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ABSTRACT 

 

 

DEVELOPMENT AND FEASIBILITY ASSESSMENT OF SHALLOW PRESS-BRAKE-

FORMED STEEL TUB GIRDERS FOR SHORT-SPAN BRIDGE APPLICATIONS 

 

 

Gregory K. Michaelson 

 

 

The Short Span Steel Bridge Alliance (SSSBA) is a group of bridge and culvert industry leaders 
(including steel manufacturers, fabricators, service centers, coaters, researchers, and 
representatives of related associations and government organizations) who have joined together 
to provide educational information on the design and construction of short-span steel bridges in 
installations up to 140 feet in length.  From within the SSSBA technical working group, a 
modular, shallow press-brake-formed steel tub girder was developed.  This new technology 
consists of cold-bending standard mill plate width and thicknesses to form a trapezoidal box 
girder. The steel plate can either be weathering steel or galvanized steel, each an economical 
option.  Once the plate has been press-brake-formed, shear studs are then welded to the top 
flanges.  A reinforced concrete deck is then cast on the girder in the fabrication shop and allowed 
to cure, becoming a composite modular unit. The composite tub girder is then shipped to the 
bridge site, allowing for accelerated construction and reduced traffic interruptions. 
 
The scope of this project was to refine the development of the proposed system.  This was 
performed in five stages.  A rational methodology, based on conservative estimates of the 
system’s nominal capacity, was developed to design and proportion the steel tub girder and 
modular unit.  Destructive flexural testing was then performed on representative specimens to 
assess the ultimate capacity of the system in its composite and noncomposite states.  Next, two 
separate analytical tools utilizing nonlinear finite element methods and strain-compatibility 
procedures were developed and benchmarked against experimental data.  These analytical tools 
were then employed to perform behavioral studies on the proposed system, resulting in the 
derivation of expressions which better predict the nominal capacity than those present in 
AASHTO LRFD Specifications.  Finally, feasibility assessments were performed, comparing the 
economy of the proposed system against traditional short-span bridge solutions.  Results of this 
project demonstrate that the proposed system is an economically competitive alternative for the 
short-span bridge market. 
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CHAPTER 1:  INTRODUCTION 

 

1.1 BACKGROUND / OVERVIEW 

 

The Short Span Steel Bridge Alliance (SSSBA) is a group of bridge and culvert industry 

leaders (including steel manufacturers, fabricators, service centers, coaters, researchers, and 

representatives of related associations and government organizations) who have joined together 

to provide educational information on the design and construction of short span steel bridges in 

installations up to 140 feet in length.  From within the SSSBA technical working group, a 

modular, shallow press-brake-formed steel tub girder was developed.  This girder is shown in 

Figure 1.1.   

 

 

Figure 1.1: Proposed System 

 

This new technology consists of cold-bending standard mill plate width and thicknesses 

to form a trapezoidal box girder. The steel plate can either be weathering steel or galvanized 
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steel, each an economical option.  Once the plate has been press-brake formed, shear studs are 

then welded to the top flanges.  A reinforced concrete deck is then cast on the girder in the 

fabrication shop and allowed to cure, becoming a composite modular unit. The composite tub 

girder is then shipped to the bridge site, allowing for accelerated construction and reducing 

traffic interruptions.  It should be noted that the proposed system should be able to support 

numerous deck options, including cast-in-place decks and full- or partial-depth precast panels. 

 

1.2 PROJECT SCOPE & OBJECTIVES 

 

The scope of this project was to refine the development of this proposed system.  This 

was achieved by: 

 

 Developing a rational methodology for the design of the proposed system 

 Performing destructive flexural testing of representative specimens 

 Developing analytical tools for assessing the behavior and capacity of the 

proposed system 

 Conducting behavioral studies in order to assess the applicability of the current 

AASHTO LRFD Specifications in predicting the capacity of modular press-

brake-formed steel tub girders 

 Performing economic studies and feasibility assessments to determine the 

system’s competitiveness in the short-span bridge market 
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1.3 ORGANIZATION 

 

A brief overview of the organization of this dissertation is as follows: 

 

 Chapter 2 

o This chapter summarizes previous research on cold-bent tub girder 

applications in bridges and using cold-forming to fabricate steel elements.  In 

addition, a comprehensive review of AASHTO provisions for tub girders is 

provided. 

 Chapter 3 

o This chapter briefly summarizes the development of the cross-section for the 

proposed press-brake tub girder system.  Details include sizing girders based 

on standard mill width plates and the reporting of noncomposite and 

composite section properties. 

 Chapter 4 

o The experimental testing that has been conducted for this research is discussed 

in this chapter. Testing consisted of the destructive testing of four 

representative press-brake tub girder specimens.  The chapter focuses on the 

testing program, the test objectives, instrumentation and the test results. 

 Chapter 5 

o This chapter describes analytical techniques using a commercial finite element 

software package and mechanistic strain-compatibility procedures to assess 

the proposed system.  Analysis details, including element selection, material 

models, and additional finite element considerations are discussed.  These 

analytical procedures are then compared against both previous experimental 

tests as well as the experiments discussed in Chapter 4. 
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 Chapter 6 

o This chapter documents the behavioral studies performed on the proposed 

system in order to assess the validity of employing AASHTO LRFD 

Specifications to compute the capacity of press-brake-formed steel tub girders. 

 Chapter 7 

o This chapter documents feasibility and economic assessments of the proposed 

system.  In addition, based on plate availability, the matrix of girders 

presented in Chapter 3 is reduced to a set of four modular options for 

immediate implementation in the short-span bridge market. 

 Chapter 8 

o This chapter provides a summary of the scope of work conducted for this 

study and highlights the key findings. Lastly, this chapter provides 

recommendations for continued research on the proposed system. 

 Appendix A 

o This appendix documents the derivation of flexural and torsional section 

properties of the proposed system.  In addition, an illustrative example is 

provided to demonstrate the computation of the derived properties. 

 Appendix B 

o This appendix documents the MATLAB routines written for this research 

project.  In addition, illustrative examples are provided that demonstrate the 

computation of the plastic moment capacity and nominal moment capacity 

using strain-compatibility analysis. 

 Appendix C 

o This appendix documents the experimental and analytical data collected 

during this research.  Graphs of experimental and analytical data along with 

feasibility assessments are presented. 
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CHAPTER 2:  BACKGROUND & LITERATURE REVIEW 

 

2.1 INTRODUCTION 

 

 The purpose of this chapter is to discuss previous research findings relating to press-

brake-formed tub girders.  Since the first appearance of research on press-brake tub girders, 

minimal efforts have been pursued to explore this type of bridge design.  Until recently, when the 

demands for more economical and rapid construction have been brought to the forefront of 

design, the press-brake-formed tub girder has once again surfaced as a viable alternative to 

conventional bridge fabrication and construction.  Presented in this section is a comprehensive 

review of previous studies focused on economical and rapid bridge construction employing 

various tub girder configurations and current AASHTO Specifications applicable to steel tub 

girders. 

 

2.2 PREVIOUS IMPLEMENTATIONS OF COLD-BENT STEEL GIRDERS IN BRIDGE APPLICATIONS 

 

 Prefabricated steel tub-girder systems have been explored as a potential design solution 

for the short-span bridge market for a number of years.  Many previous research efforts have 

shown that these types of systems have the potential to be economical and competitive in the 

short-span range.  In recent years, the demands for accelerated bridge construction have been 

brought to the forefront of design.  Presented in this section is a comprehensive review of 

previous studies focused on economical and rapid bridge construction employing various 

shallow tub girder configurations. 

 

2.2.1 Prefabricated Press-Formed Steel T-Box Girder Bridge System (Taly & Gangarao, 1979) 

 

 Taly and Gangarao (1979) proposed using a press-brake to bend an A36 3/8-inch steel 

plate to form a tub girder in a short-span modular bridge system.  At the time of publication in 

1979, The American Association of State Highway and Transportation Officials (AASHTO) 

Specifications did not provide any criteria for the design of bridge members using a press-brake 
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to cold form the shape of girders. Therefore, the researchers evaluated their tub girder design in 

accordance with the 1977 American Iron and Steel Institute (AISI) specifications.   

In the proposed design, a prestressed concrete deck would be precast with an embedded 

shear stud plate, which would, in turn, be shop welded to the steel tub girder’s flanges.  The total 

width of the tub girder is 3 feet, and the total width of the prestressed concrete slab is 6 feet.  

This reduced size permits the complete unit to be fabricated in the shop and shipped to the 

construction site, greatly decreasing the amount of field labor and construction time.  To account 

for various bridge widths, several prefabricated tub girder units are placed adjacent to one 

another and joined with a longitudinal closure pour.  The system resists lateral loads through 

shear keys with weld-ties placed at the junction of the prestressed concrete slab flanges. The ends 

of the tub girder beams are closed off with a 3/8-inch thick steel plate diaphragm that is welded 

all around the perimeter of the tub girder. To provide additional support, bearing stiffeners are 

provided at the tub girder ends along with the 3/8-inch thick diaphragm.   

In addition, Taly and Gangarao provided an alternative to the concrete-steel composite 

tub girder bridge system which employed an orthotropic deck.  To increase the longitudinal 

stiffness of the orthotropic deck, WT sections would be shop welded to the steel plate deck. Like 

the previous design, the composite tub girder unit could be prefabricated in the shop and shipped 

to the construction site. The tub girder dimensions are highly dependent on the span length, 

ranging from a 2.5 foot to a 3.5 foot deep tub girder. 

The researchers found the tub girder design with the composite concrete deck to be 

economical for spans of 40 to 100 feet.  With the all-steel configurations, the maximum span 

length would be 65 feet.  In addition, the authors note that the tub girders have a greater torsional 

stiffness then typical I-beam sections due to their closed shape. Furthermore, 95% of the total 

bridge system would be prefabricated and economy is achieved with the use of a press-brake to 

cold form the members as opposed to typical fabrication procedures for steel box girders.  Also, 

in addition to rapid construction, the lightweight design of this system (roughly 11 tons for a 65-

foot-long girder) allows for low capacity equipment for all phases of construction, including 

transportation and erection of the tub girders. 
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Figure 2.1: Taly and Gangarao’s Proposed Bridge System (Taly & Gangarao, 1979) 

 

2.2.2 Composite Girders with Cold-Formed Steel U-sections (Nakamura, 2002)  

 

 Similar to Taly and Gangarao’s proposed design, Nakamura (2002) proposed a bridge 

system that utilizes a press-brake to cold form steel tub girders.  Nakamura’s bridge system 

includes casting a prestressed concrete slab supported by twin tub girders, forming a composite 

modular unit.  Nakamura envisioned a continuous bridge system with multiple intermediate piers 

to support the superstructure.  To compensate for the potential buckling of the bottom flange at 

pier locations, Nakamura designed the tub girders to be filled with concrete and prestressed by 

prestressed concrete (PC) bars, resulting in an increased strength against buckling at the support 

locations. 

The researcher preformed several experimental bending tests on the proposed design. 

These tests confirmed that the tub girder behaved as a composite beam at the center of the span.  

Furthermore, at pier regions, the tub girder was shown to behave as a prestressed beam with the 

prestressed concrete preventing local buckling of the bottom flange.  Finally, Nakamura 

concluded that this bridge system would in fact be practical and feasible since it has adequate 

bending strength and deformation capacity.  A drawback to Nakamura’s design is that the tub 
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girders require more steel than conventional plate girders. However, the cost is offset by 

decreased fabrication costs, thereby resulting in an economical design. 

 

 

Figure 2.2: Nakamura’s Proposed Bridge System (Nakamura, 2002) 

 

2.2.3 Con-Struct Prefabricated Bridge System  

 

 Nelson Engineering Services has developed a cold-formed tub girder bridge system 

similar to previous designs mentioned above (Tricon Precast, 2008). This system, Con-Struct, 

incorporates a prefabricated composite bridge girder consisting of a shallow steel tub girder and 

a concrete deck.  To increase the service capacity of this system, the steel tub girders are stressed 

into a camber, and the concrete deck is cast onto the girders in their stressed state.  Once the 

concrete is cured, the steel compressive stress is locked in to provide camber and increase the 

service capacity of the structure.  Employing this system, according to Tricon Precast, designs 

are valid for spans up to 60 feet. 
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Figure 2.3: Con-Struct Bridge System (Tricon Precast, 2008) 

 

2.2.4 Folded Plate Girders (developed at the University of Nebraska)  

 

 The University of Nebraska, Lincoln has also researched cold-bent steel tub girders and 

developed a composite steel girder system utilizing folded plate girders (Burner, 2010; Glaser, 

2010).  This system utilizes an inverted tub girder where the flanges of the girder are bent 

inwards.  The concrete deck is then cast on the wider center flange as opposed to previously 

developed systems, where the deck is cast on the two smaller exterior flanges.  An advantage of 

this system is that the orientation of the girder allows maintenance and ease of inspection of the 

folded plate girder. Also, the wider top flange resulting from the girder orientation provides a 

safe work area for construction personnel. 
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Figure 2.4: System Proposed at the University of Nebraska (Burner, 2010) 

 

2.2.5 TxDOT Rapid Economical Bridge Replacement  

 

 In an effort by the Texas Department of Transportation (TxDOT) to create a more 

shallow bridge superstructure, a bridge system consisting of a shallow steel tub girder was 

developed (Chandar et. al., 2010).  Specifically, the solution was to use a tub girder that 

consisted of a 5-foot-wide bottom flange width and a 3-foot-deep web. Two rows of shear studs 

were welded to each top flange, and a reinforced concrete deck was cast. 

An application of this concept was completed in August of 2010.  The bridge consisted of 

four simply supported spans of 45 feet, 100 feet, 100 feet, and 65 feet, respectively.  The total 

width of the bridge was 78 feet; as a result, six tub girders were utilized.  It should be noted that, 

in this system, while accelerated bridge construction methods were used, conventionally-

fabricated steel tub girders (as opposed to girders formed using cold bending) were employed. 
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Figure 2.5: TxDOT Tub Girder for Rapid Bridge Replacement (Chandar et. al., 2010) 

 

2.2.6 MDOT Prefabricated Steel Box-Girder Systems for Accelerated Bridge Construction  

 

 The Michigan Department of Transportation (MDOT) recognized the need for a 

prefabricated bridge system to be shipped to the construction site where only placement and 

post-tensioning were required (Burgueño & Pavlich, 2008).  The goal was to create an entirely 

prefabricated composite bridge which would eliminate the need for lengthy and costly road 

closures for short-span bridges.  In order to accomplish this, a research project was conducted on 

a shallow, cold-bent tub girder system utilizing a prestressed concrete deck.  Specifically, this 

project focused on the design of individual units which would be joined with longitudinal deck 

pours.  Experimental testing coupled with finite element analyses demonstrated that this system 

would be competitive in the short-span bridge market. 
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Figure 2.6: MDOT Proposed Bridge System (Burgueno & Pavlich, 2008) 

 

2.2.7 Conclusions  

 

 Several researchers over multiple decades have researched the potential economy of 

prefabricated bridge systems incorporating shallow steel tub girders.  Many researchers have 

found these technologies to be competitive in the short-span bridge market.  However, while 

many of the research conclusions regarding the efficiency and economy of these systems have 

been promising, many of the systems were hindered by somewhat complex fabricated elements, 

which would increase the total system cost.  In addition, many of these systems did not have 

industry-wide support, which resulted in their lack of use in mainstream construction of short-

span bridges.  Therefore, a modular tub girder with simplified details, supported by all levels of 

the bridge industry, would present a competitive solution for short-span bridges. 
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2.3 OVERVIEW OF CURRENT AASHTO SPECIFICATIONS FOR TUB GIRDERS 

 

 The American Association of State Highway and Transportation Officials (AASHTO) 

publish the AASHTO LRFD Bridge Design Specifications (2010), which governs the design of 

highway bridges in the United States. Section 6 in this document covers the design of steel 

structures and more specifically Chapter 6.11 details the specifications for box section (tub 

girder) flexural members.  While these specifications are not directly applicable to cold-bent 

press-brake-formed tub girders, a review of these provisions is necessary to assess the 

applicability of the specifications to the proposed system and/or approach the production of 

specifications for the proposed system. 

 

2.3.1 Structural Loads 

 

 Bridge loads are divided into two main categories:  permanent loads and transient loads.  

Permanent loads consist of dead loads and earth loads.   Transient loads consist of vehicular live 

loads and environmental loadings, such as snow, wind, and seismic loads.  For the purposes of 

this review, only dead loads and live loads will be reviewed as they are the chief components of 

the Strength I, Service II, and Fatigue load combinations (see Section 2.4.2). 

Dead loads include the self-weight of all components of the bridge including utilities, 

wearing surface and planned bridge widenings.  If the weights of the dead load components are 

unknown, AASHTO provides units weights of materials to calculate the total dead load (see 

Table 2.1).  Earth loads include earth pressure, earth surcharge and downdrag loads that act on 

the bridge over the bridge’s design life.  
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Table 2.1: Unit Weights (AASHTO, 2010) 

 

 

 Component dead loads are further broken down into non-composite (DC1) and composite 

(DC2 and DW) dead loads.  An example of typical DC1 loads include girder self-weight, the wet 

concrete deck, stay-in-place metal formwork, concrete haunches, concrete overhang taper  and 

the steel cross frames (i.e. loads applied to the structure before the concrete deck is composite 

witht he girder).  Until the concrete reaches 75 percent of its compressive strength, it is assumed 

that the load is being supported by only the girders (Morgan, 2010).  Once the concrete deck and 

steel girder become composite, the deck and girder act together to resist DC2 (weight of the curb, 

barriers, sidewalks and pedestrian hand railing) and DW (future wearing surface) loads. 

The vehicular live load (LL) that is to be applied to the structure is designated as the HL-

93, according to AASHTO Specifications.  The load model consists of a 0.64 kip/ft lane load in 

combination with either a design truck or design tandem.  The design truck consists of an 8 kip 

front axle and two 32 kip rear axles (see Figure 2.7).  The spacing between the rear 32 kip axles 

is varied between 14 feet and 30 feet to produce the maximum loading scenario.  The design 

tandem consists of a pair of 25 kip axles that are spaced 4 feet apart.  In addition, it is the 

responsibility of the engineer to determine longitudinal placement of the loads in order to 

determine the maximum live load response. 
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Figure 2.7: HL-93 Vehicular Live Load (AASHTO, 2010) 

 

Dynamic load allowances (IM) account for the dynamic effects of the design vehicle, 

such as the vehicle's reaction to the driving surface.  This effect is accounted for by augmenting 

the effects of the design truck and design tandem.  To account for dynamic load allowances, the 

vehicular live load is increased by 33% for all limit states except when considering fatigue and 

when evaluating deck joints.  For the fatigue limit state, the live load is increased by 15%, and, 

for deck joints, the live load is increased by 75%. 

In addition to considering loads that are applied to the bridge's finished state, load applied 

during the construction phase must be evaluated.  Examples of construction loads consist of 

concrete overhangs, overhang deck brackets and formwork, screed rails, railing, construction 

walkways and the deck finishing machine.  In addition, deck casting sequences can provide an 

additional level of complexity that must be assessed.  For multiple span bridges, the deck is cast 

usually in the positive bending regions first to minimize cracking over the piers. 
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2.3.2 Limit States Summary 

 

 To account for the statistical probability of different loads acting simultaneously at a 

given time, several load combinations or limit states are employed.  The general equation that all 

limit states must satisfy is as follows: 

  

i i i n rQ R R           Eq. 2.1  

 

   Where: 

 γi =  load factor: a statically based multiplier applied to force effects 

 ϕ =  resistance factor: a statistically based multiplier applied to nominal resistance 

 ηi =  load modifier: a factor relating to ductility, redundancy and operational                

          classification 

 Qi =  force effect 

 Rn =  nominal resistance  

 Rr =  factored resistance  

 

 To account for ductility, redundancy and operational importance of the bridge, the three 

load modifiers are multiplied together to calculate the ηi term.  The ductility load modifier 

ensures that visible inelastic deformations occur before failure.  The redundancy load modifier 

safeguards against a catastrophic failure of the entire bridge system if one member fails.  Finally, 

the operational importance load modifier maintains a higher resistance for bridges used in such 

situations as emergency roadways or that have national security implications.  For the majority 

of cases, the load modifier is to be taken as one.    

 Strength limit states are used to ensure that strength and stability of both local and global 

components and connections have the capacity to meet the load combinations the bridge is 

expected to see over its design life.  Both stability and ultimate failure of each structural element 

is considered.  The bridge resistance is considered to be exceeded if any of the components or 

connections is exceeded in the following limit states: 
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 Strength I – basic load combination with normal vehicular use, no loads from wind 

 Strength II – load combination to account for Owner-specified design vehicles, 

evaluation permit vehicles, or both, no loads from wind 

 Strength III – load combination for bridges exposed to wind velocities exceeding 55 

mph 

 Strength IV – load combination when dead load to live load force effect ratios is 

present 

 Strength V – load combination for bridges exposed to normal vehicular use with wind 

velocities of 55 mph  

 

 Extreme event limit states account for loads such as earthquakes and vehicle collisions.  

These loading situations are considered unique occurrences whose return period may be 

significantly greater than the design life of the bridge.  The extreme event limit states are listed 

below:  

 Extreme Event I – load combination to account for earthquake loads 

 Extreme Event II – load combination to account for ice loads, collisions, floods and 

other hydraulic events 

 

 To account for excessive stresses, deformations and cracking under regular service 

conditions, service limit states are employed.  These load combinations are derived based on 

experience, not from strength or statistical calculations, unlike other limit states.  The service 

limit states are listed as follows: 

 Service I – load combination for normal use of the bridge with a 55 mph wind, 

typically used to check for excess bridge deflection and cracking in concrete decks 

 Service II – load combination to control yielding of the steel structure and slip of slip-

critical connections due to vehicular live load 

 Service III – load combination for crack control in prestressed concrete superstructure 

and girder members  

 Service IV – load combination for crack control in prestressed concrete columns  
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 The fatigue and fracture limit state is used to restrict the stress range using a single design 

truck.  These limit states are intended to limit crack growth under repetitive loads and to prevent 

fracture during the design life of the bridge, and are listed as follows: 

 Fatigue I – load combination for infinite load-induced fatigue life  

 Fatigue II – load combination related to finite load-induced fatigue life 

 

2.3.3 Structural Analysis Provisions 

 

 Multiple presence factors are employed to account for the probability of multiple design 

lanes being loaded simultaneously.  The extreme live load force effect is determined by 

considering each possible combination of the number of lanes loaded multiplied by the 

corresponding multiple presence factor.  It should be noted that these factors are not to be used 

when considering the fatigue truck; when assessing fatigue, one design truck is used, regardless 

of the number of design lanes.  AASHTO multiple presence factors are listed in Table 2.2. 

 

Table 2.2: Multiple Presence Factors (AASHTO, 2010) 

 

 

In lieu of a complex three-dimensional analysis, live load distribution factors are 

commonly employed by bridge engineers to simplify the analysis of a bridge system. 

Specifically, instead of analyzing the three-dimensional bridge system as a whole, these factors 

allow for a designer or analyst to consider bridge girders individually by determining the 

maximum number of lanes that may act on a given girder.  The applicable distributions factors 

for both moment and shear for a concrete deck on multiple steel box girders is as follows, 

regardless of the number of lanes loaded (AASHTO Table 4.6.2.2.2b-1): 
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 NL = number of design lanes as specified in Article 3.6.1.1.1 

 Nb = number of girders 

 

 There are several special restrictions when using the live load distribution factor for 

bridges containing multiple tub girders.  First, the bearing lines shall not be skewed.  Second, the 

inclination of the web plates to a plane normal to the bottom flange shall not exceed a 1 to 4 

slope.  Third, the cantilever overhang of the concrete deck, including the curb and parapet, shall 

not be greater than either 60 percent of the average distance between the centers of the top steel 

flanges of adjacent box sections (see Figure 2.8) or 6.0 feet.  Finally, the distance a taken at 

midspan shall neither be greater than 120 percent nor less than 80 percent of the distance center-

to-center of the flanges of each adjacent box (see Figure 2.8).  If nonparallel box sections are 

used, the distance center-to-center of the flanges of each adjacent tub girders shall neither be 

greater than 135 percent nor less than 65 percent.    

 

Figure 2.8: Center-to-Center Flange Distance (AASHTO, 2010) 
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2.3.4 Cross-Section Proportion Limits 

 

 In order to prevent transportation and erection issues such as damage during handling and 

distortion due to welding, cross section proportion limits are used.  These limits are based upon 

years of construction and fabrication experience in addition to research incorporated into the 

development of the specifications (Morgan, 2010). 

 

  The webs must meet the following proportions: 

   Webs without longitudinal stiffeners:    

    150
w

D

t
       Eq. 2.2 

 

   Webs with longitudinal stiffeners:  

    300
w

D

t
       Eq. 2.3 

 

 D = depth of the web plate measured along the slope  

 tw = web thickness  

 

The top flange must meet the following proportions: 

   12.0
2

f

f

b

t
        Eq. 2.4 

   
6f

D
b         Eq. 2.5 

   1.1f wt t        Eq. 2.6 

 

 bf = full width of the widest top flange width within the section under consideration 

 tf = flange thickness 

 tw = web thickness  

 D = depth of the web plate measured along the slope   
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2.3.5 Constructability 

 

In order to provide adequate resistance by the tub girders during construction, Article 

6.11.3 of AASHTO (2010) is employed.  In addition to Article 6.11.3, Article 3.4.2 is used to 

determine the appropriate load factors for construction loads.  Unlike plate girders where 

different plate thickness can be employed in different field sections, individual tub girder 

geometry must be maintained throughout the entire span length.  Internal and external cross-

frames and diaphragms, and top lateral bracing may be used to control deformations.  Finally, the 

unbraced length is taken as the distance between interior cross-frames or diaphragms. 

For tub girders in flexure, the following criteria must be met: 

 

  Discretely braced top flanges in compression must meet the following criteria: 

   bu f h ycf f R F        Eq. 2.7 

1

3bu f ncf f F          Eq. 2.8 

   bu f crwf F        Eq. 2.9 

 

  Discretely braced top flanges in tension must meet the following criteria: 

   bu f h ytf f R F        Eq. 2.10 

 

  Continuously braced top flanges in tension or compression must meet the 

following criteria: 

   bu f h yff R F        Eq. 2.11 

 

  For critical stages of construction, non-composite box flanges in compression 

shall satisfy the following requirements: 

   bu f ncf F        Eq. 2.12 

   bu f crwf F        Eq. 2.13 
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  For critical stages of construction, non-composite box flanges in tension and 

continuously braced box flanges in tension or compression shall satisfy the 

following requirements: 

bu f h yff R F        Eq. 2.14 

  

 ϕf =  resistance factor for flexure specified in Article 6.5.4.2 

 fbu =  longitudinal flange stress due to the factored loads at the section under   

consideration calculated without consideration of longitudinal warping  

 fℓ =  flange lateral bending stress determined as specified in Article 6.10.1.6 

 Fcrw =  nominal bend-buckling resistance for webs specified in Article 6.10.1.9 

 Fnc =  nominal flexural resistance of box flanges in compression determined as specified 

  in Article 6.11.8.2  

 Rh =  hybrid factor specified in Article 6.10.1.10.1 

 Fyc =  specified minimum yield strength of the compression flange  

 Fyt =  specified minimum yield strength of the tension flange 

 Fyf =  specified minimum yield strength of the flange under consideration  

2

1 3 v

yf

f

F

 
     

 
 

 fv =  St. Venant torsional shear stress in the flange due to the factored loads at the 

section under consideration =  
2 o f

T

A t
 

 Ao =  enclosed area within the box section  

 T =  internal torque due to the factored loads  

  



23 
 

  For shear requirements, webs shall satisfy the following requirement during 

critical stages of construction:  

   u v crV V        Eq. 2.15 

   
 cos
u

ui

V
V


        Eq. 2.16 

 

 ϕv =  resistance factor for shear specified in Article 6.5.4.2 

 Vu =  vertical shear due the factored loads on one inclined web 

 Vcr =  shear buckling resistance determined from Eq. 6.10.9.3.3-1 

 Vui =  shear due to the factored loads along one inclined web  

 θ =  the angle of inclination of the web plate to the vertical  

 

2.3.6 Service Limit State 

 

 The function of the service limit state is to ensure the maintainability and durability of the 

structure.  In doing so, it not only provides the user with a higher level of ride ability but also 

preserves the life of the structure throughout the bridge’s service life (Morgan, 2010).  The limits 

specified in this section are related to arresting both elastic and permanent deformations. 

 To control permanent deformations, several requirements are established.  If the concrete 

deck is assumed to be fully effective in both the negative and positive bending regions, the 

Service II load combination is applied to both the short-term and long-term composite sections.  

 The flanges must satisfy the following requirements in order to prevent web yielding and 

bend-buckling from occurring prior to flange strength development: 

 

  For the top steel flange of the composite section, the following requirement must 

be met: 

   0.95f h yff R F       Eq. 2.17 
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  For the bottom steel flange of the composite section, the following requirement 

must be met: 

   0.95
2f h yf

f
f R F        Eq. 2.18 

 

  For both steel flanges of non-composite section, the following requirement must 

be met: 

   0.80
2f h yf

f
f R F        Eq. 2.19 

 

 ff =  flange stress at the section under consideration due to Service II loads calculated  

  without consideration of lateral flange bending  

 fℓ =  lateral flange bending stress at the section under consideration due to the Service 

II loads determined as specified in Article 6.10.1.6 

 Fyf =  specified minimum yield strength of the flange under consideration 

 Rh =  hybrid factor specified in Article 6.10.1.10.1 

 

 Article 2.5.2.6 in AASHTO (2010) list suggested limits for elastic live load deflections 

(see Figure 2.9).  When checking live load deflection, the load to be used is the greater of the 

design truck plus impact or 25% of the design truck with impact plus the design lane load.  It is 

assumed that all of the components of the bridge deflect equally and that all design lanes are to 

be equally loaded.  The short-term composite section is to be used as the stiffness of the structure 

when computing deflection.     

 

 

Figure 2.9: Live Load Deflection Limits (AASHTO, 2010) 
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 Web bending buckling can cause accelerated deck deteriorating and could possibility lead 

to rupture from plastic deformations.  The following Service II requirements are established so 

the web has the capacity to resist web bend buckling: 

 

  All sections of the web must satisfy: 

   c crwf F        Eq. 2.20  

  

 fc =  compression flange stress at the section under consideration due to the Service II  

  loads calculated without consideration of lateral flange bending  

 Fcrw =  nominal bend-buckling resistance for the web specified in Article 6.10.1.9 

 

2.3.7 Fatigue & Fracture Limit State 

 

 For the fatigue limit state, the design life of the bridge and limits for live load stress 

ranges are used to prevent fatigue crack growth.  Fatigue is generally divided into two categories: 

load-induced fatigue and distortion-induced fatigue and is outlined in Articles 6.6.1.2 and 6.6.1.3 

in AASHTO (2010), respectively.  Connections and fabrication details are arranged according to 

fatigue categories (each with their own respective maximum fatigue threshold stress ranges, 

ΔFth) and are specified in AASHTO (2010) Table 6.6.1.2.3-1.   

 For load-induced fatigue, the stress range caused by live loads is computed for flexural 

members using the short-term composite section.  Residual stresses are not considered and 

fatigue is only considered in regions where permanent loads produce compression if the 

compression stresses are less than twice the maximum tensile stresses.  The maximum tensile 

stresses are caused by the live loads calculated using the fatigue limit state load combination 

(Morgan, 2010).   

 

Each detail must satisfy the following for load induced fatigue: 

      
n

f F          Eq. 2.21 
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  For the Fatigue I load combination and infinite life, the nominal fatigue resistance 

is computed as follows: 

      
n TH

F F         Eq. 2.22 

 

  For the Fatigue II load combination and finite life, the nominal fatigue resistance 

is computed as follows: 

    
1

3

n

A
F

N
    
 

      Eq. 2.23 

 

 N =  number of fatigue cycles over the design life of the structure Eq. 2.24 

 A =  constant take from Table 6.6.1.2.5-1 

 n =  number of stress range cycles per truck passage taken from Table 6.6.1.2.5-2 

 

 Distortion-induced fatigue is specified in AASHTO (2010) Article 6.6.1.3.  Connection 

details are established to ensure sufficient load paths exist to properly transmit all intended and 

unintended forces.  These forces could be transferred through transverse, lateral and longitudinal 

members.  To establish load paths, the girder compression and tension flanges are bolted or 

welded at connecting diaphragms, internal or external diaphragms and floor beams or stringers. 

