the dominant instream physical and 
chemical habitat gradients, canopy cover, and adult brook trout (> 60 mm SL) density (#/hectare) 
across 29 perennial study reaches located within the upper Shavers Fork watershed. 
 
 

 
Habitat Variable 

 
F-Value D.F. Partial R2 Direction of 

Effect P-value 

Acidity Gradient 
(CPC 1) 14.15 1 0.51 Positive 0.0009 

 
Substrate Size Gradient 
(PPC 1) 
 

4.48 1 0.07 Negative 0.04 

Full Model 18.08 28 0.58  <0.0001 
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Table 4.  Summary results of the multiple regression analysis relating juvenile brook trout 
density (#/hectare) to principle component scores along dominant instream physical and 
chemical habitat gradients, canopy cover, and adult brook trout (> 60 mm SL) density (#/hectare) 
across 24 perennial study reaches with “good” water quality (spring pH > 5.0 and spring 
alkalinity > 2.0 mg/L CaCO3) located within the upper Shavers Fork watershed. 
 

 
Habitat Variable 

 
F-Value D.F. Partial R2 Direction of 

Effect P-value 

 
Substrate Size Gradient 

(PPC 1) 
 

8.41 1 0.28 Negative 0.008 

Full Model 8.41 23 0.28  0.008 
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Table 5.  Results of ANOVA on mean (± SE) physical and chemical characteristics for the 4 
relative juvenile density groups (high N = 11, low N = 10, absent-1 N = 3, absent-2 N = 5) as 
identified by hierarchal classification.  The absent-1 group represents sites with no juveniles and 
“good” water quality (pH > 5.0, alkalinity > 2 mg/L CaCO3).  The absent-2 group represents 
sites with no juveniles and “poor” water quality (pH < 5.0, alkalinity < 2 mg/L CaCO3).  
Significant differences (P<0.05) are listed in bold.  Letters indicate differences in group means. 
 
Parameter High Low Absent-1 Absent-2 F P 
Basin Area (km2) 
 0.33 (0.12)A 1.67  (0.34)B 0.63  (0.40)AB 1.10  (0.33)AB 5.9 0.003 

Wetted Width (±0.1m) 
 1.4  (0.2)A 2.8  (0.2)B 2.5  (0.8)AB 3.0  (0.4)B 7.3 0.001 

Slope (±0.1%) 
 7.4 (1.5) 8.6 (1.8) 7.5 (0.6) 10.5 (1.1) 0.7 0.557 

Mean Depth (±1cm) 
 11 (1) 16 (1) 16 (7) 16 (2) 2.6 0.074 

Mean Velocity (m/sec) 
 0.14 (0.02) 0.20 (0.03) 0.16 (0.05) 0.22 (0.06) 0.9 0.443 

Mean Dist. to Cover (±0.1m) 
 0.5 (0.1) 0.5 (0.0) 0.4 (0.1) 0.6 (0.0) 0.6 0.591 

Pool Area (±1%) 
 37 (6) 31 (5) 24 (4) 26 (6) 0.8 0.532 

Stream Margin (±1%) 
 49 (6)A 26 (3)B 23 (5)B 20 (4)B 7.8 0.001 

Spawning Substrate (±1%) 
 13 (2) 7 (1) 9 (4) 6 (1) 2.6 0.076 

Canopy Cover (±1%) 
 77 (5) 80 (1) 80 (1) 87 (1) 1.0 0.400 

LWD (±1m2) 
 80 (14) 86 (6) 78 (20) 88 (12) 0.3 0.863 

Median Substrate Size (±1mm) 
 22 (7)A 60 (8)B 45 (18)AB 75 (7)B 7.4 0.001 

Spring pH 
 6.2 (0.1)A 6.1 (0.1)A 5.9 (0.2)A 4.6 (0.1)B 39.4 0.001 

Spring Alk. (±0.1mg/L CaCO3) 
 9.1 (3.2)A 6.9 (1.7)A 3.8 (2.6)AB 0.8 (0.3)B 6.1 0.003 

Spring Mon. Al+3 (mg/L) 
 0.05 (0.04) 0.11 (0.05) 0.00 (0.00) 0.24 (0.07) 2.9 0.055 

Physical PC 1 
 -1.71 (0.57)A 0.93 (0.32)B 0.59 (1.38)AB 1.54 (0.42)B 7.5 0.001 

Physical PC 2 
 -0.19 (0.51) 0.39 (0.51) -0.28 (0.84) -0.19 (0.58) 0.3 0.817 

Physical PC 3 
 -0.04 (0.39) -0.15 (0.39) 0.64 (0.39) 0.00 (0.52) 0.4 0.793 

Chemical PC 1 
 0.73 (0.24)A 0.44 (0.28)A -0.02 (0.58)A -2.47 (0.12)B 20.2 0.001 

Chemical PC 2 
 -0.04 (0.26) 0.23 (0.31) -0.84 (0.34) 0.13 (0.51) 1.0 0.397 
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Table 6.  Juvenile brook trout summary statistics for each of the 4 relative juvenile density 
groups (high N = 11, low N = 10, absent-1 N = 3, absent-2 N = 5) as identified by hierarchal 
classification.  The absent-1 group represents sites with no juveniles and “good” water quality 
(pH > 5.0, alkalinity > 2 mg/L CaCO3).  The absent-2 group represents sites with no juveniles 
and “poor” water quality (pH < 5.0, alkalinity < 2 mg/L CaCO3).   
 

 # Streams Mean Density 
(#/ha) 

Range 
(#/ha) 

High 11 593 212-1,238 
Low 10 88 63-167 
Absent 1 3 0 ---- 
Absent 2 5 0 ---- 

 



 40

Table 7.  Summary results of the linear discriminate function analysis used to discriminate 
between the 4 relative juvenile density groups (high N = 11, low N = 10, absent-1 N = 3, absent-
2 N = 5) as identified by hierarchal classification.  The absent-1 group represents sites with no 
juveniles and “good” water quality (pH > 5.0, alkalinity > 2 mg/L CaCO3).  The absent-2 group 
represents sites with no juveniles and “poor” water quality (pH < 5.0, alkalinity < 2 mg/L 
CaCO3).  Modeled parameters were correlated to canonical axis 1 and 2.  Significant correlations 
are shown in bold and were considered key discriminating variable along each axis.  Model is 
significant at the alpha < 0.05 level, Wilks-Lambda < 0.0001. 
 

 Canonical Function 1 Canonical Function 2 
Eigenvalue 6.25 1.36 

% Contribution 76.6 16.69 
Rc

2 0.86 0.58 
Variable Correlation  P-Value Correlation  P-Value. 

Basin Area (km2) -0.15  0.42 0.81  <0.001 
Depth CV -0.29  0.12 -0.27  0.16 

Stream Margin (%) 0.44  0.02 -0.57  <0.001 
LWD -0.09  0.63 0.19  0.32 

Spring pH 0.98  <0.001 -0.01  0.96 
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Table 8.  Number of correctly classified sites (%) from the linear discriminate function analysis 
used to discriminate between the 4 relative juvenile density groups (N = 29).  Model is 
significant at the alpha < 0.05 level, Wilks-Lambda < 0.0001. 
 
 

 Absent 1 Absent 2 High Low 
Absent 1 3 (100) 0 0  0  
Absent 2 0 5 (100) 0 0 

High 0 1 (9) 8 (73) 2 (18) 
Low 1 (10) 0  0 9 (90) 
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Table 9.  Summary results of the linear discriminate function analysis used to discriminate 
between the 3 relative juvenile density groups with “good” water quality (high N = 11, low N = 
10, absent-1 N = 3) as identified by hierarchal classification.  The absent-1 group represents sites 
with no juveniles and “good” water quality (pH > 5.0, alkalinity > 2 mg/L CaCO3).  Modeled 
parameters were correlated to canonical axis 1 and 2.  Significant correlations are shown in bold 
and were considered key discriminating variable along each axis.  Model is significant at the 
alpha < 0.05 level, Wilks-Lambda = 0.0001. 
 
 

 Canonical 1 Canonical 2 
Eigenvalue 1.92 1.26 

% Contribution 60.41 39.59 
Rc

2 0.66 0.56 
Variable Correlation  P-Value Correlation  P-Value 

Basin Area (km2) -0.80  <0.001 0.20  0.35 
Depth CV -0.01  0.98 -0.69  <0.001 

Pool Area (%) 0.22  0.31 0.24  0.27 
Stream Margin (%) 0.76  <0.001 0.30  0.16 

LWD -0.18  0.40 0.05  0.81 
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Table 10.  Number of correctly classified sites (%) from the linear discriminate function analysis 
used to discriminate between the 3 relative juvenile density group with “good” water quality (N 
= 24).  Model is significant at the alpha < 0.05 level, Wilks-Lambda = 0.0001. 
 
 

 Absent High Low 
Absent 3 (100) 0  0  
High 0 10 (91) 1 (9) 
Low 1 (10)  0 9 (90) 

 

 



 44

 

Figure 1.  Location of 34 study sites (closed circles) within the upper Shavers Fork watershed of 
Pocahontas and Randolph counties, West Virginia (insert). 
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Figure 2.  Brook trout length-frequency histogram used to classify all captured individuals into 
one of three size classes: juveniles (SL < 60mm), small adults (60mm < SL < 115mm), and large 
adults (SL > 115).  Data was pooled from all sites sampled within the upper Shavers Fork 
watershed during June 2004. 
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Figure 3.  Relationship between the observed cumulative percent of juvenile brook trout density 
(#/hectare) and the expected pattern based on the accumulation of available stream segments 
along a continuum of basin area between 0.8 – 3 km2. 

                                 Basin Area (km2) 

   
   

   
   

   
   

   
   

   
   

C
um

ul
at

iv
e 

%
 



 47

 

-3

-2

-1

0

1

2

3

 

-3

-2

-1

0

1

2

3

-5 -3 -1 1 3  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

-3 -2 -1 0 1 2 3  
 
 
         High 
         Low 
   x   Absent 1 
   -    Absent 2

   % Stream Margin        PC1     Med. Substrate Size 
           (-0.46)                                     (0.46) 

   % Slope (-0.45)           PC2             Basin Area (0.41) 
     LWD (-0.40)                                                       

 
Basin Area (0.41) 
 
 
 
  
 
% Slope (-0.45) 
LWD (-0.40) 

   
PC

 2
 

PC
 3

 

Figure 4.  Relationships between major physical habitat gradients characterizing the perennial study reaches (N =29) within the upper 
Shavers Fork watershed.  Groups differ by relative juvenile brook trout density.  Absent-1 represents sites with no juveniles and 
“good” water quality (spring pH > 5.0 and spring alkalinity > 2.0 mg/L CaCO3).  Absent-2 represents sites with no juveniles and 
“poor” water quality (spring pH < 5.0 and spring alkalinity < 2.0 mg/L CaCO3). 
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Figure 5.  Relationships between major chemical habitat gradients characterizing the perennial 
study reaches (N =29) within the upper Shavers Fork watershed.  Groups differ by relative 
juvenile brook trout density.  Absent-1 represents sites with no juveniles and “good” water 
quality (spring pH > 5.0 and spring alkalinity > 2.0 mg/L CaCO3).  Absent-2 represents sites 
with no juveniles and “poor” water quality (spring pH < 5.0 and spring alkalinity < 2.0 mg/L 
CaCO3). 
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Figure 6.  Relationship between pH, alkalinity (mg/L CaCO3), monomeric Al+3, and juvenile 
brook trout density (# / hectare) for 29 perennial stream reaches within the upper Shavers Fork 
watershed. 
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Figure 7.  Mean canonical scores (error bars = 95% C.I.) used to discriminate between the 4 
relative juvenile density groups (high N = 11, low N = 10, absent-1 N = 3, absent-2 N = 5) as 
identified by hierarchal classification.  The absent-1 group represents sites with no juveniles and 
“good” water quality (pH > 5.0, alkalinity > 2 mg/L CaCO3).  The absent-2 group represents 
sites with no juveniles and “poor” water quality (pH < 5.0, alkalinity < 2 mg/L CaCO3).  
Significant discriminating parameters for each canonical axis are listed followed by their 
respective Pearson correlation coefficients. 
 
