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Abstract 

SHADOW DETECTION USING SPATIO-TEMPORAL CONTEXTS 

by Yiyang Liu 

 Background subtraction is an important step used to segment moving regions in 

surveillance videos. However, cast shadows are often falsely labeled as foreground 

objects, which may severely degrade the accuracy of object localization and detection. 

Effective shadow detection is necessary for accurate foreground segmentation, 

especially for outdoor scenes. Based on the characteristics of shadows, such as 

luminance reduction, chromaticity consistency and texture consistency, we introduce 

a nonparametric framework for modeling surface behavior under cast shadows. To 

each pixel, we assign a potential shadow value with a confidence weight, indicating 

the probability that the pixel location is an actual shadow point. Given an observed 

RGB value for a pixel in a new frame, we use its recent spatio-temporal context to 

compute an expected shadow RGB value. The similarity between the observed and 

the expected shadow RGB values determines whether a pixel position is a true 

shadow. Experimental results show the performance of the proposed method on a 

suite of standard indoor and outdoor video sequences. 
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Chapter 1: Introduction 

 

1.1 Overview 

 

 Object detection is an important and challenging problem in many video 

processing applications such as video surveillance, traffic monitoring and human 

detection. Usually, the most common schemes for object segmentation are based on 

inter-frame difference or background suppression. However, all the moving points of 

both objects and shadows are detected at the same time. 

 

 Shadows result from the occlusion of light sources by objects in the scene. The 

part of an object that is not illuminated is called self-shadow, and the area projected 

on the scene by the object in the direction of direct light is called cast shadow, which 

can be further classified into umbra and penumbra. The umbra corresponds to the area 

where direct lights are totally blocked by the object, whereas in the penumbra area 

they are partially blocked. If an object is moving, its cast shadows are more properly 

called moving cast shadows. In this thesis, our main work is to remove the moving 

cast shadow in a video sequence. The shadow here is just the dark part in a scene due 

to the occlusion of light. That is not the mirror refection of the object. Sometimes, the 

refection and the shadow are mixed up. The shadow can be removed but the reflection 

cannot. 

 

 In dynamic scenes, moving cast shadows often result in apparent merging of 

objects, distortion of shapes, and objects loss (due to the shadow cast over another 

object). Shadows may be either attached to or disconnected from detected objects. In 

the first case, shadows distort the object shapes, such that traditional shape 

recognition methods become unreliable (shadows and objects are merged in a single 

blob, thus geometrical properties are affected). In the second case, shadows may be 



Introduction 

2 
 

classified as an erroneous object in the scene. This may severely degrade the accuracy 

of object localization and detection. Therefore, an effective shadow detection method 

is important for accurate object detection. 

 

1.2 Motivation and the Problem 

 

 The difficulties associated with shadow detection arise since shadows and objects 

share two important visual features. First, shadow points are detectable as foreground 

points since they typically differ significantly from the background. Secondly, 

shadows have the same motion as the true objects casting them. Further, it is hard to 

remove shadows using common segmentation techniques, because shadows are 

adjacent to foreground object points in most cases. 

 

 Moving cast shadows are caused by the occlusion of light sources. Shadows 

reduce the total energy incident at the background surfaces where the light sources are 

partially or totally blocked by foreground objects. Typically, shadow points have 

lower luminance values but similar chromaticity values. Also, texture characteristics 

around shadow points remain very similar since shadows do not alter the background 

surface. 

 

 Luminance, chromaticity and texture are the basic features of shadows. Therefore, 

an important issue is how to define and express these features accurately. The 

definition of similarity is a key point in the classification of surface points, especial 

for the chromaticity feature. Across different scenes, chromaticity distortions could 

vary over a large range. These features are defined in different color spaces and 

different forms. Most of shadow removal algorithms use one or two of these features 

as their basis for analysis of shadows. In this thesis, we propose a shadow removal 

algorithm that uses all the features in the RGB color space. 
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1.3 General Approach 

 

 As mentioned above, the three features of shadows are widely used in the shadow 

removal algorithms. Most current approaches to shadow detection and removal can be 

classified as either deterministic or statistical approaches. The deterministic 

approaches assume an a priori knowledge of scene geometry, foreground objects or 

light sources. They use thresholds for the classification of surface points, whereas 

statistical approaches use probabilistic functions. 

 

1.4 Main Contribution of the Thesis 

 

 The key contributions of this thesis are: 

 (1) A novel adaptive shadow model has been proposed to describe the behaviors 

of an image surface under cast shadows. We make no assumptions on the number of 

illumination sources, view geometries, surface texture (e.g. grass, road, etc.), types or 

shapes of shadows, foreground objects or the background. Our model can deal with 

multiple sources with different spectral power distributions (SPD). 

 

 (2) We introduce a novel framework to describe cast shadows using 

spatio-temporal contexts. This provides effective descriptors of the principal 

characteristics of shadows. 

 

 (3) Qualitative and quantitative evaluation of our approach validate that our new 

shadow model is more effective in characterizing background surface distortion under 

moving cast shadows. 

 

 

 



Introduction 

4 
 

1.5 Thesis Organization 

 

 In Chapter 2, we will introduce the Gauss Mixture Model (GMM) which is used 

to segment the foreground. The GMM can detect moving pixel regions including both 

objects and shadows. The chapter also introduces shadow removal approaches in 

recent literature. 

 

 In chapter 3, we present our new shadow model and explain in detail the proposed 

shadow removal algorithm. The algorithm includes stages for shadow luminance 

classifier, learning shadow model, and for detecting the shadow region. 

 

 In chapter 4, the experimental results on benchmark video sequences will be 

represented, including indoor and outdoor scenes. We will provide qualitative results, 

quantitative results and comparative result with other methods. A discussion on the 

parameters in our algorithm is also given in this part. 