These diaphragms, floor beams or stringers are attached to transverse connection plates or to 

transverse stiffeners acting as connection plates.  If the load that will act on the welded or bolted 

connection is unknown, the connection should be able to resist a lateral load of at least 20 kips 

(Morgan, 2010). 

 Article 6.6.2 in AASHTO (2010) defines the requirements for fracture.  All primary 

longitudinal superstructure components and connections sustaining stress due to the Strength I 

Load Combination shall require Charpy V-notch testing.  Finally, all structural members that are 

fracture critical must meet Charpy V-notch toughness requirements (Morgan, 2010).  
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2.3.8 Strength Limit State 

 

 The strength limit state ensures that the bridge has sufficient capacity to safely resist the 

applied moments and shears that act over the entire life of the bridge.  Article 6.11.6 in 

AASHTO (2010) describes the strength limit state for box girders and is broken down into four 

main sections.   

 

2.3.8.1 General Requirements 

 

 For straight bridges the minimum yield strength of both flanges and the web cannot 

exceed 70 ksi.  The web must satisfy AASHTO (2010) Article 6.11.2.1.2 which is cross section 

proportion limits; webs without longitudinal stiffeners (see Section 2.5.3). 

To check if the web slenderness limit is met, the following equation must be 

satisfied:  

   
2

3.76cp

w yc

D E

t F
       Eq. 2.25 

 

 Dcp =  depth of the web in compression at the plastic moment determined as specified in  

  Article D6.3.2 

 Fyc =  specified minimum yield strength of the compression flange  

 E =  modulus of elasticity of steel  

 tw =  web thickness   
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 Compact sections shall satisfy AASHTO (2010) Article 6.11.7.1 (see Section 2.5.9.2).  If 

the section does not satisfy Article 6.11.7.1, the section is considered noncompact and shall meet 

the requirements of AASHTO (2010) Article 6.11.7.2 (see Section 2.5.9.2). 

 

Compact and noncompact sections shall meet the ductility requirement as 

follows: 

   0.42p tD D        Eq. 2.26 

 

 Dp =  distance from the top of the concrete deck to the neutral axis of the composite  

  section at the plastic moment  

 Dt =  total depth of the composite section  

 

2.3.8.2 Flexural Capacity of Composite Sections 

 

The following provisions apply to compact sections: 

 

  At the strength limit state, the section shall satisfy: 

   u f nM M        Eq. 2.27 

  

 ϕf =  resistance factor for flexure specified in Article 6.5.4.2 

 Mn =  nominal flexural resistance of the section determined as specified in Article  

  6.11.7.1.2 

 Mu =  bending moment about the major axis of the cross section due to the factored 

loads at the section under consideration    
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  The nominal flexural resistance of simply-supported beams is computed as 

follows: 

          If Dp ≤ 0.1 Dt then: 

    n pM M       Eq. 2.28  

Otherwise: 

    1.07 0.7 p
n p

t

D
M M

D

 
  

 
    Eq. 2.29 

 

 Dp =  distance from the top of the concrete deck to the neutral axis of the composite  

  section at the plastic moment 

 Dt =  total depth of the composite section  

 Mp =  plastic moment of the composite section determined as specified in Article D6.1 

 Mn =  nominal flexural resistance  

 

  The nominal flexural resistance of continuous-span beams is limited to: 

   1.3n h yM R M       Eq. 2.30 

 

 Mn =  nominal flexural resistance 

 My =  yield moment as specified in Article D6.2 

 Rh =  hybrid factor specified in Article 6.10.1.10.1 
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The following provisions apply to noncompact sections: 

  At the strength limit state, compression flanges shall satisfy the following: 

   bu f ncf F        Eq. 2.31 

   

 ϕf =  resistance factor for flexure specified in Article 6.5.4.2 

 fbu =  longitudinal flange stress at the section under consideration calculated without  

  consideration of lateral flange bending or longitudinal warping  

 Fnc =  nominal flexural resistance of the compression flange as specified in Article  

  6.11.7.2.2 

 

  The nominal resistance of compression flanges is computed as follows: 

   nc b h ycF R R F       Eq. 2.32 

 

 Fnc =  nominal flexural resistance of the compression flange as specified in Article  

  6.11.7.2.2 

 Rb =  web load shedding factor determined as specified in Article 6.10.1.10.2 

 Rh =  hybrid factor specified in Article 6.10.1.10.1 

 Fyc =  specified minimum yield strength of the compression flange  
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2.3.8.3 Flexural Capacity of Noncomposite Sections 

 

The following provisions are applied to noncomposite sections: 

 

  At the strength limit state, the following requirement shall be satisfied for flanges 

in compression: 

   bu f ncf F        Eq. 2.33  

 

 ϕf =  resistance factor for flexure specified in Article 6.5.4.2 

 fbu =  longitudinal flange stress at the section due to the factored loads at the section  

  under consideration calculated without consideration of longitudinal warping 

 Fnc =  nominal flexural resistance of the compression flange as specified in Article  

  6.11.8.2 

 

  At the strength limit state, the following requirement shall be satisfied for flanges 

in tension: 

   bu f ntf F        Eq. 2.34 

  

 ϕf =  resistance factor for flexure specified in Article 6.5.4.2 

fbu =  longitudinal flange stress at the section due to the factored loads at the section  

  under consideration calculated without consideration of longitudinal warping 

Fnt =  nominal flexural resistance of the flange determined as specified in Article 

6.11.8.3 
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The flexural resistance of unstiffened flanges in compression is computed as follows: 

  If  1f
yc

kE
R

F
    then: 

   nc h h ycF R R F        Eq. 2.35  

 

  If  1 2f
yc yc

kE kE
R R

F F
    then: 

   
2

2 1

1 sin
2

fc yc

yr fc
nc b h yc

h yc

b F
R

F t kE
F R R F

R F R R



    
    

                       
        

  

           Eq. 2.36 

  If  2f
yc

kE
R

F
    then: 

   

2
2

2 2

0.9

0.9
fcb b v

nc
s fcfc

fc

bER k R f k
F

Ek tb

t

 
       

  
 

    Eq. 2.37 

  

 
fc

f
fc

b

t
           Eq. 2.38 

 

2

1 3 v

yc

f

F

 
     

 
        Eq. 2.39 

 
2v

o fc

T
f

A t
          Eq. 2.40 

  0.4yr yc ywF F F           Eq. 2.41 

 k =  plate buckling coefficient for uniform normal stress = 4.0 

 ks =  plate buckling coefficient for shear stress = 5.34 
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 1
2 2

2

0.57

1
4

2
v

yc s

R

f k

F k


                  

     Eq. 2.42 

 2
2 2 2

1.23

1
4

1.2
yr yr v

yc yc yc s

R

F F f k

F F F k


                       

    Eq. 2.43 

 bfc =  compression flange width between webs 

 Ao =  enclosed area within the box section 

 Rb =  web load shedding factor determined as specified in Article 6.10.1.10.2 

 Rh =  hybrid factor specified in Article 6.10.1.10.1 

 T =  internal torque due to the factored loads  

 E =  modulus of elasticity of steel  

 Fyc =  specified minimum yield strength of the compression flanges 

 Fnc =  nominal flexural resistance of the compression flanges as specified in Article  

  6.11.8.2 

 tfc =  thickness of the compression flanges  
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The flexural resistance of longitudinally stiffened flanges in compression is computed in 

the same fashion as for unstiffened flanges, with the following substitutions: 

 w shall be substituted for bfc 

 k shall be taken as follows: 

o If n = 1, then: 

  

1

3

3

8 s

fc

I
k

wt

 
   
 

      Eq. 2.44 

o If n = 2 then: 

  

1

3

3

0.894 s

fc

I
k

wt

 
   
 

     Eq. 2.45 

    1.0 4.0k    

 
 

1

3

3

2

5.34 2.84

5.34
1

s

fc

s

I

wt
k

n

 
   

  


     Eq. 2.46 

 

 Is =  moment of inertia of a single longitudinal flange stiffener about an axis parallel 

to the flange and taken at the base of the stiffener  

n =  number of equally spaced longitudinal flange stiffeners  

w =  larger of the width of the flange between longitudinal flange stiffeners or the      

 distance from a web to the nearest longitudinal flange stiffener  

tfc =  thickness of the compression flanges 

  

The flexural resistance of flanges in tension is computed as follows: 

   nt h ytF R F        Eq. 2.47 

 

 Rh =  hybrid factor specified in Article 6.10.1.10.1 

 Fyt =  specified minimum yield strength of the tension flanges 

 Fnt =  nominal flexural resistance of the tension flanges 
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2.3.8.4 Shear Capacity 

 

 The provisions for addressing shear concerns are as follows: 

At the strength limit state, straight and curved web panels shall satisfy: 

   u v nV V        Eq. 2.48 

 

 ϕv =  resistance factor for shear specified in Article 6.5.4.2  

 Vn =  nominal shear resistance determined as specified in Articles 6.10.9.2 and 6.10.9.3  

           for unstiffened and stiffened webs, respectively  

  cosu uiV V   

 Vui =  vertical shear due to the factored loads on the inclined web 

 θ =  the angle of inclination of the web plate to the vertical  

 

  The nominal shear resistance of unstiffened webs shall be taken as: 

   n cr pV V CV        Eq. 2.49 

 

 C =  Eq. 2.53, Eq. 2.54 and Eq. 2.55 are applicable with k = 5.0   

 0.58p yw wV F Dt  

 Vcr =  shear buckling resistance  

 Fyw =  specified minimum yield stress of the web 

 D =  web depth  

 tw =  web thickness   

 

For interior panels, the provisions are as follows: 

   The interior web panel with section along the entire panel proportioned 

such that: 

    
2

2.5w

fc fc ft ft

Dt

b t b t



     Eq. 2.50 
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   If Eq. 2.50 is satisfied, the nominal shear resistance of an interior web 

shall be taken as: 

    
 

2

0.87 1

1

n p

o

C
V V C

d

D

 
 

 
  

       

    Eq. 2.51 

 

   If Eq. 2.50 is not satisfied, the nominal shear resistance of an interior 

web shall be: 

    
 

2

0.87 1

1

n p

o o

C
V V C

d d

D D

 
 

 
  

       

   Eq. 2.52 

  

 0.58p yw wV F Dt  

 Fyw =  specified minimum yield stress of the web 

 D =  web depth  

 tw =  web thickness   

 do =  transverse stiffener spacing  

 Vn =  nominal shear resistance of the web panel   
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 C shall be determined as follows: 

 If  1.12
w yw

D Ek

t F
  then: 

o 1.0C         Eq. 2.53 

 If  1.12 1.40
yw w yw

Ek D Ek

F t F
    then: 

o 
1.12

yw

w

Ek
C

D F
t

       Eq. 2.54 

 If  1.40
w yw

D Ek

t F
  then: 

o 2

1.57

yw

w

Ek
C

FD

t

 
      
 
 

      Eq. 2.55 

 

The plate buckling coefficient is computed as follows: 

2

5
5

o

k
d

D

 
 
 
 

      Eq. 2.56 

 D =  web depth  

 tw =  web thickness   

 Fyw =  specified minimum yield stress of the web 

 E =  modulus of elasticity of steel 
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For end panels, the resistance is computed as follows: 

   n cr pV V CV        Eq. 2.57 

  

 C =  Eq. 2.51, Eq. 2.52 and Eq. 2.53 are applicable 

 0.58p yw wV F Dt   

 Fyw =  specified minimum yield stress of the web 

 D =  web depth  

 tw =  web thickness    

 Vcr =  shear buckling resistance   
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2.3.9 AASHTO Equation References 

 

Table 2.3 details a summary of the equations referenced in this chapter along with their 

respective AASHTO equation references and page numbers. 

 

Table 2.3: Equation Legend (AASHTO, 2010) 

Chapter 2  AASHTO 5th Edition  
AASHTO 5th 
Edition Page 

Number 

Equation 2.1 Equation 1.3.2.1-1 1-3 

Equation 2.2 Equation 6.11.2.1.2-1 6-179 

Equation 2.3 Equation 6.11.2.1.3-1 6-179 

Equation 2.4 Equation 6.11.2.2-1 6-180 

Equation 2.5 Equation 6.11.2.2-2 6-180 

Equation 2.6 Equation 6.11.2.2-3 6-180 

Equation 2.7 Equation 6.10.3.2.1-1 6-120 

Equation 2.8 Equation 6.10.3.2.1-2 6-120 

Equation 2.9 Equation 6.10.3.2.1-3 6-120 

Equation 2.10 Equation 6.10.3.2.2-1 6-122 

Equation 2.11 Equation 6.10.3.2.3-2 6-122 

Equation 2.12 Equation 6.11.3.2-1 6-181 

Equation 2.13 Equation 6.11.3.2-2 6-181 

Equation 2.14 Equation 6.11.3.2-3 6-182 

Equation 2.15 Equation 6.11.3.3-1 6-123 

Equation 2.16 Equation 6.11.8.3-1 6-196 

Equation 2.17 Equation 6.10.4.2.2-1 6-127 

Equation 2.18 Equation 6.10.4.2.2-2 6-127 

Equation 2.19 Equation 6.10.4.2.2-3 6-127 

Equation 2.20 Equation 6.10.4.2.2-4 6-127 

Equation 2.21 Equation 6.6.1.2.2-1 6-33 

Equation 2.22 Equation 6.6.1.2.5-1 6-43 

Equation 2.23 Equation 6.6.1.2.5-2 6-44 

Equation 2.24 Equation 6.6.1.2.5-3 6-44 

Equation 2.25 Equation 6.11.6.2.2-1 6-188 
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Table 2.3 (cont’d) 

Chapter 2 AASHTO 5th Edition 
AASHTO 5th 
Edition Page 

Number 

Equation 2.26 Equation 6.10.7.3-1 6-140 

Equation 2.27 Equation 6.11.7.1.1-1 6-189 

Equation 2.28 Equation 6.10.7.1.2-1 6-137 

Equation 2.29 Equation 6.10.7.1.2-2 6-137 

Equation 2.30 Equation 6.10.7.1.2-3 6-137 

Equation 2.31 Equation 6.11.7.2.1-1 6-189 

Equation 2.32 Equation 6.11.7.2.2-1 6-190 

Equation 2.33 Equation 6.11.8.1.1-1 6-191 

Equation 2.34 Equation 6.11.8.1.2-1 6-192 

Equation 2.35 Equation 6.11.8.2.2-1 6-193 

Equation 2.36 Equation 6.11.8.2.2-2 6-193 

Equation 2.37 Equation 6.11.8.2.2-3 6-193 

Equation 2.38 Equation 6.11.8.2.2-4 6-193 

Equation 2.39 Equation 6.11.8.2.2-5 6-193 

Equation 2.40 Equation 6.11.8.2.2-6 6-194 

Equation 2.41 Equation 6.11.8.2.2-7 6-194 

Equation 2.42 Equation 6.11.8.2.2-8 6-194 

Equation 2.43 Equation 6.11.8.2.2-9 6-194 

Equation 2.44 Equation 6.11.8.2.3-1 6-195 

Equation 2.45 Equation 6.11.8.2.3-2 6-195 

Equation 2.46 Equation 6.11.8.2.3-3 6-195 

Equation 2.47 Equation 6.11.8.3-1 6-196 

Equation 2.48 Equation 6.10.9.1-1 6-151 

Equation 2.49 Equation 6.10.9.2-1 6-152 

Equation 2.50 Equation 6.10.9.3.2-1 6-153 

Equation 2.51 Equation 6.10.9.3.2-2 6-153 

Equation 2.52 Equation 6.10.9.3.2-8 6-154 

Equation 2.53 Equation 6.10.9.3.2-4 6-154 

Equation 2.54 Equation 6.10.9.3.2-5 6-154 

Equation 2.55 Equation 6.10.9.3.2-6 6-154 

Equation 2.56 Equation 6.10.9.3.2-7 6-154 

Equation 2.57 Equation 6.10.9.3.3-1 6-154 

Figure 2.7 Figure 3.6.1.2.2-1 3-24 

Figure 2.8 Figure 6.11.2.3-1 6-180 

Figure 2.9 --- 2-12 
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Table 2.3 (cont’d) 

Chapter 2 AASHTO 5th Edition 
AASHTO 5th 
Edition Page 

Number 

Table 2.1 Table 3.5.1-1 3-17 

Table 2.2 Table 3.6.1.1.2-1 3-18 

 

2.4 CONCLUSION 

 

 This chapter summarized past research projects and implementations of cold-bent tub 

girders in bridge applications, the mechanics of cold bending of steel, and AASHTO 

specifications that are applicable to tub girders.  Several research projects in the past have 

attempted to use cold bending of steel to construct a bridge using accelerated bridge technology.  

Based on the findings of this chapter (and the needs of the current short-span highway bridge 

market), a more refined press-brake-formed tub girder is developed in the following chapters 

with the focus of implementing the proposed system using accelerated bridge construction 

methods. 
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CHAPTER 3:  DESIGN METHODOLOGY 

 

3.1 INTRODUCTION 

 

The following chapter details the design methodology of the proposed press-brake steel 

tub girder system for short-span bridges.  Design iterations were performed for a suite of girders 

employing standard mill plates, and girder proportions were selected based on the composite 

yield moment.  Cross-sectional properties of both the noncomposite and composite sections are 

also summarized in this chapter. 

 

3.2 DESIGN METHODOLOGY 

 

Design of the proposed system was completed in two stages.  First, a spreadsheet was 

developed to compute the section properties of any configuration of tub girder (for a discussion 

of the derivation of section properties, the reader is referred to Appendix A).  Next, design 

iterations were performed based on conservative estimates of press-brake tub girder capacity 

(essentially, limiting the capacity of the composite girders to the yield moment). 

For this effort, three different plate thicknesses were evaluated (7/16”, 1/2”, and 5/8") and 

six different standard mill plate widths were evaluated (60”, 72”, 84”, 96”, 108”, and 120”).  All 

plates were assumed for design purposes to have a yield stress, Fy = 50 ksi.  For each standard 

mill plate, a design study was performed by investigating different variations of the girder 

dimensions in order to obtain an optimum girder configuration.  For this study, the slope of the 

webs was kept at a constant 1:4 slope, and the inside bend radii of the girders was kept at a 

constant value of five times the respective plate thickness, and the top flange width was kept at a 

constant value of 6 inches.  The dimensions of the concrete deck of the composite unit were kept 

at 7.5’ wide by 8” thick.  Normal-weight concrete was assumed with a modular ratio, n = 8 and a 

compressive strength, fc’ = 4 ksi. 
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3.3 PARAMETRIC MATRIX OF GIRDERS 

 

Figures 3.1 through 3.6 show the results of these design assessments for the suite of 

standard mill plates chosen for design.  From these plots, it is clear that, for each plate, an 

optimum depth is seen at the point of maximum yield moment.  In lieu of selecting an optimum 

depth for each individual plate, plates with common standard mill widths were grouped together, 

and an optimum depth was selected for each group.  This chosen depth is indicated by the 

vertical line present in each plot. 

 

 

Figure 3.1: Design Comparisons (60” Wide Standard Mill Plates) 
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Figure 3.2: Design Comparisons (72” Wide Standard Mill Plates) 

 

 

Figure 3.3: Design Comparisons (84” Wide Standard Mill Plates) 
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Figure 3.4: Design Comparisons (96” Wide Standard Mill Plates) 

 

 

Figure 3.5: Design Comparisons (108” Wide Standard Mill Plates) 
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Figure 3.6: Design Comparisons (120” Wide Standard Mill Plates) 

 

The resulting matrix of girders, along with their respective noncomposite and composite 

section properties, are summarized in Tables 3.1 and 3.2.  Note that both the center-or-gravity, y̅, 

and the shear center, Yo, for each girder are expressed with respect to the bottom of the steel 

girder (taken positive if the distance is measured above the bottom of the girder).  In addition, for 
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axis, Dp (for a discussion regarding the computation of these composite properties, the reader is 

referred to Appendix B.) 
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Table 3.1: Noncomposite Section Properties of Parametric Matrix of Girders 

Girder w (in) d (in) t (in) bbf (in) D (in) A (in2) y̅ (in) Ix (in
4) Iy (in

4) Yo (in) J (in4) Cw (in6) βx (in) 

1 

60 12 

7/16 18.917 8.1609 26.250 5.3335 627.27 4284.6 -4.0359 1.6748 25442 5.1891 

2 1/2 18.297 7.5597 30.000 5.3966 710.77 4956.6 -3.8840 2.5000 28229 5.9100 

3 5/8 17.056 6.3572 37.500 5.5208 871.53 6355.5 -3.5677 4.8828 33297 7.4696 

4 

72 17 

7/16 20.610 13.315 31.500 7.5098 1437.4 6246.4 -6.0295 2.0098 69754 -6.3935 

5 1/2 19.989 12.714 36.000 7.5846 1635.1 7204.0 -5.8669 3.0000 78041 -5.9021 

6 5/8 18.748 11.511 45.000 7.7327 2021.9 9179.2 -5.5247 5.8594 93727 -4.8274 

7 

84 23 

7/16 20.240 19.499 36.750 10.393 2893.1 8049.6 -8.0792 2.3447 139952 -19.704 

8 1/2 19.620 18.898 42.000 10.480 3296.6 9267.1 -7.8955 3.5000 158281 -19.336 

9 5/8 18.378 17.696 52.500 10.650 4092.1 11765 -7.5078 6.8359 194534 -18.521 

10 

96 26 

7/16 26.056 22.592 42.000 11.129 4189.0 12693 -9.8140 2.6797 310587 -20.647 

11 1/2 25.435 21.991 48.000 11.216 4780.6 14584 -9.6645 4.0000 347898 -20.363 

12 5/8 24.194 20.788 60.000 11.388 5953.5 18437 -9.3462 7.8125 418495 -19.719 

13 

108 30 

7/16 29.809 26.715 47.250 12.563 6142.6 17741 -11.579 3.0146 590336 -25.132 

14 1/2 29.189 26.114 54.000 12.652 7016.0 20359 -11.444 4.5000 660933 -24.915 

15 5/8 27.948 24.911 67.500 12.831 8753.5 25674 -11.156 8.7891 793522 -24.411 

16 

120 34 

7/16 33.563 30.838 52.500 13.985 8605.4 24011 -13.306 3.3496 1049543 -29.419 

17 1/2 32.943 30.237 60.000 14.077 9834.5 27531 -13.184 5.0000 1175747 -29.257 

18 5/8 31.701 29.034 75.000 14.260 12285 34655 -12.923 9.7656 1412339 -28.870 
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Table 3.2: Composite Section Properties of Parametric Matrix of Girders 

Girder w (in) d (in) t (in) y̅ (in) Ix (in
4) My (ft-kip) Dp (in) Dp / Dt Mp (ft-kip) 

1 

60 12 

7/16 13.591 3419.5 1048.3 4.2892 0.2145 1369.6 

2 1/2 13.349 3720.5 1161.3 4.9020 0.2451 1519.1 

3 5/8 12.918 4258.4 1373.5 6.1275 0.3064 1783.7 

4 

72 17 

7/16 17.503 6163.8 1467.4 5.1471 0.2059 1957.8 

5 1/2 17.167 6743.0 1636.6 5.8824 0.2353 2171.1 

6 5/8 16.578 7782.6 1956.1 7.3529 0.2941 2548.3 

7 

84 23 

7/16 22.185 10569 1985.1 6.0049 0.1937 2695.6 

8 1/2 21.743 11592 2221.4 6.8627 0.2214 2990.6 

9 5/8 20.976 13435 2668.7 8.1406 0.2626 3518.5 

10 

96 26 

7/16 23.995 14867 2581.6 6.8627 0.2018 3402.0 

11 1/2 23.466 16306 2895.4 7.8431 0.2307 3772.6 

12 5/8 22.555 18904 3492.1 8.3844 0.2466 4461.2 

13 

108 30 

7/16 26.620 20862 3265.3 7.7206 0.2032 4248.0 

14 1/2 25.995 22876 3666.9 8.1852 0.2154 4722.8 

15 5/8 24.928 26518 4432.5 8.6336 0.2272 5613.6 

16 

120 34 

7/16 29.152 28209 4031.8 8.1312 0.1936 5190.0 

17 1/2 28.431 30918 4531.2 8.4084 0.2002 5805.8 

18 5/8 27.209 35821 5485.4 10.735 0.2556 6897.7 
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3.4 CONCLUSION 

 

 The preceding chapter detailed the design methodology of the proposed press-brake steel 

tub girder system for short-span bridges.  However, the design evaluations and determination of 

cross-section dimensions were based on conservative estimates of press-brake tub girder 

capacity.  The following chapters discuss experimental testing, analytical modeling, behavioral 

studies, and feasibility assessments of this system in order to better define its behavior and 

capacity. 
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CHAPTER 4:  EXPERIMENTAL TESTING PROGRAM 

 

4.1 INTRODUCTION 

 

Contained in this chapter is an overview of the physical investigation completed to assess 

proposed press-brake-formed shallow steel tub girder.  A brief description of the composite and 

noncomposite specimens tested is provided along with an overview of the test procedure, the 

equipment used, and the results of testing efforts. 

 

4.2 OVERVIEW OF TESTING PROGRAM 

 

 In order to verify the performance and capacity of this newly-developed modular tub 

girder, physical flexural testing was conducted at the Major Units Laboratory at West Virginia 

University.  Flexural testing was conducted on simply-supported composite and noncomposite 

press-brake tub girder specimens in three-point bending, according to Figures 4.1 and 4.2. 

 

 

Figure 4.1: Typical Test Setup Schematic 
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Figure 4.2: Isometric View of Typical Test Setup 

 

 Simply-supported boundary conditions were simulated by using bearing plates fabricated 

with 2-inch-diameter round bar (shown in Figures 4.3 and 4.4), which act as the beam supports.  

One of the bearing plates was fabricated with the round bar welded to the bearing plate 

(simulating a “pinned” boundary condition) whereas the other was fabricated with a small 

groove, allowing the round bar to freely displace longitudinally (simulating a “roller” boundary 

condition).  In addition, to prevent unintentional rotation at support reactions and increase the 

safety of the test conditions, lateral bracing was provided at support locations by equal-leg 

angles, connecting the flexural specimen to a lateral-resisting steel frame.  Connection plates 

were welded to the outside webs of the testing specimen to connect the specimen to the bracing 

elements. 
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Figure 4.3: Typical Support Schematic 

 

 

Figure 4.4: In-Place View of Typical Support Conditions 
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4.3 SPECIMEN DESCRIPTIONS 

 

 Four specimens were tested for this research effort: 

 Two of the specimens (Experiments 1 and 2) consisted of a single tub girder 

specimen (comprised of HPS-50 steel) with a composite cast-in-place concrete deck. 

 The remaining two specimens consisted of the noncomposite steel section alone.  

o The plate used for Experiment 3 consisted of HPS-50W weathering steel 

o The plate used for Experiment 4 consisted of HPS-50 steel.  The girder was 

galvanized (hot-dipped) at AZZ Galvanizing Service (located in Canton, OH) 

prior to its arrival at the Major Units Lab. 

 

The steel employed for each specimen was an 84” × 7/16” × 480” plate.  Fabrication was 

performed by Greiner Industries, Inc. (located in Mt. Joy, PA) and American Tank & Fabricating 

(located in Cleveland, OH).  Utilizing a standard plate, the tub girder was fabricated using a large 

capacity press-brake.  Plates were aligned in the press-brake, and cold bent to achieve target 

bend radii.  Coupons were taken from appropriate locations on the steel sections and tested by 

Turner-Fairbank's Highway Research Center to obtain material properties.  Figure 4.5 shows the 

large-capacity press brake being used to form the testing specimen.   

 

(a) (b) 

Figure 4.5: Forming Process, (a) Press Brake, (b) Bending of Specimen’s Top Flange. 

 

Using the design studies discussed in Chapter 3, the optimum section using an 84” × 

7/16” plate was found to have a top flange width of 6 inches and a total girder depth of 23 
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inches. Figure 4.6 shows a cross-section view of the press-brake tub girder design that was used 

for experimental testing.  Two rows of 7/8” × 4” shear studs were welded on each top flange. 

End bearing plates were also utilized to prevent potential premature bearing failure during 

flexural testing (see Figure 4.7). A reinforced concrete deck was also cast on the top flanges of 

composite specimens as shown in Figure 4.8; it should be noted that the reinforcement pattern 

was designed according to the empirical deck method presented in Article 9.7.2 of AASHTO 

LRFD Specifications (AASHTO 2010). 

 

 

Figure 4.6: Testing Specimen Dimensions 

 

 

Figure 4.7: Bearing Plate 
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Figure 4.8: Deck Reinforcement for Composite Specimens 

 

Once the steel girders were fitted in the testing frame, a system of deck forms was 

constructed around those specimens that were to be tested with a composite concrete deck. 

Figures 4.9 through 4.11 show a typical view of these forms, which were intended to support the 

weight of the uncured concrete deck, reinforcement and construction loads on the girder 

overhang. 

 

 

Figure 4.9: Elevation View Schematic of Deck Forms 
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Figure 4.10: Section View Schematic of Deck Forms 

 

 

Figure 4.11: Isometric View of Deck Forms 
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Concrete was placed using a three-quarter yard concrete bucket (see Figure 4.12).  After 

casting, the concrete deck was allowed to cure for 28 days before flexural testing. 

 

 

Figure 4.12: Concrete Bucket Used for Deck Placement 

 

4.3 INSTRUMENTATION 

 

4.3.1 Instruments 

 

 Vertical deflections were determined by means of linear variable displacement 

transducers (LVDTs), each with a total range of 6 inches.  In addition, two types of foil-resistor 

strain gages were employed:  uniaxial strain gages were installed along the bottom flange of the 

girder, and rectangular rosettes were installed along the web of the girder.  The load was applied 

using an MTS 330-kip servo hydraulic actuator. 

The data was recorded using StrainSmart software (Micro-Measurements, Inc., 2010) in 

conjunction with a Micro-Measurements Model 5100 Scanner. This data acquisition system was 

also used to obtain the deflection data from the installed LVDTs.   
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4.3.2 Instrumentation Plan 

 

 A total of 18 strain gages were employed during flexural testing as shown in Figure 4.13. 

Six of these gages were uniaxial gages, placed along the bottom flange to capture tensile strains 

in the steel girder.  The remaining gages were rectangular rosettes, placed along quarter points 

along the flat portion of the web to capture bending and shear strains.  All of these strain gages 

were placed along a cross section 46 inches (or 2 × steel girder depth) away from the point of 

load application to avoid strain concentration effects. 

 

 

Figure 4.13: Typical Strain Gage Layout 

 

 Four LVDTs were placed along the girder to measure vertical deflections.  Specifically, 

two LVDTs were placed at 0.50L (one on the edge of each top flange) and two were placed at 

0.25L, where L is the span length.  To prevent possible damage to the instruments, equal-leg 

angles were welded to the top flange to allow access to the LVDTs.  These LVDT measurements 

were subsequently averaged to obtain vertical deflections at respective locations along the span 

of the specimen. 
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Figure 4.14: LVDTs Measuring Vertical Deflection 

 

4.4 MATERIAL TESTING 

 

 Both the steel and concrete samples were tested to obtain material properties for use in 

subsequent finite element modeling and strain compatibility assessments of these members. 

 

4.4.1 Steel Material Properties 

 

 Tensile coupons were taken from appropriate locations during the press-brake operation 

on the steel sections and tested by Turner-Fairbank's Highway Research Center.  Specifically, 

five coupons were obtained (both in the longitudinal and transverse directions of rolling).  Figure 

4.15 shows the coupon test results from Turner-Fairbank's tensile testing.  This data was 

subsequently used in analytical studies discussed in Chapter 5. 
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Figure 4.15: Results from Tensile Testing of Steel Coupons 

 

4.4.2 Concrete Material Properties 

 

 For this test, six concrete cylinders were cast during deck placement.  Cylinders were 

tested 28 days after casting to obtain in-place compressive strength of the flexural specimen. 

These compressive strengths were then averaged to obtain the compressive strength used in the 

analytical and mechanistic models.  After testing, an average compressive stress of 4.1 ksi was 

found. 