 

Canon 1                                                            Spring pH (0.98) 
                                                                          % Stream Margin (0.44)

 
Basin Area (0.81) 
 
 
 
 
 
 
 
% Stream Margin 
       (-0.57) 

   
   

   
  

C
an

on
 2

 

Absent-2 
       Low 

Absent-1    High 



 51

0

1

2

3

4

5

6

7 8 9 10 11 12 13
 
 
 

Figure 8.  Mean canonical scores (error bars = 95% confidence intervals) used to discriminate 
between the 3 relative juvenile density groups with “good” water quality (high N = 11, low N = 
10, absent-1 N = 3) as identified by hierarchal classification.  The absent-1 group represents sites 
with no juveniles and “good” water quality (pH > 5.0, alkalinity > 2 mg/L CaCO3).  Significant 
discriminating parameters for each canonical axis are listed followed by their respective Pearson 
correlation coefficients. 
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Chapter 2 

Spatial Variation in Brook Trout (Salvelinus fontinalis) Population Dynamics in an Appalachian 
Watershed 

Abstract 
The upper Shavers Fork is a 5th order, high elevation watershed located in the Allegheny 

Plateau region of eastern West Virginia.  Throughout this region extensive resource extraction 

and development have resulted in the decline of wild brook trout populations.  Effective 

management aimed at restoring these populations to historic levels and ensuring long term 

persistence will require a watershed-scale perspective.  The overriding objective of this study 

was to understand where the brook trout population in the upper Shavers Fork watershed fits 

along the continuum of watershed-scale metapopulation models.  Specifically, we wanted to (1) 

describe the spatial and temporal patterns of brook trout distribution (2) quantify the extent of 

linkages within and among small basin area tributaries and large basin area main stem habitat (3) 

quantify the spatial and temporal variability in brook trout demographic rates for small basin area 

tributaries and large basin area main stem habitat at both the reach- and watershed- scales, and 

(4) examine data for evidence of metapopulation, source-sink, and patchy population structure.  

We conducted spatially continuous surveys of brook trout population size structure and post 

reproductive demographic rates throughout 3 study regions, each consisting of a 1-2km main 

stem reach and several small basin area tributary networks.  Additionally, physical habitat and 

water quality was measured continuously throughout each of the small basin area tributary 

networks.  We found that the upper Shavers Fork brook trout population is a complex mosaic of 

elements derived from source-sink, metapopulation, and patchy population models.  The 

majority of the brook trout population within the sampled regions was concentrated within larger 

reaches of small basin area tributary networks.  Movement within small tributary networks 
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suggested that most brook trout were fairly sedentary, although longer range movements were 

observed.  We observed limited interactions between small tributary networks and main stem 

habitat as well as among small tributary networks.  Across all spatial scales, brook trout apparent 

survival was generally high and consistent; however, seasonal immigration rates were highly 

variable.  Immigration rate appeared to be the dominant mechanism influencing population 

change at the tributary network reach- and main stem reach-scales.  Brook trout populations at 

the small basin area tributary network-scale decreased seasonally due to seasonally consistent 

losses and low rates of immigration.  Population persistence within these tributary networks was 

primarily a function of local recruitment, whereas immigration was the dominant demographic 

process in larger main stems.  These results indicate that within small tributary networks brook 

trout populations best fit a patchy population model.  Tributary to tributary interactions are 

consistent with a metapopulation model.  Finally, tributary main stem interactions are consistent 

with source (tributary) – sink (main stem) model of spatial population structure. 



 54

Introduction 
 

Natural populations inhabit a mosaic of habitat types that vary spatially and temporally in 

quality (Watkinson and Sutherland 1995).  These patchy landscapes are characterized by the 

size, shape, spatial distribution, and degree of isolation of available habitats (Fahrig and Merriam 

1994).  The interaction of these landscape characteristics with species life history strategies, 

environmental stochasticity, and human interaction has emerged as a central theme in population 

ecology (Wiens 1996).  Habitat patchiness is believed to affect most every aspect of spatial 

population ecology (Bjornstad et al. 1998), and a thorough understanding of its effects is 

essential to the successful management of animal populations at multiple scales (Fausch et al. 

2002). 

Stream fishes provide a good example of organisms inhabiting systems characterized by 

patches of different habitat types that vary spatially and temporally.  Lotic habitats can be 

described as a riverscape of hierarchically organized systems comprised of small- (micro and 

macrohabitats), intermediate- (stream reach and sub-basin), and large-scale (drainage network) 

patches (Frissell et al. 1986, Fausch et al. 2002).  The observed patterns of riverscape 

heterogeneity are set by a variety of biotic and abiotic factors operating in different ways on 

habitat patches across the range of spatial scales (Vannote 1980, Frissell 1986, Schlosser and 

Angermeier 1995, Dunham and Rieman 1999, Fausch et al. 2002).  Ultimately, large-scale 

factors such as climate, geology, and topography set the context for the local processes that form 

and maintain habitat patches at the smaller spatial scales (Frissell et al. 1986).  These factors 

influence the quality of a given patch and create an inherent spatial heterogeneity between and 

among patches (Frissell 1986).   
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Stream fishes often use a variety of habitat types in order to complete their life cycle and 

ensure population persistence (Schlosser and Angermeier 1995, Fausch et al. 2002).  Spatially 

distinct habitat patches are defined by an organism’s ecological requirements (Moilanen and 

Hanski 1998) which often differ both within and among species.  The quality of a given patch is 

in part a function of the degree of complementation or proximity of ecological requirements that 

are essential for the persistence of an organism (Dunning et al. 1992, Schlosser 1995).  The 

persistence of stream fish populations is dependent on access to non-substitutable 

“complementary” habitats such as reproductive, foraging, and refuge areas (Schlosser 1991, 

Dunning et al. 1992).  Conversely, “supplementary” or substitutable habitats increase an 

organism’s chance of survival through increased growth and fitness, but are not required for 

population persistence (Dunning et al. 1992).  Population persistence is dependent on the 

availability of complementary habitats (Rosenfeld 2003) while population productivity is 

contingent on availability of supplementary habitats (Petty et al. 2005). 

Spatial heterogeneity within the riverscape provides stream fishes with critical habitats 

(Fausch et al. 2002); however, these habitat patches are often distributed in unequal proportions 

throughout lotic systems (Schlosser 1991, Fausch et al. 2002).  In response to the patchy nature 

of stream networks and ontogenic shifts in habitat requirements, stream fishes must move in 

order to access suitable habitats for the completion of their life cycle (Roff 2002).  Dispersal is 

an evolutionary stable strategy only when it results from active habitat selection based on quality 

(Holt 1985, Pulliam 1988).  Individuals in variable habitats are rate-maximizing (Bernstein et al. 

1988, Gowan and Fausch 2002) and have developed the ability to identify and select high quality 

sites which leads to increased fitness (Whitham 1980, Gowan and Fausch 2002).  The 

availability of quality patches is finite and increased colonization within a given patch reduces 
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overall fitness (Fretwell and Lucas 1970).  Populations self-thin by dispersal from saturated 

patches into unoccupied lesser habitats thus increasing fitness (Fretwell and Lucas 1970, Rieman 

et al. 2000, Keeley 2001).  This leads to a spatial structure of populations in fragmented or 

patchy habitats which is characterized by local increases in aggregation and clumping, as a result 

of active dispersal toward and selection for suitable habitat (Bjornstad et al. 1998).   

Populations inhabiting spatially discrete habitats of varying quality experience different 

levels of fitness or reproductive success as a result of unequal resource abundance and predator 

pressure (Lewin 1989).  This implies that spatial population structure is determined by variability 

in population demographic rates (births, deaths, immigration, emigration), which are habitat 

specific (Pulliam 1988, Dunham and Rieman 1999).  Consequently, components of habitat 

spatial structure such as patch size, shape, spatial distribution, and degree of isolation affect the 

local demographic processes and ultimately determine the spatial distribution of individuals 

across all scales (Rieman and McIntyre 1993, Dunham and Rieman 1999).    

A variety of theoretical models have been developed to describe how variable habitats 

affect local demographic rates and ultimately the spatial distribution of individuals on the 

landscape.  Metapopulation (Levins 1969, Levins 1970), source-sink (Pulliam 1988), and patch 

dynamics, as well as variations of each, have been used to describe how populations are 

regulated and persist within heterogeneous environments (Harrison 1991).  Each of these models 

embrace the idea that local demographic rates regulate populations across the landscape and 

demography is a function of patch specific conditions (Harrison 1991).  These models differ in 

the nature of their spatial variation in demographic rates (Harrison 1991).   

Metapopulation theory assumes an assemblage of populations inhabiting spatially distinct 

patches connected by dispersal, which persist in a stochastic equilibrium between local 
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extinction and colonization of suitable patches (Levins 1969, Levins 1970).  The “classic” 

metapopulation model is represented by numerous similar sized populations that are subject to 

extinction with equal but temporally independent probabilities (Levins 1969, Levins 1970).  The 

regional persistence of metapopulations relies on recolonization from adjacent populations 

(Levins 1969, Levins 1970); however, movement rates are low enough that adjacent populations 

do not function as a single patchy population (Schlosser and Angermeier 1995).  The abundance 

of individuals within a given patch is strongly influenced by the nature of the boundaries 

between it and other patches (Dunning et al. 1992, Dunham and Rieman 1999).  Isolated patches 

are less likely to be re-colonized in response to dispersal restrictions (Dunning et al. 1995, Hill et 

al. 1996).  However, corridors of suitable habitat improve the colonization potential (Dunning et 

al. 1992, Bjornstad et al. 1998) and ultimately the persistence of the regional population 

(Schlosser and Angermeier 1995, Dunham and Rieman 1999), by reducing travel costs, 

increasing dispersal rates, and increasing learning (Bjornstad et al. 1998). 

Source-sink theory suggests that spatially distinct source habitats act as net exporters of 

surplus individuals which maintain populations within sink habitats through active dispersal 

(Pulliam 1988).  Sources and sinks are characterized by local demographic rates (Pulliam 1988, 

Dunning et al. 1992).  Sources are permanently occupied habitats (Harrison 1991) where births 

exceed deaths and emigration exceeds immigration, while sinks are habitats where the opposite 

is true (Pulliam 1988).  Emigration from sources to sinks is primarily a rate-dependent process 

(Fretwell and Lucas 1970, Pulliam 1988) which sets the population size within the sinks 

(Schlosser and Angermeier 1995).   

Patchy populations are similar to the classic metapopulation model in that it assumes an 

assemblage of populations fluctuating independently (Harrison 1991).  The two models differ in 
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their regional dispersal rates (Harrison 1991).  Dispersal rates within a patchy population are 

extremely high and exceed patch specific extinction rates (Schlosser and Angermeier 1995).   As 

a result, individual interactions across habitat boundaries best resemble a single highly mobile 

population (Schlosser and Angermeier 1995).  This model likely represents populations that 

require a variety of complementary habitats distributed across multiple spatial and temporal 

scales (Harrison 1991, Dunning et al. 1992, Schlosser 1995). 