 

 In chapter 5, we conclude the thesis and provide directions for future research. 
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Chapter 2: Related Work 

 

 A color model is an abstract mathematical model describing the way that colors 

can be represented as tuples of numbers, typically as three or four values or color 

components, such as RGB, HSV or CMYK. When this model is associated with a 

precise description of how the components are to be interpreted, the resulting set of 

colors is called color space. The color model is important in computer graphics and 

video surveillance. For some special purpose applications, we can design our own 

color model to describe an image. The image model is a computational model 

describing an image to stress some special characteristics of the image, using a special 

color model. In this section, we will introduce a background model to describe the 

reference background image and some proposed approaches for shadow detection in 

the literature. 

 

2.1 Background Subtraction 

 

 Our approach use the well-known Gaussian Mixture Model (GMM) described in 

[1] and modified for online implementation in [2] to detect foreground objects. GMM 

can effectively detect moving pixels, including objects, shadows, and some erroneous 

pixels, in the image. It has strong adaptability to changing conditions in the image. 

 

 GMM assumes that each pixel is subject to a mixture of Gaussian distributions. 

For a given pixel, its observed RGB value tX  in the video sequence is a sample of a 

random variable X . The observed value set },...,,{ 21 tXXX  is modeled by a 

mixture of K  Gaussian distributions. The probability of the observed pixel in the 

current image is 
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where K  is the number of Gaussian distributions, typically between 3 and 5. Some 

of these distributions correspond to background and the rest are deemed to be 

foreground. GMM assumes that each pixel views background distributions more often 

than foreground ones. The parameter tk ,ω  is the a priori probability that the pixel is 

associated to the thk  Gaussian in the image at time t  and 1
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color components of a surface point, 
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where T
btkgtkrtktk ),,( ,,,,,,, μμμμ =  is the mean value vector and tk ,∑  is the covariance 

matrix of the thk  Gaussian in the mixture at time t . 3=n  is the dimension in RGB 

color space. For computational reasons, a further assumption is usually made that the 

three components of the pixel RGB value are independent so that tk ,∑  is diagonal 

and may be presented by the 3-dimensional variance, ),,( 2
,,

2
,,

2
,,, btkgtkrtktk diag σσσ=∑ . 

 

 The K  distributions are sorted in decreasing order using the ratio ||||/ ,, tktk Σω . 

The larger the ratio, the more stable the distribution. This order indicates that the most 

likely background distributions remain on the top and the less likely ones gravitate 

towards the bottom and may be replaced by a new distribution. The first B  

distributions whose total a priori probability is greater than a threshold T  are 

considered as the background models. 
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 Each pixel is labeled as background or foreground according to whether the 

pixel’s RGB value is associated with the first B distributions. The pixel value is 

associated to the thk  distribution if the value falls within 5.2=λ  standard 

deviations of the mean of thk  Gaussian distribution. That is 

 

2
,, λ<tk

T
tk dd  (2.4) 

where 

)()),,(( ,
1

,,,,,,, tktbtkgtkrtktk Xdiagd μσσσ −= −

 (2.5) 

 

 If we cannot associate a pixel value to an existing distribution, a new 

distribution k  is created with μ , the pixel current value, init∑  and a priori 

probability initω . The last probable distribution is dropped. For each frame, the a 

priori probability kω  and the distribution parameters of each state are updated. The 

GMM is initialized by the first received image. 

 

 We define: 

 

}|{1 FGMMXXM ∈=  (2.6) 

 

where FGMM  is the set of foreground pixels detected by GMM. 

 

 In practices, some of the foreground objects that we get from GMM are not true 

foreground. The foreground objects contain the true foreground, their shadows and 
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noisy isolated pixels. Not only is the true foreground different from the background, 

the shadows are also different from the background. The GMM however does not 

consider the change in the background that arises due to shadows. Other background 

models also have the same problem. The noisy isolated pixels may result from salt 

and pepper noise or the shaking of the camera, which can be ignored or removed 

using morphological methods. Therefore, shadow removal is a necessary step for 

improved and accurate detection of moving objects. 

 

2.2 Shadow Detection 

 

 In recent years, many approaches have been proposed to remove cast shadows in a 

scene. Horprasert et al. [3] used a computational color model which defined 

brightness and chromaticity distortion, and a pixel is classified as shaded background 

or shadow if it presents similar chromaticity but lower brightness compared with the 

pixel’s corresponding background. Cucchiara et al. [4] detected shadows by exploiting 

the color differences between shadow and background in the HSV color space. 

Schreer et al. [5] adopted the YUV color space to avoid using the time consuming 

HSV color transformation. They segmented shadows from foreground objects based 

on linear intensity scaling and the observation that shadows reduce the YUV pixel 

value linearly. Savador et al. [6] used the fact that shadows darken surfaces and 

removed them using color invariance and geometric properties of shadows. Joshi et al. 

[7] and Nghiem et al. [8] utilized the chromaticity, edge information/texture and 

intensity with different thresholds to detect shadows one level at a time. Stauder et al. 

[9] used edge width information to differentiate penumbra regions from background. 

A linear luminance edge model is applied to detect shadow boundaries. Leone et al. 

[10] used Gabor features extracted from a textured patch to detect shadows since 

shadow regions present the same textural characteristics as the corresponding 

background. Wei et al. [11] showed that ratio edges are illumination invariant and that 
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the distribution of normalized ratio edge difference follows a chi-square distribution. 

A significance test was then used to detect shadows. 

 Recently, the statistical approach has gained popularity in detecting cast shadows. 