 

4.5 FLEXURAL TESTING 

 

Once specimens were installed in the testing frame and instrumented (and, if applicable, 

the composite concrete deck was allowed to cure), load was applied until each specimen reached 

failure.  During each test, readings were recorded from strain gages and LVDTs; these readings 

are summarized in Appendix C. 
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4.5.1 Testing Procedure 

 

 As previously stated, the test load was applied at midspan using a servo-hydraulic 

actuator which was mounted to a large structural reaction frame. To minimize bearing effects, for 

composite specimens load was applied through a steel spreader beam placed on top of an 

elastomeric bearing pad.  For noncomposite tests, a WT section was fabricated to be bolted 

between top flanges; the steel spreader beam and elastomeric pad was then placed on top of the 

spreader for load application. 

For safety and accurate data collection, each specimen was loaded in the stroke control. 

Each load step consisted of the application of a small increment of displacement (typically 

between 0.05 and 0.10 in.). Allowing for stabilization of the applied load, the following load step 

was applied after a time period of approximately 5 minutes had elapsed. 

 

4.5.2 Composite Specimen Testing Results 

 

 Figure 4.16 shows the failure mode for a typical composite specimen.  As shown, the 

failure modes of these specimens are governed by the section’s ductility, exhibited by crushing 

of the concrete deck. 

 

 

Figure 4.16: Typical Failure Mode for Composite Specimens 
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Midspan load-deflection results for the two composite specimens tested are shown in 

Figure 4.17.  Both girders experienced a maximum deflection of approximately 3.1 inches and an 

average maximum applied load of approximately 304 kips at the moment of failure. 

 

 

Figure 4.17: Load-Deflection Data from Flexural Testing of Composite Specimens 

 

4.5.2 Noncomposite Specimen Testing Results 

 

Figure 4.18 shows the failure mode for a typical noncomposite specimen.  As shown, the 

failure modes of these specimens are governed by the section’s stability, exhibited by excessive 

lateral deflection and twist. 
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Figure 4.18: Typical Failure Mode for Noncomposite Specimens 

 

Midspan load-deflection results for the two composite specimens tested are shown in 

Figure 4.17.  Both girders exhibited linear behavior until failure.  It should be noted that 

noncomposite testing was terminated when the girders exhibited excessive lateral deflection and 

twist.  This behavior of the noncomposite is discussed further in Chapter 6. 
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Figure 4.19: Load-Deflection Data from Flexural Testing of Noncomposite Specimens 

 

4.6 CONCLUSION 

 

 The preceding chapter discussed flexural testing conducted on representative shallow 

steel press-brake-formed tub girder specimens.  This data will be used to validate analytical 

studies on this system, discussed in Chapter 5. 
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CHAPTER 5:  ANALYTICAL MODELING TECHNIQUES 

 

5.1 INTRODUCTION 

 

 The following chapter details two separate analytical tools developed to accurately assess 

the behavior and capacity of the proposed press-brake tub girder system.  The first is a three-

dimensional nonlinear finite element modeling procedure for capturing the behavior and ultimate 

capacity of both noncomposite and composite press-brake tub girders.  The second is a strain-

compatibility approach developed to quickly determine the nominal flexural capacity of a 

composite press-brake-formed tub girder. 

 

5.2 FINITE ELEMENT MODELING PROCEDURES 

 

 Finite element analysis was conducted in this study using the commercial finite element 

software package Abaqus/CAE (Dassault Systèmes, 2010).  Modeling results were also 

benchmarked against experimental data to assess their validity and accuracy. 

 

5.2.1 Element Selection 

 

Abaqus is a commercial finite element software package which provides the user with a 

large library of elements for three-dimensional stress analysis.  Therefore, it is necessary to 

initially investigate the suitability of a selected element type for a given problem.  As shown by 

several researchers (Barth, 1996; Yang, 2004; Roberts, 2004; Righman, 2005), S4R shell 

elements are quite accurate in modeling the physical behavior of both noncomposite and 

composite steel plate girders.  The S4R element is a 4-node general-purpose shell element 

intended to provide robust, accurate solutions for both thin and thick shells, using classical 

(Kirchhoff) shell theory when appropriate for relatively thin shells and thick (Mindlin) shell 

theory as the shell thickness increases. These elements allow for finite membrane strains and 

rotations of the shell. Therefore, they are suitable for large-strain analysis involving inelastic 
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deformation of materials. These elements also allow for change in shell thickness as a function of 

the membrane strain. In addition, consideration of transverse shear deformation is also included. 

S4R elements employ "reduced" integration schemes; that is, for a four-noded element, 

only one Gauss integration point is used to form the element stiffness matrix.  This integration 

scheme yields several advantages over traditional shell elements.  For example, reduced 

integration computes strains and stresses at the locations known to provide optimal accuracy; 

thus, reduced integration usually produces more accurate results, provided the elements are not 

disturbed or loaded in in-plane bending.  The use of fewer integration points also benefits the 

user by resulting in reduced computing time and storage requirements.  The primary 

disadvantage of using reduced integration is that deformation modes that cause no strain at the 

integration points may develop.  This may lead to inaccurate results if these zero-energy modes 

propagate through the structure in a phenomenon commonly known as hourglassing.  However, 

this can be prevented by the user by introducing a small artificial stiffness associated with zero-

energy deformation modes using the *SECTION CONTROLS command in an Abaqus input file. 

 

5.2.2 Material Modeling 

5.2.2.1 Structural Steel 

 

Elements simulating steel in this study were modeled using an elastic-plastic constitutive 

law including strain hardening effects.  Specifically, the steel was modeled using the *PLASTIC 

command in the Abaqus input file, which designates a material with a material with a standard 

von Mises yield surface, an associated plastic flow rule (Chen & Han, 1988), and isotropic work 

hardening.  This type of material model has been found to be suitable to represent rate-

independent behavior of a metal subjected to a relatively monotonic loading where creep effects 

are non-critical (Barth, 1996; Yang, 2004). 

A multilinear relationship (Galindez, 2009) was used to represent the stress-strain 

characteristics used in the material modeling.  This material model is shown in Figure 5.1, and 

the expressions employed to compute the curve are listed in Table 5.1.  The values used to define 

key points in the nonlinear region of the curve are based on the coupon testing of samples 

discussed in Chapter 4 and are listed in Table 5.2.  The stress-strain relationship described is then 
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converted into terms of true stress and true plastic strain (Chen & Han, 1988), as required for 

input into an Abaqus input file. 

 

 

Figure 5.1: Multilinear Stress-Strain Curve 

 

Table 5.1: Expressions for Computing Steel Stress-Strain Behavior (Galindez, 2009) 
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Table 5.2: Average Steel Plate Properties 

Property Average Value 

Modulus of Elasticity, E (ksi) 29559 

Static Yield Stress, σy (ksi) 60.962 

Offset Yield Stress, σ0.2% (ksi) 63.050 

Strain at the Onset on Strain Hardening, εst (%) 1.7883 

Strain Hardening Modulus, Est (ksi) 1033.5 

Tensile Stress, σu (ksi) 84.382 

Strain at the Tensile Stress, εu (%) 13.165 

 

5.2.2.2 Reinforced Concrete 

 

Elements modeling reinforced concrete in this study are modeled using a smeared crack 

concrete model in conjunction with reinforcement definitions for appropriate elements.  

Specifically, the concrete is modeled using the *CONCRETE and *TENSION STIFFENING 

commands in the Abaqus input file.  The concrete model is a smeared crack model in the sense 

that it does not track individual “macro” cracks.  Constitutive calculations are performed 

independently at each integration point of the finite element model.  The presence of cracks 

enters into these calculations by the way in which the cracks affect the stress and material 

stiffness associated with the integration point.  Cracks are irrecoverable: they remain for the rest 

of the calculation (but may open and close).  Following crack detection, the crack affects the 

calculations because a damaged elasticity model is used (Dassault Systèmes, 2010).  This type of 

material model has been found to be suitable to represent rate-independent behavior of 

reinforced concrete subjected to a relatively monotonic loading where creep effects are not 

important (Roberts, 2004). 

The Comitè Europèen du Bèton (CEB) concrete model (Roberts, 2004) was chosen to 

represent the compressive concrete properties used in the analyses in this work. Previous 

research by Roberts has shown that the CEB model (see Equation 5.1) successfully captures the 

compressive behavior of the type of decks studied in this work. Figure 5.2 shows the CEB 

compressive model for a compressive strength of 4.1 ksi (equal to the average compressive stress 
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found in the cylinder samples discussed in Chapter 4), with a concrete crushing strain of 0.003.  

Tension behavior is modeled using a simple bi-linear constitutive model as shown in Figure 5.3. 
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where:  σc = concrete compressive stress (ksi) 

εc = concrete compressive strain 

fc’ = concrete compressive strength (ksi) 
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Figure 5.2: Stress-Strain Curve for Reinforced Concrete (Compression Region) 
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Figure 5.3: Stress-Strain Curve for Reinforced Concrete (Tension Region) 

 

The modeling of elements simulating concrete also incorporates steel reinforcement 

within the deck. This is included by using the *REBAR option in the Abaqus input file and is 

represented by a smeared layer of reinforcement at the specified location within the deck.  The 

material model for steel reinforcement is essentially the same as for structural steel, as discussed 

in Section 5.2.2.1.  The stress-strain curve utilized for rebar is taken from Roberts (2004) and 

simulates steel with a modulus of elasticity of 29000 ksi and a yield stress of 60 ksi. 

 

5.2.3 Additional Modeling Considerations 

 

Composite steel girders undergoing flexure predominately experience failure due to 

either yielding of steel elements in tension or loss of stiffness of concrete components due to 

excessive compressive stress or cracking.  However, in noncomposite steel girders, because 

elements in compression are not restrained by the concrete deck, the girder can experience a 

variety of buckling modes, such as lateral torsional buckling, local flange buckling, and local 

web buckling.  Therefore, when modeling noncomposite steel girders in flexure, additional 

considerations, such as the incorporation of geometric imperfections of the girder during 

fabrication and residual stresses due to flame cutting and welding, must be taken to ensure 

accurate modeling of structural behavior of steel flexural elements. 
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5.2.3.1 Application of Geometric Imperfections 

 

The nonlinearity in response due to the presence of initial imperfections of the girder has 

a measurable impact on girder response under flexural loads due to the girder’s susceptibility to 

various buckling modes. Furthermore, from the numerical analysis point of view, the modified 

Riks method of analysis (as discussed in Section 5.2.4) used in this work is a type of post-

buckling analysis. Thus, a continuous response is required as opposed to bifurcation. This can be 

accomplished by introducing a geometric imperfection pattern in the “perfect” geometry so that 

some degree of amplification occurs before the critical load is reached, as would occur in actual 

girders. Therefore, introduction of geometric imperfections is a critical step in this type of 

analysis. 

In welded plate girders, initial geometric imperfections are generally generated during the 

welding process and result in initial out-of-flatness of the long steel plates. Three types of 

geometric imperfections are considered in this work in order to capture these characteristics: an 

out-of-flatness of the web, a tilt of the compression flange, and a lateral sweep of the 

compression flange. These imperfections are illustrated in Figure 5.4. 

 

 

Figure 5.4: Initial Geometric Imperfections Patterns (Yang, 2004) 
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The values prescribed for these three types of imperfections are based on maximum 

allowable tolerances specified by the American Welding Society (AWS) and engineering 

judgment (Yang, 2004). For example, AWS specifies alternative tolerances for the initial out-of-

flatness of the web, depending on if the girder is stiffened. For girders with one-sided transverse 

stiffeners, the maximum allowable initial out-of-flatness of the web, δow, is d / 67, where d is the 

minimum panel dimension, either the web depth (D) or distance between stiffeners (do). 

Alternatively, the maximum allowable value is D / 150 for unstiffened girders. In this study δow 

is prescribed to be equal to d / 100, which is chosen to represent a midpoint between the above 

two requirements. This maximum value of distortion occurs at the center of each web panel and 

the amount of out-of-flatness at all other locations in the web panel decreases in a half sine wave 

pattern, in both the X and Y-directions. Furthermore, the direction of δow alternates in adjacent 

web panels. 

The maximum allowable tilt of the flanges, δof, specified by AWS is equal to bf / 100 or 

0.25 in., whichever is greater. However, it is felt that it is unlikely that the distortion of the flange 

would be this severe in girders with relatively short panel lengths. Therefore, δof is assigned to be 

the lesser value of bfc / 150 or 0.3do / 150 = do / 500. This results in values slightly less than that 

permitted by AWS for girders with long panel lengths (i.e., bfc < 0.3do), while for short panels, 

δof may be significantly less than AWS tolerances. The maximum value of δof occurs at the 

horizontal center of each web panel along the flange edge. The value of δof decreases in a sine-

wave pattern along the length of the girder and also decreases linearly along the width of the 

flange. The direction of δof also alternates in adjacent panels. 

AWS limits the variation in straightness of welded girders to 1/960th of the girder length. 

In this work, a lateral sweep of the compression flange (δoL) is specified to be somewhat less than 

this limit, with a maximum value equal to Lb / 1500, where Lb is the distance between lateral 

bracing. This value is prescribed at the center of the lateral bracing segment at the web-

compression flange junction. The value of δoL varies in a sine wave pattern along the longitudinal 

direction of the girder and varies linearly along the depth of the girder. As with the other 

imperfections, the direction of δoL alternates in adjacent lateral bracing segments. Furthermore, 

δoL and δow are prescribed in the same direction within each web panel so that the effects of these 

two imperfections are cumulative. 
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5.2.3.2 Application of Residual Stresses 

 

 The longitudinal residual stresses in welded I-girders are primarily caused by flame 

cutting of the plates and longitudinal welding between the flanges and the web. Typically, the 

tensile residual stresses are essentially equal to the yield stress of the material within a small 

area, termed the heat affected zones, while a smaller, near-constant self-equilibrating 

compression stress is developed within the other regions of the plates. The residual stress 

distribution may be idealized by assuming that when the section is free of external forces, the 

residual stresses over the entire cross-section must satisfy equilibrium and sum to zero. 

In this study, residual stress effects are represented by specifying initial stress conditions 

at the beginning of the analysis through a user-defined sub-routine, which automatically applies a 

prescribed magnitude of initial (residual) stress to each element depending on the elements 

location in the girder. When initial stresses are given, the initial stress state may not be in exact 

equilibrium for the finite element matrix. Therefore, an initial step is included to allow Abaqus to 

check for equilibrium and iterate, if necessary, to achieve equilibrium. Specifically, a *STATIC 

step, where girder dead load is also applied, is implemented before the Riks analysis to insure 

that equilibrium is satisfied once residual stresses have been included. 

The residual stress pattern that is used in this study is shown in Figure 5.5. This stress 

distribution is considered a reasonable approximation of the actual residual stresses induced by 

welding and flame cutting in typical plate girders (Righman, 2005). 

 

 

Figure 5.5: Gauss Ppoint Residual Stresses (Righman, 2005) 
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5.2.4 Solution Algorithm 

 

To capture the load-deflection response of the finite element models, unstable collapse 

and post-buckling analysis procedures were needed to trace the complete nonlinear load-

deflection behavior.  Specifically, a modified Riks algorithm available in Abaqus, shown in 

Figure 5.6, was used to analyze the girders. 

 

 

Figure 5.6: Modified Riks Algorithm (Dassault Systèmes, 2010) 

 

Assuming the loading is proportional (i.e., all load magnitudes vary with a single scalar 

parameter) and that the response is reasonably smooth (sudden bifurcations do not occur), the 

modified Riks method uses the load magnitude as an additional unknown and solves 

simultaneously for loads and displacements. Because the progress of the solution is independent 

of the load increment, Abaqus uses the “arc length,” which is the distance along the static 

equilibrium path in load-displacement space, to control the increment size. The “arc length” 

value is initially set by the users and is later adjusted by the Abaqus automatic load increment 

algorithm based on the convergence rate. The fundamental nature of the method is that the 

solution is viewed as the discovery of a single equilibrium path in a space defined by the nodal 

variables and the loading parameter (Dassault Systèmes, 2010). 



75 
 

Development of the solution requires navigation of this path as far as required. The basic 

algorithm remains the Newton method; therefore, at any time there will be a finite radius of 

convergence. During each increment, the solution is found by moving a given distance along the 

tangent line to the current solution point and then searching for equilibrium in the plane that not 

only passes through the point obtained, but also is orthogonal to the same tangent line.  The total 

path length traversed is determined by the load magnitudes supplied by the user in the loading 

options. The number of increments is determined by the user-specified time increment data, 

assisted by Abaqus automatic incrementation scheme, if chosen. 

Also important to note is that the number of Gauss integration points through the slab 

thickness has been changed from 5 points (the Abaqus default value) to 7 points and a linear 

search technique by changing the load level during iteration is used. These changes have been 

well established to better capture the crushing and cracking of the concrete and speed of 

convergence (Barth & Wu, 2006). 

 

5.3 VERIFICATION OF FINITE ELEMENT MODELING  

 

 In order to assess the validity of these modeling techniques, experimental data from 

previous laboratory experiments were employed as a benchmark.  Discussed herein are the 

benchmark tests utilized and results from comparisons between experimental and analytical 

results. 

 

5.3.1 Benchmark Analysis #1:  Schilling and Morcos (1988) 

 

 In 1988, Schilling and Morcos tested three steel plate girders in order to determine 

moment-rotation characteristics of steel girders with ultra-compact flanges.  These three girders 

(denoted “S” for shallow, “M” for medium depth, and “D” for deep) were tested in three-point 

bending and loaded until failure.  Figure 5.7 shows the details of the “D” girder, which was used 

for benchmarking. 
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Figure 5.7: “D” girder from Schilling and Morcos (1988). 

 

The selection of relatively large elements will result in unrealistically low predicted 

strengths due to the effects of stress concentrations, while relatively small elements can cause an 

overestimation of the energy dissipation capacity (Righman, 2005). By selecting the appropriate 

mesh density, these situations will be avoided, and accurate results can be obtained. Previous 

research by Yang (2004) has evaluated the ideal mesh density for steel I-girders of the type 

investigated in this study. This assessment included an evaluation of the accuracy and processing 

time for models with three different mesh densities: a relatively course mesh with 4 elements 

across the width of each flange and 6 elements throughout the height of the web, an intermediate 

mesh density with 6 elements across the width of the flange and 10 elements throughout the 

height of the web, and a fine mesh density with 10 elements across the flange width and 20 

elements through the web height. Yang concluded that the ideal mesh density was the 

combination of 10 elements across the flange width and 20 elements throughout the web height, 

which resulted in less than 1% error compared to selected experimental results. Thus, this same 

element size for this evaluation. 

Furthermore, the aspect ratio is minimized (made closest to 1) to the extent possible. 

Using the mesh density discussed above, there are twice as many elements in the web as there 

are in each flange. However, the web height is typically three to four times the width of the 
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compression flange. Because it is desirable for the web and flange elements to have equal lengths 

so that these elements will share coincident nodes, it is not possible to choose the element length 

so that the web and flange will both have an aspect ratio of 1. Instead, an element length is 

selected that gives an equal aspect ratio in the compression flange and the web, which typically 

results in an aspect ratio of approximately 1.4 for all elements. 

A finite element model was created using the aforementioned modeling technique to 

model the "D" girder. The load-deflection curve from experimental testing was plotted and 

compared with finite element analysis results, and is shown in Figure 5.8.  As shown, the 

proposed modeling technique is efficient in capturing the nonlinear behavior of this experimental 

test. 

 

 

Figure 5.8: Comparison of Schilling and Morcos (1988) “D” Girder Test and FEA Results 

 

5.3.2 Benchmark Analysis #2:  Lay et al. (1964) 

 

 In 1964, Lay et. al. tested numerous steel elements to failure to assess the impacts of 

utilizing plastic design procedures for structural steel.  For this benchmark assessment, test “HT-

29,” a uniform bending test on a rolled W10×25 was selected.  Figure 5.9 shows the details of 

the HT-29 laboratory test. 
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Figure 5.9: “HT-29” Girder Test Schematic (Lay et. al. 1964) 

 

A finite element model was created using the aforementioned modeling technique 

(incorporating the same target mesh density as discussed in Section 5.3.1) to model the “HT-29” 

girder. The load-deflection curve from experimental testing was plotted and compared with finite 

element analysis results, and is shown in Figure 5.8.  As shown, the proposed modeling 

technique is efficient in capturing the nonlinear behavior of this experimental test. 

 

 

Figure 5.10: Comparison of Lay et. al. (1964) “HT-29” Girder Test and FEA Results 
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5.3.4 Modeling of Press-Brake Tub Girder Flexural Tests 

 

 Figure 5.11 illustrates a finite element mesh of a composite press-brake-formed tub girder 

specimen.  As shown, shell elements are employed to simulate the behavior of the steel and 

concrete components of the girder.  A nonlinear analysis utilizing this mesh is compared against 

the experimental tests discussed in Chapter 4 (additional comparisons for individual gages and 

instruments are shown in Appendix C).  As shown in Figure 5.12, the model is shown to 

accurately capture the behavior of the system until failure. 

 

 

Figure 5.11: Finite Element Model of Composite Press-Brake-Formed Steel Tub Girder 

 

 

Figure 5.12: Comparison of Experimental and Analytical Results (Composite Tests) 
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Figure 5.13 illustrates a finite element mesh of a non composite press-brake-formed tub 

girder specimen.  As shown, shell elements are employed to simulate the behavior of the girder 

and WT section (utilized for load application).  A linear analysis utilizing this mesh is compared 

against the experimental tests discussed in Chapter 4 (additional comparisons for individual 

gages and instruments are shown in Appendix C).  As shown in Figure 5.14, the model is shown 

to accurately capture the behavior of the system. 

 

 

Figure 5.13: Finite Element Model of Noncomposite Press-Brake-Formed Steel Tub Girder 

 

 

Figure 5.14: Comparison of Experimental and Analytical Results (Noncomposite Tests) 
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5.4 STRAIN-COMPATIBILITY ASSESSMENT 

 

 To assess the flexural capacity of press-brake tub girders, a strain compatibility based 

analysis procedure was developed using MATLAB (The Mathworks, Inc., 2010). The results of 

this assessment are used to determine a reasonable estimate of ultimate flexural capacity for 

design purposes. Subsequent verification of this procedure through refined FEA modeling as 

previously discussed.  For more information and illustrative examples utilizing this procedure, 

the reader is referred to Appendix B. 

 

5.4.1 Initial Assumptions 

 

 Using the mechanistic strain compatibility procedure, it was possible to determine the 

ultimate flexural capacity of a given cross-section defined by geometric and material properties. 

By assuming a ratio MDL / My of the dead load moment acting on the non-composite steel girder 

(MDL), the initial strains present on the section before deck casting could be determined as a 

percentage of the non-composite yield moment (My). Assuming this ratio allowed for the dead 

load effects to be accounted for in strain-compatibility analyses. 
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5.4.2 Iterative Procedure 

 

 Assuming a concrete strain of 0.003 at crushing and a linear strain distribution, the 

ultimate capacity of a typical composite press-brake tub girder girder in positive flexure can be 

predicted using the following iterative procedure (a MATLAB m-file was employed to perform 

these iterative calculations): 

1. Compute the yield moment of the non-composite steel section 

2. Use the assumed ratio of the non-composite dead load to the yield moment of the non-

composite section, MDL / My, to compute a dead load moment. 

3. Assume a concrete crushing strain at the top of the deck equal to 0.003 and a subsequent 

linear strain distribution 

4. Choose an assumed value to the depth of the neutral axis from the top of the deck 

5. Using the linear strain distribution and superimposing the strains induced by dead load 

effects on the non-composite steel girder, the final strain profile is determined 

6. The cross-section of the composite press-brake tub girder is divided into transverse slices; 

the number of slices is chosen to be large (for this study, the depth of each slice is chosen 

to be 0.1 inches) to attain acceptable accuracy 

 For a given slice, the out-to-out width of the girder at the mid-depth of the slice is 

computed. 

 The slice is then assumed to be rectangular in shape (with the width equal to the 

calculated out-to-out width of the girder and the thickness equal to the slice depth) 

7. Compute the stress in each slice 

 For steel slices, the stress is assumed to be the minimum of E × the strain or the 

yield stress, Fy. 

 For concrete slices, the stress is assumed to be 0.85 fc’ for slices in compression 

and zero for slices in tension. 

8. Compute the force in each slice by multiplying the stress in each slice by the area of each 

slice (it should be noted that, since each slice is assumed to be rectangular in shape, the 

area of each slice is simply the width of a slice multiplied by its thickness) 

9. Sum the forces of each slice; if the calculated sum is not equal to zero, adjust the value of 

the assumed neutral-axis depth and repeat steps 4-8 
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10. Once the depth of neutral axis is determined, the nominal moment capacity may be 

determined by summing the moments produced by the forces in each slice about the 

neutral axis. 

 

5.4.3 Results of Strain-Compatibility Analysis 

 

 Figure 5.15 shows a comparison of the analytical (FEA) and strain-compatibility results.  

As shown, the strain compatibility analysis proves quite well in predicting the ultimate capacity 

of the composite press-brake tub girder specimen. 

 

 

Figure 5.15: Comparison of Analytical (FEA) and Strain-Compatibility Results 
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5.5 CONCLUSION  

 

 The contents of this chapter have detailed two separate analytical tools for assessing the 

proposed press-brake tub girder system.  The accuracy of these tools has been benchmarked 

against previous tests as well as the experimental investigations discussed in Chapter 4.  The 

results of these assessments show that the proposed analytical tools accurately capture the 

behavior of the proposed press-brake-formed tub girder system.  These tools will be used in the 

following chapter to further assess the behavior of the proposed system. 
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CHAPTER 6:  BEHAVIORAL STUDIES 

 

6.1 INTRODUCTION 

 

 The purpose of this chapter is to present several studies focused on assessing the behavior 

of the proposed system.  The goal of these studies was to determine the applicability of 

AASHTO LRFD Specifications for the proposed system.  Specifically, the capacity of the 

modular composite unit and the stability of the noncomposite press-brake-formed steel girder 

was assessed. 

 

6.2 ASSESSMENT OF COMPOSITE UNIT CAPACITY 

 

 Utilizing the analytical procedures discussed in Chapter 5, a comprehensive study was 

conducted evaluating the applicability of AASHTO LRFD Specifications for computing the 

nominal flexural of composite press-brake-formed tub girders.  Presented in this section are the 

results of this study, along with recommended expressions for computing the nominal flexural 

capacity of compact composite units. 

 

6.2.1 AASHTO Requirements for Compact Composite Girders 

 

 AASHTO (2010) outlines a series of conditions must be met in order for a composite box 

girder to be considered compact.  The first of these conditions is that the yield strength of the 

flanges must not exceed 70 ksi; this condition is easily met by simply choosing a standard mill 

plate that falls within this requirement.  The second is that the web slenderness ratio, D / tw, not 

exceed 150.  Table 6.1 lists the web slenderness values for the parametric matrix of girders 

presented in Chapter 3.  As shown, this requirement is met by all of the proposed girders. 
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Table 6.1: Web Slenderness Values for Parametric Matrix of Girders 

Girder w (in) d (in) t (in) D (in) D / tw 

1 

60 12 

7/16 8.1609 18.653 

2 1/2 7.5597 15.119 

3 5/8 6.3572 10.172 

4 

72 17 

7/16 13.315 30.434 

5 1/2 12.714 25.427 

6 5/8 11.511 18.418 

7 

84 23 

7/16 19.499 44.570 

8 1/2 18.898 37.796 

9 5/8 17.696 28.313 

10 

96 26 

7/16 22.592 51.638 

11 1/2 21.991 43.981 

12 5/8 20.788 33.261 

13 

108 30 

7/16 26.715 61.062 

14 1/2 26.114 52.227 

15 5/8 24.911 39.858 

16 

120 34 

7/16 30.838 70.487 

17 1/2 30.237 60.473 

18 5/8 29.034 46.455 

 

 

The third requirement is that Eq. 6.1 be satisfied, where Dcp is the depth of the web in 

compression at the plastic moment: 

 

2
3.76cp

w yc

D E

t F
        Eq. 6.1  

 

To evaluate this limit, the plastic moment capacity and the resulting 2Dcp / tw value was 

computed for a suite of composite girders.  For this assessment, Fy was taken to equal 70 ksi and 

fc’ was taken to equal 4 ksi in order to generate the most conservative results. A total of 25 

concrete deck options were evaluated:  five concrete deck thicknesses ranging from 7 inches to 

11 inches in 1-inch increments and five deck widths.  The provisions of Articles 6.11.2.3 and 
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Article 6.11.6.2.2 (AASHTO, 2010) were employed to compute the corresponding deck widths, 

which state that, for a composite box girder to be considered compact, the distance center-to-

center of flanges of adjacent boxes, a, shall neither be greater than 120 percent nor less than 80 

percent of the distance center-to-center of the flanges of each adjacent box, w.  Therefore, the 

five deck widths employed ranged from 1.8w to 2.2w in 0.1w increments.  These deck options 

were employed with each of the proposed 18 steel girders, resulting in 450 individual 

assessments.  Figure 6.1 illustrates the results of this assessment; as shown the proposed system 

easily meets this limit.  Dcp was taken as the length of the flat portion of the web in compression 

at the plastic moment.  It should therefore be noted that, for many cases, the plastic neutral axis 

lied in either the concrete deck or the top flange; in those cases, Dcp was equal to zero (only 22 

cases in total resulted in nonzero values of Dcp). 

 

 

Figure 6.1: Evaluation of Eq. 6.1 

 

6.2.2 AASHTO Definition of Mn for Compact Composite Girders 

 

 From the previous section, it was deemed that the proposed composite girders meet the 

AASHTO LRFD Specifications requirements for compactness in composite box girders.  If a 

composite box girder qualifies as compact, the flexural capacity of the compact girder is defined 

by AASHTO by Eq. 6.2. 
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To evaluate the applicability of AASHTO’s nominal moment capacity prediction 

equation on the proposed system, strain-compatibility assessments were performed on the 

aforementioned suite of 450 girders.  This suite of girders was augmented to include both 50 ksi 

and 70 ksi yield strengths and two cases of noncomposite dead load, resulting in a matrix of 1800 

girders.  Specifically, cases with no dead load (i.e. MDL = 0) and MDL = 0.50 My were assessed to 

account for different means of casting the deck (i.e. shored vs. unshored).  Upon completion of 

strain-compatibility assessments, 26 girders were eliminated from the matrix as they violated the 

Dp / Dt ≤ 0.42 limit required by AASHTO; this was deemed appropriate as these girders utilized 

relatively thin deck sizes and large girder proportions (it should also be noted that only girders 

with Fy = 70 ksi exhibited failure of this limit) .   

Figure 6.2 illustrates the accuracy of the Eq. 6.2 for the proposed system.  As shown, 

employing Eq. 6.2 would result in a somewhat overconservative estimate of capacity of the 

proposed system.  Therefore, Eq. 6.3 is proposed to provide a more accurate estimate of girder 

capacity.  This equation was derived by curve fitting a straight line to the 95th percentile of the 

strain-compatibility results with respect to Dp / Dt; previous research has shown that this is an 

appropriate means to more accurately predict the ultimate moment capacity of a composite steel 

girder in positive bending (Roberts, 2004).  Figures 6.2 and 6.3 illustrate the accuracy of Eq. 6.3 

in predicting the capacity of the proposed system. 
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Figure 6.2: Evaluation of AASHTO Specifications and Eq. 6.3 

 

 

Figure 6.3: Histogram of Mn (Strain-Compatibility) versus Mn (Eq. 6.3) 
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girders was reduced by eliminating composite girders with deck widths larger than 7.5 feet.  This 

resulted in a reduced suite of 614 girders.   

 Using the same approach, Figure 6.3 was developed, which illustrates the accuracy of the 

Eq. 6.2 for the reduced suite of girders.  For this reduced suite, Eq. 6.4 (derived by curve fitting a 

straight line to the 95th percentile of the strain-compatibility results with respect to Dp / Dt) is 

proposed to provide a more accurate estimate of girder capacity.  Figures 6.4 and 6.5 illustrate 

the accuracy of Eq. 6.4 in predicting the capacity of the reduced suite of girders. 
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Figure 6.4: Evaluation of AASHTO Specifications and Eq. 6.4 
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Figure 6.5: Histogram of Mn (Strain-Compatibility) versus Mn (Eq. 6.4) 

 

6.2.3 AASHTO Definition of Fn for Noncompact Composite Girders 

 

 While the proposed dimensions of the girder coupled with reasonable deck dimensions 

have been shown to be classified as compact, variations in girder spacing or deck dimensions 

may classify a composite box girder as noncompact according to AASHTO Specifications.  If 

this is the case, the capacity of the girder is essentially limited to the yield moment, My.  