It is unlikely that populations of stream fishes fit neatly into any of these watershed-scale 

models of population dynamics, but likely fall somewhere along a continuum between each of 

these models (Figure 1).  Regardless of the exact location along this continuum, it is increasingly 

obvious that understanding patterns of population demographic parameters (e.g. reproduction, 

distribution, dispersal, survival) across multiple spatial and temporal scales is essential 

information required by manages to promote population persistence (Schlosser and Angermeier 

1995, Fausch et al. 2002).  Understanding these patterns means that we recognize the types of 

habitat patches required for population persistence, their arrangement and degree of connectivity 

throughout the riverscape, and how these factors affect local demographic rates and population 

structure (Schlosser and Angermeier 2002).  Only when we obtain this information will we be 

able to address the principles for effective research and management of lotic fishes proposed by 

Fausch et al. (2002, see Table 1). 

Over the past century the range and abundance of native brook trout (Salvelinus 

fontinalis) populations throughout much of the Appalachian Mountains have been reduced.  

Population loss is due to numerous factors such as acid precipitation, resource extraction (e.g. 

timber and coal), and encroachment of non-native salmonids leading to the degradation of 

critical brook trout habitat across multiple scales (Larson and Moore 1985, Flebbe 1994, 
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Wigington et al. 1996, Galbreath et al. 2001).  The upper Shavers Fork watershed has been used 

by Petty and his students as a model for the problems facing brook trout populations in this 

region (Goujot 2001, Bopp 2002, Thorne 2004, Hansbarger 2005, Petty et al. 2005, Petty and 

Thorne 2005).  Their research has embraced the dynamic riverscape view (Fausch et al. 2002) 

and invested considerable effort in describing the spatial heterogeneity of the system and its role 

in structuring the brook trout population (e.g. distribution, mobility, resource use, productivity).  

Currently we know that brook trout populations within the upper Shavers Fork use resources at 

the watershed-scale and the population is structured in part by the spatial arrangement of 

reproductive habitat and access to high quality foraging sites.  Specifically we know that (1) 

almost all reproduction occurs in small to very small tributary networks, (2) individuals are 

spread throughout the watershed with highest densities in small tributaries, (3) within larger 

water bodies, individuals are highly mobile, and (4) population productivity (i.e. growth and 

consumption) is highest in larger water bodies due to increased primary productivity, 

invertebrate biomass, and prey fish density (Figure 2).  However, we currently do not fully 

understand (1) the variability in small tributary networks as potential sources of recruits to larger 

water bodies, (2) the degree of dispersal among tributaries or from tributaries to the main stem 

and back, (3) the spatial variability in population demographic rates, and (4) the location of the 

upper Shavers Fork along the continuum of population demographic models.  This information 

would be extremely valuable to the management of the upper Shavers Fork brook trout 

population as well as other populations throughout Appalachia.  

Objectives 
The overriding objective was to understand where the brook trout population in the upper 

Shavers Fork watershed fits along the continuum of population demographic models.  
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Specifically, we wanted to (1) describe the spatial and temporal patterns of brook trout 

distribution (2) quantify the extent of linkages within and among small basin area tributaries and 

large basin area main stem habitat (3) quantify the spatial and temporal variability in brook trout 

demographic rates for small basin area tributaries and large basin area main stem habitat at both 

the reach- and watershed- scales, and (4) examine data for evidence of metapopulation, source-

sink, and patchy population structure. 

Study Area 
Our study was conducted throughout 3 regions of the upper Shavers Fork watershed of 

the Cheat River, located in the Monongahela River basin (Figure 3).  The upper Shavers Fork is 

a 5th order (139 km2) high elevation (>1000m) watershed located in Pocahontas and Randolph 

counties of West Virginia on the eastern edge of the Allegheny Plateau physiographic province 

(Figure 3).  Each study region consisted of numerous (range = 2 – 10, Ntotal = 15) small basin 

area tributary networks and 1 main stem segment (1-2km long).  Tributary networks were short 

(main channel typically < 1km) small basin area systems (<3km2) that drained directly into the 

Shavers Fork main stem.  The location of each tributary network coincided with 1 of 3 main stem 

segments (Figure 3) known to support a relatively large brook trout population throughout the 

year.  Consequently, each study region can be characterized as a combination of critical brook 

trout reproductive and nursery habitat as well as high quality supplemental foraging habitat 

(Petty et al. 2005).  As a result of local variability in bedrock geology consisting of sandstone, 

shale, conglomerate, and coal (Waite et al. 2000) and regionally high acid precipitation (NADP 

2000) tributary networks cover the full range of instream physical habitat, canopy cover, 

dissolved chemistry, slope, and basin area.  Brook trout were generally the only species present 

within the small tributary networks.  However, the main stem reaches supported a productive 
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cold / cool water fish assemblage consisting of mottled sculpin (Cottus bairdi), western 

blacknose dace (Rhinichthys obtusus), longnose dace (Rhinichthys cataractae), rosyside dace 

(Clinostomus funduloides), mountain red belly dace (phoxinus oreas), fantail darter (Etheostoma 

flabellare), johnny darter (Etheostoma nigrum), greenside darter (Etheostoma blennioides), 

sharpnose darter (Percina oxyrhynchus), creek chub (Semotilus atromaculatus), river chub 

(Nacomis micropogon), Cheat minnow (Pararhinichthys bowersi), white sucker (Catostomus 

commersoni), northern hog sucker (Hypentelium nigricans),  brown trout (Salmo trutta), and 

rainbow trout (Oncorhynchus mykiss). 

Methods 

Sampling design  
Stream systems are longitudinal mosaics of habitat patches and continuous assessments 

of fish populations are essential in order to obtain a context-specific understanding of the various 

processes influencing population responses to riverscape heterogeneity (Fausch et al. 2002, 

Torgersen et al. In Press).  Our research within the upper Shavers Fork watershed has adopted 

the “dynamic riverscape” view described by Fausch et al. (2002).  Consequently, we conducted 

spatially continuous surveys of brook trout population size structure and post reproductive 

demographic rates throughout each of the 3 study regions.  Additionally, physical habitat and 

water quality was measured continuously throughout each of the small basin area tributary 

networks.   We did not assess the local physico-chemical habitat within the 3 main stem 

segments.  In order to assign some degree of spatial identity to these continuous measurements, 

individual networks were separated into a series of adjacent reaches 40 times the mean wetted 

width in length.  Due to the small size of our stream networks reach lengths were 150m long 

(Angermeier and Karr 1986, Yoder and Smith 1999), unless they had to be shortened because of 

insufficient length (short tributaries and uppermost reaches) or presence of anthropogenic 
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barriers.  In the occasion (N = 3) that a stream reach was truncated by some anthropogenic 

barrier (railroad / culvert), the length of the affected reach was shortened and a new full reach 

began upstream of the barrier.  Main stem segments were not separated into spatially discrete 

reaches; instead they were handled as a single large reach within each of the study regions. 

Brook trout sampling and marking 
  Brook trout populations were sampled seasonally (spring - June 2004, summer - August 

2004, fall - October 2004, and spring - June 2005) throughout each of the study regions during 

base flow conditions.  Three to six person teams, depending on stream size, sampled brook trout 

with backpack electrofishing units (Smith-Root, DC, 60 hz, 400-600V), following single-pass 

procedures, and a combination of dip and seine nets.  Brook trout electrofishing capture 

probabilities within the upper Shavers fork are consistent between size-classes and seasons but 

not across a wide range of stream sizes (Petty et al. 2005).  However, sufficient evidence exists 

suggesting that brook trout capture probabilities across the range of basin areas considered in this 

study are high and predictable (see Chapter 1of this document and Petty et al. 2005).   

Seasonal sampling was conducted continuously throughout each study region.  Tributary 

sampling began at the start of the most downstream reach (i.e. confluence) and continued in an 

upstream direction until two full reaches (300m) were found to be void of all fish species or the 

stream’s origin was reached.  If a distance of 300m was exceeded without identifying the 

presence of any fish species, it was assumed that no brook trout occurred within upstream 

reaches.  Continued sampling beyond 300m would likely produce little information relative to 

the additional sampling effort (Angermeier and Karr 1986, Yoder and Smith 1999).  The main 

stem was not separated into distinct reaches, but was sampled as one large continuous reach.  

Each main stem section was sampled, in its entirety, each season. 
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 All trout captured were identified to species, anesthetized in clove oil (concentration = 

40 mg/L), and measured for standard length (SL) (± 1mm) and weight (± 0.1 g).  At the time of 

first capture, brook trout greater than 60mm (SL) were given a unique mark sequence (3 - 6 

separate marks) with colored elastomer dyes (Northwest Marine Technology) as described by 

Petty et al. (2005).  Limitations in the marking procedure required that small brook trout (< 

60mm) be given a tributary network- or main stem reach-specific batch-mark (1-2 marks) 

beginning in the summer (August 2004) sampling period.  After marking, fish were returned to 

their approximate location of capture. 

For each seasonal sample, we separated brook trout into 1 of 3 size-classes based on 

frequency distributions of brook trout lengths pooled across all sampled sites (Figure 4).  The 

juvenile class is a true representation of age and represents individuals known to have been 

produced the previous fall.  The small and large adult classes likely do not represent a true 

distinction in age.  The term “adult” was simply used to represent individuals that were not in 

their first year of life and in the case of most small adults may not represent reproductive 

maturity.  A stock size of 115 mm (SL) (Anderson and Neumann 1996) was used to differentiate 

between these two classes. 

Instream Habitat 
 Physical habitat surveys were conducted within each tributary reach at base flow 

conditions during summer 2005 following protocols similar to those described by Petty et al. 

(2005).  Efforts combined visual estimation and transect based sampling to quantify a variety of 

physical habitat variables.  Additionally, water quality was recorded seasonally concurrent with 

fish sampling.  Ten habitat parameters were assessed at the reach scale throughout each tributary 

network: basin area (km2), channel slope (%), mean depth (cm), depth variability, mean velocity 
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(cm/s), cover availability, wetted channel width (m), pool area (m2), large woody debris (LWD) 

(m2/m2), and pH.  This represents a list of previously suggested parameters important to fish 

population post reproductive demographic parameters, size structure, and stability (Fausch et al. 

1988).  

Basin area was mapped at the downstream end of each reach using a flow accumulation 

grid in Arc GIS 9.1 spatial analysis software.  Mean channel slope was measured with a hand 

held clinometer (± 1 %) and survey rod.  Working in an upstream direction, a thalweg profile 

was developed by measuring depth (± 1 cm), average current velocity (± 1 cm/s), and distance to 

cover (± 0.5m) at 30 points spaced 5m apart within the primary current seam.  Spacing of sample 

points along the thalweg was slightly modified from the recommendations of Simonson et al. 

(1994).  Depth variability was represented as the coefficient of variation ([standard 

deviation/mean]*100) of mean depth.  Average velocity was measured with a Marsh McBirney 

digital flow meter at 60% of the water depth.  Distance to cover was measured as the distance 

from the thalweg point to the nearest structural element with potential to provide refuge for a 

200mm fish (Simonson et al. 1994).  Wetted width (± 0.1 m) was measured every 50m and 

averaged throughout the reach.  Pool area was obtained by multiplying the visually estimated 

total length and width of each pool and summing throughout the reach.  Twenty percent of all 

pool dimensions were measured (± 0.1m) and used to derive a correction factor for visual 

estimations (Dolloff et al. 1997).  LWD was assessed by categorizing all stems located within the 

active stream channel (includes root wads, spanners, and standing dead) into 1 of 12 categories 

based on visually estimated lengths (1-2m, 2-5m, 5-10m, >10m) and widths (0.1-0.2m, 0.2-0.3m, 

>0.3m).  LWD density (m2/m2) was calculated as the sum of the total area represented by each 

category (# stems * median length * median width) divided by the wetted stream area.  Water 
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quality (pH) was measured at 50m intervals throughout the watershed.  Reach specific pH was 

represented as the average of all measurements taken within the reach. 