Liu et al. [12] proposed to remove shadow using local regions and global level 

information in the HSV color space. Martel-Brisson et al. [13] used the Gaussian 

mixture model (GMM) to model moving cast shadows with nonuniform and varying 

intensity. The shadow model merged into background model is called GMSM. Huang 

et al. [14] built a global shadow model and a local shadow model with the GMM to 

learn the behavior of cast shadows. Using graph cut algorithm, they viewed the 

problem as minimizing a Markov random field energy function, composed of the 

background, shadow and foreground models. Martel-Brisson et al. [15] proposed a 

new physical cast shadow model, by estimating the direction of cast shadows in RGB 

color space. They used a nonparametric density estimation (Kernel Density 

Estimators, KDE) to estimate many parameters in an unsupervised manner. In [15], 

the SPDs of all light sources are assumed to have the same profile but different power 

factor. Huang et al. [16] extended the model by releasing this assumption. 

 

2.3 Our Contribution 

 

 The deterministic methods based on a priori knowledge have achieved some good 

results, but their applicability is limited to some particular environments. Also, the 

statistical methods may suffer from insufficient training samples. Unlike in 

background modeling, where we can obtain samples in every frame, shadows may not 

appear at the same pixel in each frame. A single pixel needs to be shaded many times 

before its estimated parameters converge, that is, assuming the illumination conditions 

are stable. Therefore, this kind of pixel-based shadow models require a longer period 

of training time when foreground activities are not frequent. 
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 In this thesis, we propose a new statistical approach to detect cast shadows based 

on the RGB color space. It uses a novel characterization of shadow features and 

statistical strategies to learn the behavior of shadows. We can consider it as a 

combined approach. From the physical illumination model and the characteristics of 

cast shadows, we know that the pixel under a shadow has a lower luminance 

compared to its corresponding background. Therefore, we consider a surface point 

with lower luminance as potential shadow point. Applying chromaticity consistency 

and texture consistency based on local gradient, we give a confidence (weight) to the 

potential shadow point, and then record its weight and current RGB value. To 

determine whether a potential shadow point is an actual shadow point, we compare it 

with its expected shadow value, which will be computed from recent spatio-temporal 

contexts. The flow diagram of our approach is shown in Figure 2-1. 

 

 

Figure 2-1: The flow diagram of our approach. 
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Chapter 3: Proposed Method 

 

 In this section, we propose a new shadow model and describe our approach on 

learning and detecting cast shadows. We first apply the shadow luminance classifier to 

the foreground pixels detected by GMM to select the possible shadow samples. The 

probability of a possible shadow pixel is determined by its chromaticity feature and 

spatial context. Local gradient is used to describe spatial context. We learn the 

features of possible shadow pixels by recording the probability and RGB value of the 

pixel. We call this sequence of historical records for each pixel in an image the 

temporal context. Then, we can detect shadows by using spatio-temporal context. 

Note that our approach is pixel-based, models the behavior of pixels in shadows, and 

adapts fast to the environment with complex illumination. 

 

3.1 Shadow Model 

 

 A surface’s appearance depends on its reflectivity properties and the total energy 

incident at the surface. The basis of our approach is the Phong illumination reflection 

model [17], an empirical model used to describe local illumination. It describes the 

way a surface is lit by reflecting the lights that come from the environment, which is 

the combination of ambient light, diffuse light and specular light. Ambient light is the 

amount of light scattered around the entire scene. Diffuse light is the reflected light on 

rough surfaces. Specular light is the reflected light on smooth surfaces, which is 

usually small and can be neglected when surfaces are not very shiny. By this model, 

we can determine how shadows appear on surfaces. 

 

 For each surface point ),( yxP , the Phong model describes the illuminance 

),( yxI  of this point as follows: 
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where ai  controls the ambient light, which usually can be considered constant; di  

and si  are respectively defined as the intensity of diffuse and specular component of 

light sources; ak  is ambient reflection constant, the ratio of reflection of reflected 

ambient light to total ambient light present in all points in the scene rendered; dk  is 

diffuse reflection constant, the ratio of reflection of reflected diffuse light to total 

diffuse light of incoming light (Lambertian reflectance); sk  is specula reflection 

constant, the ratio of reflection of reflected specular light to total specular light of 

incoming light; LS  is the number of all light sources. ),( yxL j

r
 is the unit direction 

vector from the point P  on the surface toward the thj  light source, ),( yxN
r

 is the 

normal at this point on the surface, ),( yxRj

r
 is the direction that a perfectly reflected 

ray of thj  light source would take from this point on the surface, and ),( yxV
r

 is 

the direction pointing towards the viewer (such as the camera); α  is a shininess 

constant, which is larger for smoother surfaces. When we have color representations 

as RGB values, this equation will typically be calculated separately for R, G and B 

intensities. That is, 
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 Ambient light refers to the illumination from the surrounding objects. This is 

different from the direct illumination from light sources. We can assume that it is 

invariable in shadow region. When a foreground object casts shadow on a surface, it 

deprives the surface of some direct illumination from light sources, and thus induces a 

variation of the surface’s appearance. Therefore, some of the light sources are 

partially or completely blocked. Then, Eq. 3.2 becomes: 

 

},,{  ,))),(),(()),(),(((                    

),( 

1
,,,,,

,,,

bgrciyxVyxRkiyxNyxLk

ikyxI
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j
csjcscdjcdcj

cacashadowc
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+=

∑
=

αβ
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  (3.3) 

 

where ]1,0[, ∈cjβ  is the attenuation factor, which represents to what extent the 

component c  of the thj  light source is blocked. Since we could have different lines 

of light from different light sources to a given object, the attenuation factors could be 

different for different light sources. Further, given that diffraction is different at 

different wavelengths, the attenuation factors are different for the different 

components of light. Under cast shadows, the energy incident on the surface point is 

reduced, and thus each of the three components of the RGB value on the surface 

points will decrease. This reduction in the RGB value is captured in Figure 3-1. 
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Figure 3-1: Our shadow model. 

These vectors stand for the different RGB values of one pixel. The red vector is the 
background value (value in background model). The black vectors are the observed 
values in the video sequence. (The dotted vector is the potential shadow point value, 
and the dashed vector is the foreground value). The blue vector is the expected 
shadow value. 