Specifically, the compression flange capacity, Fnc, is taken as Rb Rh Fyc and the tension flange 

capacity, Fnt, is taken as Rh Fyt Δ.  For the proposed system, the hybrid factor Rh would be taken 

as unity due to the single steel plate utilized and the web load-shedding factor Rb would be taken 

as unity since the section is composite and satisfies the D / tw limit as previously discussed.  The 

term Δ in the expression for tension flange capacity is intended to reduce the capacity of the 

tension flange under the presence of torsion; since the intended use of the proposed system is for 

short-span structures, it is unlikely that the girder will experience significant torsion and this 

term can be neglected. 
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6.2.4 Additional Assessment of Strain Compatibility Procedure 

 

In order to further validate the accuracy of the strain-compatibility assessment procedure, 

18 composite units (i.e. one for each of the girders presented in Chapter 3) were selected from 

the previously described suite of girders for comparison with the finite element analysis 

protocols discussed in Chapter 5.  Specifically, the girders with assumed to have 2w wide × 8 

inches thick concrete decks.  Materials were modeled using the constitutive models discussed in 

Chapter 5.  Strain-compatibility analysis were performed using the values of Fy and fc’ described 

in Chapter 5. 

Figure 6.6 shows the comparison of maximum moments obtained from finite element 

analysis and from strain-compatibility assessments.  As shown, the strain compatibility 

procedure captures the maximum flexural capacity of the proposed system quite well.  In 

addition, the average Mn obtained from strain-compatibility is 95.7% of the average Mn obtained 

from finite element analysis, which indicated that the strain-compatibility procedure is slightly 

conservative.  Also, in addition to Figure 6.6, the load-deflection curve for each of the 18 finite 

element models is documented in Appendix C (for each curve, the nominal moment capacity 

obtained from strain compatibility along with the yield moment and plastic moment are plotted).  

 

 

 

Figure 6.6: Comparison of Strain-Compatibility Procedure and Finite Element Analysis 
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6.2.5 Summary of Composite Girder Assessment 

 

The goal of the previously described studies was to assess the applicability of AASHTO 

LRFD Specifications for the proposed composite units.  Strain-compatibility procedures (verified 

by finite element analysis) demonstrate that AASHTO provisions are applicable and somewhat 

conservative when estimating the capacity of the proposed system.  For simplicity, Eq. 6.5 

(derived by rounding the constants of Eq. 6.4) is recommended for computing the capacity of the 

proposed system.  Figures 6.7 and 6.8 illustrate the accuracy of Eq. 6.5 in predicting the capacity 

of the reduced suite of girders. 
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Figure 6.7: Evaluation of AASHTO Specifications and Eq. 6.5 
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Figure 6.8: Histogram of Mn (Strain-Compatibility) versus Mn (Eq. 6.5) 

 

6.3 ASSESSMENT OF NONCOMPOSITE GIRDER BEHAVIOR 

 

 As stated, the goal of this research effort is the refinement of the proposed modular 

composite unit.  However, while the assessment of the capacity of the composite unit is most 

critical to the intact, final state of the structure, an evaluation of the noncomposite stability of the 

steel tub girder would facilitate construction and handling of the girder and allow for other 

means of construction, such as utilizing cast-in-place decks. 

 Since the geometry of the proposed press-brake-formed tub girders differs significantly 

from the geometry of a typical box girder, a fundamental review of the stability of the 

noncomposite girder is warranted.  Presented in this section is a review of the local and global 

buckling behavior of the proposed system.  It should be noted that the following section 

demonstrates theoretical methods for computing buckling loads and torsional deformations; these 

demonstrations utilize the section properties of the girder described in Table 6.2 (note that the 

length of the girder is taken to be 38 feet, equal to the length of the experimental specimens 

discussed in Chapter 4).  
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Table 6.2: Example Girder Properties (PL 84” × 7/16”) 

Property Value 

E (ksi) 29000 

G (ksi) 11154 

L (in) 456 

Iy (in
4) 8049.6 

Jopen (in
4) 2.3447 

Jclosed (in
4) 6900.0 

Cw (in6) 139952 

βx (in) -19.704 

 

 

6.3.1 Assessment of Governing Flexural Buckling Modes 

 

 To assess the stability of press-brake-formed tub girders, the governing flexural buckling 

modes were first assessed.  Schaefer and Ádány (2006) developed CUFSM, a free open-source 

software program for assessing the buckling modes of cold-formed steel shapes.  The program 

operates through use of the constrained finite strip method.  The cross-section is divided into 

strip elements, and based on the strip length (also known as the half wavelength), various local, 

distortional, and global buckling modes can be assessed by computing the governing eigenvalue 

under a given stress state.  Figure 6.9 shows an example finite strip analysis for a standard cold-

formed lipped channel under axial loading.  As shown, the section will experience local buckling 

under an axial load of 0.42 Fy A and distortional buckling under an axial load of 0.75 Fy A. 
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Figure 6.9: Example of Traditional Finite Strip Analysis (Schaefer & Ádány, 2006) 

 

CUFSM was employed to assess the possible buckling modes of press-brake-formed tub 

girders under flexural loading.  Figure 6.10 shows the results of the analysis of a representative 

girder from the matrix presented in Chapter 3.  As shown, no local buckling modes govern the 

design of the representative girder.  Distortional buckling modes for this girder will occur at a 

load approximately equal to 1.52 My.  However, this will not govern the design as this load 

exceeds Mp for the section.  Therefore, for this beam, only global lateral-torsional buckling 

modes need to be assessed. 
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Figure 6.10: Example CUFSM Analysis (PL 84” × 7/16”) 

 

This observation was also found for the remaining girders in the parametric matrix.  For 

all of the girders, no local buckling modes were found to occur.  In addition, the average 

distortional buckling mode was found to be equal to 1.997 My.  Therefore, it was deemed that 

local and distortional buckling modes need not be considered when assessing the stability of 

noncomposite press-brake-formed tub girders. 

 

6.3.2 Consideration of Lateral Torsional Buckling 

 

 From the previous section, it was found that only global lateral-torsional buckling modes 

will govern the stability of the proposed system.  Presented in this section is a summary of 

classical lateral-torsional buckling solutions for first-order and second-order lateral torsional 

buckling solutions for the proposed girder. 
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6.3.2.1 Derivation of Global Lateral Torsional Buckling Solution 

 

The differential equations for lateral-torsional buckling of a singly-symmetric beam 

under uniform bending (Galambos, 1968) are as follows: 

 

   y oEI u M           Eq. 6.6 

      w o x oEC GJ M M u            Eq. 6.7 

 

For a simply-supported beam, the boundary conditions for these differential equations are 

as follows: 

 

   0 0L          Eq. 6.8 

   0 0L           Eq. 6.9 

 

In order to simplify the solution process, the function for twist, which meets the criteria 

of the previously specified boundary conditions, is assumed to take the following form: 
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       Eq. 6.10 

 

Using Eq. 6.10, the function for lateral deflection can be expressed as follows: 
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      Eq. 6.11 

 

Differentiating these trial functions and substituting into the second differential equation, 

the following equation is obtained.  It should be noted that, while the actual magnitude of lateral 

deflection and twist at midspan, Aϕc, is not obtainable, these terms factor out of the differential 

equation, and do not impact the solution. 
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  Eq. 6.12 

 

Solving this equation, the following expression for the critical buckling moment of a 

singly-symmetric beam is obtained.  Note that the “±” sign results from the solution of the 

quadratic equation in Mo and refers to the direction of applied moment; if the larger flange of the 

cross-section is in compression, the sign is taken as positive: 
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   Eq. 6.13 

 

Using Eq. 6.13, the first-order lateral-torsional buckling capacity of the press-brake-

formed tub girder is found as follows (assuming no lateral bracing throughout the span): 
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It should be noted that the moment gradient modifier Cb has not been included.  

However, according to AASHTO LRFD Specifications (2010), the Cb value for unbraced 

segments with mid-segment moments larger than brace-point moments is taken to be unity.  
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If this moment is caused by a concentrated load at midspan: 

 

 4 10590 in-kip4
92.3 kip

456 in
o

o

M
P

L
    

 

During flexural testing of Specimen #3 (a noncomposite weathering-steel girder), at a 

load level of approximately 95 kips, the girder failed in a sudden lateral-torsional buckling mode 

(it should be noted that this value of 95 kips closely agrees with the theoretically-derived critical 

load of 92.3 kips).  Figure 6.10 shows the girder at the moment of failure.  . 

 

 

Figure 6.11: Specimen #3 Test (Load ≈ 95 kips) 

 

6.3.2.2 Consideration of Second-Order Effects 

 

In many practical applications, it is desirable to determine the effects of nonlinear, or 

second-order, deflections in flexural elements.  Second-order effects arise primarily from the 

presence of eccentricity in applied load, either from a physical eccentricity of applied load, 

combined applications of load (i.e. moments, axial loads, torsions, and/or shears), or initial 

imperfections of the member.  For the case of initial imperfections, an initial twist (and 
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corresponding initial lateral deflection) can be assumed to take the following form, where Aϕo is 

the initial twist at midspan: 

 

sino o

z
A

L
    

 
       Eq. 6.14 

 

The differential equations for lateral-torsional buckling considering second-order effects 

are then expressed as follows: 

 

   y o oEI u M            Eq. 6.15 

      w o x o oEC GJ M M u u             Eq. 6.16 

 

Using the same methods as shown in the previous section, the ratio of second-order 

effects to first-order effects, also known as an amplification factor, can be expressed as an 

amplification of the initial imperfection at midspan, where Mo is the first-order elastic lateral-

torsional buckling moment.  It should be noted that this measure of amplification agrees with 

results presented by Galambos (1968) and Kala (2013): 
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      Eq. 6.17 

 

Therefore, the second-order lateral deflection that arises from an applied moment M on a 

singly-symmetric beam is as follows: 
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         Eq. 6.18 
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If second-order effects are included in the analysis of press-brake-formed tub girders, 

critical load values can be significantly reduced based on limits of tolerable deformation.  Figure 

6.12 shows a plot of the second-order amplification of lateral that would result from an initial 

twist of 1° at midspan (note that one degree of initial twist at midspan is equivalent to an initial 

lateral deflection of 0.9730 inches). 

 

 

Figure 6.12: Second-Order Lateral Deflections 

 

As stated, an additional physical test was performed (identical in configuration to the 

previous specimen) on a galvanized press-brake-formed tub girder (for more information, see 

Chapter 4).  The girder exhibited an initial twist as shown in Figure 6.13.   

 

0

10

20

30

40

50

60

70

80

0 1 2 3 4 5 6 7 8

A
p

p
li

ed
 V

er
ti

ca
l L

oa
d

 (
k

ip
)

Lateral Deflection at Midspan (in)



103 
 

 

 

Figure 6.13: Galvanized Girder Test (Initial Twist Present) 

 

Flexural testing of this specimen was terminated at a load of approximately 33 kips due 

to excessive lateral deflection and twist.  Figure 6.14 shows the girder at the point of test 

termination. 

 

 

Figure 6.14: Specimen #4 Test (Load ≈ 33 kips) 
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6.3.2.3 Assessment of Flexural Capacity with SIP Forms 

 

According to Helwig and Frank (1999), the lateral torsional buckling capacity of a girder 

may be improved by bracing the girder with stay-in-place (SIP) formwork.  In their work, an 

expression for the augmented capacity of a girder braced by SIP forms (Ep. 6.19) was derived.  

In this expression, G’ refers to the shear stiffness of the SIP deck forms, Sd refers to the lateral 

width of the deck forms (in the case of press-brake-formed tub girders, this is equal to the width 

between the top flanges), and d is the overall depth of the girders.  The constant 3/8 value 

adjusted the moment capacity based on top flange loading conditions. 

 

3

8cr b o dM C M G S d        Eq. 6.19 

 

Egilmez et. al. (2007) reported shear stiffness values for various commonly-employed 

SIP formwork thicknesses.  Table 6.3 lists the buckling capacity of the example press-brake-

formed tub girder braced by SIP forms of varying thicknesses.  For all values, unstiffened, seated 

connections were conservatively assumed for SIP forms.  It should be noted that, by including 

SIP forms, all values of resulting critical buckling loads exceed the plastic moment capacity of 

the noncomposite shape. 

 

Table 6.3: Assessment of Improved Stability with SIP Formwork 

Property 18 gauge 20 gauge 22 gauge 

Cb 1.0 1.0 1.0 

Mo (in-kip) 10590 10590 10590 

G’ (kip/in) 36.408 29.133 13.504 

Mcr (in-kip) 24565 21773 15774 

Mp (in-kip) 14786 14786 14786 
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6.3.2 Assessment of Torsional Behavior 

 

Under pure torsion (specifically, a concentrated torsional load at midspan) of a simply-

supported member, the solution for torsional twist is as follows (note that, for simple supports, 

warping is not restrained). 

 

2 2
4

T L
TL

GJ GJ


  
  
           Eq. 6.20 

 

The computation of the St. Venant torsional constant, J, for noncircular cross-section can 

be inherently complex.  Boresi and Schmidt (2003) present simplified formulas for J for open 

and closed cross-sections, and are expressed as shown below.  For closed cross-secitons, Ao 

refers to the area enclosed by the closed shape and U refers to the median circumference of the 

enclosure.  For more discussion of the computation of elastic section properties, the reader is 

referred to Appendix A. 
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2

closed

4 oA t
J

U
         Eq. 6.22 

 

As demonstrated in Table 6.2, the torsional stiffness (represented by J) is substantially 

altered when SIP forms are included.  This parameter has significant impact on the performance 

of press-brake-formed tub girders under torsional loading.  Consider a simply-supported bridge 

girder undergoing torsional loading from a deck finishing machine.  The NSBA Steel Bridge 

Design Handbook indicates a concentrated value of 3 kips is a reasonable estimate for finishing 

machine loads (NSBA, 2012).  For an overhang of 3 feet (36 inches) from the exterior girder, 

this results in an applied torque of 108 in-kips.  Therefore, the resulting rotations at midspan are 

as follows: 
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Therefore, the resulting rotations from the application of the finishing machine are 

substantial for open press-brake-formed tub girders.  It should be noted that the girder will be 

subjected to additional torsional loads during deck casting, such as loads from the construction 

walkway, eccentric concrete loads, etc.  Closing the girder with stay-in-place formwork 

substantially improves the performance of the noncomposite girder under torsional loads. 

 

6.4 CONCLUSION 

 

 The purpose of this chapter was to present several studies focused on assessing the 

behavior of the proposed system.  The goal of these studies was to determine the applicability of 

AASHTO LRFD Specifications for the proposed system.   

 AASHTO LRFD Specifications were deemed to be somewhat conservative in computing 

the nominal capacity of composite modular units.  An improved, simplified expression was 

derived to compute the nominal capacity of the proposed system, and is as follows: 

 

0.1

1.025 0.25 0.1 0.42

p p t

pn
p t p t

t

M D D

DM
M D D D

D


      

 

 

 

In addition, the noncomposite stability of the steel girder was assessed.  It was found that 

the girder is susceptible to lateral-torsional buckling and torsional instability under relatively low 

load levels.  However, this can be abated by simply installing SIP formwork prior to girder 

erection, which would serve to increase the torsional stiffness of the proposed girder and provide 

bracing to the girder against lateral torsional buckling. 
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CHAPTER 7:  FEASIBILITY AND ECONOMIC ASSESSMENTS  

 

7.1 INTRODUCTION 

 

 The following chapter details feasibility assessments and economic comparisons of the 

proposed system and traditional options for short-span bridges.  The main goal of these studies 

was to assess the viability and competitiveness of the proposed system in the short-span market.  

Specifically, AASHTO LRFD Specifications were employed to determine the span ranges for 

which each of the girders discussed in Chapter 3 are applicable.  Girder options were then 

reduced based on plate availability.  Once girder options were reduced to a standardized set of 

modular solutions, the proposed system was then compared with traditional solutions for the 

short-span bridge market. 

 

7.2 FEASIBILITY ASSESSMENTS 

 

 In order to assess the feasibility of the proposed system, design evaluations were 

performed in accordance with AASHTO Specifications (2010).  Described in this section are the 

assumptions made for design evaluations along with the results for each of the girders in the 

parametric matrix described in Chapter 3. 

 

7.2.1 Design Assumptions 

 

Each of the girders in the parametric matrix were evaluated according to AASHTO 

Specifications (2010).  For each girder, dead and live load force effects (i.e. moments, shears, 

and deflections) were computed for spans ranging from 20 feet to 140 feet in 5-foot increments.  

LEAP CONSYS (Bentley Systems, Inc., 2008), a comprehensive continuous beam analysis 

program, was used for the assessment of static and moving loads and was employed to perform 

influence-line analysis and generate live load envelopes for design evaluations. 
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DC loads (i.e. dead loads of structural components and nonstructural attachments) were 

assumed to consist of the self-weight of the girder and the concrete deck.  For all of the girders 

assessed, the width of the girder was kept constant at 7.5 feet; this was selected as the maximum 

width that a modular unit could employ for feasible shipping.  An integral wearing surface of 

0.25 inches was assumed and applied in addition to the structural thickness of the concrete deck, 

which was assumed to be 8 inches.  To account for the weight of shear studs, diaphragms, and 

other miscellaneous details, an additional 5% of the steel girder weight was applied as a 

distributed load.  An additional load of 50 lb/ft was assumed to account for loads associated with 

steel guardrail systems.  DW loads, or the loads of the future wearing surface, were assumed to 

consist of a 25 psf load applied over the 7.5 foot width of the concrete deck.  LL loads (i.e. 

vehicular live loads) consisted of the AASHTO HL-93 live load model.  Dynamic load 

allowance (i.e. IM factors) was taken as 1.33, in accordance with AASHTO Specifications. 

Cross-sections that are assessed using live-load distribution factors must conform to deck 

proportion limits.  According to AASHTO Specifications (Article 6.11.2.3), the distance center-

to-center of flanges of adjacent boxes, a, taken at the midspan, shall neither be greater than 120 

percent nor less than 80 percent of the distance center-to-center of the flanges of each adjacent 

box, w; this is illustrated in Figure 7.1. 

 

 

Figure 7.1: Limits on Deck Proportions (AASHTO, 2010) 

 

By maintaining a constant deck width of 7.5 feet, this limit is violated for the majority of 

girders in the parametric matrix.  Therefore, for feasibility assessments, the distribution factors 

for live load moments and shears are conservatively taken to be 1.0.  For live load deflections, 

according to AASHTO Article 2.5.2.6.2, all girders in the bridge are assumed to deflect equally.  

Therefore, for feasibility assessments, the bridge is assumed to consist of two design lanes and 
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four girders.  For two-lane-loaded scenarios, according to AASHTO Article 3.6.1.1.2, the 

multiple presence factor is equal to 1.0.  Therefore, the live-load distribution factor for deflection 

is taken to be 1.0 (2/4) = 0.5. 

Resistance for the girders in flexure was computed according to AASHTO Specifications 

as well as the proposed equations presented in Chapter 6.  Resistance for the girders in shear was 

also computed according to AASHTO Specifications; the elements resisting shear were 

conservatively assumed to consist only of the flat portions of the inclined webs.  All steel 

material for this assessment was assumed to have a yield stress, Fy = 50 ksi; all concrete was 

assumed to normal-weight with a compressive strength, fc’ = 4 ksi and a modular ration, n = 8. 

 

7.2.2 Results of Feasibility Assessments 

 

The feasibility assessment was conducted for each girder at the Strength I limit state (for 

moment and shear), the Service II limit state (for moment) and for live load deflection for each 

of the parametric girders.  The results are comprehensively documented in Appendix C.  Figure 

7.2 shows a sample comparison at the Strength I limit state.  Utilizing linear interpolation, this 

girder would be viable spans up to 61.44 feet according to AASHTO Specifications and 63.32 

feet according to the equations proposed in Chapter 6. 
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Figure 7.2: Strength I Moment Comparisons (PL 96” × 1/2”) 

 

Similar interpolations were conducted for remaining girders in the matrix.  These 

maximum span length values are summarized in Table 7.1.  In this table, “M” refers to moment 

limit states, “V” refers to shear limit states, and “Δ” refers to deflection limit states.  Also, entries 

with “> 140” indicate that the girder has adequate capacity under all of the forces computed (i.e. 

up to 140 feet).  Note that for all of the girders in the matrix (except for the PL 84” × 7/16”), the 

Strength I limit state governs the design.  Figure 7.3 illustrates the maximum applicable span 

lengths for each of the girders in the parametric matrix.  
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Table 7.1: Interpolated Maximum Span Lengths 

Girder 

Maximum Span Length (ft) Listed by Limit State 

Str. I (M) 
Str. I (V) Ser. II (M) LL Def. (Δ) 

AASHTO Proposed 

PL 60” × 7/16” 34.35 35.72 50.58 35.74 36.74 

PL 60” × 1/2” 36.32 38.19 56.81 38.37 38.06 

PL 60” × 5/8” 39.23 41.92 62.52 42.70 40.40 

PL 72” × 7/16” 43.89 45.30 133.83 44.64 48.20 

PL 72” × 1/2” 46.05 47.87 > 140 47.56 50.39 

PL 72” × 5/8” 49.13 52.08 > 140 52.79 54.12 

PL 84” × 7/16” 53.49 54.98 > 140 53.45 62.96 

PL 84” × 1/2” 56.18 58.24 > 140 57.16 65.87 

PL 84” × 5/8” 60.68 63.76 > 140 63.79 70.74 

PL 96” × 7/16” 61.44 63.32 > 140 62.77 74.26 

PL 96” × 1/2” 64.51 67.09 > 140 67.27 77.60 

PL 96” × 5/8” 70.77 74.01 > 140 75.29 83.21 

PL 108” × 7/16” 70.47 72.67 > 140 72.60 87.15 

PL 108” × 1/2” 74.69 77.32 > 140 77.86 90.97 

PL 108” × 5/8” 82.32 85.57 > 140 87.18 97.42 

PL 120” × 7/16” 80.19 82.44 > 140 82.74 100.24 

PL 120” × 1/2” 85.52 88.11 > 140 88.75 104.56 

PL 120” × 5/8” 92.15 96.66 > 140 99.33 111.86 
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Figure 7.3: Maximum Applicable Span Lengths for Proposed System 

  

7.3 STANDARDIZATION OF PROPOSED SYSTEM 

 

 In order to simplify the implementation of the proposed system, the suite of parametric 

girders was reduced in the following section.  Presented is the rationale for plate reduction and a 

summary of the standardized designs of the proposed system. 

 

7.3.1 Plate Reduction Methodology 

 

The goal of the proposed system dictates the use of standard mill plate in order to 

fabricate the steel girder component of the modular unit.  Therefore, to reduce the matrix of 

girders, preference was given to plates that are produced on a regular basis.  Mill widths of 72”, 

96”, and 120” are considered industry standards; plates that fall outside these standard widths 

may not be as readily available (Garrell, 2011).  Therefore, these plates should be given 

preference when developing standard solutions.  The matrix was further reduced by restricting 
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the number of thicknesses employed in the matrix.  Virtually all of the major plate producers in 

the United States produce steel plate with a 1/2” thickness (Garrell, 2011).  However, 

consideration must be given to the maximum applicable span lengths, shown in Figure 7.3.  As 

shown in Figure 7.4, 120” × 1/2” plates are typically only available in lengths up to 750 inches, 

or 62.5 feet. Therefore, the benefits of standardizing this plate would not be reached as the 96” × 

1/2” solution is viable for this span range.  Therefore, to capture the benefits of plate availability 

as well as maximum span-length application, the 120” × 5/8” plate should be employed (from 

Figure 7.4, this plate is available in lengths up to 972 inches, or 81 feet). 

 

 

Figure 7.4: Maximum Plate Length for Standard Mill Plates (Garrell, 2011) 

 

7.3.2 Proposed Standardized Systems 

 

Using the previously discussed rationale for the reduction of the parametric matrix of 

girders, the systems described in the following sections are proposed for mainstream use.  Note 

that the dimensions of each steel girder match those listed in Chapter 3.  In addition, it should be 

noted that applicable span ranges discussed in the following sections have been rounded in 20-
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foot increments for simplicity.  Also, in order to utilize single plates per girder (i.e. reducing the 

need for field splices and/or CJP welds), applicable spans have been limited to 80 feet. 

 

7.3.2.1 Modular Single-Girder Systems 

 

Three modular single-girder systems (employing normal-weight 7.5’ × 8” concrete 

decks) are recommended: 

 PL 72” × 1/2” 

o Applicable for spans up to 40 feet (see Figure 7.3) 

 PL 96” × 1/2” 

o Applicable for spans up to 60 feet (see Figure 7.3) 

 PL 120” × 5/8” 

o Applicable for spans up to 80 feet (see Figure 7.3) 

 

7.3.2.2 Modular Double-Girder System 

 

In cases where hydraulic opening or clearance requirements dictate the use of a shallow 

section, the use of a 60” × 1/2” standard mill plate may be advantageous as the resulting 

optimum girder design is only 12 inches deep.  In addition, the optimum design of a 60” × 1/2” 

standard mill plate girder results in an out-to-out width less than half of the 7.5’ modular 

concrete deck.  Therefore, this girder may be employed in modular system such as the one shown 

in Figure 7.5. 

 

 

Figure 7.5: Conceptual View of Proposed Double-Girder Modular Layout 
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Using the same approach as discussed in Section 7.2, the feasibility of this proposed 

double-girder system was assessed.  The plot of controlling limit state (Strength I) loads and 

resistances and is shown in Figure 7.6; it should be noted that the plots of the remaining limit 

states are also summarized in Appendix C.  Utilizing linear interpolation, this girder would be 

viable spans up to 60.11 feet according to AASHTO Specifications and 66.26 feet according to 

the equations proposed in Chapter 6. 

 

 

Figure 7.6: Strength I Moment Comparisons (Double-Girder System) 

 

7.4 COMPARISONS TO STANDARD SOLUTIONS 

 

 In order to assess the economic competitiveness of the proposed system, the selected 

standard girders were compared against traditional solutions for short-span highway bridges.  

Presented in this section is an overview of the systems used for comparison (along with their 

respective design assumptions) and weight comparisons, which assess the proposed system’s 

viability in the short-span bridge market. 
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7.4.1 eSPAN140:  Complimentary Solutions for Short-Span Steel Bridges 

 

The Short Span Steel Bridge Alliance (SSSBA) is a group of bridge and culvert industry 

leaders (including steel manufacturers, fabricators, service centers, coaters, researchers, and 

representatives of related associations and government organizations) who have joined together 

to provide educational information on the design and construction of short span steel bridges in 

installations up to 140 feet in length.  From within the SSSBA technical working group, 

standardized designs were developed based on optimized girder designs, which employ different 

bridge parameters and design approaches.  The designs have been made available and 

complimentary to engineers through the use of a web-based design tool, and can be found at 

http://www.espan140.com/.  

There are four major sets of bridge designs in this work: “limited depth” rolled beam 

sections, “lightest weight” rolled beam sections, homogeneous plate girder sections and hybrid 

plate girder sections.  The girders designed to make up this wide range of bridge spans were 

designed for all spans between 40 and 140 feet in 5 foot increments.  For each span length, 

girders arranged with four different girder spacings (6.0 ft, 7.5 ft, 9.0 ft, and 10.5 ft) were 

designed.  From these optimized rolled girder designs, limited suites of rolled steel girder 

sections were selected to investigate the efficiency of using stockpiled girder sections for short 

span steel bridges.  Also, the benefits of stockpiling common steel plate sizes are investigated in 

the design of steel plate girders. 

 

7.4.1.1 Design Assumptions 

 

The rolled beams and the homogeneous plate girders in these designs all employ 50-ksi 

steel.  The hybrid steel plate girder sections employ 50-ksi steel in the compression flange and 

web plates and 70-ksi steel in the tension flange plate.  For all girder sections, excluding the 

rolled beam sections of the “lightest weight” suite of girders, an L / D (Length/Depth) ratio of 25 

was assumed.  The depth in this ratio includes the entire depth of the bridge superstructure (i.e. 

bridge deck depth plus the concrete haunch thickness plus the girder depth).  The concrete 

haunch is defined as the distance from the bottom of the compression flange to the bottom of the 

concrete deck.  
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The following parameters were assumed for each bridge girder design: 

 Steel stay-in-place (SIP) formwork unit weight: 15 psf 

 Future wearing surface: 25 psf 

 Concrete barriers: 305 lbs/ft. 

 Miscellaneous steel weight increase: 5% 

 Compressive strength of concrete: 4,000 psi 

 Concrete unit weight: 150 pcf 

 Steel unit weight: 490 pcf 

 Concrete haunch thickness: 2 in 

 Constant flange width 

 Constant web height 

 

7.4.1.2 Design Results 

 

Figure 7.7 shows a plot of the weight comparisons of the girders designed for eSPAN140 

(Morgan, 2010) for a 7.5 foot girder spacing.  This girder spacing was chosen as it is equivalent 

to the spacing between girders in the proposed system.  For this plot, “S” refers to steel solutions, 

“LW” refers to lightest weight rolled beam designs, “LD” refers to limited depth rolled beam 

designs, “HO” refers to homogeneous plate girder designs, and “HY” refers to hybrid plate 

girder designs.  These weights will be employed for economic comparisons with the proposed 

system. 
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Figure 7.7: Weight Comparisons for Traditional Steel Solutions (Morgan, 2010) 

 

7.4.2 Standardized Prestressed Concrete Solutions 

 

Standardized prestressed concrete solutions, such as AASHTO standard girders (i.e. Type 

3, Type 4, etc.), and Bulb Tees have been available to bridge engineers for decades.  Many state 

DOTs have standard concrete solutions available (based on state-level design specifications).  

Standard girders from the Idaho Transportation Department’s Bridge Design LRFD Manual 

(ITD, 2014) were employed in this section.  Since these girders were designed according to 

assumptions quite similar to those made for the design of eSPAN140’s girders as well as those 

made for the feasibility assessments of the proposed system, these girders proved ideal for 

economic comparison. 
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7.4.2.1 Design Assumptions 

 

AASHTO LRFD Design Specifications (AASHTO, 2010) were employed for the design 

of prestressed girders.  According to Article A5.4 (ITD, 2014), three different types of girders 

were evaluated:  AASHTO, Bulb Tee, and Wide-Flange.  Bulb Tee girders are available with 

either a 37-inch top flange width or a 48-inch top flange width.  Designs are available utilizing 6-

ksi and 10-ksi concrete; for the purposes of this evaluation, only designs utilizing 6-ksi concrete 

are employed.   

The following parameters were assumed for each bridge girder design: 

 42 foot out-to-out bridge width 

 Girder layouts: 

o 4 girders spaced at 12’-0” 

o 5 girders spaced at 9’-3” 

o 6 girders spaced at 7’-3” 

o 7 girders spaced at 6’-0” 

 Future wearing surface: 28 psf 

 Compressive strength of slab: 4,000 psi 

 Concrete barriers are employed 

 Tendon harp points at 0.4L and 0.6L, where L = span length  

 Deck thickness is taken as (S + 10) / 30 where S is computed in accordance with 

Article 9.7.2.3 

o A minimum of 8 inches is employed 

 

7.4.2.2 Design Results 

 

As stated, girders were designed for 4 layouts with various girder spacing.  Based on the 

previous assumptions (including girder spacing), the ITD Bridge Design Manual provides a 

series of plots indicating the maximum span range for each standard girder solution.  Utilizing 

these plots, maximum span ranges for a girder spacing of 7.5 feet were determined by linear 



120 
 

interpolation.  Figure 7.8 illustrates a representative interpolation for AASHTO girders; as 

shown: 

 Type 2 girders are applicable for spans up to approximately 65 feet 

 Type 3 girders are applicable for spans up to approximately 90 feet 

 Type 4 girders are applicable for spans up to approximately 116 feet 

 

 

Figure 7.8: Sample Digitized Results for Determining Maximum Span Length (ITD, 2014) 

 

Figure 7.9 shows a plot of the weight comparisons of the previously discussed prestressed 

concrete girders (ITD, 2014).  For this plot, “C” refers to concrete solutions, “AG” refers to 

standard AASHTO girders, “BT1” refers to bulb-tee designs with 37-inch flanges, “BT2” refers 

to bulb-tee designs with 48-inch flanges, and “WF” refers to wide-flange designs.  These weights 

will be employed for economic comparisons with the proposed system. 
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Figure 7.9: Weight Comparisons for Traditional Concrete Solutions 

 

7.4.3 Comparisons with Proposed System 

 

Using the weights of traditional girders from previous sections, economic comparisons 

were made with the proposed system, and are shown in Figure 7.10.  For this plot, “PBF:  1” 

refers to the proposed modular single-girder systems, “PBF:  2” refers to the proposed modular 

double-girder system, and all other legend entries correspond to previous descriptions.  As 

shown, the proposed system falls within the range expected for traditional steel and concrete 

girder solutions, thereby displaying its economic viability and competitiveness in the short-span 

bridge market. 
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Figure 7.10: Economic Assessment of Proposed System 
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7.5 CONCLUSION 

 

 The preceding chapter details feasibility assessments and economic comparisons of the 

proposed system and traditional options for short-span bridges.  Feasibility assessments, coupled 

with a reduction of the parametric matrix of girders (based on plate availability), resulted in the 

following systems: 

 Modular single-girder systems employing 72” × 1/2” plate 

o Applicable for spans up to 40 feet (see Figure 7.3) 

 Modular single-girder systems employing 96” × 1/2” plate 

o Applicable for spans up to 60 feet (see Figure 7.3) 

 Modular single-girder systems employing 120” × 5/8” plate 

o Applicable for spans up to 80 feet (see Figure 7.3) 

 Modular double-girder systems employing 60” × 1/2” plate 

o Applicable for spans up to 65 feet (see Figure 7.6) 

 

In addition, the proposed systems were compared against traditional solutions for short-

span bridges, such as steel rolled beams and AASHTO prestressed concrete girders.  As shown, 

the proposed system is viable and economically competitive for the short-span bridge market.  