Statistical Analysis 
Our first objective was to determine the factors that influence the spatial and temporal 

patterns of brook trout distribution.  The reach specific proportional abundance (# caught within 

a given reach / # caught across total sampled area) of each size-class was used as a seasonal 

measure of relative abundance and spatial distribution throughout the study area.  Correlation 

analysis was used to infer the degree of temporal stability in the spatial distribution of each size-

class.  In addition, correlation analysis was used to determine the degree of similarity in the 

spatial distribution of each of the 3 size-classes.  Chi-square goodness-of-fit was used to 

determine if brook trout of each size-class were distributed throughout the study sites 

proportional to the available area sampled.  Bivariate plots and stepwise multiple regression was 

used to determine which local habitat parameters were most important in explaining the spatial 

distribution of each size-class.  This analysis could only be done at the reach scale within small 

basin area tributaries because we did not collect physico-chemical habitat data within the main 

stem.  Due to high correlation among local physical habitat parameters, principle component 

analysis was used to reduce linear dependency and data redundancy, across all perennial sites, by 

generating new fully uncorrelated composite variates (McGarigal et al. 2000).  Principle 

component scores, distance from main stem, and pH were selected for regression analysis.  

Variables were included in the model if P < 0.15.  The significance level (α) used for acceptance 

of the overall model was 0.05.  All statistical tests were judged at this level unless otherwise 

noted. 
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The second objective was to determine the extent of brook trout movements within small 

basin area tributary networks, between tributary and main stem habitat, and among individual 

tributaries.  Within tributary movement patterns were inferred from recapture data pooled across 

the 15 small tributary networks.  Only seasonally consecutive recaptures (captured at timet and 

recaptured at timet+1) were used in this analysis.  Direction of movement was represented two-

dimensionally as up or downstream.  Due to scale limitations we were forced to represent 

distance moved as the number of reaches between consecutive recaptures.  For example, an 

individual captured at timet in reach # 1 and recaptured at timet+1 in reach # 3 would be assigned 

a “2” for movement.  One-way analysis of variance (ANOVA) was used to test for differences in 

seasonal movement patterns.  A post hoc Duncan’s test was used to determine which seasons 

differed significantly.  Juvenile movement patterns could not be assessed within tributary 

networks because individuals in 2004 were too small to be given an individual mark and we had 

a limited availability of suitable batch-marks.  Predetermined sampling protocol precluded us 

from assessing the direction and magnitude of fish movements for all size-classes within the 

main stem.  However, the movement of individuals between tributary networks and the main 

stem as well as among individual tributaries was assessed by evaluating the proportions of each 

size-class that were found to have moved across tributary / main stem and tributary / tributary 

boundaries. 

Our final objective was to quantify the dominant patterns of brook trout post reproductive 

demographic parameters (apparent survival, immigration, local recruitment) at the reach- and 

watershed-scale.  We used mark-recapture data and maximum likelihood estimators in the 

program MARK to generate apparent survival and immigration probabilities separately for small 

and large adults at the reach- (tributary and main stem) and small basin area tributary network-
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scale (Burnham and Anderson 1999).  We could not assess demographic parameters for the 

juvenile size-class over any spatio-temporal scale due to marking limitations.  Our assessment of 

brook trout population parameters (apparent survival, immigration) followed Pollock’s robust 

design (Peterson et al. 2004).  We assumed that populations at each scale were closed to gains 

(from births and immigration) and losses (from deaths and emigration) during each seasonal 

sample and open between subsequent seasonal samples. 

In order to obtain a more accurate assessment of season-, site-, and age-class-specific 

survival and immigration probabilities mean brook trout capture probability (tributary = 0.72, 

main stem = 0.62) from previous studies within the upper Shavers Fork watershed (see: Chapter 

1of this document and Petty et al. 2005) were used to fix capture probabilities in open population 

estimators in program MARK.  We used the Cormack-Jolly-Serber model in program MARK to 

estimate apparent survival (Φ) (1-[mortality + emigration]) and the Pradel model (recruitment 

only) to estimate immigration (Γ) (1-probability that fish captured at timeT were present at timeT-

1).  Immigration rate was calculated as ([Γ*Nt]/ Nt-1).   

Apparent survival and immigration estimates were generated from scale- (tributary reach, 

main stem reach, and small basin area tributary network) and size-class-specific capture histories 

that do not reflect local recruitment from one size-class to the next.  Local recruitment was 

addressed by generating separate fall-spring survival and immigration estimates that reflect the 

transition of one size-class to the next larger size-class.  Local recruitment was modeled during 

the fall-spring period because at this time juvenile brook trout have completed a full year of life 

and recruit into the small adult population.  Similarly (89%) of small adults that grew large 

enough during our study to be reclassified as large adults (N = 78) did so during this time period.  

The differences in the observed spatial and temporal patterns of apparent survival and 
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immigration resulting from these two capture histories can be attributed to local recruitment.  

Limitations in batch marking of the juvenile size-class restricted us from assessing local 

recruitment at the within tributary network reach-scale; consequently, recruitment analysis was 

restricted to the small basin area tributary network- and main stem reach-scales.   

We used an analysis-of-covariance (ANCOVA) to assess seasonal variation in brook 

trout demographic parameters separately for small and large adults.  At the reach-scale we tested 

for variation in apparent survival and immigration rate due to season and individual small 

tributary networks with basin area and distance from main stem as covariates.  In order to 

account for non-independence of stream reaches individual tributary networks were used as 

blocking factors.  At the whole tributary network-scale we tested for variation in apparent 

survival and immigration rate due to season and basin area.  A post hoc Duncan’s Test was used 

to determine which seasons differed if an affect was identified.   

Results 
Seasonal sampling efforts resulted in a total of 4,195 brook trout captures from single and 

multiple observations of approximately 1,098 juveniles, 1,203 small adults, and 465 large adults.  

Juveniles, small adults, and large adults made up approximately 37% (N = 1534), 46% (N = 

1915), and 18% (N = 746) of the total captures respectively.  Throughout the study, a total of 467 

juveniles where batch marked, and a total of 919 small adults and 336 large adults were 

individually marked.  Recaptured individuals made up a majority of the seasonal catch for each 

size-class (Table 1).  Although a large proportion of each seasonal sample consisted of 

recaptured individuals, approximately two-thirds of small (58%, N = 694) and large (61%, N = 

284) adults were only observed once.   
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Brook trout distribution- Juvenile, small adult, and large adult brook trout were captured 

across the range of stream sizes from headwater segments draining < 0.08 km2 to main stem 

habitat draining more than 60 km2.   Individuals of each size-class were patchily distributed 

throughout the network of sampled reaches.  The proportion of the total seasonal catch of each 

size-class within each reach (tributary and main stem) varied considerably among reaches; 

although, the distribution pattern was fairly stable over time, especially for adults (Figure 5).  

Due to the high temporal stability in the spatial distribution of each size-class, all of the 

subsequent results reflect the average reach-specific proportional abundance for each size-class 

across the landscape.  Brook trout of all size-classes were disproportionately concentrated in a 

small percentage of the total sampled area (Chi-Square statistics: juveniles X 2 = 357.67, P < 

0.0001, small adults X 2 = 408.96, P < 0.0001, large adults X 2 = 86.31, P < 0.0001) located 

within small basin area stream networks (Figure 6 and 7).  In fact, main stem habitat made up 

73% of the total sampled area and on average only supported 7, 11, and 29% of juveniles, small 

adults, and large adults respectively.  Brook trout within each size-class had similar distributions 

throughout the sampled area; although, large adults displayed a more even distribution across the 

sampled area than did juveniles and small adults (Figure 6).  The spatial arrangement of small 

adults was highly correlated to that of the juvenile size-class.  Similarly, the spatial distribution 

of large adults closely resembled that of the small adult size-class and to a lesser extent that of 

the juvenile size-class (Figure 6 and 8).   

Within tributary networks, three ecologically meaningful physical habitat gradients were 

derived from correlated physical habitat measurements using PCA.  Principle components 1, 2, 

and 3 (henceforth: PC 1, PC 2, and PC 3 respectively) represent a stream size, slope, and 

complexity gradient respectively (Table 2).  At the within tributary reach-scale, the occurrence of 
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brook trout was at least in part related to local hydrology, water quality, slope, mean depth, and 

availability of cover.  In general, ephemeral stream reaches (N = 13) did not support brook trout 

at any time.  When brook trout were observed in these ephemeral systems they were always 

within 50m of a perennial reach.  The majority of the sampled perennial stream reaches 

maintained an average pH > 5.0; although those that did not (N = 7) were typically devoid of 

brook trout.  Stream reaches with a slope > 15%, mean depth < 7cm, and / or  a mean distance to 

cover > 1m generally did not support brook trout, while no clear pattern was observed within 

reaches not exceeding these critical thresholds (Figure 9).  No minimum basin area was observed 

below which brook trout of any size were consistently absent (Figure 9).  However, we did 

observe a general lack of all brook trout within small basin area reaches that were shallow and 

had limited cover (i.e. PC 1) (Figure 10).  No pattern was observed between the average 

proportional abundance of any size-class and pool area, LWD density, depth C. V., flow 

velocity, PC 2 or PC 3 (Figure 9 and 10).  

Within small tributary networks the distribution pattern of each size-class was related to 

local habitat gradients and pH (Table 3).  The average proportional abundance of each size-class 

increased with factors related to stream size.  Consequently, extreme headwater reaches (within 

300 m of the stream origin) rarely supported a high proportion of the brook trout population.  

Within larger downstream portions of tributary networks juveniles tended to be associated within 

lower gradient, lower complexity reaches.  Small adults were more abundant in lower 

complexity reaches with a higher average pH, while large adults were only associated with 

higher average pH (Table 3). 

Movement- Patterns of size-class specific dispersal suggest that the majority of brook 

trout inhabiting small basin area tributary networks exhibited restricted movement although a 
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small fraction of individuals in each size-class were highly mobile.   Movement within tributary 

networks was low seasonally for both small and large adults, indicated by a high percent 

recapture within release sites (Figures 11 and 12).  However, each seasonal sample revealed that 

approximately 20 – 30% of the small and large adult populations moved across reach boundaries 

(Figures 11 and 12).  The magnitude of this movement was generally low, although movements 

of 150 – 450m were regularly observed (Figures 11 and 12).  In addition, temporal variation in 

movement patterns was observed in small (ANOVA; F = 11.6, df = 2, P < 0.0001) and large 

(ANOVA; F = 4.55, df = 2, P < 0.0117) adults.  In general, small and large adults tended to 

move upstream during the spring-summer and summer-fall periods and downstream over the 

fall-spring period (Figure 11 and 12).   

We observed limited movement among small tributary networks and main stem habitats 

for all size classes throughout the course of the study.  A total of 6 juveniles (1.4%), 30 small 

adults (4.3%), and 5 large adults (2.2%) were recaptured outside the original small basin area 

network in which they were originally marked.  Fifty nine percent of these individuals (juvenile 

N = 4, small adult N = 16, large adult N = 4) were recaptured within the main stem, while the 

remaining 41% (juvenile N = 2, small adult N = 14, large adult N = 1) were recaptured within a 

separate small tributary network (Table 4, Figure 13).  None of these individuals were observed 

returning to the small network in which they were originally marked.  No juveniles, 2 small 

adults (1.5%) and 1 large adult (0.8%) originally marked within the main stem were recaptured 

in a small tributary network.  