 

Under the proposed shadow model, when a surface point is in the shadow region, 

its value (the dotted vector in Figure 3-1) will fall close to its background value, 

because the color of the surface in shadow is similar to that in background. Then the 

three components of the RGB decrease similarly. When the surface point is on 

foreground objects, its value (the dashed vector in Figure 3-1) will be changed 

significantly and far from the background value, since the colors of foreground 

objects are usually different from that of the background. 

 

 Our hypothesis is that, at a given surface point, the effect of shadows on the 

background remains constant over a short period of time, because the illumination 

condition is expected to remain constant during such a short time. The effects of 

shadows are also similar, since shadows all result from blocking direct lights. Hence, 

one pixel’s shadow values in recent sequences can be close to its background value 

vector (the red vector in Figure 3-1). These values cluster together, denoted by a beam 

of vectors in the RGB color space (the dotted vectors in Figure 3-1). Therefore, we 

can learn from the temporal information to determine a pixel’s behavior under 
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shadows. However, we do not know which value is the actual shadow value of one 

pixel in recent frames. In our approach, we use the characteristics of shadow to 

predict the possible shadow value. For a given pixel, its observed value is a possible 

shadow value if it satisfies a luminance reduction constraint. We also use the 

chromaticity consistency to describe the possible shadow value. The chromaticity of 

foreground objects is usually distinct from that of the background. However, there 

could be cases where the chromaticity of the foreground objects could be similar to 

that of the background. The chromaticity alone will not be enough to characterize the 

shadow. Therefore, we propose to use spatial information to improve the description. 

Gradients can be applied to capture that information unless gradients are the same for 

both foreground and background. Unlike obtaining samples in each frame in the 

background model, shadows may not appear at the same pixel in each frame. So the 

statistical approach may suffer from insufficient training samples. To overcome this 

problem, the chromaticity descriptor is for the whole video sequence (global) and 

gradients descriptor is for a small window centered a pixel (local) in our approach. We 

call a pixel position with a possible shadow value potential shadow point. We can 

estimate the expected shadow value of the pixel from those potential shadow values in 

its temporal history in order to determine the actual shadow points in the current 

image. 

 

 

Figure 3-2: Two shadow models in the RGB color space. 

  The linear model (a) proposed in [15] and the nonlinear model (b) being proposed 
  here. 
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 Figure 3-2 shows two shadow models. Here, ABG  is the value of ambient light in 

Eq. 3.3 and BG  is the background value of pixel. SD  is the shadow value when 

pixel is shaded. Usually, the spectral power distribution (SPD) function of the ambient 

illumination is different from that of direct light sources. Hence the directions are 

different (compare ABG  with BG ). If we assume that all light sources have the 

same SPD, we can get the linear model of cast shadow proposed in [15] (shown in 

Figure 3-2(a)). In this model, the shadow values of a pixel can only fall on the line 

from the ambient value ABG  to background value BG . However, direct light 

sources often have different SPDs in complex illumination conditions. When those 

direct light sources are partially or totally blocked, the shadow values of the same 

pixel in different images will fall close to the line from ABG  to BG . Therefore, we 

propose the nonlinear model shown in Figure 3-2(b). Our model does not limit light 

sources to have the same SPD. The shadow value can fall anywhere close to the 

vector BG . 

 

3.2 Learning Moving Cast Shadow 

 

3.2.1 Shadow Luminance Classifier 

 

 In the first step of our algorithm, we use a shadow luminance classifier to filter out 

those pixels that are unlikely to be shadow points by checking each foreground pixel 

detected by the GMM. From the Eq. 3.3, we know that the three components of a 

pixel value will decrease under cast shadows, which indicates that the pixels in 

shadows have a lower luminance. We assume that this decrease will be similar for all 

the three color components. We use the term potential shadow points to refer to those 

pixels with less luminance than the corresponding background. Then we use the 

shadow luminance classifier to determine those points. 
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 Our approach is based on a modification of the color model proposed by 

Horprasert et al. [3]. In this model, the change of a pixel’s value is captured by the 

color model that separates brightness distortion from chromaticity distortion 

component in the RGB color space. This is shown in Figure 3-3, 

 

 

Figure 3-3: The color model proposed in Horprasert et al. [3]. 

 

where 1E  represents the latest background value of a pixel obtained from GMM and 

2E  represents the current value of the pixel in a current frame. The difference 

between 1E  and 2E  is decomposed into two components, brightness distortion α  

and chromaticity distortion CD , where 
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 The above requires searching for the minimum which could be quite time 

consuming. In our work, we compute brightness distortion and chromaticity distortion 

as follows: 
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where >⋅⋅< ,  is the inner product operator, and |||| ⋅  is the norm of a vector. 

 

 We can easily see that 1<α  if 2E  is a shadow pixel in a current frame. For 

each foreground pixel in 1M (Eq. 2.6), we use α  to represent the luminance 

reduction and then consider a pixel as potential shadow point if it satisfies the 

conditions: 

 

10    , maxminmaxmin ≤<<<< ααααα  (3.6) 

 

where α  is the brightness distortion between cE  and bE , cE  is the observed 

RGB value of a pixel in current image and bE  is the background RGB value of the 

pixel. The parameters minα  and maxα  define maximum darkness and maximum 

brightness of the shadow respectively. The two parameters are small in dark shadow 

(0.4~0.7) and large in light shadow region (0.7~1.0). 