Also, it should be noted that feasibility assessments were conducted based on assuming that live 

load distribution factors for moment and shear was equal to 1.0; future research assessing live 

load distribution characteristics of the proposed system may result in increased span ranges for 

the proposed system, thereby increasing the economic competitiveness of shallow press-brake-

formed steel tub girders. 
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CHAPTER 8:  PROJECT SUMMARY AND CONCLUDING REMARKS 

 

8.1 PROJECT SUMMARY 

 

The scope of this project was to refine the development of modular press-brake-formed 

steel tub girder for short-span bridge applications.  This was achieved by performing the 

following tasks:  

 

 A rational methodology for the design of the proposed system was developed. 

o Associated dimensions and section properties from optimally-designed 

sections utilizing standard mill plates have been provided. 

 Destructive flexural testing of representative specimens was performed. 

o All results from experimental testing have been provided. 

 Analytical tools for assessing the behavior and capacity of the proposed system 

was developed. 

o Comparisons of experimental and analytical data have been provided. 

 Behavioral studies were performed in order to assess the applicability of the 

current AASHTO LRFD Specifications in predicting the capacity the proposed 

system. 

o Improved expressions to compute the nominal capacity of the proposed 

system in its composite and noncomposite states were developed. 

 Economic studies and feasibility assessments were performed to determine the 

system’s competitiveness in the short-span bridge market. 

o These studies resulted in a reduced, standardized set of solutions. 

  



125 
 

8.2 PROPOSED STANDARDIZED SYSTEM 

 

 Feasibility assessments, coupled with a reduction of the parametric matrix of girders 

(based on plate availability) and conservative estimates of live load distribution, resulted in the 

following systems: 

 

 Modular single-girder systems employing 72” × 1/2” plate 

o Applicable for spans up to 40 feet 

 Modular single-girder systems employing 96” × 1/2” plate 

o Applicable for spans up to 60 feet 

 Modular single-girder systems employing 120” × 5/8” plate 

o Applicable for spans up to 80 feet 

 Modular double-girder systems employing 60” × 1/2” plate 

o Applicable for spans up to 65 feet 

 

To longitudinally join the modular units, the author recommends the solutions presented 

by Graybeal (2010).  This study investigated the structural performance of longitudinal UHPC 

connections for modular bridge deck components.  The results demonstrated that the resulting 

connection facilitates construction of modular bridge components and results in deck systems 

whose behaviors meet or exceed those of a conventional cast-in-place bridge deck.  Figure 8.1 

illustrates a representative connection detail that would be applicable for the proposed system. 

 

 

Figure 8.1: UHPC Longitudinal Joint (Graybeal, 2010) 
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8.3 RECOMMENDATIONS FOR CONTINUED RESEARCH 

 

 The author recommends the following tasks for future work and/or expansions to this 

project. 

 To resist bearing forces, the thickness of the steel diaphragm at support locations 

was conservatively specified as 3/4 inches.  While no bearing-related issues were 

observed during experimental testing or analytical studies, investigations should 

be conducted to assess the behavior of diaphragm bearing plates in steel tub 

girders. 

 Utilizing a standard 7.5-foot-wide × 8-inch-thick concrete deck resulted in girder 

proportions that violate current requirements for employing AASHTO live load 

distribution factors for steel tub girders.  While conservative estimates of live load 

distribution still guaranteed the economic competitiveness of the proposed, 

increased accuracy in determining live load distribution should be assessed; 

reduced live load distribution will result in increased span applicability for each of 

the proposed standard girder options. 

o For longer span ranges, it may also be a viable option to longitudinally 

splice units together.  Therefore, best practices for bolted/welded splices 

should be assessed. 

 The proposed steel girder was fabricated utilizing a large-capacity press brake.  

Bend radii of the proposed system were limited to 5 × the thickness of the 

standard mill plate, which is consistent with AASHTO Specifications.  While no 

welding was used to fabricate the girder, the fatigue performance of the bend 

regions (and the modular unit, in general) should be assessed. 

 Once the press-brake-formed steel tub girder has been implemented for 

mainstream use, long-term monitoring of candidate bridges may provide valuable 

information regarding inspection needs for the proposed system. 
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 The proposed modular unit was to be made composite with a concrete deck cast in 

the fabrication stage of construction.  Other viable deck options, such as utilizing 

partial/full depth precast deck panels or sandwich plates, should be assessed as 

possible improvements to the system’s economy.  Figures 8.2 through 8.5 

illustrate some of the various possible deck options available for the proposed 

system. 

 

 

Figure 8.2: Precast Deck Option 

 

 

Figure 8.3: Partial-Depth Panel Deck Option 
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Figure 8.4: Full-Depth Panel Deck Option with Pocketed Shear Studs 

 

 

Figure 8.5: Sandwich Plate Deck Option  
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APPENDIX A:  ELASTIC SECTION PROPERTIES 

 

A.1 INTRODUCTION 

 

 The purpose of this appendix is to present the elastic section properties of the press-

brake-formed steel tub girders proposed in this work.  An in-depth derivation will be performed 

and will be accompanied by an illustrative example. 

 

A.2 NOMENCLATURE 

 

 For the derivation, the following nomenclature is adopted (notation is also described in 

Figure A.1): 

 wPL = width of standard mill plate (in) 

 t = plate thickness (in) 

 r = bend radius measured at the center of the plate (in) 

 btf = width of top flange (in) 

 bbf = width of bottom flange (in) 

 d = total girder depth (in) 

 D = length of the flat portion of the web (in) 

 m = slope ratio of the inclined web (i.e.: 1 to m) 

 

 

Figure A.1: Nomenclature for Elastic Section Property Derivations 
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A.3 DERIVATION OF FLEXURAL SECTION PROPERTIES 

 

 Moments of inertia of the proposed press-brake-formed steel tub girder are computed 

using the parallel-axis theorem (Beer et. al., 2012).  The individual components of the steel 

girder consist of rectangular components (i.e. the flat portions of the flanges and webs) and the 

bend regions.  The derivations of the required section properties for each individual component 

are discussed in this section. 

 

A.3.1 Section Properties of Bend Regions (Sector of a Circular Ring) 

 

The bend regions of the press-brake-formed tub girder are sectors of a circular ring.  For 

clarity, the section properties of these regions are derived in the following section. 

 

A.3.1.1 Geometry of Bend Regions 

 

The geometry of the bend region and the notation used in the following derivation is 

shown in Figure A.2. 

 

 

Figure A.2: Bend Region Geometry 
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From Figure A.2, r1 = r − t/2 and r2 = r + t/2.  Using these definitions, the following 

polynomials can be evaluated and simplified as follows (these polynomials will be employed in 

Section A.3.1.2): 

 

2 2
2 1 2r r rt   

3
3 3 2

2 1 3
4

t
r r r t    

4 4 3 3
2 1 4r r r t rt    

 

Also, from Figure A.2, θ1 = tan-1(1/m) and θ2 = π/2.  Using these definitions, the 

following trigonometric functions can be evaluated and simplified as follows (these functions 

will also be employed in Section A.3.1.2): 

 

 1 2

1
sin

1m
 


      2sin 1   

 1 2
cos

1

m

m
 


      2cos 0   

     1 1 1 2

2
sin 2 2sin cos

1

m

m
   


      2sin 2 sin 0    

     
2

2 2
1 1 1 2

1
cos 2 cos sin

1

m

m
   

  


     2cos 2 cos 1     

 1
2 1 tan m       

 

A.3.1.2 Derivation of Bend-Region Section Properties 

 

 The area of a bend region (note that, in polar coordinates, dA = r dr dθ) is derived as 

follows: 

 

  2 2

1 1

2 2
2 1 2 1

2

r

bend

A r

r r
A dA r dr d





 


 
      
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 Substituting the previous definitions for r1, r2, θ1, and θ2 and simplifying:  

 

 1tanbendA rt m      

 

The center-of-gravity of the bend region (note that, in polar coordinates, x = r cos(θ) and 

y = r sin(θ)) is derived as follows:  

 

       
2 2

1 1

3 3
2 12

2 1

1 1
cos sin sin

3

r

bend

A r

r r
x x dA r dr d

A A A





   


         

       
2 2

1 1

3 3
2 12

1 2

1 1
sin cos cos

3

r

bend

A r

r r
y y dA r dr d

A A A





   


         

 

Substituting the previous expressions for r1, r2, θ1, θ2, and A and simplifying: 

 

 
2

1 2

1 1
1

tan 12 1
bend

t
x r

m r m


  
     

  
 

 
2

1 2

1

tan 12 1
bend

t m
y r

m r m


  
     

  
 

 

The moments of inertia of the bend regions about the x- and y-axes (located at the center 

of the bend radii), respectively, are derived as follows:  

 

         
2 2

1 1

4 4
2 12 3 2

2 1 1 2sin 2 sin 2 sin 2
16

r

x
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I y dA r dr d





     


           

         
2 2

1 1

4 4
2 12 3 2

2 1 1 2cos 2 sin 2 sin 2
16

r

y

A r

r r
I x dA r dr d





     


           
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 Substituting the previous definitions for r1, r2, θ1, and θ2 and simplifying: 

 

   
3 3

1
2

4
tan

8 1x

r t rt m
I m

m


     
 

   
3 3

1
2

4
tan

8 1y

r t rt m
I m

m


     
 

 

These expressions for Ix and Iy are expressed about the x- and y-axes located at the center 

of the bend radii (see Figure A.2).  To shift these values to the center-of-gravity of the bend 

region, the parallel axis theorem is employed as follows: 

 

     
3 3

1 2
2

4
tan

8 1bendx bend bend

r t rt m
I m A y

m


       
 

     
3 3

1 2
2

4
tan

8 1bendy bend bend

r t rt m
I m A x

m


       
 

 

Also, since the bend region is circular, the length of the plate in the bend region is simply 

equal to the radius at the mid-thickness of the bend (i.e. r) multiplied by the total angle the bend 

encompasses (i.e. θ2 – θ1): 

 

 1tanbendL r m     
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It should be noted that, in the United States, it is typical that the web in a tub girder 

employed in bridge applications be inclined at a 1-to-4 slope.  Therefore, for a value of m = 4: 

 

 1tan 4bendA rt      

 
2

1

1 1
1

tan 4 12 17
bend

t
x r

r

  
    

  
 

 
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1

1 4

tan 4 12 17
bend

t
y r
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     
3 3

1 2
4 4

tan 4
8 17bendx bend bend

r t rt
I A y

      
 

     
3 3

1 2
4 4

tan 4
8 17bendy bend bend

r t rt
I A x

      
 

 1tan 4bendL r      

 

A.3.2 Section Properties of Rectangular Regions 

 

 The section properties of a rectangle of width b and height h with respect to the center-of-

gravity are easily derived (Beer et. al., 2012) and are as follows: 

 

A bh  

2

b
x         

2

h
y   

3

12x

bh
I        

3

12y

b h
I   
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For the web regions, the moments of inertia with respect to the center-of-gravity must be 

expressed about inclined axes as follows (Beer et. al., 2012): 

 

   cos 2 sin 2
2 2

x y x y
x xy

I I I I
I I 

 
    

   cos 2 sin 2
2 2

x y x y
y xy

I I I I
I I 

 
    

 

Therefore, substituting the previous properties (note that, since rectangles are symmetric, 

Ixy = 0), the moments of inertia with respect to the center-of-gravity are: 

 

   2 2 2 2 cos 2
24x

bh
I b h h b 

       

   2 2 2 2 cos 2
24y

bh
I b h h b 

       

 

The dimensions, b and h, of the inclined web are simply equal to the thickness of the 

plate, t, and the length of the flat portion of the web, D, respectively.  Also, the angle of 

inclination for the web, ϕ = θ1 = tan-1(1/m).  Therefore: 

 

 
2

2 2 2 2
2

1

24 1webx

Dt m
I D t D t

m

  
        

 

 
2

2 2 2 2
2

1

24 1weby

Dt m
I D t D t

m

  
        

 

 

The length of the flat portion of the web, D, can be derived by determining the height of 

the flat portion of the web and employing the web slope ratio.  This is shown in the Figure A.3. 
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Figure A.3: Length of the Flat Portion of the Inclined Web 

 

Therefore, the length of the flat portion of the web can be derived as follows: 

 

 1 2

1
2 sin 2 1

2 1
y

t
D d r r d t r

m


              
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1 1 2 2
2 1

1 1
x

r d t r
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m mm m m

    
        

    
 

  22

2

2 2 11 1
2 1

1

r d t r mm
D d t r

m mm

      
       

   
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For a 1-to-4 slope ratio of the web, these formulas can be simplified as follows: 

 

2

42 17
x

r d t r
D

 
   

1
2 1

17
yD d t r

 
    

 
 

 17
2

2 4

r
D d t r     

 2 2 2 215

24 17webx

Dt
I D t D t

      
 

 2 2 2 215

24 17weby

Dt
I D t D t

      
 

 

A.3.3 Parallel-Axis Theorem 

 

 The moments of inertia of the steel press-brake-formed tub girder are found using the 

parallel-axis theorem (Beer et. al., 2012): 

 

 2

1
i i

n

XX x i y
i

I I A d


        2

1
i i

n

YY y i x
i

I I A d


   

 

 The di values are simply equal to the distance from the center-of-gravity of the individual 

regions to the center-of-gravity of the press-brake-formed steel tub girder as a whole: 

 

 

 
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x i i n

i
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A x
d x X x
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i
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i
i

A y
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



   

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Therefore, the x̅i and y̅i values need to be evaluated for each region in the press-brake-

formed steel tub girder.  Regions numbers are referenced from Figure A.4.  Note that, in order to 
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determine the center-of-gravity, all x̅i and y̅i values must be referenced from a common datum.  

The location of the datum used in the following derivations is shown in Figure A.5.   

 

 

Figure A.4: Region Numbers 

 

 

Figure A.5: Reference Datum Location 
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A.3.3.1 Region 1 (Bottom Flange) 

 

 The flat portion of the web is simply a rectangle of width bbf and height t.  Therefore, 

since the center-of-gravity of the bottom flange lies along the y-axis of the datum: 

 

1 0x         1 2

t
y   

 

A.3.3.2 Regions 2 and 3 (Bottom Bends) 

 

The center-of-gravity of each of the bottom bend regions can be calculated as shown in 

Figure A.6. 

 

 

Figure A.6: Bottom Bend Region Center-of-Gravity 

 

Therefore: 

 

2 2
bf

bend

b
x x       2 2 bend

t
y r y    

 

Note that, by symmetry: 

 

3 2x x        3 2y y  
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A.3.3.3 Regions 4 and 5 (Inclined Webs) 

 

The x-axis center-of-gravity of each of the inclined web regions can be calculated as 

shown in Figure A.7.  Also, since the top and bottom bend regions are both bent at the same 

angle and radius, the y-axis centers-of-gravity for the inclined web from the datum are simply 

equal to half of the total girder depth. 

 

 

Figure A.7: Inclined Web Center-of-Gravity 

 

Therefore: 

 

 4 1cos
2 2
bf x

b D
x r        4 2

d
y   

 

Substituting previous expressions for cos(θ1) and Dx and expressing the formula for a 1-

to-4 web slope ratio: 

 

4

17 17

2 8 4 17
bfb d t

x r
  

      
 

   4 2

d
y   
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Note that, by symmetry: 

 

5 4x x        4 5y y  

 

A.3.3.4 Regions 6 and 7 (Top Bends) 

 

The centers-of-gravity of each of the top bend regions can be calculated as shown in 

Figure A.8. 

 

 

Figure A.8: Top Bend Center-of-Gravity 

 

Therefore: 

 

 6 12 cos
2
bf

x bend

b
x r D x        6 12 sin

2 y bend

t
y r r D y      
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Substituting previous expressions for cos(θ1), Dx, Dy and expressing the formula for a 1-

to-4 web slope ratio: 

 

6

17 17

2 4 2 17
bf

bend

b d t
x r x

  
      

 
  6 2 bend

t
y d r y

      
 

 

 

Note that, by symmetry: 

 

7 6x x        7 6y y  

 

A.3.3.5 Regions 8 and 9 (Top Flanges) 

 

The x-axis center-of-gravity of each of the top flanges can be calculated as shown in 

Figure A.9. 

 

 

Figure A.9: Top Flange Center-of-Gravity 
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Therefore: 

 

 8 12 cos
2 2
bf tf

x

b b
x r D       8 2

t
y d   

 

Substituting previous expressions for cos(θ1) and Dx and expressing the formulas for a 1-

to-4 web slope ratio: 

 

8

17 17

2 4 22 17
bf tfb bd t

x r
  

     
 

   8 2

t
y d   

 

Note that, by symmetry: 

 

9 8x x        8 9y y  

 

A.3.4 Summary of Derivation 

 

The following summary of formulas used in computing the section properties of press-

brake-formed steel tub girders is listed here.  Note that all of the formulas reference the regions 

shown in Figure A.4 and the x̅i and y̅i values are measured from the datum referenced in Figure 

A.5.  In addition, all of the formulas have been simplified for a 1-to-4 slope ratio (i.e. m = 4). 
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A.3.4.1 Constant Values 

 

The following constants are referenced in the formulas in Section A.3.4.2: 

 

 1tan 4bendA rt      
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1

tan 4 12 17
bend

t
x r

r

  
    

  
 

 
2

1

1 4

tan 4 12 17
bend

t
y r

r
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  
 

     
3 3
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4 4

tan 4
8 17bendx bend bend

r t rt
I A y
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Dt
I D t D t
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Dt
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A.3.4.2 Cross-Sectional Areas 

 

The areas of the individual regions are computed as follows: 

 

1 bfA b t  

2 3 bendA A A   

4 5A A Dt   

6 7 bendA A A   

8 9 tfA A b t   

 

A.3.4.3 Centers-of-Gravity 

 

The centers-of-gravity of the individual regions are computed as follows: 
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A.3.4.4 Moments of Inertia 

 

The moments of inertia of the individual regions are computed as follows: 
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A.4 DERIVATION OF TORSIONAL SECTION PROPERTIES 

 

 St. Venant torsional constants, warping constants, and constants of monosymmetry of the 

proposed press-brake-formed steel tub girder are derived using provisions specified by Galambos 

(1968) and the Guide to Stability Design Criteria for Metal Structures (Ziemian, 2010).  For the 

derivation of torsional properties, the girder is idealized as a series of straight-line segments of 

plates. 

 

A.4.1 Relevant Functions and Integrals 

 

Consider a plate element as illustrated in Figure A.10.  For each plate element, spanning 

from point i to point i + 1, the x and y coordinates at any point along the plate width can be 

expressed as follows, where Li is the length of the plate element in question, and s is the distance 

along the plate element mid-thickness from the ith point: 
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Figure A.10: Plate Element Notation 

 

The following derivations contain repeated integration of the shape functions, N1 and N2, 

over the length of plate elements.  These integrals take the following form: 
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Depending on the values of the constants A and B, the integral will result in Li divided by 

a constant value C.  The resulting constants for varying values of A and B are summarized in 

Table A.1: 

 

Table A.1: Integration Constants (“C” Values) 

 A = 0 A = 1 A = 2 A = 3 

B = 0 1 2 3 4 

B = 1 2 6 12 20 

B = 2 3 12 30 60 

B = 3 4 20 60 140 
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To demonstrate the use of these shape functions and resulting integration constants, the 

definition of the moment of inertia about the x-axis, Ix, of a shape made up of k straight-line plate 

elements can be simplified as follows (assuming constant plate thickness throughout the cross-

section), where Ai = t Li: 
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In addition, the following derivations require that all coordinates defining the endpoints 

of plate elements are referenced with respect to the center-of-gravity of the cross section.  Using 

summation notation, the center-of-gravity can be determined as follows: 
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In addition the lengths of each element, Li, are found using simple geometry as follows: 
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A.4.2 Location of Shear Center 

 

 For an open thin-walled cross-section, the coordinates of the shear center (Xo, Yo) are 

determined as follows, where Iwx and Iwy are the warping products of inertia about the x- and y-

axes, respectively, taken at the center of gravity (note that, if the shape exhibits symmetry about 

either axis, Ixy = 0): 
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The warping products of inertia, Iwx and Iwy, are defined as follows, where ω is the unit 

warping across the section with respect to the center-of-gravity and s is the distance along the 

mid-thickness of the open cross-section (note that, if thickness is constant, it can be factored out 

of the integrand): 
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The computation of Iwx and Iwy can be greatly simplified by recognizing that, for an open 

cross-section made up of straight-line elements of uniform thickness, the unit warping varies 

linearly along each segment.  Therefore, using the previously defined shape functions, for Iwx: 
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 Similarly, for Iwy: 
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The unit warping across the section with respect to the center-of-gravity, ω, is found by 

simply integrating the moment arm of the cross-section, ρ, along the cross-section coordinate s as 

follows: 
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As stated, for straight-line elements of uniform thickness, the unit warping varies linearly 

along each segment.  Therefore, the values of the unit warping function are determined as 

follows (note that the first value of unit warping in a cross-section is set to zero as the shear 

stress at this location is zero): 
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The moment arm distances with respect to the center-of-gravity, ρi, are found using 

simple geometry as follows (note that, for straight-line elements, ρi is taken at the middle of each 

element at s = Li / 2): 
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A.4.3 St. Venant Torsional Constant and Warping Constant 

 

The St. Venant torsional constant, J, is computed as follows (assuming constant thickness 

throughout the cross-section): 
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The warping constant, Cw, is determined as follows, where ωn is the normalized unit 

warping, Wo is the normalizing function, and ωo is the unit warping across the section with 

respect to the shear center (note that, if thickness is constant, it can be factored out of the 

integrand): 
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Using the previously defined shape functions, these values may be computed as follows 

(note that Ai refers to the cross-sectional area of a given element whereas A refers to the total 

cross-sectional area): 

 

  

       
    

  

0
1

1 210
1

1 210 0
1

1
1

1

2 2

2

i

i

i i

n L

o o o
iS

n L

oi o i
i

n L L

oi o i
i

n
i i

oi o i
i

i
oi o i

t t
W dS ds

A A

t
N N

A

t
N ds N ds

A

L Lt

A

A

A

 

 

 

 

 














            
         
             
                     

 

 



  



1

n

i


 

ni o oiW     

   1 1on i o iW      



157 
 

  
       

           
    

2

2
2

1 210 0
1 1

22

1 1 2 21 10
1

2 2 2 2
1 1 2 21 10 0 0

1

2
1

2

2

2
3 6

i i

i

i i i

w n

S

n nL L

n ni n i
i i

n L

ni ni n i n i
i

n L L L

ni ni n i n i
i

i i
ni ni n i

C t ds

t ds t N N ds

t N N N N ds

t N ds N N ds N ds

L L
t



  

   

   

  


 

 


 




 
  

 

  

     

     

    
  



  



   

  

    

2
1

1

2 2
1 1

1

3

3

n
i

n i
i

n
i

ni ni n i n i
i

L

A



   




 


          

  





 

 

As stated, for straight-line elements of uniform thickness, the unit warping varies linearly 

along each segment.  Therefore, the values of ωo are computed in the same manner as the method 

for ω: 
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The moment arm distances with respect to the shear center, ρoi, are computed in the same 

manner as the method for ρ (note that the original coordinates of the end points of each segment 

must be adjusted by the shear center coordinates): 
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A.4.4 Coefficient of Monosymmetry 

 

According to the Guide to Stability Design Criteria for Metal Structures (Ziemian, 2010), 

the coefficient of monosymmetry, βx, for a cross-section is expressed as follows (βx is positive if 
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the larger flange is in tension), where x and y are the coordinates with respect to the center-of-

gravity, Ix is the moment of inertia about the x-axis, and Yo is the distance from the shear center 

to the center-of-gravity (taken positive if the larger flange is in tension): 
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The first integral, B1, is evaluated using summation notation as follows: 
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The second, B2, is evaluated using summation notation as follows: 
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A.5 ILLUSTRATIVE EXAMPLE 

 

 To demonstrate the use of these formulas, a numerical example on a typical press-brake 

formed tub girder is presented in the following section. 
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A.5.1 Parameters of Example Girder 

 

 The press-brake-formed steel tub girder shown in Figure A.10 will be employed to 

demonstrate the computation of elastic section properties derived in this appendix.  For this 

girder:  

 wPL = width of standard mill plate = 84 in 

 t = plate thickness = 7/16 in (0.4375 in) 

 btf = width of top flange = 6 in 

 d = total girder depth = 23 in 

 m = slope ratio of the inclined web (i.e.: 1 to m) = 4 

 

 

Figure A.11: Example Girder for Flexural Property Calculations 

 

A.5.2 Related Flexural Expressions 

 

For this example, the plate is to be bent such that the inside bend radius shall be equal to 

five times the thickness (i.e. r1 = 5t).  Therefore: 
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Employing this expression for r, the constants in Section A.3.4.1 can be simplified as 

follows: 
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Since the sum of the lengths of all of the individual regions must equal the width of the 

standard mill plate, w, the resulting width of the bottom flange, bbf, can be determined as follows: 
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Substituting the previous expressions for Lbend and D: 
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In addition, some of the centers-of-gravity of the individual regions listed in Section 

A.3.4.3 can be simplified as follows: 
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A.5.3 Calculation of Flexural Section Properties 

 

 Using the formulas in Section A.3.4.4 and Section A.4.1, the moments of inertia of the 

noncomposite press-brake-formed steel tub girder are computed.  A summary of these 

computations are listed in Table A.2.  From this calculation, the moments of inertia of the press-

brake-formed tub girder are as follows: 

 

42893.1 inXXI       48049.6 inYYI   
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Table A.2: Computation of Moments of Inertia 

Region L (in) A (in2) x̅ (in) y̅ (in) Ax̅ (in3) Ay̅ (in3) Ix (in
4) Iy (in

4) dx (in) dy (in) IXX (in4) IYY (in4) 

1 20.240 8.8551 0 0.2188 0 1.9370 0.1412 302.30 0 -10.175 916.84 302.30 

2 3.1902 1.3957 11.499 0.8594 16.049 1.1995 0.4462 0.6987 11.499 -9.5339 127.31 185.24 

3 3.1902 1.3957 -11.499 0.8594 -16.049 1.1995 0.4462 0.6987 -11.499 -9.5339 127.31 185.24 

4 19.499 8.5310 14.819 11.5 126.42 98.106 254.42 16.029 14.819 1.1067 264.86 1889.5 

5 19.499 8.5310 -14.819 11.5 -126.42 98.106 254.42 16.029 -14.819 1.1067 264.86 1889.5 

6 3.1902 1.3957 18.140 22.141 25.318 30.902 0.4462 0.6987 18.140 11.747 193.05 459.96 

7 3.1902 1.3957 -18.140 22.141 -25.318 30.902 0.4462 0.6987 -18.140 11.747 193.05 459.96 

8 6 2.6250 22.518 22.781 59.110 59.801 0.0419 7.8750 22.518 12.388 402.88 1338.9 

9 6 2.6250 -22.518 22.781 -59.110 59.801 0.0419 7.8750 -22.518 12.388 402.88 1338.9 

Σ = 84 36.75   0 381.96     2893.1 8049.6 
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A.5.4 Related Torsional Expressions 

 

As shown in Section A.4, to compute torsional properties, the cross-section is idealized as 

a collection of straight-line elements.  For the illustrative purposes of this example, the girder 

shown in Figure A.11 is simplified as a collection of straight-line elements as shown in Figure 

A.12. 

 

 

Figure A.12: Example Girder for Torsional Property Calculations 

 

The coordinates of the endpoints of the elements in Figure A.12 were computed using the 

provisions derived in Sections A2 and A3.  However, since the derived formulas reference the 

chosen datum shown in Figure A.5, these coordinates must be adjusted to be referenced from the 

center-of-gravity of the cross-section.  This adjustment is completed in Table A.3.  Recall, using 

summation notation: 
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Table A.3: Adjustment of Coordinates 

Element 
Original Coordinates (in) 

Li (in) Ai (in
2) Qxi (in

3) Qyi (in
3) 

Adjusted Coordinates (in) 

xi xi+1 yi yi+1 xi xi+1 yi yi+1 

1 -25.518 -19.518 22.781 22.781 6.0000 2.6250 -59.110 59.801 -25.518 -19.518 12.400 12.400 

2 -19.518 -17.184 22.781 20.959 2.9617 1.2957 -23.778 28.338 -19.518 -17.184 12.400 10.577 

3 -17.184 -12.455 20.959 2.041 19.499 8.5310 -126.42 98.106 -17.184 -12.455 10.577 -8.3398 

4 -12.455 -10.120 2.041 0.219 2.9617 1.2957 -14.625 1.4643 -12.455 -10.120 -8.3398 -10.162 

5 -10.120 10.120 0.219 0.219 20.240 8.8551 0.0000 1.9370 -10.120 10.120 -10.162 -10.162 

6 10.120 12.455 0.219 2.041 2.9617 1.2957 14.625 1.4643 10.120 12.455 -10.162 -8.3398 

7 12.455 17.184 2.041 20.959 19.499 8.5310 126.42 98.106 12.455 17.184 -8.3398 10.577 

8 17.184 19.518 20.959 22.781 2.9617 1.2957 23.778 28.338 17.184 19.518 10.577 12.400 

9 19.518 25.518 22.781 22.781 6.0000 2.6250 59.110 59.801 19.518 25.518 12.400 12.400 

Σ =      36.350 0.0000 377.36     
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Once adjusted, the endpoint coordinates, coupled with unit warping with respect to the 

center-of-gravity, can be employed to determine the location of the shear center.  This 

calculation is completed in Table A.4.  Note that the first value of unit warping, ω1, is set to zero 

as the shear stress at this location is zero.  Also, since by observation, the shape is symmetric 

about the y-axis, Ixy = 0 and is not computed.  Recall, using summation notation: 
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Table A.4: Computation of Shear Center Location 

Element 
Adjusted Coordinates (in) 

Li (in) ρi (in) 
Unit Warp. (in2) 

Ixi (in
4) Iyi (in

4) Iwxi (in
5) Iwyi (in

5) 
xi xi+1 yi yi+1 ωi ωi+1 

1 -25.518 -19.518 12.400 12.400 6.0000 -12.400 0 -74.401 403.63 1338.9 2101.3 -1210.9 

2 -19.518 -17.184 12.400 10.577 2.9617 2.2379 -74.401 -67.773 171.38 436.94 1692.0 -1059.5 

3 -17.184 -12.455 10.577 -8.3398 19.499 14.105 -67.773 207.27 265.09 1889.4 -7893.2 -3033.2 

4 -12.455 -10.120 -8.3398 -10.162 2.9617 14.238 207.27 249.44 111.25 165.67 -3329.2 -2745.6 

5 -10.120 10.120 -10.162 -10.162 20.240 10.162 249.44 455.13 914.50 302.30 3072.1 -31702 

6 10.120 12.455 -10.162 -8.3398 2.9617 14.238 455.13 497.30 111.25 165.67 6975.4 -5700.1 

7 12.455 17.184 -8.3398 10.577 19.499 14.105 497.30 772.34 265.09 1889.4 81180 9758.2 

8 17.184 19.518 10.577 12.400 2.9617 2.2379 772.34 778.97 171.38 436.94 18445 11548 

9 19.518 25.518 12.400 12.400 6.0000 -12.400 778.97 704.57 403.63 1338.9 43749 24145 

Σ =         2817.2 7964.1 145993 0.0000 
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Once the location of the shear center has been determined, utilizing a normalized unit 

warping with respect to the shear center, the warping constant can be computed.  This calculation 

is completed in Table A.5 (in addition, the St. Venant torsional constant is computed here also).  