Within tributary network reach- scale population demography- Within tributary 

networks, apparent survival estimates showed that study reaches varied considerably in their 

ability to support both small and large adult brook trout.  Within each seasonal sample some 
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reaches exhibited high retention while others appeared to be “flow-through” type patches.  

Across seasonal samples, small adults experienced lower apparent survival estimates than did 

large adults; although, mean survival was high for both size classes (Table 5).  A given reach’s 

ability to support adult brook trout was generally consistent from season-to-season, although this 

pattern was stronger for large adults relative to small adults (Figure 14).  Variation in reach 

specific survival was partly attributed to tributary network association (ANCOVA; small adult: F 

= 3.65, df = 12, P < 0.0001; large adult: F = 5.23, df = 9, P < 0.0001); however, within 

individual tributary networks survival increased with increasing basin area (small adult: F = 

12.92, df = 1, P = 0.0004; large adult: F = 4.62, df = 1, P = 0.0336).  Distance to main stem 

influenced survival of small adults (F = 9.10, df = 1, P = 0.003) but not large adults (F = 2.58, df 

= 1, P = 0.1110). In general, small adult survival increased with increasing distance from main 

stem habitat.  The spatial patterns of small adult survival did not vary seasonally (F = 2.46, df = 

2, P = 0.0888); however, the spatial pattern of large adult survival did show temporal variation 

(F = 6.04, df = 2, P = 0.0032).  Large adult survival was higher during the spring-summer period 

than the fall-spring period, while the summer-fall period did not differ from other sampling 

periods (Table 5).  Correlation analysis showed that small adult survival was positively related to 

habitat factors associated with stream size (PC 1) during the spring-summer season and slope 

(PC 2) during the summer-fall and fall-spring period (Table 6, Figure 15).  Large adult survival 

was not significantly correlated to dominant physical habitat gradients in any season (Table 6, 

and Figure 16). 

No clear spatial or temporal pattern was observed in within-tributary network reach 

specific immigration rates of small or large adults.  Across seasons, small adult immigration rates 

were higher than those of large adults (Table 5).  Mean immigration rates for both small and 
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large adults were generally high (Table 5), although consistent patterns in reach-to-reach 

immigration rates were not observed (Figure 17).  No differences in small adult reach specific 

immigration rates were due to tributary network association, basin area, or distance to main stem 

(ANCOVA; Full Model: F = 1.04, df = 16, P = 0.4238).  Some variation in large adult reach 

specific immigration rates was due to distance from main stem (F = 5.49, df = 1, P = 0.0208), 

but not tributary network association (F = 1, df = 9, P = 0.4406) or basin area (F = 3.22, df = 1, 

P = 0.752).  In general large adult immigration rates increased in reaches farther from the main 

stem.  This pattern was consistent over time (F = 1.27, df = 2, P = 0.2834).  Correlation analysis 

showed no significant relationship between small adult immigration and dominant physical 

habitat gradients (Table 7 and Figure 18).  Large adults were positively correlated to factors 

associated with channel slope (PC 2) during the spring-summer period (Table 7, Figure 19). 

Local apparent survival and immigration rates combined to set the reach scale rate of 

population change.  Rates of population change showed spatial and temporal variability for both 

small and large adults (Figures 20 and 21).  A given reach’s ability to support adult brook trout 

was generally consistent from season-to-season; however local immigration rates fluctuated 

considerably.  Consequently, local immigration rates were the primary mechanism responsible 

for determining the observed rate of population change at the reach-scale. 

Tributary network-scale population demography- Apparent survival estimates showed 

that small basin area tributary networks varied considerably in their ability to support both small 

and large adult brook trout.  Across seasons, small adults experienced lower apparent survival 

than did large adults (Table 5).  Seasonally, mean apparent survival estimates at the whole 

tributary network-scale were higher than those observed at the reach-scale (Table 5).  A given 

tributary network’s ability to support adult brook trout was generally consistent from season-to-
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season, although this pattern was stronger for large adults relative to small adults (Figure 14).  

Small adult apparent survival at the tributary network-scale was a function of basin area 

(ANCOVA; F = 4.43, df = 1, P = 0.0425) where larger stream networks had higher apparent 

survival.  The spatial patterns of small adult survival at the small tributary network-scale were 

temporally stable (ANCOVA; F = 0.52, df = 2, P = 0.6001) (Figure 14).  Similarly, patterns of 

large adult survival were both spatially and temporally stable (ANCOVA; Full Model: F = 0.21, 

df = 3, P = 0.8899) (Table 5, Figure 14).  Mean seasonal immigration rates were low and 

inconsistent for both small and large adults at the tributary network-scale (Table 5, Figure 17).  

Immigration rates did not differ among tributary networks or seasons for small adults 

(ANCOVA; Full Model: F = 0.77, df = 3, P = 0.5194) or large adults (ANCOVA; Full Model: F 

= 1.77, df = 3, P = 0.1772) (Table 5).   

Brook trout population size within our small basin area tributary networks decreased 

seasonally due to seasonally consistent losses and low rates of immigration.  Over an annual time 

scale populations were fairly stable and maintained due to high rates of local recruitment during 

the fall-spring period (Figure 22 and 23).  When apparent survival is modeled to reflect losses 

owing to recruitment into the next highest size-class we observed no shift in the spatial or 

temporal pattern of small adult survival.  This demonstrates that the loss did not significantly 

affect the population size of small adults at the watershed-scale.  When immigration rates of 

small adults are modeled to reflect gains resulting from juvenile recruitment we observed a shift 

in the temporal pattern in that small adult immigration varied seasonally (F = 5.53, df = 2, P = 

0.0082) with fall-spring having a significantly higher immigration rate.  This demonstrates that 

the small adult population size increases significantly due to local recruitment of juveniles.  

When immigration rates of large adults is modeled to reflect gains owing to small adult 
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recruitment we observed a shift in the temporal pattern in that large adult immigration varies 

seasonally (F = 27.45, df = 2, P < 0.0001) with fall-spring having a significantly higher 

immigration rate.  This shift illustrates that losses to the small adult population (although not 

significant) due to recruitment is realized as a significant increase in the large adult population 

during the fall-spring period. 

Main stem reach-scale population demography- Across seasons, small adults experienced 

lower apparent survival than large adults within main stem reaches (Table 5).  Apparent survival 

for both small and large adults was consistently lower within the mainstem compared to rates 

observed at the within tributary network reach- and whole tributary network-scales (Table 5).  

Although apparent survival was generally low within main stem reaches, a given reach’s ability 

to support brook trout was consistent over time (Figure 14).  Seasonal immigration rates for both 

small and large adults were high although generally inconsistent (Table 5, Figure 17).  Across 

seasons, immigration appears to be the dominate mechanism influencing population change of 

both small and large adults within main stem reaches (Figure 22 and 23) 

Discussion 
 This study suggests that the brook trout population within the upper Shavers Fork 

watershed is structured, at least in part, by the spatial arrangement of small basin area tributary 

networks.  The brook trout population within the upper Shavers Fork consists of both sedentary 

and mobile individuals.  Movement within small basin area tributary networks was common, 

although displacement was generally low.  Large-scale movements from tributary networks to 

the main stem as well as between tributary networks were observed.  Across all spatial scales, 

seasonal estimates of population demographic rates suggested that apparent survival was 

generally high and consistent, while immigration rates were highly variable.  Consequently, 
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seasonal patch-specific rates of population change were primarily influenced by variable 

immigration.  Results of this study suggest that the structure of the upper Shavers Fork brook 

trout population is a complex mosaic of elements found in source-sink, metapopulation, and 

patchy population models.  At the small tributary network-scale habitat patches primarily act as 

local isolates while nested patches can be characterized by patchy population dynamics.  At the 

upper Shavers Fork watershed-scale the structure of the brook trout population appears to be a 

combination of source-sink / metapopulation dynamics. 

Distribution- The spatial arrangement of small basin area tributary networks appears to 

be the dominant factor influencing the distribution of brook trout within the upper Shavers Fork 

watershed. This conclusion is supported by three findings.  First, small basin area systems 

provide critical reproductive habitat.  Second, brook trout were found to occur in the highest 

abundances in small basin area systems, and all size-classes were under represented within main 

stem habitat.  This means that the spatial distribution of each size-class was predominately 

centered on key reproductive areas.  Finally, strong season-to-season correlations were observed 

in the distribution of brook trout, which implies that the relative abundance of all size-classes 

within different areas remained constant.  More importantly this suggests that each size-class was 

seasonally associated with reproductive habitat. 

Convincing evidence suggests that within the upper Shavers Fork watershed small basin 

area systems act as non-substitutable reproductive habitat (Petty et al. 2005).  Petty et al. 

demonstrated that more than 80% of all reproductive effort, within Second Fork, a 4th order 

tributary system of upper Shavers Fork, was concentrated within reaches draining less than 

3km2.  In fact, some of the smallest basin area reaches (<0.5km2) within this critical range may 

be the most productive reproductive habitat (see Chapter 1 this document).   
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The highest abundances of brook trout within our study regions were observed within 

small basin area tributary networks (i.e. reproductive habitat).  Brook trout of all sizes were 

observed across the physical gradients (stream size, slope, complexity) characterizing the 

tributary networks.  Within these small networks brook trout abundance was positively 

correlated with factors associated with stream size (i.e. basin area, depth, cover).  Larger habitat 

patches are often characterized by increased complexity, habitat diversity, and food resources 

which can support a more diverse size structure and larger overall population (Horan et al. 2000).  

It is interesting, considering our continuous sampling efforts, that we did not observe a critical 

basin area below which brook trout were consistently absent.  However, small basin area stream 

reaches that were both shallow and lacked suitable cover generally did not support brook trout.  

It is well known that brook trout are often associated with cover (Lohr and West 1992, Stoneman 

and Jones 2000) especially in the presence of predator pressures (Lohr and West 1992).  This 

suggests that basin area alone is likely an insufficient measure of brook trout occurrence.   

In addition to cover availability, reach intermittency and water quality appeared to 

influence the distribution of brook trout within these small tributary networks.  Brook trout were 

rarely observed in intermittent stream reaches or perennial stream reaches with “poor” water 

quality.  Drought conditions in spring 2005 revealed that several reaches commonly devoid of 

fish were in fact intermittent.  Drought may combine with movement behavior (e.g. emigration 

from or refusal to immigrate into intermittent reaches) to explain the absence of regional fishes 

from local sites (Angermeier and Winston 1998, Albanese et al. 2004).  Within perennial 

reaches, brook trout were rarely observed within reaches with an average pH < 5.0.  This is likely 

due to reduced reproductive success in accordance with low acid neutralizing capacity (ANC) set 

by bedrock geology.  The upper Shavers Fork watershed is primarily influenced by the Pottsville 
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and Mauch Chunk groups.  Welsh and Perry (1997) found that the Pottsville group yielded little 

ANC, and within reaches associated with this group conditions often exceeded the acidic 

threshold (pH ≈ 5.0) for brook trout.  Petty et al. (2005) documented that brook trout, within this 

system, often attempted to reproduce in poorly buffered headwater reaches only to realize full 

recruitment failure.   