 

 We define: 

 

}  |{ maxmin12 ααα <<∧∈= XMXXM  (3.7) 

 

 Although the shadow luminance classifier is not accurate enough, it can remove 

most of the foreground objects area (or foreground points). After that, most of points 

in the resulting pixel set will be actual shadow points, except that there are still some 

noisy isolated pixels and foreground points. Those noisy isolated pixels can also be 

ignored, which does not affect the detection of the foreground objects. So our main 

task is to separate shadow points from a few foreground points. 
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3.2.2 Updating the Shadow Model 

 

 For each pixel in the image, we record its temporal information as its shadow 

track. When the pixel is a potential shadow point in one image, we cannot confirm 

whether it is an actual shadow point, but we still keep its value in the temporal history 

for that pixel. Thus, not all of the temporal information is reliable and truly reflect the 

behavior of the pixel in shadow. 

 

 Shadows reduce the luminance but retain the chromaticity and the texture, when 

compared to the reference background. Here, we evaluate the reliability of the pixel’s 

historical shadow record (spatio-temporal context) using spectral and spatial features. 

We define the historical shadow record as a 2-D vector ),( vω , where v  is the 

historical potential shadow RGB value, ω  is the confidence weight, the reliability of 

this value. 

 

 Based on the chromaticity and the local gradient consistency, we compute the 

confidence weight gcωωω = , where cω  is the chromaticity confidence weight and 

gw  is the gradient confidence weight. 

 

 In complex illumination environments, the intensity of direct lights is generally 

larger than that of ambient lights. And the umbra is darker than penumbra. Hence the 

luminance reduction of shadow pixels will be in a large range (for example 0.3~1.0). 

If a surface point is shaded in the umbra and also in the penumbra in the several 

recent frames, the values in those frames will all be kept in the history. Those shadow 

values are all reliable, but they may not cluster together since these values could be 

much different. That will lead to an unreliable estimation of the behavior of this 

surface point in shadow. Therefore, we classify the historical shadow values into three 
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categories namely high shadow )4.00( <<α , medium shadow )7.04.0( <<α , and low 

shadow )17.0( <<α . 

 

Global descriptor: Chromaticity confidence weight cω  

 The chromaticity distortion indicates the spectral difference between potential 

shadow value and background color value of a pixel. In Eq. 3.3, when the 

chromaticity of three lights (ambient light, diffuse light and specular light) are similar, 

no matter how much β  is, the chromaticity distortion does not change much, for 

example in indoor scenes. When the chromaticity of the ambient light is very different 

from that of the diffuse light and specular light, the chromaticity distortion will 

change significantly, which fail to satisfy the assumption of chromaticity consistency. 

For example, in outdoor scenes, the chromaticity of the ambient light is more bluish 

than that of the sunlight (the SPD of the ambient light is different from the sunlight), 

since the ambient light is the reflected light of blue sky. Even if a chromaticity 

distortion in shadows is small, it does not mean that the pixel with a smaller 

chromaticity distortion is a shadow pixel. It could be a foreground pixel with 

chromaticity similar to background. 

 

 The chromaticity characteristic of shadow points has been used in earlier studies, 

for instance, as a deterministic condition to classify the shadow pixels in [3][4][5], or 

as a statistic to distinguish if a point is subject to chromaticity distribution of shadow 

in [12]. Here we use chromaticity distortion to define the chromaticity confidence 

weight. Using various video sequences with different illumination conditions, we 

construct the histogram of CD  values, where we define the CD  value to be 

chromaticity distortion between a potential shadow point and the corresponding 

background point. We observe that these different histograms have the same tendency: 

the values near 0=CD  have significantly larger probability. When the CD  value 

increases, the probability decreases exponentially. 
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Figure 3-4: The CD-histogram showing the distribution of chromaticity distortion in shadows. 

 

 Figure 3-4 shows the distribution of CD  for all potential shadow points in one 

video sequence. To overcome the problem of lack of data samples for statistical 

methods, in our approach, we establish one CD  histogram for all pixels in a video 

sequence and update the histogram for each frame. That mechanism can accelerate the 

convergence speed and improve the adaptability. Independent of the chromaticity of 

each pixel, the chromaticity distortion is similar since the shadows appear in a similar 

way and in the same environment. The histogram is updated as follows: 

 

)( )( )1()( 11 CDhCDHCDH ttt −− +−= γγ  (3.8) 

 

where )(CDH  is the histogram of CD  in a video sequence. )(CDh  is the 

histogram of CD  in one frame, )(CDH  is a global level condition updated using 

the local histogram )(CDh , t  is time index, and c is the learning rate. In order to 

transform this distribution into a confidence weight, we define the chromaticity 

confidence weight as follows: 

 

0     ),( ≥= CDCDHcω  (3.9) 

 

 Thus, the confidence weight for chromaticity is the probability of occurrence of 
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CD . 

 

Local descriptor: Gradient confidence weight gω  

 Some foreground objects have features very similar to the background in terms of 

spectral characteristics. The global chromacity distrotion may not be able to 

distinguish such regions. To handle this problem, we consider the spatial characteristic 

of shadow points. The shadow area is semi-transparent and presents the same textural 

characteristics between current frame and reference background image. Within a local 

area under shadow, we can expect that pixels have similar energy change. In Eq. 3.3, 

for a small local region, those incoming light has vectors with same direction. 

Therefore, when the lights are blocked somewhat, only the energy of the lights 

incident on the surface decreases and local luminance reduces at a similar ratio. To 

capture such local consistency of shadows, we define a local normalized gradient 

cross correlation (see Eq. 3.10). 

 

 We define a local area, 3×3 window centered at a potential shadow point, and use 

Eq. 3.10 to calculate the correlation. We call this correlation value the gradient 

confidence weight. We calculate the correlation between pp , the potential shadow 

point in current image, and bp , the corresponding point in background image as 

follows: 
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where ε  is a small smoothening constant (set to 10 in our experiment) used to 

alleviate the effect of noise in the case of textureless surface. p∇  and b∇  are 
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respectively the gradient vector of current point and that of its background point in the 

same position. ))(),(()( uuu yx ∇∇=∇  is the gradient vector of the point. We use the 

gray scale to calculate the spatial gradient. 