Note that the first value of unit warping with respect to the shear center, ωo1, is set to zero as the 

shear stress at this location is zero.  Recall, using summation notation (note that Ai refers to the 

cross-sectional area of a given element whereas A refers to the total cross-sectional area): 
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Table A.5: Computation of St. Venant Torsional Constant and Warping Constant 

Element 
Adjusted Coordinates (in) 

Li (in) ρoi (in) 
Unit Warp. (in2) 

Woi (in
2) 

Norm Warp. (in2) 
Cwi (in

6) 
xi xi+1 yi yi+1 ωoi ωo(i+1) ωni ωn(i+1) 

1 -25.518 -19.518 12.400 12.400 6.0000 -30.731 0 -184.39 -6.6578 -115.50 68.893 8862.6 

2 -19.518 -17.184 12.400 10.577 2.9617 -12.211 -184.39 -220.55 -7.2173 68.893 105.06 9943.0 

3 -17.184 -12.455 10.577 -8.3398 19.499 9.6593 -220.55 -32.202 -29.660 105.06 -83.294 26231 

4 -12.455 -10.120 -8.3398 -10.162 2.9617 -0.2107 -32.202 -32.826 -1.1590 -83.294 -82.670 8922.5 

5 -10.120 10.120 -10.162 -10.162 20.240 -8.1689 -32.826 -198.17 -28.135 -82.670 82.670 20173 

6 10.120 12.455 -10.162 -8.3398 2.9617 -0.2107 -198.17 -198.79 -7.0749 82.670 83.294 8922.5 

7 12.455 17.184 -8.3398 10.577 19.499 9.6593 -198.79 -10.439 -24.552 83.294 -105.06 26231 

8 17.184 19.518 10.577 12.400 2.9617 -12.211 -10.439 -46.603 -1.0167 -105.06 -68.893 9943.0 

9 19.518 25.518 12.400 12.400 6.0000 -30.731 -46.603 -230.99 -10.023 -68.893 115.50 8862.6 

Σ =     83.086    -115.50   128090 
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In addition, once the endpoint coordinates have been adjusted to be referenced with 

respect to the center-of-gravity, the coefficient of monosymmetry can be computed (βx is positive 

if the larger flange is in tension).  This calculation is completed in Table A.6.  Recall, using 

summation notation: 
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According to the Guide to Stability Design Criteria for Metal Structures (Ziemian, 2010), 

Yo is the distance from the shear center to the center-of-gravity (taken positive if the larger flange 

is in tension).  Therefore, in the following computations: 
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Table A.6: Computation of Coefficient of Monosymmetry 

Element 
Adjusted Coordinates (in) 

Li (in) Ixi (in
4) 

Integrals (in5) 

xi xi+1 yi yi+1 B1i B2i 

1 -25.518 -19.518 12.400 12.400 6.0000 403.63 5005.0 16603 

2 -19.518 -17.184 12.400 10.577 2.9617 171.38 1977.2 5036.7 

3 -17.184 -12.455 10.577 -8.3398 19.499 265.09 865.88 3999.0 

4 -12.455 -10.120 -8.3398 -10.162 2.9617 111.25 -1035.8 -1522.2 

5 -10.120 10.120 -10.162 -10.162 20.240 914.50 -9293.6 -3072.1 

6 10.120 12.455 -10.162 -8.3398 2.9617 111.25 -1035.8 -1522.2 

7 12.455 17.184 -8.3398 10.577 19.499 265.09 865.88 3999.0 

8 17.184 19.518 10.577 12.400 2.9617 171.38 1977.2 5036.7 

9 19.518 25.518 12.400 12.400 6.0000 403.63 5005.0 16603 

Σ =      2817.2 4331.0 45161 
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Recall that the preceding computations are based on an “approximate” representation of 

the girder shown in Figure A.12 (i.e. only using one straight-line element per bend region).  This 

was done in order to demonstrate the numerical methods for computing torsional constants.  

Using MATLAB (see Appendix D), this computation can be refined by incorporating more 

elements in bend regions.  A comparison of results obtained using more elements in bend regions 

is shown in Table A.7.  In addition, exact results from Table A.2 are shown, which illustrate the 

accuracy of each representation of the girder.  As shown, using 10000 straight-line elements in 

bend regions is adequate to achieve accurate section properties. 

 

Table A.7: Accuracy of Torsional Section Properties 

Property 
Number of Straight-Line Bend Segments in Bend Regions 

Exact 
1 10 100 1000 10000 20000 

A (in2) 36.350 36.746 36.750 36.750 36.750 36.750 36.750 

y̅ (in) 10.381 10.393 10.393 10.393 10.393 10.393 10.393 

Ix (in
4) 2817.2 2891.4 2892.2 2892.2 2892.2 2892.2 2893.1 

Iy (in
4) 7964.1 8048.5 8049.4 8049.4 8049.4 8049.4 8049.6 

Yo (in) -18.331 -18.471 -18.472 -18.472 -18.472 -18.472 -- 

J (in4) 2.3192 2.3445 2.3447 2.3447 2.3447 2.3447 2.3447 

Cw (in6) 128090 139824 139950 139951 139952 139952 -- 

βx (in) -19.095 -19.698 -19.704 -19.704 -19.704 -19.704 -- 
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APPENDIX B:  MATLAB PROGRAMS & ILLUSTRATIVE EXAMPLES 

 

B.1 INTRODUCTION 

 

 The purpose of this appendix is to document the MATLAB (The Mathworks, Inc., 2010) 

functions and programs written for this research.  Each program is documented, and selected 

examples are presented which illustrate the methodology the functions/programs implement. 

 

B.2 MATLAB FUNCTIONS AND PROGRAMS 

 

B.2.1 Function File:  flexprop_NC.m 

 

Function file “flexprop_NC.m” is employed to determine the noncomposite section 

properties of the press-brake-formed tub girder (see Appendix A).  Given the standard mill plate 

width and thickness, the girder depth, the bend radii, the web slope ratio, and the width of the top 

flange, the function reports the cross-sectional area, center-of-gravity, and the X-axis moment of 

inertia of the noncomposite section.  The MATLAB file is as follows: 

 

function [A_NC,y_NC,Ix_NC] = flexprop_NC(w,t,d,r,m,btf) 
  
% Constant Values 
% -------------------------------------------- 
% A_bend = area of the bend region (in^2) 
% y_bend = center-of-gravity of the bend region (in) 
% Ix_bend = moment of inertia of the bend region (in^4) 
% L_bend = length of the bend region (in) 
% D = length of the inclined web (in) 
% Ix_web = moment of inertia of the inclined web (in^4) 
% bbf = bottom flange width (in) 
  
A_bend=r*t*atan(m); 
y_bend=(1/atan(m))*(r+t^2/(12*r))*(m/sqrt(m^2+1)); 
Ix_bend=((4*r^3*t+r*t^3)/8)*(atan(m)+m/(m^2+1))-A_bend*(y_bend^2); 
L_bend=r*atan(m); 
D=(2*r+(d-t-2*r)*sqrt(m^2+1))/m; 
Ix_web=(D*t/24)*(D^2+t^2+(D^2-t^2)*((m^2-1)/(m^2+1))); 
bbf=w-(4*L_bend+2*D+2*btf); 
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% Noncomposite Section Properties 
% -------------------------------------------- 
% A_i = area (in^2) 
% y_i = centers-of-gravity (in) 
% Ay_i = first moment (in^3) 
% I_i = moment of inertia (in^4) 
% d_i = parallel axis (in) 
% Ix_i = parallel axis theorem (in^4) 
  
A_1=bbf*t;      y_1=t/2;                Ay_1=A_1*y_1; 
A_2=A_bend;     y_2=r+t/2-y_bend;       Ay_2=A_2*y_2; 
A_3=A_bend;     y_3=r+t/2-y_bend;       Ay_3=A_3*y_3; 
A_4=D*t;        y_4=d/2;                Ay_4=A_4*y_4; 
A_5=D*t;        y_5=d/2;                Ay_5=A_5*y_5; 
A_6=A_bend;     y_6=d-(r+t/2-y_bend);   Ay_6=A_6*y_6; 
A_7=A_bend;     y_7=d-(r+t/2-y_bend);   Ay_7=A_7*y_7; 
A_8=btf*t;      y_8=d-t/2;              Ay_8=A_8*y_8; 
A_9=btf*t;      y_9=d-t/2;              Ay_9=A_9*y_9; 
  
A_NC=A_1+A_2+A_3+A_4+A_5+A_6+A_7+A_8+A_9; 
Ay_NC=Ay_1+Ay_2+Ay_3+Ay_4+Ay_5+Ay_6+Ay_7+Ay_8+Ay_9; 
y_NC=Ay_NC/A_NC; 
  
I_1=(bbf*(t^3))/12;     d_1=y_1-y_NC;       Ix_1=I_1+A_1*(d_1^2); 
I_2=Ix_bend;            d_2=y_2-y_NC;       Ix_2=I_2+A_2*(d_2^2); 
I_3=Ix_bend;            d_3=y_3-y_NC;       Ix_3=I_3+A_3*(d_3^2); 
I_4=Ix_web;             d_4=y_4-y_NC;       Ix_4=I_4+A_4*(d_4^2); 
I_5=Ix_web;             d_5=y_5-y_NC;       Ix_5=I_5+A_5*(d_5^2); 
I_6=Ix_bend;            d_6=y_6-y_NC;       Ix_6=I_6+A_6*(d_6^2); 
I_7=Ix_bend;            d_7=y_7-y_NC;       Ix_7=I_7+A_7*(d_7^2); 
I_8=(btf*(t^3))/12;     d_8=y_8-y_NC;       Ix_8=I_8+A_8*(d_8^2); 
I_9=(btf*(t^3))/12;     d_9=y_9-y_NC;       Ix_9=I_9+A_9*(d_9^2); 
  
Ix_NC=Ix_1+Ix_2+Ix_3+Ix_4+Ix_5+Ix_6+Ix_7+Ix_8+Ix_9; 
  
end 
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B.2.2 Function File:  flexprop_C.m 

 

Function file “flexprop_C.m” is employed to determine the composite section properties 

of the press-brake-formed tub girder (see Appendix A).  Given the results from 

“flexprop_NC.m” along with the slab properties, such as the width, the thickness, and the 

modular ratio, the function reports the X-axis moment of inertia of the composite section.  The 

MATLAB file is as follows: 

 

function Ix_C = flexprop_C(A_NC,y_NC,Ix_NC,bs,n,ts,d) 
  
% Composite Section Properties 
% -------------------------------------------- 
% A_i = area (in^2) 
% y_i = centers-of-gravity (in) 
% Ay_i = first moment (in^3) 
% I_i = moment of inertia (in^4) 
% d_i = parallel axis (in) 
% Ix_i = parallel axis theorem (in^4) 
  
A_1=A_NC;           y_1=y_NC;       Ay_1=A_1*y_1; 
A_2=(bs/n)*(ts);    y_2=d+ts/2;     Ay_2=A_2*y_2; 
  
A_C=A_1+A_2; 
Ay_C=Ay_1+Ay_2; 
y_C=Ay_C/A_C; 
  
I_1=Ix_NC;              d_1=y_1-y_C;        Ix_1=I_1+A_1*(d_1^2); 
I_2=(bs/n)*(ts^3)/12;   d_2=y_2-y_C;        Ix_2=I_2+A_2*(d_2^2); 
  
Ix_C=Ix_1+Ix_2; 
  
end 
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B.2.3 Program File:  torsprop_C.m 

 

Program file “torsprop_C.m” is employed to determine the torsional properties of the 

press-brake-formed tub girder (see Appendix A).  Given the parameters defining the geometry of 

the girder along with the desired precision (defined by the number of elements in each region of 

the cross-cection), the function reports the St. Venant torsional constant, the location of the shear 

center, the warping constant, and the coefficient of monosymmetry.  Using the desired precision, 

the program first calculates the location of nodes required to define the cross-section.  Then, the 

program uses the algorithm described in Appendix A to compute relevant section properties.  

The MATLAB file is as follows (input for the girder used in the demonstrated example in 

Appendix A is shown): 

 

clc 
clear all 
  
% ======================================================================= 
% PART 1:  FUNDAMENTAL PARAMETERS & CONSTANT VALUES 
% ======================================================================= 
  
% Fundamental Parameters 
% -------------------------------------------- 
w=84;        % standard mill plate width (in) 
t=7/16;      % plate thickness (in) 
r=5*t+t/2;   % bend radius at mid-thickness (in) 
m=4;         % slope radio of the web (i.e 1:4) 
d=23;        % total girder depth (in) 
btf=6;       % top flange width (in) 
  
ne_tf=1;     % number of elements along the top flange 
ne_b=10000;  % number of elements along the bend 
ne_w=1;      % number of elements along the web 
ne_bf=1;     % number of elements along the bottom flange 
  
% Constant Values 
% -------------------------------------------- 
% theta = bend angle (rad) 
% A_bend = area of the bend region (in^2) 
% x_bend = x-axis center-of-gravity of the bend region (in) 
% y_bend = y-axis center-of-gravity of the bend region (in) 
% L_bend = length of the bend region (in) 
% Dx = length of the x-portion inclined web (in) 
% Dy = length of the y-portion inclined web (in) 
% D = length of the inclined web (in) 
% bbf = bottom flange width (in) 
  
theta=pi/2-atan(1/m); 
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L_bend=r*atan(m); 
Dx=2*r/(m*sqrt(m^2+1))+(d-t-2*r)/m; 
Dy=d-t-2*r*(1-1/sqrt(m^2+1)); 
D=(2*r+(d-t-2*r)*sqrt(m^2+1))/m; 
bbf=w-(4*L_bend+2*D+2*btf); 
  
% ======================================================================= 
% PART 2:  NODE LAYOUT 
% ======================================================================= 
  
% Node Layout - Top Flange 
% -------------------------------------------- 
n_tf_x=((0):(btf/ne_tf):(btf))'+2*r*sin(theta)+Dx+bbf/2; 
n_tf_y=zeros(ne_tf+1,1)+d-t; 
  
n_tf_x1=-n_tf_x;    n_tf_y1=n_tf_y; 
n_tf_x2=+n_tf_x;    n_tf_y2=n_tf_y; 
clear n_tf_x n_tf_y 
  
% Node Layout - Top Bend Regions 
% -------------------------------------------- 
n_theta=(pi/2-theta):(theta/ne_b):(pi/2); 
n_tb_x=-r*cos(n_theta)+2*r*sin(theta)+Dx+bbf/2; 
n_tb_y=r*sin(n_theta)-2*r*cos(theta)+Dy+r; 
  
n_tb_x1=-n_tb_x';   n_tb_y1=n_tb_y'; 
n_tb_x2=+n_tb_x';   n_tb_y2=n_tb_y'; 
clear n_theta n_tb_x n_tb_y 
  
% Node Layout - Flat Web Regions 
% -------------------------------------------- 
n_w_x=((0):(Dx/ne_w):(Dx))'+r*sin(theta)+bbf/2; 
n_w_y=((0):(Dy/ne_w):(Dy))'+2*r*(sin(theta/2))^2; 
  
n_w_x1=-n_w_x;      n_w_y1=n_w_y; 
n_w_x2=+n_w_x;      n_w_y2=n_w_y; 
clear n_w_x n_w_y 
  
% Node Layout - Bottom Bend Regions 
% -------------------------------------------- 
n_theta=(3*pi/2):(theta/ne_b):(3*pi/2+theta); 
n_bb_x=r*cos(n_theta)+bbf/2; 
n_bb_y=r*sin(n_theta)+r; 
  
n_bb_x1=-n_bb_x';   n_bb_x2=n_bb_x'; 
n_bb_y1=+n_bb_y';   n_bb_y2=n_bb_y'; 
clear n_theta n_bb_x n_bb_y 
  
% Node Layout - Bottom Flange 
% -------------------------------------------- 
n_bf_x=((-bbf/2):(bbf/ne_bf):(bbf/2))'; 
n_bf_y=zeros(ne_bf+1,1); 
  
% Node Layout - Concatenation 
% -------------------------------------------- 
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nx1=vertcat(n_tf_x1,n_tb_x1,n_w_x1); ny1=vertcat(n_tf_y1,n_tb_y1,n_w_y1); 
nx2=vertcat(n_bb_x1,n_bf_x,n_bb_x2); ny2=vertcat(n_bb_y1,n_bf_y,n_bb_y2); 
nx3=vertcat(n_w_x2,n_tb_x2,n_tf_x2); ny3=vertcat(n_w_y2,n_tb_y2,n_tf_y2); 
  
nx=vertcat(nx1,nx2,nx3);    ny=vertcat(ny1,ny2,ny3); 
nx=round(nx*1e6)/1e6;       ny=round(ny*1e6)/1e6; 
clear nx1 nx2 nx3 ny1 ny2 ny3 
  
node=horzcat(nx,ny); 
node=unique(node,'rows'); 
node(:,2)=node(:,2)+t/2; 
node=round(node*1e6)/1e6; 
clear nx ny 
  
% Node Layout - Clear Statements 
% -------------------------------------------- 
clear n_tf_x1 n_tb_x1 n_w_x1    n_tf_y1 n_tb_y1 n_w_y1 
clear n_bb_x1 n_bf_x n_bb_x2    n_bb_y1 n_bf_y n_bb_y2 
clear n_w_x2 n_tb_x2 n_tf_x2    n_w_y2 n_tb_y2 n_tf_y2 
clear theta L_bend Dx Dy D bbf 
clear ne_tf ne_b ne_w ne_bf 
  
% ======================================================================= 
% PART 3:  TORSIONAL PROPERTIES 
% ======================================================================= 
  
% Fundamental Terms 
% -------------------------------------------- 
nnode=length(node(:,1)); % nnode = number of nodes 
nele=nnode-1;            % nele = number of elements 
  
% Torsional Properties - Lengths & Area 
% -------------------------------------------- 
Lij=zeros(nele,1); % Lij = length of each element (in) 
Aij=zeros(nele,1); % Aij = area of each element (in^2) 
for i=1:nele 
    xi=node(i,1); 
    xj=node(i+1,1); 
    yi=node(i,2); 
    yj=node(i+1,2); 
    Lij(i)=sqrt((xj-xi)^2+(yj-yi)^2); 
    Aij(i)=t*Lij(i); 
    clear xi xj yi yj 
end 
clear ans i 
A=sum(Aij);        % A = area of cross-section (in^2) 
  
% Torsional Properties - Center-of-Gravity 
% -------------------------------------------- 
Qxij=zeros(nele,1); % Qxij = first moment of area about X-axis (in^3) 
Qyij=zeros(nele,1); % Qyij = first moment of area about X-axis (in^3) 
for i=1:nele 
    xi=node(i,1); 
    xj=node(i+1,1); 
    yi=node(i,2); 
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    yj=node(i+1,2); 
    Qxij(i)=(Aij(i)/2)*(xi+xj); 
    Qyij(i)=(Aij(i)/2)*(yi+yj); 
    clear xi xj yi yj 
end 
clear ans i 
x_bar=sum(Qxij)/A;  % x_bar = X-axis centroid (in) 
y_bar=sum(Qyij)/A;  % y_bar = Y-axis centroid (in) 
  
% Torsional Properties - Moments of Inertia 
% -------------------------------------------- 
pij=zeros(nele,1);   % pij = distances from elements to the C.G. (in) 
Ixxij=zeros(nele,1); % Ixxij = X-axis element moment of inertia (in^4) 
Iyyij=zeros(nele,1); % Iyyij = Y-axis element moment of inertia (in^4) 
for i=1:nele 
    xi=node(i,1)-x_bar; 
    xj=node(i+1,1)-x_bar; 
    yi=node(i,2)-y_bar; 
    yj=node(i+1,2)-y_bar; 
    pij(i)=(xi*yj-xj*yi)/Lij(i); 
    Ixxij(i,1)=(Aij(i)/3)*(yi^2+yi*yj+yj^2); 
    Iyyij(i,1)=(Aij(i)/3)*(xi^2+xi*xj+xj^2); 
    clear xi xj yi yj 
end 
clear ans i  
Ixx=sum(Ixxij);      % Ixx = X-axis moment of inertia (in^4) 
Iyy=sum(Iyyij);      % Iyy = Y-axis moment of inertia (in^4) 
  
% Torsional Properties - Unit Warping (C.G.) 
% -------------------------------------------- 
wij=zeros(nele,2); % wij = unit warp. with respect to the C.G. (in^2) 
for i=1:nele 
    if i==1 
        wij(i,1)=0; 
        wij(i,2)=pij(i)*Lij(i); 
    else 
        wij(i,1)=wij(i-1,2); 
        wij(i,2)=wij(i,1)+pij(i)*Lij(i); 
    end 
end 
clear ans i 
  
% Torsional Properties - Warping Products 
% -------------------------------------------- 
Iwxij=zeros(nele,1); % Iwxij = X-axis element warp. prod. (in^5) 
Iwyij=zeros(nele,1); % Iwyij = Y-axis element warp. prod. (in^5) 
for i=1:nele 
    xi=node(i,1)-x_bar; 
    xj=node(i+1,1)-x_bar; 
    yi=node(i,2)-y_bar; 
    yj=node(i+1,2)-y_bar; 
    wi=wij(i,1); 
    wj=wij(i,2); 
    Iwxij(i,1)=(Aij(i)/3)*(wi*xi+wj*xj)+(Aij(i)/6)*(wi*xj+wj*xi); 
    Iwyij(i,1)=(Aij(i)/3)*(wi*yi+wj*yj)+(Aij(i)/6)*(wi*yj+wj*yi); 
    clear xi xj yi yj wi wj 
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end 
clear ans i  
Iwx=sum(Iwxij);      % Iwx = X-axis warping product of inertia (in^5) 
Iwy=sum(Iwyij);      % Iwy = Y-axis warping product of inertia (in^5) 
Xo=+Iwy/Ixx;         % Xo = X-axis shear center (in) 
Yo=-Iwx/Iyy;         % Yo = Y-axis shear center (in) 
  
% Torsional Properties - Distances to S.C. 
% -------------------------------------------- 
poij=zeros(nele,1); % poij = distances from elements to the S.C. (in) 
for i=1:nele 
    xi=node(i,1)-x_bar; 
    xj=node(i+1,1)-x_bar; 
    yi=node(i,2)-y_bar; 
    yj=node(i+1,2)-y_bar; 
    poij(i)=pij(i)-((yj-yi)*Xo-(xj-xi)*Yo)/Lij(i); 
    clear xi xj yi yj 
end 
clear ans i  
  
% Torsional Properties - Unit Warping (S.C.) 
% -------------------------------------------- 
woij=zeros(nele,2); % woij = unit warp. with respect to the S.C. (in^2) 
for i=1:nele 
    if i==1 
        woij(i,1)=0; 
        woij(i,2)=poij(i)*Lij(i); 
    else 
        woij(i,1)=woij(i-1,2); 
        woij(i,2)=woij(i,1)+poij(i)*Lij(i); 
    end 
end 
clear ans i 
  
% Torsional Properties - Normalizing Function 
% -------------------------------------------- 
Woij=zeros(nele,1); % Woij = normalizing function for unit warp. (in^2) 
for i=1:nele 
    woi=woij(i,1); 
    woj=woij(i,2); 
    Woij(i)=(Aij(i)/(2*A))*(woi+woj); 
    clear woi woj 
end 
clear ans i 
  
% Torsional Properties - Warping Constant 
% -------------------------------------------- 
Cwij=zeros(nele,1); % Cwij = element warping constants (in^6) 
for i=1:nele 
    Wni=sum(Woij)-woij(i,1); 
    Wnj=sum(Woij)-woij(i,2); 
    Cwij(i)=(Aij(i)/3)*(Wni^2+Wni*Wnj+Wnj^2); 
    clear Wni Wnj 
end 
clear ans i 
Cw=sum(Cwij);       % Cw = warping constant (in^6) 
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% Torsional Properties - St. Venant Constant 
% -------------------------------------------- 
J=w*(t^3)/3; % J = St. Venant torsional constant (in^4) 
  
% Torsional Properties - Integrals 
% -------------------------------------------- 
B1ij=zeros(nele,1); % B1ij = 1st monosymmetry constant integral (in^5) 
B2ij=zeros(nele,1); % B2ij = 2nd monosymmetry constant integral (in^5) 
for i=1:nele 
    xi=node(i,1)-x_bar; 
    xj=node(i+1,1)-x_bar; 
    yi=node(i,2)-y_bar; 
    yj=node(i+1,2)-y_bar; 
    B1ij(i)=(Aij(i)/4)*(yi+yj)*(yi^2+yj^2); 
    B2ij(i)=(Aij(i)/12)*(yi*(2*xi^2+(xi+xj)^2)+yj*(2*xj^2+(xi+xj)^2)); 
    clear xi xj yi yj 
end 
clear ans i 
  
% Torsional Properties - Monosym. Constant 
% -------------------------------------------- 
B1=sum(B1ij);          % B1 = 1st monosymmetry constant integral (in^5) 
B2=sum(B2ij);          % B2 = 2nd monosymmetry constant integral (in^5) 
bx=((B1+B2)/Ixx)+2*Yo; % bx = coefficient of monosymmetry (in) 
  
% Torsional Properties - Clear Statements 
% -------------------------------------------- 
clear nnode nele node 
clear Lij Aij Qxij Qyij Ixxij Iyyij wij pij 
clear Iwxij Iwyij Iwx Iwy 
clear poij woij Woij Cwij B1ij B2ij B1 B2 
clear A Ixx Iyy x_bar y_bar 
clear w t r m d btf 
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B.2.4 Program File:  tubFEA.m 

 

Program file “tubFEA.m” is employed to preprocess Abaqus .inp files.  Given data 

defining the geometry of a given flexural specimen, “tubFEA.m” automatically generates the 

required nodes and elements to simulate the girder in question (see Chapter 5).  The program 

specifically operates in the following order: 

 Part 1 reads the data necessary to generate the finite element mesh 

 Part 2 calculates the location of nodes required to define the cross-section (note 

that this methodology is identical to the methodology described in Section B.2.3) 

 Part 3 extends the results of Part 2 to generate the three-dimensional mesh of the 

steel press-brake-formed tub girder utilizing shell elements. 

 Part 4 determines the nodes and elements required to simulate a generic 

stiffener/diaphragm (i.e. a stiffener/diaphragm at any location along the span of 

the girder). 

 Part 5 deposits the mesh generated in Part 4 to each location that a 

stiffener/diaphragm is present (i.e. placing a stiffener/diaphragm at each desired 

location). 

 Part 6 generates the mesh of the concrete deck.  Based on the longitudinal 

discretization of the steel girder and a desired element width, node and element 

locations are calculated in order to generate the desired mesh. 

 Part 7 determines the sets of nodes that will be assigned multi-point constraints 

(i.e. the rows of nodes between the top flanges and the deck). 

 Part 8 determines the sets of nodes that will be assigned appropriate boundary 

conditions. 

 Part 9 determines the sets of nodes that will be assigned loads as well as those 

nodes that will be monitored during analysis (i.e. deflections at midspan). 