The spatial distribution of all size-classes was highly correlated and concentrated within 

small tributary networks.  These findings are consistent with Beard and Carline (1991) who 

showed that all sizes of brown trout in Appalachian streams were associated with reproductive 

habitat.  Similarly, Petty et al. (2005) showed that the distribution of juvenile and small adult 

brook trout was highly correlated with key reproductive habitat.  However, the distribution of 

large adult brook trout was seasonally unstable and centered on factors other than those 

influencing reproduction, such as high quality foraging sites (Petty et al. 2005).  Similar to Petty 

et al. (2005), we did observe size-class specific shifts in resource use, although to a lesser 

magnitude.  It is commonly recognized that stream fishes use resources at multiple scales in 

order to complete there life cycle (Fausch et al. 2002).  The fact that we did not observe large-

scale differences in habitat use between size-classes suggests that small basin area tributary 

networks may provide the full range of habitat complementation (Dunning et al. 1992).   

Movement- Mobility is common in organisms occupying a variable environment.  Stream 

salmonids regularly move in order to track changing environmental conditions (Gowan and 

Fausch 2002).  Gowan and Fausch (2002) showed that the location of high quality foraging sites 

varied considerably across seasons.  Mobile salmonids are often characterized by reduced 

condition or dominance and are presumably seeking more productive habitats in order to 

maximize energy intake at the reach-scale (Riley et al. 1992, Gowan and Fausch 1996, Gowan 



 79

and Fausch 2002).  However, Hilderbrand and Kershner (2004) found no difference in condition 

between mobile and resident cutthroat trout and concluded that mobile fish seem to be of two 

types, those in poor condition that must move and those in good condition that can exploit 

quality patches.  Small-scale movements are typically centered on accessing local habitat patches 

that increase growth and survival (Gowan and Fausch 2002).  Large-scale movements permit 

access to habitats used by different life-history stages (Dunning et al. 1992), and are essential for 

persistence of individual populations and metapopulations (Schlosser and Angermeier 1995, 

Rieman and Dunham 2000).   

We observed a considerable amount of spatial and temporal variation in brook trout 

movement patterns.  Most movements were small-scale (i.e. restricted, reach-to-reach 

interactions) but low rates of larger-scale movements within and among tributary networks were 

regularly observe.  Movement occurs along a continuum between sedentary and highly mobile 

that changes at the population and individual levels depending on the time scale chosen 

(Hilderbrand and Kershner 2004).  This study suggests that movement of individual brook trout 

within the upper Shavers Fork ranges across this continuum and represents both the sedentary 

and mobile extremes.  The presence of both sedentary and mobile salmonids is common in the 

literature (Flick and Webster 1975, Riley et al. 1992, Gowan and Fausch 1996, Petty et al. 2005).  

We did not attempt to determine if restricted or wider ranging movements were performed by the 

same groups of individuals each season, which may indicate variable life history strategies.  

However, the movement of stream-dwelling salmonids is likely related to habitat quality not life 

history strategy (Bahr and Shrimpton 2004).  The movement patterns of salmonid fishes are 

flexible and individuals often display periods of both mobile and sedentary behavior in response 

to local conditions and energetic needs (Hilderbrand and Kershner 2000).  This pattern likely 
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best represents the movement dynamics of brook trout within small tributary networks of the 

upper Shavers Fork watershed. 

The majority of the brook trout occupying small basin area tributaries displayed local 

movements, where if movement was detected displacement was low.  Patterns of local 

movement of stream fishes are not rare.  In 1959, Gerking established the “restricted movement 

paradigm” suggesting that the majority of stream fishes are sedentary, living their entire life 

within fairly small reaches of stream.  Numerous studies have re-evaluated the concept of 

restricted movement (Gowen et al. 1994, Gowen and Fausch 1996, Rodriguez 2002) and 

suggested that sampling biases associated with mark-recapture studies mask the fact that 

movement of stream fishes (especially salmonids) are indeed common (Gowen et al. 1994, 

Rodriguez 2002).  It is unlikely that these common biases influenced our results given the scale 

of our study and use of continuous sampling.  Consequently, local small-scale movement is 

likely the norm within small basin area tributaries of the upper Shavers Fork.   

Within tributary dispersal patterns varied seasonally.  We observed more frequent and 

wider ranging movements by small adults relative to large adults.  It is possible that large adults 

within small tributaries have well established territories and a more static existence relative to 

small adults that have yet to establish themselves into the dominance hierarchy (Riley et al. 

1992).   Net movement was upstream from late spring thru fall and downstream during the 

winter and early spring period.  Seasonal variation in dispersal has been observed in numerous 

brook trout populations (Flick and Webster 1975, Gowan and Fausch 1996, Riley et al. 1992, 

Curry et al. 2002).  No clear explanation exists for the directional movements observed in this 

study.  Upstream movements were likely aimed at gaining access to suitable reproductive / over 

wintering habitat.  Brook trout within this system concentrate reproduction within very small 
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stream reaches (Petty et al. 2005, Chapter 1 this document).  These critical areas are presumably 

characterized by groundwater inputs, suitable cover, stable flow conditions, and reduced 

predation (Petty et al. 2005), which may also serve as high quality over wintering habitat 

(Cunjak 1996).  Downstream movements during early spring were likely aimed at accessing 

larger more complex habitats with increased productivity and growth potential during early 

spring (Horan et al. 2000, Bopp 20002, Thorne 2005).  An alternative explanation is that reduced 

flows during spring 2005 forced individuals to seek out larger downstream reaches with a 

reduced potential for stream drying. 

The main stem habitat within the upper Shavers Fork is extremely productive relative to 

tributary habitat.  Bopp (2002) showed that invertebrate biomass within the main stem was as 

much as 10 times that observed in small basin area tributaries.  Thorne (2005) demonstrated that 

consumption and growth of brook trout was much higher within main stem versus tributary 

habitat.  Consequently, Petty et al. (2005) characterized main stem habitat as high quality 

supplementary habitat.  Although movement from small unproductive tributary networks into the 

main stem has obvious advantages with regards to maximizing energy, these movements were 

rarely observed.  Mark-recapture efforts are biased against detecting long range movements 

(Gowan et al. 1994, Gowan and Fausch 1995), and it is possible that highly mobile individuals 

moving from tributaries into the mainstem could move beyond the boundaries of our study 

regions resulting in an underestimate of this type of movement.  We attempted to minimize this 

bias by sampling long mainstem reaches (1-2 km) although the benefit of this was variable and 

dependant on a given tributaries location within the sampling regions.  Regardless, movement 

rates from tributaries into the main stem were fairly low.  This was likely due to movement 

restrictions between these two habitat types.  The tributary networks considered in this study 
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were typically high gradient systems with numerous barriers to movement (e.g. steep slopes, 

debris jams, and subsurface flows).  Typical movement barriers often occurred within close 

proximity to the confluence of the tributary and the main stem, likely making frequent movement 

between these habitat types difficult.   

If individuals did move into the main stem they were likely subject to potential 

interaction with non-native salmonids and often unsuitable water temperatures during the 

summer months.  Competition with non-native salmonids has been shown to reduce the fitness of 

native brook trout throughout Appalachia causing them to seek residence in small tributary 

systems (Larson and Moore 1985, Larson et al. 1995).  Although interactions between brook 

trout and non-native salmonids are likely within this watershed they have not been formally 

quantified.  Hansbarger (2005) showed that summer water temperatures in the Shavers Fork 

main stem often exceed the thermal maxima established for brook trout.  In these instances trout 

were forced to seek out coldwater inputs often in the form of tributary inputs (Hansbarger 2005).  

Additionally, low recapture rates of marked brook trout within the main stem indicates high 

mobility and / or high mortality (Petty et al. 2005, Thorne 2005, this study), both of which 

suggest the main stem is generally unsuitable for brook trout.  It is possible that the main stem 

acts as a productive movement corridor between small basin area tributary networks.  

Approximately half of the brook trout that moved from a small tributary network into the main 

stem eventually left the main stem and entered a new tributary network.   

Population demographics- Apparent survival was generally high and consistent for both 

small and large adults.  Both size-classes experienced the highest apparent survival at the whole 

tributary network-scale and lowest within main stem habitat.  Across seasons and spatial scales, 

small adults experienced lower apparent survival rates than did large adults.  Site- and scale-



 83

specific variation may be due to habitat quality, suggesting that small tributary networks, as a 

whole, provide more suitable conditions for brook trout survival relative to mainstem habitats.  

Size-class differences in apparent survival appear to be context specific.  Our results mirror those 

described by Petty et al. (2005) suggesting that within the upper Shavers Fork large adult brook 

trout are dominant and are capable of establishing and defending territories.  Conversely, Carlson 

and Letcher (2003) reported that the highest apparent survival rates observed in a second-order 

system of the Connecticut River Basin were experienced by small adult brook and brown trout.  

Differences in habitat requirements, movement patterns, emigration rates, and competitive 

advantage may cause variation in apparent survival between size-classes (Carlson and Letcher 

2003).  Variation between small and large adults in our study was likely due to differences in 

ability to establish and defend suitable territories. 

We observed significant within tributary reach-scale variability in apparent survival for 

both small and large adults.  Apparent survival increased with increasing basin area.  Our results 

compliment those of Petty et al. (2005) who reported that the highest apparent survival within a 

large tributary network was observed within small headwater reaches.  The small headwater 

reaches considered by Petty et al. (2005) are, in fact, similar in size to our largest reaches.  

Together, these studies imply that brook trout apparent survival within the upper Shavers Fork 

peaks within the largest reaches of small systems.  This is likely due to factors associated with 

habitat complexity, patch geometry, and barriers to dispersal.  Larger patches are often 

characterized by increased complexity, habitat diversity, and food resources (Horan et al. 2000) 

which should reduce competitive interactions and promote residency (Keeley 2001).  In addition, 

larger patches contain more area and small scale movements generally do not encounter patch 

boundaries (Hill et al. 1996).  The ability to access high quality foraging habitat (e.g. main stem) 
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is likely reduced by barriers to dispersal which are common within small streams (Riley et al. 

1992).  Consequently, brook trout within this system tend to occupy the most productive patches 

(i.e. largest patches) within close proximity to quality reproductive habitat.  The possibility that 

barriers to dispersal increase site fidelity within small streams is further supported by the fact 

that we observed a positive relationship between small adult apparent survival and distance from 

mainstem.    

Immigration rates varied considerably both within and across spatial scales.  Consistent 

patterns in brook trout immigration rates at the tributary network reach-scale were generally 

lacking, although there was considerable site-to-site variation.  We observed seasonally 

consistent immigration of large adult brook trout into headwater reaches.  This result was 

surprising considering Petty et al. (2005) reported increased immigration by this size-class into 

large systems throughout most of the year.  This contradiction suggests that patterns of large 

adult distribution may be context specific.  We did not observe any relationships between local 

physical habitat and small adult brook trout immigration.  Similarly, Petty et al. (2005) was 

unable to relate small adult immigration rates to specific regions within a large tributary network.  

It is possible that the lack of a pattern in small adult immigration within this region is because 

this size-class is less adept at establishing and defending territories (Riley et al. 1992).   