 

 The larger gw  is, the more similar a potential shadow point and its background 

point are. 

 

3.3 Detecting Moving Cast Shadows 

 

3.3.1 Detecting Shadow Regions with Temporal Information 

 

 From the analysis of our shadow model, the previous shadow values at the same 

pixel position should be similar. The main issue is to obtain a good estimation of 

shadow in current frame. An alternative that usually works quite well is to estimate 

the value of pixels using a moving average. In our approach, we estimate the shadow 

value of a pixel as a weighted average of its previous shadow value. Typically, the 

values in the very distant past are supposed to be weighted to zero, and the weights 

increase smoothly. But in our approach, we assign different weights to the previous 

values according to the characteristic of shadows. 

 

 For each potential shadow point X  in 2M (Eq. 3.7), we have a sequence of 

historical records including three shadow class categories (high, middle, low) 

Nivii ,...,2,1   ),,( =ω . We select )'(  ' NNN <  records from one category of its 

historical records. The 'N  records have the larger weight than the rest other records. 

We consider these 'N  records as the most reliable ones, and use the weight function 

to estimate )(XE , the expected value of the shadow point: 
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 The parameters N  and 'N  can be chosen as needed, and reflect the 

adaptability of our algorithm for different illumination conditions. 

 

 Then we compare each potential shadow point with its corresponding expected 

shadow point by calculating Xα  and XCD  value between X  and )(XE . Here, 

we propose the following luminance constraint and chromaticity constraint to 

determine the similarity between the potential shadow point and the expected shadow 

point. 

 

 Luminance constraint: 

 Define: 

 

}2.18.0  |{ 23 <<∧∈= XMXXM α  (3.12) 

 

 Essentially, this means that a potential shadow point should have a similar 

luminance with the expected shadow point. 

 

 Chromaticity constraint: 

 We use an automatic threshold selection to detect the actual shadow point from 

3M . Construct a histogram of the chromaticity distortion CD  of the points in 3M . 

Suppose a detection rate r  and compute the corresponding threshold cdT . The CD  

values in the histogram are in an increasing order. Each CD  value i  has a 

corresponding probability )(iP . We sum the )(iP  up by increasing order of CD , 
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until we find the CD  value cdT , which makes riP
cd

i

>∑
=0

)(  for the first time. It 

satisfies the condition that r  is the ratio of the potential shadow points in 3M , 

whose CD values are smaller than cdT . 

 

))((minarg
0

riPT
cd

i
cdcd >= ∑

=
 (3.13) 

 

where cd  is the CD value in 3M , )(iP  is the probability value at i  in the 

histogram. 

 

 In our approach, we have used r  90%, which works well for both indoor and 

outdoor scenes. Thus, we can get the final set of shadow points: 

 

}  |{ 34 cdX TCDMXXM <∧∈=  (3.14) 

 

3.3.2 Spatial Information for Shadow Correction 

 

 When foreground objects are similar to the background in terms of shadow 

properties, shadow detection error may occur (see blue pixels Figure 3-5). To improve 

the accuracy of the shadow detection, we use spatial information to correct the 

detection error. According to the geometric property of shadow, we know that 

typically shadows are around foreground objects and shadow pixels cluster together. 

Hence, most of the boundary of an actual shadow region will be adjacent to the 

background pixels. We analyze each connected shadow region based on the geometric 

property of shadows. Using depth first search (DFS) or breadth first search (BFS), we 

find the connected shadow regions in 4M  and get the boundary of each shadow 
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region. If the percentage of boundary pixels adjacent to background pixels is greater 

than 50%, the shadow region is considered as the actual shadow. Otherwise, this 

region will be corrected to foreground region. Figure 3-5 shows an example, where 

the blue pixels are corrected to foreground pixels. 

 

 
Figure 3-5: Shadow detection error corrected by spatial information. 

 

 The foregoing discussion is summarized in the shadow detection algorithm shown 

in Figure 3-6. 
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Figure 3-6: Shadow detection algorithm. 

Shadow Detection Algorithm 
for each video sequence do 
 M1 = foreground pixels detected by GMM; 
 M2 = M3 = M4 = Φ; 
 for each pixel X in M1 do 
  αX = compare(X, BX); 
  if  αmin < αX < αmax  then 
   M2 = M2 Λ X ; 
   ωx = ωcωg ; 
   update the history of X; 
  end if 
 end for 
 

for each pixel X in M2 do 
 compute expected shadow value EX; 
 (αX, CDX) = compare(X, EX); 

if  τ1 < αX < τ2  then 
  M3 = M3 Λ X; 
 end if 

 end for 
 

compute the threshold Tcd; 
 for each pixel X in M3 do 

 if  CDX < Tcd  then 
  M4 = M4 Λ X; 

end if 
end for 
perform geometric correction. 

end for 
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Chapter 4: Results and Discussion 

 

 In this chapter, we present results of the proposed method on a suite of indoor and 

outdoor video sequences and a discussion on the parameters in our algorithm. 

‘Laboratory’, ‘Intelligent Room’ and ‘Hallway’ are indoor scenes, ‘Campus1’, 

‘Campus2’ and ‘Highway’ are outdoor scenes. We also compare the quantitative 

accuracy of the proposed method with other approaches. 

 

 In the experiments, we set 1 ,7.0 minmin == αα  for all the sequences except 

‘Highway’, For ‘Highway’, 3.0min =α , since the energy of direct light sources is 

much larger than that of ambient light in ‘Highway’. We set %90,10',30 === rNN  

for the shadow detection stage. 

 

 The algorithm has been implemented in C#.net and processes 6 frames a second 

for a frames size of 320×240 pixels. It has been tested on a Intel Core(TM)2 Duo 

2.53GHz processor without any filtering or morphological operations. 