 Part 10 uses the results generated in Parts 1 through 9 to write the required 

information to an Abaqus .inp file.  In addition, material models (see Chapter 5) 

are also computed here and exported to the input file. 
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The MATLAB file is as follows (input for the composite girder tests discussed in Chapter 

4 is presented): 

 

clc 
clear all 
  
  
% ======================================================================= 
% PART 1:  INPUT PARAMETERS 
% ======================================================================= 
  
% Specimen Dimensions 
% ----------------------------------------------------------------------- 
w=84;           % standard mill plate width [in] 
t=7/16;         % plate thickness [in] 
d=23;           % total girder depth [in] 
dw=90;          % deck width [in] 
  
L=39.5;         % span length [ft] 
r=11/2*t;       % bend radius at mid-thickness [in] 
slope=04;       % slope ratio of web 
btf=06;         % top flange width [in] 
dt=8;           % deck thickness [in] 
  
% Stiffener/Diaphragm Locations [ft] 
% ----------------------------------------------------------------------- 
Loc_St=[0.00*L;1.00*L]; 
  
% Transverse Node Layout Parameters 
% ----------------------------------------------------------------------- 
ne_bf=02;     % Number of elements along the bottom flange (MUST BE EVEN) 
ne_w=02;      % Number of elements along the web 
ne_b=03;      % Number of elements along the bend 
ne_tf=02;     % Number of elements along the top flange (MUST BE EVEN) 
ea_deck=12;   % Approximate width of deck elements [in] 
  
% Longitudinal Node Layout [in] 
% ----------------------------------------------------------------------- 
ny1=-3; 
ny2=((0):((L*12)/(L+0.5)):(L*12))'; 
ny3=L*12+3; 
node_y=vertcat(ny1,ny2,ny3); 
clear ny1 ny2 ny3 
  
% Boundary Conditions 
% ----------------------------------------------------------------------- 
bc_vert=[0.00*L;1.00*L]; % vertical boundary conditions 
bc_lat=[0.00*L;1.00*L];  % lateral boundary conditions 
  
% Load 
% ----------------------------------------------------------------------- 
load=330;   % Applied load [kip] 
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% ======================================================================= 
% PART 2:  TRANSVERSE NODE LAYOUT (GIRDER) 
% ======================================================================= 
  
% Constants Used in FEA 
% ----------------------------------------------------------------------- 
theta=pi/2-atan(1/slope);              % bend angle [rad] 
L_R=theta*r;                           % arc length of bend [in] 
Web_z=d-t+2*r*(1/(sqrt(slope^2+1))-1); % Z-portion of straight web [in] 
Web_x=Web_z/slope;                     % X-portion of straight web [in] 
L_W=sqrt(Web_x^2+Web_z^2);             % length of straight web [in] 
bbf=w-(4*L_R+2*L_W+2*btf);             % width of bottom flange [in] 
  
% Nodes - Top Flange 
% ----------------------------------------------------------------------- 
n_tf_x=((0):(btf/ne_tf):(btf))'+2*r*sin(theta)+Web_x+bbf/2; 
n_tf_z=zeros(ne_tf+1,1)+d-t; 
  
n_tf_x1=-n_tf_x; 
n_tf_z1=n_tf_z; 
n_tf_x2=n_tf_x; 
n_tf_z2=n_tf_z; 
  
clear n_tf_x n_tf_z 
  
% Node Coordinates (Top Flange Bends) 
% ----------------------------------------------------------------------- 
n_theta=(pi/2-theta):(theta/ne_b):(pi/2); 
  
n_tb_x=-r*cos(n_theta)+2*r*sin(theta)+Web_x+bbf/2; 
n_tb_z=r*sin(n_theta)-2*r*cos(theta)+Web_z+r; 
  
n_tb_x1=-n_tb_x'; 
n_tb_z1=n_tb_z'; 
n_tb_x2=n_tb_x'; 
n_tb_z2=n_tb_z'; 
  
clear n_theta n_tb_x n_tb_z 
  
% Node Coordinates (Webs) 
% ----------------------------------------------------------------------- 
n_w_x=((0):(Web_x/ne_w):(Web_x))'+r*sin(theta)+bbf/2; 
n_w_z=((0):(Web_z/ne_w):(Web_z))'+2*r*(sin(theta/2))^2; 
  
n_w_x1=-n_w_x; 
n_w_z1=n_w_z; 
n_w_x2=n_w_x; 
n_w_z2=n_w_z; 
  
clear n_w_x n_w_z 
  
% Node Coordinates (Bottom Flange Bends) 
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% ----------------------------------------------------------------------- 
n_theta=(3*pi/2):(theta/ne_b):(3*pi/2+theta); 
n_bb_x=r*cos(n_theta)+bbf/2; 
n_bb_z=r*sin(n_theta)+r; 
  
n_bb_x1=-n_bb_x'; 
n_bb_z1=n_bb_z'; 
n_bb_x2=n_bb_x'; 
n_bb_z2=n_bb_z'; 
  
clear n_theta n_bb_x n_bb_z 
  
% Node Coordinates (Bottom Flange) 
% ----------------------------------------------------------------------- 
n_bf_x=((-bbf/2):(bbf/ne_bf):(bbf/2))'; 
n_bf_z=zeros(ne_bf+1,1); 
  
% Concatenation 
% ----------------------------------------------------------------------- 
nx1=vertcat(n_tf_x1,n_tb_x1,n_w_x1); 
nx2=vertcat(n_bb_x1,n_bf_x,n_bb_x2); 
nx3=vertcat(n_w_x2,n_tb_x2,n_tf_x2); 
nx=vertcat(nx1,nx2,nx3); 
nx=round(nx*1e6)/1e6; 
clear nx1 nx2 nx3 
  
nz1=vertcat(n_tf_z1,n_tb_z1,n_w_z1); 
nz2=vertcat(n_bb_z1,n_bf_z,n_bb_z2); 
nz3=vertcat(n_w_z2,n_tb_z2,n_tf_z2); 
nz=vertcat(nz1,nz2,nz3); 
nz=round(nz*1e6)/1e6; 
clear nz1 nz2 nz3 
  
node_cs=horzcat(nx,nz); 
clear nx nz 
node_cs=unique(node_cs,'rows'); 
node_x=node_cs(:,1); 
node_z=node_cs(:,2); 
  
% Additional Clear Statements 
% ----------------------------------------------------------------------- 
clear L_R L_W Web_x Web_z theta 
clear n_tf_x1 n_tb_x1 n_w_x1 n_tf_z1 n_tb_z1 n_w_z1 
clear n_bb_x1 n_bf_x n_bb_x2 n_bb_z1 n_bf_z n_bb_z2 
clear n_w_x2 n_tb_x2 n_tf_x2 n_w_z2 n_tb_z2 n_tf_z2 
  
  
% ======================================================================= 
% PART 3:  NODE & ELEMENT LAYOUT (GIRDER) 
% ======================================================================= 
  
% Node Matrix 
% ----------------------------------------------------------------------- 
nn=((1):(1):(length(node_x)*length(node_y)))'; 
nx=repmat(node_x,length(node_y),1); 
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ny=repmat(node_y,1,length(node_x))'; 
ny=ny(:); 
nz=repmat(node_z,length(node_y),1); 
node_girder=horzcat(nn,nx,ny,nz); 
clear nn nx ny nz 
  
% Element Matrix 
% ----------------------------------------------------------------------- 
nn_x_girder=length(node_x); 
nn_y_girder=length(node_y); 
ne_x_girder=nn_x_girder-1; 
ne_y_girder=nn_y_girder-1; 
ne_girder=ne_x_girder*ne_y_girder; 
element_girder=zeros(ne_girder,5); 
  
% Element numbering 
for i=1:ne_girder; 
    element_girder(i,1)=i; 
end 
clear ans i 
  
% First row of elements 
ne_1_1=1:1:ne_x_girder; 
ne_2_1=2:1:ne_x_girder+1; 
ne_3_1=nn_x_girder+2:1:2*nn_x_girder; 
ne_4_1=nn_x_girder+1:1:2*nn_x_girder-1; 
for i=1:ne_x_girder; 
    element_girder(i,2)=ne_1_1(i); 
    element_girder(i,3)=ne_2_1(i); 
    element_girder(i,4)=ne_3_1(i); 
    element_girder(i,5)=ne_4_1(i); 
end 
clear ans i ne_1_1 ne_2_1 ne_3_1 ne_4_1 
  
% Remaining rows of elements 
for i=ne_x_girder+1:ne_girder; 
    element_girder(i,2)=element_girder(i-ne_x_girder,2)+nn_x_girder; 
    element_girder(i,3)=element_girder(i-ne_x_girder,3)+nn_x_girder; 
    element_girder(i,4)=element_girder(i-ne_x_girder,4)+nn_x_girder; 
    element_girder(i,5)=element_girder(i-ne_x_girder,5)+nn_x_girder; 
end 
clear ans i 
  
% Additional Clear Statements 
% ----------------------------------------------------------------------- 
clear nn_x_girder nn_y_girder ne_x_girder ne_y_girder ne_girder 
  
  
% ======================================================================= 
% PART 4:  TRANSVERSE NODE LAYOUT (STIFFENER) 
% ======================================================================= 
  
% Common Calculations 
% ----------------------------------------------------------------------- 
theta=pi/2-atan(1/slope);              % bend angle [rad] 
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L_R=theta*r;                           % arc length of bend [in] 
Web_z=d-t+2*r*(1/(sqrt(slope^2+1))-1); % Z-portion of straight web [in] 
Web_x=Web_z/slope;                     % X-portion of straight web [in] 
L_W=sqrt(Web_x^2+Web_z^2);             % length of straight web [in] 
bbf=w-(4*L_R+2*L_W+2*btf);             % width of bottom flange [in] 
n_w_x=((0):(Web_x/ne_w):(Web_x))'+r*sin(theta)+bbf/2; 
n_w_z=((0):(Web_z/ne_w):(Web_z))'+2*r*(sin(theta/2))^2; 
  
  
% Node Layouts Along the Top/Bottom of the Diaphragm (X-direction) 
% ----------------------------------------------------------------------- 
st_px=Web_x+bbf/2; 
n_top_x=((-st_px):(2*st_px/ne_bf):(st_px))'; 
n_bot_x=((-bbf/2):(bbf/ne_bf):(bbf/2))'; 
clear st_px  
  
ns_x=length(n_top_x); % Number of unique stiffener nodes in the X-direction 
ns_z=length(n_w_z)+1; % Number of unique stiffener nodes in the Z-direction 
n_stiff=zeros(ns_x*ns_z,2); 
  
% Node Layout for Generic Stiffener 
% ----------------------------------------------------------------------- 
for i=1:ns_x 
    x1=round(n_top_x(i)*1e6)/1e6; 
    z1=round((d-t)*1e6)/1e6; 
    x2=round(n_bot_x(i)*1e6)/1e6; 
    z2=0; 
    if x1~=x2 
        % z = m*x + b 
        m=(z2-z1)/(x2-x1); 
        b=z1-m*x1; 
        for j=1:ns_z 
            if j<ns_z 
                z_index=n_w_z(j); 
            else 
                z_index=d-t/2; 
            end 
            x_index=(z_index-b)/m; 
            n_stiff((i-1)*ns_z+j,1)=x_index; 
            n_stiff((i-1)*ns_z+j,2)=z_index; 
            clear x_index z_index 
        end 
        clear m 
    else 
        % x = 0 
        clear m b 
        range=median(1:1:ns_x); 
        for j=1:ns_z 
            if j<ns_z 
                z_index=n_w_z(j); 
            else 
                z_index=d-t/2; 
            end 
            n_stiff((range-1)*ns_z+j,1)=0; 
            n_stiff((range-1)*ns_z+j,2)=z_index; 
            clear z_index 
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        end 
        clear j range 
    end 
    clear m b 
end 
clear ans i 
clear x1 x2 z1 z2 z_index 
n_stiff=round(n_stiff*1e6)/1e6; 
  
% Additional Clear Statements 
% ----------------------------------------------------------------------- 
clear L_R L_W Web_x Web_z theta 
  
% ======================================================================= 
% PART 5:  NODE & ELEMENT LAYOUT (STIFFENER) 
% ======================================================================= 
  
% General Parameters 
% ----------------------------------------------------------------------- 
nn_girder=length(node_girder(:,1)); 
ne_stiff=(ns_z)*(length(n_bot_x)-1)+2*(length(n_w_z)-1); 
rect_stiff=zeros(ne_stiff*length(Loc_St),5); 
rect_stiff(:,1)=(1:1:length(rect_stiff(:,1)))'; 
rect_stiff(:,1)=rect_stiff(:,1)+length(element_girder(:,1)); 
tri_stiff=zeros(4*length(Loc_St),4); 
tri_stiff(:,1)=(1:1:length(tri_stiff(:,1)))'; 
tri_stiff(:,1)=tri_stiff(:,1)+length(element_girder(:,1)); 
tri_stiff(:,1)=tri_stiff(:,1)+length(rect_stiff(:,1)); 
  
  
% Node Matrix 
% ----------------------------------------------------------------------- 
node_stiff=zeros(length(n_stiff(:,1))*length(Loc_St),4); 
for i=1:length(Loc_St) 
    ind_stiff=((i-1)*length(n_stiff(:,1))+1):1:(i*length(n_stiff(:,1))); 
    node_stiff(ind_stiff,2)=n_stiff(:,1); 
    node_stiff(ind_stiff,3)=Loc_St(i)*12; 
    node_stiff(ind_stiff,4)=n_stiff(:,2); 
    clear ind_stiff 
end 
clear ans i 
node_stiff(:,1)=(1:1:length(node_stiff(:,1)))'+nn_girder; 
node_stiff=round(node_stiff*1e6)/1e6; 
  
% Element Matrix 
% ----------------------------------------------------------------------- 
for i=1:length(Loc_St) 
    y_index=Loc_St(i)*12;          % Y-coordinate of individual stiff. 
    cs_line=find(node_y==y_index); % Search for node loc. along girder 
     
    ind_LW1=ne_tf+ne_b+1;  % ind_LW1 = stiff. node on the LW (start) 
    ind_LW2=ind_LW1+ne_w;  % ind_LW2 = stiff. node on the LW (end) 
    ind_BF1=ind_LW2+ne_b;  % ind_BF1 = stiff. node on the BF (start) 
    ind_BF2=ind_BF1+ne_bf; % ind_BF2 = stiff. node on the BF (end) 
    ind_RW1=ind_BF2+ne_b;  % ind_RW1 = stiff. node on the RW (start) 



189 
 

    ind_RW2=ind_RW1+ne_w;  % ind_RW2 = stiff. node on the RW (end) 
     
    ind_LW1=ind_LW1+(cs_line-1)*length(node_cs); % Shift for ith stiff. 
    ind_LW2=ind_LW2+(cs_line-1)*length(node_cs); % Shift for ith stiff. 
    ind_BF1=ind_BF1+(cs_line-1)*length(node_cs); % Shift for ith stiff. 
    ind_BF2=ind_BF2+(cs_line-1)*length(node_cs); % Shift for ith stiff. 
    ind_RW1=ind_RW1+(cs_line-1)*length(node_cs); % Shift for ith stiff. 
    ind_RW2=ind_RW2+(cs_line-1)*length(node_cs); % Shift for ith stiff. 
     
    nn_LW=(ind_LW1:1:ind_LW2)'; % nn_LW = left web nodes 
    nn_BF=(ind_BF1:1:ind_BF2)'; % nn_BF = bottom flange nodes 
    nn_RW=(ind_RW1:1:ind_RW2)'; % nn_RW = right web nodes 
     
    clear ind_LW1 ind_LW2 ind_BF1 ind_BF2 ind_RW1 ind_RW2 
     
    % First Vertical Row of Elements 
    % ------------------------------------------------------------------- 
    n1=nn_LW(2:1:end); 
    n1=n1(end:-1:1); 
    n2=(1:1:length(n_w_z(:,1))-1)'; 
    n2=n2+nn_girder+(i-1)*ns_x*ns_z; 
    n3=(2:1:length(n_w_z(:,1)))'; 
    n3=n3+nn_girder+(i-1)*ns_x*ns_z; 
    n4=nn_LW(1:1:(end-1)); 
    n4=n4(end:-1:1); 
    es1=horzcat(n1,n2,n3,n4); 
    clear n1 n2 n3 n4 
     
    % Main Body of Elements 
    % ------------------------------------------------------------------- 
    es2=zeros((ne_w+2)*(length(nn_BF)-1),4); 
    for j=1:(length(nn_BF)-1) 
        v1=(((j-1)*(ns_z)+1):1:(j*ns_z))'; 
        v1=v1+nn_girder+(i-1)*ns_x*ns_z; 
        vn1=vertcat(nn_BF(j,1),v1); 
        clear v1 
        v2=((j*ns_z+1):1:((j+1)*(ns_z)))'; 
        v2=v2+nn_girder+(i-1)*ns_x*ns_z; 
        vn2=vertcat(nn_BF(j+1,1),v2); 
        clear v2 
        n1=vn1(1:1:(end-1)); 
        n2=vn2(1:1:(end-1)); 
        n3=vn2(2:1:end); 
        n4=vn1(2:1:end); 
        es2((((j-1)*(ne_w+2)+1):1:(j*(ne_w+2))),:)=horzcat(n1,n2,n3,n4); 
        clear vn1 vn2 
    end 
    clear ans j 
     
    % Last Vertical Row of Elements 
    % ------------------------------------------------------------------- 
    n1=((ns_z*(ns_x-1)+1):1:(ns_x*ns_z-2))'; 
    n1=n1+nn_girder+(i-1)*ns_x*ns_z; 
    n2=nn_RW(1:1:(end-1)); 
    n3=nn_RW(2:1:end); 
    n4=((ns_z*(ns_x-1)+2):1:(ns_x*ns_z-1))'; 
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    n4=n4+nn_girder+(i-1)*ns_x*ns_z; 
    es3=horzcat(n1,n2,n3,n4); 
    clear n1 n2 n3 n4 
     
    % All Rectangular Elements 
    % ------------------------------------------------------------------- 
    es=vertcat(es1,es2,es3); 
    rect_stiff(((i-1)*ne_stiff+1):1:(i*ne_stiff),(2:1:5))=es; 
    clear es es1 es2 es3 
     
    % All Triangular Elements 
    % ------------------------------------------------------------------- 
    t11=nn_BF(1); 
    t12=length(node_girder(:,1))+(i-1)*ns_x*ns_z+1; 
    t13=nn_LW(end); 
    t21=nn_LW(1); 
    t22=length(node_girder(:,1))+(i-1)*ns_x*ns_z+ns_z-1; 
    t23=length(node_girder(:,1))+(i-1)*ns_x*ns_z+ns_z; 
    t31=nn_BF(end); 
    t32=nn_RW(1); 
    t33=length(node_girder(:,1))+(i-1)*ns_x*ns_z+(ns_x-1)*ns_z+1; 
    t41=length(node_girder(:,1))+(i-1)*ns_x*ns_z+(ns_x-1)*ns_z++ns_z-1; 
    t42=nn_RW(end); 
    t43=length(node_girder(:,1))+(i-1)*ns_x*ns_z+(ns_x-1)*ns_z++ns_z; 
     
    t1=[t11,t12,t13]; 
    t2=[t21,t22,t23]; 
    t3=[t31,t32,t33]; 
    t4=[t41,t42,t43]; 
     
    ele_t=[t1;t2;t3;t4]; 
     
    i1=(i-1)*4+1; 
    i2=4*i; 
    tri_stiff(i1:i2,2:4)=ele_t; 
     
    clear t11 t12 t13 t21 t22 t23 t31 t32 t33 t41 t42 t43  
    clear t1 t2 t3 t4 
    clear i1 i2 ele_t 
    clear nn_LW nn_BF nn_RW 
  
end 
clear ans i y_index 
  
% ======================================================================= 
% PART 6:  NODE & ELEMENT LAYOUT (DECK) 
% ======================================================================= 
  
% Transverse Node Layout 
% ----------------------------------------------------------------------- 
d_n1=ne_tf/2+1; 
d_n2=2*ne_tf+4*ne_b+2*ne_w+ne_bf+1-(ne_tf/2); 
  
d_node1=round(-dw/2*1e6)/1e6; 
d_node2=round(node_x(d_n1,1)*1e6)/1e6; 
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d_node3=round(node_x(d_n2,1)*1e6)/1e6; 
d_node4=round(dw/2*1e6)/1e6; 
  
di_int=round((d_node2-d_node1)/ea_deck); 
di_ext=round((d_node3-d_node2)/ea_deck); 
  
nx_d1=((d_node1):((d_node2-d_node1)/di_int):(d_node2))'; 
nx_d2=((d_node2):((d_node3-d_node2)/di_ext):(d_node3))'; 
nx_d3=((d_node3):((d_node4-d_node3)/di_int):(d_node4))'; 
  
d_node_x=vertcat(nx_d1,nx_d2,nx_d3); 
d_node_x=unique(d_node_x,'rows');  
  
clear d_n1 d_n2 
clear d_node1 d_node2 d_node3 d_node4 
clear di_int di_ext 
clear nx_d1 nx_d2 nx_d3 
  
% Node Matrix 
% ----------------------------------------------------------------------- 
nn=((1):(1):(length(d_node_x)*length(node_y)))'; 
nn=nn+length(node_girder(:,1))+length(node_stiff(:,1)); 
nx=repmat(d_node_x,length(node_y),1); 
ny=repmat(node_y,1,length(d_node_x))'; 
ny=ny(:); 
nz=zeros(length(nn(:,1)),1); 
nz=nz+d+dt/2-t/2; 
node_deck=horzcat(nn,nx,ny,nz); 
clear nn nx ny nz 
  
% Element Matrix 
% ----------------------------------------------------------------------- 
nn_girder=length(node_girder(:,1)); 
nn_stiff=length(node_stiff(:,1)); 
ne_girder=length(element_girder(:,1)); 
ne_rect=length(rect_stiff(:,1)); 
ne_tri=length(tri_stiff(:,1)); 
  
nn_x_deck=length(d_node_x); 
nn_y_deck=length(node_y); 
ne_x_deck=nn_x_deck-1; 
ne_y_deck=nn_y_deck-1; 
ne_deck=ne_x_deck*ne_y_deck; 
element_deck=zeros(ne_deck,5); 
  
% Element numbering 
for i=1:ne_deck; 
    element_deck(i,1)=i+ne_girder+ne_rect+ne_tri; 
end 
clear ans i 
  
% First row of elements 
ne_1_1=1:1:ne_x_deck; 
ne_2_1=2:1:ne_x_deck+1; 
ne_3_1=nn_x_deck+2:1:2*nn_x_deck; 
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ne_4_1=nn_x_deck+1:1:2*nn_x_deck-1; 
for i=1:ne_x_deck; 
    element_deck(i,2)=ne_1_1(i); 
    element_deck(i,3)=ne_2_1(i); 
    element_deck(i,4)=ne_3_1(i); 
    element_deck(i,5)=ne_4_1(i); 
end 
clear ans i ne_1_1 ne_2_1 ne_3_1 ne_4_1 
  
% Remaining rows of elements 
for i=ne_x_deck+1:ne_deck; 
    element_deck(i,2)=element_deck(i-ne_x_deck,2)+nn_x_deck; 
    element_deck(i,3)=element_deck(i-ne_x_deck,3)+nn_x_deck; 
    element_deck(i,4)=element_deck(i-ne_x_deck,4)+nn_x_deck; 
    element_deck(i,5)=element_deck(i-ne_x_deck,5)+nn_x_deck; 
end 
clear ans i 
  
element_deck(:,2:5)=element_deck(:,2:5)+nn_girder+nn_stiff; 
  
clear nn_x_deck nn_y_deck ne_x_deck ne_y_deck ne_deck 
clear d_node_x node_z 
  
clear Web_x Web_z delta 
  
% ======================================================================= 
% PART 7:  MULTI-POINT CONSTRAINTS 
% ======================================================================= 
  
% Girder Nodes 
% ----------------------------------------------------------------------- 
inc_y=2*ne_tf+4*ne_b+2*ne_w+ne_bf+1; 
  
m_g1=ne_tf/2+1; 
mpc_g1=((m_g1):(inc_y):(inc_y*(length(node_y(:,1))-1)+m_g1))'; 
clear m_g1 
  
m_g2=2*ne_tf+4*ne_b+2*ne_w+ne_bf+1-(ne_tf/2); 
mpc_g2=((m_g2):(inc_y):(inc_y*(length(node_y(:,1))-1)+m_g2))'; 
clear m_g2 
  
clear inc_y 
  
% Deck Nodes 
% ----------------------------------------------------------------------- 
d_n1=ne_tf/2+1; 
d_n2=2*ne_tf+4*ne_b+2*ne_w+ne_bf+1-(ne_tf/2); 
  
d_node1=round(-dw/2*1e6)/1e6; 
d_node2=round(node_x(d_n1,1)*1e6)/1e6; 
d_node3=round(node_x(d_n2,1)*1e6)/1e6; 
d_node4=round(dw/2*1e6)/1e6; 
  
di_int=round((d_node2-d_node1)/ea_deck); 
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di_ext=round((d_node3-d_node2)/ea_deck); 
  
nx_d1=((d_node1):((d_node2-d_node1)/di_int):(d_node2))'; 
nx_d2=((d_node2):((d_node3-d_node2)/di_ext):(d_node3))'; 
nx_d3=((d_node3):((d_node4-d_node3)/di_int):(d_node4))'; 
  
d_node_x=vertcat(nx_d1,nx_d2,nx_d3); 
d_node_x=unique(d_node_x,'rows');  
  
m_d1=di_int+1; 
m_d2=length(d_node_x(:,1)); 
m_d3=length(d_node_x(:,1))*(length(node_y(:,1))-1)+m_d1; 
  
mpc_d1=(m_d1:m_d2:m_d3)'; 
mpc_d1=mpc_d1+length(node_girder(:,1))+length(node_stiff(:,1)); 
clear m_d1 m_d2 m_d3 
  
m_d1=di_int+di_ext+1; 
m_d2=length(d_node_x(:,1)); 
m_d3=length(d_node_x(:,1))*(length(node_y(:,1))-1)+m_d1; 
  
mpc_d2=(m_d1:m_d2:m_d3)'; 
mpc_d2=mpc_d2+length(node_girder(:,1))+length(node_stiff(:,1)); 
clear m_d1 m_d2 m_d3 
  
% Combination 
% ----------------------------------------------------------------------- 
mpc1=horzcat(mpc_g1,mpc_d1); 
mpc2=horzcat(mpc_g2,mpc_d2); 
mpc=vertcat(mpc1,mpc2); 
clear mpc1 mpc2  
  
% Additional Clear Statements 
% ----------------------------------------------------------------------- 
clear d_n1 d_n2 
clear d_node1 d_node2 d_node3 d_node4 
clear di_int di_ext 
clear nx_d1 nx_d2 nx_d3 d_node_x 
clear mpc_d1 mpc_d2 mpc_g1 mpc_g2 m_d1 m_d2 
  
% ======================================================================= 
% PART 8:  BOUNDARY CONDITIONS 
% ======================================================================= 
  
% Z-Direction Boundary Conditions 
% ----------------------------------------------------------------------- 
bc_z=zeros(length(bc_vert(:,1))*(ne_bf+1),1); 
for i=1:length(bc_vert(:,1)) 
    y_index=bc_vert(i)*12;         % Y-coordinate of B.C. 
    cs_line=find(node_y==y_index); % Search for node loc. along girder 
     
    ind_v1=ne_tf+ne_b+ne_w+ne_b+1;        % ind_v1 = B.C node (start) 
    ind_v2=ne_tf+ne_b+ne_w+ne_b+ne_bf+1;  % ind_v2 = B.C node (end) 
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    ind_v1=ind_v1+(cs_line-1)*length(node_cs); % Shift for ith B.C. 
    ind_v2=ind_v2+(cs_line-1)*length(node_cs); % Shift for ith B.C. 
  
    ind_v=((ind_v1):1:(ind_v2))'; 
    clear ind_v1 ind_v2 
     
    i1=(i-1)*(ne_bf+1)+1; 
    i2=i*(ne_bf+1); 
     
    bc_z(i1:i2,1)=ind_v; 
    clear ind_v 
end 
clear ans i y_index cs_line 
  
% Y-Direction Boundary Conditions 
% ----------------------------------------------------------------------- 
bc_y=bc_z(1:(ne_bf+1),1); 
  
% X-Direction Boundary Conditions 
% ----------------------------------------------------------------------- 
bc_x=zeros(length(bc_lat(:,1))*(ne_w+1)*2,1); 
for i=1:length(bc_lat(:,1)) 
    y_index=bc_lat(i)*12;         % Y-coordinate of B.C. 
    cs_line=find(node_y==y_index); % Search for node location along girder 
     
    ind_lw1=ne_tf+ne_b+1;                           % B.C node (start) 
    ind_lw2=ne_tf+ne_b+ne_w+1;                      % B.C node (end) 
    ind_rw1=ne_tf+ne_b+ne_w+ne_b+ne_bf+ne_b+1;      % B.C node (start) 
    ind_rw2=ne_tf+ne_b+ne_w+ne_b+ne_bf+ne_b+ne_w+1; % B.C node (end) 
     
    ind_lw1=ind_lw1+(cs_line-1)*length(node_cs); % Shift for ith B.C. 
    ind_lw2=ind_lw2+(cs_line-1)*length(node_cs); % Shift for ith B.C. 
    ind_rw1=ind_rw1+(cs_line-1)*length(node_cs); % Shift for ith B.C. 
    ind_rw2=ind_rw2+(cs_line-1)*length(node_cs); % Shift for ith B.C. 
  
    ind_lw=((ind_lw1):1:(ind_lw2))'; 
    ind_rw=((ind_rw1):1:(ind_rw2))'; 
    ind_w=vertcat(ind_lw,ind_rw); 
    clear ind_lw1 ind_lw2 ind_rw1 ind_rw2 ind_lw ind_rw 
     
    i1=(i-1)*(ne_w+1)*2+1; 
    i2=i*(ne_w+1)*2; 
     
    bc_x(i1:i2,1)=ind_w; 
    clear ind_v i1 i2 y_index 
end 
clear ans i 
  
% ======================================================================= 
% PART 9:  EXPERIMENTAL PARAMETERS 
% ======================================================================= 
  
% Deflection Measurements 
% ----------------------------------------------------------------------- 
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defl_cl=(L*12)/2; 
defl_cl=round(defl_cl*1e6)/1e6; 
cs_line=find(node_y==defl_cl); 
ind_cl=ne_tf+ne_b+ne_w+ne_b+ne_bf/2+1; 
ind_cl=ind_cl+(cs_line-1)*length(node_cs); 
clear cs_line find_cl defl_cl 
  
defl_qp=(L*12)/4; 
defl_qp=round(defl_qp*1e6)/1e6; 
cs_line=find(node_y==defl_qp); 
ind_qp=ne_tf+ne_b+ne_w+ne_b+ne_bf/2+1; 
ind_qp=ind_qp+(cs_line-1)*length(node_cs); 
clear cs_line find_qp defl_qp 
  
% Transverse Deck Nodes 
% ----------------------------------------------------------------------- 
d_n1=ne_tf/2+1; 
d_n2=2*ne_tf+4*ne_b+2*ne_w+ne_bf+1-(ne_tf/2); 
  
d_node1=round(-dw/2*1e6)/1e6; 
d_node2=round(node_x(d_n1,1)*1e6)/1e6; 
d_node3=round(node_x(d_n2,1)*1e6)/1e6; 
d_node4=round(dw/2*1e6)/1e6; 
  
di_int=round((d_node2-d_node1)/ea_deck); 
di_ext=round((d_node3-d_node2)/ea_deck); 
  
nx_d1=((d_node1):((d_node2-d_node1)/di_int):(d_node2))'; 
nx_d2=((d_node2):((d_node3-d_node2)/di_ext):(d_node3))'; 
nx_d3=((d_node3):((d_node4-d_node3)/di_int):(d_node4))'; 
  
d_node_x=vertcat(nx_d1,nx_d2,nx_d3); 
d_node_x=unique(d_node_x,'rows');  
  
clear d_n1 d_n2 
clear d_node1 d_node2 d_node3 d_node4 
clear di_int di_ext 
clear nx_d1 nx_d2 nx_d3 
  
% Node Position at Center Span & Load Application 
% ----------------------------------------------------------------------- 
load_pos=(L*12)/2; 
load_pos=round(load_pos*1e6)/1e6; 
cs_line=find(node_deck(:,3)==load_pos); 
d_ele_x=d_node_x(2:end)-d_node_x(1:(end-1)); 
d_ele_x=d_ele_x/dw; 
  
load_mag=zeros(length(cs_line(:,1)),1); 
for i=1:length(load_mag(:,1)) 
    if i==1 
        load_mag(i,1)=d_ele_x(1,1)/2; 
    elseif i==length(load_mag(:,1)) 
        load_mag(i,1)=d_ele_x(end,1)/2; 
    else 
        load_mag(i,1)=d_ele_x(i-1,1)/2+d_ele_x(i,1)/2; 
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    end 
end 
clear ans i 
  
load_num=node_deck(cs_line,1); 
  
load_mag=load_mag*-load; 
load_mag=round(load_mag*1e6)/1e6; 
dof=zeros(length(load_mag(:,1)),1)+3; 
cload=horzcat(load_num,dof,load_mag); 
clear cs_line load_pos load_mag load_num dof d_node_x d_ele_x 
  
% ======================================================================= 
% PART 10:  ABAQUS INPUT FILE 
% ======================================================================= 
  
% Heading 
% ----------------------------------------------------------------------- 
inputfile='tubFEA.inp'; 
fid=fopen(inputfile,'wt'); 
fprintf(fid,'** Gregory K. Michaelson \n'); 
fprintf(fid,'** West Virginia University \n'); 
fprintf(fid,'** Department of Civil & Environmental Engineering \n'); 
date = datestr(now, 0); 
fprintf(fid,'** %s\n', date); 
fprintf(fid,'**\n'); 
clear date 
  
% Nodes & Elements 
% ----------------------------------------------------------------------- 
fprintf(fid,'*NODE \n'); 
for i=1:length(node_girder(:,1)) 
    fprintf(fid,'%15.0f, %15.6f, %15.6f, %15.6f',node_girder(i,:)'); 
    fprintf(fid,'\n'); 
end 
clear ans i node_girder 
for i=1:length(node_stiff(:,1)) 
    fprintf(fid,'%15.0f, %15.6f, %15.6f, %15.6f',node_stiff(i,:)'); 
    fprintf(fid,'\n'); 
end 
clear ans i node_stiff 
for i=1:length(node_deck(:,1)) 
    fprintf(fid,'%15.0f, %15.6f, %15.6f, %15.6f',node_deck(i,:)'); 
    fprintf(fid,'\n'); 
end 
clear ans i node_deck 
fprintf(fid,'*ELEMENT, TYPE=S4R, ELSET=GIRDER \n'); 
for i=1:length(element_girder(:,1)) 
    fprintf(fid,'%15.0f, %15.0f, %15.0f, %15.0f, 
%15.0f',element_girder(i,:)'); 
    fprintf(fid,'\n'); 
end 
clear ans i element_girder 
fprintf(fid,'*ELEMENT, TYPE=S4R, ELSET=STIFFENER \n'); 
for i=1:length(rect_stiff(:,1)) 
    fprintf(fid,'%15.0f, %15.0f, %15.0f, %15.0f, %15.0f',rect_stiff(i,:)'); 
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    fprintf(fid,'\n'); 
end 
clear ans i rect_stiff 
fprintf(fid,'*ELEMENT, TYPE=S3R, ELSET=STIFFENER \n'); 
for i=1:length(tri_stiff(:,1)) 
    fprintf(fid,'%15.0f, %15.0f, %15.0f, %15.0f',tri_stiff(i,:)'); 
    fprintf(fid,'\n'); 
end 
clear ans i tri_stiff 
fprintf(fid,'*ELEMENT, TYPE=S4R, ELSET=DECK \n'); 
for i=1:length(element_deck(:,1)) 
    fprintf(fid,'%15.0f, %15.0f, %15.0f, %15.0f, %15.0f',element_deck(i,:)'); 
    fprintf(fid,'\n'); 
end 
clear ans i element_deck 
fprintf(fid,'*MPC \n'); 
for i=1:length(mpc(:,1)) 
    fprintf(fid,'           BEAM,'); 
    fprintf(fid,'%15.0f, %15.0f',mpc(i,:)'); 
    fprintf(fid,'\n'); 
end 
clear ans i mpc 
fprintf(fid,'*NSET, NSET=BC-X \n'); 
for i=1:length(bc_x(:,1)) 
    fprintf(fid,'%15.0f,',bc_x(i,:)'); 
    fprintf(fid,'\n'); 
end 
clear ans i bc_x 
fprintf(fid,'*NSET, NSET=BC-Y \n'); 
for i=1:length(bc_y(:,1)) 
    fprintf(fid,'%15.0f,',bc_y(i,:)'); 
    fprintf(fid,'\n'); 
end 
clear ans i bc_y 
fprintf(fid,'*NSET, NSET=BC-Z \n'); 
for i=1:length(bc_z(:,1)) 
    fprintf(fid,'%15.0f,',bc_z(i,:)'); 
    fprintf(fid,'\n'); 
end 
clear ans i bc_z 
fprintf(fid,'*BOUNDARY \n'); 
fprintf(fid,'           BC-X,              1 \n'); 
fprintf(fid,'           BC-Y,              2 \n'); 
fprintf(fid,'           BC-Z,              3 \n'); 
fprintf(fid,'*NSET, NSET=DEFL-CL \n'); 
fprintf(fid,'%15.0f,',ind_cl); 
fprintf(fid,'\n'); 
clear ind_cl 
  