Summed estimates of apparent survival and immigration rates allowed us to examine 

spatial and temporal trends in brook trout population growth rates and determine the extent to 

which population abundance was influenced by local survival or dispersal. Within our study 

area, apparent survival showed considerable spatial variation but little temporal change across all 

spatial scales.  This suggests that population abundance decreases consistently and predictably 

from tributary network-to-tributary network and from reach-to-reach.  Conversely, immigration 
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rates were both spatially and temporally variable across all spatial scales.  Consequently, local 

immigration was the dominate mechanism responsible for determining the rate of population 

change at the tributary reach- and main stem reach-scale.  However, variable immigration rates 

did not play the same role at the whole tributary network-scale, because at this scale immigration 

was often very low or not observed and, therefore, did little to affect population change.  Our 

results are consistent with several other studies.  Petty et al. (2005) reported that seasonal 

estimates of brook trout immigration rates were highly variable and ultimately determined 

population size at the reach-scale.  Gowan and Fausch (1996) showed that immigration was the 

dominate mechanism leading to increased abundance of stream-dwelling brook trout.  Gowan 

and Fausch (1996) noted that brook trout were immigrating into their study reaches from distant 

patches not simply redistributing themselves among reaches, which was often the case in our 

study.   

Small basin area tributary networks, in general, acted as local isolates.  These systems 

received insufficient immigration from external habitats to sustain populations over the course of 

the study.  Populations, however, did persist largely due to local reproduction.  Other research 

within the upper Shavers Fork has reported similar findings.  Petty et al. (2005) noted that 

headwater reaches within this region were generally not influenced by immigration.  Thorne 

(2004) mentioned that a large proportion of seasonal samples within these small headwater 

systems consisted of previously marked individuals, suggesting low rates of population turnover.  

The majority of the small tributary networks were self sustaining throughout the duration of the 

study, although interactions between tributary networks and main stem habitat as well as among 

tributary networks were observed. 
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Population structure- This study suggests that the structure of the upper Shavers Fork 

brook trout population is a complex mosaic of elements found in each of the watershed-scale 

metapopulation models (Figure 24).  At the scale of the upper Shavers Fork watershed, it appears 

that the brook trout population is a collection of numerous patchy populations connected in a 

source sink / metapopulation context.  Habitat patches nested within small basin area tributary 

networks and within the mainstem primarily reflect a patchy population.  Support for patchy 

population dynamics among reaches of small tributary networks is centered on two factors.  

First, movement across reach boundaries was common for both small and large adults, meaning 

that patches were fairly connected.  Second, we observed some degree of ontogenetic shifts in 

habitat use by brook trout residing within small basin area tributaries, demonstrating that 

individuals moved throughout the tributary networks in order to access more suitable habitat.  

Similarly, high rates of immigration suggest patchy population dynamics throughout the 

mainstem.  Estimates of population growth based on summed estimates of apparent survival, 

immigration rates, and local recruitment provided evidence for source-sink interactions between 

small tributary networks and main stem habitat.  Local recruitment was the dominant process 

responsible for the maintenance of brook trout populations within small tributary networks.  

Main stem reaches, however, were relatively unaffected by local recruitment and relied on 

immigration from external sources for population persistence.  Furthermore, reduced survival 

and high rates of immigration combine to suggest high levels of population turnover within the 

main stem.  Small tributary networks did provide a source of immigrants to the main stem; 

however, no single small tributary network or group of networks stood out as a dominate source 

of brook trout to main stem habitats.  It appears that small tributary networks acted in aggregate 

as a source that supplied individuals to the mainstem through a constant slow leak. Support for 
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metapopulation structure is based on the observed low rate of brook trout movement between 

small tributary networks.  

The complexities of natural populations pose challenges to understanding the dynamics 

of populations inhabiting variable environments, but results from large-scale studies such as this 

will likely prove critical for the successful long-term management of aquatic ecosystems 

(Dunham and Rieman 1999, Fausch et al. 2002).  The successful restoration and conservation of 

brook trout populations throughout this region requires an understanding of key processes that 

influence the persistence of populations or metapopulations (Rieman and Dunham 2000).  

Without a thorough understanding of how metapopulations are structured it is unlikely that these 

processes will be identified, thus limiting the effect of management activities (Cooper and 

Mangel 1998).  Given that reproductive habitat and dispersal were found to be critical elements 

in structuring the upper Shavers Fork brook trout population, we suggest that watershed-scale 

efforts designed to preserve the physical and chemical integrity of reproductive habitat as well as 

restoring the connectivity between habitat patches be considered essential management priorities. 
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Table 1.  Summary of brook trout mark-recapture data.  Juveniles were too small to be effectively marked in spring 2004.  
Recruitment from one size class to the next occurred between the fall 2004 and spring 2005 sampling periods.  Consequently, small 
adult recaptures during spring 2005 include juveniles marked in 2004; similarly, large adult recaptures in spring 2005 include small 
adults that reached a standard lenght of 115 mm by spring 2005. 
 

  Spring 2004  Summer 2004  Fall 2004  Spring 2005 
Size/ 
Class 

 # 
Caught 

# 
Marked 

# (%) 
Recaptures 

 # 
Caught 

# 
Marked 

# (%) 
Recaptures 

 # 
Caught 

# 
Marked 

# (%) 
Recaptures 

 # 
Caught 

# 
Marked 

# (%) 
Recaptures 

                 
Juvenile  300 0 ----  384 336 NA  277 131 133 (48)  573 ---- NA 
                 
Small Adult  578 578 ----  514 237 277 (54)  348 102 246 (71)  475 ---- 339 (71) 
                 
Large Adult  215 215 ----  191 75 116 (61)  130 45 85 (65)  209 ---- 157 (75) 
                 
Total  1093 793 ----  1089 315 393 (36)  755 291 464 (62)  1257 ---- 496 
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Table 2.  Factor loading scores for dominant instream physical habitat gradients derived from 86 
perennial stream reaches within the upper Shavers Fork watershed.  Only factor loadings > |0.4| 
are presented   
 
 PC 1 PC 2 PC 3 
Eigen Value 2.12 1.90 1.36 
% Contribution 26.50 23.78 17.00 
Basin Area (km2) 0.43 ---- ---- 
Slope (%) ---- 0.63 ---- 
Mean Depth (cm) 0.60 ---- ---- 
Depth CV ---- ---- 0.57 
Mean Velocity (m/s) ---- ---- -0.63 
Mean Distance to Cover -0.49 ---- ---- 
Pool Area (%) ---- -0.44 ---- 
LWD (m2/m2) ---- 0.50 0.41 
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Table 3.  Summary results of the multiple regression analysis relating the proportional 
abundance of juveniles, small adults, and large adults to principle components of instream 
physical habitat, distance from main stem, and average pH.  
 

Age Class / 
Habitat Variable 

 
F-Value D.F. R2 Value Direction of 

Effect P-value 

Juvenile      
Size Gradient 

(PC 1) 13.78 1 0.13 Positive 0.0004 

Complexity Gradient 
(PC 3) 9.75 1 0.09 Negative 0.0025 

Slope Gradient 
(PC 2) 4.08 1 0.04 Negative 0.05 

Full Model 9.20 85 0.25  < 0.0001 

      

Small Adult      

Size Gradient 
(PC 1) 49.64 1 0.27 Positive < 0.0001 

 Average pH 12.14 1 0.11 Positive 0.0008 

Complexity Gradient 
(PC 3) 6.55 1 0.05 Negative 0.0123 

Full Model 20.17 85 0.42  < 0.0001 

      

Large Adult      

Size Gradient 
(PC 1) 66.02 1 0.33 Positive < 0.0001 

 Average pH 18.27 1 0.12 Positive < 0.0001 

Full Model 33.92 85 0.45  < 0.0001 
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Table 4. Total number of juvenile, small adult, and large adult brook trout originally marked in 1 of 15 small basin area stream 
networks and the number (± 1%) that were found to have moved into and stayed within main stem habitat (movement type I) or 
moved into a different small basin area network (movement type 2).  0, 2 (1.5%), and 1 (0.8%) of juvenile, small adult and large adults 
respectively that were originally marked in the main stem were found to have entered a small basin area stream network.  Numbers 
represent data pooled across all sample seasons. 
 

Watershed 
Information 

Size Class 
(# Marked) Movement Type I Movement Type II 

 
ID 

Basin 
Area Juveniles Small 

Adults 
Large 
Adults Juveniles Small 

Adults 
Large 
Adults Juveniles Small 

Adults 
Large 
Adults 

1 0.20 0 2 0 ---- 0 ---- ---- 1 (50) ---- 
2 0.36 51 169 42 0  2 (1) 2 (5) 0 4 (2) 0 
3 0.14 16 22 2 1 (6) 1 (5) 0 0 0 0 
4 0.30 61 72 27 1 (2) 2 (3) 0 1 (2) 0 0 
5 0.74 136 138 39 0 3 (2) 1 (3) 0 2 (2) 0 
6 0.27 14 9 1 0 2 (22) 0 0 2 (22) 0 
7 0.36 0 0 0 ---- ---- ---- ---- ---- ---- 
8 0.21 7 9 5 1 (14) 1 (11) 0 0 1 (11) 1 (20) 
9 0.64 41 3 1 1 (2) 0 0 1 (2) 0 0 
10 0.39 23 61 15 0 1 (2) 0 0 3 (5) 0 
11 0.20 1 3 0 0 0 0 0 0 0 
12 0.21 0 0 0 ---- ---- ---- ---- ---- ---- 
13 0.69 76 164 47 0 3 (2) 0 0 1 (1) 0 
14 1.50 7 142 42 0 1 (1) 1 (2) 0 0 0 
15 0.09 0 4 0 ---- 0 ---- ---- 0 ---- 

Total ---- 433 798 221 4 (1) 16 (2) 4 (2) 2 (1) 14 (2) 1 (1) 
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Table 5.  Seasonal mean, standard error, and ranges for small and large adult brook trout apparent survival (Φ), immigration (Γ) rates, 
and rate of population change (λ) across multiple spatial scales.  Letters indicate significant differences at α = 0.05 level.   
 

Seasonal Interval 
Sp04-Su04  Su04-Fa04  Fa04-Sp05 Parameter /  

Age Class Mean S.E. Range  Mean S.E. Range  Mean S.E. Range 

  
Tributary Network Reach-Scale 

Apparent Survival            
     Small Adults 0.48 0.04 0-1  0.46 0.05 0-1  0.38 0.05 0-1 
      Large Adults 0.62A 0.05 0-1  0.46AB 0.05 0-1  0.36B 0.05 0-1 

Immigration Rate            
           Small Adults 0.44 0.10 0-3.38  0.49 0.14 0-5  0.39 0.11 0-5 
           Large Adults 0.36 0.09 0-3  0.21 0.05 0-1.57  0.26 0.07 0-2 
Population Change            
           Small Adults 0.92A 0.10 0-4.38  0.95A 0.14 0-6  0.77B 0.12 0-5 
           Large Adults 0.98A 0.09 0-3.45  0.67B 0.06 0-2.04  0.62B 0.09 0-2 

  
Whole Tributary Network-Scale 

Apparent Survival            
     Small Adults 0.55 0.10 0-1  0.43 0.10 0-0.83  0.39 0.10 0-0.85 
     Large Adults 0.68 0.12 0-0.95  0.60 0.10 0-0.84  0.46 0.08 0-0.76 

Immigration Rate            
          Small Adults 0.11 0.05 0-0.61  0.52 0.31 0-4  0.14 0.07 0-0.95 
          Large Adults 0.09 0.06 0-0.61  0.02 0.01 0-0.1  0.27 0.13 0-1 
Population Change            
          Small Adults 0.67 0.13 0-1.61  0.95 0.27 0-4  0.53 0.14 0-1.71 
          Large Adults 0.77 0.14 0-1.47  0.62 0.11 0-0.94  0.73 0.15 0-1.76 

  
Main Stem Reach-Scale 

Apparent Survival            
     Small Adults 0.30 0.13 0-0.56  0.29 0.12 0-0.58  0.32 0.10 0-0.59 
     Large Adults 0.32 0.7 0.17-0.53  0.36 0.6 0.19-0.55  0.41 0.6 0.22-0.58 

Immigration Rate            
          Small Adults 4.17A 1.78 1-10.37  1.17A 0.41 0.39-2.33  0.26B 0.15 0-0.80 
          Large Adults 0.78 0.27 0.20-1.78  0.90 0.22 0.50-1.67  1.13 0.21 0.62-1.80 
Population Change            
          Small Adults 4.47A 1.82 1-10.91  1.45AB 0.30 0.75-2.33  0.58B 0.24 0-1.40 
          Large Adults 1.10 0.26 0.63-2.07  1.26 0.19 0.89-1.96  1.54 0.18 1.11-2.21 



 99

Table 6.  Seasonal correlations between small and large adult brook trout apparent 
survival (Φ) and dominant instream physical habitat gradients.  Significant correlations at 
α = 0.05 level are listed in bold. 
 