 

4.1 Qualitative Results 

 

 In order to show the effectiveness of proposed method, the results presented here 

are raw data without any post-processing. In all sequences, you can see isolated points 

called salt and pepper noise, which can be easily removed by other methods, such as 

morphology-based method. 

 

 In the figures, the first column is the original sequence, the second column the 

foreground and shadow detected by GMM, the third column the shadows detected by 

our approach and the fourth column the final foreground objects. 
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Figure 4-1: Frame 158, frame 299 and frame 885 of ‘Laboratory’ 

 

 
Figure 4-2: Frame 92 and frame 297 of ‘Intelligent Room’. 

 

 
Figure 4-3: Frame 197 and frame 447 of ‘Hallway’. 
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Figure 4-4: Frame 61 and frame 418 of ‘Campus1’. 

 

 
Figure 4-5: Frame 517 and frame 878 of ‘Campus2’. 

 

 
Figure 4-6: Frame 220 and frame 247 of ‘Highway’. 

 

 In these sequences, shadows range are from small to large, dark to light, next or 

adjacent to the moving object. The type, size and speed of objects also could vary 
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considerably. In a special case, if foreground objects move so fast that they will stay 

fewer frames in the scene, there will be fewer data samples for shadows. The 

convergence of parameters in the algorithm become slower compared to ordinary 

motion speed and the learning process will cost more time.This is a common 

difficulty for all statistics-related approach. In the ‘Laboratory’ sequence, the shadows 

of persons and chair are detected effectively without foreground information. Besides, 

different foreground objects blocked the lights in a similar way and the effect of 

shadows cast by different objects is quite similar. In the ‘Hallway’ sequence, the 

illumination environment is more complex: multiple light sources, reflections on the 

floor and large penumbra regions. The ‘Campus1’ and ‘Campus2’ sequences are noisy 

sequences. In Figure 4-4, we can see that the right part of car’s shadow is not detected 

accurately, because the shadow appears first on the surface, when there are no 

historical records to use. From all the sequences, we can see that the shadows cast on 

different surfaces can be detected effectively. 

 

4.2 Quantitative Results 

 

 To evaluate the proposed method quantitatively, we use two metrics: shadow 

detection rate η , related to the percentage of shadow pixels wrongly detected as 

foreground, and shadow discrimination rate ξ , related to points both wrongly 

detected as foreground and shadow pixels, defined in [18]. The formulation of the 

metrics is as follows [18]: 
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= ξη             (4.1) 

 

where STP  and FTP  are the respective number of shadow pixels and foreground 
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pixels correctly detected. SFN  is the number of shadow pixels wrongly detected as 

foreground. FFN  is the number of foreground pixels wrongly classified as shadow 

or background. FTP  is the number of ground truth pixels of the foreground objects 

minus the number of pixels detected as shadows, but belonging to foreground objects. 

We also use another two metrics: foreground detection rate ζ , related to the 

percentage of foreground pixels wrongly detected as shadow, and balancing score 

FScore, which is a balance between shadow detection rate and shadow discrimination 

rate: 

 

ξη
ηξζ
+

=
+

=
2           * FScore

FNTP
TP

FF

F  (4.2) 

 

where *
FFN  is the number of foreground pixels wrongly detected as shadow. 

 

 
Figure 4-7: Some ground truth samples. 

 

 Table 4-1 shows the quantitative results of our proposed method in indoor and 

outdoor sequences. Our algorithm has an excellent performance under the different 

illumination conditions. 

Table 4-1: Quantitative results of our method in indoor and outdoor sequences 
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 η% ξ% ζ% FScore% 

Intelligent Room 81.09 96.52 96.06 88.13 

Hallway 90.17 97.48 97.01 93.68 

Campus1 84.34 94.88 94.64 89.30 

Highway 78.48 84.67 78.31 81.46 

4.3 Comparative Result 

 

4.3.1 Validation with SNP 

 

 The following comparison with the SNP (statistical non-parametric named in [18]) 

algorithm of Horprasert et al. [3] is to validate the performance of the proposed 

algorithm. As mentioned in section 3.2.1, SNP give a computational color model. For 

a given pixel, the expected background value ],,[ bgrE μμμ=  is computed from N 

training static background images, which do not have foreground objects, and 

],,[ bgrS σσσ=  is standard deviation. For each pixel in a new frame 

],,[ bgrt XXXX = , brightness and chromaticity distortions from the background value 

are given by: 
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 It uses the normalized distortion of brightness 'α  and distortion of the 

chrominance 'CD  to classify a pixel in four categories as shown in (24). For thi  
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pixel in a subsequence, 
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 Pixel classification is then performed as follows: 
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 The thresholds in (4.5) are automatically selected from the histograms of 'α  and 

'CD , which are computed from the N training background images, with a detection 

rate. 

 

 The classification or segmentation can be represented as the following Figure 4-8 

mapped in the RGB color space. 
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Figure 4-8: The segmentation approach of SNP [3]. 

Ei represents the expected color of a given pixel and Ii represents the color value of 
the pixel in the current frame. This figure comes from [18]. 

 

 The SNP algorithm is time-consuming due to its complex normalization procedure 

and constructing the histogram for each pixel. Further, its background model and 

histograms are not updated (if updated, the computation cost becomes too much). 

Thus, for some complex illumination condition, the thresholds will be inaccurate 

given the lack of update. Our approach updates the shadow information for each pixel, 

is easy to implement, and fast to adapt to new illumination conditions. 

 

 The SNP algorithm uses the same CD  threshold to separate background and 

shadow from foreground. This may not be suitable for noisy sequences such as 

‘Campus1’. If the CD  threshold is large, most shadow regions may be detected, but 

also more foreground regions are incorrectly classified as shadow. On the other hand, 

if the CD  threshold is small, the shadow detection rate will decrease. Figure 4-9 

presents results showing the differences between the SNP algorithm and our method 

on ‘Campus1’. 