% Steel Material Model 
% ----------------------------------------------------------------------- 
E=29559.160900899;      % modulus of elasticity (ksi) 
ssy=60.9620413788773;   % static yield strength (ksi) 
s02=63.05;              % offset yield strength (ksi) 
est=0.0178825333333333; % strain at the onset of strain hardening 
Est=1033.46262739326;   % strain hardening modulus (ksi) 
su=84.3821008182302;    % tensile strength (ksi) 
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eu=0.131645626079353;   % strain at the tensile strength 
  
e1=ssy/E;   e2=est;     e3=(eu-est)/10+est; 
s1=ssy;     s2=ssy;     s3=Est*(eu-est)/10+ssy; 
  
e6=eu-(eu-est)/10;                      e7=eu; 
s6=(ssy/s02)*su-(100*(eu-est))/Est;     s7=(ssy/s02)*su; 
  
e4=2*(e6-e3)/7+e3;      e5=2*(e6-e3)/7+e4; 
s4=4*(s6-s3)/7+s3;      s5=2*(s6-s3)/7+s4; 
  
e_eng=[e1;e2;e3;e4;e5;e6;e7]; 
s_eng=[s1;s2;s3;s4;s5;s6;s7]; 
  
e_true=log(1+e_eng); 
e_true=e_true-e_true(1); 
s_true=s_eng.*(1+e_eng); 
  
steel=horzcat(s_true,e_true); 
  
clear e1 e2 e3 e4 e5 e6 e7 
clear s1 s2 s3 s4 s5 s6 s7 
clear s_eng e_eng 
clear e_true s_true 
clear ssy s02 est Est su eu 
  
% Concrete Material Model 
% ----------------------------------------------------------------------- 
fc=4.74975330652133; 
a=6193.3*((0.85*fc+1.015)^(-0.953)); 
b=8074.1*((0.85*fc+1.450)^(-1.085))-850; 
Ec=((0.85*fc*(a-206000*0.0003)*0.0003)/(1+b*0.0003))/0.0003; 
  
e_conc=vertcat((0.0003:0.0002:0.0029)',0.003); 
f_conc=0.85*fc*(a-206000.*e_conc).*e_conc./(1+b.*e_conc); 
e_conc=e_conc-e_conc(1); 
  
ft=0.4; 
Et=1820*sqrt(4); 
e_crack=ft/Et; 
  
concrete=horzcat(f_conc,e_conc); 
concrete_tension=[1,0;0,(0.003-e_crack)]; 
  
clear fc a b 
clear f_conc e_conc 
clear ft Et e_crack 
  
% Reinforcement Material Model 
% ----------------------------------------------------------------------- 
r1=[60.124,0.0000000]; 
r2=[60.372,0.0041060]; 
r3=[72.665,0.0172970]; 
r4=[84.365,0.0363116]; 
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r5=[92.305,0.0550860]; 
r6=[97.666,0.0783780]; 
  
rebar=vertcat(r1,r2,r3,r4,r5,r6); 
clear r1 r2 r3 r4 r5 r6 
  
% Abaqus Material Models 
% ----------------------------------------------------------------------- 
fprintf(fid,'*MATERIAL, NAME=STEEL \n'); 
fprintf(fid,'*DENSITY \n'); 
fprintf(fid,'%12.4E',0.49/(12^3*386.08858267716533)); 
fprintf(fid,'\n'); 
fprintf(fid,'*ELASTIC \n'); 
fprintf(fid,'%12.2f, %12.2f',[E,0.30]); 
fprintf(fid,'\n'); 
clear E 
fprintf(fid,'*PLASTIC \n'); 
for i=1:length(steel(:,1)) 
    fprintf(fid,'%12.3f, %12.7f',steel(i,:)'); 
    fprintf(fid,'\n'); 
end 
clear ans i steel 
fprintf(fid,'*MATERIAL, NAME=CONCRETE \n'); 
fprintf(fid,'*DENSITY \n'); 
fprintf(fid,'%12.4E',0.15/(12^3*386.08858267716533)); 
fprintf(fid,'\n'); 
fprintf(fid,'*ELASTIC \n'); 
fprintf(fid,'%12.2f, %12.2f',[Ec,0.20]); 
fprintf(fid,'\n'); 
clear Ec 
fprintf(fid,'*CONCRETE \n'); 
for i=1:length(concrete(:,1)) 
    fprintf(fid,'%12.3f, %12.7f',concrete(i,:)'); 
    fprintf(fid,'\n'); 
end 
clear ans i concrete 
fprintf(fid,'*TENSION STIFFENING, TYPE=STRAIN \n'); 
for i=1:length(concrete_tension(:,1)) 
    fprintf(fid,'%12.3f, %12.7f',concrete_tension(i,:)'); 
    fprintf(fid,'\n'); 
end 
clear ans i concrete_tension 
fprintf(fid,'*MATERIAL, NAME=REINF \n'); 
fprintf(fid,'*ELASTIC \n'); 
fprintf(fid,'%12.2f, %12.2f',[29000,0.30]); 
fprintf(fid,'\n'); 
fprintf(fid,'*PLASTIC \n'); 
for i=1:length(rebar(:,1)) 
    fprintf(fid,'%12.3f, %12.7f',rebar(i,:)'); 
    fprintf(fid,'\n'); 
end 
clear ans i rebar 
  
% Concrete Cover Requirements 
% ----------------------------------------------------------------------- 
t_stiff=3/4; 
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A_top=pi/4*(1/2)^2;     t_cov=2.5; 
A_bot=pi/4*(5/8)^2;     b_cov=1; 
  
% Abaqus Shell Definitions 
% ----------------------------------------------------------------------- 
fprintf(fid,'*SECTION CONTROLS, NAME=CONT, HOURGLASS=ENHANCED \n'); 
fprintf(fid,'%12.0f, %12.0f, %12.0f, %12.0f, %12.0f',[1,1,1,1,]); 
fprintf(fid,'\n'); 
fprintf(fid,'*SHELL SECTION, ELSET=GIRDER, MATERIAL=STEEL, '); 
fprintf(fid,'CONTROLS=CONT'); 
fprintf(fid,'\n'); 
fprintf(fid,'%12.6f',t); 
fprintf(fid,'\n'); 
fprintf(fid,'*SHELL SECTION, ELSET=STIFFENER, MATERIAL=STEEL, '); 
fprintf(fid,'CONTROLS=CONT'); 
fprintf(fid,'\n'); 
fprintf(fid,'%12.6f',t_stiff); 
fprintf(fid,'\n'); 
fprintf(fid,'*SHELL SECTION, ELSET=DECK, MATERIAL=CONCRETE, '); 
fprintf(fid,'CONTROLS=CONT, SECTION INTEGRATION=GAUSS'); 
fprintf(fid,'\n'); 
fprintf(fid,'%12.6f, %12.0f',[dt,7]); 
fprintf(fid,'\n'); 
fprintf(fid,'*REBAR LAYER, GEOMETRY=CONSTANT \n'); 
fprintf(fid,'    LONG-TOP,'); 
fprintf(fid,' %12.6f,',A_top); 
fprintf(fid,' %12.0f,',12); 
fprintf(fid,' %12.6f,',+dt/2-t_cov-1/2-0.5*(1/2)); 
fprintf(fid,'       REINF,'); 
fprintf(fid,' %12.0f',90); 
fprintf(fid,'\n'); 
fprintf(fid,'    LONG-BOT,'); 
fprintf(fid,' %12.6f,',A_bot); 
fprintf(fid,' %12.0f,',12); 
fprintf(fid,' %12.6f,',-dt/2+b_cov+0.5*(5/8)); 
fprintf(fid,'       REINF,'); 
fprintf(fid,' %12.0f',90); 
fprintf(fid,'\n'); 
fprintf(fid,'    TRAN-TOP,'); 
fprintf(fid,' %12.6f,',A_top); 
fprintf(fid,' %12.0f,',12); 
fprintf(fid,' %12.6f,',+dt/2-t_cov-0.5*(1/2)); 
fprintf(fid,'       REINF,'); 
fprintf(fid,' %12.0f',0); 
fprintf(fid,'\n'); 
fprintf(fid,'    TRAN-BOT,'); 
fprintf(fid,' %12.6f,',A_bot); 
fprintf(fid,' %12.0f,',12); 
fprintf(fid,' %12.6f,',-dt/2+b_cov+5/8+0.5*(5/8)); 
fprintf(fid,'       REINF,'); 
fprintf(fid,' %12.0f',0); 
fprintf(fid,'\n'); 
clear t_stiff A_top A_bot t_cov b_cov 
  
% Abaqus Step Definitions 
% ----------------------------------------------------------------------- 
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fprintf(fid,'*STEP, NLGEOM=YES, INC=2000 \n'); 
fprintf(fid,'*STATIC, RIKS \n'); 
fprintf(fid,'%12.4f, %12.2f, %12.7f, %12.1f, %12.1f',[0.005,1,1e-7,2,2]); 
fprintf(fid,'\n'); 
fprintf(fid,'*NODE PRINT, FREQUENCY=1, NSET=DEFL-CL \n'); 
fprintf(fid,'U3, \n'); 
fprintf(fid,'*CLOAD, OP=NEW \n'); 
for i=1:length(cload(:,1)) 
    fprintf(fid,'%15.0f, %15.0f, %15.6f,',cload(i,:)'); 
    fprintf(fid,'\n'); 
end 
clear ans i cload 
fprintf(fid,'*END STEP'); 
  
% Close Program 
% ----------------------------------------------------------------------- 
fclose(fid); 
clear all 
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B.2.5 Program File:  tubPOST.m 

 

Program file “tubPOST.m” is employed to postprocess Abaqus .dat files.  Given the 

results of an Abaqus analysis (see Chapter 5 and Section B.2.4), the program extracts the desired 

information (in this case, deflections belonging to the node set “DEFL-CL”) and reports the data 

in tabular form.  This program can easily be modified to extract other desired data.  The 

MATLAB file is as follows: 

 

clc 
clear all 
  
name_file='tubFEA.dat'; 
  
C=textscan(fopen(name_file,'r'),'%s','Delimiter','\n'); 
data=C{1,1}; 
clear C 
  
heading='PRINTED FOR NODES BELONGING TO NODE SET DEFL-CL'; 
  
index_c=strfind(data,heading); 
index=find(not(cellfun('isempty',index_c))); 
clear index_c title 
  
results=zeros(length(index(:,1)),2); 
for i=1:length(index) 
    id=index(i,1); 
    defl_line=data(id+5,1); 
    defl_dat=defl_line{1,1}; 
    defl=sscanf(defl_dat,'%f'); 
    results(i,1)=defl(2,1); 
    clear defl_line defl_dat defl 
    lpf_line=data(id-11,1); 
    lpf_dat=lpf_line{1,1}; 
    lpf=str2double(lpf_dat(36:length(lpf_dat))); 
    results(i,2)=lpf; 
    clear lpf_line lpf_dat lpf 
end 
clear ans i id index 
  
results=vertcat([0,0],results); 
results(:,1)=results(:,1)*-1; 
results(:,2)=results(:,2)*330; 
results=round(results*1e6)/1e6; 
  
clear name_file 
close all 
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B.2.6 Function File:  slices.m 

 

Function file “slices.m” is employed in both strain-compatibility analyses and plastic 

moment calculations.  Given the required parameters defining the geometry of the cross-section, 

the routine uses the geometric definitions discussed in Appendix A to divide the cross-section 

into rectangular slices.  For example, if the total depth of a cross-section is 30 inches and 1000 

slices are desired, the cross-section is divided into slices that are assumed to be rectangles with a 

thickness of 0.03 inches.  The program then, for each slice, computes the corresponding width 

and reports them into a column vector.  The MATLAB file is as follows: 

 

function wi = slices(w,t,d,r,m,btf,bs,ts,Ns,yi) 
  
% Constant Values 
% -------------------------------------------- 
% L_bend = length of the bend region (in) 
% Dy = length of the inclined web in the Y-direction (in) 
% D = length of the inclined web (in) 
% bbf = bottom flange width (in) 
% db = bend depth (in) 
  
L_bend=r*atan(m); 
Dy=d-t-2*r*(1-1/sqrt(m^2+1)); 
D=(2*r+(d-t-2*r)*sqrt(m^2+1))/m; 
bbf=w-(4*L_bend+2*D+2*btf); 
db=r*(1-1/sqrt(m^2+1))-t/2; 
  
% Slice Widths, wi (in) 
% -------------------------------------------- 
% hi = height of slice (in) 
% yi = centers of slices, composite (in) 
% wi = slice widths (in) 
  
wi=zeros(Ns,1); 
for i=1:Ns 
    y=yi(i); 
    if y<(ts) 
        wi(i)=bs; 
    elseif y<(ts+t) 
        c2=(2*r+t)*sqrt(1-(1-(y-ts)/(r+t/2))^2); 
        wi(i)=2*btf+c2; 
        clear c2 
    elseif y<(ts+t+db) 
        c2=(2*r+t)*sqrt(1-(1-(y-ts)/(r+t/2))^2); 
        c1=(2*r-t)*sqrt(1-(1-(y-t-ts)/(r-t/2))^2); 
        wi(i)=c2-c1; 
        clear c2 c1 
    elseif y<(ts+t+db+Dy) 
        wi(i)=2*t*sqrt(m^2+1)/m; 
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    elseif y<(ts+t+2*db+Dy) 
        c2=(2*r+t)*sqrt(1-(1-(d+ts-y)/(r+t/2))^2); 
        c1=(2*r-t)*sqrt(1-(1-(d+ts-t-y)/(r-t/2))^2); 
        wi(i)=c2-c1; 
        clear h2 h1 c2 c1 
    else 
        c2=(2*r+t)*sqrt(1-(1-(d+ts-y)/(r+t/2))^2); 
        wi(i)=bbf+c2; 
        clear h2 c2 
    end 
    clear y 
end 
clear ans i 
  
end 
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B.2.7 Program File:  tubMn.m 

 

Function file “tubMn.m” is employed to perform strain compatibility iterations for 

computing the nominal capacity of composite press-brake-formed tub girders.  The program 

begins by applying strains to the noncomposite section resulting from the chosen level of dead 

load moment.  A neutral axis depth is chosen and a linear strain profile resulting in a 

compressive strain of 0.003 is superimposed onto the composite section.  The program then 

iterates the depth of the neutral axis such that the net sum of compressive forces equal the net 

sum of tensile forces.  Once a sufficient balance is achieved, the program sums the moments of 

each slice (equal to the force in each slice multiplied by the moment arm from the neutral axis) to 

obtain the nominal moment capacity of the section (see Chapter 5).  The MATLAB file is as 

follows (input for the girder used in the demonstrated example in Appendix A with a 7.5’ × 8” 

concrete deck is shown): 

 

% Material Constants 
% -------------------------------------------- 
E=29000;     % modulus of elasticity of steel (ksi) 
Fy=50;       % steel yield stress (ksi) 
fc=4;        % concrete compressive stress (ksi) 
  
% Input Parameters 
% -------------------------------------------- 
w=84;        % standard mill plate width (in) 
t=7/16;      % plate thickness (in) 
d=23;        % total girder depth (in) 
r=(11/2)*t;  % bend radius at mid-thickness (in) 
m=4;         % slope ratio of the inclined web 
btf=6;       % top flange width (in) 
bs=90;       % concrete deck width (in) 
ts=8;        % concrete deck thickness (in) 
DLratio=0.5; % dead load moment ratio 
  
% Slice Widths, wi (in) 
% -------------------------------------------- 
Ns=2000; 
hi=(d+ts)/Ns; 
yi=((hi/2):(hi):((d+ts)-hi/2))'; 
wi=slices(w,t,d,r,m,btf,bs,ts,Ns,yi); 
  
% Noncomposite Strains 
% -------------------------------------------- 
% c_NC = noncomposite centroid from the top (in) 
% ei_NC = Noncomposite section strains 
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[~,y_NC,Ix_NC]=flexprop_NC(w,t,d,r,m,btf); 
Sx=Ix_NC/y_NC; 
My=Fy*Sx; 
c_NC=(d-y_NC); 
  
ei_NC=zeros(Ns,1); 
for i=1:Ns 
    y=yi(i); 
    if y<ts 
        ei_NC(i)=0; 
    else 
        ei_NC(i)=DLratio*My*((y-ts-c_NC)/(E*Ix_NC)); 
    end 
    clear y 
end 
clear ans i 
clear A_NC y_NC Ix_NC Sx My c_NC 
  
% Nominal Moment Capacity (ft-kip) 
% -------------------------------------------- 
c1=hi;           % lower bound guess for neutral axis location (in) 
si1=zeros(Ns,1); % lower bound guess for section stresses (ksi) 
bi1=1;           % lower bound balance "C=T" check (kip) 
while bi1>0 
    ei1=ei_NC+0.003*(yi-c1)/c1; 
    for j=1:Ns 
        y=yi(j); 
        if y<ts 
            if ei1(j)<0 
                si1(j)=-0.85*fc; 
            else 
                si1(j)=0; 
            end 
        else 
            if ei1(j)>0 
                si1(j)=min(Fy,ei1(j)*E); 
            else 
                si1(j)=max(-Fy,ei1(j)*E); 
            end 
        end 
        clear y 
    end 
    clear ans j 
    bi1=sum(si1.*wi*hi); 
    c1=c1+hi; 
    clear ei1 
end 
  
c2=c1-2*hi;           % upper bound guess for neutral axis location (in) 
si2=zeros(Ns,1);      % upper bound guess for section stresses (ksi) 
ei2=ei_NC+0.003*(yi-c2)/c2; 
for j=1:Ns 
    y=yi(j); 
    if y<ts 
        if ei2(j)<0 
            si2(j)=-0.85*fc; 
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        else 
            si2(j)=0; 
        end 
    else 
        if ei2(j)>0 
            si2(j)=min(Fy,ei2(j)*E); 
        else 
            si2(j)=max(-Fy,ei2(j)*E); 
        end 
    end 
    clear y 
end 
clear ans j 
bi2=sum(si2.*wi*hi); % upper bound balance "C=T" check (kip) 
  
if abs(bi1)<abs(bi2) 
    si=si1; 
    c=c1; 
else 
    si=si2; 
    c=c2; 
end 
clear ei1 si1 bi1 c1 
clear ei2 si2 bi2 c2 
  
ei=ei_NC+0.003*(yi-c)/c;  % slice strains (in) 
ri=yi-c;                  % slice moment arms (in) 
fi=si.*wi*hi;             % slice forces (kip) 
mi=fi.*ri;                % slice moments (in-kip) 
Mn=sum(mi)/12;            % nominal moment capactiy (ft-kip) 
  
clear w t d r m btf bs ts DLratio 
clear Ns hi yi wi 
clear ei_NC c ri fi mi 
clear E Fy fc 
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B.2.8 Program File:  tubMp.m 

 

Function file “tubMp.m” is employed to compute the plastic moment capacity of 

composite press-brake-formed tub girders.  The program begins by applying strains to the 

noncomposite section resulting from the chosen level of dead load moment.  A neutral axis depth 

is chosen and a linear strain profile resulting in a compressive strain of 0.003 is superimposed 

onto the composite section.  The program employs the same methods in “tubMn.m” to compute 

the nominal moment capacity.  However, instead of applying strain profiles to slices, the 

program simply assumes that the stress in each slice is equal to 0.85 fc’ or Fy, as appropriate.  In 

addition, if the total plastic force supplied by the concrete slab is greater than the total plastic 

force supplied by the steel girder, the program simply computes the plastic moment directly.  

The MATLAB file is as follows (input for the girder used in the demonstrated example in 

Appendix A with a 7.5’ × 8” concrete deck is shown): 

 

clc 
clear all 
  
% Material Constants 
% -------------------------------------------- 
Fy=50;   % steel yield stress (ksi) 
fc=4;    % concrete compressive stress (ksi) 
  
% Input Parameters 
% -------------------------------------------- 
w=84;        % standard mill plate width (in) 
t=7/16;      % plate thickness (in) 
d=23;        % total girder depth (in) 
r=(11/2)*t;  % bend radius at mid-thickness (in) 
m=4;         % slope ratio of the inclined web 
btf=6;       % top flange width (in) 
bs=90;       % concrete deck width (in) 
ts=8;        % concrete deck thickness (in) 
  
% Plastic Moment Capacity (PNA in slab) 
% -------------------------------------------- 
if 0.85*fc*bs*ts>=Fy*w*t 
    a=Fy*w*t/(0.85*fc*bs);                   % stress block depth (in) 
    Dp_Dt=a/(d+ts);                          % Dp/Dt 
    [~,y_NC,~]=flexprop_NC(w,t,d,r,m,btf);   % noncomposite N.A. (in) 
    Mp=(Fy*w*t*(d-y_NC+ts-a/2))/12;          % plastic moment (ft-kip) 
    clear Fy fc w t d r m btf bs ts a y_NC 
    break 
end 
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% Slice Widths, wi (in) 
% -------------------------------------------- 
Ns=2000; 
hi=(d+ts)/Ns; 
yi=((hi/2):(hi):((d+ts)-hi/2))'; 
wi=slices(w,t,d,r,m,btf,bs,ts,Ns,yi); 
  
% Plastic Moment Capacity (PNA in steel) 
% -------------------------------------------- 
c1=hi;           % lower bound guess for neutral axis location (in) 
si1=zeros(Ns,1); % lower bound guess for section stresses (ksi) 
bi1=1;           % lower bound balance "C=T" check (kip) 
while bi1>0 
    for j=1:Ns 
        y=yi(j); 
        if c1<ts 
            if y<c1 
                si1(j)=-0.85*fc; 
            elseif y<ts 
                si1(j)=0; 
            else 
                si1(j)=Fy; 
            end 
        else 
            if y<ts 
                si1(j)=-0.85*fc; 
            elseif y<c1 
                si1(j)=-Fy; 
            else 
                si1(j)=Fy; 
            end 
        end 
        clear y 
    end 
    clear ans j 
    bi1=sum(si1.*wi*hi); 
    c1=c1+hi; 
end 
  
c2=c1-2*hi;           % upper bound guess for neutral axis location (in) 
si2=zeros(Ns,1);      % upper bound guess for section stresses (ksi) 
for j=1:Ns 
    y=yi(j); 
    if c2<ts 
        if y<c2 
            si2(j)=-0.85*fc; 
        elseif y<ts 
            si2(j)=0; 
        else 
            si2(j)=Fy; 
        end 
    else 
        if y<ts 
            si2(j)=-0.85*fc; 
        elseif y<c2 
            si2(j)=-Fy; 
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        else 
            si2(j)=Fy; 
        end 
    end 
    clear y 
end 
clear ans j 
bi2=sum(si2.*wi*hi); % upper bound balance "C=T" check (kip) 
  
if abs(bi1)<abs(bi2) 
    si=si1;     ri=yi-c1;       Dp=c1; 
else 
    si=si2;     ri=yi-c2;       Dp=c2; 
end 
clear si1 bi1 c1 si2 bi2 c2 
  
fi=si.*wi*hi;          % slice forces (kip) 
mi=fi.*ri;             % slice moments (in-kip) 
Mp=sum(mi)/12;         % total moment capactiy (ft-kip) 
Dp_Dt=Dp/(d+ts);       % Dp/Dt 
  
clear Fy fc w t d r m btf bs ts Ns hi yi wi ri si fi mi Dp 
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B.3 ILLUSTRATIVE EXAMPLES 

 

In order to demonstrate the capabilities of the documented MATLAB routines, two 

example girders will be assessed.  Specifically, for each girder, a strain compatibility analysis is 

presented and the plastic moment is computed.  For both girders, a yield stress of 50 ksi is 

assumed, and the concrete deck is assumed to be 7.5’ wide × 8” thick and to have compressive 

stress equal to 4 ksi. 

 

B.3.1 Example Girder 1 

 

The first example girder incorporates the steel tub design corresponding to the PL 84” × 

7/16” option listed in Chapter 3.  For this example, it is assumed that the noncomposite section 

will see an initial stress profile equal to 0.50 My.  Figure B.1 displays the geometry of the 

example girder; note that the point “C.G.” refers to the center-of-gravity of the noncomposite 

section. 

 

 

Figure B.1: Example Girder 1 
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B.3.1.1 Computation of Plastic Moment 

 

To compute the plastic moment, the first step is to determine the location of the plastic 

neutral axis.  This is determined based on the magnitude of the plastic forces for both the steel 

and concrete components of the composite girder.  Therefore, these values are computed as 

follows: 

 

   0.85 0.85 4 ksi 90 in 8 in 2448 kipconc c s sP f b t    

   7
50 ksi 84 in in 1837.5 kip

16steel y gP F A
    
 

 

 

Therefore, since the plastic force in the concrete exceeds the plastic force in the steel, the 

plastic neutral axis is located in the slab.  The depth to the plastic neutral axis, Dp, can therefore 

be determined as follows: 

 

  
1837.5 kip

6.005 in
0.85 0.85 4 ksi 90 in

y g
p

c s

F A
D

f b
  


 

 

The plastic moment, Mp, can therefore be determined as follows: 

 

2

1837.5 kip 6.005 in
23 in 8 in 10.393 in

12 in ft 2

2695.6 ft-kip

p
p y g s

D
M F A d t y

 
    

 
     
 



 

 

The resulting plastic force distribution for this girder is also shown in Figure B.2. 
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Figure B.2: Plastic Stress Distribution (Example Girder 1) 

 

B.3.1.2 Computation of Nominal Moment (Strain Compatibility) 

 

Utilizing the strain-compatibility approach discussed in Chapter 5, the nominal moment 

capacity of the example girder was computed.  First, the strains corresponding to an applied 

stress profile of 0.50 My was applied to the noncomposite girder.  Assuming a neutral axis depth, 

a strain profile corresponding to a maximum concrete compressive strain of 0.003 was 

superimposed onto the initial strain profile.  The depth of the neutral axis was then iterated such 

that the sum of forces in the cross-section was equal to zero (the force in each slice was 

computed by multiplying the stress in the slice by the area, equal to the thickness of the slice 

multiplied by the width).  Figure B.3 shows the resulting strain and stress profiles from strain-

compatibility analysis; as shown, the neutral axis was found to be at a depth of approximately 

5.29 inches. 
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Figure B.3: Strain Compatibility Analysis (Example Girder 1) 

 

Utilizing the resulting stress profile, the nominal moment capacity was found by 

summing the forces in each slice about the neutral axis.  The resulting nominal moment capacity 

was found to be 2646.3 ft-kip. 

 

B.3.2 Example Girder 2 

 

The second example girder incorporates the steel tub design corresponding to the PL 

120” × 1/2” option listed in Chapter 3.  For this example, it is assumed that the noncomposite 

section will see no initial stress.  Figure B.1 displays the geometry of the example girder; note 

that the point “C.G.” refers to the center-of-gravity of the noncomposite section. 
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Figure B.4: Example Girder 2 

 

B.3.2.1 Computation of Plastic Moment 

 

Following the previous process, the first step is to determine the location of the plastic 

neutral axis.  The magnitudes of the plastic forces for both the steel and concrete components of 

the composite girder are as follows: 

 

   0.85 0.85 4 ksi 90 in 8 in 2448 kipconc c s sP f b t    

   1
50 ksi 120 in in 3000 kip

2steel y gP F A
    
 

 

 

Therefore, since the plastic force in the steel exceeds the plastic force in the concrete, the 

plastic neutral axis is located within the steel girder.  Therefore, the depth to the plastic neutral 

axis and the corresponding plastic moment are computed using a similar iterative technique, as 

described in the previous section.  However, instead of applying strain profiles, each slice is 

assumed to reach either 0.85 fc’ or Fy, as appropriate.  Figure B.5 shows the plastic force 

distribution for this girder; as shown, a portion of the steel girder is in compression (as 

predicted). 
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Figure B.5: Plastic Stress Distribution (Example Girder 2) 

 

Utilizing the resulting stress profile, it was found that Dp = 8.408 inches and Mp = 5805.8 

ft-kip. 

 

B.3.2.2 Computation of Nominal Moment (Strain Compatibility) 

 

Utilizing the previously discussed strain-compatibility approach, the nominal moment 

capacity of the example girder was computed.  Figure B.6 shows the resulting strain and stress 

profiles from strain-compatibility analysis; as shown, the neutral axis was found to be at a depth 

of approximately 8.66 inches. 
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Figure B.6: Strain Compatibility Analysis (Example Girder 2) 

 

Utilizing the resulting stress profile, the nominal moment capacity was found by 

summing the forces in each slice about the neutral axis.  The resulting nominal moment capacity 

was found to be 5760.4 ft-kip. 
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APPENDIX C:  EXPERIMENTAL AND ANALYTICAL DATA 

 

C.1 INTRODUCTION 

 

 The purpose of this appendix is to document the experimental and analytical data 

employed in this research.  Experimental data for each physical test discussed in Chapter 4 is 

presented, along with comparisons of finite element analysis results using methods discussed in 

Chapter 5.  In addition, analytical plots from the behavioral studies in Chapter 6 and feasibility 

assessments from Chapter 7 are also presented. 

 

C.2 EXPERIMENTAL DATA (CHAPTER 4) 

 

 The following section documents the instrument readings for the physical tests discussed 

in Chapter 4.  Titles of figures plotting gage readings correspond to the legend shown in Figure 

C.1.  Recall that the same gage pattern was employed for both composite and noncomposite 

physical tests.  It should also be noted that, for clarity, data from rectangular rosettes (installed 

on the webs) have been reduced to shear strains.  In addition, data from LVDTs at quarter-points 

and midspan have been averaged. 

 

 

Figure C.1: Strain Gage Data Legend 
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C.2.1 Data from Experiments 1 and 2 (Composite Girder Tests) 

 

The following plots document the results from Experiments 1 and 2 discussed in Chapter 

4.  In addition, finite element analysis results, using methods discussed in Chapter 5, have been 

included in each plot. 
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C.2.2 Data from Experiments 3 and 4 (Noncomposite Girder Tests) 

 

The following plots document the results from Experiments 3 and 4 discussed in Chapter 

4.  In addition, finite element analysis results, using methods discussed in Chapter 5, have been 

included in each plot. 
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C.3 ANALYTICAL DATA (CHAPTER 6) 

 

 The following section documents results from the analytical and behavioral studies 

discussed in Chapter 6.  Plots are titled according to the suite of 18 girders discussed in Chapters 

3 and 6. 

 

C.3.1 Comparisons of Finite Element and Strain Compatibility Results 

 

The following plots document the results obtained from the finite element analysis of the 

parametric matrix of girders studied in Chapter 6.  In addition, for each plot, three points of 

interest, in the following order, are identified:  the yield moment, the moment obtained from 

strain compatibility, and the plastic moment.  It should be noted that, due to the nonlinear finite 

element method employed, the load at which the theoretical yield moment occurs does not 

necessarily coincide with the corresponding yield-moment deflection. 
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C.3.2 Constrained Finite Strip Analyses using CUFSM 

 

The following plots document the results obtained from finite strip analysis (using 

CUFSM) of the parametric matrix of girders studied in Chapter 6.  Each analysis was performed 

assuming a bending stress profile to attain a yield stress of 50 ksi.  For each plot, the local 

minimum is identified.  In addition, for each plot, a qualitative plot of the mode shape of the 

cross-section at the indicated minimum is shown. 
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C.4 FEASIBILITY ASSESSMENTS (CHAPTER 7) 

 

 The following section documents results from the feasibility assessments and economic 

conparisons discussed in Chapter 7.  Plots are titled according to the suite of 18 girders discussed 

in Chapters 3 and 6.  Moments and shears from the Strength I and Service II limit states 

(AASHTO, 2010) along with live load deflections are plotted against design capacities and the 

live load deflection limit of L/800, respectively. 
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