Size Class/  Sp04-Su04 Su04-Fa04 Fa04-Sp05 
Parameter  r p r p r p 
        
Small Adult        

Stream Size (PC 1)  0.34 0.013 0.15 0.290 0.27 0.058 
     Slope (PC 2)  0.24 0.084 0.44 0.001 0.42 0.002 

Complexity (PC 3)  0.06 0.658 -0.16 0.253 -0.13 0.376 
        
Large Adult        

Stream Size (PC 1)  0.19 0.226 0.28 0.064 0.24 0.122 
     Slope (PC 2)  0.16 0.310 0.29 0.057 0.03 0.834 

Complexity (PC 3)  -0.04 0.786 0.03 0.841 -0.06 0.718 
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Table 7.  Seasonal correlations between small and large adult brook trout immigration 
(Γ) rates and dominant instream physical habitat gradients.  Significant correlations at α = 
0.05 level are listed in bold. 
 
Size Class/  Sp04-Su04 Su04-Fa04 Fa04-Sp05 
Parameter  r p r p r p 
        
Small Adult        

Stream Size (PC 1)  0.19 0.173 -0.13 0.356 0.09 0.549 
     Slope (PC 2)  0.16 0.268 -0.03 0.810 0.07 0.606 

Complexity (PC 3)  -0.04 0.767 0.06 0.664 -0.08 0.581 
        
Large Adult        

Stream Size (PC 1)  -0.03 0.8659 -0.07 0.6586 0.22 0.1576 
     Slope (PC 2)  0.30 0.0476 0.11 0.4739 -0.29 0.0573 

Complexity (PC 3)  -0.07 0.6543 -0.13 0.3899 0.20 0.1940 
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Figure 1.  Location of the dominant watershed-scale metapopulation models along a continuum 
of between patch variability in demographic rates and dispersal rate. 
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Figure 2.  Representation of the current knowledge of the upper Shavers Fork brook trout 
population. 
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Figure 3.  Location of the three study regions (heavy lines) within the upper Shavers Fork 
watershed of Pocahontas and Randolph counties, West Virginia (inset). 
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Figure 4.  Seasonal brook trout length-frequency histograms used to classify all captured 
individuals into one of three size classes: juveniles, small adults, large adults.  Lengths were 
pooled across all seasonally sampled sites. 
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Figure 5.  Season-to-season correlation of juveniles, small adult, and large adult proportional 
abundance across all sites (including main stem).   
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Figure 6. Average proportional abundance of juvenile, small, and large adult brook trout across 
the available range of stream sizes. 
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Figure 7.  Ratio of the average observed number of juvenile, small adult and large adult brook 
trout to that expected based on the total area of stream within a range of basin area.   
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Figure 8. Size class-to-size class correlations across all sites (including main stem). 
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Figure 9.  Average proportional abundance of brook trout within each size-class (juvenile = 
black triangles, small adults = open circles, large adults = closed circles) relative to reach-
specific physical habitat parameters. 
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Figure 10.  Average proportional abundance of brook trout within each size-class (juvenile = 
black triangles, small adults = open circles, large adults = closed circles) relative to the dominant 
instream physical habitat gradients characterizing small basin area tributary networks. 
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Figure 11.  Temporal variation in the proportion of small adult recaptures relative to their 
direction and magnitude of movement within all small basin area stream networks.  Positive 
values along the X axis indicate the number of reaches moved upstream, negative values indicate 
the number of reaches moved downstream.  Letters indicate significant differences at α = 0.05 
level. 
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Figure 12.  Temporal variation in the proportion of large adult recaptures relative to their 
direction and magnitude of movement within all small basin area stream networks.  Positive 
values along the X axis indicate the number of reaches moved upstream, negative values indicate 
the number of reaches moved downstream.  Letters indicate significant differences at α = 0.05 
level. 
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Figure 13.  Percent of juvenile, small adult, and large adult brook trout originally marked in 1 of 
15 small basin area stream networks that were found to have moved into and stayed within main 
stem habitat or moved into a different small basin area network.  Percentages represent pooled 
data across all sample seasons.  NA designates stream networks that did not support a given size-
class. 
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Figure 14.  Season-to-season correlation of small and large adult apparent survival at the 
tributary network (triangles), tributary reach (circles), and main stem reach (squares) scales.  
Open symbols represent small adults, closed symbols represent large adults. 
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Figure 15.  Seasonal relationships between small adult apparent survival (log+1 transformed) and dominant instream physical habitat 
gradients. 
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Figure 16.  Seasonal relationships between large adult apparent survival (log+1 transformed) and dominant instream physical habitat 
gradients. 
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Figure 17.  Season-to-season correlations of small and large adult immigration rates at the 
tributary network (triangles), tributary reach (circles), and main stem reach (squares) scales.  
Open symbols represent small adults, closed symbols represent large adults.
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Figure 18.  Seasonal relationships between small adult immigration rates (log+1 transformed) and dominant instream physical habitat 
gradients. 
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Figure 19.  Seasonal relationships between large adult immigration rates (log+1 transformed) and dominant instream physical habitat 
gradients.

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

-4 -2 0 2 4 -4 -2 0 2 4 -4 -2 0 2 4

       Dist to Cover              PC 1       Basin Area (0.43) 
         (-0.49)                                     Mean Depth (0.60) 

      Pool Area                   PC 2                 Slope (0.63) 
        (-0.44)                                                LWD (0.50)

      Mean Velocity           PC 3          Depth CV (0.57) 
        (-0.63)                                         LWD (0.41)

   
Im

m
ig

ra
tio

n 
R

at
e 
Spring - Summer 

Summer - Fall 

Fall - Spring 



 120

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 20.  Seasonal reach-to-reach variation in small adult population change within 15 small 
tributary networks and the main stem.  Solid dots represent the mean rate of population change 
across all reaches within a given tributary network.  Hash-marks represent the rate of population 
change for each reach within a given tributary network.  The main stem reaches are represented 
as > 15 km2.  A value of 1 represents no population change. 
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Figure 21. Seasonal reach-to-reach variation in large adult population change within 15 small 
tributary networks and the main stem.  Solid dots represent the mean rate of population change 
across all reaches within a given tributary network.  Hash-marks represent the rate of population 
change for each reach within a given tributary network.  The main stem reaches are represented 
as > 15 km2.  A value of 1 represents no population change.   
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Figure 22.  Seasonal small adult brook trout population growth within 15 small basin area 
watersheds and 5 main stem reaches.  A value of 1 represents no population change.   
 

Basin Area (km2) 

Po
pu

la
tio

n 
C

ha
ng

e 
(a

pp
ar

en
t s

ur
vi

va
l +

 im
m

ig
ra

tio
n 

ra
te

+ 
lo

ca
l r

ec
ru

itm
en

t)
 

Spring - Summer 

    Summer - Fall 

Fall - Spring 



 123

0.0

0.5

1.0

1.5

2.0

2.5

3.0

 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.0
9

0.1
4

0.2
0

0.2
0

0.2
1

0.2
1

0.2
7

0.3
0

0.3
6

0.3
6

0.3
9

0.6
4

0.6
9

0.7
4

1.5
0

15
.96

29
.43

31
.64

41
.49

60
.67

Local Recruitment
Immigration
Survival

 
 
Figure 23. Seasonal large adult brook trout population growth within 15 small basin area 
watersheds and 5 main stem reaches.  A value of 1 represents no population change.   

Basin Area (km2) 

Po
pu

la
tio

n 
C

ha
ng

e 
(a

pp
ar

en
t s

ur
vi

va
l +

 im
m

ig
ra

tio
n 

ra
te

+ 
lo

ca
l r

ec
ru

itm
en

t)
 

Spring - Summer 

Summer - Fall 

Fall - Spring 



 124

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 24.  Representation of the degree of connectivity between brook trout habitats within the 
upper Shavers Fork watershed.  Increasing arrow weights represents increasing levels of 
connectivity.  Weights are based on observed patterns of brook trout dispersal, apparent survival, 
and immigration.  Reach-to-reach-scale movements were common throughout small basin area 
tributaries.  Tributary networks acted in aggregate supplying a slow leak of individuals into main 
stem habitats.  Low rates of dispersal were observed between tributary networks.  Individuals 
within mainstem habitat were highly mobile.   
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Appendix 1.  Site names and northing and easting coordinates (NAD 83, UTM zone 17) for 34 
sample sites located within the upper Shavers Fork watershed used to determine the role of 
physico-chemical habitat parameters on juvenile brook trout recruitment.  Site ID numbers 
correspond to figure 1 and table 1 (chapter 1 of this document). 
 
ID # Site Name (Unofficial) Easting Northing 

    

1 UNT 2 Below First Fork 594738.1 4271296 

2 UNT 1 Below First Fork 594826.6 4270550 

3 Watertank Hollow 596124.0 4269417 

4 UNT 1 of First Fork 596494.8 4265694 

5 UNT 3 of First Fork 595855.4 4265101 

6 UNT 3 Below Black Run 594685.1 4268141 

7 UNT 2 Below Buck Run 593177.1 4266820 

8 Buck Run 592622.8 4266286 

9 Beaver Creek 591617.5 4263595 

10 UNT of Beaver Creek 591733.3 4263950 

11 UNT 6 Below Second Fork 593402.4 4264035 

12 UNT 5 Below Second Fork 593416.3 4263780 

13 UNT 2 Below Second Fork 593407.8 4262800 

14 Reggi Run (reach 3) 593541.0 4261741 

15 Lower UNT of Second Fork 593018.3 4261149 

16 Upper UNT of Second Fork 593000.7 4261014 

17 UNT 3 Below Ryans Bend 591568.5 4262022 

18 Right Fork of UNT 3 of Ryans Bend (reach 1) 590817.1 4261602 

19 UNT 2 of Ryans Bend 591085.2 4261200 

20 UNT 1 of Ryans Bend 591093.9 4261153 

21 UNT of Rocky Run 590700.4 4260317 

22 UNT 2 Below Twin Tressels 590747.7 4259718 

23 UNT 2 of Twin Tressels 591191.2 4259437 

24 UNT 1 of Twin Tressels 590895.6 4259230 
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25 UNT 2 Below Lamothe Hollow 590675.0 4259281 

26 Thorne Run 590112.5 4258950 

27 Jennifer Hollow 590461.9 4258759 

28 UNT 1 Below Lamothe Hollow 590934.6 4258484 

29 Lamothe Hollow 591573.9 4258380 

30 Powerhouse Run 590448.4 4257350 

31 Oats Run 591083.8 4256874 

32 Little Oats Run 590959.2 4256114 

33 UNT 3 of Black Run 589730.6 4255796 

34 UNT 4 of Black Run 589229.4 4255708 
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