 

   (a) (b) (c) 

Figure 4-9: Qualitative comparative results with the SNP algorithm. 

  (a) original, (b) results with SNP, (c) results with our method. 

  SNP’s result of ‘Campus1’ comes from [18]. 

 

 The SNP algorithm finds the difference between current pixel value and its 
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expected background value, but our algorithm compares current pixel value to its 

expected shadow value. Our approach is more accurate. For example, suppose a 

current shadow pixel’s brightness distortion α is 0.8 (compared to its background 

value). Thus, in Figure 4-8, at the point α=0.8 on the α-axis, in the circular section 

centered point 0.8(cross section of cylinder), the value on this circular section can all 

be regard as shadow point by the SNP algorithm. This is not accurate, because some 

foreground pixel also can be on this circular section. But our approach can decide 

which region on that circular section is shadow point value region, not all the circular 

section. Our shadow expectation method can more accurate in deciding the possible 

shadow values in the RGB color space. In estimating the expected shadow value, we 

not use the spectral feature but the spatial feature. This is a more accurate mechanism. 

 

4.3.2 Comparison with Other Methods 

 

 We show the quantitative comparison results of indoor and outdoor sequences in 

Table 4-2 and Table 4-3. The results of other proposed approaches are taken from the 

corresponding references. Our method produced the best overall result on the FScore 

metric and higher result on the shadow detection rate and discrimination rate, for both 

indoor & outdoor scenes. 

 

Table 4-2: Quantitative comparison on surveillance sequences 

 Intelligent Room Campus1 

η% ξ% FScore% η% ξ% FScore%

Proposed 81.09 96.52 88.13 84.34 94.88 89.30 

ILT[19] 88.23 89.05 88.64 81.40 92.61 86.64 

DNM1[18] 78.61 90.29 84.05 82.87 86.65 84.72 

SP[18] 76.27 90.74 82.88 72.43 74.08 73.25 

SNP[18] (for [3]) 72.82 88.90 80.06 80.58 69.37 74.56 
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DNM2[18] 62.00 93.89 74.68 69.10 62.96 65.89 

 

Table 4-3: Quantitative comparison on surveillance sequences  

 Hallway Highway 

η% ξ% FScore% η% ξ% FScore%

Proposed 90.17 97.48 93.68 78.48 84.67 81.46 

Physical 

Feature[20] 
82.05 90.47 86.05 70.83 82.37 76.17 

Physical[16] 71.69 88.25 79.11 72.34 84.98 78.15 

Kernel[15] 72.40 86.70 78.91 70.50 84.40 76.83 

GMSM[13] 60.50 87.00 71.37 63.30 71.30 67.06 

 

4.4 Discussion on Parameters 

 

 To explore the effect of certain parameters on the result of shadow removal, we 

will change specific parameters and remain all else parameters. By linearly increasing 

the learning rate (0.01~0.15)(Eq. 3.8), the quantitative result of our algorithm are 

almost not changed (see Figure 4-9(a)). And when 40,30,20=N  or 

15,10,5'=N ,(Section 3.31) the result are also changed slightly. It is suggested that our 

algorithm is not sensitive to these three parameters. For a changing illumination 

condition at time t, foreground, background and shadow are all affected in the scene. 

So they will have a similar RGB change compared to previous background. For 

example, all of them become reddish at sunset. Even if the learning rate is not chosen 

exactly appropriately and therefore )(CDH  is not updated properly, but when we 

compute expected value for every element in M2 under that learning rate, all the 

expected value have similar error. That is to say, the poor learning rate changes the 

value ,but does not change the alignment or entire relative relation. Hence, when we 

compute M4 ,the alignment is not changed and those values least possible to be 
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shadow are still least possible. Similarly, for N  and 'N , If they are selected not 

exactly properly, it will totally affect all the pixels in 2M . But 3M  and 4M  are 

affected slightly. 

 Linearly increasing the detection rate (0.60~1.00), the shadow detection rate drops 

slowly while the discrimination rate and FScore rise sharply (see Figure 4-9(b)). 

There is a high point on the curve at 0.90. This value works well for all the video 

sequences in the benchmark suit. 

 

 

 (a) (b) 

Figure 4-9: Effect of learning rate and detection rate on quantitative result of our algorithm. 

  (a) effect of learning rate, (b) effect of detection rate. 
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Chapter 5: Conclusion & Future Work 

 

5.1 Conclusion 

 

 In this thesis, we have presented a new shadow model and a pixel-based algorithm 

capable of detecting cast shadows in various scenes. The method combines statistical 

information with a spatio-temporal context with geometric information about the 

image region. It requires only a short time to learn the shadows and is robust to detect 

the cast shadows. The framework of this algorithm gives the idea that we can give a 

confidence to the potential shadow point to learn the shadows. The confidence can be 

composed of the shadows’ invariant characteristics. And it chooses the appropriate 

historical potential points to estimate the shadow value in the next frame. Thus, it can 

be effective in detecting the cast shadows. Qualitative and quantitative results 

presented in this thesis validate this approach. 

 

5.2 Future Work 

 

 At last step of this approach, a better definition of the similarity between expected 

shadow values and current values could produce improved results. The method with 

detection rate for automatic threshold selection should be proved theoretically, 

although it is effectively in the typical benchmark video sequence. Additionally, there 

needs to be an effort to improve the implement of the algorithm, for instance the 

execution time could be significantly reduced with software code optimization. 

 

 Object detection is the first stage in many video processing applications. The 

common method, used to detect the moving objects, is not accurate, which will 

dramatically influence subsequent operation. Our long term aim is to model and 

analyse the human actions. Thus, the next step is the tracking of the objects after we 
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have detected & removed the shadows. 
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